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CHAPTER 1
Introduction

It is imaginable that since the beginning of even primal animal species, the desire of
reaching a target (food, sleeping area, etc.) in the shortest path possible has been essential
for surviving (Schrijver, 2012). Thereby it does not seem outrageous to claim that path
finding is an instinct within ourselves. In the technological world of present time, the desire
of saving time and assuring that complex tasks are taken care of in a well-founded manner
is still increasing. An example of this is the 1950’s research in alternate routing examining
how to find the second shortest route if the shortest was unavailable. The alternate routing
contributed to the automatisation of the long-distance telephone calls in the United States
(Schrijver, 2001). Since then the path and route planning have been studied extensively,
some of the well-known methods and problems worth mentioning are the Bellman-Ford
method from 1958, the Dijkstra method from 1959, the Vehicle Routing Problem from
1959, and later the A* algorithm from 1968 (Schrijver, 2001; Hart et al., 1968). The A*
algorithm is often applied for path finding in video games. The algorithm was created as a
part of a larger program trying to build a mobile robot that could reason about its own
actions, it was called the Shakey program (Cassel, 2017).

Since the introduction of the Shakey program, the world has come a long way in further
automating various fields, as it is now possible to get passenger cars to almost drive by
themselves (Walker, 2020). However, the field of automated robots and vehicles is still
under major research. Another type of vehicle where automatisation of the field is explored
is for aerial vehicles.

An unmanned aerial vehicle, UAV, is an aerial vehicle not carrying any humans but instead
is either piloted by a computationally driven program or remotely. UAVs are utilised in a
broad sense of fields, e.g., military (Zhang et al., 2015; Wu et al., 2014), and industrial
companies are exploiting the capabilities of UAVs to do reconnaissance, delivering goods
in impassable areas, etc. (Phung et al., 2017; Boccardo et al., 2015). For the UAVs to
perform well in these tasks, a lot of planning needs to be executed. The planning covers a
wide range of aspects, besides the bureaucratic aspects, some technical aspects are also
carried out, among these the path planning of the UAV (Pfeiffer et al., 2007).

In the various applications of path planning of UAVs, it is often found that the UAV needs
to avoid certain areas (Souissi et al., 2013; Blackmore et al., 2006; Alotaibia et al., 2018).
This could be due to a possible intersect with obstacles, or because some areas might be
related to risk exposure. The risk exposure could either be towards the UAV, e.g. if the
UAV is carrying out a military task. On the other hand, the UAV could also be exposing
others to risk, e.g., endangered animal species, or humans (Mulero-Pázmány et al., 2017).

When having certain areas which are preferable to avoid, while still taking into account
the limitation of fuel, and thus distance the UAV can fly, the path planning is non-trivial
(Pfeiffer et al., 2007). Furthermore relying on perfect information about the localisation of
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Group 3.224 1. Introduction

the area it is desired to avoid, could jeopardise the task of the UAV (Drawil and Amar,
2013). Therefore the path planning should consider uncertainty in the information about
the reason of avoidance, the uncertainty could be due to, mobile objects, e.g., mobile
threats or animals moving around, or insufficient localisation tools.

1.1 Problem Description
Appropriate path planning is a necessity for the UAV to carry out a task satisfyingly.
Motivated by said necessity and the former introduction, this thesis considers the problem
of safe path planning for a single UAV under environmental uncertainty. For analytical
simplicity the dynamics of flying the UAV are ignored, this could be dynamics such as
turning radius, ascending altitude, etc. It is further assumed that the UAV is not in any
way reactive and thereby stays on the path given.

In addition, it is assumed that every area of avoidance has a basis or center point. Hence
the desire of avoiding the area should be greatest at the center point. The area of avoidance
is described by a Guassian bivariate normal distribution around the center point (xz, yz),
where the uncertainty of the position of the center point is taken into consideration by ξu,
where u ∈ Us denotes the set indexing the scenarios which represent the state of a risk
map, Us = {1, 2, . . . , s}.

fz(x, y, ξu) = 1√
2πσz

· e
−d2
z

2σz (1.1)

Here dz is the euclidean distance between an arbitrary point, (x,y), and the center point of
avoidance, dz =

√
(x− [xz ± ξu])2 + (y − [yz ± ξu])2, and σz is the standard deviation.

If multiple areas of avoidance are present in the region, where the UAV is carrying out a
task, the risk exposure is described accordingly.

F (x, y, ξu) = 1−
M∏
z=1

(
1− fz(x, y, ξu)

)
(1.2)

In this thesis the region, the UAV is carrying out a task in, is seen as a discrete map. The
map is split into a K ×K grid, seen as a graph G(N,E) with N being the nodes, from now
referred to as points, and E being the edges combining the points. A path in the graph is
said to start at an origin, o, and end the task at the goal, g. The path is given by a string
of points p = {p0, p1, . . . , pN} where p0 = o and pN = g. In this map the cost of travelling
from one point, i, to another point, j, is associated with the risk of arriving at the point j.

cij = F (pj , ξu) (1.3)

Thus the risk exposure of a given path, R(p, ξ), is seen as the sum of the risk from every
point which the path consists of.

R(p, ξu) =
N∑
i=0

F (pi, ξu) (1.4)

When a UAV traverse a region, where certain areas are desired to avoid, the UAV is
either exposed to threats, and thereby risk, or exposing others, e.g., animals to risk. By
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1.1. Problem Description Aalborg University

introducing the risk measure of equation (1.4), it is seen that the risk increases along the
path, the increasing risk might, at some point, lead to the UAV being detected by enemies
or endangered animal species. By introducing X(p, ξu) as a random variable, the number
of detections, d, the UAV obtains, can be counted. That is, as the risk exposure reaches
certain thresholds along a path, p, the number of detections rises. Thus by introducing
X(p, ξu) the probability of being detected, or scare animals, can be described by a Poisson
process.

P (X(p, ξu) = d) = 1
d! (R(p, ξu))d · e−R(P,ξu) d ∈ N0 (1.5)

Furthermore, as indicated earlier, it is presumed that the UAV might be under some
distance constraint, which could be due to fuel consumption, or that the task is urgent
and needs to be carried out within a certain timeframe. Thus the distance utilised by
the UAV to get from one point to another is taken to be the distance, D, between two
points. The distance between two points is seen as the euclidean distance between them
Dij =

√
(xj − xi)2 + (yj − yi)2.

The distance of a given path is thus the sum of the distances between all linked points on
that specific path.

This yields an objective function where the desire is to minimise the number of detections
of a path while satisfying a time constraint.

minimize P
(
X(p, ξu) ≥ d

)
subject to Dg ≤ D̄

(1.6)

Where Dg = D(p) is the accumulated distance covered on the path, and D̄ is a threshold
of distance utilised to complete the task. Looking further into minimising the number of
detections it is seen that

Minimise P (X(p, ξu) ≥ 1) ≡ Maximise P (X(p, ξu) = 0)

In addition P (X(p, ξu) = 0) = e−R(p,ξu) by definition. Therefore minimising the probability
of 1 or more detections is equivalent to minimising the risk across the path.

Preliminary Problem Statement
The preliminary focus of this thesis will be to analyse the map setup and find a way to
evaluate the objective function in equation (1.6) by looking into the following statements:

• How to accommodate for the uncertainty having multiple scenarios?
• How can the objective function be solved considering multiple scenarios?

Limitation
The region of the task is taken to be partially known, as the localisation of the areas of
avoidance could be incorrect or associated with some uncertainty. Further, the graphical
composition of a region is not taken into consideration, as the risk from unspecified objects
is the main focus to accommodate for. It is assumed that the altitude of the UAV is fixed,
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Group 3.224 1. Introduction

and thus the UAV is already in an appropriate altitude at the origin. This means that
the mapping and path planning is made in 2 dimensions. This thesis only looks into a
global path plan, that is, the path is planned on knowledge obtained prior to take off.
Thereby local path planning, and alterations to the global path while the UAV is carrying
out a task are not taken into consideration. For simplicity of the setup and without loss of
generality the pathing generated throughout this thesis takes place from point 0, to point
K ·K, that is, from one end of the map to the other.

Methods
The methods applied to find an optimal solution to the objective function, and thus
minimising the risk of a path for the UAV, are combinatorial optimisation, stochastic
programming, and dynamic programming.

