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PREFACE v

“Young man, in mathematics you don’t understand things. You just get used to them.”

– John von Neumann, [[44], footnote page 208]
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1

Introduction

The general theory of stochastic processes has applications almost everywhere; while specific
observations can be considered as independent or sharing a weak dependence, it is more likely
to be the exception rather than the rule.

Temporal dependence creates an immediate problem, especially from an inferential or statistical
standpoint which is best explained by an example: Suppose we are an investor seeking to model
the behaviour of multiple assets. We choose a selection of seemingly unrelated assets, that is we
choose not to include stocks from companies within the same market. While it is unrealistic,
one may argue that over short periods, different assets are independent, but one can hardly
argue that there is temporal independence. Here lies the problem. Namely, each path can be
considered as the single realisation of an abstract random variable whose image is an appropriate
function space. Hence, when we wish to make inference or predictions, we have to include the
temporal dependence and previous observations.

Initially, one may welcome this problem as a blessing; clearly, more information is better, and
from a financial standpoint, one might even expect that additional information can help one
speculate. However, one will soon be faced with the computational curse of highly multivariate
data. To make matters worse, the rate at which financial data is arriving is increasing, and hence
one must decide on an action at an increasingly faster pace.

To make the computational burden even worse, many models today rely on an excessive number
of parameters. Models such as Recurrent Neural Networks are gaining momentum in the use
of finance, see, e.g., [17], based on their success in modelling difficult behaviour in other fields.
These models typically rely on an extremely high dimensional parameters space. While the
computational burden of evaluation is typically limited the optimisation of these models present
a problem in a high-frequency setting.

As a rule of thumb, economists have defined so-called stylised facts to which economic models
should adhere. Several models have been implemented to accommodate the so-called stylised
facts. Some models rely on discrete time steps and others continuous-time.

Only modelling the market at distinct times presents challenges. If one supposes regularly spaced
data with increasing frequency, then the natural extension to time-series are continuous-time
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stochastic processes. These models are robust to any frequency of data which is advantageous.
Furthermore, under weak assumptions, time-series may be identified in the so-called Skorokhod
space or space of cádlág functions. We will explore the Skorokhod Space and associated topologies
later in the thesis.

Philosophically, one could argue for time-series in finance by arguing that data is only recorded
once a bid or offer is placed. Alternatively, one may use the so-called tick -data arriving at
regular frequencies. However, this does not pose a problem for stochastic processes either. We
may define so-called canonical projections which are a collection of mappings that map a function
to its evaluation at specific points, hence typically an element of Rn for some natural number n.
The result is that one will end up with a multivariate distribution.

Copulas are a tool for modelling multivariate distributions. In particular, a multivariate
distribution function may be decomposed into its marginal distributions and a copula. Abe
Sklar, who initially claimed and later proved this decomposition, and his co-author Ben Schweizer
writes “The name was chosen to express the fact that a copula embodies the manner in which a
joint distribution function is coupled to its one-dimensional margins” in their book Probabilistic
Metric Spaces [[35], Section 6.2].

Copulas were initially a tool for solving problems related to the probabilistic metric spaces.
However, the immediate advantage of copulas was that since univariate distributions were well
studied, then the statistician could apply his or her knowledge of univariate distributions to
multivariate distributions via copulas. Furthermore, they allowed for the marginals to be chosen
independently, which allowed for more realistically modelling.

In most classical statistics, the general measure of dependence is correlation. Typical linear
correlation measures the linear dependence between model, but at times linear dependence is
not sufficient. An example of non-linear dependence is found in returns. Returns typically exhibit
little to no linear dependence, but the squared or absolute returns exhibit linear dependence.
Copulas are an alternative as to the linear dependence modelling, as they allow for highly non-
linear specifications.

While this indicates that copulas may solve many issues, they have also been met with criticism.
Gaussian copulas received criticism after the financial crisis in 2008. Some claimed that it was
partially to blame for the crisis since the Gaussian copula model was widely used but made
unrealistic assumptions. In particular, the model of Li, [19], received heavy criticism. Studies
were made to address the validity of the claim. David M. Zimmer found that the asymptotic
independence of extreme events present in the Gaussian copula was unrealistic and presented
alternatives [43]. Samuel Watts argued that it was not the particular copula, but rather the use
of copulas in the specific context which was flawed [41]. Furthermore, Thomas Mikosch in his
papers Copulas: Tales and Facts and Copulas: Tales and Facts - Rejoinder addresses several
issues with the use of copulas, some of which relate to temporal dependence [21],[22].

However, Schmitz showed that the temporal dependence of several stochastic processes could
be represented via copulas, [34]. He argued that some proofs of original and central theorems
in stochastic processes could be expressed in terms of the copulas and argues that these proofs
are simpler. He also derived the copulas of several classical stochastic processes such as the
Brownian motion, the Ornstein-Uhlenbeck Process, and the Brownian Bridge with the possibility
of extensions to continuous local martingales and semimartingales.
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Of course, in order to apply the results from Schmitz, we need an estimator for these copulas.
In order for the estimator to be useful, we must assert its consistency. We propose a method
using realised variance for estimating the conditional copula of time-changed Brownian motion
and investigates its asymptotic properties. Our method will rely on non-parametrical estimates
of the quadratic variation, and so they are computationally favourable. We show the rate of
convergence for such an estimator and limiting distribution in a simple case. We show that
numerical experiments indicate that the type of convergence may be stronger than what we
prove.

We also propose a semi-parametric forecasting procedure making use the aforementioned copula
to forecast the distribution of a semimartingale. The forecasting shows how one may incorporate
copulas temporally. We show how the forecasting procedure fares in a controlled environment
where we simulate data from the Heston model, [11].

The thesis is divided into several chapters. In Chapter 2, we define the preliminary theory to
prove our results.

In Chapter 3, we provide proof of the asymptotic properties of our proposed estimator. We show
that it is consistent and provide a limit theorem in a very restricted setting. Using numerical
analysis, we argue that the result may be enhanced.

In Chapter 4, we turn our focus to financial applications. Here we show a distributional
forecasting procedure for portfolios, and apply the conditional coverage test from Christoffersen,
[8], to test the validity.

In Chapter 5, we summarise the thesis. We discuss the results obtained, their applications, and
future research. We then conclude our findings.

Problem statement: How can we use realised variance to estimate the conditional copula
of a time-changed Brownian motion? How can temporal copulas be used in the assessment of
portfolio risk?
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2

Preliminary Theory

2.1 Notation

Notation

(E, dE) Metric or Polish space
B(E) The Borel σ-algebra on (E, dE)
(Ω,F ,P) Probability space(

Ω,F , (Ft)[0,∞) ,P
)

Filtered probability space
P→ Convergence in probability
a.s→ Almost sure convergence
u.c.p.⇒ Uniform convergence on compacts in probability
LS→ Stable convergence in law
LS⇒ Stable convergence in law for the Skorokhod topology
t, s Elements in [0,∞)
a ∨ b max(a, b), a, b ∈ R.
a ∧ b min(a, b), a, b ∈ R.
C(T ;E) Space of continuous functions from T to E.
D(T ;E) Space of cádlág functions from T to E.
Cd(T , E) Space of d-times continuously differentiable functions from T to E .
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2.2 Copulas

This section is based on [34], [7], and [24].

In classical multivariate probability, a typical approach is to assume the joint distribution of two
random variables is some specific distribution. That is, we assume (X,Y ) ∼ H where H is some
multivariate distribution. However, in assuming a joint distribution one typically assumes the
marginal distributions as well. A classic example is the multivariate Gaussian distribution which
is widely used.

Copulas provide a framework for overcoming the implicitly assumed marginals and allowing a
more flexible and modular approach to modelling multivariate distributions.

2.2.1 Construction

A large part of the construction relies on the Probability Integral Transform. Suppose that we
have a probability space (Ω,F ,P) and a random variable X : Ω → R. The law of X is the
probability measure on (R,B(R)) defined by

LX(B) = P(X ∈ B), B ∈ B(R).

SinceX is a F/B(R)-measurable function, we have that LX is a probability measure on (R,B(R)).
We can then define the cumulative distribution function

FX(x) = LX((−∞, x]), x ∈ R.

Furthermore, the function FX uniquely characterises LX .

Proposition 2.1 (Probability Integral Transform). Let (Ω,F ,P) be a probability space and
X : Ω → R a random variable. Then, if the cumulative distribution function FX is continuous
and strictly increasing we have

FX(X) ∼ Unif([0, 1])

Proof. It suffices to show that Y = FX(X) has a uniform law.

FY (y) = P(Y ≤ y)

= P(FX(X) ≤ y)

= P(X ≤ F−1
X (y))

= FX(F−1
X (y))

= y,

where the invertibility follows the fact that FX is continuous and strictly increasing. �

If FX is not continuous and strictly increasing, then the proposition cannot be recovered in
full. However, it does hold in a “weaker” sense. Before we can elaborate, we need the following
definition.
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Definition 2.1 (Quantile Function)
Let F : R→ [0, 1] be a cumulative distribution function. Define,

F−1(p) = inf{x ∈ R | F (x) ≥ p}, p ∈ [0, 1].

The function F−1 is called the generalised inverse or quantile function.

We have the following proposition

Proposition 2.2. Let (Ω,F ,P) be a probability space and let X : Ω → R be a random variable
with cumulative distribution function FX : R→ [0, 1]. Let U ∼ Unif([0, 1]), then

F−1
X (U) ∼ FX

Proof. Let Y = F−1
X (U) then

P(Y ≤ y) = P(F−1
X (U) ≤ y) = P(U ≤ FX(y)) = FX(y)

�

Proposition 2.2 tells us that while FX(X) does not necessarily follow a uniform law we have
F−1
X (U) follows FX . The implication is also convenient for sampling from a known distribution

function FX .

Now, suppose (X,Y ) ∼ H, where H is some bi-variate cumulative distribution function. Assume
for simplicity that the marginal distributions FX(x) = H(x,∞) and FY (y) = H(∞, y) are
continuous and strictly increasing.

Suppose we apply the marginal distributions to X and Y . By Proposition 2.1 we have that
U = FX(X) ∼ Unif([0, 1]) and similarly V = FY (Y ) ∼ Unif([0, 1]). However, what distribution
does the pair (U, V ) follow? It seems intuitive that what remains is only the dependence between
X and Y . Such a construct is called a copula.

Definition 2.2 (Copula)
Let C : [0, 1]d → [0, 1] be a function. If C a distribution function on [0, 1]d with uniform
marginals, then C is said to be a copula. Furthermore, we define

Cd = {C : [0, 1]d → [0, 1] | C is a copula}.

In order to ease notation significantly we introduce the following partial relation on Rd.
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Definition 2.3 (Partial Relation on Rd)
Let d ∈ N. For x = (x1, x2, . . . , xd) ∈ Rd and y = (y1, y2, . . . , yd) ∈ Rd we define the
following notation

x ≤ y if xi ≤ yi, ∀i ∈ {1, 2, . . . , d}.

Furthermore, for x, y ∈ Rd such that x ≤ y we define

(x, y] =
d×
i=1

(xi, yi].

[x, y] =
d×
i=1

[xi, yi].

We have the following characterisation of a copula.

Proposition 2.3. Let C : [0, 1]d → [0, 1] be a function. Then C is a copula if, and only if, it
satisfies

1 C(1, . . . , 1, x, 1 . . . , 1) = x for every x ∈ [0, 1].

2 C(x) = 0, where x = (x1, . . . xd) if there is at least one i ∈ {1, 2, . . . , d} such that xi = 0.

and finally, for all a, b ∈ [0, 1]d with a ≤ b we have
∑

x∈×d
i=1{ai,bi}

(−1)|{i∈{1,2,...,d}|xi=ai}|C(x) ≥ 0,

where |{i ∈ {1, 2, . . . , d} | xi = ai}| is the cardinality of the set {i ∈ {1, 2, . . . , d} | xi = ai}.

Remark: Note that x ∈ ×d
i=1{ai, bi} simply means that x iterates through all possible

configurations of boundary points of the set (a, b]. That is, xi is either ai or bi.

We will not prove Proposition 2.3. However, note that the first requirement corresponds to
C having uniform marginals. The second requirement is the so-called grounded property. It
corresponds to the event

P(U ≤ u, V ≤ 0) = C(u, 0) = 0, (U, V ) ∼ C,

which is intuitive since copulas are continuous distribution functions - we will later justify this
claim. Finally, the third condition guarantees that C “behaves” like a distribution; let µ be a
measure and let A ⊂ B belong to the underlying σ-algebra, then we have

µ(A) ≤ µ(B).

Let I = (a, b] and J = (a, c] where a, b, c ∈ [0, 1]d with a < b ≤ c. Since C is the distribution
of a random variable with uniform marginals it induces a unique probability measure, µ, on
([0, 1]d,B([0, 1]d) and we have

µ(I) = C(b)− C(a) ≤ C(c)− C(a) = µ(J).
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Conversely, given a probability measure µ on ([0, 1]d,B([0, 1]d)) and letting u ∈ {u ∈ [0, 1]d |
∃!i ∈ {1, 2, . . . , d} : ui 6= 1}, where ∃! is the unique existence quantifier, i.e. u is of the form
(1, 1, . . . , ui, . . . , 1, 1), if

µ((0, u]) = ui,

then µ induces a copula by defining

C(u) = µ((0, u]), ∀u ∈ [0, 1]d.

A well known example is the Lebesgue measure, λd, on ([0, 1]d,B([0, 1]d)), since

λd((0, u]) =
d∏

i=1

λ1((0, ui]) =
d∏

i=1

ui,

where λ1 is the Lebesgue measure on ([0, 1],B([0, 1])). λd corresponds to the so-called
independence copula, since it is just the product of the uniform marginals.

In order to further ease notation, we will use the following notation. If (Ω,F ,P) is a probability
space and X : Ω → Rd is a random variable, then the marginals follow Xi ∼ FXi for some
distribution FXi for all i ∈ {1, 2, . . . , d}. We then define

FX(x) = (FX1(x1), FX2(x2), . . . , FXd
(xd)), (2.1)

and we say that FX is the marginal distribution function of X. We say that FX is continuous if
all the marginals FXi are continuous.

We claimed that copulas were the remaining dependence between random variables after applying
each of their marginal distributions. The following theorem justifies that claim.

Theorem 2.1 (Sklar’s Theorem). Let (Ω,F ,P) be a probability space and X : Ω → Rd be a
random variable. Let X ∼ H where H is some distribution function with marginal distribution
function FX , in the sense of (2.1), then there exists a copula C such that

H(x) = C(FX(x)), ∀x ∈ Rd.

Furthermore, if FX is continuous the copula is unique, otherwise it is uniquely defined of the
range of FX . Conversely, if C is a d-dimensional copula and Fi, i ∈ {1, 2, . . . , d} are univariate
distribution functions then defining F (x) = (F1(x1), F2(x2), . . . , Fd(xd)) we have that C(F (x))

defines a distribution function on Rd.

The original theorem was presented in [37] and an excellent proof can be found in [10].

If the marginals are continuous then Theorem 2.1 follows immediately from the fact that FXi

are invertible on their image and we may then invert FX entry wise. Hence, for any distribution
take

C(u) = H(F−1
X (u)), u ∈ [0, 1]d. (2.2)

Many of the earliest studied copulas arose from (2.2). For instance, the Gaussian copula.
Let ΦΣ(x) denote the standardized multivariate Gaussian distribution with correlation matrix
Σ. Then clearly the marginals follow the standard univariate Gaussian distribution, Φ. The
Gaussian copula is then defined by
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CΦ((u1, u2, . . . , ud); Σ) = ΦΣ((Φ−1(u1),Φ−1(u2), . . . ,Φ−1(ud)), u ∈ [0, 1]d. (2.3)

By Theorem 2.1 we immediately have that we may construct a distribution with arbitrary
marginals but the dependence of a Gaussian distribution.

Now, in finance, we often wish to include as much information as possible. Hence, when some
information is revealed to us we wish to condition our random variable to this information.

In order to rigorously define these conditional laws we first define conditional expectations and
by extension conditional probabilities. However, for sufficiently “nice” image spaces conditional
probabilities admit a slightly more interpretable definition. Let (Ω,F ,P) be a probability space,
(S,Σ) a measurable space and X : Ω→ S a random variable. If S is sufficiently nice, then there
exist a function µX : S × F → [0, 1] such that for each x ∈ S it is a probability measure on
(Ω,F) and for each F ∈ F it is a Σ/B([0, 1]) measurable map. Furthermore, it satisfies

P(F ∩X−1(B)) =

∫

F
µX(x,A)dLX(x), ∀F ∈ F .

Typically, we denote µX(x,A) = P(A | X = x). Furthermore, we get that for each x ∈ S we can
define the conditional probability distribution function of another random variable Y : Ω → R
as FY |X(y | x) = P(Y ≤ y | X = x).

We now wish to relate conditional distributions to copulas. In a similar fashion to the original
Sklar’s Theorem we initially define for a random variable Xi : Ω→ R with i ∈ {1, 2, . . . , d} and
a random variable W

FXi|W (xi | w) = P(Xi ≤ xi |W = w),

where xi is in the image of Xi and similarly w is in the image of W . For X = (X1, X2, . . . , Xd)

we define

FX|W (x | w) = (FX1|W (x1 | w), FX2|W (x2 | w), . . . , FXd|W (x | w))

We say that FX|W is continuous in x if each FXi|W is continuous in xi.

Theorem 2.2 (Sklar’s Theoreom for Conditional Probabilities). Let (Ω,F ,P) we a probability
space and X = (X1, X2, . . . , Xd) and W be a random variables on Ω and assume the appropriate
regular conditional probabilities exist. Let HX|W (x | w) = P(X ≤ x | W = w). If FX|W is
continuous in x for every w, then for each w there exists a unique copula CX|W (· | w) such that

HX|W (x | w) = CX|W (FX|W (x | w) | w).

for every x in the domain of FX|W (· | w) and every w in the image of W . Conversely, if FX|W
is a marginal distribution function for each w in the image of W and CX|W is copula for each w
the image of W , then x 7→ CX|W (FX|W (x | w) | w) defines a distribution function for each w in
the image of W .

We refer to [26] for the proof. The general idea here is that copulas allow us to capture the
multivariate dependence, even conditionally. It follows fairly naturally that

CX(u) =

∫
CX|W (u | w)dLW (w), u ∈ [0, 1]d

where the domain of integration is the image of W . Conditional copulas may also be considered
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as “random” copulas. Of course, by our definition, a copula cannot be random. A conditional
copula is still a copula, or rather a family of copulas for each w in the domain of the random
variable W .

2.2.2 Properties

In this subsection we prove some properties for the space Cd. First note that the space
Cd ⊂ Lp([0, 1]d) for p ≥ 1, including p = ∞, since copulas are bounded by 1. However, they
satisfy even stronger properties.

Proposition 2.4. Let C ∈ Cd, then C is Lipschitz continuous.

See [[34], Corollary 2.8] for a proof.

The next results are related to the partial derivatives of a copula. To ease notation we will use
the multi-index notation. Let α ∈ Nd, and let f be a function. We then define

Dαf =
∂αf

∂α1x1∂α2x2 . . . ∂αdxd
.

Dα may be considered either as a purely mathematical expression defined only when the
expression makes sense or in terms of an operator. We merely need it to ease notation. We
provide a brief example: let α = (1, 0, 0) and f(x, y, z) = x2 + y2 + z2, then Dαf = 2x.
Furthermore, for functions defined in distinct variables we define

Dx =
∂

∂x
,

for instance if C(u, v) is a bi-variate copula, then

DuC(u, v) =
∂

∂u
C(u, v).

We now consider the significance of the partial derivatives. Suppose (U, V ) ∼ C for some copula
C ∈ C2. Then,

P(U ≤ u, V ≤ v) = C(u, v), u, v ∈ [0, 1].

Suppose we want the conditional probability of U given V , then

P(U ≤ u | V = v) = lim
ε→0

P(U ≤ u, v ≤ V ≤ v + ε) (2.4)

= lim
ε→0

C(u, v + ε)− C(u, v)

ε
(2.5)

= DvC(u, v), (2.6)

and by Rademacher’s theorem we know that (2.6) exists for almost all (u, v) ∈ (0, 1)2. The
implication of (2.6) is the following theorem.

Theorem 2.3. Let (X1, X2, . . . , Xn) where n ∈ N be continuous random variables with marginal
distribution functions Fi, i ∈ {1, 2, . . . , n}. Let C be the copula of (X1, X2, . . . , Xn), and let K be
the copula of (X1, X2, . . . Xk) where k < N . Then, if the marginals are continuously differentiable
and the copula K is absolutely differentiable and C is continuously differentiable with respect to
the k first entries, i.e. α =

∑k
i=1 ei, where (ei)

k
i=1 is the standard basis of Rk, and

10



DαC(u)

is continuous. Then,

DαC(F1(Xk), . . . , Fk(Xk), Fk+1(xk+1), . . . Fn(xn)

DαK(F1(X1), . . . , Fk(Xk)
∏k
i=1 F

′
i (Xi)

is a version of

P(Xk+1 ≤ xk+1, . . . , Xn ≤ xn | X1, . . . , Xk).

Corollary 2.1. Let (X,Y ) ∼ H where H is a continuous and differentiable bi-variate cumulative
distribution function with continuously differentiable marginals. Let C(u, v) be the copula of
(X,Y ), then

D(1,0)C(FX(X), FY (y))

is a version of

P(Y ≤ y | X).

for all y in the domain of FY .

We will not prove Theorem 2.3 or Corollary 2.1 but refer to [[34], pp. 21-22 Corollary 2.28] for a
proof. The analogous statement holds if one differentiates with respect to the second argument.

Corollary 2.1 has direct applications in sampling since it allow us to generate a sample of X by
first sampling U and applying Proposition 2.2. Then, we can obtain the conditional law using
Corollary 2.1 and again to sample V such that (U, V ) ∼ C and finally applying Proposition 2.2
to obtain Y from V . Similarly, we may use Theorem 2.3 to sample from high dimensional
distributions. It may also help us identify the copula; if we know the conditional distribution of
Y given X, and the marginals are continuous and strictly increasing, then we can recover the
copula by integration.

2.3 The Skorokhod Space

This section is based on [14], [13], [4].

We will first define the Skorokhod Space. We will not recover the theory in full, but refer to the
sources mentioned above, specifically [14] and [4] for extensive treatment.

We will later propose an estimator for the conditional copula of certain time-changed Brownian
motions at two distinct times. We want our estimator to not only converge point-wise for each
distinct pair of times but to converge uniformly over all pairs of time. In order to do so, we need
to develop tools for asserting uniform convergence in this sense.

We first define a Polish space.

Definition 2.4 (Polish Space)
Let (X, τ) be a topological space. If (X, τ) is separable and completely metrizable, we say
that (X, τ) is a Polish space.

11



Remark: For an introduction of the topological implications of a Polish Space we refer to
Appendix A.1.

Polish spaces are, in a sense, a class of well-behaved topological spaces. Namely, we can find
a complete metric which allows us to describe convergence. Furthermore, since Polish spaces
are separable, then we avoid many measurability issues since measures are countably additive
and exhibit algebraic properties under countably many set operations. A lot of fundamental
theorems of probability typically require a Polish structure in the image of random variables.

We will now present some function spaces, which are Polish. Our reason for doing so is that we are
interested in the convergence of an entire process and not only point-wise convergence. In order to
determine convergence, we will need a metric. Now, while our limit may be a continuous function
our approximations are typically not, therefore the space of continuous functions, C([0,∞),R),
is not sufficient.

Definition 2.5 (Cádlág and Skorokhod Space)
Let T be of the form [0, T ] for some T <∞ or [0,∞) and (E, dE) a metric space. A function
f : T → E is said to be cádlág if lims↑t f(s) = f(t−) exists for every t ∈ T and

lim
s↓t

f(s) = f(t), t ∈ T .

Furthermore, the space of cádlág function from T to E denoted D(T ;E) = {f : T → E |
f is cádlág} is called the Skorokhod Space.

We can think of cádlág functions as an extension of continuous functions which “jumps”, hence
why cádlág processes appear naturally in mathematical finance; sometimes the price-path of an
asset will jump as a result of unexpected news. This argument is only partially valid, as one may
define processes which consist only of jumps.

Having introduced the Skorokhod space, it remains to introduce the appropriate metric for which
it is Polish. At first glance, the metric may seem quite counter-intuitive. Therefore, we initially
consider the space of continuous functions.

2.3.1 The Space of Continuous Functions

In classical and functional analysis the space of continuous functions is well-known. Formally,
let (E, dE) and (E′, dE′) be metric spaces and K ⊆ E′ be compact. Now, define

C(K;E) = {f : K → E | f is continuous}.

We may endow C(K;E) with a the metric

d∞(f, g) = sup
t∈K

dE(f(t), g(t)).

We immediately have the following theorem.

Theorem 2.4. Let (E, dE) and (E′, dE′) be Polish metric spaces and K ⊂ E′ compact. Define

C(K;E) = {f : K → E | f is continuous},

12



and

d∞(f, g) = sup
t∈K

dE(f(t), g(t)).

then (C(K,E), d∞) is a Polish metric space.

Remark: Weaker assumptions can be placed on the domain. However, for our use Theorem 2.4
is sufficient. Namely, the domain K does not have to belong to any space, it just has to be a
compact metrizable space and E has to be Polish.

