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Abstract 

Recent studies suggest that due to climate change the number of wildfires across 

the globe will be increasing. Recently, massive wildfires hit Australia during the 2019-

2020 summer season where 46 million acres of land burnt. This fire disaster is raising 

questions to what extent the risk of wildfires can be linked to various climate, environ-

mental, topographical, and social factors and how to predict fire occurrence to take 

preventive measures. This study investigates the Australian wildfires-based on free re-

motely sensed data from Earth observation to uncover the general insights. In the last 

few years, machine learning (ML) has demonstrated to be successful in many do-

mains due to its capability of learning from obvious but also hidden relationships. One 

of the aims of this study is to create an automatized process of creating a fire training 

dataset at a continental level with an efficient computational expense for the ML 

algorithms. These results of fire occurrence and no-fire occurrence locations are 

mapped alongside with fire causal factors. The training dataset is applied to different 

ML algorithms, such as Random Forest (RF), Naïve Bayes (NB), and Classification and 

Regression Tree (CART). The ML algorithm with the best performance, the RF model, 

is used to identify the driving factors using variable importance analysis. Typically, a 

model can learn certain properties from a training dataset to make predictions. Thus, 

the overall objective of this study is to disclose the fire occurrence probability across 

Australia as well as identify the driving factors of wildfires applying the fire occurrence 

dataset from the 2019-2020 summer season. Improved preventive measures can be 

implemented in the fire-prone areas to reduce the risk of wildfires in Australia by con-

sidering the identified factors.  
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1. Introduction 

Australia has been seriously affected by the fire events known as “Black Summer” 

during the 2019-2020 summer season [1]. At least 46 million acres of land have burnt 

[2] and “fires near me” has become Google’s most searched words in Australia dur-

ing that fire season [3]. This fire disaster is raising a question to what extent the risk of 

wildfires can be linked to various climate, environmental and social factors.  

Nowadays, wildfire disaster risks are being heightened globally due to climate 

changes. High temperatures and prolonged dry seasons might result in unprece-

dented bushfire activity across Australia. The state temperature dataset, originating 

in 1910, reveals that Australia's warmest year on record was in 2019, with the annual 

national mean temperature 1.52 °C above average. The dataset also shows the rain-

fall level was below average in all the capital cities across the 2019-2020 season. Aus-

tralia’s climate in 2019 was the driest year on record driven by record excursions and 

significant heatwaves in January and December [4]. However, humans might also 

play a critical role in some wildfire events as the recent study shows in Spain [5]. In this 

study, most wildfires were most likely triggered by human activities as spatial patterns 

of wildfire ignition are strongly linked with human access to the natural landscape, 

with the proximity to urban areas and roads found to be the most important contrib-

utory factors.  

The satellite remote sensing has become a common tool for large-scale area moni-

toring of ecosystems as well as spotting threats, e.g. wildfires, across the globe [6]. 

Multiple studies have been already conducted using remote sensing and applied 

various approaches, such as Kernel Logistic Regression or Spatial Logistic Regression. 

However, recently, ML approaches have rapidly progressed and achieved promising 

results in the environmental sciences [7]. This led to the analyzes of the recent Aus-

tralian fires with implementing different ML algorithms, namely, Naive Bayes (NB), 

Random Forest (RF), and Classification and Regression Trees (CART). This study directly 

compares ML methods for wildfire mapping, and subsequently, a method with the 

best achieved performance in both model training and validation is used for map-

ping the continental wildfire probability in Australia.  

Moreover, this thesis aims to evaluate a set of causal variables, i.e., predictor varia-

bles, and to identify the dominant factors behind the recent wildfires in Australia. 
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Modelling many complex environmental and socio-economic independent varia-

bles is often a difficult task due to large resource requirements, i.e., complexity as well 

as heterogeneous data formats. In that respect, most predictor variables, e.g., tem-

perature, precipitation, population, etc., are gathered from the Google Earth Engine 

(GEE) data catalogue.  

A training dataset in ML algorithms is an essential input supporting the model’s ability 

to learn [8]. The process of generating a training dataset for supervised learning is 

frequently manual. Due to the extensive area and wide time frame of the fire season, 

it is crucial to create an automated process for generating the most representative 

set of data for the model training. Therefore, this thesis proposes an extensive auto-

mated framework for generating the large training dataset across entire Australia.  

 

1.1 Problem statement and research questions   

This study aims to use ML algorithms for predictions of wildfire susceptibility based on 

wildfires in Australia in the 2019-2020 season and determine potential causal factors 

from the variable importance analysis. Additionally, the aim of this study is to create 

an automated process for generating the training dataset of fire occurrence loca-

tions over a large area using freely accessible GEE tools and its satellite imagery col-

lections. Hence, the following research questions were framed.   

 

1) Research question: What are the main characteristics of the last decade’s 

Australian wildfires from freely available satellite datasets? 

 

2) Research question: Which ML algorithm outperforms other existing models 

available in GEE for prediction of future fire occurrences? 

 

3) Research question: To what extent are the various causal factors associated 

with the fire locations? 
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1.2 Thesis structure 

The structure of the thesis is split into eight chapters as follows:  

The Introduction chapter is dedicated to providing the reader with the motivation of 

the thesis and the research questions.  

The Background and theory chapter gives an overview of the application of satellite 

remote sensing in wildfires, Sentinel missions and Normalised Burn Ratio (NBR). The ML 

algorithms sub-chapter presents a summary of 3 supervised ML techniques. The used 

technology and study area are described in the respective sub-chapters. The last 

sub-chapter describes the determination of the 2019-2020 fire season period. 

The Exploratory data analysis chapter investigates the wildfires occurrences in Aus-

tralian using the remote sensing data. 

The Methodology chapter contains the three sub-chapters. The first sub-chapter 

named Data mining and preprocessing and presents how the training data are gen-

erated for ML algorithms. The classification sub-chapter presents the application of 

the tree ML supervised classifications. The last sub-chapter called validation evalu-

ates the performance of ML models. 

In the first sub-chapter in the Results chapter, the results of an automated workflow 

of fire occurrence detection are presented. The accuracy of ML algorithms applied 

in this study is presented in the second section. The third sub-chapter reveals the most 

important variables presented as “wildfire drivers” in fire season 2019-2020 while the 

last sub-chapter provides the fire occurrence probability map. 

The Discussion chapter follows from the results chapter and includes some acknowl-

edgement of the potential strengths and weaknesses of the implementation meth-

ods. 

The Conclusion chapter answers the research questions and presents the impact of 

this study on the achievement of sustainable development goals. 

The Future chapter summarizes the potential areas of improvement and further re-

search in the area of the presented work.    
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2. Background and theory  

The following chapter introduces the background and theory gathered through the 

literature review. This chapter is divided into a few sub-chapters, each focusing on 

different knowledge domains applied in this work. The first sub-chapter emphases the 

application of satellite remote sensing used in fire detection. The second and third 

sub-chapters are focused on the Sentinel satellite missions and the NBR definition re-

spectively. The ML algorithms sub-chapter presents the algorithms for wildfire model-

ling in GEE while the fifth sub-chapter focuses on the technology used in this work. 

The study area sub-chapter presents the area of interest and the last sub-chapter 

defines the time frame of fire season. 

 

2.1 Application of remote sensing in wildfires   

Satellites use different sensors which measure the intensity of radiation in a range of 

the electromagnetic spectrum. Some of these sensors capture visible light or near-

infrared radiation (passive sensors), whereas other sensors measure the microwave 

radiation providing its illumination. The Synthetic Aperture Radar (SAR) uses the mi-

crowaves which are capable of penetrating through the smoke at high resolution 

and imaging regardless of day and night. Therefore, remotely sensed data has 

played a significant role in the fight against wildfires [9].  