In operations research, combinatorial optimisation is often applied in setups where the
optimal solution to a problem comes from a finite set of solutions. In this thesis, the
combinatorial optimisation is a part of finding the path minimising the probability of
detection, as the pathing consists of traversing through a map with a graph setup.
Exhaustive search methods become non-tractable as the level of detail desired in the
map rises, to help this issue dynamic programming with resource constraint is introduced.

The uncertainty of the center points regarding the areas of avoidance is investigated with
a stochastic approach. This is carried out through application of stochastic programming
evaluating the path by minimising either the expected number of detections or by finding
a robust solution, which minimises the maximum regret.
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CHAPTER 2
Literature Review

The practical application of UAVs has intensified over the last decades and the same has
the studies concerning how to plan their pathing. The studies considered relevant to the
this paper are studies in various schemes of path planning; in uncertain environments, with
obstacles, and lastly under threat. Many different problem structures and methods have
been applied in the various studies, further, it is noted that the methods applied and the
general map setup overlap between the mentioned schemes.

Path planning with obstacles has been studied by (Blackmore et al., 2011). Here a chance
constraint approach is introduced, where the probability of failure, that is, colliding with
an obstacle, is minimised. Additionally, the uncertainty of the state of the UAV is con-
sidered by adding a Gaussian white noise term at every state. The problem is solved
with a self-customised algorithm. (Kothari and Postlethwaite, 2013) also applies a chance
constraint approach for guaranteeing a safe path without collision, the Rapidly exploring
Random Trees, RRT, algorithm is applied with good results, however without considering
the time or fuel consumption.
In (Miralles and Sanz-Bobi, 2004) the path planning is carried out by utilising potential
fields. In this study with a map where obstacles are represented as multivariate Gaussian
distributions, with the possibility of collision increasing when pathing closer to the obstacle.
Thus the pathing is carried out by navigating in the valleys of probability, which in
conclusion is almost the same as utilising Voronoi diagrams, both setups are suffering from
the same drawback, having long path lengths, mainly as the path length is not considered.

Other studies have looked into the environment which the UAV is passing through, and
the knowledge of the said environment. In these studies both (Yang et al., 2014; Bry and
Roy, 2011) apply the RRT algorithm, whereas (Yang et al., 2014) suggests an improvement
to the RRT algorithm both in sense of iterations and path smoothness and thereby the
path length. Both articles consider uncertainty as well, (Yang et al., 2014) by adding a
chosen margin to the obstacles or threats, and removing the areas with obstacles from the
path-able region, thus assuring a safer path.
In (Bry and Roy, 2011) the path is planned while predicting uncertainty, with moderate
satisfaction. The methodology changes completely in (Rathbun and Capozzi, 2002), where
an evolutionary algorithm is applied to optimise the path in an uncertain environment,
here a weighted trade-off between path length and risk of collision is introduced with
varying results. A common denominator for all these is that they look into an environment
where the areas of avoidance are seen as obstacles.

The only scheme where the risk is not linked to collision is when examining path planning
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Group 3.224 2. Literature Review

under threat, the applications and setups are however still somewhat similar. In (Kim
and Hespanha, 2004), threats are modeled as ellipsoids, with monotone increasing risk
level towards the center point, the path planning is here carried out by applying a Voronoi
diagram, additionally, uncertainty is not considered in any regard.
Another way to model the threats is seen in (Zhang et al., 2015) where the risk of being
under threat is described by a Gaussian bivariate normal distribution with the map being
split into a grid. The path planning is carried out by application of a new algorithm using
reinforcement learning through a reward matrix minimising risk.
A third way of modeling the risk while finding an optimal path is introduced in (Pfeiffer
et al., 2007) where the map, the UAV is operating in, is depicted as threat zones, further-
more risk is here related to the number of detections. However the methodology is not
described, neither is uncertainty introduced in any aspect.

The focus of this thesis is to create a setup where safe path planning under uncertainty is
possible. This is carried out with inspiration of (Zhang et al., 2015) using the Gaussian
normal distributions to describe mapping and risk, however in this thesis uncertainty
of the exact location is introduced, and thereby various scenarios, which all need to be
accommodated for, are present. Moreover, in (Zhang et al., 2015) the objective includes
both distance and risk in the same expression. Whereas the focus in this thesis is only
regarding the risk and then accounting for the distance covered to execute the task by
adding a constraint. In addition, the risk measure is reformulated into number of detections,
as this seems more relatable, this is carried out in the same manner as (Pfeiffer et al.,
2007).
The combination of a map with areas of avoidance described by Gaussian normal
distributions and having various scenarios of how uncertain the positions of the areas of
avoidance are is to the knowledge of this thesis, not investigated before. Furthermore,
the primary focus on risk makes the objective of this thesis different from the previous
studies with a similar map setup. The path planning and risk minimisation are carried
out by application of dynamic programming with resource constraint. The method has
previously been applied to shortest path problems with recourse constraint with success,
e.g., in various settings of the known vehicle routing problem (Righini and Salani, 2008).
The dynamic programming method applied is in addition altered to a robust setting, from
which it is possible to find a path being both feasible and a good solution in all scenarios.
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CHAPTER 3
Modelling

The approach for the path planning described throughout this thesis is visualised in
figure 3.1, in this chapter the various components of the preprocessing and applications
are described, that is, the problem setup required, to describe the path with minimum risk
and the methodology applied to find said path. Furthermore, The stochastic approach,
regarding the uncertainty of the center points of the areas of avoidance, is also elaborated.

Inputs:
Map Information
Origin Position
Goal Position

D̄

Preprocessing:
Scenarios
Risk Map
Grid Setup

Applications:
Robust Safe Path
Visualisation

Verification
of Path Plan

Abort Mission
or Change Input Execute Path Plan

Bad Good

Figure 3.1: Visualisation of the general path planning approach.
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3.1 Probability Risk Map
The UAV traverse through a region where, in the path planning, the graphical composition
of said region is not taken into consideration. Therefore the map is categorised as a
Probability Risk Map, PRM, where the risk is modelled as a Gaussian bivariate normal
distribution, this is only when the uncertainty, ξu, is 0. When ξu 6= 0 the area of avoidance
takes a shape where the uncertainty makes a circular plateau of high risk. The plateau is
bounded by ξu, thus the areas of avoidance described by equation (1.1), is described in
higher detail by

fz(x, y, ξu) = 1√
2πσz

1

√
(x− xz)2 + (y − yz)2 ≤ ξu

+ 1√
2πσz

· e
−d2
b

2σz 1

√
(x− xz)2 + (y − yz)2 > ξu (3.1)

where db =
√

(x− xb)2 + (y − yb)2 is the euclidean distance between some arbitrary point,
(x, y), and the closest point (xb, yb) on the boundary line of the plateau of risk. The
formulation of equation (3.1) describes the risk as a variety of distributions depending
on the values of σ and ξu, this includes Gaussian bivariate distribution and the uniform
bivariate distribution as the limiting cases, when ξu = 0, or σ = 0, respectively. Throughout
this thesis the distribution is utilised with σ = 1 and ξu varying, which gives multiple
scenarios to look into. A visualisation of the probabilistic risk map with a single area to
avoid and varying values of ξu is seen in figure 3.2.

The reason to utilise the boundary points of the circular plateau stems from the uncertainty,
as it is unknown where within the plateau the actual reason to avoid the area is positioned,
thus the decrease of risk starts from the boundary and not from the center point. The
density is thereby said to be bivariate Gaussian-tailed uniform. A map with multiple areas
of avoidance is seen in Appendix figure A.1.
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3.1. Probability Risk Map Aalborg University

a Probability Risk Map b Contour Map

c Probability Risk Map d Contour Map

Figure 3.2: Illustrations of area of avoidance with center point (10,10) and ξ = 0 in a and
b, and ξ = 2 i c and d.
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3.2 Problem Setups
The risk of a path and the total volume of risk in a map is highly connected with the
uncertainty, therefore the scenarios representing various uncertainties influence the path
with minimal risk, and thus all scenarios should be considered when minimising the risk
and thereby the probability of detection. One possible way to accommodate for this is by
looking into the expected value of the risk from equation (1.4) and thereby the expected
value of the number of detections. This yields an objective function given by

minimize P
(
E

[
X(p, ξ)

]
≥ d

)
subject to Dg ≤ D̄.

