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Introduction 1
Live betting, or in-play betting, has seen massive growth in popularity over the last decade or so.
Such bets are traded in real-time prior to and during an association football match (henceforth,
simply referred to as football). The bet prices are mostly driven by the goals scored in the
underlying game. This is comparable to financial markets where the price of an option varies in
accordance with the price changes of the underlying instrument. Bet prices generally move in
a way such that the prices move evenly between goals and then jump to a new level at a goal
time. Since bet prices behave much like options in other financial markets, we seek to apply
some general asset pricing theory to the betting markets. In particular, we wish to investigate
and demonstrate the application of the Fundamental Theorems of Asset Pricing to the in-play
football betting market. In doing so, we will also need to investigate some statistical patterns of
football goals in order to model the underlying football match.

Betting Markets

Betting markets have historically only consisted of bookmakers setting the odds for people to
bet on. Traditionally, the bookmakers only supplied fixed-odds bets, also known as pre-game
bets, in which the bettor is not allowed to place bets during a football match. In-play betting
changed that and now allows bettors to place bets after the game has started. Furthermore, the
invention and later growth of the betting exchanges have rapidly expanded the in-play betting
markets, such that is has overtaken the classic pre-game market in popularity and revenues.
Betting exchanges are much like regular financial exchanges, where you can buy and sell bets.
The Betfair exchange was launched back in 2000 and started seeing a huge growth in popularity
towards the end of the decade. As of the time of writing, the Betfair betting exchange is the
world’s largest betting exchange, however, several prominent competitors have appeared in recent
time.1

1Nordsted (2009), Brown and Yang (2017), and Divos et al. (2018)
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Risk-neutral, Risk-management, & Hedging

The Fundamental Theorems of Asset Pricing constitute the foundation of the risk-neutral
framework of mathematical finance and derivative pricing. The first fundamental theorem
specifies that a market is arbitrage-free if and only if there exists a probability measure under
which the underlying asset prices are martingales. The second fundamental theorem states that
the market is complete if and only if the martingale measure is unique. A risk-neutral framework
is beneficial when pricing derivatives as it aims at finding a probability measure such that people’s
varying degrees of risk, already included in the observed prices, can be quantified. Typically, the
field of derivative pricing can be divided into two branches; the actual pricing of derivatives, and
the risk-management branch. While the pricing of derivatives is fairly self-explanatory, the risk-
management discipline is slightly more subtle. Risk-management generally aims at identifying
and measuring risk, as well as reducing risk. An example of the two branches in a betting
framework could be; a person wanting to act as a bookmaker and thus needs to correctly price
the bets, or a bettor wanting to identify and cover his/her risk while in the market. In general,
our focus will lie in the risk-management branch, since we will view the market prices as already
correctly priced in order to find model parameters suitable for risk-management purposes, such
as hedging strategies.

Problem Statement

In-play bet prices on football are driven by the underlying match, which can be represented by score
processes. Using general counting/point process theory we will formulate such score processes,
in order to model the underlying football match, using Weibull-based counting processes. Then,
we will investigate if the Fundamental Theorems of Asset Pricing are applicable in the in-play
football betting markets. Specifically, we will formulate a risk-neutral valuation framework for the
pricing of football bets, and then calibrate the model prices to actual market prices.

Connection with Existing Work

This thesis was originally inspired by the paper of Divos et al. (2018), in which they develop
a risk-neutral framework for pricing and hedging in-play football bets using a market model
composed of homogeneous Poisson processes. This led to the author’s former semester project at
Aalborg University, Andersen and Maillard (2019), in which they implement, reconstruct, and
discuss the concepts of Divos et al.’s work. The work of Divos et al. (2018) and Andersen and
Maillard (2019) sparked several ideas in the author’s mind, some of which are presented here.
This thesis can thus be seen as a slight continuation of the work presented in Andersen and
Maillard (2019); however, prior reading of which is not necessary.

In the broader spectrum of papers on football modeling and betting, several authors have dealt
with the distribution of goals. The paper by Maher (1982) is by many regarded as the first of
its kind. Later contributions from Dixon and Coles (1997), Dixon and Robinson (1998), Karlis
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and Ntzoufras (2000), Karlis and Ntzoufras (2003), and I. McHale and Scarf (2007) must also be
regarded as significant work in the field, all of which dealt with some form of extension of Maher’s
original model to describe the distribution of goals. Of more recent work should the papers of
I. McHale and Scarf (2011), Koopman and Lit (2015), Feng, Polson, and Xu (2016), Boshnakov,
Kharrat, and I. G. McHale (2017), and Divos et al. (2018) have a place on the interested reader’s
reading list; many of which, deal with some form of correlation between the scores in football,
or some form of dynamic models.

Thesis Structure

This thesis is structured in the following way; Chapter 2 presents some general theory on point
processes. Here, we also introduce the types of processes, we will be dealing with throughout the
thesis, namely two types of Weibull-based point processes. Chapter 3 concerns the modeling of
football goals. Here, we wish to identify and describe some statistical patterns in football goals
and put these in relation to the proposed processes. In Chapter 4, we develop a general market
model in which a risk-neutral framework for pricing and hedging of football bets can be carried
out. We also present specific model dynamics of the Weibull-based market models. Chapter 5
introduces the historical betting exchange data, and the cleaning hereof, as well as presents a
general overview and discussion of the Betfair exchange. We furthermore state the calibration
procedure and outline the findings of this. In Chapter 6, we discuss the independence assumption
originally imposed in the general market model and propose a natural extension, as well as the
results of applying this. Finally, Chapter 7 reviews and concludes the findings of the thesis.
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Theory on Point Processes 2
In this chapter, we introduce some concepts and results from the general theory on point and
renewal processes, along with an introduction to a few specific processes to be used in later
chapters’ modeling parts. Section 2.1 covers basic definitions of stochastic processes, information,
and martingales. Section 2.2 contains some introductory material on point/counting processes,
and Section 2.3 introduces the intensity notion of point/counting processes, as well as the concept
of a compensator. Section 2.4 states some results associated with the intensity of a counting
process. Section 2.5 shows the notion of renewal processes and renewal theory in connection
to the more general view of point processes. Section 2.6 presents the Poisson processes and its
characteristics, and Section 2.7 introduces specific point/counting processes based on the Weibull
distribution and some characteristics related to these.

2.1 Stochastic Processes

This section is based on Tankov and Cont (2004, Sec. 2.4), with some minor additions from
Rinne (2008, Sec. 4.1) & Jeanblanc, Yor, and Chesney (2009, Sec. 1.1.10).

We begin this section by recalling the definition of a stochastic process and associated spaces.

Definition 2.1 (Stochastic Process)
Let (Ω,F ,P) be a probability space and T ⊆ R be an arbitrary, but non-random and
non-empty index set. A function X : Ω × T → R is called a one-dimensional, real-valued
stochastic process. The set of realizations of X, i.e. {X(t, ω) | ω ∈ Ω, t ∈ T} is called the
state space, and T is the parameter space.

A stochastic process is thus a family of random variables index by T, and we usually denote
it as X = (Xt)t∈T. The parameter space may be either discrete or continuous, and we will
henceforth use the term “time” when talking about the parameter space. For each realization of
the randomness ω, the trajectory t 7→ Xt(ω) defines a function of time, called the sample path of
the stochastic process, which we denote X•(ω). In order to account for discontinuities, we need
a class of functions that allows this property.
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Definition 2.2 (Càdlàg)
Let T ∈ {[0, T ] | T <∞} ∪ {[0,∞)} be an interval. A one-dimensional function f : T → R
is said to be càdlàg if it is right-continuous with left limits, i.e. for each t ∈ T the limits

f(t−) = lim
s↗t

f(s),

f(t+) = lim
s↘t

f(s),

exist and f(t) = f(t+).

We call a one-dimensional stochastic process (Xt)t∈T on the probability space (Ω,F ,P) for càdlàg
if the sample path of X is càdlàg for all ω ∈ Ω. Sometimes we will also be talking about càglàd
functions, which are simply the opposite of càdlàg, namely left-continuous with right limits.

We see that any continuous function is obviously càdlàg (and càglàd), however, as stated, a
càdlàg function can have discontinuities. Consider the following:

∆f(t) := f(t)− f(t−).

If t is a discontinuity point, we have that ∆f(t) 6= 0, otherwise ∆f(t) = 0. We note that the use
of càdlàg functions makes sense in regard to observable events. E.g. consider a goal in a football
match. If the goal is scored at time t, then the goal was not scored at t−. Denoting the count
of goals by a càdlàg function will then make sure that when we are at the time of the goal, t,
the goal is counted. On the contrary, if we use a càglàd function to describe the count of goals,
then standing at t the goal will not be counted until t+.

2.1.1 Information, Histories, & Martingales

When t depicts time, we need to account for the notions of information, history, and predictability
in the stochastic framework. Consider a dynamic context in which time flows. More information
is revealed to the observer as time passes, i.e. information that is considered random at t may
not be random at some future point in time. Thus, we need a time-dependent component in our
probability space (Ω,F ,P) to integrate this feature.

Definition 2.3 (Filtration)
A filtration or information flow on (Ω,F ,P) is an increasing family of σ-algebras F =

(Ft)t∈T such that ∀t ≥ s ≥ 0, Fs ⊆ Ft ⊆ F .

From Definition 2.3, we see that Ft is interpreted as the information known at time t, which
increases as time passes. An event A ∈ Ft is such that an observer can decide, given the
information Ft, if the event has happened. Likewise, an Ft-measurable random variable is a
random variable whose value is unveiled at time t. A probability space (Ω,F ,P) equipped with
a filtration is said to be a filtered probability space, and is denoted (Ω,F ,F,P).
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Definition 2.4 (Adapted Process)
Let (Ω,F ,F,P) be a filtered probability space. The stochastic process X is called F-
adapted1if for each t ∈ T, the random variable Xt is Ft-measurable.

From Definition 2.4, we see that an adapted process is a process whose value at time t is unveiled
by the filtration Ft. If past values of a stochastic process X is the only available observations,
then the filtration is represented by the specific filtration presented in the following definition.

Definition 2.5 (Natural Filtration)
The history or natural filtration of a stochastic process X on (Ω,F ,P) is the filtration
(FX

t )t∈T where FX
t is the σ-algebra generated by the past values of the process, completed

by the null sets:

FX
t = σ(Xs, s ∈ [0, t])

∨
N , (2.1)

where N := {A ∈ F | P(A) = 0}.

The
∨

notation used in Definition 2.5 is the so-called join, and in general it has the meaning:
n∨
i=1

F i
t = σ

(
n⋃
i=1

F i
t

)
. (2.2)

(2.2) relates to the fact that the union of a collection of σ-algebras is not necessarily a σ-algebra,
however, it generates a σ-algebra which is the join as stated.

We can think of the natural filtration as all the information we can extract from the observed
sample path of a stochastic process up to, and including, time t.

Definition 2.6 (Martingale)
Let (Ω,F ,F,P) be a filtered probability space. A stochastic process X is said to be a
(P,Ft)-martingale if X is Ft-adapted, X is P-integrable, i.e. E [|Xt|] < ∞ for any t ∈ T,
and for all t > s:

E [Xt | Fs] = Xs, P-a.s.. (2.3)

Furthermore, X is called a (P,Ft)-submartingale if X is Ft-adapted, X is P-integrable, and
for all t > s:

E [Xt | Fs] ≥ Xs, P-a.s.. (2.4)

From the definition of a martingale, it is easy to see that the best prediction of a martingale’s
future value is its present value. We should point out that the notion of martingales depends

1Also denoted as Ft-adapted.
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on the filtration and the probability measure, hence the (P,Ft) emphasis in the definition.
However, when the filtration and measure are implicit we will sometimes drop the emphasis
from the notation. Also, when dealing with several probability measures, but the filtration is
implicit, we will simply speak of P-martingales and the likes.

The discussion of càdlàg vs. càglàd presented below Definition 2.2 motivates the definition of
useful σ-algebra on T× Ω.

Definition 2.7 (Predictable)
The predictable σ-algebra is the σ-algebra P generated on T×Ω by all adapted left-continuous
processes. A function X : T × Ω → R which is measurable with respect to P is called a
one-dimensional predictable process.

We see that a predictable process is thus a process whose value at t is “announced by the preceding
values”, i.e. unveiled at the prior time t−. We finish this section by defining some useful notation
on the increments of a stochastic process; first, recall that two random variables, X,Y , is equal
in distribution, denoted X d

= Y , if:

P(X ≤ x) = P(Y ≤ x) , ∀x.

Definition 2.8 (Stationary & Independent Increments)
A stochastic process X has independent increments if for any pair (s, t) ∈ R2

+, the random
variable Xt+s −Xs is independent of FX

s .

A stochastic process X has stationary increments if for any pair (s, t) ∈ R2
+

Xt+s −Xs
d
= Xt.

A process is stationary if for all fixed s > 0,

(Xt+s −Xs, t ≥ 0)
d
= (Xt, t ≥ 0) .

7



2.2 Point Processes

This section is based on Sigman (2009, Sec. 2.1), Hautsch (2012, Sec. 4.1.2), & Björk (2011,
Ch. 3).

In this section, we define point and counting processes and show how these are related to each
other and to the theory of stochastic processes presented in Section 2.1. We also present the
intensity notion of such processes and related results.

Definition 2.9 (Point Process)
A simple point process ψ = {tn : n ∈ N} is a sequence of strictly increasing points

0 < t1 < t2 < · · · tn · · · , (2.5)

with lim
n→∞

tn =∞. We say that tn is the arrival time of the nth arrival (event). Furthermore,
we sometimes allow a point t0 at the origin and define t0 := 0. If the tn’s are random
variables defined on some probability space (Ω,F ,P), then ψ is termed a simple random
point process.

Remark: When we consider the case where we define t0 := 0, we write ψ = {tn : n ∈ N0}.

In Definition 2.9, the word “simple” refers to the fact that no more than one arrival can happen
at the same time, which is stated in (2.5). Henceforth, we will only deal with simple point
processes, and we will usually omit the “simple” in front.

Definition 2.10 (Interarrival Time)
Let ψ = {tn : n ∈ N0} be a simple point process. The nth interarrival time of ψ is then
given by

Tn = tn − tn−1, n ∈ N. (2.6)

Remark: When a point is not defined at the origin, the first interarrival time T1 is not defined.

By definition we have the following:

tn =
n∑
i=1

Ti. (2.7)
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Definition 2.11 (Counting Process)
Let ψ be a simple point process. By defining N0 := 0, we let Nt denote the number of points
in the interval (0, t], i.e.

Nt = max {n : tn ≤ t} . (2.8)

N = (Nt)t≥0 is then referred to as the counting process for ψ.

Remark: The term nonexplosive is sometimes used to described a counting process
corresponding to a simple point process.

We note that when ψ is a random point process, the corresponding counting processNt is a càdlàg
stochastic process with state space N0 and parameter space T = R≥0, in which the sample paths
are step-functions with upwards jumps of magnitude 1. Moreover, we have that the (random)
variable Nt may also be expressed in terms of the indicator function:

Nt =
∞∑
n=0

1 (tn ≤ t) .

The fundamental relationship between the counting process N and the point process ψ is that
for each n and t the following holds by simple reasoning:

Nt ≥ n ⇐⇒ tn ≤ t. (2.9)

Therefore, each process contains sufficient information to reconstruct the other.

2.3 Intensities and Compensators

This section is based on Hautsch (2012, Sec. 4.1.2) & Aalen (1978) with some minor additions
from Karr (1991), Segall and Kailath (1975), Brémaud (1981), Jeanblanc, Yor, and Chesney
(2009), and Daley and Vere-Jones (2003).

Here, we introduce essential components in the theory of point processes; namely the intensity
process2 and the notion of a compensator.

2The notation is not consistent in all papers or textbooks; other common names are conditional intensity
function and stochastic intensity.
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Definition 2.12 (Intensity Process)
Let N be an Ft-adapted counting process for a simple point process ψ on a filtered
probability space (Ω,F ,F,P), and assume that λ = (λt)t≥0 is a non-negative càglàd
(stochastic) process defined by

λt = lim
∆↘0

1

∆
E [Nt+∆ −Nt | Ft] , ∀t ≥ 0. (2.10)

Then, the process λ is called the intensity process of the counting process N with respect
to the filtration F and probability measure P.

The intensity process characterizes the evolution of the counting process N conditioned on some
filtration F. That is, Definition 2.12 reveals the intensity process as the instantaneous arrival
rate of an event in t conditioned on some filtration F.

Typically, we consider the case of the natural filtration; Ft = FN
t , however, the intensity notion

also allows for broader filtration choices, e.g. one that includes unobservable factors. We will
sometimes emphasize the filtration used by writing the intensity as λFt

t .

The use of càglàd (left-continuous with right limits) in Definition 2.12 is associated with
predictability, that is, if we consider a discontinuity point, then the intensity at that point
should be defined by the information before that point, and not by what happens at the point
itself.3 Furthermore, according to Björk, the càglàd assumption is important in ensuring the
uniqueness of the intensity process.4

Due to the assumption of an underlying simple point process, or correspondingly a nonexplosive
counting process, an alternative expression for the intensity is, according to Hautsch, given by

λt = lim
∆↘0

1

∆
P(Nt+∆ −Nt > 0 | Ft) , (2.11)

which can be related to the conditional probability per unit time to observe an event in the next
instant, given the conditioning information.

Since Nt is non-decreasing we have that it is a submartingale:

Ns ≤ E [Nt | Fs] , s < t,

and according to the Doob–Meyer decomposition any (locally bounded) (P,Ft)-submartingale
Nt can be decomposed into a unique zero-mean (P,Ft)-martingale Mt and a unique (P,Ft)-
predictable cumulative process Λ(t), i.e.,

Nt = Mt + Λ(t), (2.12)

where Λ(t) is called the compensator and is defined by

3For a further treatment of the importance of predictability of the intensity process, see Daley and Vere-Jones
(2003).

4For a formal discussion of uniqueness of the intensity process see Björk (2011).
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Λ(t) :=

∫ t

0
λudu. (2.13)

From (2.12) we see that the stochastic process M = (Mt)t≥0, characterized by

Mt = Nt − Λ(t), (2.14)

is a (P,Ft)-martingale. Accordingly, we obtain

E [Nt | Fs] = E
[∫ t

0
λudu | Fs

]
, P-a.s.,

or

E [Nt −Ns | Fs] = E
[∫ t

s
λudu | Fs

]
P-a.s. (2.15)

Equation (2.15) yields an alternative implicit definition of the intensity process, and we see from
it that the expected number of events in an interval (s, t] given Fs is computed as the conditional
expectation of the integrated intensity.

The existence of an intensity process for a counting process is a technical and non-trivial problem
that is out of the scope for this thesis5, however, Björk states that only counting processes for
which the compensator Λ(t) is absolutely continuous have an intensity process. This implies
that if we restrict our focus to counting processes with an intensity process, we exclude processes
with jumps at predetermined times, i.e. we only focus on random point processes.

2.3.1 Hazard Function

We briefly give a description of the hazard function. The hazard function is a counterpart to the
intensity, which is used extensively in traditional duration and survival analysis. However, in
such a framework, generally there does not exists a history of the process before the beginning
of a spell and therefore, the hazard function is defined by

h(t) :=
f(t)

1− F (t)

= lim
∆↘0

1

∆
P(t ≤ T < t+ ∆ | T ≥ t) ,

(2.16)

where T is an interarrival time, i.e. a positive random variable, whose distribution function F
admits the density f = F ′.

From (2.16) we see that the intensity and hazard function portray the same concept. However,
the distinction is that the hazard function is defined in terms of the interarrival time T .

5Daley and Vere-Jones (2003, Sec. 3.3) and Karr (1991, Sec. 2.4) have comprehensive discussions on the
existence of a intensity process for counting processes.
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2.4 Girsanov’s Theorem and Other Results

This section is based on Sokol and Hansen (2015), Brémaud (1981, Sec. VI.2), & Björk (2011,
Ch. 3).

We want to find the dynamics of the intensity process when we change the probability measure.
For this, we use Girsanov’s theorem as presented below. However, first, we introduce some useful
notation.

Definition 2.13 (λ-Compatibility)
We say that the process λ̃ = (λ̃t)t∈T is λ-compatible if it holds for all ω ∈ Ω that λ̃t(ω) = 0

whenever λt(ω) = 0, and if the process γ defined by γt = λ̃t
λt

is locally bounded.

Remark: In Definition 2.13, we use the convention that zero divided by zero is equal to one.