This unique way of data collection to respond to fires depends also on rapid revisit 

rates. Some satellites provide a 24-7 bird’s eye perspective by observing the same 

area as geostationary satellites. The launched Japanese geostationary Himawari-8 

satellite provides this perspective on Australia as well as other parts of the Asian-Pa-

cific region. 

Guang Hu [10] has demonstrated the potential of using weather satellite data for 

real-time wildfire monitoring. The real-time information from a satellite on the spatial 

extent of wildfires can help to mitigate the impact of the fire events, especially in 

early detection of wildfires due to very high temporal resolution. Even though 

Himawari-8 provides infrared images with a period of 10 minutes, the provided spatial 

resolution is 2 km, which is not accurate enough to determine the exact spatial loca-

tion of arisen fires [10].   
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The detection of active fires using satellite data is based on temperature, where the 

fire locations have significantly higher temperatures compared to other back-

grounds. The fire spots release electromagnetic radiation based on their temperature 

and this is captured by thermal sensors of satellites [11]. To distinguish fires from the 

background, it is important to use multichannel detection over the wavelengths in 

the infrared range. 

Figure 1 presents the comparison of radiance against the respective wavelength de-

tected on different objects. The vegetative background is important in fire identifica-

tion [11] due to it’s the detective emissions contrast. For example, the difference be-

tween vegetative and fire radiance in the middle infrared (MIR) is important in deter-

mining the active fire.  

The generated smoke does not normally interrupt the data acquisition linked to the 

fires due to the large wavelengths of the MIR range compared to the smoke particles 

which are commonly < 1µm. Therefore, there is no impact of even thick smoke on 

the detection of active fires [11]. 

 

Figure 1 - Spectral radiance of fire against the various typical background as  

a function of wavelength [11] 
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2.2 Sentinel missions 

The active radar Sentinel-1 satellite and optical Sentinel-2 satellite, provided by Euro-

pean Space Agency (ESA), capture high spatial resolution and 5-day temporal reso-

lution images. The data from both satellite missions can be used to detect and mon-

itor outbreaks of fire, as each sensor has advantages, e.g. cloud penetration of Sen-

tinel-1 and sensitivity to ground moisture of Sentinel-2.  

The previous research shows that the Sentinel-1 time-series, in combination with the 

deep learning framework based on Convolutional Neural Network (CNN) can play a 

significant role for both detection and tracking temporal progressions of wildfires [12].  

In this study, the Sentinel-2 mission is used to detect active fires and burnt areas. This 

mission is a constellation of twin satellites Sentinel-2A launched by the European Co-

pernicus program on 23 June 2015 and Sentinel-2B followed on 7 March 2017 [13]. 

Each Sentinel-2 satellite carries a Multi-Spectral Instrument (MSI) which has 13 spectral 

bands spanning from the visible and the near-infrared (NIR) to the short-wave infrared 

wavelengths (SWIR) (Figure 2).   

The spatial resolution varies from 10 m to 60 m depending on the spectral band and 

the temporal resolution is 5 days [14]. The Sentinel-2 mission is intended to mostly de-

liver information for agricultural and forestry practices and applications. The orbital 

swath width is 290 km. All Sentinel-2 products are projected to the Universal Transverse 

Mercator (UTM) coordinate system with the World Geodetic System 84 (WGS84) da-

tum [13].  

 

 

Figure 2 - The overview of Sentinel-2 bands 

Source: Reseda, Freie Universität, Berlin 
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2.3 Normalized burn ratio 

Normalized Burn Ratio(NBR) helps to identify burnt areas using the Sentinel-2 dataset. 

Combining multiple bands in mathematical algorithms can enhance aimed features 

as each spectral band responds in unique ways to surficial objects, e.g. water con-

tent, vegetation, etc. The NBR is frequently used as an index presenting the burnt 

areas in large fire zones [15]. The NBR formula combines the near-infrared (NIR) and 

shortwave infrared (SWIR) wavelength [16]. Figure 3 presents the exploiting spectral 

response curves for burnt areas against healthy vegetation in terms of reflectance as 

a function of the electromagnetic spectrum. As can be seen, the very high reflec-

tance is for healthy vegetation in the NIR while the low reflectance is in the SWIR 

portion of the spectrum. This pattern is the opposite of what can be seen in areas 

devastated by fire. Thus, recently burnt areas demonstrate low reflectance in the NIR 

and high reflectance in the SWIR.   

 

 

Figure 3 - Contrast of the spectral response curve for heathy vegetation and burnt areas 

 Source: U.S. Forest Service 

 

 

Overall, the difference between the spectral response of healthy vegetation and 

burnt areas reach their peak in the NIR and the SWIR regions of the spectrum. 

  

                                            𝑁𝐵𝑅 =
𝑁𝐼𝑅𝐵8−𝑆𝑊𝐼𝑅12

𝑁𝐼𝑅𝐵8+𝑆𝑊𝐼𝑅𝐵12
                                    (1) 

 

http://www.un-spider.org/node/7930
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Where B8 and B12 are the respective satellite bands of Sentinel-2.  

 

                                 𝛥𝑁𝐵𝑅 = 𝑃𝑟𝑒𝑓𝑖𝑟𝑒 𝑁𝐵𝑅 − 𝑃𝑜𝑠𝑡𝑓𝑖𝑟𝑒 𝑁𝐵𝑅                   (2) 

 

Higher 𝛥𝑁𝐵𝑅 indicates more severely damaged areas while areas with negative val-

ues may indicate increased vegetation following a fire event [17]. 𝛥𝑁𝐵𝑅 is proposed 

for mapping the burnt severity relied on multispectral images where 𝛥𝑁𝐵𝑅 values can 

be interpreted based on the United States Geological Survey (USGS) as presented in 

Table 1 [18] [19].  

  

 

 

 

 

 

Table 1 - The burnt severity categories based on ∆𝑁𝐵𝑅 according to the USGS 

 

2.4 Machine learning algorithms  

One of the main objectives of earth observation is to interpret the observed data, 

map land use, monitor changes and classify features. ML algorithms can be useful 

for classifying features, as they can label each pixel to a particular spectral class. The 

classification, process of assigning the classes to pixels, can be divided into super-

vised and unsupervised learning [20]. These two techniques depend on user guid-

ance.  

The unsupervised classification groups pixels with the common spectral characteris-

tics inherent in the image with no explicit instructions. Thus, unsupervised learning tries 

to automatically find the structure in data. This method can be used without having 

previous knowledge of the ground cover in the study site [21]. The popular example 

of unsupervised learning algorithms is K-means for clustering problems. On the other 

∆NBR Burnt Severity 

-0,500   –  -0,251 High post-fire regrowth 

-0,250   –  -0,101 Low post-fire regrowth 

-0,100   –   0,099 Unburnt 

 0,100   –    0,269 Low severity 

 0,270   –    0,439 Moderate–low severity 

 0,440   –    0,659 Moderate–high severity 

 0,660   –    1,300 High severity 
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hand, supervised learning requires a previously classified sample, i.e., the training da-

taset. The spectral information from the classified pixels is utilized for training the clas-

sification algorithms [21]. This learning is mainly useful in two areas, classification and 

regression problems.  

The algorithm can gradually improve based on the given training dataset. Once a 

model is trained, the algorithm can be applied to the entire image, and a final clas-

sification image is obtained [22].  

It is important to fully understand the theory of ML algorithm in order to select and 

use the model properly. Even though GEE provides 4 available supervised ML algo-

rithms [23], in this study only three supervised ML algorithms are selected based on 

the literature review.  

The following sections describe the CART, NB and RF supervised algorithms used in 

this study. The second section provides information regarding the accuracy assess-

ment theory applied in ML models. The last section embraces a variable importance 

analysis.  