Theorem 2.4 is well-known and it tells us that C([0, T ];R) is Polish. However, many processes
are defined on the entire real line, or the positive real half-space, i.e. C([0,∞);R).

It turns out that if one naively tries to extend the metric of uniform convergence, d∞, then it
fails to be a metric. Since continuous functions on [0,∞) do not need to be bounded, we have
that the supremum metric is not a real metric; it may take infinite values which violates the fact
that a metric is a mapping to [0,∞). One can recover a metric on C([0,∞),R) from the metric
above, by taking an increasing sequence of compact sets and weighting them appropriately. We
cover this construction in Appendix A.2.

Many approximations are naturally cádlág, especially in the case of stochastic processes where
we may not know a priori if the process is continuous or not.

Example 2.1. Consider the identity function

Id : [0, 1]→ [0, 1]

t 7→ t.

We now construct an approximation of the identity using indicators. We define

fn(t) = 1{1}(t) +

n−1∑

i=1

i

n
1[ i

n
,
(i+1)

n

)(t).

Clearly we have that supt∈[0,1] |t − fn(t)| = 1
n , hence fn converges uniformly to Id which is

visualised in Figure 2.1.

�

The next question is, does D([0, T ];R) or D([0,∞);R) endowed with the topology of (local)
uniform convergence preserves the Polish structure? Sadly, the answer is no. Specifically,
D([0,∞),R) is completely metrizable under the topology of local uniform convergence, but it
lacks separability. However, Skorokhod, after whom the space is named, showed in his famous
paper from 1954 that D([0,∞),R) indeed is a Polish space with a topology induced by a metric
which resembles the metric of uniform convergence [38].

We conclude with two brief example where we visualize the open balls in D([0, T ];R) or
C([0, T ];R) under the topology of uniform convergence and highlight its issues in D([0, T ];R).

Example 2.2. Let ε > 0 and consider the ball

Bε(Id) = {f ∈ D([0, T ];R) | d(f, Id) ≤ ε)} (2.7)
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Figure 2.1: Approximation of Identity using Indicators

where Id is the identity function. Let ε = 1
5 and consider the functions

f(t) = t+
1

6
sin(6t)

g(t) = 1{1}(t) +

4∑

i=1

i

5
1[ i

5
,
(i+1)

5

)(t).

Clearly, both f, g ∈ Bε(Id); see Figure 2.2.

�

Example 2.2 shows that spheres in the topology of uniform convergence form a band of width
ε around their centre. For continuous functions, this space is connected. However, when the
function is cádlág the area becomes disconnected for small ε; consider Example 2.3.

Example 2.3. Consider the function

g(t) =

(
4

5
1[ 4

5
,1](t)

)
+

3∑

i=1

i

5
1[ i

5
,
(i+1)

5

)(t).

and recall the notation g(t−) = lims↑t g(s) and define

Dg = {t ∈ [0, 1] | g(t)− g(t−) 6= 0}.

Suppose we wish to approximate g using a continuous function. We know that

Dg =

{
1

5
,
2

5
,
3

5
,
4

5

}
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Figure 2.2: Element of C([0, 1];R) and D([0, 1];R) in Bε(Id).

Now, let ε > 0 be given. Note that while ε > 1
2 sups∈[0,1] |g(s) − g(s−)| then we can still

approximate g using continuous functions in the sense that there exists a continuous function
such that d∞(f, g) < ε. However, when ε ≤ 1

2 sups∈[0,1] |g(s)−g(s−)| then any function f ∈ Bε(g)

must satisfy

Dg ⊆ Df . (2.8)

We visualise in Figure 2.3, where (2.8) becomes clear.

ε = 2
10 ε = 1

10 ε = 1
20
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Figure 2.3: Approximation of g(t) using a straight line. It succeeds for ε ∈ ( 1
10 ,∞) but fails for

ε ∈ (0, 1
10 ].

�

We saw in Example 2.3 that for sufficiently small epsilon our approximation will have to
share at least the discontinuities of the approximant. It is a very strong requirement that the
discontinuities are preserved in approximation, especially if we are to approximate a process and
we do not observe it for all times; the exact moment the process jumps may be indeterminable.
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2.3.2 The Space of Cádlág Functions

We saw in Examples 2.2 and 2.3 that continuous functions may be approximated by cádlág
functions.

In the topology of uniform convergence, two function are in some way near each other if we can
make small changes in the image space such that the graphs of the functions coincide. For cádlág
functions, we need to extend this to the domain as well; consider the function fn(t) = 1[1+ 1

n
,∞)(t)

and the function f(t) = 1[1,∞)(t). For large n the two function seem close, however in the
topology of uniform convergence the fn does not approach f , since only the image is considered.

To deal with this issue we take a function λ : [0,∞) → [0,∞) which is strictly increasing and
invertible, i.e. injective and surjective, then we can think of λ as a change of time. We denote
this space of functions Λ([0,∞)). We present a small technical lemma.

Lemma 2.1. Let T ∈ {[0, T ] | 0 < T <∞} ∪ {[0,∞)} Let Λ(T ) be defined by

Λ(T ) = {λ : T → T | λ(s) < λ(t), s < t ∈ T , λ is invertible }.

The following are true for λ ∈ Λ(T ).

(1) λ is continuous with a continuous inverse λ−1 ∈ Λ(T ).

(2) λ2 ◦ λ1 ∈ Λ(T ) for λ1, λ2 ∈ Λ(T ).

(3) d∞(λ, Id) = d∞(λ−1, Id) for T = [0, T ] with T <∞.

(4) d∞(f ◦ λ, g) = d∞(f, g ◦ λ−1) for f, g ∈ D([0, T ];R).

Proof.

Claim (1): We know by surjectivity that λ(T ) = {λ(t) | t ∈ T } = T . Assume for contradiction
that λ is not continuous, then there exists t ∈ T and an ε > 0 such that no matter what δ > 0

there is an s ∈ T such that |λ(s)− λ(t)| ≥ ε, but since λ is strictly increasing and surjective we
arrive at a contradiction. Hence λ is continuous. Note that by assumption λ−1 is well-defined.
First, note that λ−1 is strictly increasing since

s < t ⇐⇒ λ(s) < λ(t),

applying λ−1 to both sides yields the desired result. Since λ−1 is strictly increasing and clearly
invertible - by the original λ - we conclude λ−1 ∈ Λ(T ). It follows by the arguments above that
λ−1 is also continuous.

Claim (2): Follows directly from

s < t ⇐⇒ λ1(s) < λ1(t)

s < t ⇐⇒ λ2(s) < λ2(s).

Resulting in

s < t ⇐⇒ λ1(s) < λ1(t) ⇐⇒ λ2(λ1(s)) < λ2(λ1(t)).
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Now clearly by injectivity and surjectivity of both λ1 and λ2 we have the map λ2◦λ1 is invertible
and strictly increasing. The result is that λ2 ◦ λ1 ∈ Λ(T ).

Claim (3): We must show that

sup
t∈[0,T ]

|λ(t)− t| = sup
t∈[0,T ]

|λ−1(t)− t|.

Note that λ(0) = λ−1(0) = 0 and similarly λ(T ) = λ−1(T ) = T . By surjectivity we have that

∀t′ ∈ [0, T ]∃t ∈ [0, T ] : t′ = λ(t), (2.9)

∀t′′ ∈ [0, T ]∃t ∈ [0, T ] : t′′ = λ−1(t). (2.10)

Furthermore, by Claim 1, we have that λ and λ−1 are continuous. Hence the mappings

t 7→ |λ(t)− t|
t 7→ |λ−1(t)− t|

are continuous. Now, by continuity we know that

∃t′ ∈ [0, T ] : |λ(t′)− t′| = sup
t∈[0,T ]

|λ(t)− t| (2.11)

∃t′′ ∈ [0, T ] : |λ−1(t′′)− t′′| = sup
t∈[0,T ]

|λ−1(t)− t|. (2.12)

Now let t′ be such that (2.11) holds. By (2.10) we now have

sup
t∈[0,T ]

|λ(t)− t| = |λ(t′)− t′|

= |λ(λ−1(t′′))− λ−1(t′′)|
= |λ−1(t′′)− t′′|
≤ sup

t∈[0,T ]
|λ−1(t)− t|

Similar arguments using (2.12) and (2.9) show that

sup
t∈[0,T ]

|λ(t)− t| ≥ sup
t∈[0,T ]

|λ−1(t)− t|.

It follows that supt∈[0,T ] |λ−1(t)− t| = supt∈[0,T ] |λ(t)− t|.

Claim (4): We must show that

sup
t∈[0,T ]

|f(λ(t))− g(t)| = sup
t∈[0,T ]

|f(t)− g(λ−1(t))|, f, g ∈ D([0, T ];R).

First, define

h(t) = f(λ(t))− g(t), t ∈ [0, T ]

Now, since the domain of h is [0, T ] we have that h(λ−1(t)) is well-defined for each t. Similarly
to the argument in Claim 2 we have that

∀t′ ∈ [0, T ]∃t ∈ [0, T ] : h(t′) = h(λ−1(t)).

Hence,
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Figure 2.4: Visualising the shared value of the supremum between time-changes in Λ([0, 1]).

sup
t∈[0,T ]

|h(t)| = sup
t∈[0,T ]

|h(λ−1(t))|,

but we have

|h(λ−1(t))| = |f(t)− g(λ(t))|,

which proves the claim. �

The claims in Lemma 2.1 feel quite natural since they correspond to shifting the surface in an
invertible way. The arguments can be extended visually to some extend. We provide a brief
example.

Example 2.4. Consider Λ([0, 1]) and the functions

λ(x) = x2

λ−1(x) =
√
x.

The property (3) of Lemma 2.1 is visualised in Figure 2.4. The intuition here is that λ and its
inverse are both equally far away from the identity.

Next, we consider the following functions

f(x) = sin(12x) + x

g(x) = 1[1/2,1](x).

We visualise property (4) of Lemma 2.1 in Figure 2.5. The intuition of property (4) is that we
may either time change f to fit g or time change g to fit f with the inverse time change.

�

Using the space Λ([0,∞)) we can make small deformations in time which will essentially
allow us to align the discontinuities so that the metric of uniform convergence is “usable”
again. Recall Example 2.3 where we encountered that the metric of uniform convergence would
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Figure 2.5: Visualising d∞(f ◦ λ, g) = d∞(f, g ◦ λ−1).

eventually require our approximation to share at least the discontinuities of the function we
are approximating. By deforming time slightly, we can align the discontinuities even if they do
not happen at the same time. However, we are not interested in deforming time in the limit.
Therefore, we wish to find a sequence of time changes such that

fn ◦ λn → f

uniformly in t and

λn → Id

uniformly in t. Now, initially we consider the space D([0, T ];E). We have the following lemma:

Lemma 2.2. Let (E, dE) be a Polish space. The space D([0, T ];E) can be endowed with a metric

dS(f, g) = inf
λ∈Λ([0,T ])

{d∞(λ, Id) ∨ d∞(f, g ◦ λ)}.

Proof. Clearly, dS ≥ 0 and f = g clearly implies dS(f, g) = 0. To show the converse, let for
that f, g ∈ D([0, T ],R) and dS(f, g) = 0. In this case note that we must then have d∞(λ, Id) = 0

and d∞(f, g ◦ λ) = d∞(f, g) = 0. By the norm properties of d∞ we have that f = g.

To see why dS(x, y) = dS(y, x) first note that λ is invertible with λ−1 ∈ Λ([0, T ]) by Lemma 2.1.
Then take d∞(f, g ◦ λ) = d∞(f ◦ λ−1, g), intuitively this happens since we can either time
change g to fit f or time change f to fit g with the reverse time change. Clearly d∞(f ◦ λ, g) =

d∞(f, g ◦ λ−1) = d∞(g ◦ λ−1, f) and similarly d∞(λ, Id) = d∞(Id, λ−1) = d∞(λ−1, Id). It follows
that dS(f, g) = dS(g, f).

We remain to show the triangle inequality, i.e.

dS(f, g) ≤ dS(f, h) + dS(h, g).

To this end, observe that if λ1 ∈ Λ([0, T ]) and λ2 ∈ Λ([0, T ]), then λ2 ◦ λ1 ∈ Λ([0, T ]).

Furthermore, we have

d∞(λ2 ◦ λ1, Id) ≤ d∞(λ1, Id) + d∞(λ2, Id),
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since

d∞(λ2 ◦ λ1, Id) = d∞(λ2, λ
−1
1 )

≤ d∞(λ2, Id) + d∞(Id, λ−1
1 )

= d∞(λ2, Id) + d∞(λ1, Id)

and similarly we have

d∞(x, y ◦ λ2 ◦ λ1) ≤ d∞(x, z ◦ λ1) + d∞(z, y ◦ λ2),

from which the triangle inequality follows. �

Let us interpret the metric dS . First, let x and y be cádlág functions. Then,

dS(x, y) = inf
λ∈Λ([0,T ]

{d∞(λ, Id) ∨ d∞(x, y ◦ λ)}.

The term

d∞(λ, Id), (2.13)

describes the deformation of time. The second term

d∞(x, y ◦ λ) (2.14)

describes the largest difference between our functions under a time change. Finally, we choose
the time-change that makes the maximum of Equations 2.13 and 2.14 as small as possible.

One can show that dS induces a separable topological space, but it is not complete. So why
introduce it? Well, it turns out that D([0, T ];R) may be endowed with a metric which is
equivalent to the metric dS for which D([0, T ];R) is a Polish metric space.

The reader may ask, why not just complete dS? A typical approach to simply “add” the Cauchy
sequences that do not converge in (D([0, T ];R), dS) and obtain an extension (D([0, T ];R), dS),
similar to how C([0, T ];R) can be completed using the Lp metrics to obtain the Lp spaces.
The difference here is that, we are interested in preserving cádlág properties of the elements of
D([0, T ];R) and such an extension may not preserve the property.

We now return to the question at hand. Consider

‖λ‖◦ = sup
0≤s<t≤T

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ ,

that is, if the slope of λ is close to 1 everywhere, then ‖λ‖◦ = 0. The point here is, that ‖ · ‖◦
characterises deformations in time which are not too excessive and where the secant lines do not
“explode”. Now, ‖λ‖◦ may be infinite. However, when we consider

d◦(x, y) = inf
λ∈Λ([0,T ])

{‖λ‖◦ ∨ d(x, y ◦ λ)}

we force finiteness since we are taking the infimum. Suppose λ ∈ Λ([0, T ]) has ‖λ‖◦ = ∞, then
clearly we have d∞(x, y) < ‖λ‖◦ = ∞ and so, in this case, we see that choosing the identity
function then yields

d◦(x, y) ≤ ‖Id‖◦ ∨ d∞(x, y) = d∞(x, y) < ‖λ‖◦ ∨ d∞(x, y ◦ λ) =∞.
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We now have the following relationship between d◦ and dS .

Proposition 2.5. The space D([0, T ],R) can be endowed with the metric

d◦(f, g) = inf
λ∈Λ([0,T ])

{‖λ‖◦ ∨ d(x, y ◦ λ)}

and we have (D([0, T ],R), dS) is topologically equivalent to (D([0, T ],R), d◦).

Remark: We denote the topology induced by either dS or d◦ as the Skorokhod topology. When
we consider convergence in the Skorokhod topology we refer to the metric d◦.

We will not prove Proposition 2.5 but refer to ([4] pp. 125-127 and Theorem 2).

Theorem 2.5. The space D([0, T ];R) is a Polish space under the Skorokhod topology. Specifically,
D([0, T ]; d◦) is a Polish metric space.

We refer the reader to [[4], p. 138 Theorem 12.2] for a proof. Similar to the space C([0,∞);R)

we cover the space D([0,∞);R) in Appendix A.2.

The Skorokhod topology is in general not very nice to work with; finding the infimum over
Λ([0,∞) is no simple task. It is therefore convenient to characterise convergence. We consider
the following proposition.

Proposition 2.6. A sequence (xn)n∈N ⊂ D([0, T ],R) converges to x ∈ D([0, T ];R) in the
Skorokhod topology if, and only if, there exists a sequence (λn)n∈N ⊂ Λ([0, T ]) such that

lim
n→∞

d∞(λn, Id) = 0 and lim
n→∞

d∞(xn ◦ λn, x) = 0.

Where d∞ is the metric of topology of uniform convergence.

See [[14], pp.328-330] for a proof. The Skorokhod feels more natural when considered in light of
Proposition 2.6, which is also why we chose to introduce it in this way. A simple but consequential
property is now presented in Corollary 2.2.

Corollary 2.2. Let (xn)n∈N ⊂ D([0,∞);R) be a sequence, and suppose xn → x in the topology
of uniform convergence. Then xn → x in the Skorokhod topology.

Proof. Choose λn = Id, ∀n ∈ N and apply Proposition 2.6. �

Hence, we have established a link between the uniform topology and the Skorokhod topology.
The converse of Corollary 2.2 is not true in general. Consider Example 2.5.

Example 2.5. We consider the space D([0, 2];R). We wish to approximate 1[1,2] by 1[1+ 1
2n
,2].

We first consider the topology of uniform convergence. For each n ∈ N we have

sup
t∈[0,2]

∣∣∣1[1,2](t)− 1[1+ 1
2n
,2](t)

∣∣∣ = 1,

since 1[1,2](1) = 1 while 1[1+ 1
2n
,2](1) = 0. It follows that

lim
n→∞

sup
t∈[0,2]

∣∣∣1[1,2](t)− 1[1+ 1
2n
,2](t)

∣∣∣ = lim
n→∞

1 = 1.
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Hence, the sequence does not converge uniformly. However, it seems counter-intuitive that this
does not converge as the graphs become seemingly indistinguishable as seen in Figure 2.6.

However, if we can find a time change λn for each n such that λn → Id uniformly in t and
1[1+1/n,2](λn(t)) goes to 1[1,2](t) uniformly in t then we have convergence in the Skorokhod
topology,

To this end define

λn(t) =

{(
1 + 1

2n

)
t t ∈ [0, 1]

(
2−

(
1 + 1

2n

))
(t− 1) +

(
1 + 1

2n

)
t ∈ (1, 2]

.

Clearly λn is injective, surjective and strictly increasing. Notice that supt∈[0,2] |λn(t) − t| = 1
2n ,

so clearly λn converges uniformly to the identity in Figure 2.7.

Furthermore, we have that 1[1+1/n,2](λn(t)) = 1[1,2](t) so clearly uniform convergence is obtained.
Hence, we have convergence in the Skorokhod topology.
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Figure 2.6: Convergence of Indicator Functions
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Figure 2.7: Convergence of Time Changes

�

So far it seems that the Skorokhod topology is superior to the uniform topology in the sense that
any convergent sequence in the uniform topology is also convergent in the Skorokhod topology
while allowing for convergence of additional functions. However, it does come at a cost; while
the uniform topology induces a non-separable Banach space and in particular a topological
vector space, the Skorokhod topology does not induce a topological vector space. We provide an
example.

Example 2.6. Let (xn)n∈N, (yn)n∈N be sequences in D([0, 2];R) defined by

xn(t) = 1[1+1/2n,2](t)

yn(t) = 1[1−1/2n,2](t)

Clearly, yn, xn → 1[1,2] in the Skorokhod topology. However, consider xn + yn. By virtue of
Proposition 2.6 we need to find (λn)n∈N ⊂ Λ([0, 2]) such that λn → Id uniformly in t and

(xn + yn)(λn(t))→ 2 · 1[1,2](t)

uniformly in time. We claim that no such sequence can exist. Note that unless (xn+yn)(λn(t)) =

21[1,2](t) then xn + yn cannot approach 21[1,2] since

sup
t∈[0,2]

|(xn + yn)(λn(t))− 21[1,2](t)| < 1 =⇒ xn(λn(t)) = yn(λn(t)) = 1[1,2](t), ∀t ∈ [0, 2]

However, this means 1[1+1/2n,2](λn(t)) = 1[1−1/2n,2](λn(t)) = 1[1,2](t) for all t. The result is that
we must have λn(1) = 1−1/2n and λn(1) = 1 + 1/2n. Clearly, we then have λn is not a function
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and hence cannot belong to Λ([0, 2]). Even if we made a cádlág λn with lims↑1 λn(s) = 1− 1/2n

and λn(1) = 1 + 1/2n then it would have to be discontinuous in t = 1, hence it cannot be
surjective and it would not belong to Λ([0, 2]). �

2.3.3 Multivariate Skorokhod Spaces

This subsection is based on [18] and [25].

We have introduced arguably the most intuitive Skorokhod space, namely D([0, T ];R). Now, the
definition of continuity extends naturally to multivariate spaces; we may replace absolute values
with norms or metrics. However, for cádlág functions, the extension requires slightly more care.
In particular, one may think of cádlág function, whose domain is some interval R, as continuous
from above with limits from below. When we try to extend to a multivariate setting, there is no
clear definition of continuity from “above” and limits from “below”. Of course, the product space
×d

i=1 D([0, T ];R) is a multivariate Skorokhod space, and since it is a countable product of Polish
spaces it is also a Polish space. However, the product space is not sufficient for our purposes.

In order to construct an extension which preserves the aforementioned structure, we must first
define what “above” and “below” means in a multivariate setting.

Definition 2.6 (Quadrant)
Let R = {<,≥} where < and ≥ are the typical relations on R. Let d ∈ N and
R = (R1, R2, . . . , Rd) ∈ Rd =×d

i=1R. We define the R quadrant as the map

QR : Rd → P(Rd)
t 7→ {s ∈ Rd | siRiti, i ∈ {1, 2, . . . , d}},

where P(Rd) denotes the power-set of Rd.

Remark: It is worthwhile noting that QR by construction maps to Borel-sets of Rd.
Furthermore, it is easy to verify that Rd defines a set of partial orders on Rd.

We provide a brief example.

Example 2.7. Let R = (<,≥), and let t ∈ R2. Then

QR(t) = {s ∈ R2 | s1 < t1, s2 ≥ t2}.

We visualise in Figure 2.8

�

We are now ready to define the multivariate Skorokhod spaces.
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Figure 2.8: The quadrant QR(t).

Definition 2.7 (Multivariate Cádlág and Skorokhod Space)
Let (E, d) be a metric space. Let d ∈ N and T ⊆ Rd be of the form×d

i=1[0, Ti] with Ti <∞
for all i ∈ {1, 2, . . . , d} or T =×d

i=1[0,∞). A function f : T → E is said to be cádlág if

lim
s→t

s∈QR(t)

f(s) exists, ∀R ∈ Rd,

and

lim
s→t

s∈QR(t)

f(s) = f(t), R = (≥,≥, . . . ,≥).

We denote the space of cádlág function D(T ;E) and call it the Skorokhod space over T
mapping to E.

Remark: To ease notation we will write D([0, T ]d, E) when T is of the form×d
i=1[0, T ]. We will

also primarily assume multivariate Skorokhod spaces of this type.

The quadrant QR(t) with R = (≥,≥, . . . ,≥) ∈ Rd can be thought of as the points above the
point t ∈ Rd in every dimension, and every other quadrant defines the points below t. Relating
this to the univariate definition it preserves the property of “limits from below” and “continuous
from above”.

Let (E, dE) be a Polish space. We are now interested in endowing D([0, T ]d;E) with a metric.
First, we note that D([0, T ]d;E) may be endowed with the supremum metric

d∞(x, y) = sup
t∈[0,T ]d

dE(x(t), y(t)), x, y ∈ D([0, T ]d;E).

In a very similar fashion, it may also be endowed with the Skorokhod metric. In order to define
the Skorokhod metric we need to extend ‖λ‖◦ to the multivariate case. In order to do so, we
make use of the product space×d

i=1 Λ([0, T ]) = Λ([0, T ])d. For λ ∈ Λ([0, T ])d we define
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‖λ‖◦ = sup
0≤s<t<∞
s,t∈[0,∞)d

∣∣∣∣
∣∣∣∣
(

log

(
λ1(t1)− λ1(s1)

t1 − s1

)
, log

(
λ2(t2)− λ2(s2)

t2 − s2

)
, . . . , log

(
λd(td)− λd(sd)

td − sd

))∣∣∣∣
∣∣∣∣ ,

with the norm being the Euclidean norm on Rd. We may then define the Skorokhod metric on
D([0, T ]d;E) as

d◦(x, y) = inf
λ∈Λ([0,T ])d

{‖λ‖◦ ∨ d∞(x, y ◦ λ)}, x, y ∈ D([0, T ]d;E),

where y◦λ(t) = y(λ1(t1), λ2(t2), . . . , λd(td)) for t ∈ [0, T ]d. We claim without proof that the space
(D([0, T ]d;Rm), d∞) is complete and (D([0, T ]d;Rm), d◦) is a Polish metric space for d,m ∈ N.
We will not prove this claim but refer to [18] or [25].