(3.2)

With this objective function the expected value is taken accordingly in equation (1.1) -
equation (1.4). By solving equation (3.2) one would obtain a pathing which in the average
scenario minimises the probability of detection by the Law of Large Numbers (Shapiro
and Philpott, 2007). However, it is likely that the need of carrying out the same task in
the same location multiple times, is not what the owner of the UAV requests, and thus the
map might change with every task. Furthermore finding the path with minimal probability
of detection in the average scenario could still lead to the path having a high probability of
detection in a worst-case scenario (Shapiro et al., 2013). A UAV is an expensive tool, and
detection of the UAV in a hostile environment would very likely result in the UAV being
eliminated (Pfeiffer et al., 2007). Therefore it is also a desire to look into the possibility of
finding a solution that incorporates the information from all scenarios in the decided path,
and thereby becomes more robust, no matter which scenario unfolds. The robust path is
seen as the safest path when multiple scenarios are considered.

The robust path is in this thesis found by minimising the maximum regret. To find the
regret of a path it is a necessity to find the lowest risk path for each of the scenarios,
u ∈ Us, the path with minimum risk for a given scenario is denoted, R(p∗, ξu). Thereby
the regret is given as

Reg(p, ξu) = R(p, ξu)−R(p∗, ξu) (3.3)

where p is an arbitrary path, and p* is the path with lowest risk in a given scenario
u ∈ Us. The regret of a path is needed when finding the maximum regret, given the various
scenarios u ∈ Us.

MR(p) = max
u∈Us

Reg(p, ξu)

The maximum regret is thereby the regret of an arbitrary p, in the scenario where the
regret, compared to the optimal path of said scenario, is largest. Thus the robust path is
found by solving the objective function given by,

minimize MR(p)
subject to Dg ≤ D̄.

(3.4)
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3.2. Problem Setups Aalborg University

3.2.1 Problem Statement
With the above elaboration on the objective function from equation (1.6) and the
clarification on how to optimise the path in regard of risk, while considering all scenarios.
The problem considered throughout this thesis is:
How to minimise the risk of the path for a UAV and thus find optimal solutions to the two
new objective functions equation (3.2) and equation (3.4)?

This question is answered by looking into the following statements:

• How to path through the PRM?
• How to find paths minimising the probability of detection?
• Does the introduction of uncertainties change the paths?
• How can a robust path be found without solving (1.6) for each distinct scenario?

11
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Grid
To be able to create a path plan through the PRM, the map is transformed into a graph
having K ×K points, the graph is constructed as a grid, see figure 3.3. By introducing the
grid-based graph it should be noticed that the detail of the map and thereby the number
of possible paths is highly dependant on K. The path planning will throughout this thesis
be carried out with a 40× 40 grid.

1 2 3

4 5 6

7 8 9

Figure 3.3: Illustration of a 3× 3 grid based graph.

By choosing the grid-based graph setup as framework to find a path satisfying the objective
functions equation (3.2) and equation (3.4), and traverse the PRM, other setups are
discarded. Two other methods utilised in setups like this are Voronoi Uncertainty Fields,
VUF, and RRT (Tsardoulias et al., 2016). The VUF relies on Voronoi diagrams and is often
applied when dealing with obstacles. In this method, the edges define the possible paths
that maximises the distance to the obstacles (Masehian and Amin-Naseri, 2004). This
seems preferable as minimising the risk is the main focus, however, the method lacks the
possibility of considering the length of the path, while still finding a path minimising risk.
Furthermore, the risk is not an obstacle and thus it should be possible to path through
an area of avoidance. Lastly, the areas of avoidance are of different size given the various
scenarios, and a comparison of the paths in different scenarios could become biased when
allowing for a more floating graph structure (Toth et al., 2017).
RRT methods are also often utilised in path planning, the RRT, in general, have a
simple algorithmic setup which the performance benefits from in terms of computational
complexity, therefore the method is mainly applied in real-time or local path planning.
Further, the RRT mainly handles obstacles instead of areas of risk, even if the areas

12



3.3. Shortest Path Problem w. Resource Constraint Aalborg University

of avoidance were to be depicted as obstacles the methods exhibit problems on passing
through narrow spaces (Szadeczky-Kardoss and Kiss, 2006). Additionally, the pathing
created with RRT is non-deterministic and might change if the same map is handled
multiple times (Jouandeau et al., 2008), therefore one could question the optimality of a
path when utilising RRT.

The grid-based graph setup also lacks the ability to find the optimal path to some extent,
as the grid-based setup constrains the possible directions to investigate. However increasing
the density of the grid by increasing K, would also lead to an increase in the ability to
find the optimal path. Therefore the grid-based graph setup is chosen. By employing
the grid setup it needs to be chosen which application method to utilise to find the path
which minimises risk, and also has the possibility of considering multiple scenarios to find
a robust safe path.

3.3 Shortest Path Problem w. Resource Constraint
When having the setup of a directed graph, visualised in figure 3.3, there are two
methodologies applied widely to solve the shortest path problem with resource constraint,
the first methodology utilises heuristics from Branch-and-Bound family, i.e. Branch-and-
Price and Branch-and-Cut (Ladányi et al., 2001). These methods find the shortest path in a
set of candidate paths, by branching the set of candidate paths and discarding the paths not
satisfying a lower bound criterion. The lower bound criterion is therefore very important,
and if a good lower bound is not found the method can be extremely time-consuming
(Pinedo, 2012). In the grid-based graph setup, the number of possible paths increases
rapidly as K increases. A lower estimate on the number of possible paths in the graph can
be set by the Delannoy number (Banderier and Schwer, 2005). The Delannoy number is
the number of paths in a grid-based graph where it is only allowed to path, upwards, to
the right, and along the up/right diagonal, with this construction the number of possible
paths in a 3× 3 grid would be 13, however by allowing for a diagonal move towards the
up/left as in figure 3.3, the possible paths increases and for a 3× 3 grid the total number
of possible paths becomes 33. Nonetheless, the Delannoy number is used as a generous
lower estimate, the Delannoy number in a 20× 20 grid is more than 260 · 1012. Meaning
that the memory required to store the set of candidate solutions, with the application of a
Branch and Bound based method, could become a problem (Luedtke, 2016).

The second methodology widely applied to the shortest path problem with resource
constraint is dynamic programming, in this thesis in the format of A Label Setting Algorithm.

3.3.1 Dynamic Programming w. Resource Constraint
Dynamic programming is a methodology which in general solves optimisation problems
that include making a string of decisions, decisions that can be seen as subproblems to
be solved with the same approach as the original problem. Thereby a solution to the
original problem is found by optimal solutions to the subproblems. Further, the subproblem
approach benefits the memory required, as it is only good solutions to the subproblems
which are memorised (Lew and Mauch, 2007).
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The Label Setting Algorithm
The algorithm applies the methodology of dynamic programming, as it utilises a set of
labels on each point in the graph, where each label at a point represents a path from the
origin to that point. Thereby every path has a corresponding label which consists of the
information of the cost in regard of risk, C, and the distance traveled, from now referred to
as resource weight, W. Furthermore no labels on a point has the same cost, and if multiple
labels are present on a point, then for each label any other label on that point must be
different. These ideas are described more thoroughly below, but first (W k

i , C
k
i ) is defined

as the label of the path, pki , where i is a point in the graph, and k ∈ Ii, where Ii is the
index set of labels on point i. Furthermore, it is taken that all paths are starting from the
origin, o, (Dumitrescu and Boland, 2001), and (Desrosiers et al., 1995).

Definition 3.1

Domination. (Dumitrescu and Boland, 2001)
Let (W k

i , C
k
i ) and (W l

i , C
l
i) be two labels on an arbitrary point i.

It is then said that (W k
i , C

k
i ) dominates (W l

i , C
l
i) iff W k

i ≤ W l
i , C

k
i ≤ C li , and the

labels are not equal.

Definition 3.2

Efficiency. (Dumitrescu and Boland, 2001)
A label (W k

i , C
k
i ) is said to be efficient if it is not dominated by any other label at

point i.
A path is said to be efficient if the corresponding label is efficient.