 

2.4.1 Classification and regression tree  

Classification and Regression Tree (CART) is a model that can be widely used for re-

gression and classification predictive modelling problems. The CART predictive 

model helps to find a variable based on other labelled variables and the essential 

benefit of the algorithm are the capability of handling an extensive amount of pro-

cessed data, ability to capture the non-linearity in the dataset and handle the cate-

gorical and numerical features [24]. Moreover, this model can be visualized graph-

ically that enhances the classification model interoperability. 

The CART method builds regression or classification models in the form of a tree struc-

ture, which consists of nodes and leaf nodes. Each root node represents a single input 

variable and the leaf nodes of the tree contain an output variable used to make a 

prediction, e.g., fire (1) and no-fire (0). Thus, the binary tree representation of the 

CART model makes predictions relatively straightforward. 
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2.4.2 Random forest  

The previously mentioned CART algorithm provides a foundation for Random Forest 

(RF). The RF model consists of multiple single trees each based on a random sample 

of the training data which may lead to outperforming the CART model. The draw-

back of RF is that it is not interpretable as a single CART tree [25]. 

The RF model is employed to analyze the link between forest fire conditioning factors 

and the fire occurrence and subsequently used to predict the susceptibility of fires. 

This algorithm is commonly used for data prediction and suitable for non-linear mod-

elling of forest fire susceptibility [26]. The RF model also allows investigation of the var-

iable importance, which can be used for determining the most important variable 

from the training dataset [27]. The main benefits of the RF model are that the algo-

rithm avoids the overfitting problem if there are enough trees and can also handle 

missing values.  

The RF algorithm builds many classification trees during the training period and the 

final output of the model generation process is an average value of the classification 

results. This structure tree is shown in Figure 4. The purpose of building a decision tree 

is to generate a model that predicts the value of the objective variable depending 

on numerous independent input variables. 

 

Figure 4 - An example of the RF classification trees structure 
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2.4.3 Naïve Bayes  

Naive Bayes (NB) classifier is a popular algorithm in many powerful ML models. It is 

known as Naïve because it makes a naive assumption that the presence or absence 

of a particular element of a class is unrelated to the presence or absence of any 

other element [28]. This algorithm is founded on the Bayes Theorem presented in Fig-

ure 5 created by Thomas Bayes [29].   

 

 

  𝑃(𝐴|𝐵)  =  
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

 

Figure 5 – Bayes theorem 

 

In probability theory and statistics, the Bayes theorem is conditional probability where 

conditional probability is the probability that something will happen based on that 

something has already occurred. Thus, by using conditional probability, the proba-

bility that a fire event will occur given the knowledge of the prior fire event can be 

evaluated.  

 

2.5 Accuracy assessment theory  

Accuracy assessment gives a general understanding of how the model performs. ML 

models are prone to overfitting, so it is important to evaluate each ML model using 

appropriate cross-validation strategies. Thus, the results of selected ML models are 

validated based on the common accuracy assessment characteristics, such as con-

fusion matrix, overall accuracy and kappa statistics. These characteristics are pre-

sented in detail in the next paragraphs. 

P (A|B) = The probability of A being true given that B is true 

P (B|A) = The probability of B being true given that A is true 

P (A) = The probability of A being true 

P (B) = The probability of B being true 

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistics
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The confusion matrix is a summary of prediction results on a classification where the 

number of correct and incorrect predictions are summarized with count values and 

broken down by each class. There are four basic combinations of predictive and 

actual values which are explained in Figure 6. This is part of accuracy assessment 

which provides insight not only into the errors being made by a classifier but more 

importantly into the types of errors that are being made [30].  

 

 

 

 

 

Figure 6 - The confusion matrix 

 

Overall accuracy is defined as the percentage of correctly classified results in the 

confusion matrix. This can be simply computed as shown in equation (3) in percent-

age [31].   

                               𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(TP + TN)

(TP + TN + FN + FP)
 𝑥 100                        (3) 

 

Kappa statistic is one of the most commonly used statistics to test interrater reliability 

for categorical items. This means that it measures the agreement between more ob-

servers, where observers sometimes agree or disagree simply by a chance. The value 

of kappa statistic is between -1 and 1 and it can be interpreted according to Co-

hen’s kappa in Table 2. The value of 1 means perfect agreement and 0 value is a 

chance agreement, the most often the value is between 0 and 1. If the value is less 

than 0, there is worse than a chance agreement (disagreement), which highlights a 

brutally broken classifier [32].  

 

True Positive (TP) when a model predicts positive 

and it is true.  

True Negative (TN) when a model predicts negative 

and it is true. 

False Positive (FP) when a model predicts positive 

and it is false. 

False Negative (FN) when a model predicts predicted 

negative and it is false 
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Table 2 - Kappa value interpretation according to Cohen (1977) 

 

2.6 Variable importance analysis  

The model performance is the key role of the model, but it is just as important to un-

derstand how the features of the model contribute to the resulting predictions. ML as 

the ”black box model” can be interpreted and provide insight such as variable im-

portance analysis. This generally refers to how much a given model "uses" that varia-

ble to make its predictions. The variable importance is measured by the mean reduc-

tion in prediction accuracy [33].  

 

2.7 Technology  

In this work, state-of-the-art technology is employed and introduced in the following 

paragraph. 

Google Earth Engine  

The Google Earth Engine (GEE) is freely (non-commercial) accessible and available 

Google product launched in 2010 [34]. This dominant cloud computing platform is 

designed to store and process massive datasets for scientific analysis and ultimate 

decision making. Google aims to establish the world's information and make it world-

wide accessible and beneficial. GEE has also a commercial license program so it 

can be purchased for commercial purposes [35]. 

The predominance of the GEE platform is particularly in handling huge datasets at 

various scales and building automated programs that can be used at an operational 

level for many scientists. They use GEE’s datasets for forward-thinking in many areas, 

e.g., flood risk mapping, agriculture, wildfires disaster, Arctic mapping, forest moni-

toring, land-use change, etc. [36].    

Kappa Agreement 

        < 0 No agreement 

     0 - 0.20 Slight 

0.21 - 0.40 Fair 

0.41 - 0.60 Moderate 

0.61 - 0.80 Substantial 

0.81- 1.0 Perfect 

https://www.google.com/about/company/
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This Cloud Storage provides several petabytes of the world’s public satellite imagery 

mostly gathered by NASA’s Earth Observing Satellites, e.g. MODIS and Landsat, ESA’s 

Sentinel satellites and many other sources [37]. This cloud storage is available on this 

website https://earthengine.google.com/datasets/. The vector datasets showing 

demographic, weather, climate, and digital elevation models and other vector data 

are also included in these datasets [34]. Datasets can be imported to a scripting en-

vironment and users can upload own data for private use. Additionally, any GEE’s 

analysis can be downloaded for use by third-party tools. These datasets should help 

users to spend more of their time building products and services [35]. 

Running custom algorithms can be accessed via both the Earth Engine Python and 

JavaScript application programming interface (API). JavaScript, often abbreviated 

as JS, is a lightweight and object-oriented programming language. This language is 

well known for being widely used for web development, i.e., alongside HyperText 

Mark-up Language (HTML) and Cascading Style Sheets (CSS). The difference be-

tween Earth Engine Python and JavaScript application programming interface is 

mostly in defining functions, defining variables or capitalization of logical operators. 

The Python API provides a flexible programmatic interface via the Google Colabor-

atory platform using the Jupyter Notebook interface. This delivers a highly interactive 

experience without the burden of the local system setup due to a hosted service [35].