Theorem 2.14 (Girsanov’s Theorem for Counting Processes). Let T ∈ {[0, T ] | T <∞} and let
N be an adapted counting process on the filtered probability space (Ω,F ,F,P). Assume that N
has the Ft-intensity process λ = (λt)t∈T. Let h be a predictable process such that

ht ≥ −1, P−a.s. (2.17)

and define the process L by {
dLt = Lt−ht(dNt − λtdt),
L0 = 1,

(2.18)

on the interval T. Assume furthermore that

EP [LT ] = 1. (2.19)

Now define a new probability measure Q absolutely continuous in reference to P on FT by

dQ
dP

= LT . (2.20)

Then N has the Q-intensity λ̃ = (λ̃t)t∈T, given by

λ̃t = λt(1 + ht). (2.21)

Proof. Omitted. Can be found in Björk (2011, Thm. 5.1.1, p. 41).

Remark: Girsanov’s theorem can be naturally extended to the multivariate case, in which case;
Lt =

∏k
i=1 L

i
t, where Lit is given by (2.18). For more on the multivariate case of Girsanov’s

theorem, see Brémaud (1981, Thm. T2 & T3, pp. 165-167).

Girsanov’s theorem is an important result in risk-neutral pricing as it describes the dynamics
of a stochastic process under a change of measure, e.g. a risk-neutral measure. An extended
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discussion on the change of measure of counting processes can be found in Brémaud (1981, Ch.
VI) and Sokol and Hansen (2015).

As a side note of Girsanov’s theorem, we obviously have that Q is absolutely continuous to P,
however, a natural question to ask is whether or not they are also equivalent. This is the case
when the Radon-Nikodym derivative is almost surely positive. The following lemma from Sokol
and Hansen states a condition for when this is the case.

Lemma 2.15. If the set of zeroes of λ̃ has Lebesgue measure zero, L is almost surely positive.

Proof. Omitted.

Furthermore, we also follow Sokol and Hansen and state sufficient criteria for when the process L,
(2.18), is a martingale. Using the notation log+ x := max {0, log x} x ≥ 0, with the convention
that the logarithm of zero is minus infinity, the result is as follows.

Theorem 2.16. Assume that λ and λ̃ are non-negative, predictable, and locally bounded. Assume
that λ̃ is λ-compatible. It holds that L is a martingale if there exists an ε > 0 such that for
0 ≤ u ≤ t, with t− u ≤ ε, one of the following two conditions are satisfied:

E
[
exp

(∫ t

u
(γs log γs − (γs − 1)λs) ds

)]
<∞ or (2.22)

E
[
exp

(∫ t

u
λsds+

∫ t

u
log+ γsdNs

)]
<∞. (2.23)

The direct use of Theorem 2.16 is an existence result for counting processes of simple point
processes, i.e. nonexplosive counting processes, with particular intensities, as we shall use later.
The is due to the change of measure obtained from the martingale property of L yields the
existence of a nonexplosive counting process with intensity process λ̃ on a bounded time interval
T ∈ {[0, T ] | T <∞}.

2.4.1 Filtrations and Uniqueness of Measure

Lastly, we show some more results pertaining to the intensity process; a result on the intensity
process on different filtrations and a result of the uniqueness of measures based on intensities.

As discussed in Section 2.3, we should emphasize that the intensity notion is tied to a particular
choice of filtration. If we, however, have two different filtrations F and G and a counting process
N adapted to both F and G there is no reason to suspect that the F-intensity will coincide
with the G-intensity. In general, there is no interesting connection between the two intensities,
however, in the special case, when G is a sub-filtration of F, we have the following result.

Proposition 2.17 (Intensities on Different Filtration). Let F = (Ft)t≥0 and G = (Gt)t≥0

be filtrations with FN
t ⊆ Gt ⊆ Ft for all t, and assume that a counting process N has

intensity process (λFt
t )t≥0 with respect to F. Then the intensity with respect to G is given by

λGt
t = E

[
λFt
t | Gt

]
.
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Proof. Omitted. Can be found in Segall and Kailath (1975, p. 137) or Björk (2011, p. 35).

Proposition 2.17 states that we can obtain the intensity of a counting process with respect to a
smaller than the original filtration, G, by a conditional expectation of the intensity in respect
to the original intensity F. Finally, we state a uniqueness of probability measures in the special
case of the natural filtration.

Theorem 2.18 (Uniqueness of Measures). Let P and Q be two probability measures on (Ω,F ),
and let N be a counting process such that for some FN

t -intensity process (λt)t≥0, N admits the(
P,FN

t

)
-intensity λt and the

(
Q,FN

t

)
-intensity λt. Then P and Q coincide on the events of

FN
∞ .

Proof. Omitted. Can be found in Brémaud (1981, p. 64) (the multivariate case) or Karr (1991,
p. 63).

Theorem 2.18 roughly states that to a given intensity process with respect to the natural filtration
of the counting process, corresponds one probability measure at most.

2.5 Renewal Processes

This section is based on Ross (2019, Sec. 7.1-7.2) & Cha and Finkelstein (2018, Sec. 3.1), with
minor additions from Sigman (2009, Sec. 1.2) & Hautsch (2012, Sec. 4.1.4).

In Section 2.2 we saw the relationship between point and counting processes and recognized that
such processes may be specified in terms of its counts in certain intervals and in terms of the
interarrival times of the point process. For some specific processes, one of these specifications
might be more intuitive than the other. In this section, we present processes which have a simple
specification in terms of the interarrival times.

Definition 2.19 (Renewal Process)
A random simple point process ψ = {tn : n ∈ N0} for which the interarrival times
{Tn : n ∈ N} form an independent and identically distributed (i.i.d.) sequence is called a
renewal process. We then refer to tn as the nth renewal epoch and F (x) = P(T ≤ x) , x ≥ 0,
denotes the common interarrival time distribution.

To avoid trivialities we generally assume that F (0) < 1, hence ensuring that tn → ∞ almost
surely. Furthermore, we generally say that the renewal process is an ordinary renewal process
if we have a point at the origin; t0 = 0, i.e. T1 also has distribution F . We will henceforth
only work with ordinary renewal processes, and hence we will drop the word “ordinary” from the
description.

We note that the i.i.d. assumption of the interarrival times with a common distribution is in
direct contrast to the general counting process, in which, with the exception of the homogeneous
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Poisson process (see Section 2.6), the interarrival times have differing distributions.

When dealing with renewal processes it is beneficial to define the left-continuous counting process
for ψ:

N̆t =
∞∑
n=0

1 (tn < t) . (2.24)

This is such that we can define the backwards recurrence time at time t, which is given by the
process Z = (Zt)t≥0 where

Zt = t− tN̆t
. (2.25)

The backwards recurrence time is the time elapsed since the last point, and is therefore a càglàd
(stochastic) function that grows linearly in time with discrete jumps back to zero after each point
tn. We also note that

Ztn = tn − tn−1 = Tn.

Now, recall the intensity function (2.10). We see that when there exists no history of the
counting process before the beginning of a spell, which is the case for renewal processes since
the interarrival times are i.i.d. random variables, we can restrict the intensity function to the
filtration generated by the backwards recurrence time, (FZ

t )t≥0. Furthermore, recall the hazard
function (2.16) which was defined in terms of the interarrival times. We see that the intensity of
a renewal process then coincides with the hazard function evaluated at Zt, i.e. we have that

λ
FZ

t
t = h(Zt).

Thus, we have that a renewal process possesses the simplest history, i.e. the time elapsed since
the last renewal. This has the effect that the previous renewals do not influence the times of
future renewals.

2.5.1 Renewal Function

Despite the simplistic appearance of renewal processes, probabilistic description and properties
of such processes are not straightforward. Consider for example the question of attaining the
probability mass function of Nt, the random variable describing the number of renewals in (0, t].

Using (2.9) and (2.7) the probability that there are exactly n events in (0, t] is given by

P(Nt = n) = P(Nt ≥ n)− P(Nt ≥ n+ 1)

= P(tn ≤ t)− P(tn+1 ≤ t)

= Fn(t)− Fn+1(t),

(2.26)

where Fn(t) is the n-fold convolution of F (t) with itself and by definition F0(t) = 1, F1(t) = F (t).
This is due to the result that the distribution of a sum of i.i.d. random variables can be expressed
by the corresponding convolution.
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The following function plays a fundamental role in renewal theory and is a function of t that
gives the expected number of renewals in (0, t].

Definition 2.20 (Renewal Function)
Let N be the counting process of a renewal process ψ. The renewal function or mean
function is defined by the following expectation:

H(t) = E [Nt] . (2.27)

According to Ross (2019), it can be shown that the renewal function H(t) uniquely determines
the renewal process. Particularly, we see a one-to-one correspondence between the interarrival
time distribution F and the renewal function H(t). Furthermore, Ross (2019) also states that
H(t) <∞ for all t <∞.

From (2.26) and (2.27) it follows that H(t) can be expressed as the infinite sum of convolutions:

H(t) = E [Nt] =

∞∑
n=1

nP(Nt = n) =

∞∑
n=1

n (Fn(t)− Fn+1(t)) =

∞∑
n=1

Fn(t). (2.28)

Since a renewal process has history that affect future arrivals, with the obvious exception of
the homogeneous Poisson process (see Section 2.6), it cannot posses the Markov property.
Consequently, its increments are not independent. It does, however, have Markovian points.
Those are the renewal epochs. Therefore, we can employ a renewal-type reasoning in analytical
descriptions of the main renewal indices. Specifically, by assuming that the interarrival time
distribution F is continuous with density function f , the existence of the renewal epochs allows
us to write the following integral equation for H(t):

H(t) = F (t) +

∫ t

0
H(t− x)f(x)dx (2.29)

(2.29) is called the renewal equation and can sometimes be solved to obtain the renewal function.
We obtain (2.29) by noting that the following holds:

H(t) = E [Nt] =

∫ ∞
0

E [Nt | T1 = x] f(x)dx. (2.30)

Now suppose that the first renewal happens at time x ≤ t, then we can utilize that a renewal
process probabilistically restarts at a renewal epoch. It then follows that the number of renewals
by time t must have the same distribution as one plus the number of renewals in the first t− x
time units. Therefore,

E [Nt | T1 = x] = 1 + E [Nt −Nx] , x ≤ t.

We also clearly have that E [Nt | T1 = x] = 0 when x > t. Now (2.29) follows from (2.30) and
that E [Nt −Nx] = H(t− x).

Thus, we see that attaining the renewal function, and thus specifying the renewal process, for a
finite interval involves solutions of the corresponding renewal equation that in several occasions
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should be done numerically.

2.6 Poisson Process

This section is based on Tankov and Cont (2004, Sec. 2.5), Jeanblanc, Yor, and Chesney (2009,
Ch. 8), Klebaner (2005, Sec. 9.4), & Pedersen (2017, Ch. 1), with minor additions from Sigman
(2009) and Björk (2011).

In this section, we present a specific class of point/counting processes that is essential in any work
related to such; namely, we introduce the Poisson process in its homogeneous and inhomogeneous
form. Henceforth, we will call the homogeneous Poisson process simply by the term “Poisson
process”, and use the full terminology for the inhomogeneous variant, or when emphasis is needed.

2.6.1 Homogeneous Poisson Process

There are several equivalent definitions of the Poisson process. In the following, we present the
one which focuses on the counting process part.

Definition 2.21 (Poisson Process)
Let (Ω,F ,F,P) be a filtered probability space and λ > 0 a constant. The process
N = (Nt)t≥0 is called a homogeneous Poisson process with intensity λ with respect to
the filtration F if it satisfies the following conditions:

(i) N0 = 0 a.s.

(ii) t 7→ Nt(ω) is càdlàg, non-decreasing, and N0-valued for all ω ∈ Ω.

(iii) N is adapted to F.

(iv) Nt −Ns ∼ Poi (λ(t− s)) for 0 ≤ s ≤ t.

(v) (Nt)t≥0 has independent increments.

Note that (i) and (ii) in Definition 2.21 ensures that the process is a counting process, (iii) is
such that we can observe the outcome of the process, (iv) states that an arbitrary increment is
Poisson distributed with λ times the time difference between t and s, from which also stationarity
follows, and finally, (v) is rather self-explanatory.

An equally valid definition of the Poisson process would be to define it in terms of the interarrival
times, in which the definition then becomes something in line of the following: Let ψ be a point
process with independent interarrival times {Tn : n ∈ N} that follows an exponential distribution
with parameter λ, and furthermore:
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P(Nt = n) = e−λt
(λt)n

n!
.

It then follows from the memoryless property of the exponential distribution, Proposition A.5,
that a Poisson process is also a renewal process.

Due to (2.7) we see that the distribution of tn, the nth arrival time, is the nth-fold convolution of
the exponential distribution and is thus gamma distributed with parameters n, λ, and its density
is given by

fn(t) = λe−λt
(λt)n−1

(n− 1)!
, t ≥ 0,

where f1(t) = f(t) = λe−λt is the exponential density function. Lastly, the following proposition
states that the only counting processes with stationary and independent increments are Poisson
processes.

Proposition 2.22. Let N = (Nt)t≥0 be a counting process with stationary and independent
increments. Then N is a homogeneous Poisson process.

Proof. Omitted. See Tankov and Cont (2004, pp. 54–55).

2.6.2 Inhomogeneous Poisson Process

Let us generalize the Poisson process, namely, we want to remove the rather strict stationarity
property of the homogeneous Poisson process.

Definition 2.23 (Inhomogeneous Poisson Process)
Let (Ω,F ,F,P) be a filtered probability space and let (λt)t≥0 be a deterministic intensity
process, namely an R+-valued Borel function satisfying Λ(t) < ∞, ∀t and Λ(∞) :=∫∞

0 λudu =∞. A process N is then called an inhomogeneous Poisson process with intensity
λt with respect to F if is satisfies the following conditions:

(i) N0 = 0 a.s.

(ii) t 7→ Nt(ω) is càdlàg, non-decreasing, and N0-valued for all ω ∈ Ω.

(iii) N is adapted to F.

(iv) Nt −Ns ∼ Poi
(∫ t

s λudu
)
for 0 ≤ s ≤ t.

(v) (Nt)t≥0 has independent increments.

Remark: It is also possible to define an inhomogeneous Poisson process with stochastic intensity
(see e.g. Jeanblanc, Yor, and Chesney (2009, p. 476)), however, such process are not of particular
interest in this thesis.
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From Definition 2.23 it is easy to see that the inhomogeneous Poisson process also encloses
the homogeneous Poisson process, namely with the simple choice λu = λ, i.e. Λ(t) = λt.
Furthermore, due to Nt having the Poisson distribution with parameter

∫ t
0 λudu, it follows that

E [Nt] =

∫ t

0
λudu, (2.31)

Var [Nt] =

∫ t

0
λudu. (2.32)

2.6.3 Time-change Transformation

A central result in martingale-based theory of point process is the (random) time change theorem
that allows the transformation of a broad class of point processes to a unit-rate homogeneous
Poisson process.

Theorem 2.24 (Change of Time). Let (Ω,F ,F,P) be a filtered probability space, and let
N = (Nt)t≥0 be a counting process with intensity process λ = (λt)t≥0 in respect to F that satisfies∫ ∞

0
λtdt =∞.

Define for all t, the stopping-time τt as the solution to∫ τt

0
λsds = t. (2.33)

Then, the counting process Ñt = Nτt is a homogeneous Poisson process with intensity λ = 1.

Proof. Omitted. See Brémaud (1981, pp. 41–42).

Hence, (2.33) corresponds to a change of the time scale from t to τt transforming Nt into a
unit-rate Poisson process Ñt = Nτt . This result can be used for simulation or model diagnostic
purposes, something which is discussed further in Hautsch (2012, Sec. 4.1.5).

Using Theorem 2.24, we see that we can construct an inhomogeneous Poisson process from
a deterministic time-changed homogeneous Poisson process. We have the compensator of an
inhomogeneous Poisson process Λ(t) and consider a Poisson process N̂ with constant intensity
equal to 1. Then Nt = N̂Λ(t) is an inhomogeneous Poisson process with intensity Λ(t).

2.6.4 Watanabe’s Theorem

We finish this section with two results that give a way to determine if a counting process has
independent increments.

Theorem 2.25 (Watanabe’s Theorem). Let N be a counting process with a continuous
deterministic compensator Λ(t). Then it has independent Poisson distributed increments, i.e.,
the distribution of Nt −Ns ∼ Poi

(∫ t
s λudu

)
, 0 ≤ s < t.
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Proof. Omitted. Can be found in Klebaner (2005, pp. 256–257).

Theorem 2.25 can be generalized to discontinuous but deterministic compensators. The proof
can be found in Shiryaev and Liptser (2001, Ch. 18), where the form of the distribution of the
increments is also given along with an extensive discussion.

Theorem 2.26. Let N be a counting process with a deterministic compensator Λ(t). Then it
has independent increments.

2.7 Weibull-based Point Processes

This section is based on Murthy, Xie, and Jiang (2004, Ch. 15), Boshnakov, Kharrat, and I. G.
McHale (2017), & Rinne (2008, Sec. 4.3-4.4) with some minor additions from Casarin (2005).

We are now ready to present explicit processes that will be important for the modeling part in
later chapters; namely, here we introduce some point processes based on the Weibull distribution
and present some characteristics of these.

2.7.1 Weibull Process

First, we consider a point/counting process in which the intensity is a continuous deterministic
function of time given by the so-called Weibull intensity function. A consequence of this, cf.
Theorem 2.25, is that the process has independent Poisson increments, i.e. is an inhomogeneous
Poisson process.

Definition 2.27 (Weibull Process)
Let N be an inhomogeneous Poisson process with the deterministic intensity process
λ = (λt)t≥0 characterized by:

λt = αβtβ−1, (2.34)

with α, β ∈ R+. Then N is called a Weibull process.

Remark: The Weibull process has many names in the literature, e.g. power law process, Rasch-
Weibull process, Weibull intensity function, and Weibull-Poisson process.

The Weibull intensity (2.34) explains many of the names used for this process. We should point
out that what is Weibull distributed in the Weibull process is the arrival time of the first event
t1, whereas the arrival of t2, t3, . . . and the interarrival times {Tn} for n ≥ 2 are not Weibull
distributed.

Using (2.34) in (iv) of Definition 2.23, we can obtain
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Nt −Ns ∼ Poi

(∫ t

s
αβuβ−1du

)
= Poi

(
αtβ − αsβ

)
= Poi

(
α
(
tβ − sβ

))
.

(2.35)

Furthermore, we also have that

E [Nt −Ns | Fs] = E
[∫ t

s
λudu | Fs

]
= E

[
α
(
tβ − sβ

)
| Fs

]
= α

(
tβ − sβ

)
.

(2.36)

2.7.2 Weibull Renewal Process

We now consider another Weibull-based point process; namely a renewal process in which the
interarrival times are Weibull distributed.

Definition 2.28 (Weibull Renewal Process)
Let α, β ∈ R+ and letN be a renewal process with interarrival times {Tn : n ∈ N} distributed
according to a Weibull distribution; Tn ∼Weibull (α, β) , n = 1, 2, . . . . Then the process N
is called a Weibull renewal process.

The intensity process of a Weibull renewal process is given by the hazard function evaluated at
the backwards recurrence time:

λt = h(Zt) = αβ (Zt)
β−1 , (2.37)

that is, for t ∈ (tn, tn+1] the intensity is given by αβ (t− tn)β−1.

We then have that the expected number of events in an arbitrary interval given the information
available is given by:

E [Nt −Ns | Fs] = E
[∫ t

s
λudu | Fs

]
= E

[∫ t

s
αβ(Zu)β−1du | Fs

]
= αβ E

[∫ t

s
(Zu)β−1du | Fs

]
.

(2.38)

Weibull Count Model

The emerging distribution of Nt, i.e. the pmf given by (2.26), when N is a Weibull renewal
process is known as the Weibull Count Model, and was first derived in McShane et al. (2008).
The Weibull Count Model is given by
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P(Nt = n) =
∞∑
j=n

(−1)n+j
(
αtβ
)j
ςnj

Γ (βj + 1)
, (2.39)

where Γ(·) is the gamma function and ςj is given by:

ς0
j =

Γ (βj + 1)

Γ (j + 1)
, j = 0, 1, 2, . . .

and

ςn+1
j =

j−1∑
m=n

ςnm
Γ (αj − αm+ 1)

Γ (j −m+ 1)
,

for n = 1, 2, . . . and j = n+ 1, n+ 2, n+ 3, . . . .