The Label Setting Algorithm finds all efficient labels on every point. At first, no labels are
to be found on any point, except (0, 0), at the origin point, o. The algorithm then extends
the set of labels, by treatment of an existing label on a point, this is done by extending the
corresponding path along all outgoing edges of a point, i, denoted δ+(i). The algorithm is
given in algorithm 1, the implementation is seen in appendix B.1. Here Li describes the
set of labels on point i, further Ti ∈ Ii is the index of labels on point i which have been
treated, furthermore τwj denotes the shortest path from point j to g, in regard of W , the
path is found by the Floyd-Warshall algorithm, the algorithm is seen in Appendix A.6.
Lastly recall that G(N,E) represents the graph with N being the nodes/points, and E the
edges.
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Algorithm 1 Label Setting Algorithm (Dumitrescu and Boland, 2001)
0: Initialisation
Set Ls = {(0, 0)} and Li = ∅ ∀ i ∈ N \ {o}
Initialise Ii accordingly for every i ∈ N
Set Ti = ∀i ∈ N

1: Selecting label
if ∪i∈N (Ii \ Ti) = ∅ then STOP; all efficient labels are generated
else choose i ∈ N ∧ k ∈ Ii \ Ti such that W k

i is minimal
2: Treatment of label
for all (i, j) ∈ δ+(i) where W k

i + wij + τwj ≤ D̄ do
if(W k

i + wij , C
k
i + cij) is not dominated by (W l

j , C
l
j) for any l ∈ Ij

then Set Lj = Lj ∪ {W k
i + wij , C

k
i + cij) and

update Ij accordingly.
Set Ti = Ti ∪ {k}.
Go to Step 1.

By application of algorithm 1 each distinct scenario, u ∈ Us of the first objective function
from equation (1.6) can be solved deterministically. Furthermore the objective function
with the expected value of the scenario outcome from equation (3.2) can be solved, by
taking the cost on each node to be the sample average of the scenarios, and recall that by
the Law of Large Numbers the sample average converges to the expected value. Lastly,
the minimax regret objective function from equation (3.4) can be solved by utilisation of
algorithm 1. However, solving the minimax regret problem can only be done by solving
each distinct scenario deterministically and then comparing their regret by equation (3.3).
This would be carried out by finding the optimal path of a specific scenario and then
finding the risk of said path in the other scenarios, thereby the regret for that path in each
scenario can be found by comparison to the optimal path of that scenario. Nevertheless
running the algorithm for all scenarios makes an extensive search for the robust path, in
regard to the minimax regret. Therefore alterations are made to the label selection, from
step 1, in algorithm 1 and alterations are made to the definition of domination, which is
utilised in step 2 of algorithm 1, the alterations are made such that the algorithm finds
the path minimising the maximum regret at once instead of having the need of running
algorithm 1 for all distinct scenarios.

The new definition of domination relies on the labels on each point of the graph being
modified. To be able to consider all scenarios in the same graph, the label structure is
altered, such that it includes the costs of risk in every distinct scenario. That is, a label in
the multi-cost graph setup is given by, (W k

i , C
k
1i, C

k
2i, . . . , C

k
si) with u ∈ Us being the index

of scenarios, and k continues to represent the kth label on a given point i. By utilising the
new label structure every path contains the cost of risk in every distinct scenario, thus
some part of the algorithm needs to be updated. First, the choice of which label is to be
treated is changed, such that it is adjusted to the minimax regret optimisation. This is
carried out by choosing the new label to treat in regard of the minimax regret compared
to the previous label. This is elaborated further in definition 3.3.
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Definition 3.3

Label Selection (minimax regret).
Let (Ck1h, Ck2h, . . . , Cksh) be the label treated in the previous iteration denoted l∗h and
lki = (Ck1i, Ck2i, . . . , Cksi) with i ∈ N ∧ k ∈ Ii \ Ti, be the set of labels it is possible to
treat in this iteration.
The label chosen is then the label with minimax regret in regard of the previous label,
by equation (3.5).

l∗i = min
i∈N∧k∈Ii\Ti

ML (3.5)

where ML is
ML = max

u∈Us
li − l∗h

Note that the distance of the path represented as W in the labels is not a part of the
minimax regret comparisons, but is still a part of every label.

By utilising the new way of choosing the next label to treat, it is a possibility that the
algorithm tends towards a path containing higher risk in general, but still satisfies the label
selection. To accommodate for this the definition of domination is changed in definition 3.4.

Definition 3.4

Domination Multiple Scenarios.
Let (W k

i , C
k
1i, C

k
2i, . . . , C

k
si) and (W l

i , C
l
1i, C

l
2i, . . . , C

l
si) be two distinct labels on point

i.
It is then said that (W k

i , C
k
1i, C

k
2i, . . . , C

k
si) dominates (W l

i , C
l
1i, C

l
2i, . . . , C

l
si) iff W k

i ≤
W l
i , C

k
ui ≤ C lui, u ∈ Us and at least one of the inequalities is strict.

By utilising definition 3.3 and definition 3.4 in the label setting algorithm, it is possible to
find the minimax regret path without the requirement of running the algorithm for each
distinct scenario, u ∈ Us. The implementations of the minimax regret setup of the label
setting algorithm are seen in appendix B.1. Furthermore, it is seen in the experiments, in
Chapter 4, that the setup on some occasions finds a path minimising the maximum regret
further than what is possible from the optimal paths for each distinct scenario.

16



CHAPTER 4
Experiments

In this chapter, the various outcomes of the path planning in regard to the objective
functions equation (3.2) and equation (3.4) are depicted. The outcomes are organised as
a sensitivity analysis, of how often which outcomes occur, further examples of various
outcomes are illustrated and analysed.

Throughout the various experiments, 3 different scenarios are considered, u ∈ Us, where
s = 3. Here ξ1 = 0, ξ2 = 1, and ξ3 = 2, these scenarios are referred to as low, medium and
high uncertainty scenarios, respectively. The probability of each scenario occurring is flat,
1
s for each. This could be altered if the movement of objects in an area of avoidance were
analysed. Nonetheless, such analysis is deemed out of scope for this thesis, as the areas
represent all sorts of objects e.g., animals and threats. Further, it is taken that all areas of
avoidance in each PRM exhibit the same uncertainty, thereby each scenario induces the
same amount of uncertainty to all areas of avoidance within each PRM.

The experiments are carried out such that all scenarios are solved deterministically, the
optimal path for each scenario is denoted 1∗, 2∗, and 3∗, representing the low, medium,
and high uncertainty scenarios, respectively. Furthermore the optimal minimax regret path
is found by applying definition 3.3 and definition 3.4 in algorithm 1, this path is from now
referred to as "Minimax". Lastly, the optimal sample average path is found by letting the
cost of traveling to an arbitrary point have the sample average cost, instead of the cost of
a specific scenario, this path is referred to as "Sample Average".

All experiments are carried out with a map a size 20× 20. The grid is still 40× 40. The
distance threshold, D̄ is set to 35. More or less arbitrarily chosen, but nonetheless, the
threshold assures that the paths cannot hold on to the outer boundaries of the map.

4.1 Sensitivity Analysis
The sensitivity analysis is constructed to examine how the various settings of algorithm 1
performs.

The analysis is composed by generating 100 PRMs, all with five areas of avoidance, the
center points of each area of avoidance are drawn randomly, with the restriction that the
distance between all center points is at least 4.
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In figure 4.1 it is seen that from the 100 PRMs all paths are equal in 75 of the maps,
meaning that the placement of the areas of avoidance, in 75 of the randomly drawn PRMs,
is such that the optimal path is not changing despite having varying amounts of risk
with the various scenarios introduced. Nonetheless, in 25 instances the paths change with
the scenarios, which implies that finding a path that is only optimal in one scenario can
introduce unnecessary risk to the path utilised by the UAV, therefore it is preferable to
have a solution looking into all scenarios and finding a robust path through the PRMs.

0

20

40

60

All Equal Different
Paths

co
un

t

Figure 4.1: Illustration of counts on how often all paths are equal or different.

In the 25 instances, where the optimal path is not the same for each scenario, it is given
that one or multiple of the paths are more robust than the rest. This is further examined
in the following.

Robust Paths
The robust path is given as the path minimising the maximum regret across all scenarios.
When all paths are equal the robust path is trivially found by both the deterministic,
sample average, and minimax regret versions of algorithm 1.
By examining the last 25 instances where a robust path is not found trivially, it is however
found that the Minimax path is also being the robust path in all instances. A count on
how often the 5 various paths turn out the be the robust path is seen in figure 4.2. Here it
is seen that the optimal paths from each distinct scenario find a path that turns out to be
the robust path, 6, 10, and 11 times, for 1∗,2∗, and 3∗ respectively, the same happens for
the Sample Average path 20 times. Note that in some of the instances the robust path is
found by multiple of the 5 paths.
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Figure 4.2: Illustration of counts on how often the various paths are also the robust path,
in the 25 instances where all paths are not equal. Note that it is a possibility that multiple
paths are equal and robust with every PRM.