  

2.8 Study area 

The study area is the Australian mainland where the wildfires occurred over the 2019-

2020 fire season. The Australian mainland includes five states such as New South 

Wales, Queensland, South Australia, Victoria, Western Australia and major mainland 

territories, the Australian Capital Territory and the Northern Territory. The map showing 

the area of interest is presented in Figure 7. 

Australia is located between the Indian and Pacific oceans. This world's smallest con-

tinent with a heavily concentrated population along the eastern and south-eastern 

coasts has a wide variety of landscapes, ranging from snow-capped mountains to 

large deserts. The eastern part of Australia is one of the most fire-prone areas in the 

world [38].  

https://earthengine.google.com/datasets/
https://colab.sandbox.google.com/notebooks/welcome.ipynb
https://colab.sandbox.google.com/notebooks/welcome.ipynb
https://en.wikipedia.org/wiki/New_South_Wales
https://en.wikipedia.org/wiki/New_South_Wales
https://en.wikipedia.org/wiki/Queensland
https://en.wikipedia.org/wiki/South_Australia
https://en.wikipedia.org/wiki/Victoria_(Australia)
https://en.wikipedia.org/wiki/Western_Australia
https://en.wikipedia.org/wiki/Australian_Capital_Territory
https://en.wikipedia.org/wiki/Northern_Territory
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Several previously undertaken wildfire studies have not analyzed on a state level due 

to the lack of computing power or absence of datasets over the study areas. Due to 

the GEE cloud-based spatial processing platform and its multi-petabyte catalogue 

of satellite imagery it is possible to perform this comprehensive analysis.  

 

 

Figure 7 - The area of interest defined by the Australian mainland bounds 

  

2.9 Identify the period of the fire season 2019-2020  

Many sources are providing different time frames of fire season 2019-2020 and none 

official source can declare the start and the end date of the fire season. Thus, this 

section presents identifying the time frame of the recently occurred fire season, as 

the start and the end date of the fire season not specified officially. This time frame is 

used as an input for generating the training dataset needed for the ML algorithms. 

Input data for representing fire events are gathered from the FIRMS dataset (see 

more about the FIRMS dataset in chapter 3). The total daily number of fire locations 

across Australia during the 2019 year and partially 2020 year is shown in Figure 8. This 

graph reveals the significant growth from September 2019 which decreased almost 

to 0 in February 2019, precisely between 21st - 22nd February.   
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Figure 8 - Total number of fire locations over 2019 and partially for the 2020 year over 

the Australian mainland 

 

Official information is that Australian’s long-running wildfire seasons have been down-

graded after heavy rains but without a specific date. Therefore, the overview of the 

spatial distribution of accumulated monthly precipitation during January and Febru-

ary along with February fire spots across the entire area in Australia is presented in 

Figure 9.  This figure shows that spatial distribution of February precipitation occurred 

mainly in the north and east part of Australia. The great amount of rain has fallen at 

fire zones located in the south-east areas that led to stopping them in February. The 

February fire zones located in the south-west has received less precipitation, but 

more compared to January precipitation that could lead to stopping active wildfires.  

Thus, the time frame is established from 1st September 2019 to 22nd Feb 2020. Input 

data are gathered from the Climate Hazards Group InfraRed Precipitation with Sta-

tion (CHIRPS) dataset which tracks precipitation back to 1981 [39]. 
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Figure 9 - Spatial distribution of monthly precipitation (mm/month) in Australia during 

 January 2020 - February 2020 using the daily CHIRPS dataset 
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3. Exploratory data analysis   

This chapter presents the exploratory analysis on Australian fires in the 2019-2020 sea-

son and compares them with the wildfires from the previous years to outline the main 

characteristics. The employed datasets for exploratory data analysis include different 

satellite missions, e.g., VIIRS, MODIS, Sentinel-2. They collected data regularly across 

the globe. The source codes for generating the figures presented in this sub-chapter 

are included on the GitHub repository.   

To perform this analysis, the European Center for Medium-Range Weather Forecast 

Reanalysis (ERA5) dataset is used. This dataset is freely available and offers a detailed 

overview of the atmosphere. The dataset covers the Earth on a 30 km grid and the 

atmosphere is divided into 137 levels from the surface up to a height of 80 km. This 

advanced product was released by The European Center for Medium-Range 

Weather Forecasts (ECMWF) [40]. The ERA5 is part of GEE’s datasets consisting of air 

temperature band as a monthly average at 2 m height with availability from 1979 to 

present.  

Figure 10 presents the mean annual temperature across Australia from 1979 to 2019. 

As can be seen, the mean annual temperature during these 40 years was the highest 

in 2019. The difference between the lowest mean annual temperature measured in 

2000 and the highest measured in 2019 is approximately 1,8 °C. It is also important to 

note the highest mean temperature record was broken three times during the last 

two decades, in 2005, 2013 and 2019.  This suggests that Australia is becoming an 

increasingly warmer place which is most likely due to the global climate change. 

  

 

Figure 10 - Mean annual temperature in Australia since 1979 to 2019 

https://github.com/sulova/AustraliaFires
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For calculation of the total fire occurrence, the GEE’s FIRMS dataset is used. Fire In-

formation for Resource Management System (FIRMS) distributes satellite-derived near 

real-time data within 3 hours of satellite observation. FIRMS is part of NASA's Land, 

Atmosphere Near real-time Capability (LANCE) for EOS and provides both the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) with Terra and Aqua EOS and 

the Visible Infrared Imaging Radiometer Suite (VIIRS) data [41].  

The active fires shown in figures bellow are presented as pixels covering 1 km2 on the 

ground. Therefore, this pixel may contain one or more fire locations within a 500 m 

radius. Furthermore, the minimum detectable fire size depends on many variables, 

e.g. scan angle, land surface temperature, amount of smoke, etc. Generally, MODIS 

satellites can detect both flaming and smouldering fires in 1000 m2 size but under 

extremely clean observing conditions smaller flaming fires can be noticed (50 m2) 

[41]. Besides, the thermal anomalies, e.g., volcanoes, can be identified as active fires. 

The GEE’s FIRMS dataset includes the T21 band that shows the active fire locations, 

where the pixel value determinate the temperature of the surface [42]. This band is 

measured in Kelvin [41].  

Figure 11 presents the total number of fires in Australia each year from 2001 to 2019. 

The last year, 2019, compared to the previous 18 years does not present outstanding 

numbers. Both 2011 and 2012 stands for the worst years in terms of fire activity. Rec-

orded active fires in 2017 and 2018 had both approximately 200 000 fires more than 

in 2019.  

 

 

Figure 11 - Total number of pixels presenting active fire annually (1st January 2001 to 1st March 2020) 
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The detailed overview showing the fire activity over a year is required to uncover 

anomalies over months. Thus, Figure 12 shows active fires over a year from 2010 to 

March 2020 in Australia. The 2011 and 2012 years have a significant number of active 

fires compared to other years. However, the satellite-derived fire data reveals that 

the most active fires during December and January throughout the last decade hap-

pened in 2019 and 2020 respectively. MODIS recorded about 400,000 active fire indi-

cators over Australia between December 2019 and February 2020.  

 

  

Figure 12 - Total number of fire locations over a year for nearly one decade  

(1st January 2010 to 1st March 2020), 1km pixel contains one or more fire locations within a 500 m radius 

  

Plotting fire events on a map can present spatial distributions and patterns. Figure 13 

shows a spatial distribution map of active fire locations from January 2019 to February 

2020. The shown fire locations were remarkably occurring in the north and east coast 

of Australia while the south and west Australia were slightly fewer fire events. The in-

land territory was less affected than the coastal area.  
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Figure 13 - Distribution of fire events based on the FIRMS dataset from January 2019 to February 2020  
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4. Methodology 

The following chapter describes the methodology used for fulfilling the two objectives 

of this study, such as fire occurrence probability across Australia and identify the driv-

ing factors of wildfires. The entire structure is divided into three parts, such as data 

mining and pre-processing, classification and validation. This structure is presented in 

the flowchart in Figure 14 and intends to summarize the essential processes employed 

in this study. 