We also claimed that that the product space×d
i=1 D([0, T ];R) = D([0, T ];R)d could be considered

as multivariate Skorokhod spaces. There are two ways to think of this product space; one where
the evaluation is considered to at the same t ∈ [0, T ], i.e. z(t) = (z1(t), z2(t), . . . , zd(t)). The
other way of considering the product space is

z(t) = (z1(t1), z2(t2), . . . , zd(tn)), t ∈ [0, T ]n, z ∈ D([0, T ];R)d. (2.15)

In a sense we may think of (2.15) as a “field” rather than a path. We will only consider elements
of D([0, T ];R)d as described in (2.15). When we consider the representation (2.15) then the
natural metrics are defined to correspond to the product space, i.e.

dm∞(x, y) =
m∑

i=1

d∞(xi, yi), x, y ∈ D([0, T ];R)m,

d◦m(x, y) =
m∑

i=1

d◦(xi, yi), x, y ∈ D([0, T ];R)m.

for m ∈ N. It should be no surprise that the space D([0, T ];R)m and D([0, T ]m;Rm) are related
for m ∈ N. To see why, let x ∈ D([0, T ];R)m, we now claim x ∈ D([0, T ]m;Rm). We must show
that

lim
s→t

s∈QR(t)

x(s) exists, ∀R ∈ Rm,

and

lim
s→t

s∈QR(t)

x(s) = x(t), R = (≥,≥, . . . ,≥).

Note that R decomposes into (R1, R2, . . . , Rm), with Ri ∈ R = {<,≥} for i ∈ {1, 2, . . . ,m}.
Clearly,

lim
s→t

s∈QR(t)

x(s) exists ⇐⇒ lim
si→ti

si∈QRi
(ti)

xi(si) exists, ∀i ∈ {1, 2, . . .m}.

But since Ri ∈ {<,≥} we have the two options

lim
si→ti

si∈QRi
(ti)

xi(si) =

{
limsi↑ti xi(si) Ri =<

limsi↓ti xi(si) Ri =≥,
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and since xi ∈ D([0, T ];R) both limits clearly exist. Exactly the same arguments show that

lim
s→t

s∈QR(t)

x(s) = x(t), R = (≥,≥, . . . ,≥),

and hence x ∈ D([0, T ]d;Rd). With this result we can show the more general case.

Lemma 2.3. Let m,n ∈ N and g ∈ C(Rn;Rm) and let x = (x1, x2, . . . , xn) ∈ D([0, T ];R)n.
Then,

z = g ◦ x ∈ D([0, T ]n;Rm).

Proof. The proof follows directly from the continuity of g since

lim
s→t

s∈QR(t)

g(x(s)) = g


 lim

s→t
s∈QR(t)

x(s)


 , ∀R ∈ Rn

�

In light of Lemma 2.3 it seems natural to extend g from a function on Rn to a function on the
product space. That is, g defines a map

Ψg : D([0, T ];R)n → D([0, T ]n;Rm),

x 7→ g ◦ x.

Lemma 2.3 justifies the image of Ψg when g is continuous. The next natural question is then
whether Ψg extends to a continuous function on on×d

i=1 D([0, T ];R) endowed with dm∞ or d◦m to
D([0, T ]m;Rn) endowed with either d∞ or d◦.

2.3.4 Continuous Extensions

A version similar to the theorems presented here is found in [[39], Appendix B, Theorem B.2.5]
without proof.

Often we are not only interested in the behaviour of our approximation, but also how it acts
under certain functions. Continuous functions are a class of functions that preserve limits which
is justified in Proposition A.1. Our interest in doing so is to recover convergence for a large class
of processes. Suppose we have

xn → x, (xn)n∈N ⊂ D([0, T ];R), x ∈ D([0, T ];R).

We realise that proving everything case-by-case is cumbersome and recognise that a large class
of functions are created from compositions. Hence, we are interested in knowing if

xn → x =⇒ g ◦ xn → g ◦ x.

We know that continuous functions are a class of functions which have exactly this
property. However, the space C(D([0, T ];R);D([0, T ];R)) is not as well studied as the space
C(R;R). In this section we show that under suitable conditions we may identify C(R;R) in
C(D([0, T ];R),D([0, T ];R)) by extending continuous functions on R to a continuous function on
D([0, T ];R). We first require the following results
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It is well known that every cádlág function is bounded on compact sets. Note that this result
has previously been used implicitly; a metric is a mapping that must be finite for each pair in
the underlying space and therefore d∞ could not be a metric if cádlág function were not bounded
on compact sets, since d∞(x, 0) = sup

t∈[0,T ]
|x(t)| <∞.

Theorem 2.6 (Heine-Cantor Theorem). Let f ∈ C(E′, E) with (E, dE) and (E′, dE′) metric
spaces, and let K ⊆ E′ be compact, then f is uniformly continuous on K.

We now provide the first extension. While this extension is not particularly useful for our problem
it shows a particular strategy to prove more general cases.

In order to emphasize the metric, or equivalently the topology, we write

Ψ : (X, dX)→ (Y, dY ),

to imply that Ψ is a continuous function from the metric space (X, dX) to the metric space
(Y, dY ).

Lemma 2.4. Let g ∈ C(R;R). Define the function

Ψg : (D([0, T ];R), d∞)→ (D([0, T ];R), d∞).

x 7→ g ◦ x

The function Ψg is continuous in the topology of uniform convergence.

Proof. We must show, that

∀x ∈ D([0, T ];R)∀ε > 0∃δ > 0∀y ∈ D([0, T ];R) : d∞(x, y) < δ =⇒ d∞(Ψg(x),Ψg(y)) < ε.

The proof is in two parts: First, we construct a compact set for each x ∈ D([0, T ];R) where
the restriction of g is uniformly continuous. Second, we extend g and show that it is indeed
continuous for each x ∈ D([0, T ];R).

(i) Construction of a compact set

Let x ∈ D([0, T ];R) be arbitrary and ε > 0. Since cádlág functions are bounded on compact
intervals, we may choose a constant which only depends on x such that

sup
t∈[0,T ]

|x(t)| < Cx <∞, ∀x ∈ D([0, T ];R).

We then define the following sphere

BCx(x) = {y ∈ D([0, T ];R) | d∞(x, y) ≤ Cx}.

For y ∈ BCx(x) we have
∣∣∣∣∣ sup
t∈[0,T ]

|y(t)| − sup
t∈[0,T ]

|x(t)|
∣∣∣∣∣ ≤ sup

t∈[0,T ]
|y(t)− x(t)| = d∞(y, x) ≤ Cx

by the reverse triangle inequality, which implies
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sup
t∈[0,T ]

|y(t)| ≤ Cx + sup
t∈[0,T ]

|x(t)|

< 2Cx.

The immediate implication is that

y(t) ∈ [−2Cx, 2Cx], ∀t ∈ [0, T ].

Furthermore, x(t) ∈ [−Cx, Cx] ⊆ [−2Cx, 2Cx] for all t ∈ [0, T ]. Therefore, define

Kx = [−2Cx, 2Cx].

Clearly Kx is compact.

(ii) Asserting continuity

Now, let g�Kx
denote the restriction of g to Kx. By Theorem 2.6 we have that g�Kx

is uniformly
continuous. We omit writing the restriction as we will henceforth only consider the restriction.
Therefore,

∀ε > 0∃δ0 > 0 : |t− s| < δ0 =⇒ |g(t)− g(s)| < ε, t, s ∈ Kx (2.16)

Now, we have to show that

∀x ∈ D([0, T ];R)∀ε > 0∃δ > 0∀y ∈ D([0, T ];R) : d∞(x, y) < δ =⇒ d∞(Ψg(x),Ψg(y)) < ε.

We claim that δ = min(δ0, Cx) is sufficient. Note that

d∞(x, y) = sup
t∈[0,T ]

|x(t)− y(t)| ≥ |x(t)− y(t)|, ∀t ∈ [0, T ]. (2.17)

Now, by the uniform continuity of g on Kx we have

|x(t)− y(t)| < δ0 =⇒ |g(x(t))− g(y(t))| < ε.

Taking d(x, y) < δ = min(δ0, Cx), then the continuity of g and (2.17) implies

|g(x(t))− g(y(t))| < ε, ∀t ∈ [0, T ].

Consequently, we have

d∞(Ψg(f),Ψg(h)) = sup
t∈[0,T ]

|g(f(t))− g(h(t))| < ε.

�

While subtle one of the applications of Lemma 2.4 is that convergence is preserved under
continuous maps, and that this will hold even for approximations in D([0, T ];R).

Before we continue we first present a technical lemma which will simplify the proofs for the
Skorokhod topology significantly.

Lemma 2.5. Let x, y ∈ D([0, T ];R) be such that

d◦(x, y) < δ,

then there exists a λ ∈ Λ([0, T ]) such that
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(‖λ‖◦ ∨ d∞(x, y ◦ λ)) < δ.

Proof. Suppose for contradiction that

d◦(x, y) < δ,

but

6 ∃λ ∈ Λ([0, T ]) : (‖λ‖◦ ∨ d∞(x, y ◦ λ)) < δ.

We then have

(‖λ‖◦ ∨ d∞(x, y ◦ λ)) ≥ δ, ∀λ ∈ Λ([0, T ])

and hence certainly for the infimum, but then δ > d◦(x, y) ≥ δ, which is a contradiction. �

We also require the following Lemma.

Lemma 2.6. Let x, y ∈ D([0, T ];R), then

d◦(x, y) ≤ d∞(x, y).

Proof. We know that Id ∈ Λ([0, T ]). Now, it follows immediately that ‖Id‖◦ = 0. Hence,

d◦(x, y) = inf
λ∈Λ([0,T ])

{‖λ‖◦ ∨ d∞(x, y ◦ λ)}

≤ ‖Id‖◦ ∨ d∞(x, y) = d∞(x, y).

�

We can now present the analog of Lemma 2.4 for the Skorokhod topology.

Lemma 2.7. Let g ∈ C(R;R) be a continuous function. Define the function

Ψg : (D([0, T ];R), d◦)→ (D([0, T ];R), d◦).

x 7→ g ◦ x

The function Ψg is continuous in the Skorokhod topology.

Proof. We have to show

∀x ∈ D([0, T ];R)∀ε > 0∃δ > 0∀y ∈ D([0, T ];R) : d◦(x, y) < δ =⇒ d◦(Ψg(x),Ψg(y)) < ε.

Let ε > 0 and x ∈ D([0, T ];R) be arbitrary. Analogously to the proof of Lemma 2.4 we need to
construct a compact set Kx on which g is uniformly continuous. By Lemma 2.6 we may choose
the same compact set. The uniform continuity of g on Kx implies

∀ε > 0∃δ0 > 0 : |t− s| < δ0 =⇒ |g(t)− g(s)| < ε. t, s ∈ Kx. (2.18)

Now, whenever

δ > d∞(x, y ◦ λ) = sup
t∈[0,T ]

|x(t)− y(λ(t))| ≥ |x(t)− y(λ(t))|, ∀t ∈ [0, T ]. (2.19)

By (2.18) we have
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|x(t)− y(λ(t))| < δ0 =⇒ |g(x(t))− g(y(λ(t)))| < ε.

By (2.19) we have this is true for all t ∈ [0, T ] and then certainly also true for the supremum.
Hence,

d∞(x, y ◦ λ) < δ0 =⇒ d∞(g ◦ x, g ◦ y ◦ λ) < ε. (2.20)

Now, by Lemma 2.5 we have that when d(x, y)◦ < min(δ0, Cx) there exists a λ∗ such that
(‖λ∗‖ ∨ d∞(x, y ◦ λ∗)) < min(δ0, Cx). For the same λ∗ we now have that

(‖λ∗‖◦ ∨ d∞(x, y ◦ λ∗)) < min(δ0, Cx) =⇒ d∞(g ◦ x, g ◦ y ◦ λ∗) < ε.

Now, choosing δ < min(ε, δ0, Cx) we have

(‖λ∗‖◦ ∨ d∞(x, y ◦ λ∗)) < δ =⇒ (‖λ∗‖◦ ∨ d∞(g ◦ x, g ◦ λ∗)) < ε =⇒ d◦(Ψg(x),Ψg(y)) < ε,

since certainly the infimum over λ ∈ Λ([0, T ]) must be smaller than the value of the metric from
λ∗. Hence, Ψg is continuous in the Skorokhod topology. �

Suppose we now wish to define continuous maps depending on several paths. This will be
detrimental to the main result.

Lemma 2.8. Let g ∈ C(Rn;Rm). Define the function

Ψg :

(
n×
i=1

D([0, T ];R), dn∞

)
→ (D([0, T ]n;Rm), d∞)

(x1, x2, . . . , xn) = x 7→ g(x1(t1), x2(t2), . . . xn(tn)), ∀(t1, t2, . . . tn) ∈ [0, T ]n.

Then function Ψg is continuous in between the topologies generated by dn∞ and d∞.

Proof. The proof is completely analogous to Lemma 2.4, replacing absolute values with norms
and using dn∞ in place of d∞. �

2.4 Convergence of Stochastic Processes

This section is based on [4], [5], [13], and [20]

The previous theory has mainly been extending a continuous function in a way such that it
“remains continuous”. Our reason for doing so was to preserve convergence. The following will
justify our reason for doing so.

Recall, that convergence in probability for random variables (Xn)n∈N to a random variable X
on a metric space (E, dE) is defined by limn→∞ P(dE(Xn, X) > ε) = 0.

Suppose X : Ω→ E, where (E, d) is a metric space and suppose we have g : E → E′ where g is
a continuous map. We are now interested in the convergence

g(Xn)→ g(X).

Luckily, convergence is preserved, by the following theorem.

31



Theorem 2.7 (Continuous Mapping Theorem). Let (Ω,F ,P) be a probability space and let
(E, dE) and (E′, dE′) be metric spaces. Suppose X : Ω→ E is a random variable, and (Xn)n∈N
is a sequence of random variables such that Xn : Ω→ E. Let g ∈ C(E,E′). Then, if

1 Xn
a.s.→ X we have g(Xn)

a.s.→ g(X).

2 Xn
P→ X we have g(Xn)

P→ g(X).

Proof. First, by Proposition A.1 we have and for almost all ω

lim
n→∞

g(Xn(ω)) = g(X(ω)). (2.21)

By definition of almost sure convergence

P({ω | lim
n→∞

Xn(ω) = X(ω)}) = 1,

but then by (2.21) we have

P({ω | lim
n→∞

g(Xn(ω)) = g(X(ω))}) = P({ω | lim
n→∞

Xn(ω) = X(ω)}) = 1.

For convergence in probability fix ε > 0, note that by definition of continuity we have

∀x∀ε > 0∃δ0 > 0∀y : dE(x, y) < δ =⇒ dE′(g(x), g(y)) < ε.

and by convergence in probability we have

lim
n→∞

P({ω | dE(Xn(ω), X(ω)) ≥ δ}) = 0, ∀δ > 0. (2.22)

Now, notice that

dE′(g(Xn(ω)), g(X(ω))) ≥ ε ⇐⇒ dE(Xn(ω), X(ω)) ≥ δ0.

It follows immediately by (2.22) that g(Xn)
P→ g(X).

�

We will primarily be interested in two specific types of convergence in probability. We, therefore,
state a definition to establish notation.
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Definition 2.8 (Convergence in Probability, Skorokhod and Uniform on Compacts)
Let (Xn)n∈N such that Xn : Ω → D([0, T ];R) and let X : Ω → D([0, T ];R). We say that
(Xn)n∈N converges in the Skorokhod metric or topology in probability if

lim
n→∞

P (d◦(Xn, X) ≥ ε) = 0,

and we write

Xn
Sk⇒ X.

Similarly, we say that (Xn)n∈N convergences in the local uniform metric or topology in
probability if

lim
n→∞

P (d∞(Xn, X) ≥ ε) = 0,

and we write

Xn
u.c.p.⇒ X.

Remark: If we make use of D([0,∞);R) we will use the same notation when there is no confusion.

Now, a stochastic process may be considered as a jointly Ω×[0, T ] measurable mapping. However,
in many cases, there will be a process indistinguishable from the original stochastic process, which
is cádlág. Therefore, it is not too restrictive to consider certain stochastic processes as measurable
functions to the Skorokhod space.

It is also worth noticing that we have introduced several Skorokhod spaces, and we will sometimes
go from one type to another. We will make use of the results presented in our section on
continuous extensions, namely that if (Xn, Yn)n∈N ⊂ D([0, T ];R)2 which converges to (X,Y )

in the product space and g is a continuous function from R2 to, e.g., R, then we will still say
Ψg(Xn, Yn)

u.c.p.⇒ Ψg(X,Y ). We justify this notation since the convergence will still be uniformly
on compact sets in probability.

We now present a weaker type of convergence. First, recall the definition of convergence in
law. Let (Ω,F ,P) be a probability space, (E, dE) a Polish space with Borel σ-field B(E), and
let ((Ωn,Fn,Pn))n∈N be a sequence of probability spaces. Let Zn : Ωn → E be a sequence of
random variables. (Zn)n∈N is said to converge in law if there exists a probability measure µ on
(E,B(E)) such that

En[f(Zn)]→
∫

E
f(x)dµ(x), ∀f continuous and bounded on E.

We can think of the limit as a random variable Z with LZ = µ, hence the name. In particular,
we can choose Z : E → E being the identity on (E,B(E), µ) and we write

Zn
L→ Z.

However, for our purposes, we need a type of convergence related to convergence in law. First,
we will define what we mean by an extension of our probability space. We also define some
stronger properties needed for later theorems.

Let
(

Ω,F , (Ft)[0,∞) ,P
)
be filtered probability space and (Ω′,F ′) another measurable space. Let
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Q be a transition probability from (Ω,F) to (Ω′,F ′), i.e. Q(ω, ·) is a probability measure on
(Ω′,F ′) for ω ∈ Ω and Q(·, F ′) is a measurable function on (Ω,F) for F ′ ∈ F ′, in particular
recall the definition of a conditional probability which makes use of transition probabilities. We
can now extend our probability space with Ω′ by defining

Ω̃ = Ω× Ω′

F̃ = F ⊗ F ′ = σ({F × F ′ | F ∈ F , F ′ ∈ F ′})
P̃ = P(dω)Q(ω, dω′),

where the latter is to be understood in terms of the integrals. Similarly, we may need to extend
our filtration. To this end we call a filtration (F̃t)t∈[0,∞) on (Ω̃, F̃ , P̃) an extension of (Ft)t∈[0,∞) if
Ft ⊆ F̃t for every t where the subset property is to be understood by the inclusion Ft ⊗ {∅,Ω′}.
We then say (Ω̃, F̃ , (F̃t)t∈[0,∞), P̃) is a filtered extension of

(
Ω,F , (Ft)[0,∞) ,P

)
. The filtered

extension is said to be very good if the mapping

ω 7→
∫

Ω′
1A(ω, ω′)Q(ω, dω′)

is measurable for every ω and A ∈ F̃t given any t ∈ [0,∞). In particular, very good filtered
extensions preserve the semimartingale property which we will later define.

Definition 2.9 (Stable Convergence in Law)
Let (Ω,F ,P) be a probability space and (E, dE) a Polish space with Borel σ-algebra B(E).
Let (Xn)n∈N be a sequence of E valued random variables. We say that (Xn)n∈N converges
stably in law if there exist a probability measure µ on (Ω× E,F ⊗ B(E)) such that

E[Y f(Zn)] =

∫

Ω×E
Y (ω)f(x)dµ(ω, x),

for every Y bounded and f continuous and bounded.

It may again be more interpretable to realise the limit as a random variable. In order to realise
the limit, we first suitable extend the space and σ algebra,

Ω̃ = Ω× E
F̃ = F ⊗ B(E).

Now, we may endow (Ω̃, F̃) with the probability measure µ from Definition 2.9. Now, rather
than the identity we realise the limit Z as the random variable Z(ω, x) = x. We then have

E[Y f(Zn)]→ Ẽ[Y f(Z))],

for every bounded random variable Y and continuous and bounded f . We denote stable
convergence in law by

Zn
LS→ Z.

If we have explicit stable convergence in law for the Skorokhod topology we write

Zn
LS⇒ Z.

We now present two crucial lemmas.
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Lemma 2.9. Let (Ω,F ,P) be a probability space and (E, dE) a Polish space endowed with its
Borel σ-algebra, B(E). Let (Xn)n∈N and (Yn)n∈N be sequences of E valued random variables
such that

Xn
P→ X, Yn

LS→ Y,

with Y defined on a very good extension of (Ω,F ,P). Then,

(Xn, Yn)
LS→ (X,Y ).

See [[20], appendix B] for a proof. Now, we have the following version of the Continuous Mapping
theorem.

Lemma 2.10. Let (Ω,F ,P) be a probability space, (E, dE) a Polish space and (Zn)n∈N a sequence
of random variables, such that

Zn
LS→ Z,

with Z defined on an extension (Ω̃, F̃ , P̃). Let g : E → E′ be a continuous function on a Polish
space (E′, d′E). Then,

g(Zn)
LS→ g(Z)

Proof. Note, that by definition

E[Y f(Zn)]→ Ẽ[Y f(Z)], ∀f continuous and bounded and Y bounded.

However, f ◦ g is continuous and bounded whenever f is continuous and bounded on (E′, dE′)

and g is continuous so we have

E[Y f(g(Zn))]→ Ẽ[Y f(g(Z))], ∀f continuous and bounded and Y bounded.
�

2.4.1 Semimartingales and Quadratic Variation

This section is based on [14], [13], and [4].

We first define the class of semimartingales.

Definition 2.10 (Semimartingale)
Let

(
Ω,F , (Ft)[0,∞) ,P

)
be a filtered probability space. A process X is said to be a

semimartingales if

X = X0 +M +A,

where M is a local martingale with M0 = 0 almost surely, A is a process of locally bounded
variation with A0 = 0 almost surely.

Remark: Note that throughout this section we consider not necessarily finite intervals, i.e.
[0,∞). However, all results still apply to the finite intervals [0, T ].
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Our primary focus has been considering processes as D([0,∞);R) valued random variables.
However, in this section and going forward we will need the random variables Xt for distinct
t ∈ [0,∞). For X : Ω → D([0,∞);R) valued random variables we may define the so-called
canonical projections to make sense of Xt. Let τ = (t1, t2, . . . , tn) ⊂ [0,∞) then πτ is defined
as the the map πτ : D([0, T ];R) → Rn mapping X to (Xt1 , Xt2 , . . . Xtn). We justify the
measurability in Appendix A.3. In order to ease notation we define

Xt = πtX, t ∈ [0,∞).

Furthermore, we define

Xt− = lim
s→t

Xs,

and the process X− by the mapping t 7→ Xt−. In addition this allows us to define the process
∆X by the mapping t 7→ Xt −Xt−. Note that if X : Ω → D([0,∞);R) then the processes X−
and ∆X are well defined. We will now need to recover methods of integration with respect to
the processes that are semimartingales. We will not develop this theory in full, and for a more
explicit treatment we refer the reader to [14].

Let H be bounded process such that

H ∈
{
{Y · 1(a,b] | a < b ∈ [0,∞), Y bounded and Fa-measurable. }
{Y · 1{0} | Y bounded and F0-measurable. }

(2.23)

Here, the process is “simply” a scaled indicator by some random variable Y . Now, intuitively the
integral of processes in (2.23) is defined by the process

H •Xt =

{
Y (Xb∧t −Xa∧t) H ∈ {Y · 1(a,b] | a < b ∈ [0,∞), Y bounded and Fa-measurable.}
0 H ∈ {Y · 1{0} | Y bounded and F0-measurable. }

(2.24)

Now, in this case simply define our integral to mean H •X, i.e.
∫ t

0
HsdXs = H •Xt.

Using this simple integral we may extend it to a larger class of integrands.

Theorem 2.8. Let X be a semimartingale. The map H 7→ H •X defined for

H ∈
{
{Y · 1(a,b] | a < b ∈ [0,∞), Y bounded and Fa-measurable. }
{Y · 1{0} | Y bounded and F0-measurable. }.

(2.25)

Can be extended to H in the space of locally bounded and predictable processes with the following
properties:

1 H •X is D([0,∞);R) valued and adapted.

2 H 7→ H •X is linear, up to indistinguishability.

3 If (Hn)n∈N is a sequence of predictable process with pointwise limit H, and if |Hn(t)| ≤ K(t)

for all t where K is a locally bounded predictable process, then Hn •X → H •X weakly.
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If we consider finite intervals in 3 then Hn •X
u.c.p.⇒ H •X. Furthermore, this extension is unique

up to indistinguishability.

See [[14], pp. 46-47, Theorem 4.31] for a proof. The integral futhermore satisfies the following.
In particular, we recognise that 3 in Theorem 2.8 is a “Dominated Convergence Theorem” for
the stochastic integral.

We have not strictly defined what it means for the integral to converge weakly. However, a
definition is given in the appendix.

Proposition 2.7. Let X be a semimartingale and H a locally bounded predictable process, then
the following statements hold up to indistinguishability.

1 X 7→ H •X is linear.

2 H •X is a semimartingale.

3 If X is a local martingale, then H •X is a local martingale.

We are now ready to define the quadratic variation

Definition 2.11 (Quadratic Covariation)
The quadratic co-variation of two semimartingales X and Y is given by

[X,Y ] = XY −X0Y0 −X− • Y − Y− •X,

when Y = X we say the quadratic variation and denote it [X] = [X,X].

Proposition 2.8. Let X and Y be semimartingales. Then,

1 [X,Y ]0 = 0.

2 [X,Y ] = [X −X0, Y − Y0].

3 [X,Y ] = 1
4 ([X + Y ]− [X − Y ])

At the moment, all processes are still considered as D([0, T ];R) valued random variables. We are
now interested in whether finite dimensional convergence can imply convergence in the Skorokhod
space. We firs present some definitions.