The Minimax path always finds the robust path, and in 7 of the 25 instances the Minimax
path finds a path minimising the regret further than what is possible by the deterministically
optimal paths, 1∗,2∗, and 3∗, the Sample Average path also finds the same robust path as
the Minimax path in 2 of these 7 instances but is outperformed in the remaining 5. In
figure 4.2 the instances, where the deterministically found paths are outperformed, are
represented as the red parts of the bars. Furthermore, the regret of these 7 instances
is seen in Appendix table A.5. Lastly, the total regret from all 25 instances where the
optimal path is not found trivially by all applied approaches is seen in table 4.1. Here
it is evident that the Minimax paths overall outperform the others by having the least
regret, further it is seen that 3∗ exhibits a higher regret than the rest and that the Sample
Average paths also are more robust than the deterministic paths in general. From this,
it is taken that the Minimax paths is always robust, as the path found by the minimax
approach either finds the same path as the most robust path of the three deterministic
ones or finds a more robust solution when the given PRMs allows for a higher discrepancy.

Path 1∗ 2∗ 3∗ Minimax Sample Avg

Total Regret 0.698 0.644 2.004 0.471 0.491

Table 4.1: The total regret of the various paths, in the 25 instances where the optimal
path is not found trivially.
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5 Scenarios
For a higher discrepancy in the scenarios, it is investigated what the outcome of letting
s = 5 such that 5 scenarios are possible instead of 3, with ξ1 = 0, ξ2 = 0.5, ξ3 = 1, ξ4 = 1.5,
ξ5 = 2, and the probability of each scenario being flat 1

s . The same setup with finding the
paths being optimal in regard to the various objective functions in 100 randomly drawn
PRMs is carried out. Here the minimax regret approach still finds the robust path in all
different PRMs, and the sample average path also outperforms the deterministic paths in
that regard. Allowing for 5 scenarios does not change the fact that the randomly drawn
PRMs in some cases are composed such that the optimal path does not change with the
increasing uncertainty induced by the various scenarios. The total regrets in a setting with
5 scenarios are seen in table 4.2, here 27 of the PRMs allowed for different paths with the
various scenarios. Resulting in the Minimax path to minimise the maximum regret further
than the other paths in 6 of the 27 instances. This is visualised in Appendix figure A.2,
with the same setup as for 3 scenarios in figure 4.2.

Path 1∗ 2∗ 3∗ 4∗ 5∗ Minimax Sample Avg

Total Regret 0.503 0.551 0.377 0.418 0.419 0.239 0.353

Table 4.2: The total regret of the paths in PRMs with 5 scenarios, in the 27 instances
where the optimal path is not found trivially.

In the following examples of the different outcomes with 3 scenarios are given, examples of
with 5 scenarios would allow for up to 7 different paths, which could become confusing,
therefore examples with 3 scenarios are depicted instead. In general, it should be noted
that the various examples highlight a problem with the probability of detection, as the
paths are found by traversing the map and obtaining the risk for each step made. Thereby
a highly detailed path comes from introducing a dense grid, a drawback from this is that
every path obtains more risk, as more steps are needed to traverse the map. However, this
also affects the probability of detection, which rises with a rise in risk.

All Paths Equal
The first possible outcome is when the PRM setup is given such that the pathing does
not change for the various scenarios, thereby the choice of which of any of the objective
functions from equation (1.6), equation (3.2), and equation (3.4), to utilise becomes
redundant, as they all yield the same path with the same risk. A situation where the
distance threshold, D̄ and the placement of the areas of avoidance, makes all paths the
same is seen in figure 4.3, with uncertainty, ξu = 1, the path in the remaining scenarios
and the related PRMs is seen in Appendix figure A.5. Furthermore, the risk exposure and
probability of detection, PD, for each path are given in table 4.3. As all paths are equal a
table of the various regrets is omitted.
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Figure 4.3: Illustration of all paths, as they are equal, in a PRM with areas of avoidance
centred at the positions: (18.8, 8.2), (17.4, 15.3), (2.3, 9.1), (12.0, 18.5), and (9.5, 2.7)
with ξ = 1.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
R PD R PD R PD R PD R PD

ξ1 2.71 93.4% 2.71 93.4% 2.71 93.4% 2.71 93.4% 2.71 93.4%
ξ2 3.91 97.5% 3.91 97.5% 3.91 97.5% 3.91 97.5% 3.91 97.5%
ξ3 6.44 99.8% 6.44 99.8% 6.44 99.8% 6.44 99.8% 6.44 99.8%

Dist 29.18 29.18 29.18 29.18 29.18

Table 4.3: The risk, R, of the various paths together with the probability of detection, PD
for the pathing visualised in figure 4.3.

Different Paths with Different Scenarios
The second possible outcome is when the PRM setup is given such that the path changes
with the various scenarios. When the maps are solved deterministically for each distinct
scenario, the path might change when the uncertainty rises, further, the amount of total
risk within the given PRM rises. This might bias the outcomes of which path is best in
regard of the minimax regret if only a comparison between the optimal path for each
distinct scenario is made, that is since the overall amount risk it is possible for the algorithm
to take into consideration is higher in a scenario with higher uncertainty. On the other
hand, the optimal path in a scenario with high uncertainty could be completely different
compared to a pathing with low uncertainty. Thus it might not always be the case that
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the path of a high uncertainty scenario is outperforming the path of a low uncertainty
scenario in regard of minimising the maximum regret, this is evident from the total regrets
in table 4.1 where 3∗ has more regret than the other paths.

The frameworks depicted in the following, are frameworks highlighting how a path can
change as the uncertainty rises, and thus why it is an advantage to look into multiple
scenarios at once. Lastly, a setup is visualised where the Minimax path is outperforming
the others.

High Uncertainty Affects Path
An example from one of the PRMs from the sensitivity analysis is visualised in figure 4.4,
where the optimal path from the high uncertainty scenario is very different from the other
paths. The path is optimal in the high uncertainty scenario, but in the other scenarios, the
risk acquired by 3∗ is very high compared to the rest. This is evident from the risk and PD
of all paths in table 4.4, and also from the regret of the various paths from table 4.5. This
example highlights the downside of only looking into a worst-case scenario, as a lot of the
regret obtained by 3∗ is acquired in 1 of the 100 PRMs. Furthermore, this highlights that
taking all scenarios into consideration when path planning is advantageous. The paths in
the other two scenarios are visualised in Appendix figure A.6.

Figure 4.4: Illustration of all paths, where the red path represents both 1∗,2∗, minimax,
and the sample avg path. The blue path represents 3∗. Both paths in a PRM with areas
of avoidance centred at the positions: (2.5, 4.5), (6.4, 3.4), (7, 14.5), (13.3, 4.4), and (14.4,
18.2) with ξ = 1.
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Path 1∗ 2∗ 3∗ Minimax Sample Avg
R PD R PD R PD R PD R PD

ξ1 3.45 96.8% 3.45 96.8% 3.94 98.1% 3.45 96.8% 3.45 96.8%
ξ2 5.09 99.3% 5.09 99.3% 5.54 99.6% 5.09 99.3% 5.09 99.3%
ξ3 8.34 99.9% 8.34 99.9% 8.20 99.9% 8.34 99.9% 8.34 99.9%

Dist 34.89 34.89 31.28 34.89 34.89

Table 4.4: The risk, R, of the various paths together with the probability of detection, PD
for the pathing visualised in figure 4.4.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
ξ1 0.00 0.00 0.49 0.00 0.00
ξ2 0.00 0.00 0.45 0.00 0.00
ξ3 0.14 0.14 0.00 0.14 0.14

Max 0.14 0.14 0.49 0.14 0.14

Table 4.5: The regret of the various paths visualised in figure 4.4 with risk from table 4.4.