Furthermore, the expected value, i.e. the renewal function, of the Weibull Count Model is given
by

E [Nt] =

∞∑
n=1

∞∑
j=n

n(−1)n+j
(
αtβ
)j
ςnj

Γ (βj + 1)
, (2.40)

and the variance by

Var [Nt] =

∞∑
n=2

∞∑
j=n

n2(−1)n+j
(
αtβ
)j
ςnj

Γ (βj + 1)
−

 ∞∑
n=1

∞∑
j=n

n(−1)n+j
(
αtβ
)j
ςnj

Γ (βj + 1)

2

. (2.41)

In the next chapter, we will investigate and assess the usability of the two proposed Weibull-based
counting process on football matches. Specifically, we want to analyze the statistical properties
of the processes in connection with the observed properties of football goals.
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Football Match Characteristics 3
In this chapter, we analyze and show some empirical characteristics of football goals, and discuss
how these relate to the characteristics of the proposed Weibull-based counting processes. In
general, there are three main football characteristics that we are interested in; the distribution of
goals, the intensity of goals throughout the match, and the distribution of waiting times of goals.
Section 3.1 concerns with the distribution of goals, Section 3.2 casts light upon the intensity of
goals throughout the game, and Section 3.3 deals with the distribution of the waiting times of
football goals.

3.1 Distribution of Goals

In this section, we investigate the empirical distributions of goals to see if they show some
interesting patterns, and if we can obtain similar features with the distribution of the proposed
models, i.e. the probability mass function arising from the counting processes via NT −N0. We
start by presenting a histogram of the number of goals by each side in each match for the English
Premier Leagues. We consider all Premier League matches from August 2004 through May 2019,
and neglect the possibility that football is evolving throughout time; it is simply more important
for us to obtain a large sample. This histogram is shown in Figure 3.1.

From Figure 3.1 we see that the home teams tend to score more goals than the away team. In
about two-thirds of the games, the away team only scored one or zero goals. In about a third of
the games the home team scores one goal, and in about a quarter of the games the home team
either scores 0 or 2 goals. We also see that the most frequent observation for the home team is
1 goal, followed by 2 goals, whereas the most frequent observation for the away team is no goals
followed closely by 1 goal. In Table 3.2 we show a summary of the mean and variance of the
goals by each side.

We should note that each individual match, if played over and over, may have characteristics that
behave very different from the general patterns. Such scenarios can never be observed in the real
world, therefore, the only data we have available is the collective of these matches played only
once. That is, to make some general assumptions of a football game, we implicitly assume that
all games follows the same patterns and have the same characteristics as the masses. This may
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Figure 3.1: Histogram of number of goals in all English Premier League matches between August 2004
and May 2019, separated by home and away team.

Home Away

Mean 1.536491 1.138246
Variance 1.706863 1.287430

Table 3.2: Sample means and variances of the English Premier League football data for each side.

not be applicable for all matches, and thus we should be weary in making too strong conclusions
based on the general patterns.

3.1.1 Poisson Distribution

Let us now have a look at how well the Poisson distribution describes the empirical distribution.
Right off the bat, we see a potential misfit; the sample variances are larger than the sample
means, this is known as overdispersion and since the Poisson distribution only has one free
parameter, it does not allow for the variance to be set independently of the mean. Despite this
lack of variability, let us try to fit a Poisson distribution to the empirical data. This fit is shown
in Figure 3.3, which confirms the initial observation; the Poisson distribution cannot accurately
portray the sample data. Despite the Poisson distribution fit being obviously flawed, it does
yield a decent fit given that it only has one free parameter, i.e. it captures most of the features
displayed in the sample.

For the sake of statistical support of the initial observation, we perform a goodness-of-fit test,
namely the Pearson’s chi-squared test, with results shown in Table 3.4. In this test we seek not
to reject the null hypothesis stating that the sample data follows a Poisson distribution, i.e. we
want large p-values. From the goodness-of-fit results, we conclude that the sample data is very
unlikely to originate from Poisson distributions.
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Figure 3.3: Goal histograms with fitted Poisson probability mass function for each side.

χ2 df P
(
> χ2

)
Home 51.8994 9 4.722805e-08
Away 55.5388 7 1.165871e-09

Table 3.4: Pearson’s chi-squared goodness-of-fit test results for the null hypothesis of Poisson distributed
data with parameters equal to the respective sample means.

3.1.2 Weibull Count Model

Recall the Weibull Count Model presented in Section 2.7.2; we now show the fit of the this
distribution to the sample data. The Weibull Count Model has two free parameters, the scale
parameter α and the shape parameter β, and it encapsulates the Poisson distribution with
β = 1. We should thus expect a better fit from the Weibull Count Model. We note that β < 1

corresponds to overdispersion and β > 1 corresponds to underdispersion. We fit the Weibull
Count Model to the sample and show the results in Table 3.5 and Figure 3.6.

Home Away

α 1.4507183 1.0583299
β 0.9062415 0.8491849

Table 3.5: Maximum likelihood estimates for the parameters of the Weibull Count Model for each side.

From Figure 3.6 we observe a much better fit to the sample data than with the Poisson
distribution. This was also expected due to the extra free parameter in the Weibull Count
Model. Again, we perform a goodness-of-fit test to obtain concrete statistical evidence; the
results of which is shown in Table 3.7. Here, we see that we cannot reject the null hypothesis
that the data originates from Weibull Count Models. We also see that the home p-value is fairly
low compared to the away p-value, meaning that the away scores seems much more reasonable
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Figure 3.6: Goal histograms with fitted Weibull Count Model probability mass functions for each side.

to stem from the Weibull Count Model than the home scores.

χ2 df P
(
> χ2

)
Home 12.6591 8 0.1241
Away 3.2492 6 0.7770

Table 3.7: Pearson’s chi-squared goodness-of-fit test results for the null hypothesis of Weibull Count
Model distributed data with parameters equal to the respective parameters provided in Table 3.5.

3.1.3 Goal Differences

In addition to presenting the two distributions individually, we also present how they compare
to the goal differences. By studying the goal difference, we can effectively get an impression
of possible correlation in the scores. If no correlation exists the goal differences should simply
exhibit the same patterns as that of the difference of the individual distributions. We first show
the empirical distribution of the goal differences by the histogram presented in Figure 3.8.

Let us now see how the empirical goal differences stack up with the proposed distributions. First,
we note that the distribution of the difference between two Poisson distributed random variables
follows a Skellam distribution.1 The distribution of the difference between two Weibull Count
Model distributed random variable have not been specified to the best of the author’s knowledge,
but we can use Monte Carlo simulation to determine the distribution. We show the histogram
with the overlain probability mass functions of two random variables with distributions given as
in Section 3.1.1 and Section 3.1.2, respectively, in Figure 3.9.

From Figure 3.9 it seems that both the Skellam distribution and the Weibull Count difference
distribution do a decent job of describing the empirical goal difference distribution. The Skellam

1Skellam (1946)
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Figure 3.8: Histogram of goal differences in all English Premier League matches between August 2004
and May 2019.

Figure 3.9: Histograms of goal differences with overlain theoretical probability mass functions of the
differences of two random variables with Poisson and Weibull Count Model distribution, respectively, and
with parameters as in Section 3.1.1 and Section 3.1.2, respectively.

seems a little worse than the Weibull Count difference, however, this the probably connected
with the fact that the Skellam only has two free parameters (the original two of the Poisson
distributions) and the Weibull Count difference has four free parameters. It does, however, look
like the Skellam is slightly more accurate than what appears from Figure 3.3, and contrary, the
Weibull Count difference seems slightly worse than what is portrayed in Figure 3.6. This could
indicate some general miss-specification of both the Poisson and Weibull Count Model or some
possible correlation in the scores. Especially, since the Skellam distribution seems to be a better
fit to the goal difference than the Poisson distribution was to the individual score distributions,
we can infer that some common factor is probably affecting the teams. Again, we also perform
a goodness-of-fit tests to obtain sound statistical results. The results of these tests are shown in
Table 3.10; both of which conclude that we should reject the null hypotheses.

27



χ2 df P
(
> χ2

)
Skellam 148.5563 13 < 2.2e-16
Weibull Count Dif. 29.2161 11 0.0021

Table 3.10: Pearson’s chi-squared goodness-of-fit test results for the null hypothesis of Skellam
distributed data and Weibull Count difference distributed data with parameters equal to the respective
parameters provided in Section 3.1.1 and Section 3.1.2, respectively.

It is notable that Figure 3.9 shows no sign of the alleged draw-inflation as discussed in e.g.
Karlis and Ntzoufras (2003) that states that more draws are generally observed in football than
what the models suggest. We actually observe very good fits to the frequency of draws for both
models, with the Weibull Count Model suggesting almost a perfect fit of draws, and the Poisson
only slightly overestimate draws, i.e. opposite to the draw-inflation hypothesis.

In conclusion, we find that the two distributions are not able to perfectly explain the empirical
score distributions, but, visually, they seem to both do fairly decent jobs considering their
limitations, e.g. parameter freedom and possible correlation.

3.2 Goal Intensity

In this section, we investigate the empirical goal intensity by analyzing the distribution of goal
times and compare this to the theoretical distribution using a specified intensity of the proposed
Weibull-based counting processes. To do this analysis, we gathered the minute of each goal in all
English Premier Leagues matches between August 2004 and May 2019. In Figure 3.11 we show
a histogram of these observations in which each bins constitutes three minutes, i.e. a binwidth of
3. We also display an overlain kernel density estimation2 of the data to get an indication of the
empirical density. Since, we do not have records of exact game length for all these matches, we
have decided to remove all goals scored in the first half’s stoppage time and all goals scored after
the 93:00 minute-mark in this analysis in order to obtain fairly consistent data. To justify this
decision, we note that stoppage time in the first half tends to be fairly limited in most football
games and that almost all matches tend to have at least three minutes of added time in the
second half.

Figure 3.11 shows that the empirical distribution of goal times for the home and away sides are
very similar with an increasing tendency throughout the game. We will in the following examine
if the observed goal time densities are consistent with the maximum likelihood estimates of the
parameters of their respective score distributions, i.e. we want to evaluate the counting processes
leading to the distribution presented in the last section, specifically, we want to examine the
intensities of these counting process in relation to the observed goal times.

2See e.g. Hastie, Tibshirani, and Friedman (2009, pp. 208–210).
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Figure 3.11: Histograms of goal times for each side in all English Premier League matches between
August 2004 and May 2019 with a binwidth of 3 and overlain kernel density estimations (orange line).

3.2.1 Weibull Process

We start by looking at the Weibull process. Recall the intensity of the Weibull process given by
λt = αβtβ−1. We want to evaluate how well a theoretical goal time distribution from a Weibull
process with this intensity can be fitted to the observed goal times, with the added restriction
that it must also be consistent with the score distribution presented in Section 3.1.1. In other
words, assuming that the end of the game is at t = T = 1, we must have that αβ1β−1 = 1.536491

for the home team, and αβ1β−1 = 1.138246 for the away team, meaning that we essentially only
has one free parameter in each case. We can now use these intensities to fit the theoretical
goal time distribution to some aggregated level of the actual frequency of goals, e.g. one-minute
intervals or three-minute intervals as in the histogram. This presents an optimization problem
that can easily be solved, and the results using a root-mean-squared error optimization function
and an aggregation level of one minute are presented in Table 3.12 and Figure 3.13.

Home Away

α 1.364683 0.991171
β 1.125896 1.148385

Table 3.12: Fitted parameters of the Weibull intensity in the Weibull process for each side for the goal
time distribution.

Figure 3.13 shows promising results for the Weibull process. We see that the intensity fit to
both the home and away side seems to be quite good. In general, wee see that the Weibull
intensity are able to capture the overall tendencies of the empirical goal time densities, and also
have parameters that are consistent with the parameters obtained for the score distributions in
Section 3.1.1. From the parameter estimates in Table 3.12, we also see that the shape parameter
between the two sides are fairly similar, also concurring with our initial observation that the
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Figure 3.13: Fitted theoretical goal time distributions (dotted line) of mean-valued restricted Weibull
process intensities to the empirical goal time distributions (solid orange line) using a root-mean-squared
error optimization function.

overall shape of the two empirical densities seems to be similar.

3.2.2 Weibull Renewal Process

Now we examine the goal time distribution arriving from a Weibull renewal process. Again,
we want to check if the parameters can be consistent with the score distributions. We note
that due to the relationship between the renewal process and the score distribution, the unique
parameters of the Weibull renewal process leading to the Weibull Count Model have already
been determined, i.e. the only parameters of the Weibull renewal process that are consistent
with the Weibull Count Model score distributions in Section 3.1.2 are the maximum likelihood
estimates presented in Table 3.5. In Figure 3.14, we show the theoretical goal time densities in
comparison with the empirical densities for the Weibull renewal processes of the home and away
team, respectively.

From the theoretical goal time distributions in Figure 3.14, we immediately see a problem.
The parameters of the Weibull renewal process leading to the score distributions presented in
Section 3.1.2 are not consistent with the observed goal time distributions. In fact, we see that the
shape parameters of a Weibull renewal process leading to overdispersed score distributions cannot
be persistent with an increasing goal time distribution. This is, seemingly, a major drawback of
the Weibull renewal process for modeling in-play football. However, the Weibull renewal process
can still provide a decent fit to the empirical goal time distribution if we do not impose the
score distribution restrictions. As mentioned earlier, we could imagine that a specific game, if
played over and over thousands of times, would result in underdispersed score distributions and
still have an increasing goal intensity, in such a case the Weibull renewal process seems to be
an appropriate modeling choice. That is, we should not exclude the Weibull renewal process,
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Figure 3.14: Dotted line: Theoretical goal time distributions of Weibull renewal processes consistent
with the Weibull Count Model score distributions. Solid orange line: Empirical goal time distributions.

simply because the general patterns of football games are not consistent with Weibull renewal
processes.

To further this discussion, consider the shape parameters of the Weibull intensity found in
Table 3.12, and imposing the restriction that the mean value must be equal to the sample mean,
we can find suitable scale parameters such that the theoretical goal time distributions resemble
the empirical goal time distributions, as seen in Table 3.15 and Figure 3.16.

Home Away

α 1.659439 1.221129
β 1.125896 1.148385

Table 3.15: Parameters in the Weibull intensity of the Weibull renewal process for each side such that
they are consistent with the sample means and the empirical goal time distributions.

In conclusion, our findings show that we might still be able to use the Weibull renewal process
for modeling in-play football matches but we should be aware of the limitations in regard to
the inconsistencies between the score distributions and the goal intensities. Also, the Weibull
process, though limited by the score distribution, provide promising, and score consistent, fits
to the empirical goal time distributions.

3.3 Waiting Times of Goals

In this section, we explore the distributions of waiting times for the goals in the English Premier
League matches played between August 2004 and May 2019 and compare them to the theoretical
distributions of the proposed models. We only focus on the distributions of the first two goals’
waiting times.
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Figure 3.16: Dotted line: Theoretical goal time distributions of Weibull renewal processes with
parameters stated in Table 3.15. Solid orange line: Empirical goal time distributions.

We show a histogram of the empirical waiting times of the first goal (in gray) and the waiting
times for the second goal (in pink) for the home and away team in Figure 3.17. We also show
the kernel density estimation in solid lines.

Figure 3.17: Histogram of waiting times of the first goal in gray and waiting times of the second goal
in pink for each side in all English Premier League matches played between August 2004 and May 2019.
The histograms have a binwidth of 3 and overlain kernel density estimations in black and purple for the
waiting times of the first and second goals, respectively.

In Figure 3.17, we see that the distribution of waiting times across teams seems to be fairly
similar, with a slight difference in the first goals, where the mass of the density for the home side
seems to be a little further left, that is, on average, we observe a faster first goal for the home
team. Both sides, however, show signs of a similar pattern for the waiting times of the second
goal, with much of the mass centered at the beginning. This is not totally unexpected due to
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the time truncation that the end of the football match brings; something which we shall discuss
further in the following.

3.3.1 Theoretical Distributions

We are primarily interested in the distribution of goal waiting times such that we may compare
the theoretical waiting time distributions of the the Weibull process and the Weibull renewal
process with the observed waiting times. The fundamental relationship between counting and
point processes, as explained by (2.9), means that we can specify a counting process by specifying
the distribution of the waiting times. This has the implication that the theoretical distribution
of waiting times of the first goal should be Weibull distributed in both processes, however,
the time truncation, mentioned earlier, have an impact on the distribution. This is especially
prominent, in the renewal process case, in which the waiting time distribution are i.i.d. if we
let it go on forever. However, truncating it will have an effect on the distribution of waiting
times. This is also the case with the Weibull process, however, here the theoretical distribution
of the second (and onwards) waiting time are exponential distributed. Instead of calculating
the truncated theoretical distributions, we simply simulate it. In the following, we show the
simulated theoretical distributions in comparison with the observed distributions, where we use
the parameters obtained in Table 3.12 and Table 3.15 for the Weibull processes and Weibull
renewal processes, respectively.

Weibull Process

In Figure 3.18, we show the comparison between the theoretical density of goal waiting times
under the Weibull processes, with parameters given by Table 3.12, and the estimated kernel
density of the empirical goal waiting times. From the general patterns, we see many similarities
between the theoretical and the empirical densities. On closer inspection, we note that the
estimated kernel densities of the waiting times of the first goal (black) both seem very consistent
with the general shape of the theoretical densities. There are some differences in the beginning,
especially for the home team, and in the end for both teams. The endings are likely because of
the simulation of the theoretical densities, where we ended every game at the 93rd-minute mark.
Despite, the small inconsistencies in the beginning, the empirical densities of the waiting times
to the first goals seem very consistent with the theoretical. The estimated kernel densities of the
waiting times of the second goal (purple) also both seem to be very consistent with the simulated
theoretical densities. Again, it is noteworthy that the slight inconsistency at the beginning is
also present here. The reason for this slight right skew at the beginning is most likely due to
the celebratory period right after a goal is scored, that is usually seen in a football game, and
the following kickoff, which simply takes time. However, all-in-all, the estimated densities in
Figure 3.18 show respectable consistency towards the simulated theoretical densities.
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Figure 3.18: Dotted lines: Simulated theoretical densities, for each side, of the waiting times in Weibull
processes with parameters given in Table 3.12. The waiting time density of the first goal is shown in black
and the second goal in purple. Solid lines: Kernel density estimations of the empirical waiting times of
the first (black) and second (purple) goal, respectively, for each side.

Weibull Renewal Process

In Figure 3.19, we show the comparison between the theoretical density of goal waiting times
under the Weibull renewal processes, with parameters given by Table 3.15, and the estimated
kernel density of the empirical goal waiting times. Again, we see many similarities between the
theoretical and the empirical densities. We see that for the waiting times of the first goal, the
Weibull renewal processes tend to overestimate the number of fast goals and underestimate the
number of late goals. For the waiting times of the second goal, we again see that the general
shapes of the simulated theoretical densities are somewhat consistent with the empirical. It
is noteworthy that the general spike observed for the waiting times of the second goal, i.e. a
fast second goal, is not captured well by the Weibull renewal process. This could indicate that
the complete restart of the intensity, associated with a renewal process, is not an appropriate
assumption. However, again all estimated densities in Figure 3.19 show reasonable consistency
towards the simulated theoretical densities.
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Figure 3.19: Dotted lines: Simulated theoretical densities, for each side, of the waiting times in Weibull
renewal processes with parameters given in Table 3.15. The waiting time density of the first goal is shown
in black and the second goal in purple. Solid lines: Kernel density estimation of the empirical waiting
times of the first (black) and second (purple) goal, respectively, for each side.

From our collective findings, we may conclude that both processes seem to have some useful
properties, but also some serious limitations for modeling football; most prominent of which are
the distribution of goals for the Weibull process and the renewal assumption embedded in the
Weibull renewal process. In the next chapter, we will present a risk-neutral valuation framework
for in-play football bets, where we will also show the specific model dynamics in this framework
using Weibull processes and Weibull renewal processes.
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Risk-neutral Framework 4
In this chapter, we present a risk-neutral valuation framework for in-play football betting, in
which we view the bets as financial derivatives on assets related to the goal processes of each
team playing. We postulate a general market model for the dynamics of these assets. Section 4.1
presents the construction of the general market model and shows results in relation to this, as
well as introduces several specific market models and their dynamics. Section 4.2 introduces a
formal mathematical introduction to bets. Section 4.3 covers basic theory in regard to arbitrage
and completeness of the market model. Section 4.4 formulates a risk-neutral pricing scheme for
bets based on the model dynamics of the specific market models, and Section 4.5 introduces
some hedging theory in regards to the risk-neutral framework.

4.1 General Market Model

This section is based on Divos et al. (2018, pp. 321–323), Shreve (2004, p. 228), & Andersen
and Maillard (2019, pp. 12–13).

Consider a probability space (Ω,F ,P) which carries two independent counting processes N1 and
N2 with intensity processes µ1 and µ2, respectively, each equipped with its natural filtrations.
Later, in Chapter 6, we will relax the independence assumption. Denote the beginning of the
game as t = 0 and the end of the game as t = T , i.e. we have the parameter space T = [0, T ], then
the counting processes depict the number of goals scored by each team, where the superscript 1,
corresponds to the home team and superscript 2 to the away team. The probability measure P
is the physical probability measure.