The first step of the flowchart is creating the training dataset consisting of the previ-

ously occurred wildfires (a dependent variable) and the fire main factors, namely 

topographic, meteorological, anthropological and vegetation factor (independent 

variables). Subsequently, this set is divided into data sub-sets, called a training and 

testing dataset. The training dataset is applied in the ML models to train the model 

and then the trained model is validated by the testing dataset. The best performance 

from the selected ML models is used for the spatial prediction of wildfire susceptibility. 

All processes are described in detail in the following sub-chapters. 

  

 

Figure 14 - The flowchart of processes employed in the study for generating the 

predictive model in GEE 
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The analysis was conducted in GEE cloud environmental analysis platform using Ja-

vaScript, as this enables the global-scale analysis to be completed more efficiently 

in regard to computing time cost compared to desktop computing. Additionally, sat-

ellite images do not need to be downloaded which leads to saving the processing 

time. The complete code can be obtained from the GitHub repository. 

 

4.1 Data mining and pre-processing   

The data mining and pre-processing part are important steps to generate the training 

dataset as an input for the ML models. The training dataset consists of independent 

variables also referred to as the predictors (land cover, temperature, etc.) and de-

pendent variables also known as the responding variables (fire, no-fire).  

Most of the ML algorithms use the training datasets created manually. In this study, 

the area of interest is at the continental level and the timeframe covers six months, 

thus leading to an overwhelming amount of data. Therefore, it is important to au-

tomize the process of generating the training dataset. This also brings a benefit to 

feed the selected models with more samples of training data to improve the models’ 

performances.  

 

4.1.1 Dependent variable 

The dependent variable in this study is fire and non-fire occurrence locations. Thus, 

mapping susceptibility of fire occurrence can be considered from the ML perspec-

tive as a binary classification problem with two classes: fire and no-fire. However, the 

dataset of recently occurred fire locations with high resolution is not available from 

the Australian official sources. Therefore, collecting fire and no-fire occurrence loca-

tions is developed in this study as an automated workflow presented in Figure 15. 

This automated workflow is applied to each month of the fire season (specified in 

section 2.9) as a consequence of changes in vegetation, which might bias the out-

put results. Additionally, the Australian mainland is split into 3 areas based on state 

boundaries due to the large size of the Australian mainland that leads to the compu-

tational limitation. The workflow is being executed in total 18 times (6 months x 3 

parts). 

https://github.com/sulova/AustraliaFires
https://www.powerthesaurus.org/as_a_consequence_of/synonyms
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The automated workflow uses two satellite missions, FIRMS and Sentinel-2, which are 

pre-processed in the interest of obtaining the fire occurrence locations. The FIRMS 

image collections aggregate active fire locations over the period of one month from 

the daily observations across Australia with a 1 km2 employed bounding box. Subse-

quently, the areas of FIRMS fire locations are vectorized.   

 

 

Figure 15 - The flowchart of fire occurrence locations applied in methodology 

 

The Sentinel-2 mission is employed in the second step due to its high spatial resolution. 

This mission produces cloud and cirrus masks created as a product of the atmos-

pheric correction. These masks are applied with the aim to provide cloudless images 

and avoid misleading results in the analyses of the surface. Subsequently, the Nor-

malized Difference Water Index (NDWI) calculated from the green (B3) and 
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shortwave-infrared bands (B11) is applied to remove the water areas from the anal-

ysis. Figure 16 shows a difference between the general image and cloud and water-

free image.  

 

Figure 16 - The non-cloud-masked composite (left), 

 The cloud and water-free masked composite (right) 

 

The next step is to compute dNBR, see chapter 2.3 for more information on dNBR. The 

pre-fire NBR is calculated from the time interval <6 days before the start of the month, 

start month> and post-fire NBR is calculated from the time interval <end month, 6 

days after month>. The dNBR calculation highlights the burnt areas and gets an initial 

assessment of burn severity.  

However, there is a dNBR obstruction referring to a change detection process. This 

means, the dNBR equation consists of deduction of the pre-fire NBR and the post-fire 

NBR, where changes in natural vegetation, e.g., deforestation, harvest, may be in-

cluded as well. In other words, non-fire-related changes can be detected as wildfire 

damage. Despite the short-implemented period (one month), there is set up a dNBR 

threshold value of 0,44, which classifies the moderate-high severity or high severity 

burnt area. The threshold is applied only within active fire vector areas from the FIRMS 

dataset. The aim is to eliminate the small natural vegetation changes and increase 

the computational power, as the calculation is performed inside the FIRMS fire vector 

areas. The combination of both features, burnt and fire areas, is applied for creating 

the balance as the burnt areas tend to underestimate the results while active fire 

data may overestimate the results. 

The selected burnt areas inside the fire location boundary boxes are vectorized and 

afterwards, the size of selected burnt areas is calculated. The area bigger than 
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0,25   km2 (500 m x 500 m raster) is selected for generating the random points. The 

minimum size criteria mean that the random points are located in selected larger 

areas as they represent a pixel which covers this particular area.  

The no-fire point selection is performed using a random point function where points 

are randomly placed outside of the FIRMS vector areas.  

Figure 17 presents an example of one wildfire that occurred in September 2019 close 

to the West Coast of Australia. This figure presents the step-by-step results from the 

previously described processing.  

 

 

 

 

  

 

Figure 17 - An example of one wildfire used to illustrate the results from processes of burnt 

area selection. a) dNBR, b) dNBR with FIRMS vector fire area, c) dNBR with FIRM fire vector area and 

threshold areas d) dNBR with FIRMS vector fire area and threshold areas and selected areas bigger 

than 0,25 km2 



36 

 

 

The random point function used in the processing places randomly generates 300 

fire points and 300 no-fire points for each selected part (3) for each month (6), which 

results into 18 CSV files consisting of 600 points per each file. These CSV files are 

merged into the final file using the JavaScript code stored in the GitHub repository. 

Each fire and no-fire record in the final file has the “Fire” property name and stored 

value in the integer type where 1 represents a fire occurrence and 0 presents a no-

fire occurrence.  

 

4.1.2 Independent Variables  

Selecting independent variables, which are also known as predictors or conditioning 

factors, is a critical step in predictive modelling. For this study, 15 conditioning factors 

are selected based on both the field observation found in different studies and avail-

able satellite data on the GEE platform. These applied wildfire conditioning factors 

can be divided into five categories, such as topography, vegetation type, infrastruc-

ture, meteorology and socio-economic factors. Table 3 summarizes each of the da-

tasets used in this study. 

Topographic category (Figure 18) consists of elevation, slope and aspect. The eleva-

tion is obtained from the digital elevation model (DEM) with 30 m spatial resolution. 

The model is generated from the dataset gathered from the Shuttle Radar Topogra-

phy Mission (SRTM) provided by NASA.  The slope or the gradient of the land ex-

pressed as an angle and aspect, also known as the direction in which the slope 

faces, are derived from DEM. 