Deterministic Path Robust
In figure 4.5 an example, which is not a part of the sensitivity analysis, is visualised. Here
the optimal path of the high uncertainty scenario is also the robust path, together with
the Minimax and Sample Average Path. The risk and PD of the various paths are seen
in table 4.6 and the regret of the paths are seen in table 4.7. Here it is noted that the
high uncertainty makes the path change such that it is no longer preferable to hold on to
the boundary of the map. The paths in the other scenarios are visualised in Appendix
figure A.9. Despite the two paths being very different the risk across the various scenarios
is still close, this is evident from table 4.7. Furthermore, examples where the paths 1∗ and
2∗ turns out to be robust, and where none of the paths exhibits the tendency to stay on
the boundary of the map, are given in Appendix A.3.
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Figure 4.5: Illustration of all paths, where the red path represents both 3∗, minimax, and
the sample avg path. The green path represents 1∗ and 2∗. Both paths in a PRM with
areas of avoidance centred at the positions: (5, 5), (11.5, 11.5), (10, 18), (18, 10), and (9.5,
2.7) with ξ = 2.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
R PD R PD R PD R PD R PD

ξ1 2.70 93.2% 2.70 93.2% 2.71 93.4% 2.71 93.4% 2.71 93.4%
ξ2 3.99 97.7% 3.99 97.7% 4.03 98.2% 4.03 98.2% 4.03 98.2%
ξ3 6.58 99.8% 6.58 99.8% 6.49 99.8% 6.49 99.8% 6.49 99.8%

Dist 34.89 34.89 34.54 34.54 34.54

Table 4.6: The risk, R, of the various paths together with the probability of detection, PD
for the pathing visualised in figure 4.5.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
ξ1 0.00 0.00 0.01 0.01 0.01
ξ2 0.00 0.00 0.04 0.04 0.04
ξ3 0.09 0.09 0.00 0.00 0.00

Max 0.09 0.09 0.04 0.04 0.04

Table 4.7: The regret of the various paths visualised in figure 4.5 with risk from table 4.6.
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Minimax Regret Path Robust
In figure 4.6 an example is visualised, which is not a part of the sensitivity analysis, where
all paths are different. Here the Minimax path is the one reducing the maximum regret
the most. This is evident from table 4.9, the risk of all paths are seen in table 4.8, with
the related PD. Once again all paths are very close in terms of total risk, nonetheless, the
Minimax path slightly outperforms the Sample Average path. Furthermore, it is also noted
that the PD is lower than the paths in the other PRMs, which is due to only three areas
of avoidance being present and thereby less risk in general. It might be difficult to tell the
paths apart, therefore the robust path is wider than the others. Furthermore, as all paths
are crossing each other in and out the risk obtained by each path is almost the same. The
paths in the other scenarios are seen in Appendix figure A.10.

Figure 4.6: Illustration of all paths, where the red path represents 1∗, the Turkish blue
path represent 2∗, the green path represents 3∗, the blue path represent minimax, and
the dim brown path represents the Sample Avg path. All paths in a PRM with areas of
avoidance centred at the positions: (6, 6), (10, 18), (18, 10) with ξ = 1.
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Path 1∗ 2∗ 3∗ Minimax Sample Avg
R PD R PD R PD R PD R PD

ξ1 1.3561 74.2% 1.3569 74.3% 1.3562 74.2% 1.3565 74.2% 1.3565 74.2%
ξ2 2.0611 87.2% 2.0588 87.2% 2.0609 87.2% 2.0596 87.2% 2.0599 87.2%
ξ3 3.2745 96.2% 3.2765 96.2% 3.2744 96.2% 3.2750 96.2% 3.2756 96.2%

Dist 34.89 34.54 34.89 34.54 34.89

Table 4.8: The risk, R, of the various paths together with the probability of detection, PD
for the pathing visualised in figure 4.6.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
ξ1 0.0000 0.0008 0.0002 0.0004 0.0004
ξ2 0.0023 0.0000 0.0022 0.0009 0.0011
ξ3 0.0001 0.0021 0.0000 0.0005 0.0011

Max 0.0023 0.0021 0.0022 0.0009 0.0011

Table 4.9: The regret of the various paths visualised in figure 4.6 with risk from table 4.8.

4.2 Time Complexity
In this section, an analysis of time for various grid sizes is carried out. The analysis is
executed on an "MSI Leopard Pro GP72VR 7RF" with a 2.8 GHz i7 processor and 8GB
DRR4 RAM.

The analysis is deducted on PRMs with areas of avoidance drawn randomly, in similar
style to the sensitivity analysis. For all the various densities of the graph the average time
spend finding the optimal paths is reported in table 4.10, the average is taken over 50 runs
per density. Furthermore if the total time spend on carrying out 50 runs is more than 12
hours, it is taken that the criteria of domination for multiple scenarios from definition 3.4
is too loose, and in these cases no time on completion is reported. In table 4.10 TS is
the average time spend in seconds. Further the analysis is carried out under both the
deterministic and minimax setting of algorithm 1, for the minimax setting both 3, 5 and
10 scenarios are considered.

Characteristics Method
Deterministic Minimax

|s| = 3 |s| = 5 |s| = 10
K |N | |E| TS TS TS TS
20 400 1482 3.32 6.48 10.91 20.54
30 900 3422 18.85 43.34 78.55 153.89
40 1600 6162 80.54 239.48 540.11 -
50 2500 9702 262.2 591.66 - -

Table 4.10: Number of nodes and edges, |N | and |E|, in each graph, respectively, and the
average time spend, TS, in seconds.
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The distance threshold is held constant in table 4.10 and therefore it is not evident how
this affects the time utilised, nonetheless having a strict distance threshold would limit
the possible pathways, and therefore it is assumed that the number of possible paths, and
thereby the number of labels for the algorithm to investigate, rises with a rise in D̄. It is
evident, from table 4.10, that the time spent to find the robust path, in general, is higher
than for the deterministic setting, nonetheless the fact that the minimax setting finds the
robust path across all scenarios and not just an optimal path for an arbitrary scenario
should be emphasised. Finding a robust path with only utilising the deterministic setup
means one would have to run the implementation for each distinct scenario to reassure that
the path is at least moderately robust, and even then it might be a possibility to minimise
the maximum regret further. However it is also seen in table 4.10 that the algorithm
cannot terminate within the given timeframe when the density of the grid is too high
combined with an increasing number of scenarios.
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CHAPTER 5
Discussion and Perspectives

This thesis has investigated path planning of a UAV traversing a map where certain areas
are desired to avoid. Furthermore, uncertainty is introduced to these areas of avoidance.
In this chapter the various methods and setups are discussed, suggestions on future work
are made, and the setup is put into perspective.

5.1 Discussion
Probability of Detection
As already indicated and visualised in the experiments from chapter 4, the probability of
detection is in general very high with all paths displayed. One of the reasons this is evident
is since there is a conflict in the desire of getting a detailed path and keeping the risk at a
level where the Poisson distribution returns a lower probability of detection than the ones
displayed. This could have been altered by normalising the total amount of risk within a
PRM, however, another conflict then arises, as introducing additional areas of avoidance
would then diminish the risk of the other areas, which also is deemed inappropriate. To
make the probability of detection work as desired, a thorough analysis of the reason to
avoid a specified area and risk taken by approaching the area is needed.

Uncertainties
The introduction of uncertainties and the transformation of the Gaussian bivariate normal
distributions to bivariate Gaussian-tailed uniform distributions also introduce a higher
amount of risk in general, as intended. The introduction of further risk affects the paths in
some instances, nonetheless, the paths in most PRMs are unaffected by the introduction
of uncertainty, thus the necessity of the uncertainties could be questioned. However it
is evident from the sensitivity analysis that the path is non-trivial in 25 cases when
describing the uncertainty with 3 scenarios, and in 27 cases when utilising a segmentation
of uncertainty yielding 5 scenarios, and thus the utilisation of algorithm 1 with the minimax
setup becomes relevant.

Probability Risk Map and Paths
The different paths within every PRM are in general obtaining almost the same amount of
risk despite the paths being different. Thereby the opportunity of finding a path which
minimises the regret further than the optimal paths from each distinct scenario is slim.
However, the fact that the paths in some of the randomly sampled instances alter with the
various scenarios, and that it in 7 out of 25 instances with 3 scenarios, and 6 out of 27
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instances with 5 scenarios, is a possibility to minimise the maximum regret even further
than the optimal path for every distinct scenario is notable. Furthermore, the methodology
of the minimax regret and the Label Setting Algorithm applies to many other fields than
path planning of a UAV.

5.2 Future Work
In this section, suggestions are made on what to elaborate, and investigate further, for the
path planning to be flyable and more detailed for the UAV.