We also assume that a liquid market exists, in which three assets, B,S1, S2, can be traded
continuously and with no transaction costs or restrictions on short-selling or borrowing. We
have that B = (Bt)t∈T is a risk-free bond that bears no interest, a reasonable assumption due to
the short time frame of a football match. S1 = (S1

t )t∈T and S2 = (S2
t )t∈T are assets such that

their values at the end of the game are equal to the number of goals scored by the home and away
teams, respectively. Let us now formally define a market model based on these descriptions.
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Definition 4.1 (General Market Model)
The general market model is defined by the following price dynamics of the assets B,S1,
and S2:

Bt = 1

S1
t = N1

t + E
[
LT

∫ T

t
λ1
udu | FN1

t

]
/Lt

S2
t = N2

t + E
[
LT

∫ T

t
λ2
udu | FN2

t

]
/Lt,

(4.1)

where N i, i ∈ {1, 2} are independent, nonexplosive counting process with intensity processes
µi, i ∈ {1, 2} and λi = (λi)t∈T, i ∈ {1, 2}, are known predictable, locally bounded, and
non-negative (stochastic) processes that are µi-compatible and L is a known P-martingale.

We see that the underlying process at time T is equal to the number of goals scored by each
team, respectively; SiT = N i

T , i ∈ {1, 2}. Even though (4.1) seems rather complicated, it
basically states that the assets behave as upwards-shifted compensated counting processes, with
the distinction that λ1, λ2 are not necessarily equal to the intensity processes µ1, µ2, meaning
that the assets are not necessarily martingales in the physical measure P. To see this, consider
the alternative form of Si:

Sit = N i
t − Λi(t) + E

[
LT
Lt

Λi(T ) | FN i

t

]
.

When λi, i ∈ {1, 2} are deterministic, we can further simplify the expression due to L being a
P-martingale:

Sit = N i
t +

∫ T

t
λiudu.

Let us now formally define a risk-neutral probability measure.

Definition 4.2 (Risk-Neutral Measure)
A probability measure Q is said to be risk-neutral if it satisfies the following two conditions:

(i) Q and P are equivalent i.e.

∀A ∈ F , P(A) = 0 ⇐⇒ Q(A) = 0. (4.2)

(ii) Under Q, the discounted asset prices are martingales, i.e.

EQ

[
S̃it | Fs

]
= S̃is, ∀s < t, ∀i, (4.3)

where S̃it = exp
(
−
∫ t

0 (1−Bu)du
)
Sit .

We are now in a position to present an important result stating the existence of a risk-neutral
measure in the general market model.
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Proposition 4.3 (Risk-Neutral Measure). Let B,S1, and S2 be given as in Definition 4.1. Then
there exist a probability measure Q such that the following holds:

(i) Under the Q-measure the goal processes N1 and N2 are counting processes with intensity
processes λ1 and λ2, respectively.

(ii) Q is equivalent to P.

(iii) The asset processes B,S1, and S2 are Q-martingales.

(iv) Q is unique.

Proof. The proof of (i) relies on Girsanov’s theorem for counting processes (Theorem 2.14),
which states that N1

t and N2
t are counting processes with intensity processes λ1 and λ2,

respectively, under the probability measure Q which is defined by the Radon-Nikodym derivative

dQ
dP

= LT , (4.4)

with

LT =

2∏
i=1

exp
(
Mi(T )− Λi(T )

) ∏
n:tn≤T

µitn
λitn

 , (4.5)

where Mi(T ) :=
∫ T

0 µiudu and tn is the arrival times of the the nth event.

To see this first consider N1. We apply Girsanov’s Theorem to find

λ1
t = µ1

t (1 + ht) =⇒ ht =

(
λ1
t

µ1
t

− 1

)
.

ht is obviously greater or equal than −1, since intensities must be non-negative and due to
Definition 2.13. Plugging ht into (2.18), we obtain the following stochastic differential equation:{

dLt =
(
µ1
t − λ1

t

)
Lt−dt+

(
λ1t
µ1t
− 1
)
Lt−dN

1
t ,

L0 = 1.
(4.6)

By denoting α = (µ − λ), β =
(
λ
µ − 1

)
, and x0 = 1, we see that (4.6), according to

Proposition B.2, has the solution

Lt = exp

(∫ t

0
(µ1
s − λ1

s)ds

)
exp

(∫ t

0
log

(
µ1
s

λ1
s

)
dNs

)

= exp
(
M1(t)− Λ1(t)

)
exp

∑
s≤t

log

(
µ1
s

λ1
s

)
∆Ns


= exp

(
M1(t)− Λ1(t)

)∏
s≤t

exp

(
log

(
µ1
s

λ1
s

)
∆Ns

)

= exp
(
M1(t)− Λ1(t)

) ∏
n:tn≤t

µ1
tn

λ1
tn

.
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Now (4.5) follows from the multivariate case of Girsanov’s theorem as discussed in the remark
below Theorem 2.14. To show that E [LT ] = 1 it suffices to show that L is a martingale. A
criteria of such is presented in Theorem 2.16 which is fulfilled by the assumptions of the general
market model and due to the non-explosiveness of the counting processes. The proof of (ii)
follows directly from Lemma 2.15 and the assumptions. To show (iii), i.e. the Q-martingale
properties of S1 and S2 consider s ≤ t ≤ T :

EQ
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]
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[
EQ

[∫ T

t
λ1
udu | FN1

t

]
| FN1

s

]
= EQ

[
N1
t | FN1

s

]
+ EQ

[∫ T

t
λ1
udu | FN1

s

]
= EQ

[∫ t

0
λ1
udu | FN1

s

]
+ EQ

[∫ T

t
λ1
udu | FN1

s

]
= EQ

[∫ T

0
λ1
udu | FN1

s

]
= EQ

[∫ s

0
λ1
udu | FN1

s

]
+ EQ

[∫ T

s
λ1
udu | FN1

s

]
= Ns + EQ

[∫ T

s
λ1
udu | FN1

s

]
= S1

s ,

where the second equality follows from Theorem A.3. An identical calculation can be performed
for S2, proving the Q-martingale properties of Si, i ∈ {1, 2}. Due to the constant nature of
B, it is a trivial martingale in every measure. Lastly, the proof of (iv) follows directly from
Theorem 2.18, which states that if two measures have the same set of intensities in regard to the
natural filtration, then the two measures must coincide. �

The implication of Proposition 4.3 is that there exists a probability measure Q such that the
price dynamics in (4.1), in this measure, are martingales, and such that P and Q are equivalent,
meaning that they both agree on sets of zero-probability events. This implies that Q is a risk-
neutral probability measure; the implication of which being that the value of a bet at any time
t ≤ T has a precise formulation, as we shall see shortly. Furthermore, due to the choice of the
natural filtration, we also have that Q is uniquely determined.

4.1.1 Model Dynamics

We now briefly present some specific model dynamics for when the counting processes in
Definition 4.1 has distinct forms. We restrict ourselves to the cases of Weibull-based counting
processes described in Section 2.7, as well as the homogeneous Poisson process for explanatory
purposes.
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Poisson Process

For the sake of completeness, we start by showing the original work of Divos et al., i.e., the price
dynamics of the market model when the counting processes N i, i ∈ {1, 2} are homogeneous
Poisson processes with intensities µi, i ∈ {1, 2} and where λi ∈ R+, i ∈ {1, 2} are known. The
price dynamics of this market model is then given by:

Bt = 1

S1
t = N1

t + λ1(T − t)

S2
t = N2

t + λ2(T − t).

(4.7)

In Figure 4.1, we show a simulation of the model dynamics under this market model, with model
parameters given by:

µ1 = λ1 = 1.4

µ2 = λ2 = 1.1.

In this scenario, we assume, for simplicity, that the counting processes’ intensities and the known
constants λi are equal, that is, similar to the situation under the Q measure. In Figure 4.1a, we
show the sample paths of the assets Si, i ∈ {1, 2} in connection with the sample paths of the
score processes. From the score processes’ sample paths, we see that this particular simulated
game ended 1-0 in the home team’s favor. In Figure 4.1b, we show the intensity processes of the
score processes. As per definition, we see that the intensity processes of the Poisson processes
are constants.

Weibull Process

Next, we show the price dynamics when the counting processes are Weibull processes with
intensity processes characterized by µit = α̃iβ̃itβ̃

i−1 and where αi, βi ∈ R+, i ∈ {1, 2} are known.
This approach is somewhat similar to the extended market model proposed by Andersen and
Maillard, in which they suggest price dynamics based on a specific form of the inhomogeneous
Poisson process. The price dynamics of the market model with Weibull process model dynamics
are given by:

Bt = 1

S1
t = N1

t + α1
(
T β

1 − tβ1
)

S2
t = N2

t + α2
(
T β

2 − tβ2
)
,

(4.8)

In Figure 4.2, we show a simulation of the model dynamics under the market model (4.8), with
Weibull process model parameters given as follows:

α̃1 = α1 = 1.4

β̃1 = β1 = 1.2

α̃2 = α2 = 1.1
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(a) Dotted lines are the score (counting) processes and the solid lines are the assets Si.

(b) Dotted lines are the score (counting) processes and the solid lines are the intensity
processes of the counting process.

Figure 4.1: Simulated sample path of the Poisson model dynamics with parameters µ1 = λ1 = 1.4 and
µ2 = λ2 = 1.1. Blue represents the home team and red the away team.

β̃2 = β2 = 1.2.

Again, for simplicity, we assume that the parameters of the intensities and the known constants
are equal. This particular simulation resulted in a 2-1 win for the home team. When compared
to the Poisson model dynamics, we here see a slight curvature of the assets’ sample paths in
Figure 4.2a, representing the increasing intensities of the score processes, i.e. the increasing
likelihood of scoring a goal throughout the game, as seen in Figure 4.2b, where we also see the
deterministic and increasing intensities throughout the game.

Weibull Renewal Process

Lastly, we show the price dynamics when the counting processes are Weibull renewal processes
with intensity processes characterized by µit = α̃iβ̃i

(
Zit
)β̃i−1 and where αi, βi ∈ R+, i ∈ {1, 2}

are known. The price dynamics of this market model are given by:
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(a) Dotted lines are the score (counting) processes and the solid lines are the assets Si.

(b) Dotted lines are the score (counting) processes and the solid lines are the intensity
processes of the counting process.

Figure 4.2: Simulated sample paths of the Weibull process model dynamics with parameters α̃1 = α1 =
1.4, β̃1 = β1 = 1.2, α̃2 = α2 = 1.1, and β̃2 = β2 = 1.2. Blue represents the home team and red the away
team.

Bt = 1

S1
t = N1

t + α1β1 E
[∫ T

t
(Z1

u)β
1−1du | FN1

t

]
S2
t = N2

t + α2β2 E
[∫ T

t
(Z2

u)β
2−1du | FN2

t

]
,

(4.9)

We recall that while the Poisson-based model dynamics of the previous two models have
deterministic compensators and intensities, the market dynamics given by (4.9) are characterized
by being stochastic, more specific they depend on the time since the last goal (or start of the
game). In Figure 4.3, we present a simulation of a sample path of such model dynamics with
parameters given by:

α̃1 = α1 = 1.4

β̃1 = β1 = 1.2

α̃2 = α2 = 1.1
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β̃2 = β2 = 1.2.

In Figure 4.3a we show the assets Si, i ∈ {1, 2} in relation to the sample paths of the score
processes, and in Figure 4.2b, we portray the intensity processes of the simulated Weibull renewal
processes. This simulated game ended in a draw with the scores 1-1.

(a) Dotted lines are the score (counting) processes and the solid lines are the assets Si.

(b) Dotted lines are the score (counting) processes and the solid lines are the intensity
processes of the counting process.

Figure 4.3: Simulated sample paths of the Weibull renewal process model dynamics with parameters
α̃1 = α1 = 1.4, β̃1 = β1 = 1.2, α̃2 = α2 = 1.1, and β̃2 = β2 = 1.2. Blue represents the home team and
red the away team.

4.2 Bets

This section is based on Divos et al. (2018, pp. 317–327), Björk (2009, p. 94), Tankov and Cont
(2004, pp. 293–294), & Andersen and Maillard (2019, pp. 12–14).

In this section we present a mathematical representation of football bets, namely as financial
derivatives. In classical finance, the distinction between an asset and a derivative is usually clear.
However, in a football betting framework, such a distinction is not as clear. This is due to the
fact that (almost) all bets are made on the scores, and the score process, i.e. assets S in (4.1),
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are not tradable in itself, thus only the derivatives are actually tradable. One could suspect that
this poses a problem in regards to the fundamental theorems of asset pricing. However, as we
shall show later, the asset processes can be statically replicated by the so-called correct score
bets, which are traded in practice. Furthermore, as we shall see in Proposition 4.15, any two
linearly independent bets can be used as hedging instruments. Thus, according to Divos et al.,
making the choice of the assets S irrelevant in practice and only serves a technical purpose.

In the following, we will use the bivariate natural filtration notation of Gt =
∨2
i=1 FN i

t used
extensively in Brémaud (1981), as it has beneficial simplicity when stating the filtrations of the
assets collectively. Here, the

∨
notation is the join as presented in (2.2). Let us now move on to

the formal definition of a bet.

Definition 4.4 (Bet)
A bet (also known as a contingent claim or derivative) is a GT -measurable random variable
X . A bet is called a simple bet if it depends only on the final number of goals S1

T , S
2
T , i.e.

of the form

X = Φ
(
S1
T , S

2
T

)
, (4.10)

where Φ : N×N→ R is a known scalar function, which is referred to as the payoff function.

Definition 4.4 states that a bet is a contract which gives the holder X at the time of maturity, and
where the value of a bet is revealed at the maturity, thus complying with our general intuition
of a bet. The issue is now to find a way to place a value of a bet for any given time 0 ≤ t < T .
For this, we will use the notion of a pricing rule of the bet X , denoted by Πt(X ).

There are, however, some minimal conditions which Πt(X ) must fulfill to qualify as a pricing
rule. We must be able to calculate the value Πt(X ) using the information at hand at time t if
it is going to be useful, i.e. Πt(X ) must be an G-adapted process. Furthermore, we also require
positiveness, i.e. a bet with non-negative payoff must also have a non-negative value:

∀ω ∈ Ω, X (ω) ≥ 0 =⇒ ∀t ∈ [0, T ], Πt(X ) ≥ 0. (4.11)

A third condition is linearity; the value of a portfolio of bets is given by the sum of the values of
its components:

Πt

 J∑
j=1

Xj

 =

J∑
j=1

Πt(Xj). (4.12)

All the above conditions of the pricing rule are generally upheld at a betting exchange, meaning
that since all of the above conditions are fulfilled, we can use the pricing rule to place a value on
a bet as we shall see in Section 4.4.
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Market Value of Bets

The market value of a bet, also known as the market quote, is the price at which the bet can be
bought or sold in the physical market (exchange or bookmaker) at any given time assuming that
the bet pays a fixed amount of 1 unit in case it wins, and zero otherwise:

X =

{
1 Bet wins,
0 Otherwise.

(4.13)

The market value of a bet is thus given by the reciprocal of the decimal odds, or more formally:

ΠMarket
t (X ) =

1

Oddst
. (4.14)

4.2.1 Types of Bets

A widespread type of a simple bet Φ(S1
T , S

2
T ) is the bet that pays out 1 unit if the home team

wins and zero otherwise. Analogous bets exist for an away win and a draw. Such bets are known
as match odds bet, and these types of bets can be formally defined by:

ΦH(S1
T , S

2
T ) = 1

(
S1
T > S2

T

)
(4.15)

ΦA(S1
T , S

2
T ) = 1

(
S1
T < S2

T

)
(4.16)

ΦD(S1
T , S

2
T ) = 1

(
S1
T = S2

T

)
. (4.17)

Other common types of simple bets which we will use are defined by:

ΦO(S1
T , S

2
T ) = 1

(
S1
T + S2

T > K
)
, K ∈ {0.5, 1.5, 2.5, . . .} (4.18)

ΦU(S1
T , S

2
T ) = 1

(
S1
T + S2

T < K
)
, K ∈ {0.5, 1.5, 2.5, . . .} (4.19)

ΦCS(S1
T , S

2
T ) = 1

(
S1
T = K1, S

2
T = K2

)
, K1,K2 ∈ N0. (4.20)

Bets of the type (4.18)–(4.19) are known as over/under bets, and bets of the type (4.20) are
known as correct score bets.

4.3 Arbitrage & Completeness

This section is based on Divos et al. (2018, pp. 321–323), Björk (2011, pp. 61–63), Andersen
and Maillard (2019, p. 15), & Tankov and Cont (2004, pp. 296, 299–300).

In order to arrive at a general result on the risk-neutral pricing of a bet, we first introduce some
advantageous definitions, notation, and results.
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Definition 4.5 (Portfolio)
A portfolio is an Ft-predictable vector process φ characterized by φt =

(
φ0
t , φ

2
t , φ

2
t

)
that

satisfies
∫ t

0

∣∣φis∣∣ ds <∞ for i ∈ {0, 1, 2}. The associated value process V φ is characterized by

V φ
t = φ0

tBt + φ1
tS

1
t + φ2

tS
2
t . (4.21)

The portfolio is self-financing if

V φ
t = V φ

0 +

∫ t

0
φ1
udS

1
u +

∫ t

0
φ2
udS

2
u, (4.22)

where
∫ t

0 φ
i
udS

i
u, i ∈ {1, 2} is a Lebesgue-Stieltjes integral, cf. Appendix B.

In broad terms, a portfolio is self-financing if there is no outside infusion or withdrawal of money,
that is, the purchase of a new asset must be paid for by the sale of an existing one. We can also
state a useful result in regard to the integral of a portfolio with respect to a martingale when
the portfolio is self-financing.

Proposition 4.6. Let the asset processes Si, i ∈ {1, 2} be martingales, and let the portfolio φ
be self-financing, then V φ is a martingale.

Proof. Follows directly from Proposition B.1. �

Definition 4.7 (Arbitrage-free)
A portfolio is arbitrage-free if no self-financing portfolio φ exist such that

P
(
∀t ∈ [0, T ], V φ

t ≥ 0
)

= 1 and P
(
V φ
t > V φ

0

)
> 0.

The general intuition of arbitrage is that you can make money without taking risks, or in other
words, you are guaranteed not to lose money and have a positive probability of making money,
which is what the two probabilities in Definition 4.7 signifies. In the business, arbitrage also goes
by the name “free lunch”.

Definition 4.8 (Completeness)
A market model is said to be complete if for every bet X there exists a self-financing portfolio
φ such that X = V φ

T . In this case, we say that the bet X is replicated by the portfolio φ.

Theorem 4.9. The market model (4.1) is complete and arbitrage-free.

Proof. This follows directly from Proposition 4.3 and the First and Second Fundamental
Theorems of Asset Pricing, cf. Theorem B.3 & B.4. To be more specific; the First Fundamental
Theorem of Asset Pricing states that the existence of a risk-neutral measure implies arbitrage-
freeness, and the Second Fundamental Theorems of Asset Pricing states that a market model is
complete if the risk-neutral measure is unique. �
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4.4 Risk-neutral Pricing

This section is based on Divos et al. (2018, pp. 323–325, 334), Andersen and Maillard (2019,
pp. 16–17), & Tankov and Cont (2004, pp. 293–298).

As we mentioned in the paragraph below Definition 4.4, our aim is to find a “fair” pricing rule
Πt(X ) for the bet X . Theorem 4.9 shows that the market generated by (4.1) is arbitrage-
free, which yields the obvious result; we must have the following relation to avoid an arbitrage
opportunity at the time of maturity:

ΠT (X ) = X , (4.23)

It should then be clear that Theorem 4.9 restricts the behavior of the pricing rule Πt(X ).
Furthermore, remember that we are in a setting where the filtrations used are the natural
filtrations, thus FN

0 contains no information; now, since Q is a risk-neutral measure and Bt = 1,
we must have that the only fair price at time 0 has to be given by:

Π0(X ) = EQ [X ] . (4.24)

Lastly, if the pricing rule Π is not time consistent, i.e. the value at t = 0 of the potential payoff
X at T is the same as the value at t = 0 of the payoff Πt(X ) at t, then an arbitrage opportunity
may arise. Thus, we have that Π should also be time consistent. Therefore, we see that, as a
consequence of Theorem 4.9, the value of a bet at any time 0 ≤ t ≤ T is given in the following
corollary.

Corollary 4.10 (Risk-neutral Valuation). The value of a bet at time t is equal to the risk-neutral
expectation of its value at the end of the game, i.e.