Definition 2.12 (Adapted Subdivisions)
Let

(
Ω,F , (Ft)[0,∞) ,P

)
be a filtered probability space. Let τ = (tn)n∈N0 be a sequence of

stopping times satisfying t0 = 0 and tn < tn+1 and tends to tn → ∞ as n → ∞ almost
surely, then τ is called an adapted subdivision.

We are now ready to define an approximation of our stochastic integral.
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Definition 2.13 (Riemann Approximation)
Let

(
Ω,F , (Ft)[0,∞) ,P

)
be a filtered probability space and τ be an adapted subdivision.

Recall that τ = (t0, t1, t2, . . . ) = (tn)n∈N0 . Let H be a predictable process of locally bounded
variation and X be a semimartingale. We define the Riemann-approximant of H •X as the
process

τ(H •X)t =
∑

n∈N0

Htn(Xtn+1∧t −Xtn∧t).

Our goal is to prove that when τ becomes a finer partition, then the above converges to the true
integral H • X. To this end, we need to define what it means for a partition to become finer.
Now, let (τm)m∈N0 = ((tm,n)n∈N0)m∈N0 be a sequence of adapted subdivisions satisfying

lim
m→∞

sup
n∈N0

|tm,n+1 ∧ t− tm,n ∧ t| = 0, ∀t ∈ [0,∞), (2.26)

we have that the covering becomes finer. Note that the times tm,n need not be regularly spaced,
although we will assume them to be for our result. In this event we have that the times are not
random.

Proposition 2.9. Let (τm)m∈N0 be a sequence of adapted subdivisions satisfying (2.26). Let X
be a semimartingale and H a process of locally bounded variation. Then

τm(H •X)
u.c.p.⇒ H •X.

Proof. (τm)m∈N0 be a sequence satisfying (2.26) and recall τm = (tm,0, tm,1, . . . ). Define

Hm(t) =
∑

n∈N
Htm,n1(tm,n,tm,n+1](t).

Hm is clearly predictable with point-wise limit H. Define K(t) = sups∈[0,t] |H(s)|. We now have
|Hm(t)| ≤ K(t) for all t ∈ [0,∞). Now,

τm(H •X)t =
∑

n∈N0

Htm,n(Xtm,n+1∧t −Xtm,n∧t)

Similarly, note that Hm is defined on disjoint intervals. Applying (2.24) to each interval yields

Hn •X =
∑

n∈N0

Htm,n(Xtm,n+1∧t −Xtm,n∧t).

The result is that τm(H •X) = Hm •X. By Theorem 2.8 the result follows. �

Hence, our integral can be viewed as the limit of a Riemann-approximation. Now, the same
methodology can be applies for the quadratic variation.

Lemma 2.11. Let X be a semimartingales let (τm)m∈N0 be a sequence of adapted subdivisions
satisfying (2.26). Define

Sτm(X)t =
∑

n∈N0

(Xtm,n+1∧t −Xtm,n∧t)
2,

then

38



Sτm(X)
u.c.p.⇒ [X].

Proof. First, consider

(x− y)2 = x2 + y2 − 2xy

= x2 − y2 − 2y(x− y).

By definition, we may rewrite Sτm(X) as

Sτm(X) =
∑

m∈N0

X2
tm,n+1∧t −X2

tm,n∧t − 2(Xtm,n∧t)(Xtm,n+1∧t −Xtm,n∧t).

Note that the first two terms are telescoping. Hence,

Sτm(X) = X2
t −X2

0 − 2


∑

m∈N0

(Xtm,n∧t)(Xtm,n+1∧t −Xtm,n∧t)


 .

Note, by Definition 2.13 that

τm(X− •X) =
∑

m∈N0

(Xtm,n∧t)(Xtm,n+1∧t −Xtm,n∧t)

Hence,

Sτm(X) = X2 −X2
0 − 2τm(X− •X).

Now, by Proposition 2.9 we have τm(X− •X)
u.c.p.⇒ X− •X. Now, by definition of the quadratic

variation we now have

Sτm(X)
u.c.p.⇒ X2 +X2

0 − 2X− •X = [X].

�

We now present some practical applications of the previous theory.

Definition 2.14 (Realised Variance and Integral Approximation)
Let τ = (t0, t1, . . . , tn) be an equidistant partition of [0, T ], i.e. ti = ∆ni where ∆n = T/n

and i ∈ {0, 1, . . . n}. We define the realised variance of a process X as

[̂X]
n

t =

[t/∆n]∑

i=1

(Xi∆n −X(i−1)∆n
)2,

where [t/∆n] is the integer part of t/∆n. Furthermore, let H be predictable process of
locally bounded variation. We define

Ĥ •X
n

t =

[t/∆n]∑

i=1

H(i−1)∆n
(Xi∆n −X(i−1)∆n

).

Consider with slight alterations the approximation Sτ defined in Lemma 2.11 and it’s relation
to [̂X]. The difference is subtle, but suppose we consider t∗ ∈ [0, T ], then for a semimartingale
X
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Sτ (X)t∗ = (Xt∗ −X([t∗/∆n])∆n
)2 +

[t∗/∆n]∑

i=1

(Xi∆n −X(i−1))
2 = (Xt∗ −X([t∗/∆n])∆n

)2 + [̂X]
n

t∗ ,

now, it should be no surprise that the term (Xt∗ − X([t∗/∆n])∆n
)2 becomes negligible as our

partition becomes finer. A similar result applies to Ĥ •X
n
. Indeed, we consider the following

corollary.

Corollary 2.3. Let X be a semimartingale on [0, T ] and H a process of locally bounded variation,
then

[̂X]
n u.c.p⇒ [X], as n→∞.

Ĥ •X
n u.c.p⇒ H •X, as n→∞.

We refer to [14] and [28] for explicit proofs but note that it follows essentially from Proposition 2.9
and Lemma 2.11.

Corollary 2.3 states that convergence of our estimator is ensured, but it fails to tell us at which
rate. We will make some restrictions to the structure of our processes here. Essentially, we now
require the quadratic variation to be absolutely continuous with respect to the Lebesgue measure.
Therefore, we introduce the so-called Itô semimartingales. Typically, Itô semimartingales are
allowed to jump, but we restrict ourselves to continuous processes.

Definition 2.15 (Continuous Itô Semimartingale)
Let (

(
Ω,F , (Ft)[0,∞) ,P

)
be a filtered probability space, and let X be a semimartingale. X

is said to be a continuous Itô semimartingale if it admits the representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs,

where W is a Brownian Motion, σ is predictable and cádlág and b is a process satisfying∫ t
0 |bs|ds <∞ for every t > 0.

Now, the following limit theorem is due to Jacod and Protter, [13].

Theorem 2.9. Let
(

Ω,F , (Ft)[0,∞) ,P
)

be a filtered probability space satisfying the usual
conditions. Let X be a continuous Itô semimartingale, i.e. of the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs,

satisfying
∫ t

0
(|bs|2 + |σs|4)ds <∞, ∀t > 0.

Consider an equidistant partitioning of [0, T ] with distance ∆n.
1√
∆n

([̂X]
n
− [X]) = Zn

LS⇒ Z,

where Z is a process defined on a very good filtered extension of
(

Ω,F , (Ft)[0,∞) ,P
)
.

Furthermore, Z is F conditionally centered Gaussian with independent increments and finite
second moment given by
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E
[
Z2
t | F

]
= 2

∫ t

0
σ4
sds.

See [[13], p. 162 Theorem 5.42]. The central limit theorem here tells us that we can expect a
rate of convergence proportional to

√
n when the convergence happens on an equidistant mesh.

Now, the above can be paraphrased as

Znt
LS⇒ Zt =

√
2

∫ t

0
σ2
sdW

′
s, (2.27)

whereW ′ is a Brownian motion on the very good filtered extension from the theorem. Jacod and
Protter states that W ′ is independent of F . It implies that the second moment in Theorem 2.9
is exactly the quadratic variation of the process Z. We now need an estimator of

∫ t

0
σ4
sds,

Furthermore, the estimator must converge in probability on the Skorokhod space, since this will
immediately imply the joint convergence of Zn and the estimator. Now, Jacod and Protter show
the following convergence.

1

∆n

[t/∆n]∑

i=1

(|Xti −Xti−1 |)4 u.c.p.⇒ 3

∫ t

0
|σs|4ds, (2.28)

under the added assumptions that
∫ t

0
|bs|

4
6ds <∞,

∫ t

0
|σs|4ds <∞.

In fact both Lemma 2.11 and (2.28) are special cases of the so called power variation convergence,
which for continuous processes can be found in [[13], p. 70, Theorem 3.4.1]. We can now present
the central limit theorem.

Theorem 2.10. Let
(

Ω,F , (Ft)[0,∞) ,P
)

be a filtered probability space satisfying the usual
conditions. Let X be a continuous Itô semimartingale, i.e. of the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs,

satisfying
∫ t

0
(|bs|2 + |σs|4)ds <∞, ∀t > 0.

Consider an equidistant partitioning of [0, T ] with ∆n = T/n. Then
√

3
(∑[t/∆n]

i=1 (Xti −Xti−1)2 − [X]t

)

√
2

√∑[t/∆n]
i=1 (|Xti −Xti−1 |)4

LS→ N,

where N is defined on a very good filtered extension in restriction to {[X]t > 0}. Furthermore,
N is F conditionally standard Gaussian.

Proof. By Theorem 2.9 we know that
1√
∆n

([̂X]
n
− [X]) = Zn

LS⇒ Z,

41



where Z is defined by (2.27). In particular,

Znt
LS→ Zt, t > 0.

Furthermore, by (2.28) we have

1

∆n

[t/∆n]∑

i=1

(|Xti −Xti−1 |)4 u.c.p.⇒ 3

∫ t

0
|σs|4ds,

and in particular it implies

Gnt =
1

∆n

[t/∆n]∑

i=1

(|Xti −Xti−1 |)4 P→ 3

∫ t

0
|σs|4ds = Gt, t > 0.

By Lemma 2.9 we have (Gnt , Z
n
t ) converges stably in law to (Gt, Zt). By Lemma 2.10 we have

Znt√
Gnt

LS→ Zt√
3
∫ t

0 σ
4
sds

,

when restricted to the set {
∫ t

0 |σ|4sds > 0} which coincides with {[X]t > 0}. Now, by Theorem 2.9
Zt is an F conditional centered Gaussian with variance

2

∫ t

0
σ4
sds,

and so
Zt√

3
∫ t

0 σ
4
sds

is F conditionally centered Gaussian with variance 2/3. It follows that
√

3
(∑[t/∆n]

i=1 (Xti −Xti−1)2 − [X]t

)

√
2

√∑[t/∆n]
i=1 (|Xti −Xti−1 |)4

LS→
√

3Zt
√

2
√

3
∫ t

0 σ
4
sds

,

which is F conditionally centered Gaussian with variance 1. �

Remark: Jacod and Protter show that the restrictions on the processes b and σ can be reduced
to b being locally bounded and σ cádlág. The explicit statement can be found in [[13], Theorem
5.6.1] where the assumption is that X is a continuous Itô semimartingale satisfying the above.
We simply state some additional assumptions to make the proof rely only on theory we have
presented.

2.4.2 Processes Embedded in a Brownian Motion

This subsection is based on [28], [23], and [40].

In the previous section we introduces semimartingales. Semimartingales are frequently used in
finance due to their flexibility and the fact that they provide a good basis for integration.

In this section our goal is to motivate the use of a time-changed Brownian motion. We show
the Dubins-Schwarz theorem and associated proof, which essentially tells us that any continuous
local martingale is a time-changed Brownian motion. We also refer to a theorem from Monroe,
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which states that any semimartingale can be represented as a time-changed Brownian motion.
However, while the first proof is constructive the latter is not.

We say that a process can be embedded into a Brownian motion if we can apply a time-change
which transforms the process to a Brownian motion.

In order to show the Dubins-Schwarz theorem we require the following lemmas. We include some
results in Appendix A.4 to keep the focus of the section on the Brownian embedding.

Lemma 2.12. Let M be a local martingale. Then M is a martingale with E
[
M2
t

]
<∞ for all

t ∈ [0,∞) if, and only if, E [[M ]t] <∞ for all t ∈ [0,∞). We then have E
[
M2
t

]
= E [[M ]t]

Lemma 2.12 allows us to identify true martingales and in a sense justifies the expression quadratic
variation.

Lemma 2.13. Let M be a local square integrable martingale, then [M ] is the unique process such
that with locally bounded variation satisfying

M2 − [M ],

is a local martingale.

Lemma 2.13 tells us that the quadratic variation is unique, but also tells us that M2 − [M ] is a
local martingale.

Lemma 2.14. Let M be a continuous local martingale, then [M ] is continuous a.s., and if
I ⊂ [0,∞) is an interval over which M is constant, then [M ] is constant a.s. on I. Conversely,
if I is an interval over which [M ] is constant, then M is constant on I.

Lemma 2.14 tells us, that if our process becomes constant on some interval, then the quadratic
variation will also become constant. That is, if the process is deterministic over some interval,
then the quadratic variation does not change on this interval.

Theorem 2.11 (Lévy’s Characterisation). Let M be a local-martingale with M0 = 0, then the
following are equivalent

1 M is a standard Brownian motion.

2 M has continuous sample paths and M2
t − t is a local martingale.

3 [M ]t = t

Theorem 2.11 is known as Lévy’s Characterisation of a Brownian Motion. In light of Lemmas
2.12, 2.13, 2.14 it should be no surprise. However, the theorem is extremely significant, as it
allows us to identify a Brownian motion.

Theorem 2.12 (Dubins-Schwarz Theorem). LetM be a continuous local martingale withM0 = 0

and whose quadratic variation satisfies [M ]t →∞ as t→∞ almost surely. Let

Ts = inf{t > 0 : [M ]t > s},
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and define Gs = FTs and Bs = MTs then B is a standard Brownian motion with respect to
(G)t∈[0,∞). Moreover, ([M ]t)t∈[0,∞) are stopping times for (Gt)t∈[0,∞) and

Mt = B[M ]t , a.s., ∀t ∈ [0,∞).

Proof. Note that (Tt)t∈[0,∞) are stopping times, and Tt is finite almost surely by hypothesis,
since limt→∞[M ]t = ∞ almost surely. Hence Gt is a well-defined σ-algebra. Furthermore note
that {ω | [M ]t(ω) ≤ s} is equal to {ω | Ts(ω) ≥ t} by construction, and so ([M ]t)t∈[0,∞) are
stopping times for the filtration (Gt)t∈[0,∞).

By Lemma 2.12 we have E
[
M2
Ts

]
= E [[M ]Ts ] = s < ∞, since [M ]Ts = s by the continuity,

which follows from Lemma 2.14. Furthermore,

E [Bt −Bs | Gs] = E [MTt −MTs | FTs ] = 0,

which follows from Theorem A.4 and since we have [M ]t →∞ as t→∞ we obtain that B is a
local martingale, since clearly Ts ≤ Tt almost surely and Tt →∞ as t→∞.

E
[
B2
t −B2

s | Gs
]

= E
[
(Bt −Bs)2 | Gs

]

= E
[
(MTt −MTs)

2 | FTs
]

= E [[M ]Tt − [M ]Ts | FTs ]
= t− s

It follows that E
[
B2
s

]
− s is a martingale, and so [B]s = s and so by Theorem 2.11 we obtain

that B is a standard Brownian motion with respect to (Gt)t∈[0,∞); the sample path continuity
follows by the converse of Lemma 2.14.

We must now show that Mt = B[M ]t . Note that Bt = MTt and by the continuity of [M ] it
follows that B[M ]t = BT[M ]t

a.s. Now, (Tt)t∈[0,∞) ≥ t for all t with Tt = t if, and only if, t is
a point of increase, i.e. a point t such that all ε > 0 we have Tt+ε > Tt. But now note that if
T[M ]t > t implies t 7→ [M ]t is constant on (t, T[M ]t) and therefore M is constant on (t, T[M ]t) by
Lemma 2.14 and it follows that MT[M ]t

= Mt a.s. which then implies B[M ]t = Mt a.s. �

In general, the requirement that limt→∞[M ]t = ∞ is not very restrictive. Revuz and Yor show
that in the case limt→∞[M ] = M∞ < ∞ we can extend our probability space in a certain way
such that any continuous local martingale is a time-changed Brownian motion on an extension,
see [[31], Theorem (1.7)].

A much stronger result which we will not prove is given by Monroe in [23].

Theorem 2.13. Let X be a semimartingale then X is equivalent to time-changed Brownian
motion on a suitably extended probability space. That is, there exists a process of stopping times
(Tt)t∈[0,∞) on on the extended space such that

Xt = WTt

The proof is beyond the scope of this thesis and we refer to [23] for a proof.

Rather than a proof, consider the following thought experiment for the finite dimensional
distribution of a semimartingale X defined on a filtered probability space

(
Ω,F , (Ft)[0,∞) ,P

)
.
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Let τ = (t1, t2, . . . , tn) ⊂ [0,∞) with ti < ti+1 for i in {1, 2, . . . , n − 1} and Xτ =

(Xt1 , Xt2 , . . . , Xtn). Let W be a Brownian motion on a separate probability filtered space,(
Ω∗,F∗, (F∗t )t∈[0,∞),Q

)
independent of the underlying probability space of X. Now, consider

the hitting times

Tn(ω∗, ω) = inf{t > 0 |Wt(ω
∗) ∈ [Xtn(ω),∞)},

on the extension Ω = Ω∗×Ω. While this interpretation is in no way rigorous, one can imagine that
simply waiting for the Brownian motion to hit the right value is a valid strategy and Theorem 2.13
justifies the claim to some extent.

A final remark to this section is that Monroe showed the statement conversely, i.e. X is a
semimartingale only if there exists an extension for which is is a time-changed Brownian motion.
The application is yet much less obvious. Suppose we are given a sample (Xt1 , Xt2 , . . . , Xtn) we
could perform the numerical work an simulate paths of a Brownian motion to estimate the laws
of (Tti)

N
i=1. However, if the values are excessive, then the likelihood that any algorithm would

ever complete a reasonable approximation is very low.

In general, one can now define semimartingales and martingales by the converse of Theorem 2.12
and Theorem 2.13. In the literature there are primarily two types of time-changes which are
studied. The first being the so-called subordinators. They are Lévy processes, i.e. stationary
processes starting at 0 with independent increments and which are continuous in probability,
with the added requirement that they are almost surely increasing, see, e.g., [1].

The second type, which we will focus on, are processes T which are either continuous and
strictly increasing with T0 = 0 or strictly increasing, and absolutely continuous with respect to
the Lebesgue measure. To motivate the use of these models, consider the following. We take
a Brownian motion W and an independent process ν which is cádlág and non-negative almost
surely. Then we define a process

Xt =

∫ t

0
νsdWs, t ≥ 0.

The quadratic variation of this process is given by

[X]t =

∫ t

0
ν2
sds, t ≥ 0.

Now, define Tt = [X]t and note that T is absolutely continuous with respect to the Lebesgue
measure. Furthermore, by Dubins-Schwarz we have

Xt = W ′Tt , t ≥ 0,

where W ′ is a Brownian motion. It should be no surprise that W ′ and Tt are independent in this
case. We will not prove this, but refer to [[40], Corollary 2]. It follows that X is a continuous
local martingale by the Dubins-Schwarz theorem. Given the previous results, we may estimate
Tt using the realised variance.
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2.4.3 Copulas and Finite Dimensional Distributions

Suppose we wish to analyse a stochastic process X = (Xt)t∈T . Many applications do not
require complete knowledge of X but rather only the distribution of X in certain times and the
dependence.

(Xt1 , Xt2 , . . . , Xtn). (2.29)

There are several ways to go about analysing (2.29). We previously presented the so-called
Skorokhod space D(T ;R) for which we can make sense of (2.29) in terms of a canonical projection
onto Rn and since the Skorokhod space is infinite dimensional while (2.29) is finite dimensional
we refer to the distribution of (2.29) as a finite dimensional distribution of X.

It is no surprise that for many stochastic processes the most valuable information comes from
deriving the distribution of

(Xs, Xt), s < t.

We previously showed, a large class of stochastic processes may be embedded in the Brownian
motion under a time change. That is, letW be a standard Brownian motion, then many processes
may be described by

Xt = WTt .

for some appropriate time-change T . Therefore, we wish to find the copula between the same
Brownian motion at two distinct times.

Theorem 2.14. Let W be a Brownian Motion and s < t, then the copula of (Ws,Wt) is given
by

CWs,t(u, v) =

∫ u

0
Φ

(√
tΦ−1(v)−√sΦ−1(w)√

t− s

)
dw

Proof. Note that by the independent increments and stationarity we have

P(Wt ≤ x |Ws = y) = P(Wt −Ws ≤ x− y).

By virtue of Theorem 2.1 we have

CWs,t

(
Φ

(
y√
s

)
,Φ

(
x√
t

))
= P(Wt ≤ x,Ws ≤ y)

=

∫ y

−∞
P(Xt ≤ x | Xs = z)dΦ

(
z√
s

)

=

∫ y

−∞
Φ

(
x− z√
t− s

)
dΦ

(
z√
s

)

Using the change of variables v = Φ
(
x√
t

)
and u = Φ

(
y√
s

)
we obtain

CWs,t(u, v) =

∫ u

0
Φ

(√
tΦ−1(v)−√sΦ−1(w)√

t− s

)
dw

�

We would like to remark that CWs,t is indeed a copula; we only consider the marginals the other
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requirements of Proposition 2.3 are clear. Clearly,

CWs,t(0, v) = CWs,t(u, 0) = 0.

Furthermore, for the identities CWs,t(u, 1) = u and Cs,t(1, v) = v follows essentially from the proof
of Theorem 2.14.

We will now abuse the notation [X] slightly. That is, we will take a process [X] which is
continuous and strictly increasing with [X]0 = 0 almost surely and define a process X by time-
changing an independent Brownian motion using [X]. Hence [X] will coincide with the quadratic
variation and justify the abuse of notation. While the argumentation becomes rather circular,
we feel that the notation is suitable for interpreting the presented results and relating the result
to the Dubins-Schwarz theorem.

Corollary 2.4. Let X be a continuous local martingale of the form

Xt = W[X]t , t ≥ 0.

where W is a Brownian motion and [X] is a strictly increasing, continuous process independent
of W with [X]0 = 0. Let s < t. Then the conditional copula of (Xs, Xt) given ([X]s, [X]t) is
given by

CXs,t(u, v | [X]s, [X]t) =

∫ u

0
Φ

(√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s

)
dw.

Proof. By Theorem 2.12 we have that Xt = W[X]t for some Brownian motion. Hence, by
Theorem 2.14 and independence between [X] and W we have

CXs,t(u, v | [X]s, [X]t) = CW[X]s,[X]t
(u, v).

�

Remark: In particular the copula will allow us to model

P(Xt ≤ x,Xs ≤ y | [X]t = b, [X]s = a) = CXs,t

(
Φ
(x
b

)
,Φ
(y
a

)
| [X]s = a, [X]t = b

)

In the event that [X] is non-random, for instance in the case of the Brownian motion, then CXs,t
is the unconditional copula of (Xs, Xt).

Lemma 2.15. Under the assumptions of Corollary 2.4 the copula of (Xs, Xt) given ([X]s, [X]t)

admits the following limit as s→ t or t→ s:

lim
|t−s|→0

CXs,t(u, v | [X]t, [X]s) = min(u, v).

Proof. By assumption [X] is continuous and strictly increasing, hence

lim
|s−t|→0

1√
[X]t − [X]s

=∞.

Furthermore, we have that

lim
s→t

√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w) =

√
[X]t(Φ

−1(v)− Φ−1(w))

and similarly
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lim
t→s

√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w) =

√
[X]s(Φ

−1(v)− Φ−1(w)).

The result is that

lim
|t−s|→0

√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s
=





∞ v > w

−∞ v < w

0 v = w

Now,

lim
|t−s|→0

Φ

(√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s

)
=





1 v > w

0 v < w

0.5 v = w

.

Note that {(w, v) | w = v} has Lebesgue measure 0, and hence

lim
|t−s|→0

Φ

(√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s

)
= 1[w,1](v), almost everywhere.

Clearly, the 1[w, 1](v) is bounded and we may apply the Dominated Convergence Theorem to
obtain.

lim
|t−s|→0

∫ u

0
Φ

(√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s

)
dw =

∫ u

0
1[w,1](v)dw = min(u, v).

�

Lemma 2.15 is quite intuitive. As |t − s| → 0 we are essentially asking what is the probability
that Xt is both less than or equal to

√
[X]tΦ

−1(u) and
√

[X]tΦ
−1(v) which should correspond

to the minimum of the two. It may also be beneficial to define the copula CXs,t(u, v) = min(u, v)

for s = t.

Now, another interesting observations is the following

Lemma 2.16. Under the assumptions of Corollary 2.4 the copula of (X0, Xt) given [X]t is given
by

CX0,t(u, v) = u · v, t > 0, almost surely.

Proof. Note that almost surely we have [X]0 = 0, hence

CX0,t(u, v) =

∫ u

0
Φ

(√
[X]tΦ

−1(v)√
[X]t

)
dw =

∫ u

0
vdw = u · v.

�

We now present a generalisation to a larger class of processes.