Independent Areas of Avoidance
The areas of avoidance in this thesis represent all sorts of objects, and to assume that
they all follow the exact same pattern all the time is a limitation towards the possible
scenarios that could unfold. Making each area of avoidance independent of each other would
depict an environment more true towards the real world. Furthermore having multiple
independent areas to avoid within a certain region, means that the number of scenarios for
that region would increase massively. As a single change to one of the areas of avoidance
would give a new scenario to consider, for the path planning of the entire region desired to
traverse. Thereby the total number of scenarios would be as, where a is the number of
areas to avoid, and s is the number of uncertainty segmentations for the specific area of
avoidance. To depict areas of avoidance properly a detailed distribution analysis on the
movement of specific objects, within a region desired to traverse, is suggested. Furthermore,
this would make scenario reduction advisable. A large number of scenarios and a better
understanding of the movement of specific objects could lead to a possible reduction of the
number of scenarios while keeping the information on the movement of objects close to
intact. By reducing the number of scenarios the representativity of sampling 5 scenarios
to investigate with the minimax approach of algorithm 1 would be better, compared to
sampling 5 scenarios without performing scenario reduction.

Modelling
To execute the path planning proposed in this thesis to a UAV various factors need
to be considered and integrated to the modeling. As mentioned in the limitations, the
turning radius and general maneuverability of the UAV are not considered, and therefore
need to be addressed, furthermore investigation of minimum step size for a path to be
flyable is suggested (Zhan et al., 2014). Lastly, the various additional factors affecting the
decision-making process and thereby the path planning should be integrated, this could be
factors such as interactions between fuel consumption and weather, or general environment
the UAV is pathing through, this should be considered as a part of the preprocessing of
the path plan visualised in the flowchart of figure 3.1.
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5.3 Perspectives
The setup of the path planning for a UAV in a PRM with uncertainty is relatable to other
fields. That is, the desire to make the best choice under uncertainty is eminent in many
different problems in operations research. Furthermore, the setup of utilising a graph
highlights the decision making, as every step is controlled and an optimal path is found,
this is also applicable in other fields. The optimal path through a PRM is one way of
showing the decision making which is evident, and in general, is a big part of the utilisation
of combinatorial optimisation, other decision-making problems could have been optimal
production planning or road transportation of goods (Paschos, 2014).

The ability to minimise the maximum regret with some given scenarios could also be
desired in other fields than path planning. That is, e.g., in a situation where an arbitrary
company might be forced to consider alterations to their production or supply chain, the
certainty of taking a robust decision might be requested. The robust decision is not always
the most desired decision to carry out, as the reward is oftentimes less than other decisions.
However, if a company is in a situation where confusion to which scenario transpires is
apparent, then the robust decision made on the basis of minimising the maximum regret
might be desired. A setting where robust decisions are prominent could be with the
introduction of the COVID-19 virus, as many normal motives and intentions are changed.

UAVs are also utilised for other tasks than avoiding certain areas, and with alterations, to
the objective functions of this thesis, the problem can be transformed into a setting where
one wants to obtain the most probability possible, in this thesis seen as risk. However, if the
theme of the path planning was search and rescue instead of safe path planning, one could
utilise the probability map to find a path maximising the probability obtained, and thereby
maximising the possibility of finding a missing person (Sebbane, 2018). Furthermore, the
uncertainty towards the actual location of, e.g., a threat, as in this thesis, could be altered
to be seen as lack of information regarding the location of a missing person in a forest or
by the sea.
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CHAPTER 6
Conclusion

Based on the content of this thesis it can be concluded that:

The risk of a path plan for a UAV traveling through a region with enemies, endangered
species, or other moving objects, can be minimised by utilising a bivariate Gaussian-tailed
uniform distribution to describe the areas of avoidance and thereby set up a probability
risk map, followed by discretising the map into a grid-based graph. The optimal path of
the graph in regard to minimising the risk is thus the optimal path of the UAV. In the
event of having uncertainty towards the location of the reason to avoid a specific area,
this uncertainty can be taken into consideration by introducing scenarios expanding the
areas of avoidance, and thereby increasing the amount of risk in said areas. This modifies
the path planning as an optimal path now needs to handle all scenarios well. Therefore
a robust path plan is found by application of the changed definition of domination and
which labels to address first in the Label Setting Algorithm.

The robust path planning can be obtained by utilising the Label Setting Algorithm with
the cost of each distinct scenario being a part of all labels, thereby the need of utilising the
algorithm for each distinct scenario can be seen as redundant, as the robust path found
by investigating for each distinct scenario is outperformed by the method applied when
looking into all scenarios at the same time. This is evident from table 4.1 and table 4.2.
When the Label Setting Algorithm looks into multiple scenarios at once, the time it takes
to find the robust path is increased compared to the same algorithm in a deterministic
setting. Nonetheless, a robust path is found and is deemed a better outcome than a path
that might only perform well in one of multiple scenarios. If execution time is the main
factor and the computational burden of utilising the minimax approach is deemed too high,
then it is recommended to utilise the sample average approach instead of a deterministic
setting.
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Plots, Algorithms and Tables

A.1 Modelling Plot

Figure A.1: Illustration of a risk map with areas of avoidance centred at the positions:
(13.5, 13.5), (13.0, 5.5), (5.0, 13.0), (20.0, 7.5), and (7.5, 20.0) with ξ = 1.
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A.2 5 Scenarios Robust Paths

Figure A.2: Illustration of counts on how often the various paths are also the robust path,
in the 27 instances where all paths are not equal when looking at 5 different scenarios.
Note that it is a possibility that multiple paths are equal and robust with every PRM.
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A.3 Robust paths From Deterministic path
Low Uncertainty Scenario Robust
From figure A.3 an example is visualised where the path of the first scenario is also the
robust path. The risk and PD is seen in table A.1 and the regret is seen in table A.2. The
paths in the other scenarios are seen in figure A.7. As that the paths overlap on most of
the map it is a challenge it tell the difference, to compensate for this the robust path is
wider than the others. Furthermore as all paths are close to one another the same can be
said about the risk of the paths, nonetheless the robust path obtains a path close to the
optimal one for each scenario, this is evident from the low regret in table A.2.

Figure A.3: Illustration of all paths, where the red path represents both 1∗, and Minimax.
The green path represents 2∗, and Sample Avg, the blue path represents 3∗. All paths in a
PRM with areas of avoidance centred at the positions: (8, 15), (13, 7), (14, 15), (18, 9.5),
and (11.5, 19) with ξ = 0.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
R PD R PD R PD R PD R PD

ξ1 3.01 95.1% 3.01 95.1% 3.02 95.1% 3.01 95.1% 3.01 95.1%
ξ2 4.43 98.8% 4.42 97.8% 4.44 98.8% 4.43 98.8% 4.42 98.8%
ξ3 6.92 99.9% 6.94 99.9% 6.91 99.9% 6.92 99.9% 6.94 99.8%

Dist 29.78 29.78 29.48 29.78 29.78

Table A.1: The risk, R, of the various paths together with the probability of detection, PD
for the pathing visualised in figure A.3.
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Path 1∗ 2∗ 3∗ Minimax Sample Avg
ξ1 0.0000 0.0005 0.0055 0.0000 0.0005
ξ2 0.0005 0.0000 0.0142 0.0005 0.0000
ξ3 0.0068 0.0240 0.0000 0.0068 0.0240

Max 0.0068 0.0240 0.0142 0.0068 0.0240

Table A.2: The regret of the various paths visualised in figure A.3 with risk from table A.1.

Medium Uncertainty Scenario Robust
From figure A.4 an example is visualised, here the path of the medium uncertainty scenario
is also the robust path together with the minimax path. The risk and PD is seen in
table A.3 and the regret is seen in table A.4. The paths in the other scenarios are seen in
figure A.8. Note that the robust path is again wider than the other.

Figure A.4: Illustration of all paths, where the red path represents both 2∗, Sample Avg,
and Minimax. The green path represents 1∗, and 3∗, the blue path represents 3∗. All paths
in a PRM with areas of avoidance centred at the positions: (2.8, 3.9), (15.1, 17.3), (6.1,
11), (18.5, 13.3), and (11, 11) with ξ = 1.
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Path 1∗ 2∗ 3∗ Minimax Sample Avg
R PD R PD R PD R PD R PD

ξ1 2.1040 87.8% 2.1048 87.8% 2.1040 87.8% 2.1048 87.8% 2.1048 87.8%
ξ2 3.2125 95.9% 3.2109 95.9% 3.2125 95.9% 3.2109 95.9% 3.2109 95.9%
ξ3 5.2519 99.5% 5.2523 99.5% 5.2519 99.5% 5.2523 99.5% 5.2523 99.5%

Dist 31.88 32.19 31.88 32.19 32.19

Table A.3: The risk, R, of the various paths together with the probability of detection, PD
for the pathing visualised in figure A.4.