Πt(X ) = EQ [X | Gt] . (4.25)

Proof. Follows directly from Theorem 4.9 and the above discussion. See e.g. Tankov and Cont
(2004, p. 298). �

4.4.1 Pricing Formulas

We are now in a position to present explicit pricing formulas for simple bets in some specific
market models. We first state the pricing formula when in a homogeneous Poisson setting, i.e.
the setting originally proposed by Divos et al.

Proposition 4.11 (Pricing Formula of a Simple Bet - Poisson Setting). Assume we are in a
homogeneous Poisson process setting of the general market model. The value of a simple bet at
time t with payoff function Φ is given by

Πt(X ) =
∞∑

n1=N1
t

∞∑
n2=N2

t

Φ(n1, n2)P
(
n1 −N1

t , λ
1(T − t)

)
P
(
n2 −N2

t , λ
2(T − t)

)
, (4.26)
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where P (N,Λ) is the Poisson probability mass function.

Proof. Follows from Corollary 4.10 and the definition of a simple bet, cf. (4.10):

Πt(X ) = EQ [X | Gt]

= EQ
[
Φ
(
N1
T , N

2
T

)
| Gt
]

= EQ
[
Φ
(
N1
t +N1

T−t, N
2
t +N2

T−t
)
| Gt
]

= EQ
[
Φ
(
N1
t +N1

T−t, N
2
t +N2

T−t
)]

=

∞∑
n1=N1

t

∞∑
n2=N2

t

Φ(n1, n2)Q
(
N1
T−t = n1 −N1

t , N
2
T−t = n2 −N2

t

)
,

where the last equality follows from the law of the unconscious statistician (Proposition A.1).
The result now follows due to the independence of the goal processes N i. �

Next, we state the pricing formula when in an inhomogeneous Poisson setting of the general
market model.

Proposition 4.12 (Pricing Formula of a Simple Bet - Inhomogeneous Poisson Setting). Assume
we are in an inhomogeneous Poisson process setting of the general market model. The value of
a simple bet at time t with payoff function Φ is given by

Πt(X ) =
∞∑

n1=N1
t

∞∑
n2=N2

t

Φ(n1, n2)P
(
n1 −N1

t , λ
1
T − λ1

t

)
P
(
n2 −N2

t , λ
2
T − λ2

t

)
, (4.27)

where P (N,Λ) is the Poisson probability mass function.

Proof. The proof is almost identical to the proof of Proposition 4.11 �

As a consequence of Proposition 4.12, we have that the pricing formula of a simple bet, in the
market model in which the goal processes are Weibull processes, i.e. the market with model
dynamics given by (4.8), can be stated as follows:

Πt(X ) =
∞∑

n1=N1
t

∞∑
n2=N2

t

Φ(n1, n2)P
(
n1 −N1

t , α
1
(
T β

1 − tβ1
))
×

P
(
n2 −N2

t , α
2
(
T β

2 − tβ2
))

.

(4.28)

From the fact that the intensity of the Weibull renewal process is stochastic, an explicit pricing
formula in such a setting is not available at the moment, to the best of our knowledge. We can
however exploit the fact that we have assumed the natural filtration, in which the risk-neutral
expectation at time 0 has no prior information i.e. (4.24), meaning that we can state an explicit
pricing formula for simple bets at this time; namely by utilizing the explicit equation for the
Weibull Count Model, as presented in (2.39):

Π0(X ) =
∞∑

n1=0

∞∑
n2=0

Φ(n1, n2)P
(
n1, α

1, β1
)
P
(
n2, α

2, β2
)
, (4.29)

where P (n,A,B) is the Weibull Count Model for a specific n and t = 0.
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Whenever we do not have an explicit pricing formula at hand, we can use (4.25) and deploy a
Monte Carlo simulation to find a decent approximation of the price.

4.5 Hedging

This section is based on Divos et al. (2018, pp. 323–327), Tankov and Cont (2004, pp. 293–298),
& Andersen and Maillard (2019, pp. 17–19).

Given the replication concept of a bet arising from the completeness of the market model, we
have a second approach to the pricing of a bet. Let us start by formally stating it as a direct
result of Theorem 4.9.

Corollary 4.13. The value of a bet at time t is equal to the value of the associated self-financing
portfolio φ at time t, formally:

Πt(X ) = V φ
t = V φ

0 +

∫ t

0
φ1
sdS

1
s +

∫ t

0
φ2
sdS

2
s . (4.30)

Proof. From market completeness, we have that X = V φ
T , thus we have

Πt(X ) = Πt(V
φ
T ) = EQ

[
V φ
T | Gt

]
.

All we have to show now is that V φ is a Q-martingale, which follows from Proposition 4.3 and
Proposition 4.6. �

Corollary 4.13 states that holding the bet and holding the replicating portfolio is equivalent from
a financial point of view, i.e. that the bet’s value can be perfectly replicated by the self-financing
portfolio, or in other words; the bet can be perfectly hedged.

4.5.1 Replication

We are now in a position to formally state the proposition introduced in the discussion in
Section 4.2; namely, the replication of a bet from any two linearly independent bets. First,
we need to formally define linear independence of bets.

Definition 4.14 (Linear Independence)
Two bets Z1 and Z2 are linearly independent if the self-financing portfolio φ1 =(
φ10, φ11, φ12

)
that replicates Z1 is P-almost surely linearly independent from the self-

financing portfolio φ2 =
(
φ20, φ21, φ22

)
that replicates Z2. Formally, at any time t ∈ T

and for any constants c1, c2 ∈ R,

c1φ
1
t 6= c2φ

2
t , P-a.s.. (4.31)
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Proposition 4.15 (Replication). Any bet X can be replicated by taking a dynamic position in
any two linearly independent bets Z1 and Z2, formally:

Πt(X ) = Π0(X ) +

∫ t

0

(
ψ1
sφ

11
s + ψ2

sφ
21
s

)
dS1

s +

∫ t

0

(
ψ1
sφ

12
s + ψ2

sφ
22
s

)
dS2

s , (4.32)

where the weights ψ1
t , ψ

2
t are given by the solution to the following equation:[

φ11
t φ12

t

φ21
t φ22

t

][
ψ1
t

ψ2
t

]
=
[
φ1
t φ2

t

]
, (4.33)

where
(
φ11
t , φ

12
t

)
,
(
φ21
t , φ

22
t

)
, and

(
φ1
t , φ

2
t

)
are the components of the portfolio that replicates Z1,

Z2, and X , respectively.

Proof. Substituting (4.30) in the left hand side of (4.32) verifies the proposition. �

As briefly indicated at the beginning of Section 4.2, correct score bets can be used to statically
replicate the value of other simple bets as seen in the following proposition.

Proposition 4.16 (Static Replication). The value of a simple bet at time t with payoff function
Φ in terms of values of correct score bets at time t is given by

Πt(X ) =
∞∑

K1=N1
t

∞∑
K2=N2

t

Φ(K1,K2)Πt(ΦCS(K1,K2)), (4.34)

where Πt(ΦCS(K1,K2)) denotes the value of a correct score bet at time t that pays out if the final
scores are equal to (K1,K2).

Proof. From Corollary 4.10 and the definition of a simple bet, cf. (4.10) we have that:

Πt(X ) = EQ [X | Gt]

= EQ
[
Φ
(
N1
T , N

2
T

)
| Gt
]

= EQ
[
Φ
(
N1
t +N1

T−t, N
2
t +N2

T−t
)
| Gt
]

Since N1
t , N

2
t are discrete random variables, we have that their joint conditional density (under

Q) is given by:

f (n1, n2 | Gs) = Q
(
N1
t = n1, N

2
t = n2 | Gs

)
.

We can now utilize a conditional version of the law of the unconscious statistician to arrive at:

EQ
[
Φ
(
N1
t +N1

T−t, N
2
t +N2

T−t
)
| Gt
]

=

∞∑
K1=N1

t

∞∑
K2=N2

t

Φ(K1,K2)f
(
K1 −N1

t ,K2 −N2
t | Gt

)
=

∞∑
K1=N1

t

∞∑
K2=N2

t

Φ(K1,K2)Q
(
N1
T−t = K1 −N1

t , N
2
T−t = K2 −N2

t | Gt
)
.
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The results now follows from the fact that Q
(
N1
T−t = K1 −N1

t , N
2
T−t = K2 −N2

t | Gt
)
,

portraying the probability of a specific score given the available information, is equal to the
pricing rule of a correct score bet by definition. �

Proposition 4.16 gives us a way to replicate all simple bets from the correct score market. This
has the implications that all markets consisting of simple bets, in theory, should move together.
That is, in order for Proposition 4.16 to hold when the correct score market adjusts, all other
markets of simple bets must also adjust correspondingly. To see an example of this consider the
under 0.5 goals bet, i.e. (4.19) with K = 0.5. In theory, this bet corresponds to the correct score
bet 0-0, since this outcome is the only outcome in which the total number of goals is below 0.5.
Therefore, these two bets should be identical and should move together instantaneously when
the value of either one changes. In practice, such an instantaneous move is not always the case
due to liquidity concerns in the market.

To see how Proposition 4.16 can be used to replicate the assets Si i ∈ {1, 2}, first let
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4.5.2 Greeks

Let us now introduce the partial derivatives of a bet’s value with respect to a change in time
and with respect to the number of goals scored. This serves the same purpose as the Greeks in
the Black-Scholes-Merton framework, that is, sensitivity analysis for changes in the underlying
parameters. The Greeks are fundamental tools for hedging and risk management. We note that
in the following, we sometimes want to emphasize a bet’s dependence on the goals in the match,
therefore we will sometimes use the explicit notation X = X (N1

t , N
2
t ).

Definition 4.17 (Greeks)
The Greeks are the value of the following forward difference operators δ1, δ2 and partial
derivative operator ∂t applied to the bet value:
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We note that δ1 and δ2 play the role of Delta in the Black-Scholes-Merton framework, i.e. they
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measure the change in the price of a bet with respect to a change in the goal processes. The
partial derivative operator ∂t serve the same purpose as Theta in the Black-Scholes-Merton
framework, that is, it measures time decay of a bet’s value due to the passage of time.

In the next chapter, we will apply the described risk-neutral pricing theory on historic betting
exchange data, in doing so, we will also present the data, the data cleaning procedure, and the
origin and limitations of this data.
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Model Calibration 5
In this chapter, we introduce the high-frequency historical betting data obtained from an online
betting exchange and show a method of cleaning such data, as well as discussing some limitations.
We also demonstrate how to calibrate our models to the betting data and show the results arising
from such a procedure. Section 5.1 shows an exploratory data analysis, in which we present the
betting data, the betting exchange, and related terms and mechanisms. In Section 5.2, we
present the model calibration method and discuss some limitations of the method and the data.
Section 5.3 shows the results of the calibration procedure with the different model dynamics on
betting data from a chosen English Premier League football match.

5.1 Exploratory Data Analysis

This section is based on Brown and Yang (2017, pp. 587, 602), Bauwens, Hafner, and Laurent
(2012, pp. 326–327), Barndorff-Nielsen et al. (2009, pp. C7–C8), & Nordsted (2009, p. 40).

Here, we present the historical betting data from Betfair’s betting exchange as well as the cleaning
of the high-frequency data. However, we first give a brief introduction and overview of betting
exchanges, its lingo, and mechanisms.

5.1.1 Betting Exchange

The focus of our application is to calibrate model parameters to historical betting exchange
data; more specifically, in-play English Premier League football betting data. For this, we use
the Betfair betting exchange which is the largest of its kind in the world. Before the introduction
of betting exchanges, there were basically only bookmakers in the betting market. On a betting
exchange, bettors can bet on or bet against a given event, e.g. a team to win, and can also
submit both market orders and limit orders. Market orders meet a limit order already in the
book, and limit orders are placed in the book until an offsetting market order arrives.1 Prior to
the introduction of betting exchanges, bettors could not take a short position or submit limit

1Technically, a perfect offsetting order is not necessary due to the Betfair’s cross-matching algorithm, see e.g.
Berry (2017).
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orders. To submit a buy order is known as backing a bet and to submit a sell order is known as
laying a bet. That is, to back a position is to place a bet for something to happen, which is like
a bet that you would place with a traditional bookmaker, and to lay a position is to place a bet
for something not to happen, i.e., to bet against something happening. When laying a bet, you
basically play the part of the traditional bookmaker.

Prices on the exchange are quoted in the form of odds. We will only deal with decimal odds,
meaning that prices are quoted including the stake. For example, if a bettor places a back bet
at odds 2.00, then the bettor will win 1 unit for every unit staked if the bet wins. If a bettor
places a lay bet at odds 4.00, then he/she is liable to pay 3 units to the counter-party for every
unit accepted, if it is a winning bet. The pricing grid in decimal odds format ranges from 1.01 to
1,000, with odds increments depending on the odds itself, see Table 5.1. The increment sizes of
the odds has the impact that bet prices can, in practice, only undertake a finite number of values.
We will however not be too concerned with this issue here. Another information regarding the
betting exchange is that there can be no margin trading, i.e. trading using funds provided by a
third party, at least not for the ordinary bettors, since all liabilities must reside with the exchange
prior to any orders being submitted.

Odds from Odds to Increment

1.01 2.00 0.01
2.00 3.00 0.02
3.00 4.00 0.05
4.00 6.00 0.10
6.00 10.00 0.20
10.00 20.00 0.50
20.00 30.00 1.00
30.00 50.00 2.00
50.00 100.00 5.00
100.00 1,000.00 10.00

Table 5.1: Increment sizes of odds on the Betfair Exchange.

As mentioned in Section 4.2, we will use the market value of a bet as given by (4.14), i.e. the
reciprocal of the decimal odds, due to its beneficial mathematical meaning. This value also goes
by the term implied probability since it conveys the probability of the event happening as implied
by the odds.2

To show the trading format on the Betfair Exchange, we captured a screenshot of the Betfair limit
order book which is shown in Figure 5.2. The screenshot is taken from the match odds market
for a Belarusian Premier League game3 played on 2020-04-24 and only serves an illustrative
purpose. The screenshot is taken a day prior to the beginning of the game and thus portrays
the pre-game limit order book. A market order trade can be placed to back a team, i.e. take a

2Strictly speaking, the implied probability is not always given by the reciprocal of the decimal odds due
to bookmakers overround, see Lindstrøm (2020), however, we ignore this issue due to the lack of intentional
overround in peer-to-peer betting.

3Due to the outbreak of the 2019–20 coronavirus pandemic not many football leagues are playing at the time
of writing, explaining the somewhat obscure choice of a Belarusian game.
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long position, on the left-hand side of the book (in blue). Likewise, a market order trade to lay
a team, i.e. take a short position, on the right-hand side (in red). The three best back and lay
quotes are displayed with the volume available at each odds indicated below the odds.

Figure 5.2: Screenshot of the Betfair exchange’s limit order book of the match odds market a day prior
to a football game in the Belarusian Premier League between FC Smolevichi and FC Dinamo Minsk
played on 2020-04-24.

There are transaction costs involved when trading on Betfair’s exchange, more specific; you pay
commission on your net winnings in a market. The commission is at 6.5%, with some discounts
available based on the number of trades your have executed during the last period.

5.1.2 Market Efficiency & Information

A general assumption for the risk-neutral framework of betting markets, i.e. the general market
model (4.1), is the market efficiency of bet prices. That is, we rely on bet prices to portray
the true strength (or win probability) of the teams. If we cannot obtain such information from
the bet prices our market model would fail to be useful. Market efficiency is thus an important
issue in general, however, one that we shall not dwell too much about in this thesis. Though, we
should not forget about the importance of it. Various papers4 generally find that betting market
inefficiencies are short-lived, however, much of these papers only focus on standard bookmaker
markets, and not betting exchanges. Brown and Yang (2017) discuss the efficiency in horse racing
betting markets on the Betfair exchange. They find that the predictive capacity of speculative
trades varies throughout the trading period. They conclude that prior to the races information
is stagnant and markets are mostly efficient, meaning that the average speculative trade brings
limited information. However, they find that during races, speculative trades are good predictors
of fundamentals.

By spending some time on the Betfair exchange, one can obtain a fairly decent knowledge of
market information. In general, high liquidity on a betting market typically also means a very
efficient market, however, there seems to exist illiquid markets that are not very efficient. A
simple case of this phenomena is how the static replication theorem, Proposition 4.16, plays out

4E.g. Angelini and Angelis (2019), Williams (2005), and Deutscher, Frick, and Ötting (2018).
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in reality. One can fairly easy find examples of markets not being perfect in sync with the correct
score market. Whereas the Betfair cross-matching algorithm handles typical arbitrage situations
within a market, the illiquidity of some markets generally creates some degree of uncertainty
whether bet prices truly reflect the actual strength of the teams or not in certain markets.
However, we will briefly touch on this issue later in the model calibration part in Section 5.2.

The use of the natural filtration in the market model generally agrees with Brown and Yang’s
findings that information is fairly stale prior to races, however, this is not always the case for
football (or horse-racing). Some information may have a significant impact on the strengths
(and bet prices) of the teams. Consider for example a star player being injured during practice
a day before a match, and are unable to play the next day. This should have an effect on the bet
prices (if the information about the injury is made public). Another situation, where the natural
filtration seems inappropriate is with in-play injuries, booking, or red cards; these also have a
significant impact on team strengths. Also, live bet prices tend to show an increasing chance of
goal, when a dangerous set piece is occurring in the underlying game. In conclusion, the natural
filtration has compelling limitations that we should be aware of.

5.1.3 Data Cleaning

The data is obtained from the Betfair Historical Exchange and is delivered as 1-second data,
meaning that Betfair has sampled the odds at every second. It originally comes in .json

format, containing several nested data frames, but after some initial pre-cleaning the data looks
something as seen in Table 5.3, with a timestamp variable and best back and lay prices for each
available odds.

Time 55190_BestBack 55190_BestLay 56343_BestBack 56343_BestLay

2017-12-23 12:29:58 1.6 NA NA 7.2
2017-12-23 12:29:59 1.6 1.61 NA NA
2017-12-23 12:30:00 NA 1.61 NA NA
2017-12-23 12:30:01 1.6 1.61 7.0 7.4
2017-12-23 12:30:02 1.6 1.61 6.8 NA

2017-12-23 12:30:03 NA NA NA NA

Table 5.3: Pre-cleaned Betfair exchange data.

The data also comes with information about the status of the betting market, e.g. suspended,
open, or closed, and the in-play status, i.e. whether the game is ongoing or not. Since we only
want to deal with in-play data, we define the in-play time frame as the time ranging from 1
minute prior to the game’s beginning through the end of the match, and immediately discard
any observations outside this window. Furthermore, from Table 5.3, we see that the raw data
contains a lot of missing values. Partly, for this reason, we want to aggregate it to a specified
level, in our case 30 seconds. Aggregation also makes the computation time of the calibration
procedure much faster, and potentially more stable. We can now summarize our data cleaning
procedure as follows:
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Step 1 Remove all data outside the in-play time frame of the match and separate the data
in pre-game and in-play data.

Step 2 Remove all data occurring during the halftime.

Step 3 Set observations to NA if the market is suspended.

Step 4 In the pre-game data, for the 30 observations (or desired aggregation level) leading
up to the start of the match, calculate the median value, and assign this to the
observation at t = 0.

Step 5 For each observation in the in-play data, ceiling round the time stamp to the nearest
30 second-mark (or desired aggregation level).

Step 6 For each timestamp with multiple observations, find the median of the observations,
and replace the observations with this.

Step 7 Remove duplicate observations, created by the last step, such that each observation
has a unique timestamp.

Step 8 Insert the current score at each time in the game.

Step 9 Inspect the data around market suspensions and set obviously flawed observations
to NA.

This data cleaning procedure is inspired by two high-frequency data cleaning procedures proposed
by Barndorff-Nielsen et al. and Bauwens, Hafner, and Laurent, along with knowledge and
experience of specific problems regarding betting exchange data, such as the last step in the
procedure. Step 9 is due to the market suspension mechanisms at the exchange in connection to
the aggregation level, first by Betfair’s sample frequency and later by our data cleaning. Betfair
suspends the betting market when significant events happen in the game, such as goals, penalties,
and red cards. By doing this they remove all orders in the limit order book and as such, the
bettors will have to re-enter them if they still want it. This happens in order to protect the
bettors as the events related to a market suspension can have a significant impact on the odds.
Now, by sampling and/or aggregating the data at a certain threshold, we may obtain flawed
data in which the market was actually suspended or by including data from both before and
after a suspension, significantly skewing the median value. For this reason, it is good practice to
inspect the data around such market suspension and place a missing value instead of an obvious
erroneous value. One could also try to interpolate such observation, however, we do not consider
this. Another issue regarding the market suspension is the fact that bettors have to re-enter
their order again, meaning that a sample right after the suspension will likely have low liquidity,
and therefore may have significantly higher variance, providing yet another reason to inspect the
data in such situations.