Theorem 2.15. Let X be a semimartingale of the form

Xt = X0 +At +W[X]t , t ≥ 0,

where At is a process of locally bounded variation, [X] is a continuous, strictly increasing process
with [X]0 = 0 and W a Brownian motion. Assume that X0, A and [X] are independent of W .
Then, the conditional copula of (Xs, Xt) given Gs,t = (As, At, [X]s, [X]t, X0) is
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CXs,t(u, v | Gs,t) =

∫ u

0
Φ

(√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s

)
dw.

Proof. Note that

P(Xt ≤ x | Xs = y,Gt,s) = Φ

(
x− y − (At −As)√

[X]t − [X]s

)
,

Similar to the martingale case we now have

DuC
X
s,t(Fs(y), Ft(x) | Gs,t) = P(Xt ≤ x | Xs = y,Gt,s) = Φ

(
x− y − (At −As)√

[X]t − [X]s

)
,

with

Ft(x) = P(Xt ≤ x | Gt,s) = P(Xt ≤ x | X0, At, [X]t) = Φ

(
x−X0 −At√

[X]t

)
,

and similarly for Fs. Now,

CXs,t(Fs(y), Ft(x)) =

∫ y

−∞
Φ

(
x− z − (At −As)√

[X]t − [X]s

)
dFs(z).

Applying the change of variables u = Fs(y) and v = Ft(x) yields

CXs,t(u, v) =

∫ u

0
Φ

(√
[X]tΦ

−1(v) +At +X0 −
√

[X]sΦ
−1(w)−As −X0 − (At −As)√

[X]t − [X]s

)
dw

(2.30)

=

∫ u

0
Φ

(√
[X]tΦ

−1(v)−
√

[X]sΦ
−1(w)√

[X]t − [X]s

)
dw. (2.31)

�

Remark: While it may seem surprising that the copula is the “same” as in the martingale case
note that all we’re doing is conditioning until we are left with essentially the Brownian part of
our process. Also note that the assumptions here may very well be relaxed, but it will suffice for
our purposes.

We now have an immediate application of these copulas, namely simulation. We need to be able
to simulate from the copula CWs,t(u, v), but note that

P(V ≤ v | U = u) = DuC
W
s,t(u, v) = Φ

(√
tΦ−1(v)−√sΦ−1(u)√

t− s

)
.

Now, let w ∈ (0, 1), then

w = Φ

(√
tΦ−1(v)−√sΦ−1(u)√

t− s

)
⇐⇒ v = Φ

(√
t− sΦ−1(w) +

√
sΦ−1(u)√

t

)
.

We define

QWs,t(u,w) = Φ

(√
t− sΦ−1(w) +

√
sΦ−1(u)√

t

)
.

The asymptotic behavior of w ∈ {0, 1} can be recovered by extending Φ onto R∪{∞,−∞} with
Φ(∞) = 1. It then follows that w = 1 if, and only if v = 1, and similarly w = 0 if, and only if,
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v = 0 - since DuC
W
s,t is only defined for u ∈ (0, 1). Note that the inverse is defined even in the

point t = s.

To simulate from CWs,t first we simulate Ũ , U ∼ Unif([0, 1]). By Proposition 2.2 we can now take

V = QWs,t(U, Ũ),

then (U, V ) ∼ CWs,t . Now, let X be a process of the form

Xt = WTt , t ≥ 0,

where T is an almost surely increasing process and W is a Brownian motion independent of T .
Then, we may define

QXs,t(u,w | Ts, Tt) = Φ

(√
Tt − TsΦ−1(w) +

√
TsΦ

−1(u)√
Tt

)
. (2.32)

Of course, this applies to a continuous local martingale when the quadratic variation is
independent of the Brownian motion. The same holds true for semimartingales of the form
presented in Theorem 2.15. The only change here is that the marginals needed for inverting the
pair (U, V ) ∼ CXs,t(· | Ts, Tt) will change. We now present a sampling algorithm.

Algorithm 1 Sampling Algorithm
Sampling a path from a time changed Brownian motion on an equidistant mesh over [0, T ].
Let 0 = t0, T = tn and ti = i(T/n) for i in 1, 2, . . . , n. We assume an initial sample of an
appropriate independent time-change (Tti)

n
i=1 with Tt0 = 0 and initial value Xt0 . Furthermore,

we assume the desired marginals (Fti)
n
i=1 is known.

U0 = 1
for i ∈ {1, 2, . . . , n} do
if Tti = Tti−1 then
Ui = Ui−1

Xti = Xti−1

else
Wi ∼ Unif([0, 1])
Ui = Qs,t(Ui,Wi | Ti, Ti−1)
Xti = F−1

ti
(Ui)

end if
end for
return (Xt0 , Xt1 , Xt2 , . . . , Xtn)

Note that the mesh need not be equidistant, in fact any mesh will suffice.
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3

Results

In this chapter we present an estimator of the copula of time-changed Brownian motion. In
particular, we will assume that the process is related to the Dubins-Schwarz theorem by being a
continuous local martingale represented by a time-changed Brownian motion, with the additional
assumption that the time-change is independent of the Brownian motion.

Afterwards, we present a limit theorem in related, but rather restricted, setting. Here, we will
assume that the time-change is deterministic and absolutely continuous with respect to the
Lebesgue measure.

We will then analyse the results provided numerically to investigate whether the limits may be
enhanced.

We propose the natural estimator defined by

ĈXn
s,t (u, v) =





min(u, v) [̂X]
n

s = [̂X]
n

t

∫ u
0 Φ

(√
[̂X]

n

t Φ−1(v)−
√

[̂X]
n

s Φ−1(w)√
[̂X]

n

t −[̂X]
n

s

)
dw [̂X]

n

s < [̂X]
n

t ,
(3.1)

3.1 Limit Theorems

In this section we provide the relevant limit theorems for the estimator (3.1). We first consider a
process defined by Brownian motion time-changed by a continuous and strictly increasing process
independent of the Brownian motion. We first assert the consistency of our estimator.

Theorem 3.1. Let X be a continuous local martingale defined by

Xt = W[X]t , t ≥ 0, (3.2)

where W is a Brownian motion and [X] is a continuous, strictly increasing process independent
of W with [X]0 = 0. Let [̂X]

n
denote the realised variance of X on an equidistant mesh over

[0, T ]. Then we have
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lim
n→∞

sup
t∈[0,T ]
s∈[0,t]

|ĈXn
s,t (u, v)− CXs,t(u, v)| = 0, in probability,

for every (u, v) ∈ [0, 1]2, where ĈXn
s,t is defined by (3.1).

Proof. Note, that by Proposition 2.3 and the fact that both CXs,t(u, v) and ĈXn
s,t (u, v) are copulas

in u, v we have that the boundary convergence is ensured, i.e.

CXs,t(u, v) = ĈXn
s,t (u, v), ∀(u, v) ∈ ∂[0, 1]2,

with ∂[0, 1]2 being [0, 1]×{0} ∪ [0, 1]×{1} ∪ {0}× [0, 1]∪ {1}× [0, 1]. Hence, it suffices to show
for (u, v) ∈ (0, 1)2. Hence, fix (u, v) ∈ (0, 1)2. Now, define

g(s, t) =





min(u, v) s ≥ t
∫ u

0 Φ
(√

tΦ−1(v)−
√
sΦ−1(w)√

t−s

)
dw s < t

Note that the function is continuous on [0, T ] × [0, T ]; in the case s > t it is trivial. For s < t

note that it is a composition of continuous function and s = t follows from Lemma 2.15. By
Lemma 2.8 it extends to a mapping Ψg : D([0, T ];R)2 → D([0, T ]2;R) which is continuous
between D([0, T ];R)2 endowed with the product supremum metric and D([0, T ]2;R) endowed
with the supremum metric. By, Lemma 2.11 we have

[̂X]
n u.c.p.⇒ [X].

By Theorem 2.7 and the continuity of Ψg we have

Ψg([̂X]
n
, [̂X]

n
)
u.c.p⇒ Ψg([X], [X]), in D([0, T ]2;R),

but Ψg([X], [X])(s, t) = CXs,t(u, v) for s ≤ t, and the result immediately follows. �

Theorem 3.1 tells us that we may consistently estimate the conditional copula of (Xs, Xt) given
([X]s, [X]t) by using the realised variance.

We now wish to provide a limit theorem in a very restricted case. In order to do so we consider
a process X which has the representation

X = WTt , t ≥ 0, (3.3)

Where Tt is a strictly increasing and deterministic process. Furthermore, we assume that T is
absolutely continuous and that there is σ bounded such that

Tt =

∫ t

0
σ2
rdr, t ≥ 0.

We remark that these assumptions are very restrictive. We will later discuss how certain
assumptions may be relaxed.

Theorem 3.2. Let X be a process which admits the representation

Xt = WTt , t ≥ 0,

and Tt be a deterministic, strictly increasing and absolutely continuous function satisfying
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Tt =

∫ t

0
σ2
rdr, t ≥ 0

for some bounded σ. Let f ∈ C1(O;R) where O ⊆ [0,∞)2 is open and non-empty. Fix
s < t ∈ [0,∞). Let

Y = (Ts, Tt) , Yn = ([̂X]
n

s , [̂X]
n

t ),

and assume Y ∈ O. Then,
√
n(f(Yn)− f(Y ))

LS→
√
Vs,tZ, Z,

Z is defined on a very good filtered extension of
(

Ω,F , (Ft)[0,∞) ,P
)
and

Vs,t = 2∇f(Y )

[∫ s
0 σ

4
rdr

∫ t
s σ

4
rdr∫ t

s σ
4
rdr

∫ t
0 σ

4
rdr

]
∇f(Y )>,

where ∇f is the gradient of f and ∇f(Y )> is the transpose of ∇f(Y ).

Proof. To avoid confusion, all vectors are considered as “row vectors”, therefore if x ∈ R2 is a
vector then xx> ∈ R and x>x ∈ R2×2, where x> denotes the transpose of x.

First, by the Taylor’s Theorem, or the Mean-Value Theorem, we have

f(Yn)− f(Y ) =

(∫ 1

0
∇f(Y + h(Yn − Y ))dh

)
(Yn − Y )>.

By Theorem 2.9 we have
1√
∆n

([̂X]
n
− T )

LS⇒ Z,

since [X] = T . The limit Z is defined on a very good filtered extension of
(

Ω,F , (Ft)[0,∞) ,P
)

and is F conditionally centered Gaussian with second moment

E
[
Z2
t | F

]
= 2

∫ t

0
σ4
rdr.

In particular, this yields
1√
∆n

(Yn − Y )
LS→ (Zs, Zt),

where (Zs, Zt) is an F conditional centered Gaussian with second moment

E
[
(Zs, Zt)

>(Zs, Zt) | F
]

= 2Qs,t,

where

Qs,t =

[∫ s
0 σ

4
rdr

∫ t
s σ

4
rdr∫ t

s σ
4
rdr

∫ t
0 σ

4
rdr

]
.

Now, it suffices to show
∫ 1

0
∇f(Y − h(Yn − Y ))dh

P→ ∇f(Y ),

since the continuous mapping theorem for stable convergence in law then yields the desired result.
Since σ is bounded by assumption, the paths of
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Tt =

∫ t

0
σ2
sds

are Lipschitz continuous. In particular, it follows from [[9], Theorem 4.5]1 that for 0 < s < t we
have

Yn
a.s.→ Y.

Now, since we have by assumption that Y ∈ O we have can find a radius r > 0 such that open
ball Br(Y ) ⊆ O. Now, let Ωs,t = {ω ∈ Ω | Yn(ω) → Y }. Clearly, this set has probability one.
Now, for every ε such that r > ε > 0, there is an n0, which depends on ω, such that

‖Yn(ω)− Y ‖ < ε, ∀n ≥ n0(ω), ω ∈ Ωs,t.

By the convexity of a sphere this immediately implies

Y + h(Yn(ω)− Y ) ∈ Bε(Y ), ∀h ∈ [0, 1], n ≥ n0(ω), ω ∈ Ωs,t,

and in particular we can find a compact set Kω ⊆ O such that Y + h(Yn(ω)− Y ) ∈ Kω. By the
continuity of ∇f on O, and by extension Kω, we get that ∇f(Y +h(Yn(ω)−Y ) is almost surely
bounded for ever h ∈ [0, 1], n ≥ n0(ω), and ω ∈ Ωs,t. The Dominated Convergence theorem then
yields

∫ 1

0
∇f(Y + h(Yn(ω)− Y ))dh→ ∇f(Y ), ∀ω ∈ Ωs,t.

Since P(Ωs,t) = 1 we have convergence in probability. By Lemma 2.9 we have the joint stable
convergence and by Lemma 2.10 we have

1√
∆n

(f(Yn)− f(Y ))
LS→ ∇f(Y )(Zs, Zt)

>.

Now, conditional on F we have that (Zs, Zt)
> was centered Gaussian. We now have that the

second moment of ∇f(Y )(Zs, Zt)
> is given by

2∇f(Y )Qs,t∇f(Y )>

�

Note that the theorem is severely restricted. We will later discuss how some of the restrictions
may be lifted. In order to apply the result to our estimator we will make use of the function

g(s, t) =

∫ u

0
Φ

(√
tΦ−1(v)−√sΦ−1(w)√

t− s

)
dw, (3.4)

which was also applied in Theorem 3.1. Note that g is differentiable on the open set

O = {(s, t) | t ∈ 0 < s < t}. (3.5)

with gradient
1The theorem is quite different from the rest of the thesis, and we choose to omit it. Essentially, due to the

Lipschitz paths they induce a partition with of order o(1/ log(n)), on which we have almost sure convergence for
the quadratic variation of a Brownian motion.
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∇g(s, t)> =




∂g(s, t)

∂s

∂g(s, t)

∂t


 (3.6)

=




∫ u
0 ϕ

(√
tΦ−1(v)−

√
sΦ−1(w)√

t−s

)(
Φ−1(v)

2
√
t(t−s)

−
√
tΦ−1(v)−

√
sΦ−1(w)

2
√
t−s3

)
dw

∫ u
0 ϕ

(√
tΦ−1(v)−

√
sΦ−1(w)√

t−s

)(√
tΦ−1(v)

√
sΦ−1(w)

2
√
t−s3

− Φ−1(w)

2
√
s(t−s)

)
dw



. (3.7)

Where ϕ is the density function of a standard Gaussian. Note that (3.7) specifies the transpose
of ∇g such that it is a “row vector” in concordance with the remark in the proof of Theorem 3.2.
Now, with the gradient we have the immediate corollary.

Corollary 3.1. Under the assumptions from Theorem 3.2 we have for fixed (u, v) ∈ (0, 1)2 and
(Ts, Tt) ∈ O, with O defined by (3.5), then

1√
∆n

(CXn
s,t (u, v)− CXs,t(u, v))

LS→
√
Vs,tZ

where Z is defined on a very good filtered extension and is F conditionally standard Gaussian.
Vs,t is given by

Vs,t = 2∇g([X]s, [X]t)Qs,t∇g([X]s, [X]t)
>,

where ∇g is given by (3.7) for the fixed (u, v) and Qs,t is as in Theorem 3.2.

We would like to remark that there are some obvious caveats here; ∇g for fixed (u, v) ∈ (0, 1)2

has some cases where it may explode. Of course, our restriction to the open set {(s, t) | 0 < s <

t < T} alleviates these, but for all practical purposes it is still an issue. In particular the case
s ≈ 0 or s ≈ t causes immediate problems, as these will cause the gradient to explode. Likewise,
if (u, v) tend towards ∂[0, 1]2 the gradient may explode.

Now, we may very well estimate Vs,t to provide a standardised limit theorem. In order to ease
notation we define

Q̂t =
1

3∆n

[t/∆n]∑

i=1

(|Xti −Xti−1 |)4,

recall that under certain restrictions it converges uniformly on compacts in probability to

Q̂t
u.c.p.⇒

∫ t

0
σ4
rdr. (3.8)

By assumption σ is bounded in our case, and so we meet the assumptions for the convergence
(3.8).

Lemma 3.1. Under the assumptions of Theorem 3.2, we define

V̂s,t = 2∇f(Yn)Q̂s,t∇f(Yn)>,

where

55



Q̂s,t =

[
Q̂s Q̂t − Q̂s

Q̂t − Q̂s Q̂t

]
,

with Q̂t defined by (3.8). Then
1√

∆nV̂s,t

(f(Yn)− f(Y ))
LS→ Z,

where Z is defined on a very good filtered extension and is F conditionally standard Gaussian.

Proof. The proof follows directly from the fact that V̂s,t
P→ Vs,t. Applying Lemma 2.9 and

Lemma 2.10 yields the desired. �

The immediate result is that we may estimate the variance of our copula estimate. Note that for
certain steps we may have [̂X]

n

s = [̂X]
n

t in which ∇g is not well defined, which is of course quite
restrictive for practical purposes. Furthermore, numerical stability is again a concern. We would
like to remark that the the boundaries s = 0 ans s = t are quite uninteresting from a modelling
perspective; in the case s = 0 we showed that it corresponds to the independence copula, and so
one would, or rather should, not use the copula estimate in this case. Similarly, when s = t we
showed that the copula reduces to the minimum of (u, v). Again, from the modelling perspective,
this situation is rather uninteresting.

For fixed (u, v) ∈ (0, 1)2 we define our variance estimator as

V̂s,t = 2∇g([̂X]
n

s , [̂X]
n

t )Q̂s,t∇g([̂X]
n

s , [̂X]
n

t )>. (3.9)

In summary, the result is that
1√

∆nV̂s,t

(CXn
s,t (u, v)− CXs,t(u, v))

LS→ N,

for N on a suitable extension and fixed (u, v). Furthermore, N is F conditionally standard
Gaussian.

3.2 Numerical Analysis

We now apply numerical analysis to investigate whether the result can be generalised to stochastic
volatility. We are interested in both the rate of convergence and whether Corollary 3.1 remains
valid. Furthermore, we wish to estimate the rate of convergence for an enhanced problem, i.e.

sup |ĈXn
s,t (u, v)− CXs,t(u, v)|

s.t. (u, v) ∈ [0, 1]2

t ∈ [0, 1]

s ∈ [0, t]

. (3.10)

In this case our assumption is that we do not have to fix (u, v) ∈ [0, 1]2 as is the case for
Theorem 3.1, but rather that the convergence is also uniform over (u, v) ∈ [0, 1]2. For practical
purposes we implement the following problem, which is equivalent to (3.10).
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sup |ĈXn
s,s+∆(u, v)− CXs,s+∆(u, v)|

s.t. (u, v) ∈ [0, 1]2

∆ ∈ [0, 1]

s ∈ [0, 1−∆]

. (3.11)

In order to ease notation we define ρ(ĈXn , CX) to mean 3.11. Now, to estimate the rate of
convergence we employ the following:

E[ρ(ĈXn , CX)] ≤ Kn−γ

which implies

log(E[ρ(ĈXn , CX)]) ≤ log(K)− γ log(n). (3.12)

We sample a process from the so-called Cox-Ingersoll-Ross, abbreviated CIR, model, which
follows the stochastic differential equation

dVt = κ(θ − Vt)dt+ σ
√
VtdWt, V0 = v0,

where κ is the rate of mean reversion, θ is the long-run mean and σ is the volatility of the CIR
process. The mean reversion is present due to the fact that if Vt > θ, then the drift term becomes
negative, assuming κ > 0, hence forcing the process closer to θ. In order for the process to stay
positive, it must satisfy the so-called Feller condition. That is,

2κθ > σ2,

which ensures that the process is positive. We simulate a path from the process and define the
process X as

Xt =

∫ t

0

√
VtdW

′
t ,

where W is some Brownian motion independent of V . We then have

[X]t =

∫ t

0
Vtdt.

We consider equidistant discretisations of the process X over the interval [0, 1] with 10n points
for n ∈ {100, 1000, 10000, 100000}. We sample 1000 paths for each disretisation scheme. We
simulate paths under the parameters described in Table 3.1.

Parameter κ θ σ V0

Value 0.5 1.5 1 1.5

Table 3.1: Parameters of the CIR model.

We initially consider the rate of convergence and compute the quantity ρ(ĈXn , CX). We calculate
a density estimate of the results and plot them alongside the mean, mode, and 1/

√
n to visually

inspect the distribution of ρ(ĈXn , CX).

From Figure 3.1 we see that the mean is skewed towards the lower tail, this is caused by values
much closer to 0 than depicted in Figure 3.1. Furthermore, we see that as the number of points
per path increase, the distribution of ρ(ĈXn , CX) will shift towards 0, with a decrease in variance;
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the scales on Figure 3.1 are both logarithmic, so the entire scale is decreased as the number of
points per path increases.

Next, we estimate the regression coefficients using (3.12). The results are presented in Table 3.2.
Furthermore, we apply a bootstrapping procedure to obtain the confidence quantiles of our
estimate.
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Figure 3.1: Density estimate of ρ(CXn , CX).

Estimate of both K and γ

Confidence Quantiles
Variable Estimate 0% 25% 50% 75% 100%

γ 0.5279 0.5708 0.5356 0.5283 0.5209 0.4813
K 0.4965 0.3629 0.4696 0.4967 0.5258 0.6816

Estimate of γ with K = 0

Confidence Quantiles
Variable Estimate 0% 25% 50% 75% 100%

γ 0.6067 0.6206 0.6096 0.6071 0.6043 0.5903

Estimate of K with γ = 1/2

Confidence Quantiles
Variable Estimate 0% 25% 50% 75% 100%

K 0.3966 0.3525 0.3875 0.3956 0.4042 0.4513

Table 3.2: Regression parameters for the order of convergence.

From Table 3.2 we see that based on the bootstrapping procedure we cannot see that the estimate
for γ is roughly 1/2, implying that the order of convergence could be 1/2. Hence, it may indicate
that even in the case of stochastic volatility the rate of convergence is proportional to 1/

√
∆n.

The visual inspection in Figure 3.2 seems to agree with the estimation. Therefore, it is not

58



unlikely that the order of convergence is roughly 1/2 implying a rate of convergence proportional
to 1/

√
∆n.

10−1

10−2

10−3

10−4

10−5

102 103 104 105

Number of Points per Path (n)

ρ
(Ĉ
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Figure 3.2: Depiction of the rate of convergence.

We now wish to verify Corollary 3.1 for stochastic volatility. In order to investigate, we
calculate the variance estimator presented in (3.9) and provide a quantile-quantile plot against
the theoretical quantiles of a standard Gaussian distribution.
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Figure 3.3: Quantile-Quantile Plot of Standardised Errors with s = 0.3, t = 0.7, u = 0.4, v = 0.6.

From Figure 3.3 we see that the distribution indeed does seem like it is Gaussian. We now
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consider an example where |t − s| tends towards 0. Figure 3.4 does not seem to indicate a
Gaussian limit. As discussed, the limit is very sensitive to the boundaries s ≈ t and s ≈ 0. In
both cases inspection of the gradient may yields a partial answer, with the gradient in question
being (3.7). Note that in (3.7) we have denominator terms such as

√
t− s3 and

√
s(t− s).

These terms seem in particular troublesome, since they will tend to 0 quite fast in the cases
s ≈ t and s ≈ 0. From the figures 3.3 and Figure 3.4, we conclude that while the limit may be
Gaussian, then the number of points required per path for the Gaussian distribution to become
valid depends very much on which (s, t) and (u, v) one wishes to investigate. To some extend
this was expected.
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Figure 3.4: Quantile-Quantile Plot of Standardised Errors with s = 0.45, t = 0.55, u = 0.4,
v = 0.6.
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4

Financial Theory

This section is based on [13] and [33].

We start with the definition of a financial market.

Definition 4.1 (Financial Market)
Let T ∈ (0,∞). Let

(
Ω,F , (Ft)[0,T ] ,P

)
be a filtered probability space satisfying the usual

conditions. Let SM be the space of semimartingales on the probability space.

Numéraire: Let A ∈ SM. A is said to be a numéraire if

P(At > 0, ∀t ∈ [0, T ]) = 1.

Financial Market: Let P ⊂ SM be a finite collection of of n+1 semimartingales; n assets
Si, i ∈ {1, 2, . . . , n} and a unique numéraire A. A finite horizon financial market is the pair

M =
((

Ω,F , (Ft)[0,T ] ,P
)
, P
)
.

Intuitively, the numéraire is the risk-free assets which could either be the interest rate from a
bank or government bonds.

Now, there are several ways to consider a portfolio mathematically. One may think of them as
weights, and for non-temporal treatments such as Markowitz portfolio theory, this works well. In
a sense, we wish to generalise this thought. However, we now need our “weights” to be processes
themselves.

Let us consider a single asset S assumed to be semimartingale. Suppose we wish to buy the asset
at time t1 and sell it at time t2. Our portfolio would then satisfy

1(t1,t2](t)St, ∀t ∈ [0, T ].

If we wish to know our accumulated profit or loss, then we can do this via integration, in this
particular instance we have a simple integrand and so

∫ t

0
1(t1,t2](s)dSs = 1(t1,t2] • St = St2 − St1 .
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Such a strategy is called a buy-and-hold strategy. Now, more sophisticated strategies can be
approximated by buy-and-hold strategies which may be random. Here stopping times may
naturally occur. For instance, a so-called stop-loss strategy may be implemented by the use of
the stopping time

τ(ω) = inf{t ∈ [0, T ] | St(ω) ≤ K}, K ∈ R

Here K is some level at which the investor does not want to hold the asset. In general, we will
assume that the portfolio or integrands are S integrable and that they are predictable. The
predictable requirement must intuitively be satisfied since else the investor would be able to
follow spontaneous movements in the market. In other words, the investor has to know what he
is going to do at time t prior to time t.