  

https://github.com/sulova/AustraliaFires
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Table 3 - The list and description of variable datasets included in the study 

  

Category Data Layers Source of Data Data Type Spatial Resolution 

Topography 

Elevation 
Digital  

Elevation Data 

SRTM  

Raster 

30 m 

Slope 30 m 

Aspect 30 m 

Environment 

Soil Depth CSIRO SLGA  Raster 
3 arc seconds  

≈ 90 m 

Soil Moisture Terra Climate  Raster 
0.25 arc deg 

 ≈ 4 km 

Land Cover 
Copernicus 

CGLS-LC100  

Raster 100 m 

NDVI MODIS NDVI  Raster 250 m 

Drought  

Severity Index 
Terra Climate   Raster 

2.5 arc minutes  

≈ 4 km 

Climate 

Precipitation Terra Climate  Raster 
2.5 arc minutes  

≈ 4 km 

Maximum 

Temperature 
Terra Climate  Raster 

2.5 arc minutes 

 ≈ 4 km 

Wind Power Terra Climate  Raster 
2.5 arc minutes  

≈ 4 km 

Socio - 

Economic 

Human Population  

Distributions 

World  

Population 
Raster 

3 arc second  

≈ 85 m 

Global Human 

Modification 
CSP gHM5  Raster 1 km 

Electric Line OSM  Vector 500 m 

Road Network OSM  Vector 500 m 

https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/CSIRO_SLGA
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop
https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop
https://developers.google.com/earth-engine/datasets/catalog/CSP_HM_GlobalHumanModification
https://wiki.openstreetmap.org/wiki/Downloading_data
https://wiki.openstreetmap.org/wiki/Downloading_data
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Figure 18 - Topographical factors: elevation, aspect and slope 

 

Environmental category (Figure 19) includes the land cover, soil depth, the soil mois-

ture, the drought severity index and the Normalized Difference Vegetation Index 

(NDVI). The Copernicus Global Land Service (CGLS) provides the evaluation of land 

cover at 100 m spatial resolution for the 2015 reference year. The land cover grid has 

the discrete classes shown in Appendix A. The soil depth gathered from the compre-

hensive Soil and Landscape Grid of Australia dataset describes the spatial distribution 

of the soil dept. The soil moisture raster and drought severity index are obtained from 

the Terra Climate 2019 dataset.  
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Figure 19 - Environmental factors: land cover (the legend is in Appendix), soil depth, soil moisture,  

drought severity index and NDVI 

 

These rasters are generated from the image collection obtained from September 

2019 to December 2019, where the mean statistic function is implemented (Figure 

20). This function takes the mean value of a given pixel over the period. Ideally, the 

final rasters of both variables should be calculated for the entire fire season; however, 

the Terra Climate is available only for the 2019 year. The MOD13Q1 product directly 

provides the vegetation layer, i.e., NDVI, with the 250 m spatial resolution. The NDVI 

image is generated from the image collection collected during the entire fire season 

using the mean statistic function value. 
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Figure 20 - The example of an image obtained based on statistic function over image collection 

 

Climate category (Figure 21) includes precipitation accumulation, maximum tem-

perature and wind speed. These variables are gathered from the Terra Climate da-

taset and are processed in the same manner as the previously used data from this 

dataset; e.g., the drought severity index.  

 

 

Figure 21 - Climate factors: precipitation, maximum temperature and wind speed 

 

Statistic Function 

(Mean, Min, Max,…)) 
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Socio-economic category (Figure 22) includes the Global Human Modification 

(GHM), population, electric lines and distance from roads.  The GHM dataset delivers 

a cumulative measure of human modification of terrestrial lands over the globe with 

1 km spatial resolution. The GHM values vary from 0 to 1 and are associated with a 

given type of human modification also known as a stressor. The major anthropogenic 

stressors are included, e.g., human settlement, transportation, mining and energy 

production. The population from the WorldPop dataset estimated number of people 

residing in ≈ 85 m grid cells. The vector data, the electric lines and road network, are 

obtained from the Open Street Map (OSM) and loaded into the GEE platform. Data 

are converted to the raster format with 500 m resolution where for the road distance 

the GEE’ cumulative coast function is applied.  

 

 

Figure 22 - Socio-economic factors: GHM, population, electric lines and distance from roads
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4.2 Classification 

When the fire and no-fire training points are created and conditional factors pre-

processed, the next step is to create the training dataset which is enriched by pre-

dictor values. Firstly, the 15 independent variables are merged to create a composite 

image with 15 bands (Figure 23).  

 

 

Figure 23 - Merging all predictor variables into the final image (JavaScript GEE script) 

 

Afterwards, the sampleRegions function is applied to get the value of predictors into 

the table and generate training samples as shown in Figure 24. Thus, the fire and no 

fire- points are overlayed by the composite image to get predictor variables along 

with labels. A nominal scale for sampling is 100 m.  

 

 

Figure 24 - Creating the training sample 

 

Once the training set is created, the next step is to examine the classifications. The 

performance of each classification model will be described in the Results chapter. 

These supervised pixel-based classifications rely heavily on the input training samples. 

The example of applying the ML supervised classification using JavaScript is pre-

sented in Figure 25.  
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Figure 25 - ML supervised classification, namely RF, applied in the GEE interface 

 

Additionally, the GEE classifiers have still a limitation to analyse the variable im-

portance. Even though this study compares three ML algorithms, only one model, 

precisely RF can observe the link between fire conditioning factors and the fire oc-

currence, i.e., variable importance. Moreover, the only RF classifier in GEE provides 

the probability function as shown in Figure 26.  

 

 

Figure 26 - The probability function in GEE for mapping of fire probability. 

  

4.3 Validation 

The trained ML models can predict the fire location; however, it is important to eval-

uate the performance of these models. For this reason, the accuracy assessment is 

conducted.  

The sample dataset of fire and no-fire location is divided into training and test da-

tasets for model validation. This is conducted by applying the randomColumn func-

tion which adds a column to the sample dataset and values into a column by de-

fault. The points are split with ratio 70:30 meaning that 70 % is used as a training da-

taset and 30 % as testing dataset. The accuracy assessment is applied to the testing 

dataset which assesses accuracy based on the confusion matrix. From the confusion 

matrix, the overall accuracy and the kappa are derived, as can be seen in Figure 27. 

All results of the validation are presented in the Results chapter. 
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Figure 27 - Accuracy assessment 
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5. Results 

This chapter summarizes the findings of this study based on the applied methodology. 

The first section provides the results of the fire occurrence locations gathered from 

the Sentinel-2 and FIRMS missions. The second part of this chapter reveals the 

achieved results from the different ML algorithms, where employed prediction varia-

bles are gathered from the Earth observation, except for the roads and electric net-

work data. The result of ML algorithms, the fire probability map, is presented in the 

third sub-chapter of this chapter. Finally, the last sub-chapter provides the results of 

the variable importance analysis where results are derived from the ML algorithm. 

 

5.1 Fire occurrence location 

The fire occurrence points represent a location of individual fires that occurred during 

the fire season 2019-2020, precisely defined in chapter 2.9. The flowchart presented 

in Figure 15 in chapter 4.1.1 identifies the fire locations with 10 m accuracy automat-

ically for the ML algorithms. The results show the distribution of fire and no-fire points 

locations and they are presented in Figure 28. All these locations are a part of the 

sample training dataset, comprising of 10 800 training points across the Australian 

mainland.  

 

 

Figure 28 - The distribution of fire and no-fire points from the automated process 

 

The fire location is being visually verified by active fire alerts calculated from the Sen-

tinel-2 data. Figure 29 presents an example of the verification of fire-points. Firstly, the 
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pre-fire and post-fire area is visualized in the RGB image. The monthly active fire alerts 

are calculated using B5 and B12 bands and verify fire-points inside the area where 

the Sentinel-2 fire alert is located.   

 

 

Figure 29 - An example of wildfire in pre-fire and post-fire RGB imagery and monthly active fire from 

the Sentinel-2 mission for visual verification of fire points. 

 

5.2 Accuracy assessment of ML algorithms 

The performance of each classification model is examined in this sub-chapter. The 

widely used accuracy assessment method is used to evaluate the performance of 

the ML models. This is calculated on the GEE platform using the characteristics spec-

ified in chapter 2.5.  