After the cleaning procedure, the data now contains a unique timestamp, the minute of game-
play, home and away score variables, the back and lay prices, and the market mid-prices. The
data generally has around 190-200 observations per match and has 115 variables, meaning that
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we initially have 37 odds; 3 in the match odds market, 18 in the over/under markets (0.5 to 8.5),
and 16 in the correct score markets (0-0 to 3-3). Later, we will inspect the liquidity of each bet
and decide if some markets should be discarded for the given match. We show a sample of the
cleaned data in Table 5.4.

Time MinGamePlay HomeScore AwayScore The Draw The Draw_BestBack The Draw_BestLay

2017-12-23 12:30:00 0.0 0 0 0.2409988 0.2439024 0.2380952
2017-12-23 12:30:30 0.5 0 0 0.2440476 0.2500000 0.2380952
2017-12-23 12:31:00 1.0 0 0 0.2469512 0.2500000 0.2439024
2017-12-23 12:31:30 1.5 0 0 0.2485335 0.2531646 0.2439024
2017-12-23 12:32:00 2.0 0 0 0.2485335 0.2531646 0.2439024

Table 5.4: The first five cleaned and aggregated observations of an English Premier League game played
on 2017-12-23. The table only shows one kind of odds, namely the draw odds from the match odds market,
in reality, it contains many more.

5.2 Calibration

This section is based on Divos et al. (2018, p. 327) & Andersen and Maillard (2019, pp. 23–25).

In this section, we discuss how to calibrate the model parameters to the historical market quotes.
We follow Divos et al. fairly close and apply a least-squares approach where we consider market
quotes of a set of bets and find model parameters that convey model prices for these bets that
are as close as possible to the cleaned market quotes. By “model prices” we refer to the prices
Πt(X ) obtained via a pricing formula or Monte Carlo simulation, cf. Section 4.4. To be precise,
we minimize the sum of the square of the weighted differences between the model and market
mid-prices as a function of model parameters, using market back-lay spreads as weights. Due to
the model parameters being of different dimensions among the models, we shall use the implicit
notation λ̂i when emphasizing the dependence on model parameters. The reason for choosing a
back-lay spread weighting is such that we take bets with a low spread into account, i.e. give them
a higher weight because such mid-prices are assumed to be more certain, see e.g. Section 5.1.2.
Formally, we minimize

Rt(λ̂1, λ̂2) =

√√√√ 1

n

n∑
i=1

(
ΠMID
t (Xi)−Πt (Xi)

ΠBACK
t (Xi)−ΠLAY

t (Xi)

)2

, (5.1)

where n is the total number of bets used, ΠBACK
t (Xi) and ΠLAY

t (Xi) are the best market back
and lay quotes of the ith type of bet at time t, ΠMID

t (Xi) is the market mid-price of the ith bet
at time t, and Πt (Xi) is the model price of the ith bet at time t. This minimization procedure
is referred to as model calibration.

To see how the back-lay spread weights come into play, consider a model calibration calculation
with only one bet, and assume that the back price of this bet is at 0.55 and the lay price is at
0.45. This means that the market mid-price of the bet is 0.50. Now let us assume that the model
price is 0.52, this means that we get a calibration error of 0.2, or in other words, the error in
the model price is 1

5th of the spread. On the contrary, let us now assume that we have a much
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smaller spread with a back price at 0.505 and a lay price at 0.495, i.e. a much more “certain”
mid-price. Now, with the same model price we get a calibration error of 2, since the difference
between the mid-price and the model price is twice the size of the spread. That is, we weight
the calibration such that differences between model prices and mid-prices with a low back-lay
spread is punished more than with rather uncertain mid-prices.

The model calibration has been performed for the different market models, presented in
Section 4.1.1, using a time step of 30 seconds during the game, cf. Section 5.1.3, and
independently at each time step. We use the match odds market, over/under markets, and
the correct score market with a maximum total of 37 bet types in these three categories cf.
Section 5.1.3. “A maximum total of” refers to the liquidity concern, discussed above, and the
fact that whenever a goal is scored in the match, some of these bets go out of play. When this
happens, we discard these bets in the calibration procedure henceforth. Also, in some time steps
there simply has not been an order placed, either due to market suspension or illiquidity, and
thus we cannot calculate a market mid-price. Such observations have also been discarded in the
model calibration, but only for the affected time step. We thus expect a slightly varying and
decreasing number of bets as the match plays out (in case of goals).

In (5.1) we implicitly assume that for all bets there is always a spread, otherwise, we divide by
0. This is also the case in practice, since the back and sell price in the order book can never be
the same. However, for some bets at some instances in the data, there is not a spread, due to
the data aggregation. In such cases, we simply do not place a weight on this particular bet. For
example, consider the bet Xn and assume that it has no back-lay spread for the given time step,
in this case, we minimize

Rt(λ̂1, λ̂2) =

√√√√ 1

n

(
n−1∑
i=1

(
ΠMID
t (Xi)−Πt (Xi)

ΠBACK
t (Xi)−ΠLAY

t (Xi)

)2

+
(
ΠMID
t (Xn)−Πt (Xn)

)2)
. (5.2)

Likewise, we sometimes have that the data only contains missing values, e.g. during a market
suspension. In such cases, we simply assign NA to the calibration result for this particular time
step, and move on to the next time step. Lastly, we should again note that n in (5.1) and
(5.2) are not fixed among time steps, cf. the discussion about “a maximum total of” above, and
therefore the calibration procedure is, in general, robust to missing values.

5.2.1 Maturity

Using a fixed aggregation level, we have the discretization of time:

0,∆, 2∆, · · · , T − 2∆, T −∆, T.

We then have that one increment has size ∆. Noting that the final time T corresponds to the
fact that the game has ended, meaning that the payoff of the bet is known with certainty. We
can therefore not attribute the last observation in our dataset to time T since it assumes that
the game is still ongoing, albeit close to maturity. Thus, we associate the last observation in the
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data with the time at T −∆, that is, the last observation in the data is at the time just prior to
the end of the game. Note that we also have an observation prior to the beginning of the match
at t = 0. From a chosen aggregation level, we can then calculate ∆ as:

∆ =
T

M + 1
,

where M denotes the total number of (aggregated) observations in the game. We will use
the convention that the end of the game is equal to 1, i.e. T = 1. Consider for example
an aggregation level at 30 seconds, as in our case cf. Section 5.1.3, and an total number of
aggregated observations at 195, we then find the time increment to be ∆ = 1

196 ≈ 0.00510.

As pointed out by Andersen and Maillard, the nature of stoppage time in a football match
suggests a challenge in deciding the increment size. In other words, when a football game begins,
one does not know precisely how many minutes/seconds the total playing time will be, meaning
that, in a live setting, we cannot perfectly describe the time increment size ∆, since we do not
know M . To be more specific, we cannot correctly characterize the time term, t, in the pricing
of the market model, since this term relies solely on the increment size.

A way to overcome this problem is to only use 90 minutes of playing time, thus removing
all stoppage time from the game, yielding a time increment size of ∆ = 1/182 when using a
30 seconds aggregation level. However, this poses a problem in the calculated model prices
towards the end of the game. In such a situation, market participants have more information,
i.e. knowledge about stoppage time, and thus actual probabilities might not be as certain as
the model implies. Consider for example a calibrated model price at time 90:00 in the game,
corresponding to t = 181/182 in our framework. Based on this assumption, the model, thinking
the game will end within the next moment, will predict a rather certain outcome of the bets.
Now consider a bettor watching the game and seeing that a long stoppage time of 7 minutes has
been added. He/she will know that the game is far from over and thus his bets should reflect
that, meaning that the market prices are not as certain as the model calculates. In practice,
though, liquidity is rather scarce with maturity so close anyway.

Since we are working with historic data, we actually have knowledge about the total number of
observations in the game. We will, therefore, use this in our calibration. However, as mentioned
above, this approach is impossible in a live setting and may skew the model prices calculated in
the beginning and middle of the game where market participants do not have perfect information
on the ending of the game. Despite this, we deem this issue minuscule in comparison to the other
case, since the market participants, hence market prices, should include some information about
a possible, and very likely, stoppage time.

5.3 Results

We now turn our attention to the application of the theory described above. We first present the
calibration results with Weibull process model dynamics and later with Weibull renewal process
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model dynamics. We show the detailed results for only one match and the same match for
both model dynamics. The results we show are from an English Premier League match between
A.F.C. Bournemouth and Southampton F.C. played at Vitality Stadium in Bournemouth on
2017-12-03. This particular game ended 1-1, with the home goal happening in the 42nd and
the away goal in the 63rd minutes of play. The game lasted for almost 96 minutes including
stoppage times in both halves, meaning that our last observed prices are in the 95th-and-a-half
minute. A notable observation with this particular match is that the home team, Bournemouth,
was actually the underdog.

5.3.1 Weibull Process

Here, we present the results of the calibration procedure applied to the market model with
Weibull process model dynamics. We start by showing the calibration error, i.e. how close the
average calibrated prices are to the observed market quotes in units of the back-lay spread, cf.
(5.1). To get a clearer picture of the calibration procedure, we also include a subplot of the
number of bets used at each time step of the calibration such that we can inspect if this have an
impact on the calibration error. This information is shown in Figure 5.5.

Figure 5.5: Top: Calibration error with Weibull process model dynamics in units of the back-lay spread
for each time step. Bottom: Number of bets in the calibration for each time step. The vertical dotted
lines indicate goal times.

In Figure 5.5, we see a fairly volatile calibration error with a decreasing trend throughout the
game. We observe a spike in the beginning of the match, at around the fifth minute, where
also the maximum calibration error occurs.Towards the end of the match, at around the 80th
minute, we observe another large spike in the calibration error. Seemingly, there is not a clear
correlation with spiky behavior and the number of bets used at that time step. Moreover, we
also observe a decreasing trend in the number of bets used, this is however expected since with
each goal scored the maximum bet count decreases, cf. Section 5.2. It it however notable that
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the number of bets seems to decrease significantly towards the end of the game where no goals
has been scored. This is likely due to the decreasing liquidity when maturity approaches, i.e.
people not submitting back or lay orders on the bet. In general, the number of bets used in the
given time step does not seem to impact the calibration error too much.

From the bottom part of Figure 5.5, we also see that there were three market suspensions during
the game, i.e. time steps with no bets available; two of them coincide with the goal times and
the other one is in the 31st minute. In the 31st minute a player took a dive in the penalty area,
therefore, the market was probably suspended due to the possibility of a penalty. Instead of
awarding a penalty, the referee instead booked the falling player.5

Lastly, we show some summary statistics of the calibration error in Table 5.6. Here, we see
that the median and mean of the calibration error are 0.779 and 0.836 units of back-lay spread,
respectively, and the standard deviation of the calibration error is 0.374. The fact that the median
and mean are not that close also comply with the volatile behavior observed in Figure 5.5. We
should note that a calibration error of 1 means that the average model price deviates from the
market mid-price by 1 unit of the back-lay spread. It is also worth noting that the back and
lay prices each deviate from the market mid-price with 0.5 back-lay spread by definition of the
mid-price. We should thus strive for a calibration error below 0.5 in order to have the average
calibrated model price within the back-lay spread of the observed prices. All-in-all, the results
on calibration errors indicate a decent, yet not great, calibration performance, which is likely
linked to the fact that the Poisson distribution provides a rather poor description of goals in
football.

Min. Median Mean Max. Sd.

0.1031 0.7791 0.8364 2.1937 0.3739

Table 5.6: Summary statistics of the calibration errors in the market model with Weibull process model
dynamics.

Next, we show the actual calibrated model prices with respect to the market back and lay quotes.
In Figure 5.7 the solid lines represent the calibrated model prices of the match odds bets, i.e.
home, away, and draw bets. The shaded areas show the prices within the back-lay spread for the
match odds bets, that is, the edges of the shaded area corresponds to the back and lay prices at
each time step.

In Figure 5.7, we observe that the calibrated model prices for the match odds bets tend to be
consistently far outside the back-lay spread at the beginning of the game, indicating that the
calibrated model prices are not very good for these bets. The calibrated prices seem to stabilize a
bit after the first goal and even more after the second goal. This also agrees with the decreasing
trend observed in the calibration error. To get a detailed view of the calibrated prices during
the beginning of the game, we show a zoomed version of Figure 5.7 in Figure 5.8.

It is quite notable that the home and draw model prices are almost perfectly switched in the very
5For match details see Ames (2017).
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Figure 5.7: Match odds market quotes and calibrated model prices with Weibull process model
dynamics. The solid lines represent the calibrated model prices of the respective bets. The edges of
the shaded areas represent the back and lay prices of said bets. The vertical dotted lines indicate goal
times.

Figure 5.8: A zoomed version of Figure 5.7.

beginning as compared to the actual market quotes. Despite the seemingly poor results from the
match odds market, we also take a look at some of the other markets included in the calibration.
Figure 5.9 shows the calibrated model prices of the over/under 1.5 and 2.5 markets, again with
respect to the back-lay spread. We again show a zoomed version in Figure 5.10, to get a more
detailed view of the beginning of the match where the match odds bets had poorly calibrated
prices. It looks, however, much more promising with the calibrated prices for the over/under
bets. From Figure 5.9 and Figure 5.10, we see that the calibrated prices are, for the most parts,
inside or very close to the back-lay spread, indicating a decent calibration performance for these
types of bets.
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Figure 5.9: Over/under market quotes and calibrated model prices with Weibull process model
dynamics. The solid lines represent the calibrated model prices of the respective bets. The edges of
the shaded areas represent the back-lay prices of said bets. The vertical dotted lines indicate goal times.

Figure 5.10: A zoomed version of Figure 5.9.

We also show a sample of the calibrated model prices for the correct score markets with respect
to the back-lay spread. This is shown in Figure 5.11, with the 0-0, 0-1, 1-0, and 1-1 bets. Again,
a detailed zoomed view is shown in Figure 5.12. These prices are much closer to each other,
meaning that their implied probabilities are almost the same, but they generally show similar
results as with the over/under markets; namely some fairly good calibrated prices throughout
the match that are, for the most part, within the back-lay spread.

Another prominent feature of the correct score market is also clearly depicted; namely the illiquid
nature of the correct score bets. In Figure 5.12 we see that a lot of market quotes are missing
(no shading) at the beginning of the game, especially with the 1-1 and 1-0 bets. However, in
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Figure 5.11, we see that these bets become more liquid when they become the current scores and
time goes by. Specifically, we see that there is almost no missing data for the 1-0 bet, from the
first goal until the second, and likewise, there is almost no missing data for the 1-1 bet after the
second goal.

Figure 5.11: Correct score market quotes and calibrated model prices with Weibull process model
dynamics. The solid lines represent the calibrated model prices of the respective bets. The edges of the
shaded areas represent the back and lay prices of said bets. The vertical dotted lines indicate goal times.

Figure 5.12: A zoomed version of Figure 5.11.

In general, with the information portrayed in Figure 5.7–5.12, we arrive at the same conclusion
as with the calibration error; namely that the plots indicate fair results but with clear room
for improvements. This is not totally unexpected results since we saw obvious flaws with the
Poisson assumption of football scores in Chapter 3.
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Parameters and Implied Intensity

Lastly, we consider the calibrated model parameters. In Figure 5.13, we see the calibrated scale
and shape parameters of each team. We strive for stable parameters, however, we see that the
parameters are fairly volatile, especially at the end of the game. The high volatility in the
very ending of the game can likely be, somewhat, attributed to the aforementioned illiquidity
of the odds in this period of the game, this is likely why we see these huge fluctuations of all
parameters here. Despite, the volatile behavior, the parameters seem to have a tendency of a
somewhat stable level that they fluctuate around. This is very prominent before the first goal.
After this goal, there seem to be a jump in both teams’ scale parameters, and the home teams
shape parameters, but again, they tend to have a somewhat stable level they fluctuate around.

Figure 5.13: Calibrated Weibull process parameters for each side. Top: Shape parameter (β). Bottom:
Scale parameter (α). The vertical dotted lines indicate goal times.

Recall, the notion of the intensity process described in Section 2.3, and the heuristic interpretation
that the intensity is related to the conditional probability of scoring a goal in the next instant.
We use the calibrated parameters to find the implied intensities of each team; the intensity of
the Weibull process is given by (2.34), and using the calibrated model parameters in the Weibull
intensity, we obtain the implied intensities as seen in Figure 5.14. We see quite volatile behaviors
in the very beginning and the very end of the match, with a fairly stable period in the middle. But
the general shape of the implied intensities follow an expected path, cf. Section 3.2, indicating
a decent model choice, but again leaves some clear room for improvements.

5.3.2 Weibull Renewal Process

In the calibration procedure of the Weibull renewal process, we only include five types of bets;
the three match odds bets and the over and under 2.5 goals bets. The reason for the choice
of only five bets is due to computation time and instability in the optimization part, i.e. the
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Figure 5.14: Implied Weibull process intensities for each side. The vertical dotted lines indicate goal
times.

calibration procedure for the Weibull renewal process, something which shall be discussed further
in Section 5.3.3. The fact that these five bets are in general the most liquid bets in the betting
markets provides the reason for using, specifically, these five.

Again, we start by showing the calibration error in Figure 5.15. We do not show the number of
bets used in the calibration since it is always five except in the two last time steps, where the
number of bets used is four, also confirming that these markets are typically very liquid.

Figure 5.15: Calibration error with Weibull renewal process model dynamics in units of the back-lay
spread for each time step. The vertical dotted lines indicate goal times.

In Figure 5.5, we see a very low calibration error with all errors, except one, way below the
0.5-mark. Such a low calibration error is not totally unexpected due to the added parameters
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in this model, and the fact that the Weibull processes’ calibration errors are embedded in the
Weibull renewal processes’ calibration errors. That is, we can always find parameters of the
Weibull renewal processes such that their calibration error correspond to the calibration error
of the Poisson process model dynamics, which has close to identical calibration errors to the
Weibull process model dynamics.6

We do see a large spike in the calibration error in the 88th minute of play. This is seemingly not
connected to a specific event in the match, and is possibly due to some illiquidity in the markets
as maturity approaches. To further analyze, we show a sample of the prices around this moment
in the match in Table 5.16. By inspection of the bet prices around this time, we may conclude
that nothing extraordinary happened, however, some of the prices seem to “jump” slightly more
than what they have been doing in the previous time steps.

MinGamePlay HomeScore AwayScore Bournemouth Southampton The Draw Under 2.5 Goals Over 2.5 Goals

87.0 1 1 0.1064312 0.1747094 0.7143222 0.6968726 0.2998393
87.5 1 1 0.1010204 0.1770050 0.7233534 0.7067932 0.2921109
88.0 1 1 0.0954545 0.1739262 0.7380174 0.7326106 0.2690502
88.5 1 1 0.0910973 0.1422111 0.7547277 0.7463102 0.2550546
89.0 1 1 0.0910973 0.1361230 0.7722123 0.7576192 0.2386364

Table 5.16: Sample of the bet prices around the 88th minute of play in the Bournemouth vs.
Southampton match.

Finally, we state some summary statistics of the calibration error in Table 5.17, which confirms
the visual interpretation made from Figure 5.15. It is noteworthy that the minimum calibration
error obtained is rather close to perfect with the average calibrated bet prices at only 0.0193
back-lay spread distance from the market mid-prices.

Min. Median Mean Max. Sd.

0.0193 0.1483 0.1704 0.8767 0.1048

Table 5.17: Summary statistics of the calibration errors in the market model with Weibull renewal
process model dynamics.

In Figure 5.18, we show the calibrated model prices with respect to the market back and lay
quotes; the solid lines represent the calibrated model prices of the match odds and over/under
2.5 goals bets and the shaded areas show the back-lay spread for these bets. In agreement with
the calibration results, we see that the calibrated bet prices are almost all within the back-lay
spreads at any given time. Furthermore, due to the high liquidity of these bets, the back-lay
spread are also fairly narrow throughout the game, again indicating that the calibration of these
bets show good results. Again, we also provide a zoomed version in Figure 5.19.

6This is due to the calibration of the time steps independently of each other, see e.g. the discussion on p. 44 in
Andersen and Maillard (2019) for more on why the calibration errors of the Poisson model and the inhomogeneous
Poisson model are close to identical.
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Figure 5.18: Match odds and over/under 2.5 goals market quotes and calibrated model prices with
Weibull renewal process model dynamics. The solid lines represent the calibrated model prices of the
respective bets. The edges of the shaded areas represent the back and lay prices of said bets. The vertical
dotted lines indicate goal times.