Through the previous sections, we also know that simple integrands form a basis for stochastic
integration. Hence, it would seem that the theory aligns perfectly with the mathematical theory.
However, recall that we extended our definition beyond simple integrands to processes which are
locally bounded and predictable in Theorem 2.8. If we allow these arguably more sophisticated
class of strategies, then some problems arise.

One problem is the so-called doubling strategies. Consider a game where we bet on a fair coin
showing heads. If we bet $X and the coin shows head, we receive $2X, and if it shows tails, we
get $0. Suppose we start with betting $1 and if we win then we get $2 and hence $1 profit. If we
lose, then we bet $2 and our total investment amounts to $3, if we then win then we get $4 and a
$1 profit, else we double our investment again. Since heads will eventually show up given that the
probability is strictly greater than 0, then this strategy will, with probability 1, yield $1 profit.
The strategy requires infinite capital, which is unrealistic. This particular gambling example
is called a martingale. The problem is solved mathematically by defining so-called admissible
strategies.

Definition 4.2 (Admissible Strategies)
Let

(
Ω,F , (Ft)[0,T ] ,P

)
be a probability space and S a semimartingale. We say that a

predictable process H is admissible or an admissible strategy for S if

H • S is well defined.

and there exists a constant M > 0

H • St ≥ −M, ∀t ∈ [0, T ]

The constant M may be thought of as a margin of leverage. In finance many brokers or banks
utilise margin-calls exactly as in Definition 4.2.

Margin calls are typically used in the following context. Suppose an investor finances his
investment partially with equity and partially with a loan. He will need to make payments
on his loan since it is an independent financial contract. Now suppose he buys into an asset S
with half financed by equity and half financed by a loan. Assume that the investment drops in
value that is St1 > St2 where t1 < t2 - this is similar to a losing streak of tails in the doubling
strategy. From the investors perspective, this means that his equity has dropped in value, but
his loan remains the same. If the investment drops too much in value the bank, or broker, will

62



call for extra margin to even the level between equity and loan. Otherwise, the bank will carry
all the risk.

While there are several other reasons, we will use margin calls to motivate why an investor is
interested in not only forecasting his expected return but is interested in forecasting the entire
distribution of the asset. Suppose an asset S has value S0 at the date of purchase, and that
the investor has financed this purchased with leverage, either from a bank or short-selling other
assets and that the investor, therefore, is subject to a margin M . In mathematics, we can define
our set of admissible portfolios to satisfy H • St ≥ −M . However, in practice, this is an actual
problem for the investor.

Suppose for simplicity, that the investor decides on a buy-and-hold strategy buying at t0 = 0

and selling at time T , for some T > 0. Hence, in order to avoid the margin call, he must know
whether or not the asset will drop sufficiently to incur the margin call. Of course, with assets
being inherently risky and with the potential for loss of investment, it is better to phrase the
question in terms of probability. In this particular instance, suppose that the margin call is
incurred if the asset drops below some price S∗. In order to assert his or her risk, the investor
will have to know for each t ∈ [0, T ] the probability that St ≤ S∗. However, as time progresses,
these probabilities change, and so arises the need for conditional distributional forecasts.

Single assets are one thing, but the same applies to entire portfolios; if our portfolio is financed
partially with equity and partially with a loan, then the investor faces the same problem. Suppose
we are given a market M with a collection of d+ 1 assets, with one asset being the numéraire,
A, and the remaining d are risky assets, Si for i ∈ {1, 2, . . . , d}. Then, a strategy may be
considered as a d + 1 dimensional process of predictable processes θ = (φ, π1, π2, . . . , πd) such
that φ is integrable with respect to the numéraire and πi is integrable with respect to asset
i ∈ {1, 2, . . . , d}. We may then define a portfolio as

V θ
t = φtAt +

d∑

i=1

πitS
i
t , t > 0.

Typically, we require the portfolio to be self-financed. It must then satisfy

V θ
t = θ •At +

d∑

i=1

πi • Sit , t > 0.

In this scenario we have that V θ
t is itself a semimartingale, and for a given θ is may be expressed

as

V θ
t = V θ

0 + Zt +Mt, t > 0.

V θ
0 can be thought of as the initial investment, Zt a process of locally bounded variation and M

a martingale. For large portfolios there is a numerical issue in assessing the risk of our portfolio.
By making some structural assumptions, we may use the copula derived before to forecast the
distribution of our portfolio. Namely, we will assume it is of the form

V θ
t = V θ

0 +

∫ t

0
µsds+

∫ t

0
σsdWs.

For simplicity, we assume the processes µ and σ are continuous and independent of W . We
remark that these assumptions are unlikely to be true. However, one may argue that if the
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portfolio is sufficiently well diversified, then the portfolio should be less influenced by jumps
in each asset. Hence, the continuity of the portfolio process may be more valid, than in the
individual asset case.

Being able to make good forecasts of ones portfolio solves multiple problems. If one has used
external capital such as a loan to finance investments, then a distributional forecast may help
prevent incurring a margin call. Furthermore, if the computational burden is feasible then it may
be used to reduce the complexity of portfolio selection. Of course, by omitting the intricacies of
the dependence between assets a lot of valuable information is lost, but from a portfolio selection
standpoint these should be incorporated once we treat the portfolio as its own entity.

We would like to remark that at the moment we are not looking for the minimal assumptions
necessary for the procedure to work and throughout the following procedure we assume that the
processes µ and σ satisfy the criterion of the applied theorems.

4.1 Forecasting Procedure

We propose a heuristic forecasting procedure of the distribution of a portfolio. The forecasting
procedure is adaptable, and we will later discuss how to augment the procedure to accommodate
the shortcomings of the proposed method. The method proposed here also showcases how copulas
may be applied to the temporal treatment. We will benchmark the forecasting procedure on the
Heston model, [11]. While it is unrealistic that an entire portfolio would follow the dynamics of
the Heston model we use the model to showcase how one can proceed in using the copula of a
time-changed Brownian motion. We will later discuss whether or not is justified to apply this
heuristic method. We make the further structural assumptions on our portfolio:

V θ
t = V θ

0 +

∫ t

0
µV θ

r dr +

∫ t

0
σrV

θ
r dWr,

with σ some continuous stochastic process independent of W and µ ∈ R a constant. For
simplicity, we fix our strategy θ. By application of Ito’s lemma we obtain

Xt = ln(V θ
t ) = X0 +

∫ t

0

(
µ− σ2

r

2

)
dr +

∫ t

0
σrdWr. (4.1)

Now, the quadratic variation is given by

[X]t =

∫ t

0
σ2
rdr,

Now, let Mt =
∫ t

0 σrdWr. We can estimate the conditional copula M . However, this highlights
a glaring problem which we have so far ignored; in order to model the copula of (Ms,Mt) we
need to know [M ]t, on which our particular estimator [M ]nt requires knowledge of Mt. Hence,
our problem becomes rather circular.

However, due to the structural assumptions on X, we can employ the following heuristic
forecasting method for the quadratic variation

[M ]t = [X]t

=

∫ t

0
σ2
rdr
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=

∫ s

0
σ2
rdr +

∫ t

s
σ2
rdr

≈ [X]s + (t− s) · σ2
s ,

which of course converges as s→ t. However, we have now traded one problem for another; we
now need an estimator of σs. Luckily, we may apply the following theorem.

Theorem 4.1. Let X be an Itô semimartingale of the form

Xt = X0 +

∫ t

0
µrdr +

∫ t

0
σrdWr,

where µ is locally bounded and σ is continuous. Let (ti)
n
i=0 be an equidistant partitioning of [0, T ]

with |ti+1 − ti| = ∆n and t0 = 0 satisfying ∆n → 0 and define ∆i
nX = Xi∆n − X(i−1)∆n

and
(kn)n∈N be a sequence such that kn → ∞ and kn∆n → 0. Define the realised spot volatility,
abbreviated RSV,

(σ̂nt )2 =
1

∆nkn

kn−1∑

i=0

(∆i+m−kn
n X)2, t ∈ [tm, tm+1).

Then

(σ̂nt )2 P→ σ2
t , t ∈ [0, T ].

An enhanced statement and proof can be found in [[13], pp. 255-256], in particular when σ is
cádlág this estimator converges to σt− rather than σt. However, we assumed that σ is continuous
and it follows that σt− = σt. From the perspective of our forecasting procedure this has little
relevance.

Now, we define our forecast as

[̂X]
n

t,h = [̂X]
n

t︸︷︷︸
RV

+ h︸︷︷︸
Time Step

· (σ̂nt )2

︸ ︷︷ ︸
RSV

(4.2)

n particular, σ can be viewed in terms of the Fundamental Theorem of Calculus as the “derivative”
of [X]t, which is also reflected in the construction of the estimator. For instance,

1

∆n
(∆m

n X)2

could be considered as an estimator for the derivative. However, due to the fact that our data is
contaminated by noise we need to “smooth” the estimator, so that it is not fitting to noise, this
is accomplished by averaging over the previous kn observations yielding

1

∆nkn

kn−1∑

i=0

(∆i+m−kn
n X)2,

which is exactly our estimator. Hence, we extrapolate by assuming that the quadratic variation
will grow at the same rate as it currently is, this assumption is of course a stretch, but in short
terms it may be applicable. In order to investigate the if this method yields anything we will
compare it to the simplest forecast, compare it to a “perfect forecast”, where we are given [̂X]t+h.

Since X is a semimartingale we know that it be definition decomposes to
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X = X0 +M +A,

where X0 is the initial value, M the martingale part and A the process of locally bounded
variation. Again, in our case each process is continuous by assumption. We have accounted for
M by means of the quadratic variation and conditional copula, but we still need to account for
A. However, note that by (4.1) A decomposes into

At =

∫ t

0
µds− 1

2

∫ t

0
σ2
sds = µt− 1

2

∫ t

0
σ2
sds

Then we have the following

Xt −X0 +
1

2

∫ t

0
σ2
sds = µt+

∫ t

0
σrdWr.

Now, estimation of µ has not been our primary concern. It is beyond the scope of this thesis to
solve every aspect of the problem. Therefore, we now rely on heuristics to sketch the idea. Now,
heuristically for small h we have

Xt+h −Xt ≈ µ · h−
1

2
σ2
t · h+ σt(Wt+h −Wt), (4.3)

which implies

Xt+h ≈ Xt + µ · h− 1

2
σ2
t · h+ σt

√
hN, N ∼ N (0, 1), (4.4)

so in a very heuristic manner we have Xt+h is approximately Gaussian given information of the
other processes up until time t. This practice is not uncommon, and many pseudo-maximum
likelihood estimators rely on inference made on the discretisation of a process, see e.g. [12] or [6].
However, in our case we acknowledge that we are not applying best practices, as we are using
estimates of σ in the place of true σ. We would like to remark that there are better procedures,
see e.g. the comments made in [2].

Equation (4.4), then yields

E
[
Xt+h −Xt +

1

2
σ2
t h

]
≈ µh,

and so

E
[
Xt+h −Xt + 1

2σ
2
t h
]

h
≈ µ,

by replacing σ2 with its estimator yields the estimator for µ

µ̂ =
1

∆nn

(
n∑

i=1

Xti −Xti−1 +
1

2
∆n(σ̂n)2

ti−1

)
.

However, the sum is telescoping and we obtain

µ̂ =
1

∆nn

(
Xtn −X0 +

n∑

i=1

1

2
∆n(σ̂n)2

ti−1

)
.

However, we would like to only use the information up until time t, so we define

µ̂nt =
1

∆n[t/∆n]


Xt[t/∆n]

−X0 +

[t/∆n]∑

i=1

1

2
∆n(σ̂n)2

ti−1


 .
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Now, we can transform X to the unit interval [0, 1] by the transformation

Ût = Φ


Xt −X0 − µ̂nt t+ 1

2 [̂X]
n

t√
[̂X]

n

t


 . (4.5)

We have that Ûs and Ût approximately follows the copula CMs,t , which we can approximate by
CMn
s,t .

To forecast we use the estimator of [M ]t+h defined in (4.2). Hence, we may find our α ∈ (0, 1)

percentile forecast by taking

Ûαt+h = QMt,t+h(Ût, α | [̂M ]t, [̂M ]t+h). (4.6)

with QMs,t defined by (2.32). To bring it back to scale we apply the transformation and obtain
the α quantile we apply the forecasted marginal quantile function

X̂α
t+h =

√
[̂M ]t,hΦ−1(Ûαt+h) + µ̂nt · (t+ h) +

1

2
[̂M ]

n

t,h +X0. (4.7)

We can take it further and apply the exponential to obtain an estimate of the α-quantile of V θ
t+h.

In order to validate this approach we need a testing procedure.

4.2 Conditional Coverage Test

This section is based on [8].

We remark, that we only briefly go through the test as a testing procedure has not been our
primary focus. Therefore, we deem it beyond the scope of the thesis to derive the procedure and
refer to [8] for a detailed derivation.

The setup of the testing procedure is as follows, let p ∈ (0, 1) denote the desired coverage
probability. Let (Ω,F ,F[0,∞),P) be a filtered probability space. We observe a a process at
discrete times (yti)

N
i=1 and produce the conditional interval forecasts ([Lti|ti−1

(p), Uti|ti−1
(p)])Ni=1,

where Lti|ti−1
(p) represents the conditional forecast of the lower bound of the interval given some

filtration Gti−1 ⊆ Fti−1 with G0 ⊆ F0 the trivial σ-algebra augmented by P-null sets and possibly
initial value of the process y. Now, let

Iti =

{
1 yi ∈ [Lti|ti−1

(p), Uti|ti−1
(p)]

0 else.

We say that the interval forecast ([Lti|ti−1
(p), Uti|ti−1

(p)])Ni=1 is efficient with respect to a filtration
(Gt)t∈[0,∞) if E

[
Iti | Gti−1

]
= p for every i ∈ {1, 2, . . . , N}. We have the following lemma from

[8].

Lemma 4.1. Testing E
[
Iti | Iti−1 , . . . , It1

]
= p for every i ∈ {1, 2, . . . , N} is equivalent to testing

if the sequence (Iti)
N
i=1 is identically and independently distributed Bernoulli with parameter p.

See [[8], Lemma 2] for a proof. Hence, from the assumption that our forecasts are efficient we
obtain the likelihood
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L(p | (Ii)Ni=1) = (1− p)n0pn1 ,

where p is the coverage parameter, n0 is the number of times Iti is equal to zero and similarly
n1 is the number of times Iti is equal to 1. Now, similarly,

L(π | (Iti)Ni=1) = (1− π)n0πn1 .

The test for unconditional coverage is then the likelihood ratio test

ΛUC = −2 log

(
L(p | (Iti)Ni=1)

L(π̂ | (Iti)Ni=1)

)

= −2 log

(
(1− p)n0pn1

(1− π̂)n0 π̂n1

)

= −2n0 log(1− p)− 2n1 log(p) + 2n0 log((1− π̂)) + 2n1 log(π̂).

which asymptotically follows a χ2(1) distribution as N → ∞. The maximum likelihood
estimator, π̂, of π is given by

π̂ =
n1

n0 + n1
. (4.8)

Furthermore, we can test for independence between forecasts using a similar approach; we assume
the forecasts form a Markov-chain. The general Markov chain transition matrix is given by

Π =

[
π0,0 π0,1

π1,0 π1,1

]
,

Where πi,j is the probability of the interval forecast transitioning from state i ∈ {0, 1} to state
j ∈ {0, 1}. Π has the likelihood

L(Π | (Ii)Ni=1) = (1− π0,1)n0,0π
n0,1

0,1 (1− π1,1)n1,0π
n1,1

1,1 .

with ni,j being the number of times we go from state j to state i. Maximum likelihood yields
the estimator

Π̂ =




n0,0

n0,1 + n0,0

n0,1

n0,1 + n0,0

n1,0

n1,0 + n1,1

n1,1

n1,0 + n1,1


 .

Under the independence assumption, the Markov chain has the transition matrix

Π⊥ =

[
1− π⊥ π⊥
1− π⊥ π⊥

]
,

Now, the likelihood ratio test is similarly given by

L(π⊥ | (Ii)Ni=1)) = (1− π⊥)(n0,0+n1,0)π
(n0,1+n1,1)
⊥ ,

where the maximum likelihood estimate of π⊥ is given by π̂⊥ = (n0,1 +n1,1)/(n0,0 +n0,1 +n1,0 +

n1,1). Now, the likelihood ratio for independence is given by

Λ⊥ = −2 log

(
(1− π̂⊥)(n0,0+n1,0)π̂

(n0,1+n1,1)
⊥

(1− π̂0,1)n0,0 π̂
n0,1

0,1 (1− π̂1,1)n1,0 π̂
n1,1

1,1

)

= −2(n0,0 + n1,0) log(1− π̂⊥)− 2(n0,1 + n1,1) log(π̂⊥)
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+ 2n0,0 log(1− π̂0,1) + 2n0,1 log(π̂0,1) + 2n1,0 log(1− π̂1,1) + 2n1,1 log(π̂1,1).

The latter is preferable when N is large for numerical stability, since qN goes to 0 very quickly
when q ∈ [0, 1). We again have Λ⊥ is asymptotically χ2(1) distributed. Finally, we can present
the conditional coverage.

ΛCC = −2 log

(
L(p | (Ii)Ni=1)

L(Π̂ | (Ii)Ni=1)

)
,

which asymptotically follows a χ2(2) distribution. Expansion yields

ΛCC = −2n0 log(1− p)− 2n1 log(p)

+ 2n0,0 log(1− π̂0,1) + 2n0,1 log(π̂0,1) + 2n1,0 log(1− π̂1,1) + 2n1,1 log(π̂1,1).

Now, Christoffersen notes that if one conditions on the first observation, then

ΛCC = ΛUC + Λ⊥.

We end with the remark, that all proofs can be found in [8].

The testing procedure here only describes the relationship between forecasts of a single step, in
our case it implies that we can only test forecasts with a fixed step length. However, as we are
forecasting multiple steps ahead, which implies that we cannot, and would not, expect intra-step
independence. Therefore, in order to validate the apply the following procedure.

Suppose we wish to forecast It+h|t; in our case h = k∆n for some k ∈ N, on a mesh over [0, T ]

with ∆n = T/n. We then group the times modulo k, i.e. the first group would be t0, tk, t2k . . . ,
the second group would be t1, tk+1, t2k+1.

tk tk+1 tk+2 . . . t2k t2k+1 t2k+2

Figure 4.1: Visualisation of the Grouped Times Modulo k.

The result is a total of k groups where the step length between each observation is exactly
h = k∆n, and hence the conditional coverage test may be applied in each individual instance. In
order to report the accuracy, we report the total number of times the test could not be rejected
per group. For k = 1, it reduces to the conditional coverage test, but for k > 1 we have will have
multiple groups per simulation. In our simulations study, we will simply report the number of
times the test could not be rejected over all groups and simulations.

4.3 Simulation Study

Before conducting the simulation study we go through the procedure step-by-step, which will
highlight some of the issues with this method. We will address some of these issues in our
discussion at a later stage.

Example 4.1. We simulate a path from the Heston model, i.e.
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dVt = µVtdt+
√
σ2
t VtdW

1
t

dσ2
t = κ(θ − σ2

t )dt+ ξ
√
σ2
t dW

2
t ,

where µ ∈ R, ξ > 0, θ > 0 and W1 and W2 are standard Brownian motions with quadratic
co-variation [W1,W2]t = ρt, i.e. the Brownian Motions are correlated with correlation ρ.

Here, V represents our portfolio and σ2 its volatility. The portfolio drifts with rate µ. The model
for the volatility is the Cox-Ingersoll-Ross model, which we also used in the assessment of our
proposed estimator. Here, ξ is the volatility of the process σ2, θ represents the long-run mean
of σ2, and κ is the speed of mean reversion.

Using Euler discretisation, we simulate the path of an asset under the Heston-model with the
following parameters.

Parameter κ θ ξ µ ρ V0 σ2
0

Value 2 0.025 0.02 0.1 0 20 0.025

Table 4.1: Simulation Parameters

We simulate the asset over [0, 1] with N = 5760 observations. In particular, if [0, 1] represents
a trading day of 8 hours, then and (ti)

N
i=1 is an equidistant covering of [0, 1] then ti corresponds

to every fifth second on a given trading day.

First, we simulate trajectories of the our portfolio. The paths of the portfolio value V , the log
value X = log(V ), and volatility σ2 are visualised in Figure 4.2.

Next, we calculate the quadratic variation and compare it with the integrated volatility process.
We see that there is visually no difference between the realised variance and the true quadratic
variation, as depicted in Figure 4.3. We proceed to calculate the estimator for σ2.

From Figure 4.4 we see that the estimator for σ2 varies greatly with the choice of kn. Here kn
is written in parenthesis next to the estimator to emphasize what kn was chosen, i.e. σ̂2

t (64)

implies kn = 64. Recall that kn can be considered as a smoothing factor; the higher kn the more
secant lines we average over. Furthermore, the dashed line represents the time at which there
has been kn observations. Prior to the dashed line σ is estimated on all available data.

For the mean we relied heavily on heuristics and it is quite noticeable from Figure 4.5 that the
estimator does not enjoy the same properties as the previous estimators. We provide an 80%

confidence interval based on bootstrapping. We do not bootstrap new confidence intervals for
every single observation but rely on linear interpolation yield accurate confidence bands. It does
seem that the true value of µ is, mostly, contained in the 80% confidence interval, but it is also
clear that the estimator does not seem to be very robust. However, it seems that the estimator
of σ does not influence the estimation very much, which is no surprise given that it emphasizes
only the first and last observation specifically.

Finally, we visually evaluate the forecasting of the quadratic variation by extrapolation of the
current estimated spot volatility.

From Figure 4.6 we see that the forecasting procedure works quite well in this case. The subscript
indicates how many steps ahead the forecast is done, i.e. [̂X]

n

t,50 corresponds to forecasting 50
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Figure 4.2: Sample Paths in the Heston Model.
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Figure 4.3: Comparison of the Integrated Volatility, or Quadratic Variation, with the Estimated
Realised Volatility.
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Figure 4.5: The estimate of µ and the corresponding σ used in the estimation. The shaded area
corresponds to [0.1, 0.9] confidence intervals based on bootstrapping.
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Figure 4.6: Forecasting the Quadratic Variation using the estimator σ̂t(256).

steps ahead. The dashed line in the figure represents the number of steps ahead with the addition
of 256, the number of points reserved to estimate σ̂2

t (256). Hence, one may consider the dashed
line as an indicator for when the actual forecasting starts.

At this stage we would like to remind the reader that the volatility process σ2, and volatility of
the volatility ξ, are quite low, so while it may seem from Figure 4.6 that the estimator is working
extremely well we guess that increasing the volatility may lead to larger variations.

We now transform our data to the [0, 1] scale. We compare three scalings; one with the estimated
µ and quadratic variation. One with the true µ and estimated quadratic variation, and finally
a “perfect” transformation using the true µ and quadratic variation, or integrated volatility. We
choose kn = 256 for the estimation of σ2 and subsequently µ. Using the estimates we approximate
the “percentile process” U by

Ût = Φ


Xt −X0 − µ̂nt t+ 1

2 [̂X]
n

t√
[̂X]

n

t




It is quite noticeable that the adaptive estimation of µ is causing specification; the percentile
process denoted “Estimated” in Figure 4.7 corresponds to the estimator in (4.5), whereas “Realised
Variance” uses the true drift but replaces the quadratic variation with the estimated realised
variance. The “True” percentile process corresponds to the integrated volatility and true drift µ.
For the estimated one, we see that the process becomes, more or less, constant and equal to 0.5.
To elaborate, consider the estimator of µ
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Figure 4.7: Percentile Processes.

µ̂nt =
1

∆n[t/∆n]


Xt[t/∆n]

−X0 +

[t/∆n]∑

i=1

1

2
∆n(σ̂n)2

ti−1


 .

and note that
[t/∆n]∑

i=1

1

2
∆n(σ̂n)2

ti−1
≈ 1

2
[̂X]

n

t

Now, this implies

µnt · t ≈ Xt −X0 +
1

2
[̂X]

n

t ,

since t · 1/(∆n[t/∆n]) ≈ 1 and so

Ût = Φ


Xt −X0 − µ̂nt t+ 1

2 [̂X]
n

t√
[̂X]

n

t




≈ Φ


Xt −X0 −Xt +X0 − 1

2 [̂X]
n

t + 1
2 [̂X]

n

t√
[̂X]

n

t




= Φ


 0√

[̂X]
n

t


 = 0.5.
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Figure 4.8: Forecasts for the 1, 5, 20, and 100 steps ahead.

We will later address how one can use this knowledge to try an prevent the issue, but it also
verifies why the estimated percentile process Figure 4.7 is constantly 0.5.

Applying the forecasting routing specified by equations (4.6) and (4.7) with α = 0.975 and
α = 0.025, corresponding to the 95% centered interval forecast, we obtain the obtain the upper
and lower paths of our forecast, depicted in Figure 4.8.

Visual inspection shows practically no difference. We now proceed to conduct the conditional
coverage test. We report the direct result of the conditional coverage test for 1 step ahead
forecasts and report the total number of times we could not reject the null over the grouped
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observations for the remaining step sizes.