The accuracy assessment is calculated based on the independent testing datasets 

gathered from the sample dataset. This sample dataset is split in the 70:30 ratio, 

meaning the 70% of the dataset is used for training the model and 30% is applied for 

testing. Thus, the selected pixel-based supervised ML algorithms, namely, RF, CART 

and NB, are trained using a 70% training dataset representing 3250 test samples. The 

samples contain 1633 fire class and 1617 no-fire class. Table 4 captures the results of 

ML models’ accuracy. The best overall accuracy is shown by the RF model (96%) 

https://www.sciencedirect.com/topics/computer-science/machine-learning-algorithm
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while the lowest performance is represented by the NB model (64%). The CART results 

(93%) are not as accurate as of the RF results but they show better performance than 

the NB model.  

The confusion matrix reveals that these 3 algorithms generally predict well for the no-

fire class compared to the prediction of the fire class. The RF model classified cor-

rectly the 1593 fire testing samples of 1633 which means that only 40 fire testing sam-

ples were predicted incorrectly. The 1540 no-fire samples were predicted properly 

and only 77 were classified inaccurately.   

The NB and CART models cannot handle the classification with missing values. This 

might occur when processing different predictive factors represented in raster for-

mat. These rasters might have a few missing cells representing the absence of data. 

Therefore, the number of testing samples is less in CART and NB although the input 

testing dataset is the same as for the RF model.   

 

 

 

 
 

Confusion Matrix 
Overall 

Accuracy 
Kappa 

 
Predicted 
No-Fire 

Predicted 
Fire 

∑ 

Naive  
Bayes 

Actual  
No - Fire 

524 1087 1611 

64% 27% 
Actual Fire 75 1515 1590 

∑ 599 2602 3201 

CART (300) 

Actual  
No - Fire 

1494 117 1611 

93% 88% 
Actual Fire 77 1513 1590 

∑ 1571 1630 3201 

Random  
Forest (300) 

Actual  
No - Fire 

1540 77 1617 

96% 93% 
Actual Fire 40 1593 1633 

∑ 1580 1670 3250 

       
Table 4 - Overall statistics of the accuracy assessment results of ML algorithms 
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The accuracy assessment script with the RF and CART algorithms was executed mul-

tiple times to find the proper number of the maximum trees for the RF model and 

maximum leaf nodes for the CART model. This is an essential step as these numbers 

have a direct impact on the accuracy of the model. Additionally, it can also reveal 

how many leaf nodes it is important to implement when two classes are classified.  

As seen below in Figure 30, the accuracy of the CART model increases with the num-

ber of leaf nodes until the number of 300 leaf nodes is reached. From more than 300 

leaf nodes, the accuracy of the model is almost constant. The results of the RF model 

shown in Figure 31 reveals that with the increasing number of trees, the accuracy is 

increased as well. Thus, the optimal number of trees applied in the RF model in this 

study is 300 trees.  

 

 

Figure 30 - The accuracy of CART models with a different number of leaf nodes applied 

 

 

Figure 31 - The accuracy of RD models with a different number of trees applied 
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5.3 Importance of conditioning factors 

The RF model achieves higher accuracy in comparison with other ML models such as 

NB and CART. Therefore, it is chosen to be the most appropriate and suitable ML 

model for wildfires prediction. This model enables a quantitative measurement of 

each variable’s contribution to the classification output, which is useful in evaluating 

the importance of each variable. The variable importance was calculated based on 

the training dataset. 

Figure 32 presents the most important conditioning factors of the wildfires in the 2019-

2020 season using the RF model. The most important variables considered as ‘key 

drivers’ are the soil moisture and temperature along with drought. The lowest im-

portant factors are aspect, land cover and the electric network.  

 

Figure 32 - The variable importance analysis based on the RF model 
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5.4 Predictive model  

Predictive modelling is the overall concept of building an ML model that is capable 

of making predictions. In this study, the RF model and the training dataset present 

the wildfires in Australia during the 2019-2020 season. The probability map is shown in 

Figure 33 where a low value presented by the green colour is an area with the least 

probability of forest fire occurrence, while the very high value presented by the red 

colour depicts areas with the highest probability of forest fire susceptibility. The fire risk 

classes shown in Figure 34 are divided into five classes.  

These maps reveal a high risk of fire occurrence concentrated in the coastal area 

and mainly in the south-west areas in Australia. They also display fire-prone zones dis-

tributed throughout the northern coastal regions.  

 

 

Figure 33 - The fire susceptibility map using the RF model 
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Figure 34 - The fire susceptibility map with classes using the RF model 
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6. Discussion 

The discussion chapter presents findings on the conducted study and evaluates the 

potential strengths and weaknesses of the implemented methods.  

This study is focused firstly on a deep understanding of how the fire occurrence da-

taset can be obtained in order to be used for the ML algorithms and predict the fire 

occurrence probability. Many studies used 1 km FIRMS datasets gathered from the 

Earth observation and showing the active fires. However, this approach of mapping 

the fire occurrence provides false detections, and the spatial resolution can be also 

enhanced.  

Thus, this study introduces an innovative and automated approach for gathering the 

samples of fire occurrence locations across the Australian mainland with 10 m spatial 

precision. The active fire FIRMS locations with 1 km resolution are used as the area of 

interest where dNBR can be calculated using the Sentinel-2 satellite data. This im-

proves the spatial resolution of the FIRMS active fire locations as Sentinel-2 provides 

10 m spatial resolution and reduces the computational time due to chosen FIRMS 

areas where the dNBR is calculated. Moreover, using these two datasets can de-

crease the number of false detections of active fires as the dNBR can reveal the burn 

severity areas.  

A limitation of this workflow is circumvented by short time frames, not bigger than 1 

month because it can bring the biased results as the burnt severity areas would be 

influenced by the natural vegetation changes.  

Additionally, this workflow as a JavaScript code can be executed on the GEE cloud-

based platform, which makes easy access for a potential user. Additionally, the user 

can modify a custom period (start and end date of the fire season) and add the 

study area in the vector format or create a spatial boundary defined as a polygon 

through the drawing tool in GEE. The CSV output of the training dataset is exported 

to Google Drive and it can be imported into the ML code for further calculations. 

The second aim of this study is an attempt to compare different ML approaches 

where the best model performance is used to map the fire occurrence probability. 

The three ML algorithms were applied and validated by the testing dataset. The re-

sults depicted that the RF model has the best performance while the worse perfor-

mance showed in the NB model.   
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The number of trees in the RF model was tested in order to increase accuracy. It turns 

out that the model with 300 trees can achieve the best performance. However, this 

number of trees in the model might increase when more predictive variables would 

be implemented into the current model. Generally, the ML algorithms in GEE can be 

processed without identifying the numbers of trees of leaf nodes for the CART model 

due to the implemented default values. 

One advantage of RF is its capability of handling categorical variables, such as soil 

moisture, NDVI, precipitation, etc.. This leads to analyse the variable importance of 

the 15 variables to show the contribution of each variable. The results show, that the 

most important fire driver factor in wildfire modelling is soil moisture. The second most 

important was temperature and then drought, GHM and elevation. The variable 

which was ranked lowest on the variable importance plot was the electric network. 

The predictive performance of the RF models implemented in the present study is 

suitable as the confusion matrix showed only 117 samples of 3250 were detected 

incorrectly.  Therefore, this model was used to show the susceptibility map displaying 

the spatial probability of an area to burn. In other words, the map shows the proba-

bility for each pixel to burn under the assumptions which are based on conditioning 

variables and are therefore specific to it. Nonetheless, the wildfires are structurally 

complex and vary widely in their physical attributes. Thus, the integration of other key 

factors might increase the complexity model and increase accuracy. The ad-

vantage of this model is that it can incorporate different causal factors readily. 