Figure 5.19: A zoomed version of Figure 5.18.

Parameters and Implied Intensity

The results of the calibration of the Weibull renewal process model seem very promising since
we obtain such low calibration errors. However, we should be wary due to the added parameter
freedom, which makes it possible to explain quite a lot more variation in the data, i.e. we
need to consider the problem of overfitting. Therefore, it is necessary to analyze the parameters
obtained from the calibration procedure in order to actually attribute the low calibration errors
to the model, and not just to the increase in parameter freedom. Thus, we seek stable calibrated
parameters throughout the match.
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We show the calibrated Weibull renewal parameters in Figure 5.20, in which we observe very
stable scale parameters of each team until each team scores a goal. After each team scores a
goal, we observe quite volatile behaviors in their respective scale parameters. This is likely due
to the renewal assumption, in which the intensity of the team completely starts over after a goal,
which was found to be generally problematic in Section 3.3.

The shape parameters appear to be overall volatile throughout the match with a semi-stable
period for each team prior to them scoring a goal. However, we see significantly more volatility of
the shape parameter in the end. It is quite notable that the away side has very stable parameters
just after the home goal and prior to the away goal, which tells us, in connection with the low
calibration errors, that the model seems fairly appropriate in this period of the game. We also
note that about halfway through the match, the shape parameters are often calibrated to close
to one, indicating that the Weibull renewal model is close to a Poisson model.

Figure 5.20: Calibrated Weibull renewal process parameters for each side. Top: Shape parameter (β).
Bottom: Scale parameter (α). The vertical dotted lines indicate goal times.

To obtain a deeper understanding of the parameters and how they relate to the intensity of the
two teams, we also show the implied Weibull renewal process intensities for each team. This is
displayed in Figure 5.21. Here, we can clearly see that the implied intensities seem fairly stable
and with expected general shapes up until the goals, after which we see quite volatile behaviors.
A fact that just corroborate the observation made in the calibrated parameters in Figure 5.20,
i.e. that the restart of the intensity after a goal is likely not appropriate in football modeling.
This also backs the conclusion made in Section 3.3.1. However, despite the volatile behavior with
the restart of the intensities, we see fairly decent results of these model dynamics, again with
some obvious flaws that can most likely be attributed to the slight inaccuracy of the football
modeling with the Weibull renewal process.
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Figure 5.21: Implied Weibull renewal process intensities for each side. The vertical dotted lines indicate
goal times.

Comparison with Weibull Process

As mentioned previously, the calibration error of the Weibull process model can be obtained
by the Weibull renewal process with the parameters

(
λ1
t , 1, λ

2
t , 1
)
, where λit, i ∈ {1, 2} are the

calibrated parameters of the Poisson process model at time t, cf. (4.7). That is, we expect that
the calibration error of the Weibull renewal process is always below or equal to the calibration
error of the Weibull process. However, we cannot simply compare Figure 5.18 with Figure 5.7,
since the two models have not been calibrated on the same data. Therefore, we need to calibrate
the Weibull process model on this shrunken data set. We show the comparison of the two model’s
calibration errors on the same data in Figure 5.22, where the gray solid line is the calibration
errors of the Weibull process model and the solid black line is the calibration errors of the Weibull
renewal process model.

Figure 5.22 shows exactly what we expected; that the calibration errors of the Weibull renewal
model are always equal to or below the calibration errors of the Weibull process model. For
the Weibull process we observe a similar pattern as with the larger data set; namely that the
calibration error starts high and then declines towards the end of the match. We note that the
calibration errors of the Weibull process seem to start out very high on this data. This is likely
because of the liquidity of the bets involved, i.e. that they have very low spreads. The calibration
procedure then “punishes” significantly more for calibrated prices far from the observed (mid)
prices; an example of this is shown in Figure 5.23, where the dashed lines are the calibrated
prices under the Weibull process model and solid lines are the calibrated prices of the Weibull
renewal process model.
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Figure 5.22: Comparison between the calibration errors of the market models with Weibull process
and Weibull renewal process model dynamics, respectively, in units of the back-lay spread. The vertical
dotted lines indicate goal times.

Figure 5.23: Zoomed comparison between the match odds and over/under 2.5 goals market quotes
and the calibrated model prices with Weibull renewal process model dynamics (solid) and the calibrated
model prices with Weibull process model dynamics (dashed). The edges of the shaded areas represent
the observed back and lay prices of said bets. The vertical dotted lines indicate goal times.

5.3.3 Computation Time and Final Thoughts

Despite the significant improvement in the calibration error of the Weibull renewal process model
as compared to the Weibull process, it is likely not very practical. This is due to a great increase
in the computation time, and general instability of the calibration procedure even with fewer
data. Let us clarify: Since we have no knowledge of any pricing formula for the Weibull renewal
process while in-play, i.e. the conditional probability mass function of NT − Nt, t > 0 given
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the available information, we need to assess the probabilities using Monte Carlo simulations.
This significantly increases the computation time, since a lot of simulations are needed in order
to gain the desired significant digits of the probabilities, needed for a stable root-mean-squared
optimization function. This stability issue is also the reason for our choice of only using five bets
in the calibration procedure. Furthermore, the actual optimization of a function calculated from
Monte Carlo simulations is both slow and unstable. This is because typical gradient methods are
not stable in such cases, thus, we rely on derivative-free optimization methods, which tends to
require even more runs of the optimization function. Also, we find that the optimizations function
using Monte Carlo simulations seems to have a lot of local minimums, making the optimization
even more tiresome. All-in-all, the calibration of the Weibull renewal process model shown in
Section 5.3.2 took approximately 72 hours using parallelization methods on a server with 40
cores, thus, it is simply not practical for real-time betting usage.

Whereas the market model with Weibull renewal process model dynamics seems to greatly
decrease the calibration errors and shows decent results of parameter stability, the Weibull
process-based market model has some obvious flaws. However, what it lacks in accuracy it
certainly brings in speed. Since there exists a specific pricing formula for each time step, the
calculation and optimization of the model are fairly quick and are something that can be carried
out in close-to real-time. This can be, somewhat, related to the use of the Black-Scholes-Merton
model in regular option pricing, in which, the model assumptions are clearly flawed, but the
fact that there exists a computationally fast pricing formula makes it a good guideline. This is
probably also why the Black-Scholes-Merton equation is still useful today despite almost everyone
disregarding the factual basis of this model. The Weibull process (or any inhomogeneous Poisson
models) can most likely take a similar position in in-play betting markets.

The calibration errors of the model with Weibull renewal processes and the stable parameters
before the goals provide, to some degree, evidence that a risk-neutral measure in in-play betting
might not be a totally absurd idea. It is possible that by using a slightly more complicated
counting process, which does not have complete renewals at the time of goals, we could obtain
both stable parameters and good calibration errors. However, from our collective results on both
the Weibull process- and the Weibull renewal process-based market models, we cannot conclude
that a risk-neutral measure Q exists in the betting markets, that is, we cannot find a set of model
parameters such that they are stable and consistent with all prices observed on the markets. This
is a slight demotivating conclusion for risk-management and hedging purposes. We do, however,
find some promising results in both cases when taking their limitations and advantages into
consideration; of notable mentions are the “quick-and-dirty” evaluation that the Weibull process
can bring, and the somewhat stable and consistent, but terribly slow, results occurring from the
Weibull renewal process. As we have discussed previously, the assumptions of the market model
are also not completely upheld in practice, again elaborating that this is not a perfect model, it
does, however, seem to have great potential, especially if one is aware of the limitations. One of
these limitations, namely the independence assumption of the score processes, is the subject of
the next chapter.
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Bivariate Model Extension 6
In this chapter, we discuss the limitations of the independence assumption imposed on the goal
processes in the general market model presented in Chapter 4, and propose a bivariate model
extension using a copula approach. We show calibration results for a market model with model
dynamics consisting of a bivariate Weibull process and discuss these results. Section 6.1 discuss
the independence assumption of football goals and presents the general bivariate market model.
In Section 6.2, we present a brief introduction to copulas and how we can utilize these in a
specific model dynamic. Section 6.3 shows the calibration results obtained from a bivariate
copula approach to in-play football bets.

6.1 Bivariate Market Model

This section is based on Boshnakov, Kharrat, and I. G. McHale (2017, pp. 459–460).

The existence of some kind of dependence between goals scored by the two teams is widely
accepted in the scientific community. The exact specification of this dependence is, however,
less clear. First of all, basically all studies compiled on this subject have been on the full game,
i.e. on the joint distribution of goals, and not on in-play dependence. One could argue that the
dynamic nature of football teams and their in-play tactics and physical shape would make the
dependence of goals vary during the game, i.e. that there are some time periods where goals
tend to be more correlated than others. We also have the obvious dependence that scoring two
goals within the same minute is almost impossible in football, due to the celebration and kick-off
situation related to a goal in football.

Historically, the dependence has been specified, as mentioned above, in terms of the distributions
of goals, for example, Dixon and Coles (1997) study the difference between the empirical joint
distribution and the implied joint distribution of goals under the hypothesis that they are
independent. They conclude that the distributions are in fact not independent. To deal with this
they suggested an ad-hoc correction on their bivariate Poisson distribution. Dixon and Coles’s
main objectives with their study were to see if one could forecast football matches using a specified
joint distribution and to use historical results to estimate the parameters of this distribution.
Karlis and Ntzoufras (2003) used a different approach to account for the dependence; namely
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by utilizing a diagonal inflated distribution to account for the alleged observation that draws
seems to happen more often than the Poisson distribution suggests (which we did not find
evidence of in Section 3.1). Later, I. McHale and Scarf (2007), I. McHale and Scarf (2011), and
Boshnakov, Kharrat, and I. G. McHale (2017) proposed the use of copulas with some chosen
marginal distributions to model the dependence between goals.

Here, we will follow the copula approach, and try to incorporate some dynamic in-play
dependence between the goal processes. First, we need to set the stage for the bivariate market
model. All the terminology from Chapter 2 can be readily extended to the multi-dimensional
case, see e.g. Brémaud (1981) or Sokol and Hansen (2015). We will employ this fact in the
extension of the risk-neutral framework developed in Chapter 4. In fact, we have already
implicitly used a bivariate market model with the limiting assumption that the two processes
were independent, thus making the distinction of them simple and intuitive. Our main concern
is now to incorporate some form of dependence between the goal processes, and this is where
the general multi-dimensional case comes in handy. Let us start by making much of the same
assumptions as in Section 4.1.

Consider again a probability space (Ω,F ,P) which carries a two-dimensional counting process
N = (N1, N2)> with intensity process µ = (µ1, µ2)>, where N is equipped with the bivariate
filtration G described earlier. Again, consider the parameter space T = [0, T ], then the two-
dimensional counting process depicts the number of goals scored by each team during the game,
just as before.

Let S =
(
S1, S2

)>
=
(
(S1
t )t∈T, (S

2
t )t∈T

)> be such that its value at the end of the game is
a two-dimensional vector equal to the number of goals scored by the home and away teams,
respectively. We can now formally define a general market model based on these descriptions.

Definition 6.1 (General Market Model)
The general market model is defined by the following price dynamics of the assets B,S1,
and S2:

Bt = 1

St =

[
S1
t

S2
t

]
=

N1
t + E

[
LT
∫ T
t λ1

udu | FN1

t

]
/Lt

N2
t + E

[
LT
∫ T
t λ2

udu | FN2

t

]
/Lt,

 (6.1)

whereN is a nonexplosive bivariate counting process with intensity process µ and λ = (λ)t∈T,
is a known bivariate, predictable, locally bounded, and non-negative (stochastic) process
that is µ-compatible and L is a known P-martingale.

Remark: Note that the market model (6.1) is a straightforward extension of the market model
(4.1), where the only difference is the removal of the independence assumption imposed on the
counting processes in (4.1) and the matrix notation.

In theory, the bivariate market model portrays a much more realistic view of the underlying
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football match. It does, however, complicate things quite a bit; in order to explicitly use this
framework, we have to be able to describe the dependence. Since our main focus has been
on the model calibration independently at each time step, we basically only try to track and
trace the observed market quotes with a mathematical model, meaning that we do not directly
consider the time series aspect of it. Thus, we can ignore some of the concerns corresponding to
autocorrelation and time-varying dependence in a time series, and simply use a similar approach
as Boshnakov, Kharrat, and I. G. McHale (2017), in which they propose the use of a copula to
“glue” twoWeibull Count Model distributions together. Their application is focused on explaining
and forecasting of the pre-game odds.

Generally, a copula approach in an autocorrelated time series framework can potentially create
artificial dependence between a set of variables, but as mentioned, we can ignore these concerns
due to the focus on explaining the odds at each time step independently of each other. We
therefore only consider a copula approach to model the dependence of the goal processes, and
furthermore, due to time constraints, we henceforth only focus on the bivariate case of the Weibull
process. This is due to the simplistic nature of the independent increments of inhomogeneous
Poisson processes, and the specific pricing formula it brings. There are other concerns with the
use of copulas in this setting which we will discuss in Section 6.2.2.

Our choice of using copulas to model the dependence between the teams has sole basis in the
work of Boshnakov, Kharrat, and I. G. McHale (2017). There are, most likely, several other
interesting ways to model the dependence, unfortunately, we simply do not have time to explore
them all in this thesis, which is why we only place our focus on the copula approach. In the next
section, we will thus formally introduce the concept of a copula, state the main results pertaining
to this, and present the specific copula we will use.

6.2 Copulas

This section is based on Boshnakov, Kharrat, and I. G. McHale (2017, p. 460),Tankov and Cont
(2004, pp. 136–141), Trivedi and Zimmer (2017), & Haugh (2016, pp. 1–2).

In this section we provide a brief introduction to the copula notion. For a more rigorous approach
on copulas see e.g. Nelsen (2006) and Cherubini, Luciano, and Vecchiato (2004). We start by
considering a two-dimensional random vectorX = (X1, X2)>. The law ofX is typically described
using its cumulative distribution function (CDF):

F (x1, x2) = P(X1 ≤ x1, X2 ≤ x2) . (6.2)

The marginals of X is the laws of X1 and X2 taken separately. These laws can be described
using their respective distribution functions F1(x1) = P(X1 ≤ x1) and F2(x2) = P(X2 ≤ x2),
which can also be obtained from the two-dimensional distribution function:

F1(x1) = F (x1,∞) and F2(x2) = F (∞, x2).
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In addition to the marginals, we also need the dependence between X1 and X2 to fully described
the distribution function F (x1, x2). This is where copulas becomes handy.

Definition 6.2 (Copula)
A two-dimensional copula, C : [0, 1]2 → [0, 1] is a cumulative distribution function with
uniform marginals.

In other words, a copula C is the distribution of a bivariate uniform random vector. Note that
one usually define a copula in a more rigorous way using terms like grounded and d-increasing,
however, for the purpose of this application, we do not consider such rigorous approach. Let
us now recall the definition of the quantile function, also known as the generalized probability
inverse; for a CDF F the quantile function F−1 is defined as:

F−1(x) := inf {v : F (v) ≥ x} , x ∈ [0, 1]. (6.3)

We can now state the following well-known result.

Proposition 6.3. If U ∼ Unif (0, 1) and FX is a CDF, then

P
(
F−1(U) ≤ x

)
= FX(x).

In the opposite direction, if X has a continuous CDF FX then

FX(X) ∼ Unif (0, 1) .

Proof. Omitted.

The quantile function thus provide a way to simulate, or “translate”, random variables from a
distribution F by simulating uniform random variables.

6.2.1 Sklar’s Theorem

The strength of a copula approach for modeling the dependence arises from the theorem due
to Sklar that states that the joint cumulative distribution function F may be expressed using
a copula and its marginals. First, let F be the CDF of X = (X1, X2)> with continuous and
increasing marginals. Then, by Proposition 6.3 we have that the joint distribution of FX1 , FX2

is a copula, CX . We can actually find an expression for CX by noting that

CX(u1, u2) = P(FX1(X1) ≤ u1, FX2(X2) ≤ u2)

= P
(
X1 ≤ F−1

X1
(u1), X2 ≤ F−1

X2
(u2)

)
= FX(F−1

X1
(u1), F−1

X2
(u2)).

(6.4)

Now, let uj := FXj (xj), then (6.4) yields

FX(x1, x2) = CX (FX1(x1), FX2(x2)) .
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This is one side of the honored Sklar’s Theorem which we now state formally.

Theorem 6.4 (Sklar’s Theorem). Consider a 2-dimensional CDF F with marginals F1, F2.
Then there exists a copula C such that

F (x1, x2) = C (F1(x1), F2(x2)) (6.5)

for all xi ∈ R and i = 1, 2.

Proof. Omitted.

We can use the power of Sklar’s Theorem to join our two marginal distributions. However, there
are several copulas to choose from in order to test it in this bivariate scenario. Due to time
constraints, we do not investigate or test which copulas are best suited for our needs, we simply
follow Boshnakov, Kharrat, and I. G. McHale’s choice by using only the Frank copula, which we
will briefly introduce next.

Frank Copula

The Frank copula is given by

C(u, v) = −1

κ
log

(
1 +

(e−κu − 1) (e−κv − 1)

e−κ − 1

)
, (6.6)

where κ ∈ R is the dependence parameter. We see that the Frank copula allows for a complete
spectrum of dependence, meaning that the scope of the correlation ranges from -1 to 1. Thus,
the Frank copula nests the independence copula, when κ = 0.

6.2.2 Drawbacks of Discrete Copulas

There are some issues with utilizing a copula with discrete distributions that we should be careful
about. First, if the marginals F1, F2 are not continuous, then the corresponding copula in (6.5)
is not guaranteed to be unique. This is generally not a problem in applied settings due to the
fact that one’s use of copulas is often based on the reason that the joint distribution is either
unknown or difficult to work with. Second, and much more concerning, is that estimates of the
dependence parameter are bias when either F1 or F2 are not continuous. Trivedi and Zimmer
(2017) provides several examples of these issues with discrete copulas, and present reviews and
discussions of bivariate copulas in discrete count data settings. We will not analyze these concerns
deeper here; we simply state that a copula approach in our setting might not be appropriate.
Despite these concerns, we progress with the copula idea, simply to obtain results on the possible
correlation.
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6.2.3 Pricing Formula

We are now in a position to introduce a bivariate pricing formula. Recall the pricing formula in
the inhomogeneous Poisson setting, stated in Proposition 4.12. We can now extend this using
the bivariate copula approach. Note that a copula, by definition, is a CDF, therefore, we need
to account for this when using this method for a bivariate probability mass function calculation
as in our case:

P(X1 = x1, X2 = x2) = C (F1(x1), F2(x2))

− C (F1(x1 − 1), F2(x2))

− C (F1(x1), F2(x2 − 1))

+ C (F1(x1 − 1), F2(x2 − 1)) ,

(6.7)

for xi ∈ N and i = 1, 2.

Basically, (6.7) works in the same fashion as F (X = x) = F (X ≤ x) − F (X < x), simply just
in a discrete way. We should note that whenever, either x1, x2, or both are equal to zero, we
cannot use (6.7) explicitly. In such cases we have

P(X1 = 0, X2 = x2) = C (F1(0), F2(x2))− C (F1(0), F2(x2 − 1)) , (6.8)

P(X1 = x1, X2 = 0) = C (F1(0), F2(x2))− C (F1(x1 − 1), F2(0)) , (6.9)

P(X1 = 0, X2 = 0) = C (F1(0), F2(0)) , (6.10)

respectively.

Proposition 6.5 (Pricing Formula of a Simple Bet - Bivariate Inhomogeneous Poisson Setting).
Assume we are in a bivariate inhomogeneous Poisson process setting of the general market model.
The value of a simple bet at time t with payoff function Φ is given by

Πt(X ) =

∞∑
n1=N1

t

∞∑
n2=N2

t

Φ(n1, n2)×

(
C
(
P
(
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t , λ
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t

)
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2
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t

))
− C
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)
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(
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2
T − λ2

t

))
− C

(
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(
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)
, P
(
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t − 1, λ2
T − λ2

t

))
+ C

(
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(
n1 −N1

t − 1, λ1
T − λ1

t

)
, P
(
n2 −N2

t − 1, λ2
T − λ2

t

)))
,

(6.11)

where P (N,Λ) is the Poisson probability mass function, and where we use the conventions
described by (6.8)–(6.10) in the special cases when either n1 −N1

t , n2 −N2
t , or both are equal to

zero.

Proof. Recall that we have

Πt(X ) = EQ [X | Gt]

= EQ
[
Φ
(
N1
t +N1

T−t, N
2
t +N2

T−t
)]
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=
∞∑

n1=N1
t

∞∑
n2=N2

t

Φ(n1, n2)Q
(
N1
T−t = n1 −N1

t , N
2
T−t = n2 −N2

t

)
.