Estimated Model

Test Statistic p-value Reject Null

Unconditional Coverage 0.0627 0.802 No
Independence 0.0564 0.812 No
Conditional Coverage 0.119 0.942 No

Model with true parameters.

Test Statistic p-value Reject Null

Unconditional Coverage 0.0964 0.756 No
Independence 0.283 0.595 No
Conditional Coverage 0.380 0.827 No

Table 4.2: Conditional Coverage Test for 1-step ahead interval forecasts.

From Table 4.2 we see that we cannot reject that the forecasts provide conditional coverage, which
is what we would expect. Note that based on the value of the statistics the estimated model
seems to outperform the true parameters. However, one should be cautious of this conclusion,
since it may be that it is not providing as tight bounds as the model under the true parameters.
Furthermore, in both cases we reject none of the hypotheses.

For the multi step models we report the summary statistics outlined in Section 4.2; we partition
the path into groups modulo the number of steps and perform the conditional coverage test in
each group. In order to interpret the results, we establish some notation.

np = Number of times null hypothesis was not rejected.

nc = Number of times test was computable.

rp =
np

nc
.

ntotal = Steps · Simulations.

rc =
nc

ntotal

We would like to elaborate why the test is not always computable, hence the need for nc and
rc. Given a simulation of length 5760 we apply the grouping procedure described in Section 4.2.
When we apply the grouping procedure with, say, step-size 100, we are essentially getting 100

groups of roughly 57 observations. In this case it becomes quite likely that for a given simulation
the interval forecasts of one, or more, groups are never breached. Since the forecast is not
breached, the maximum likelihood estimator of unconditional coverage for the group becomes
π̂ = 1. Now, in the likelihood ratio test the entity log(1 − π̂) is to be computed. Since π̂ = 1

we have log(1− π̂) is undefined, hence we cannot compute it in this case. The same case applies
when π̂ = 0 although inspection of the results revealed this to not be a problem. Hence, rp is
the ratio of passed tests out of all the computable tests and rc is the ratio between computable
tests and total tests.

In this example we are only considering a single simulation so ntotal is simply the number of
steps, but we establish the notation for later use.
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Estimated Model

Steps Unconditional Coverage Independent Coverage Conditional Coverage

5 np 5 5 5
(rc = 1) rp 1 1 1

20 np 7 8 7
(rc = 0.4) rp 0.875 1 0.875

100 np 10 52 24
(rc = 0.52) rp 0.192 1 0.462

Model with true parameters.

5 np 5 5 5
(rc = 1) rp 1 1 1

20 np 6 8 8
(rc = 0.4) rp 0.75 1 1

100 np 13 60 32
(rc = 0.6) rp 0.217 1 0.533

Table 4.3: Summary of the grouped Conditional Coverage tests.

From Table 4.3 we see that for 5 steps ahead the null-hypothesis cannot be rejected in neither
the estimated model or the model under the true parameters, as indicated by both np = 5 and rp
being 1. Furthermore, all tests were computable since rc = 1. Now, for 20 and a 100 steps ahead
we see that rc drops quite dramatically, to the extent where it is invalidating the test. Based on
the few tests that were computable for 20 steps ahead, we see that quite often we cannot reject
the null hypothesis. However, in the case of 100 steps ahead, the null is rejected frequently in
both the estimated and the true model.

The indication is that we may rely on the presented methodology for short-term forecasting of the
distribution, which could present a short-term forecasting for the value at risk. Furthermore, by
inspection of Figure 4.8, we see that the prediction intervals are fairly tight around the process.
Of course, there is much room for improvement and we address how one may proceed to augment
the procedure in our discussion later. �

Having presented the methodology we now conduct a large scale study; we cannot rely on this
single instance of the test to show us the behaviour in general. We showcase one simulation
study under the same parameters used in the previous example, i.e. Table 4.1. We simulate
1000 paths, and we obtain the following results for the conditional coverage test. We report the
total number of times we could not reject the null-hypothesis in each of the components of the
conditional coverage test.

For the estimator of σ2 we choose kn = 256, based on visual inspection of Figure 4.4. Note that
one could implement a procedure to adapt kn. We will later see that the choice of kn may have
a significant impact on the forecasts. However, in order to limit the scope of the thesis we will
simply use kn = 256.

From Table 4.4 we see that all steps are comparable based on the ratio rp. Note that the closer
rp is to 1, the more we could not reject the null hypothesis in the computable instances. In
all steps rp remains comparable. However, there is a caveat. We see the the ratio between the
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number of computable test and total number of tests, rc, drops dramatically. For 1 and 5 steps
ahead we are fairly confident in our result, but at 20 steps ahead only roughly 50% of the tests
were computable which lowers the confidence in the result, even if the result indicates that the
forecasts were good. For 100 steps ahead only roughly 20% of the tests were computable for the
estimated and 12% for the model with true mu and quadratic variation which is invalidating.

Estimated Model

Steps Unconditional Coverage Independent Coverage Conditional Coverage

1 np 966 931 944
(rc = 1) rp 0.966 0.931 0.944

5 np 4538 4617 4610
(rc = 0.956) rp 0.949 0.965 0.964

20 np 10626 10779 10590
(rc = 0.561) rp 0.947 0.961 0.944

100 np 17187 18547 17990
(rc = 0.201) rp 0.856 0.924 0.896

Model with true parameters

1 np 947 950 9474
(rc = 1) rp 0.947 0.95 0.947

5 np 4477 4584 4557
(rc = 0.939) rp 0.954 0.976 0.971

20 np 9501 9566 9460
(rc = 0.494) rp 0.961 0.967 0.957

100 np 10987 10839 11258
(rc = 0.122) rp 0.899 0.886 0.921

Table 4.4: Summary of the Conditional Coverage test.
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Figure 4.9: Kernel density estimates of the unconditional coverage rate. The dashed line
represents the mean of the model with true parameters, the solid line the mean from the estimated
model.

Based purely on value of rp in Table 4.4 we see that the simply heuristic forecasting procedure
produces fairly accurate results. However, the value of rp does not tell us to which extend our
forecasts were accurate. In order to see the difference between the forecasts generated by the
procedure versus the true parameters we calculate the unconditional coverage for each group, i.e.
π̂ of equation (4.8), by simply dividing the number of times the process was within the forecasted
interval by the total number of forecasts. We then make a density estimate for the estimated
and true model respectively and plot them together.

From Figure 4.9 we see that the distribution of unconditional coverage between the estimated
model and the model with the true parameters are quite comparable. We see that the mean of
the model with true parameters has an average unconditional coverage of almost exactly 95%, as
indicated by the dashed line, where the estimated model is slightly lower in all instances. Recall
that we were trying to produce an 95% centered forecast so these results are quite positive. It is
also worth noting that the estimated model is slightly more leptokurtic for the step-sizes 1 and
5, an hence has more tail density. In the latter instances, 20 and 100 steps, it seems to be shifted
slightly to the left.

We now conduct a similar experiment. However, we now use the following parameters:

Again, we simulate 1000 paths over an equidistant mesh [0, 1] with 5670 observations. In this
scenario the volatility is more persistent as seen from Table 4.5; κ has been reduced. Furthermore,
the volatility process σ has become more volatile and µ has been reduced.
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Parameter κ θ ξ µ ρ V0 σ2
0

Value 0.5 0.36 0.25 0.05 0 20 0.25

Table 4.5: Simulation Parameters for the Second Simulation

From Table 4.6 we see quite a different picture; the short term forecasts are noticeably worse for
the estimated model indicated by rp for all models being quite low. This indicates, that the short
term forecasts did not provide an accurate cover of the centered 95% interval. Furthermore, the
accuracy of the estimated model seems to increase as we forecast further ahead.

At first glance, this should seem counter intuitive. Clearly, when κ is reduced, the variance
process becomes more persistent, and since our forecast of the quadratic variation relies on
extrapolation of the current variance we would expect it to perform better. However, ξ is
increased and so the variance of the process is also increased. Now, we have again chosen to
estimate (σ̂2

t )
n using kn = 256 points. One possible explanation to the behaviour is, that kn

is too large, and so we are smoothing the variance process excessively in this case. This would
also explain why the long term forecasts are better; if the estimator of σ2 is smoothed too
much, we expect, roughly speaking, that (σ̂2

t )
n → θ, i.e. we model the long term mean of the

volatility rather than the spot volatility. Hence, on average our long term forecasts become more
reasonable. In a sense, this motivates choosing kn fairly small for short term forecasting and kn
large for long term forecasting.

Estimated Model

Steps Unconditional Coverage Independent Coverage Conditional Coverage

1 np 341 467 303
(rc = 1) rp 0.341 0.467 0.303

5 np 3631 4044 3460
(rc = 0.989) rp 0.734 0.818 0.700

20 np 12847 13463 12363
(rc = 0.743) rp 0.865 0.906 0.832

100 np 23314 27692 25074
(rc = 0.302) rp 0.771 0.916 0.829

Model with true parameters

1 np 911 948 926
(rc = 0.997) rp 0.914 0.951 0.929

5 np 4028 4160 4073
(rc = 0.854) rp 0.944 0.975 0.954

20 np 7938 8068 7991
(rc = 0.423) rp 0.939 0.955 0.946

100 np 9352 9924 9750
(rc = 0.109) rp 0.858 0.910 0.894

Table 4.6: Summary of the Conditional Coverage test.
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Figure 4.10: Kernel density estimates of the unconditional coverage rate. The dashed line
represents the mean of the model with true parameters, the solid line the mean from the estimated
model.

Another thing to notice from Table 4.6 is that even in the case of 1 step ahead there were
tests that failed which implies that the forecast was not breached in at any time during these
simulations. However, the procedure is subject to some numerical issues which we later address,
and so it is not unlikely that these three paths were subject to numerical issues. While it only
happens in 3 simulated paths we would have liked to investigate why it happens given additional
time.

Again, as rc decays towards 0 as the step-size increases the test is invalidated at large steps
ahead. Therefore, in order to investigate the unconditional coverage we again plot the density
estimates.

Figure 4.10 shows us that the unconditional coverage was overall too low for the estimated model.
However, from the plot we can see that the forecasts were not completely unreasonable, although
they did not pass the conditional coverage test. We see that the average unconditional coverage
is roughly 94% for the estimated model in most scenarios. We also see that there is quite a
large difference between the estimated densities of the estimated model and model under the
true parameters, especially for the 1 step ahead forecasts.
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5

Discussion and Conclusion

5.1 Discussion of the Results

We show that it is indeed possible to estimate the conditional copula of a continuous local
martingale, under the additional assumption that its quadratic variation is independent of the
Brownian motion it time-changes. Furthermore, we show a limit theorem, allowing us to quantify
to which degree of certainty the result can be trusted although it is in a very restricted setting.

The consistency theorem states that as long as the quadratic variation is independent of the
Brownian motion it time changes, then the consistency is uniform over the pairs (s, t) in the
space {(s, t) | 0 ≤ s ≤ t ≤ T}. Our numerical investigation revealed that it may be possible to
enhance the result to uniform consistency over (s, t, u, v) ∈ {(s, t) | 0 ≤ s ≤ t ≤ T} × [0, 1]2.

In regards to the limit theorem we proceed with slightly more scepticism. We would expect the
result to remain valid. In our case we made some restriction in regard to the boundedness of the
process σ. Jacod and Protter show a so-called localisation procedure which may help us alleviate
this restriction to, say, a requirement that σ is cádlág. The strategy of the current proof cannot
be extended to stochastic volatility as the result from Dudley, [9], may not be extended. The
numerical analysis and prior arguments reveal that when (s, t, u, v) are chosen suitably we may
obtain a standard Gaussian limit. However, due to complications on the boundary of the set

∂{(s, t) | 0 ≤ s ≤ t ≤ T} × ∂[0, 1]2,

the applications of the limit theorem may be very limited. Perhaps, the most important result in
this direction is that the rate of convergence seems to be preserved, which seems to be the case
even on the stronger uniformity over (s, t, u, v), but one should be sceptical of even this result
if the limit here is non-Gaussian, or at least not determinable, since there may very-well be a
non-trivial transformation depending on n which yields the correct limit. It also immediately
implies we may not expect a “functional” limit theorem for the copula in the same sense that our
consistency theorem was essentially functional convergence.

From a practical perspective we find it unlikely to cause issues, and in this case the boundary is
also uninteresting. In a sense, it is only natural that the boundary induces pathological behaviour
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since it, typically, reduces the problem to a univariate distribution.

It is clear that the estimation relies on being able to consistently estimate the quadratic variation.
We have for now omitted jumps. However, quadratic variation can be estimated even when jumps
are present, see e.g. [13]. Furthermore, the quadratic variation can be “disentangled”; as jumps
are present they will contribute to the quadratic variation, but there are estimators which allow
us to estimate only the continuous part, in this case we may be able to estimate the conditional
copula for the continuous part of the model, see e.g. [3]. In general, a semimartingale admits
the decomposition

Xt = X0 +At +Xc
t +Mt, t ≥ 0,

where A0 = Xc
0 = M0 = 0, A is a process of locally bounded variation, Xc is a continuous

local martingale and M is a “purely discontinuous” martingale, see [13], which roughly relates
to all movements of M being jumps. In this case, one may still estimate the copula of Xc

t under
suitable restrictions.

For the result obtained there are some clear caveats. Noticeably, there are some quite restrictive
assumptions which must be made. Classical models, such as the Heston model, have already
alleviated themselves from being independent of the “driving” Brownian motion, such that they
may model the leverage effect, which the framework we show here is not capable of.

In regards to our simulation study we find that the heuristic forecasting procedure works quite
well. There are caveats to the procedure, some which may have an immediate solution and others
which require slightly more care.

The procedure is subject to some numerical instability, as a lot of numerical integral and
inversions are required to implement the procedure. Perhaps one may increase the stability
by implementing certain asymptotic properties on the boundary directly.

We argue that the procedure could serve as a benchmark for a lot of forecasting procedures. Now,
in our specific case we could have bypassed the copula completely. Hence making it redundant.
The use of the copula may be more applicable in a so-called marginal matching procedure which
we discuss in the upcoming section.

Through our simulation study we find, that the forecasting procedure works somewhat when
tested on the Heston model. One test was overly positive, while the other one showed that the
forecasts may not be as accurate. We would like to remark that given additional time, it would
be interesting to forecast more than just the 95% centered forecast in an attempt to evaluate it
over various forecasting ranges.

5.2 Future Research

While the applicability of the result at this stage is questionable there are some questions which
arose while working on the results presented here.

We first address the marginal matching procedure. Suppose we are given data from some process
X. Under assumptions that X is a semimartingale we may estimate [X]. Note that X by
definition decomposes to Xt = X0 +At +Mt. If we furthermore assume it is continuous and M
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is represented by a time-changed Brownian motion independent of the quadratic variation, then
we can consistently estimate the copula. Now, at time t we may then estimate

Ût = Φ


Xt −X0 − Ât√

[̂X]
n

t


 ,

where Â is an estimator of the process of locally bounded variation. Then, when we make
our forecast, say, Ût,h for some h = k∆n, nothing dictates that we invert using the Gaussian
distribution. Hence, we may match the marginals to fit the data in a more flexible way.

In order elaborate, consider the following situation: We are tasked with providing a 95% centered
interval forecast. We find that our upper bounds match empirically, that is we obtain a coverage
rate for the upper bound which is approximately 97.5% and based on some testing procedure
we cannot reject the upper bound. However, the lower bound seems to be slightly off; we find
more than 2.5% are below the lower bound, say 5%. That is, our lower tail has more density
than the model suggest. We could then choose marginal distributions which allow for this type
of behaviour.

Another situation is in the framework of our forecasting procedure, we saw that our µ estimator
made the “percentile process” constant. We could start by assuming µ = 0, provide forecasts and
based on evaluation over several quantiles attempt to shift µ such that all the quantiles match
based on a routine similar to, e.g., bisection. It is unclear whether the outcome would be the
same, but certainly interesting.

The marginal matching procedure may be compared to calibration of market models using option
prices, but here we calibrate to certain quantile we wish to match.

We would also like to paint a more grand picture of what we are trying to accomplish. Our initial
motivation for this thesis was in part to see if stochastic processes could be considered in a more
graphical manner by using copulas. We elaborate with an example: suppose for simplicity that
M is a continuous local martingale with deterministic quadratic variation. Then, the dependence
of (Ms,Mt) can decomposed to the graph in Figure 5.1, where Hs,t is the joint distribution of
(Ms,Mt), Fs is the marginal at time s, Ft the marginal at time t and CMs,t the copula between
(Ms,Mt).

Ms

Us

Mt

Ut

Hs,t

CMs,t

Fs Ft

Figure 5.1: Dependence Graph of a Martingale

Our hope is to continue research in this direction and to extend the graph to accommodate
more information such as volatility, jumps, and drift. In essence, we have so far established
the estimation of the edge between (Us, Ut), perhaps only partially if one considers stochastic
volatility.
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The applications would be that stochastic processes may be more representable in terms of
functions; from a mathematical point of view one could argue that stochastic processes are to be
considered as the measure they induce and that there is little to no use of other representations
because they will only ever be restrictions of the more general case. From a practical point of
view it is hard, if not impossible, to implement such measures. Functions over Euclidean domains
may on the other hand be implemented through different numerical procedures.

Our hope was that via copulas the laws of certain quantities could be assumed or predetermined
to allow for a more functional representation of stochastic processes with the addition of the
flexibility which is associated with copulas. Time will tell whether this research will be fruitful
and we would like to remark that after the work performed in this thesis we are perhaps more
sceptical of positive results than prior to writing the thesis. However, the work in this thesis
is an attempt at making the, relatively, new copula method compatible with the classical and
rigorous theory. Perhaps a better approach is to start anew and see if one can eventually tie the
ends together.

Of course, additional work may be conducted on the current model in an attempt to recover a
more general limit theorem. However, in light of our findings we find it unlikely to be of much
practical use.

In the thesis we also worked the Heston model. In particular, the Heston model is able to capture
so-called volatility clustering and the leverage effect. The volatility clustering can be described by
the mean reversion; if the volatility is high it will decay to its long run mean, which is controlled
by the parameter κ. Similarly, if ρ < 0, then it also models the leverage effect, since higher
volatility is then correlated with lower returns or price of the asset. In our very restricted setting
we were not able to model the leverage effect, since independence with the driving Brownian
motion is crucial and so ρ = 0 is the only theoretically valid parameter for the copula model.

However, ρ < 0 still implicitly assumes this dependence is linear, which is quite restrictive. Now,
the problem can be solved using copulas. For instance, rather than two correlated Brownian
motions we can construct two copula dependent Brownian motions.

Let ((Ui, Vi))
n
i=1 ∼ C be independent samples for some copula and take Xi = Φ−1(Ui) and

Yi = Φ−1(Vi). Now, marginally X and Y are unconditionally Gaussian, but they are not jointly
Gaussian unless C is a Gaussian copula. By Donsker’s Theorem, see Theorem A.5, we have the
processes

t 7→ 1√
n

[nt]∑

i=1

Xi ⇒WX
t (5.1)

t 7→ 1√
n

[nt]∑

i=1

Yi ⇒W Y
t , (5.2)

where the convergence is so-called weak convergence of probability measures and WX and W Y

are Brownian motions on D([0, 1];R). Hence, marginally the process is a Brownian motion, but
unless C is the Gaussian copula, then (WX ,W Y ) is not a bi-variate Brownian motion. This
may allow for more flexible modelling of the leverage effect, and one can indeed define a natural
extension of the Heston model using the copula dependent Brownian motions in (5.1) and (5.2).

Note that since the marginal processes are Brownian motions, then nothing restricts us from
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integrating with respect to either, hence copula dependent systems of stochastic differential
equations are well defined.

The aforementioned procedures could contrast the current trends of inducing additional
stochasticity to our models. For instance, in practice one might observe that two assets at times
appear to be positively correlated, at other negatively correlated, and other times completely
independent. From a theoretical point of view, it may be very natural to then consider the
correlation, ρ, between two assets to be driven by some stochastic process, such that the
dependence between two assets is random, and while it seems very intuitive to do so, with
the current state of parameter estimation of such models become increasingly unreliable. One
can draw parallels to a system of linear equations, where the system is only solvable if the system
is not singular. In a sense, if we only observe, say, 2 processes, but we are trying to filter a total
of 5 processes, then it is quite natural that the procedures are less robust. Much like solving a
system of equations there might not be a single solution or any satisfactory solution at all. Here
we see copula models possibly providing natural intermediate; rather than depending on linear
correlation, we may augment our copula or marginals to accommodate such behaviour.

We would like to remark that the theoretical justifications for applying the aforementioned
procedures are scarce. Perhaps the best justification of applying the aforementioned procedures
is to claim that it may yield interpretable results and acknowledging that one is, to some extent,
abandoning a rigorous statistical framework in favor of a somewhat heuristic framework.

We argue that this should be done with caution. Very flexible models can be derived from
copulas, in particular any type of behaviour should be able to be modeled. However, the copula
should be chosen with some clear goal in mind, and it is up to the individual to incorporate them
responsibly. For instance, one could imagine that one re-calibrates a model every m’th period
testing every available combination within reason of typical copulas and marginals to see which
fit is better based on some criteria, and without regard for what is being modeled this can lead
to heavy misuse.

5.3 Conclusion

We show that one may consistently estimate the copula of a time-changed Brownian motion using
realised variance under suitable restrictions. We find that the estimator is uniformly consistent
over the temporal domain and argue that the uniform consistency can be extended to the spatial
domain as well.

We show a limit theorem in a very restricted case and via numerical analysis we argue that the
result may be extended even to stochastic volatility. However, the strategy applied in the proof
provided here will likely be of little use.

We argue that the rate of convergence of our estimator is likely to be proportional to
√
n. We

claim this rate of convergence based partially on our limit theorem and partially on our numerical
example. Further testing must be conducted in order to verify whether or not this result is indeed
valid.

We propose a forecasting procedure using the derived copula. While the current state of the
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procedure does not require the use of copulas we propose a way to augment to procedure to
provide a more flexible modelling approach. We remark that one should be cautious in doing so
and that applying such procedure may require one to abandon a rigorous statistical framework.

The forecasts provides reasonable coverage based on the conditional coverage test from
Christoffersen, [8]. Enough so that we feel it warrants further research into developing the
procedure.

We conclude that copulas can be made compatible with temporal modelling, but at this stage
there is no clear advantage in doing so. Further research may uncover results which provide a clear
benefit in applying copulas, but at the current state we are not convinced that any theoretically
valid reason exists. However, we are optimistic and hope that the results provided here may
yield new insights into how to proceed in using copulas for temporal and spatial modelling and
we will conduct further research into this topic.
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Appendix A

Appendix

A.1 Metric Spaces and Topology

This section is based on [16] and [15].

A fundamental part of mathematical analysis is the study of limits. Suppose we have a non-
empty set S and a sequence (sn)n∈N ⊆ S and we are interested in whether or not the sequence
approaches a limit s as n goes to infinity and equally important does the limit belong to S or
does the limit belong to some other set Σ for which S ⊂ Σ.

Typically in doing so, we will require a metric. Metrics are notions of distance that must fulfil
certain axioms, which we will define later. The goal of this section is to define the properties
that make up a Polish space.

We are often interested in maps that preserve analytical structures as they typically enlighten
the underlying space. Continuous functions are maps that preserve open sets. However, before
we can transform open sets we will need to define what it means to be an open set.

Definition A.1 (Topology)
Let X be a set and τ a family of subsets of X satisfying

1 X, ∅ ∈ τ .

2 A,B ∈ τ implies A ∪B ∈ τ .

3 {An}Nn=1 ⊂ τ implies
⋂N
n=1An ∈ τ for any N ∈ N.

Then τ is a topology, and we say the pair (X, τ) is a topological space. Furthermore, the
elements of the topology are called open with respect to the topology τ .

A topology is a collection of subsets of the original space which allows us to specify what we mean
by openness. We require some consistency axioms namely closure under intersections, countable
and finite unions, and inclusion of the original space and the empty set.
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(X, τ)

O ∈ τ

a ∈ A

Figure A.1: Visualisation of a Dense Set. For every O ∈ τ such that O 6= ∅ we must be able to
find at least one a ∈ A ∩O.

Definition A.2 (Dense and Separable)
Let (X, τ) be a topological space and let A ⊂ X. We say that A is dense in X if

A ∩O 6= ∅, ∀O ∈ τ\{∅}.

Furthermore, (X, τ) is separable if there exists A ⊆ X where A is countable and dense.

When a set A is dense in in (X, τ) it satisfies that for every O in our topology we can find an
a that both belongs to A and O. We visualise a single instance of the inclusion a ∈ O ∩ A in
Figure A.1. When A is countable and dense then we must be able to enumerate every point in
A and have it be dense in X. Intuitively we may think of A as a “mesh” that covers X with
respect to the topology.

A simple example of a separable space is R; we have Q is dense in R and Q is countable. In this
simple example, we know that we can approximate elements of R with elements of Q, and the
definition of separability can be interpreted as being able to approximate a topological space in
a countable way.

Now, a topology is in some sense the minimal analytic structure a space can have; it allows us to
define continuity. However, oftentimes we have space endowed with a slightly stronger analytic
structure. Note that in Definition A.2 we have no way to determine whether or not the element
of O ∈ τ and a ∈ A are close, merely that they belong to the same open set. Now, a metric will
allow us to determine the distance.