It is always essential to validate the stability of ML models. This study used the most 

common validation, the train/test split technique. This approach brings the benefit 

that the model responds to previously unseen data can be seen. Moreover, the test-

ing sample was produced via random numbers, which should mitigate the risk of 

sampling bias.   

This development presents the great opportunities of GEE platforms used for the re-

search due to the free availability of datasets and processing the algorithms in the 

cloud environment. For these reasons, there is no need to download, store, process 

and analyze the great amount of data on a local computer, however, the internet 

connection is required. Thus, the entire scope of the study, from generating a training 

dataset and pre-processing satellite data and trained ML model was conducted in 
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the powerful GEE cloud-based tool across the massive area of interest. This analysis 

with spacious datasets would not be possible to undertake on a local computer.  

On the other hand, there are also limitations such as exporting the raster data with a 

good resolution across entire Australia, even when the area was split into multiple 

grid areas. Also, this platform is ultimately not optimal due to the lack of access to 

statistics regarding the classification. Even though the numerous satellite missions are 

presented in the GEE library, most of them provide data for America or Europe. It 

would be better to use more conditioning variables referring to the wildfires by ap-

plying different satellite missions that cover Australia.  

This study combines remote sensing, big data, and data mining algorithms and ma-

chine learning models to handle data collected from satellite images over large ar-

eas and retrieve insights from them to predict the occurrence of wildfires. This was 

conducted to avoid similar disasters by better planning of infrastructure in disaster-

prone areas. The current decision support systems can use this predictive model with 

the input variables substituted with daily information from the earth observations. An 

accurate knowledge of the spatial distribution of fire-prone areas can be essential 

for forest fire risk management. 
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7. Conclusion 

In this chapter, the proposed research questions are answered.  

 

1 Research question: What are the main characteristics of the last decade’s 

Australian wildfires obvious from freely available satellite data? 

Among wildfire domains, it is important to illustrate the fire exploratory analysis. The 

analysis of Australian wildfires discloses that both 2011 and 2012 stands for the worst 

years in terms of fire activity from 2001 to 2019. However, the most active fires during 

December and January months from the last 10 years occurred in the 2019-2020 sea-

son. The satellite-derived fire data also reveal that approximately 200 000 fewer fires 

occurred in 2019 than in 2017 and 2018. 

Additionally, Australia is becoming a warmer place based on satellite data from the 

atmosphere dataset named ERA5, which is due to climate change. Thus, if no miti-

gation and preparedness actions are taken, Australia will witness more wildfires and 

more severe wildfires in the future. 

 

2  Research question: Which ML algorithm outperforms other existing models 

available in GEE for prediction of future fire occurrences? 

The study compares the chosen ML classifiers available in the GEE platform and rec-

ommended based on the literature review. The CART, NB, and RF models were ap-

plied and cross-compared. The accuracy assessment analysis using the independent 

testing dataset shown that the RF model reached the best performance. It had the 

highest overall accuracy (96%) along with the highest kappa statistics (93%). The 

other models performed with a lower overall accuracy, where the overall accuracy 

was 93% and 64% for CART and NB models, respectively.  

  

3 Research question: To what extent are the various causal factors associated 

with the fire locations? 

The best performing model, the RF model, allows the determination of variable im-

portance analysis. The results of variable importance analysis present that the most 

important variables are soil moisture, temperature and drought which is in line with 
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other studies where these factors play a major role as well. On the other hand, the 

lowest influence had the electric network. 

In this study, a data-driven model has been set up on the cloud with the massive 

datasets and accessible to everyone and executable by any dummy user. This would 

hardly be possible on a local machine. Furthermore, the application can be turned 

into a decision support system or warning system for alerting decision-makers and 

stakeholders in case of severe climatic conditions. 

  

7.1 Sustainable development goals  

These large-scale and more intense wildfires are becoming an increasing concern as 

in unfavourable meteorological conditions they are becoming more extreme. As a 

result, they endanger both human life and property but also release the harmful pol-

lutant particles and gases contributing to the global climate change. All these wild-

fire challenges are related to some of the sustainable development goals (SDGs). The 

SDGs adopted in 2015 aim to balance the economic, environmental and social 

needs [43]. 

The enhanced technology helps to achieve the SDGs in many ways. Thus, this study 

combined the remote sensing, big data, data mining algorithms and machine learn-

ing models to collect data from satellite images over large areas and retrieve insights 

from them to predict the incidence of wildfires. This can support to avoid similar dis-

asters by enhanced planning of infrastructure in fire-prone areas.  

This study supports sustainable development in three goals. Firstly, goal number 3 

Good health and well-being as wildfire smoke contributes to air pollution and irritates 

the human respiratory system. Secondly, goal number 13, namely Climate action, is 

considered due to the emitting carbon dioxide from wildfires along with other green-

house gasses which accelerate global warming. Lastly, the goal 15 presents Life on 

land which is referred to by a massive impact of wildfires on land which can lead to 

a short-term economic decline. 
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8. Future work 

There is remarkable potential to predict natural disasters based on machine learning 

models with enormous amounts of good quality datasets from remote sensing data. 

This study shows application on fire disaster occurrence using the GEE for the aca-

demic purpose, but the concept of prediction can be applied to different natural 

disasters. The prediction model might substitute the traditional methods which are 

used nowadays.  

There are still several parts that could be improved in the future. Machine learning 

models use the training dataset to learn how to recognize patterns and apply tech-

nologies. This study compared only three ML algorithms which are suitable in GEE, but 

it would be interesting to compare other models such as neural networks, where 

each neuron is represented as circles that are connected. This model can learn, cre-

ate complex relationships, and make accurate predictions when later presented 

with new data. 

Additionally, the model can be tuned by removing the lowest-ranked conditioning 

variables and see how the model would be influenced.  On the other hand, bringing 

more relevant condition factors might influence the model. Thus, testing influence by 

the new independent variable is also suggested as future work. 

The ML validation processes can be undertaken through different techniques. This 

study applied the most common train/test split approach. However, different valida-

tion techniques can be likewise applied and bring different assessments of the model 

effectiveness. Thus, the different validation approaches can be implemented in this 

study, such as the stratified k-fold cross-validation or holdout sets techniques. 

Last but not least, the trained RF model can be incorporated with more training sam-

ples but from the historic fire events and not just from the recently occurred wildfires. 

This might help to tune the model and improvement of its current accuracy.  
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10. Appendix  

A. Land Cover Description 

   

Value Colour Colour HEX Description 

0  282828 Unknown. 

20  FFBB22 Shrubs.  

30  FFFF4C Herbaceous vegetation. 

40  F096FF Cultivated and managed vegetation/agriculture.  

50  FA0000 Urban / built up. 

60  B4B4B4 Bare / sparse vegetation.  

70  F0F0F0 Snow and ice. 

80  0032C8 Permanent water bodies.  

90  0096A0 Herbaceous wetland.  

100  FAE6A0 Moss and lichen. 

111  58481F Closed forest, evergreen needle leaf.  

112  009900 Closed forest, evergreen broadleaf.  

113  70663E Closed forest, deciduous needle leaf. 

114  00CC00 Closed forest, deciduous broadleaf. 

115  4E751F Closed forest, mixed. 

116  007800 Closed forest, not matching any of the other definitions. 

121  666000 Open forest, evergreen needle leaf. 

122  8DB400 Open forest, evergreen broadleaf. 

123  8D7400 Open forest, deciduous needle leaf.  

124  A0DC00 Open forest, deciduous broadleaf. 

125  929900 Open forest, mixed. 

126  648C00 Open forest, not matching any of the other definitions. 

200  000080 Oceans, seas.  
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B. Random Forest Model 
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