The result then follows from (6.7). �

Using the Frank copula and the Weibull process specification of the marginals in (6.11), we can
use this in the calibration procedure, described in Section 5.2, on the in-play betting data.

6.3 Calibration Results

In this section, we present the results of applying the Frank copula Weibull process model
dynamics to the in-play betting data presented Section 5.1.3. We show the results of the
calibration error, the parameters, the calibrated market price vs. market quotes, and the
comparison to the independent Weibull process model.

The calibration errors are shown in Figure 5.5, where we see that the calibration error generally
varies within 0.5 and 1 back-lay units. We also see a slightly decreasing trend throughout the
game; however, not as severe as what we observed with the independent Weibull process model.
The comparison of the calibration errors between the bivariate and the independent models can
be seen in Figure 6.2.

Figure 6.1: Calibration errors of the market model with Frank copula Weibull process model dynamics
in units of the back-lay spread.

In Figure 6.2, we see a clear pattern that the calibration error is much lower and less spiky
in the bivariate case, something that is also backed by the summary statistics, shown in
Table 6.3, possibly indicating that there seems to be some sort of dependence between the
two goal processes. However, such conclusions are generally tough to make from a flawed model
assumption. The only period where both models seem to have about the same calibration error
is the time between the first and the second goal. In this period, we also observe a small spike
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Figure 6.2: Comparison between the calibration errors of the market models with Frank copula Weibull
process model dynamics and the market model with independent Weibull process model dynamics, in
units of the back-lay spread. The vertical dotted lines indicate goal times.

in the calibration error. These spikes were not very prominent for the independent model as
compared to the other spiky periods, however, we do not observe the other large spiky periods
during the beginning and end of the game in the bivariate model.

The maximum calibration error of the bivariate model also occurs during the period between the
goals; right after the halftime, in the 47th minute, to be exact. It occurs within a period of already
enlarged calibration errors. A possible explanation of this enlarged calibration error observation
around the halftime could be due to the fact that the underdogs were leading and the fact that
betting still occurs during the halftime, despite the game being on pause; something, which is not
shown in the data. The halftime betting could possibly lead some bettors to speculate and/or
analyze more in-depth on the home team’s chances, thus moving the market quotes significantly
during the half time. However, this is only a possible explanation; it might just be an anomaly
or simply that the model is not able to catch some specific feature happening during this period,
after all, the Poisson assumption was found to be flawed in describing football goals.

Model Type Min. Median Mean Max. Sd.

Bivariate 0.1030 0.5526 0.5508 1.3043 0.2329
Independent 0.1031 0.7791 0.8364 2.1937 0.3739

Table 6.3: Summary statistics of the calibration errors in a market model with Frank copula Weibull
process model dynamics.

Next, we show the calibrated model prices with respect to the market back and lay quotes. In
Figure 6.4 the solid lines represent the calibrated bivariate model prices of the match odds bet
and the shaded areas show the back-lay spread for the match odds bets.

In Figure 6.4, we observe that the calibrated model prices for the match odds bets tend to be fairly
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Figure 6.4: Match odds market quotes and calibrated model prices with Frank copula Weibull process
model dynamics. The solid lines represent the calibrated model prices of the respective bets. The edges
of the shaded areas represent the back and lay prices of said bets. The vertical dotted lines indicate goal
times.

close to the back-lay spread throughout the game, confirming the calibration error conclusion
that the calibrated model prices are fairly decent for these bets. The calibrated prices seem to
become even better in the last third of the game, also agreeing with the slightly decreasing trend
observed in the calibration errors. To get a detailed view of the calibrated prices during the
beginning of the game, we also here present a zoomed version of Figure 6.4, which is shown in
Figure 6.5.

Figure 6.5: A zoomed version of Figure 6.4.

In Figure 6.5, we clearly see that the the calibrated prices are much more satisfying than the
independent model’s calibrated prices, however, they are still not always within the back-lay
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spread, still indicating a flawed model. We also show the calibrated model prices for some
over/under market quotes in Figure 6.6 and 6.7. They also seem to yield decent fits, but still
indicating some flaws with the model.

Figure 6.6: Over/under market quotes and calibrated model prices with Frank copula Weibull process
model dynamics. The solid lines represent the calibrated model prices of the respective bets. The edges
of the shaded areas represent the back-lay prices of said bets. The vertical dotted lines indicate goal
times.

Figure 6.7: A zoomed version of Figure 6.6.

In general, the introduction of possible dependence between the goal processes seems to have
increased the calibration accuracy of the model, however, as we also discussed in Section 3.1, the
overall problem might lie within the Poisson assumption embedded in the Weibull process. It
is also not surprising that the calibration error was significantly reduced, due to the flexibility
that an extra parameter adds, as well as the fact that the original model is encapsulated in the
extended model.
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Parameters and Implied Intensity

Let us for the sake of clarity look at the implied parameters of the bivariate model. Figure 6.8
shows two teams’ calibrated model parameters and Figure 6.9 shows the calibrated dependence
parameter of the Frank copula.

Figure 6.8: Calibrated Weibull process parameters for each side. Top: Shape parameter (β). Bottom:
Scale parameter (α). The vertical dotted lines indicate goal times.

Figure 6.9: Calibrated Frank copula dependence parameter (κ) throughout the match. The vertical
dotted lines indicate goal times.

It is notable that both the Weibull process parameters and the dependence parameter seem to
be somewhat stable throughout the game with the obvious exception of the very end. We have
already touched the reason for some unstable results and parameters during the end, but to
sum it all up; it is probably due to the decreasing liquidity of the bets during this period. In
Figure 6.9, we see a small positive dependence before the goal, which then turns to an almost
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independence-like situation between the goals, which also explains why the calibration errors
of the two models almost lined up during this period of the game. After the second goal, we
actually see a slight negative dependence.

These observations could indicate that the bettors believe that if a team scores early on in this
particular match, then the other team will likely also score a goal, possibly due to some match
dynamics that maybe they both could not afford to lose, and thus making the trailing team likely
to become more aggressive. Then after the second goal, the negative dependence could indicate
a switch in the bettors’ mindset, meaning that if one team would score the others would actually
have less chance of also scoring, possibly due to the fast-approaching end. This is however also
just a possible explanation that fits fairly well into the general football viewer’s mind.

In Figure 6.10, we show the implied intensities of the two teams. Here, we observe that there
are two very volatile periods at the beginning and end of the game. The volatile period, in
the beginning, is fairly surprising; however, by close inspection, it is due to a dip below 1 in
the shape parameter of the away team. This along with the rest of the results again suggest a
fundamentally flawed model, only suitable for a fast indication.

Figure 6.10: Implied Weibull process intensities for each side. The vertical dotted lines indicate goal
times.

6.3.1 Final Thoughts

We see significant improvement in the overall model, with much better results than obtained
from the independent Weibull process-based market model. However, we see that the bivariate
model still falls short in many areas. This is likely because we still have dealt with the major
flaw of the Poisson. Again, this model has a specific pricing formula, making it a good quick-
and-dirty tool to obtain some information from the current state of the betting market, however,
as with the independent Weibull process-based market model, the general assumptions of the
football modeling are just not upheld. Therefore, again, we cannot conclude that a risk-neutral

85



measure Q exists with this market model. We do, however, note that the potential of a bivariate
model can be very high, but also likely very computationally heavy. We will therefore not
completely rule out the existence of a risk-neutral measure in, or the usefulness of, the market
model proposed in (6.1). We have only tested one method of imposing dependence between the
score processes, among the many possible methods; one of which, combined with the right score
processes, could be the key to finding near-perfect results. In conclusion, imagination, creativity,
and computation time appears to be the limit right now.
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Conclusion 7
By studying the statistical patterns of goals scored in English Premier League matches between
August 2004 and May 2019, we have demonstrated the usability and limitations of two Weibull-
based counting processes for modeling football. In doing so, we first reviewed and introduced
the necessary point/counting process theory. In the analysis of the football goals, we found
that the distribution of goals could not be explained well with a Poisson distribution due to
overdispersion in the empirical data. We did find that the Weibull Count Model was able to
capture this overdispersion due to an added parameter. However, both distributions seemed to
lack some consistency towards the distribution of goal difference, possibly indicating a form of
correlation in the scores. We then found evidence supporting that both the Weibull process
and the Weibull renewal process provide long-run goal intensities fairly consistent with the
observed intensities of the goals. However, the observed goal intensities are not consistent with
the theoretical intensities of the Weibull renewal process that led to the Weibull Count Model
consistent with the empirical goal distribution, showing that the Weibull renewal process might
be useful but that we should be aware of the possible inconsistencies between the intensity and
the score distribution. We then looked at the distribution of waiting times of goals, to see how
they compare to the theoretical distributions arriving from the Weibull process and the Weibull
renewal process with the parameters used in the goal intensity section. Here, we found that
the theoretical distributions had some consistency towards the empirical distributions. We did,
however, again find flaws with both models, most notably with the renewal assumption, which
does not seem to be completely appropriate for modeling football goals; there are simply too
many observations of goals scored in the minutes right after a first goal is scored than the renewal
assumption allows. Despite some obvious flaws in both models, we deemed the overall Weibull
characteristics fairly decent towards modeling football matches.

We then proceeded to set up a risk-neutral valuation framework for in-play betting on football
games, in which we first defined the general market model based on the martingale theory of
the compensated counting process. We, furthermore, introduced the specific model dynamics
of the market model when the underlying processes are the proposed Weibull-based counting
processes. We also proved that, under the assumptions of the general market model, there exists
a unique risk-neutral measure for the general market model. We then formally defined a bet and
introduced the necessary pricing theory, in which we stated a result on the risk-neutral valuation
of bets. We used this result to state pricing formulas for specific market model settings, e.g.
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the inhomogeneous Poisson setting (Weibull process). We finished the chapter by stating some
hedging and replication results in connection to bets.

Using the risk-neutral valuation result, we calibrated the model prices, as specified by the two
Weibull-based dynamics of the market model, to historic betting exchange data. In doing so, we
first presented an exploratory data analysis in which we discuss the betting exchange in general
and the cleaning of the raw data. We originally obtained 1-second data from the exchange,
however, we decided to aggregate it such that we had data with 30-second intervals instead.
We then defined and performed the calibration procedure on an English Premier League match
between Bournemouth and Southampton. We first showed the calibration results for the market
model with Weibull process model dynamics. We obtained decent calibration results with a
mean calibration error of 0.8364 and a median of 0.7791. We also noted a decreasing tendency
throughout the game with some quite volatile periods. We furthermore noted that the average
calibration error of 0.8364 indicated that the calibrated prices are for the most part just outside
the back-lay spreads, which was also what we observed when visualizing the calibrated prices. We
also looked at the calibrated model parameters and found that they were quite volatile, especially
towards the end of the game. Using the calibrated model parameters, we calculated the model
implied intensities which for the most part were also quite volatile. All-in-all, the Weibull process
provided fair, but not conclusive results, which was also in agreement with the limitations of the
model as presented in the statistical analysis of football goals. We could therefore not make any
conclusions about the existence of the risk-neutral measure in this market model.

Next, we showed the calibration results for the market model with Weibull renewal process model
dynamics. Here, we obtained fairly good calibration results with a mean calibration error of only
0.1704 and a median of 0.1483, meaning that almost all the calibrated prices were inside the
back-lay spreads. However, due to the increase in parameters, we needed to be careful about
making conclusions just yet, despite the promising results with the calibration errors. Each
team’s calibrated model parameters were surprisingly stable until the goals, where they became
very volatile. This is likely connected to the renewal assumption where each team’s intensity
completely starts over at the time of their goal, which is likely not accurate in football. Again,
using the calibrated model parameters, we calculated the model implied intensities which also
portray the volatilities around the renewal times. All-in-all, the Weibull renewal process showed
fairly good results, but again, not great results. This was also in agreement with the limitations
of the model as presented in the statistical analysis of football goals. It did, however, show
promising results toward the possibility of the existence of a risk-neutral measure, but we could
just not make any concrete conclusions about it in this market model either. It did, however,
create a promising direction for future studies on the possible application of the Fundamental
Theorems of Assets Pricing to the market of in-play football betting.

Lastly, we discussed the independence assumption of the general market model and proposed
an extension of the market model, in which the underlying counting processes are allowed to be
correlated. Based on a recent article, we furthermore suggested the use of the Frank copula to
model the dependence. We then constructed a specific pricing formula of the market model with
possible correlated Weibull processes and calibrated the model prices to the historical data. We
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saw clear improvements in the calibration errors, however, the proposed extension did not bring
the average error below the 0.5 threshold. Also, the parameter volatility did not seem to be
improved by the allowed correlation and furthermore, we observed fairly volatile behavior in the
dependence parameter, especially towards the end. In conclusion, despite a clear improvement
compared to the independence model, we found that the bivariate Weibull process with a Frank
copula still lacked consistency in many areas, and thus we did not alter the conclusion of not
enough evidence to support the existence of a risk-neutral measure with these market dynamics.
The general bivariate market model does, however, also present very promising directions for
further research. We do however suspect that computation time will be the Achilles’ heel to
further advancements.

To sum up our conclusions; we have proposed a theoretical general market model which has
shown great potential in the pricing of football bets, but, as with any other pricing model, the
practicality of the model is bounded by the accuracy to portray the underlying assets, which in
our case is the live modeling of the underlying football game, something which the two proposed
Weibull-based point processes are not perfectly able to do.
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Probability & Distributions A
This appendix is based on Ross (2019, pp. 42, 46), stevecheng (2013), Tankov and Cont (2004,
pp. 44–47), & Murthy, Xie, and Jiang (2004, p. 10).

In this appendix, we recall some fundamental results of probability theory and present certain
distributions used extensively in the thesis.

Proposition A.1 (Law of the Unconscious Statistician). Let X be a random variable and g be
a real-valued function, then

E [g(X)] =


∑
x

g(x)fX(x) for X discrete∫ ∞
−∞

g(x)fX(x)dx for X continuous.

Furthermore, if X and Y are random variables and g is a function of two variables, then

E [g(X,Y )] =


∑
y

∑
x

g(x, y)f(x, y) for (X,Y ) discrete∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dx for (X,Y ) continuous.

Conditional Expectation

Let P be a given probability measure on some σ-algebra F , and X : Ω → R a real random
variable with E [|X|] <∞.

Definition A.2 (Conditional Expectation)
Let G ⊆ F be a sub-σ-algebra, then the conditional expectation of X given G , denoted by
E [X | G ], is any G -measurable function Ω→ R that satisfies∫

G
E [X | G ] dP =

∫
G
XdP, for all G ∈ G .

Now suppose that a new probability measure Q is defined by
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dQ = LdP,

using some F -measurable random variable L as the Radon-Nikodym derivative, i.e. we have
that L ≥ 0 almost surely, and E [L] = 1.

Theorem A.3 (Conditional Expectation Under Change of Measure). Let G ⊆ F be any sub-σ-
algebra. For any F-measurable random variable X,

E [L | G ] EQ [X | G ] = E [LX | G ] .

Exponential Distribution

Definition A.4 (Exponential Distribution)
A positive random variable X is said to follow an exponential distribution with parameter
λ > 0 if its probability density function has the form

f(x) = λe−λx 1 (x ≥ 0) .

Then, we write X ∼ Exp (λ).

The distribution function F of an exponential distributed random variable X is then given by

F (x) = 1− e−λx, ∀x ∈ R+.

An exponential distributed random variable has a unique important property, namely, the
memoryless property which we will described in the following proposition.

Proposition A.5 (Absence of Memory). Let T ≥ 0 be a random variable such that

P(T > t+ s | T > t) = P(T > s) , ∀t, s > 0.

Then, T has an exponential distribution.

Poisson Distribution

Definition A.6 (Poisson Distribution)
A random variable X is said to follow a Poisson distribution with parameter λ if its
probability mass function has the form

p(n) = P(X = n) = e−λ
λn

n!
, ∀n ∈ N0.

Then, we write X ∼ Poi (λ).

The following proposition presents a rather special relationship between the Poisson distribution
and sums of independent exponential random variables.
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Proposition A.7. If {Ti}i≥1 are independent exponential random variables with parameter λ,
then for any t > 0 the random variable

Nt = inf

{
n ≥ 1,

n∑
i=1

Ti > t

}
,

follows a Poisson distribution with parameter λt.

Weibull Distribution

Definition A.8 (Weibull Distribution)
A positive random variable X is said to follow a Weibull distribution with scale (rate)
parameter θ > 0 and shape parameter β > 0 if its probability density function has the form

f(x) =
β

θ

(x
θ

)β−1
exp

(
−(x/θ)β

)
1 (x ≥ 0) .

Then, we write X ∼Weibull (θ, β).

The distribution function for the Weibull distribution is

F (x) = 1− exp
(
−(x/θ)β

)
, ∀x ∈ R+.

Sometimes an alternative parameterization is employed, in which the parameters are β as above
and α =

(
1
θ

)β , that is the density function becomes:

f(x) = αβxβ−1 exp
(
−αxβ

)
1 (x ≥ 0) .

and the distribution function becomes:

F (x) = 1− exp
(
−αxβ

)
, ∀x ∈ R+.
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Asset Pricing & SDEs B
This appendix is based on Shreve (2004, pp. 228–232), Björk (2011, pp. 20, 27), Jeanblanc, Yor,
and Chesney (2009, pp. 457–459, 551–552), & Tankov and Cont (2004, pp. 298–300).

Here, we present some brief results and definitions on stochastic integrals, stochastic differential
equations, and general asset pricing. Consult the cited literature for a more rigorous approach.

Stochastic Integrals

When dealing with stochastic counting processes it is beneficial to characterize the stochastic
integral

∫ t
0 CsdNs, which is defined as a Stieltjes integral for every bounded measurable process

(not necessarily adapted) (Ct)t≥0 by:∫ t

0
CsdNs =

∫
]0,t]

CsdNs =

∞∑
n=1

Ctn 1 (tn ≤ t) . (B.1)

We note that the integral (B.1) is finite due to the finite number of jumps during the interval
]0, t]. Sometimes, we also used the notation∫ t

0
CsdNs =

∑
s≤t

Cs∆Ns.

Proposition B.1. Assume that M is a martingale of bounded variation and that h is a
predictable process satisfying the condition

E
[∫ t

0
|hs| dMs <∞

]
, ∀t ≥ 0.

Then, the process X defined by

Xt =

∫ t

0
hsdMs,

is a martingale.

Stochastic Differential Equations

A stochastic differential equation (SDE) is an equation of the form
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{
dXt = µ(t,Xt)dt+ σ(t,Xt)dWt + ν(t,Xt)dMt,

X0 = x0,
(B.2)

for given functions µ, σ, and ν that must satisfy some conditions1. The SDE (B.2) should be
viewed as an informal way of expressing the corresponding integral equation

Xt+s −Xt =

∫ t+s

t
µ(u,Xu)du+

∫ t+s

t
σ(u,Xu)dWu +

∫ t+s

t
ν(u,Xu)dMu.

The continuous martingale part of the semimartingale X is
∫ t

0 σ(u,Xu)dWu, and the purely
discontinuous martingale part is

∫ t
0 ν(u,Xu)dMu.

Note that some authors prefer to write the dynamics of the SDE (B.2) using the Poisson process
N instead of the compensated martingale M when dealing with jump-diffusion processes where
the purely discontinuous part of the semimartingale is given by a compensated Poisson process.
We shall also employ this notation in the following proposition.

Proposition B.2. Assume that X satisfies the SDE{
dXt = αtXt−dt+ βtXt−dNt),

X0 = x0,
(B.3)

where α and β are predictable processes. Then X has the solution

Xt = x0 exp

(∫ t

0
αsds

)
exp

(∫ t

0
ln (1 + βs) dNs

)
. (B.4)

Fundamental Theorems of Asset Pricing

Theorem B.3 (First Fundamental Theorem of Asset Pricing2). The market model defined by
(Ω,F , (Ft)t∈[0,T ] ,P) and asset prices

(
Sit
)
t∈[0,T ]

is arbitrage-free if and only if there exists a
risk-neutral measure Q.

Theorem B.4 (Second Fundamental Theorem of Asset Pricing). A market defined by the assets(
Bt, S

1
t , S

2
t

)
t∈[0,T ]

, described as stochastic processes on (Ω,F , (Ft)t∈[0,T ] ,P) is complete if and
only if there is a unique risk-neutral measure Q.

1See e.g. Jeanblanc, Yor, and Chesney (2009, p. 551)
2A more general version of this theorem is given by Delbaen and Schachermayer (1994, Thm. 1.1, p. 467),

requiring a broader definition of “no-arbitrage”, namely, the “no-arbitrage with vanishing risk”.
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