Definition A.3 (Metric Space)
Let X be a non-empty set. A function d : X ×X → [0,∞) is said to be a metric, if for all
x, y, z ∈ X it satisfies

1 d(x, y) = 0 if, and only if, x = y.

2 d(x, z) ≤ d(x, y) + d(y, z).

3 d(x, y) = d(y, x).

Let ε > 0. The open ball with radius ε is defined as
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Bε(x)

x

ε

Figure A.2: Visualisation of Open Sets Induced by a Metric

Bε(x) = {y ∈ X | d(y, x) < ε}, x ∈ X. (A.1)

Similarly, we may define the closed ball with radius ε as

Bε(x) = {y ∈ X | d(y, x) ≤ ε}, x ∈ X. (A.2)

Every metric space is a topological space. We will not prove this fact as it is well known; open
balls in a metric space provide a basis for the topology. We visualise this in Figure A.2.

Definition A.4 (Cauchy Sequence)
Let (X, d) be a metric space and let (xn)n∈N be a sequence. (xn)n∈N is said to be a Cauchy,
or fundamental, sequence if for every ε > 0 there exists an N ∈ N such that

m,n ≥ N =⇒ d(xn, xm) < ε.

The metric space (X, d) is said to be complete if every Cauchy sequence converges in X.

Remark: Cauchy sequences are a fundamental part of mathematical analysis. In general, one
may think of Cauchy sequences as sequences that always have a “limit” but that the limit does not
necessarily belong to the original metric space (X, d). Indeed, if one encounters an incomplete
metric space then it may be completed by constructing equivalence classes of Cauchy sequences
in (X, d) and then identifying (X, d) in the resulting space using constant sequences which are
certainly Cauchy. This approach can be used to construct R from Q or the Lp(Ω) spaces from
the space of continuous functions C(Ω).

Topological and metric spaces serve as a basis for continuous functions. We now present a
well-known proposition as it will play a detrimental role in the majority of theorems.

Proposition A.1. Let (E, dE) and (E′, dE′) be metric spaces and f : E → E′ a continuous
function. Let (xn)n∈N be a convergent sequence in E with limit x. Then

lim
n→∞

f(xn) = f(x).

Proof. We have to prove, that for any ε > 0 there exists an N ∈ N such that

n ≥ N =⇒ d(f(x), f(xn))E′ < ε.

By the continuity of f we know that

∀ε > 0∃δ > 0 : d(x, y)E < δ =⇒ d(f(x), f(y))E′ < ε. (A.3)
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Since (xn)n∈N is convergent, we know that

∀δ > 0∃N ∈ N : n ≥ N =⇒ d(x, xn)E < δ. (A.4)

Using (A.3) we get that for ε > 0 there exists a δ = δ(ε) > 0, for the same δ we deduce by (A.4)
that there exists N ∈ N such that n ≥ N =⇒ d(x, xn)E ≤ δ. It now follows that

n ≥ N =⇒ d(x, xn)E < δ =⇒ d(f(x), f(xn))E′ < ε.

�

Remark: Proposition A.1 justifies that when f is continuous we may push the limit inside the
function, when we know (xn)n∈N is convergent.

Definition A.5 (Completely Metrizable Space)
Let (X, τ) be a topological space. (X, τ) is said to be completely metrizable if there exists
at least one complete metric d, such that (X, d) is a complete metric space, where d induces
τ .

A metric space is typically easier to work with than a topological space, since we may characterize
the elements in the topology using the metric. Hence, a completely metrizable space is a
sufficiently “nice” topological space, in the sense that we may find at least one complete metric
which induces (X, τ).

A.2 The Space of Continuous Functions Over the Postive Reals

In order to construct a metric on C([0,∞);R) from the supremum metric we will have to bound
our metric in a convenient way. Therefore, we will need the following definition.

Definition A.6 (Equivalent Metrics)
Let X be a non-empty space and d, ρ be metrics on X. Then the spaces (X, d) and (X, ρ)

are topologically equivalent if, and only if, they generate the same topology. We write
(X, d) ∼= (X, ρ).

Intuitively given a metric d we can induce a topology. However, suppose we only have balls of
radius less than 1. Intuitively, we could build balls with radius r > 1 by joining balls of radius
less than one. We justify this claim below.

Lemma A.1. Let (X, d) be a metric space. Define

d∧(x, y) = 1 ∧ d(x, y), x, y ∈ X.

Then (X, d∧) ∼= (X, d).

Remark: Recall that for real numbers x and y we have x ∧ y = min{x, y}.

Proof. We argue that it is trivial to see that d∧ is indeed a metric if d is a metric.
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We must show that an open set in (X, d) is open in (X, d∧). Let O be open in (X, d). By
definition we know that

∀x ∈ O∃r > 0 : Br(x) ⊆ O.

Now, clearly for r ≥ 1 we have that Br′(x) ⊆ Br(x) for all r′ ∈ (0, r]. It follows that O is open
in (X, d∧). Conversely, let O be open in (X, d∧). Note that in (X, d∧) we may characterise open
balls by

∀x ∈ O∃r ∈ (0, 1) : Br(x) ⊆ O,

but clearly for r ∈ (0, 1) we have that the metrics agree, so for the same r we have that O is
open in (X, d). Hence, (X, d) ∼= (X, d∧). �

We now have that C([0, T ];R) may be either endowed with the metrics d∞(x, y) or 1∧ d∞(x, y).
The reason why we want 1∧d∞(x, y) is that it’s bounded by 1, hence we can appropriately weight
compact intervals to define a metric on C([0,∞);R). That is, we take an increasing sequence of
compact sets that eventually cover the entire domain and appropriately weigh them.

Lemma A.2. Let (E, dE) be a Polish space, then C([0,∞);E) admits a metric defined by

d∞(f, g) =

∞∑

n=1

1

2n

(
1 ∧ sup

t∈[0,n]
d(f(t), g(t))E

)
.

Proof. First, note that d∞(f, g) ≥ 0 for all f, g ∈ C([0,∞);E). Next, we have that

d∞(f, g) = 0 ⇐⇒ f = g.

Clearly, the implication that f = g =⇒ d∞(f, g) = 0 is trivial. We wish to show that
d∞(f, g) = 0 implies f = g. Note that if d∞(f, g) = 0, then each term is the sum must be
identically 0, and it follows that f = g.

Now, clearly d∞(f, g) = d∞(g, f) by extension of 1∧ supt∈[0,N ] dE(f(t), g(t)). It remains to show
the triangle inequality. Consider

d∞(f, g) =
∞∑

n=1

1

2n

(
1 ∧ sup

t∈[0,N ]
dE(f(t), g(t))

)

≤
∞∑

n=1

1

2n

((
1 ∧ sup

t∈[0,N ]
dE(f(t), h(t))

)
+

(
1 ∧ sup

t∈[0,N ]
dE(h(t), g(t))

))

=
∞∑

n=1

1

2n

(
1 ∧ sup

t∈[0,N ]
dE(f(t), h(t))

)
+
∞∑

n=1

1

2n

(
1 ∧ sup

t∈[0,N ]
dE(h(t), g(t))

)

= d∞(f, h) + d∞(h, g).

Where the inequality follows from the fact that 1 ∧ supt∈[0,N ] d(f(t), g(t))E is a metric and we
use the associated triangle inequality. �

Remark: We will use d∞ for both the finite version and the infinite version stated above and it
should be clear from context if we refer to (C([0, T ];R), d∞) or (C([0,∞);R), d∞).

We denote the topology induced by d∞ in Lemma A.2 as the topology of local uniform convergence.
Now we have the following extension of Theorem 2.4.
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Theorem A.1. Let E be a Polish space. Then (C([0,∞), E), d∞) is a Polish metric space.

We will not prove Theorem A.1. However, the essence is that we can use the local compactness
of [0,∞) to recover Theorem 2.4 for each [0, N ], N ∈ N. Note that in a very similar fashion we
can endow D([0,∞);R) with the topology of local uniform convergence.

Now, relatively analogous to the case C([0,∞),R) we have the following extension for the
Skorokhod topology.

Theorem A.2. The space D([0,∞);R) can be endowed with a the metric

d◦(f, g) =
∞∑

n=1

1

2n
(1 ∧ d◦n(fn, gn)) ,

where

d◦n(f, g) = inf
λ∈Λ([0,n])

{‖λ‖◦ ∨ d∞(f, g ◦ λ)},

and

fn(t) = f(t)1[0,n−1)(t) + f(t)(n− t)1[n−1,n)(t).

Furthermore, the space (D([0,∞),R), d◦) is a Polish metric space.

Remark: Similar to d∞ we will use d◦ for both the Skorokhod metric in on finite and infinite
time domains.

We refer the reader to [4] for a full proof.

A.3 Measurability of Canonical Projections

This section is based on [4] and [27].

While the entire law of our process is certainly of interest it is more often convenient to consider
the process in some specified times. Very often in probability we are not so fortunate that we
can observe the entire path, but rather only observe the path at some specified times. In order
to preserve measurability we will need the so-called canonical projections.

Definition A.7 (Finite Sequences and Canonical Projections)
Let T be of the form [0, T ] with T <∞ or [0,∞). We define the set

T (T ) = {(tn)Nn=1 ⊂ T | N ∈ N, ti < ti+1, i ∈ {1, 2, . . . , N − 1}} (A.5)

as the set of finite sequences. We define the natural, or canonical, projection onto
τ = (t1, t2, . . . , t|τ |) ∈ T (T ) as

πτ : D([0,∞);R)→ R|τ |,
x 7→ (x(t1), x(t2), . . . , x(t|τ |)).

where |τ | is the cardinality, or length, of τ .
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Figure A.3: Function surfaces in D([0,∞);R) passing through [ai, bi] at time ti, where i ∈ {1, 2, 3}

Remark: The special case πτ where τ = t for some t ∈ T is called the evaluation mapping.

We wish to describe the law of X evaluated at times (t1, t2, . . . , tn) = τ ∈ T ([0,∞)).
Furthermore, as time progresses some values of the path will be realised which may alter the
distribution for the remainder of the path. We will need to introduce some formal tools for
describing this behaviour.

Definition A.8 (Finite Dimensional Distributions)
Let (Ω,F ,P) be a probability space. Let T be of the form [0, T ] with T <∞ or [0,∞) and
X : Ω→ D(T ;R) be a stochastic process. We define the finite distributions of X as

L(Xτ )(B) = P ◦X−1 ◦ π−1
τ (B) = P(πτX ∈ B), τ ∈ T (T ), B ∈ B(R|τ |),

where |τ | is the cardinality, or length, of the sequence τ .

Let us interpret the push-forward measure in Definition A.8. For simplicity we consider
τ = (t1, t2, t3) and B = [a1, b1] × [a2, b2] × [a3, b3] with ai ≤ bi for all i ∈ {1, 2, 3}. Now,
we may think of π−1

τ (B) = π−1
(t1,t2,t3)([a1, b1]× [a2, b2]× [a3, b3]) as asking which function surfaces

in D([0,∞);R) passes through [a1, b1] at time t1 and through [a2, b2] at time t2 and finally [a3, b3]

at time t3. We visualise in Figure A.3, where we see both a continuous and cádlág function.

Given the preimage π−1
τ (B) is a Borel set in B(D([0,∞);R)) induced by either the topology

of local uniform convergence or the Skorokhod topology we then use the push-forward measure
P ◦X−1 to ask what is the probability of “sampling” a cádlág process that passes through [ai, bi]

at time ti.

We have yet to justify that πτ is measurable. This is important because otherwise P(πτX ∈ B)

is not necessarily well defined. We will now justify their measurability.

94



Proposition A.2. Let T be of the form [0, T ] for T <∞ or [0,∞) and let τ ∈ T (T ). Then πτ
is continuous in topology of uniform convergence.

Proof. We must show that whenever for all ε > 0 and every x ∈ D([0, T ];R) exists a δ > 0 such
that

d∞(x, y) < δ =⇒ ‖πτx− πτy‖ < ε. (A.6)

Where ‖ · ‖ is the norm on R|τ |. Note that πτx ∈ R|τ |. To this end, note that

δ > d∞(x, y) = sup
t∈[0,T ]

|x(t)− y(t)| ≥ |x(t)− y(t)|, ∀s ∈ [0, T ]. (A.7)

And note that ‖πτf − πτg‖ can be written as

‖πτf − πτg‖ =

√√√√
|τ |∑

i=1

(f(ti)− g(ti))2

Now, choosing δ = ε/
√
|τ |+ 1 and using (A.7) yields

√√√√
|τ |∑

i=1

(f(ti)− g(ti))2 <

√√√√
|τ |∑

i=1

(δ)2

=

√√√√
|τ |∑

i=1

ε2

|τ |+ 1

=

√
|τ |
|τ |+ 1

ε < ε.

�

This justifies that πτ is measurable on the topology of uniform convergence. For the Skorokhod
topology πτ is continuous only if τ are points at which the function x ∈ D([0, T ];R) is continuous,
as shown in Proposition A.2. However, we can use the result above to recover measurability in
the Skorokhod topology using a result shown in [27].

Theorem A.3. Let l : D([0, T ];R) → R be a continuous linear functional on the topology of
uniform convergence, then it is measurable with respect to the Borel σ-algebra generated by the
Skorokhod topology.

Then, for each t ∈ [0, T ] we have πt is continuous and hence measurable by Proposition A.2.
Clearly, πt is linear, so πt is measurable with respect to the Skorokhod topology. It follows that
πτ is measurable, as it may be decomposed as πti for each ti ∈ τ with τ ∈ T ([0, T ]).

For certain points we may recover continuity even in the Skorokhod topology.

Proposition A.3. Consider the space D([0, T ];R) where T < ∞. The projections π0 and πT
are continuous, and for t0 ∈ (0, T ). Then πt0 is continuous in the Skorokhod topology only on
the set

C (t) = {x ∈ D([0, T ];R) | x is continuous at t0}.
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Proof. We first use the characterisation of continuity in the Skorokhod topology and show it
for the metric

dS(x, y) = inf
λ∈Λ([0,T ])

{d∞(λ, Id) ∨ d∞(x, y ◦ λ)}.

We must show that for every x ∈ C (t) and ε > 0 exists a δ > 0 such that

dS(x, y) < δ =⇒ |πtx− πty| < ε

Let ε > 0 be given. First, note that

dS(x, y) ≥ max(|x(0)− y(0)|, |x(1)− y(1)|) = max(|π0x− π0y|, |πTx− πT y|),

since λ(0) = 0 and λ(T ) = T , ∀λ ∈ Λ([0, T ]). It follows that π0 and πT are continuous in the
Skorokhod topology by choosing δ = ε.

Now, fix t0 ∈ (0, T ). We will show that πt0 continuous at x if, and only if, x ∈ C (t0). First, note
that x ∈ C (t0) implies that

∃δ0 > 0 : |t− t0| < δ0 =⇒ |x(t)− x(t0)| < ε

2
.

It follows that if δ0 > d∞(λ, Id) we have

|λ(t0)− t0| < δ0 =⇒ |x(λ(t0))− x(t0)| < ε

2
.

Now,

|πt0y − πt0x| = |y(t0)− x(t0)| = |y(t0)− x(λ(t0)) + x(λ(t0))− x(t0)|
≤ |y(t0)− x(λ(t0))|+ |x(λ(t0))− x(t0)|. (A.8)

Now, let δ = min(δ0, ε/2), x ∈ C (t), y ∈ D([0, T ];R), and λ ∈ Λ([0, T ]) such that

δ > (d∞(λ, Id) ∨ d∞(y, x ◦ λ)) ≥ dS(y, x). (A.9)

Then, clearly

δ > d∞(λ, Id) ≥ |λ(t)− t|, ∀t ∈ T.

and hence also specifically in t = t0 which implies

δ > d∞(λ, Id) =⇒ δ > |λ(t0)− t0| =⇒ |x(λ(t0))− x(t0)| < ε

2
.

Furthermore,

δ > d∞(y, x ◦ λ) ≥ |y(t)− x(λ(t))|, ∀t ∈ T,

which also holds at s = t. Hence,

|y(t0)− x(λ(t0))| < δ ≤ ε

2
.

By (A.8) we now have

|πt0y − πtx| ≤ |y(t0)− x(λ(t0))|+ |x(λ(t0))− x(t0)| < ε.

Taking the infimum of λ ∈ Λ([0, T ]) will by (A.9) yield the same. Hence x ∈ C (t0) implies πt0
continuous at x.
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We must now show that if x 6∈ C (t0) yields πt0 not continuous. By Proposition A.1 it suffices to
show that if xn → x in the Skorokhod topology, but πt0xn 6→ πt0x then πt0 is not continuous at
x. To this end define

xn(t) =

{
x(0) t ∈ [0, 1

2n ]

x(t− 1
2n ) t ∈ ( 1

2n , T ]
.

Clearly, xn → x in the Skorokhod topology, by similar arguments as in Example 2.5. Since x is
cádlág and discontinuous at t0 we have x(t0−) = limt↑t0 x(t) 6= x(t0). It now follows that

lim
n→∞

πt0xn = lim
n→∞

xn(t0) = lim
n→∞

x

(
t0 −

1

2n

)
= lim

t↑t0
x(t) 6= x(t0) = πtx.

�

A small corollary follows.

Corollary A.1. Consider the space D([0, T ];R) where T < ∞. Let τ ∈ T ((0, T )), then πτ is
continuous only on the set

C (τ) =
⋂

t∈τ
C (t)

Remark: Beware that we are taking τ ∈ T ((0, T )) rather than T ([0, T ]) but the definition is
analogous. That is,

T (0, T ) = {(tn)Nn=1 ⊂ (0, T ) | N ∈ N, ti < ti+1, i ∈ {1, 2, . . . , N − 1}}.

A.4 Martingales and Stopping Times

This section is based on [28].

In this section we present some definition and results for Martingales.

Definition A.9 (Martingale)
Let

(
Ω,F , (Ft)t∈[0,∞) ,P

)
be a filtered probability space. A stochastic process X is said to

be a martingale if E [|Xt|] <∞ and

E [Xt | Fs] = Xs

Remark: Martingales rely heavily on the probability measure and filtration; a martingale on
a space

(
Ω,F , (Ft)[0,∞) ,P

)
may not be a martingale if we endow Ω with a different σ-algebra,

filtration, and probability measure.

Definition A.10 (Stopping Time)
Let

(
Ω,F , (Ft)t∈[0,∞) ,P

)
be a filtered probability space. τ : Ω → [0,∞) is said to be a

stopping time if

{τ ≤ t} def= {ω | τ(ω) ≤ t} ∈ Ft.
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The term stopping-time can be slightly misleading. In themselves they are not stopping anything.
However, if X is a process then

Xτ∧t = Xmin{τ,t}.

is a process, which is constant - hence stopped - after time τ . Some interesting problems can be
turned into a stopping-time problem.

Lemma A.3. Let X be real valued adapted cádlág stochastic process and K be a closed subset
of R. Then the random variable

T (ω) = inf{t > 0 | Xt(ω) ∈ K or Xt−(ω) ∈ K}
is a stopping time.

Proof. We must show

{T ≤ t} ∈ Ft

We first define

An =

{
x
∣∣∣ inf
k∈K
|x− k| < 1

n

}
.

An is an open set with K ⊂ An. The set [0, t) is uncountable, but consider Q ∩ [0, t) which is
clearly dense and countable. Hence,

⋃

s∈Q∩[0,t)

{ω | Xs(ω) ∈ An}

clearly belongs to Ft since X is measurable and adapted and An is open for each n. By extension
⋂

n∈N

⋃

s∈Q∩[0,t)

{ω | Xs(ω) ∈ An}

is a countable intersection and belongs to Ft. Clearly,

{ω | Xt ∈ K or Xt− ∈ K}

is measurable, and so it follows that

{ω | Xt ∈ K or Xt− ∈ K} ∪


⋂

n∈N

⋃

s∈Q∩[0,t)

{ω | Xs(ω) ∈ An}


 ∈ Ft.

But we have

{ω | T (ω) ≤ t} = {ω | Xt ∈ K or Xt− ∈ K} ∪


⋂

n∈N

⋃

s∈Q∩[0,t)

{ω | Xs(ω) ∈ An}


 .

�

The stopping time T in Lemma A.3 is called the first hitting time of the set K. The result can
be extended into hitting any Borel set, but we will not cover this result.

From a financial perspective the first hitting time is naturally of interest; suppose we wish to
hold portfolio of assets until the portfolio has reached some return. Naturally, there is a 1-to-1
correspondence between the return and the value of the portfolio, i.e. we obtain the desired
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return r∗ when the value of our portfolio reaches S∗ and so the hitting time of the set [S∗,∞) is
of interest. Deriving the law of T is of particular interest as it yields knowledge of the uncertainty
as well.

Now, similarly to how we may be interested in the history of a stochastic process prior to a time
t, we may similarly be interested in the history of a stochastic process up until time T , where T
is a stopping time.

Definition A.11 (Stopping Time Sigma Algebra)
Let

(
Ω,F , (Ft)[0,∞) ,P

)
be a filtered probability space and let T be a stopping time. We

define the σ-algebra FT as

FT = {B ∈ F | B ∩ {T ≤ t} ∈ Ft, t ∈ [0,∞)}.

We have the following Lemma

Lemma A.4. let
(

Ω,F , (Ft)[0,∞) ,P
)
and T : Ω → [0,∞) be a stopping time. Then FT is the

coarsest, or smallest, σ-algebra containing all cádlág processes which are measurable at time T .

Proof. Let G = σ({ω | XT (ω)(ω) ∈ B,B ∈ B(R), X cádlág and adapted }). Let F ∈ FT . Note
that 1F1[T,∞)(t) is a cádlág process with XT = 1F . Hence, F ∈ G and it follows that FT ⊆ G.

Now, let X be an adapted cádlág process. Consider X : Ω× [0,∞)→ R; it must be measurable
since it is adapted. Now, fix t ∈ [0,∞) and define

ϕ : {ω | T (ω) ≤ t} → [0,∞)× Ω,

ω 7→ (T (ω), ω).

Note that both X and ϕ are measurable measurable, so the mapping X ◦ ϕ is a measurable
mapping from ({ω | T (ω) ≤ t},Ft ∩ {ω | T (ω) ≤ t}) to B(R), i.e.

{ω | X(T (ω), ω) ∈ B,B ∈ B(R)} ∩ {ω | T (ω) ≤ t} ∈ Ft,

but this implies XT ∈ FT from which it follows that G ⊆ FT . �

Now, the goal of the previous Lemma, to construct a filtration induced by stopping times. The
proceeding Corollary is therefore central to justifying

Corollary A.2. Let S and T be stopping times and let

S ≤ T, a.s.

Then

FS ⊆ FT .

Now, the following definition is a technical one.
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Definition A.12 (Closure of a Martingale)
Let X be a martingale on a filtered probability space

(
Ω,F , (Ft)[0,∞) ,P

)
. X is said to be

closed by a random variable Y if E [|Y |] <∞ and

Xt = E [Y | Ft] , ∀t ∈ [0,∞).

We can now present the so-called Optional Sampling Theorem.

Theorem A.4 (Optional Sampling Theorem). Let X be a right continuous martingale with,
which is closed by a random variable Y . Let S and T be stopping times such that S ≤ T a.s.,
then XS and XT are integrable and

XS = E [XT | FS ] , a.s.

while at the surface the Theorem seems obvious; once S and T are realised by some ω then
they correspond to some s, t ∈ [0,∞) with s ≤ t, and for this s and t the martingale property
hold. However, the theorem is incredibly valuable when we have to prove certain properties of
martingales, as we will later see.

Definition A.13 (Local Martingale)
Let

(
Ω,F , (Ft)[0∞ ,P

)
be a probability space and let X : Ω→ D([0,∞);R) be a stochastic

process. If there exists a sequence of stopping times (τn)n∈N such that

P(τn ≤ τn+1) = 1, n ∈ N
P( lim
n→∞

τn =∞) = 1,

such that the process

Xt∧τn

is a martingale for every n, then X is said to be a local martingale.

Clearly, every martingale is a local martingale, but the converse is not true.

A.5 Weak Convergence and Donsker’s Theorem

This subsection is based on [4].

In this subsection we present the notion of weak convergence of probability measures and
Donsker’s theorem, included only for self-refrencing.

Definition A.14 (Weak Convergence of Probability Measures)
Let (E, dE) be a Polish metric space with Borel σ-algebra B(E). A sequence of probability
measures (Pn)n∈N is said to converge weakly to a probability measure P if

lim
n→∞

∫

E
fdPn =

∫

E
fdP, ∀f continuous, real valued and bounded.
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Similarly to stable convergence in law, it may be ideal to think of the limit as a random variable
on an appropriate probability space and Pn as the law of a sequence of random variables, i.e.
Pn = LZn for some sequence of random variables Zn with limit Z such that LZ = P. We then
write

Zn ⇒ Z,

to mean that Zn converges weakly to Z. This motivates the so-called Functional Central Limit
Theorem also known as Donsker’s Theorem.

Theorem A.5 (Donsker’s Theorem). Let (Ω,F ,P) be a probability space, and let (ξm)m∈N be a
sequence of independent random variables with mean 0 and variance σ2. Then, define S by the
mapping

t 7→
[nt]∑

i=1

ξi,

then
1

σ
√
n
S ⇒W,

on (D([0, 1];R),B(D([0, 1];R))).

For a proof see [[4], p. 146 Theorem 14.1]
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