Path 1∗ 2∗ 3∗ Minimax Sample Avg
ξ1 0.0000 0.0008 0.0000 0.0008 0.0008
ξ2 0.0016 0.0000 0.0016 0.0000 0.0000
ξ3 0.0000 0.0004 0.0000 0.0004 0.0004

Max 0.0016 0.0008 0.0016 0.0008 0.0008

Table A.4: The regret of the various paths visualised in figure A.4 with risk from table A.3.

A.4 Experiments Plots

a ξ = 0 b ξ = 2

Figure A.5: Illustration of path with areas of avoidance centred at the positions: (18.8,
8.2), (17.4, 15.3), (2.3, 9.1), (12.0, 18.5), and (9.5, 2.7).
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a ξ = 0 b ξ = 2

Figure A.6: Illustration of paths with areas of avoidance centred at the positions:(2.5, 4.5),
(6.4, 3.4), (7, 14.5), (13.3, 4.4), and (14.4, 18.2).

a ξ = 1 b ξ = 2

Figure A.7: Illustration of paths with areas of avoidance centred at the positions:(8, 15),
(13, 7), (14, 15), (18, 9.5), and (11.5, 19).
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a ξ = 0 b ξ = 2

Figure A.8: Illustration of path with areas of avoidance centred at the positions:(2.8, 3.9),
(15.1, 17.3), (6.1, 11), (18.5, 13.3), and (11, 11).

a ξ = 0 b ξ = 1

Figure A.9: Illustration of path with areas of avoidance centred at the positions: (5,5),
(11.5, 11.5), (10, 18), (18, 10), and (9.5, 2.7).
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a ξ = 0 b ξ = 2

Figure A.10: Illustration of paths with areas of avoidance centred at the positions: (6,6),
(10, 18), (18, 10).
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A.5 Tables
Tables of regret from the 7 instances the minimax path outperforms the other paths while
having 3 different scenarios to consider.

Paths 1 2 3 Minimax Sample Avg
ξ1 0.00000 0.00028 0.00028 0.00002 0.00002
ξ2 0.00029 0.00000 0.00000 0.00008 0.00008
ξ3 0.00096 0.00000 0.00000 0.00017 0.00017

max 0.00096 0.00028 0.00028 0.00017 0.00017

ξ1 0.00000 0.00202 0.00190 0.00114 0.00059
ξ2 0.00115 0.00000 0.00274 0.00100 0.00097
ξ3 0.00335 0.00478 0.00000 0.00239 0.00362

max 0.00335 0.00478 0.00274 0.00239 0.00362

ξ1 0.00000 0.00143 0.00090 0.00014 0.00049
ξ2 0.00015 0.00000 0.00294 0.00100 0.00005
ξ3 0.00299 0.00678 0.00000 0.00139 0.00537

max 0.00299 0.00678 0.00294 0.00139 0.00537

ξ1 0.00000 0.01508 0.00649 0.00195 0.01367
ξ2 0.01365 0.00000 0.01079 0.00204 0.00131
ξ3 0.00689 0.01074 0.00000 0.00569 0.00363

max 0.01365 0.01508 0.01079 0.00569 0.01367

ξ1 0.00000 0.00041 0.00586 0.00019 0.00290
ξ2 0.00137 0.00000 0.00364 0.00041 0.00187
ξ3 0.00511 0.00145 0.00000 0.00111 0.00038

max 0.00511 0.00145 0.00586 0.00111 0.00290

ξ1 0.00000 0.00237 0.00237 0.00079 0.00079
ξ2 0.00115 0.00000 0.00000 0.00041 0.00041
ξ3 0.00134 0.00000 0.00000 0.00025 0.00025

max 0.00134 0.00237 0.00237 0.00079 0.00079

ξ1 0.00000 0.00133 0.00133 0.00055 0.000152
ξ2 0.00142 0.00000 0.00000 0.00078 0.00098
ξ3 0.00192 0.00000 0.00000 0.00097 0.00181

max 0.00192 0.00133 0.00133 0.00097 0.00181

Table A.5: Regret for the 7 instances where minimax outperforms the deterministically
found paths.
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A.6 Floyd-Warshall Shortest Path
This is build upon (Floyd, 1962).

Algorithm 2 Floyd-Warshall Algorithm
1:
let dist be a K ×K matrix of minimum distances at first set to ∞.
2:
for each edge (i, j) do

dist [i,j] = w(i, j) The weight of the edge (i, j)
3:
for each point i do

dist[i,i] = 0
4:
for k from 1 to |K|

for i from 1 to |K|
for j from 1 to |K|

if dist[i,j] > dist[i,k] + dist[k,j] then
dist[i,j] = dist[i,k] + dist[k,j]

end if
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R scripts

Implementation of the various parts to find solutions to the objective functions.

B.1 Label Setting Algorithm
Label Setting Algorithm for deterministic solution

1 GLA <- function (graphmap , max_dist){
2
3 #early buildup , mapsetup , distance between all pair of nodes etc.
4 g1 <- graphmap [[1]]
5 resource <- graphmap [[2]][ ,3]
6 g2 <- g1 %>% set.edge. attribute (" weight ", value = resource )
7 adjmat <- as_ adjacency _ matrix (g1 , attr = " weight ") #for probability
8 adjmat2 <-as_ adjacency _ matrix (g2 , attr = " weight ") #for distance
9 adj <- as. matrix ( adjmat )

10 adj2 <- as. matrix ( adjmat2 )
11
12 adj[adj == 0] <- NA
13 adj2[adj2 == 0] <- NA
14
15 par_prob <- floyd(adj)
16 par_dist <- floyd(adj2)
17
18 pairs_res_min <- list(par_dist , par_prob)
19
20 node_succ <- lapply (1: grid ^2, function (x) neighbors (g1 , x, "out"))
21 origin <- 1
22 goal <- grid ^2
23
24 rm(adj , adj2 , adjmat , adjmat2 , par_dist , par_prob)
25 if( origin == goal){ stop("Error: not applicable , origin and goal is at

same node")
26 }
27 if( pairs_res_min [[1]][1 , goal] > max_dist){stop("Error: No feasible path ,

distance condition too strict ")
28 }
29 # initialisation of labels and indexing ----
30 labels <- rep(list(c()), grid ^2)
31 labels [[1]] <- matrix (c( pairs_res_min [[1]][1] , pairs_res_min [[2]][1] , 0),

nrow = 1, ncol = 3)
32 index <- lapply (1: grid ^2, FUN = function (x) nrow( labels [[x]]))
33 treated <- rep(list(c()),grid ^2)
34 stopping _ criteria = 1L
35 tmp_rmv = c()
36 source (" dominated _func.R")
37
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38 while (!is_ empty( stopping _ criteria )){
39 # finding label to treat -- step 1 in algorithm ----
40 searchable <- which(! compare .list(index , treated ))
41 label_ search <- mapply (setdiff ,index , treated )
42 label_ search <- lapply (1: length (label_ search ), function (x) if( length (

label _ search [[x]]) == 0)
43 {label_ search [[x]] <-

NULL} else{label _
search [[x]]})

44
45 tmp <- suppressWarnings ( lapply (1: length ( searchable ), FUN = function (x)

min( labels [[ searchable [x]]][ ,1])))
46
47 i <- searchable [ which.min(tmp)]
48 multi_ labels <- c()
49 k_1 <- c()
50
51 if(nrow( labels [[i]]) == 1 | is_ empty( treated [[i]])){k <- which.min(

labels [[i]][ ,1])
52 }else if( length (label_ search [[i]]) == 1){
53 k <- label_ search [[i]]
54 }else{multi_ labels <- data. frame( labels [[i]])
55 k_1 <- which .min( cbind (multi_ labels [- treated [[i]] ,1]))
56 k <- label_ search [[i]][k_1]}
57
58 label_ treat <-labels [[i]][k,]
59 # treating label , step 2 in algoithm ----
60 labels _tmp <- which(label_ treat [1] + pairs_res_min [[1]][i,node_succ [[i

]]] + pairs_res_min [[1]][ node_succ [[i]], goal] <= max_dist)
61 labels _ acceptable <- as_ids(node_succ [[i]][ labels _tmp ])
62
63 tmp_dist <- label _treat [1] + pairs_res_min [[1]][i, labels _ acceptable ]
64 tmp_prob <- label _treat [2] + pairs_res_min [[2]][i, labels _ acceptable ]
65 tmp_ labels <- cbind(tmp_dist , tmp_prob , i)
66 tmp_ labels <- unname (tmp_ labels )
67
68 # checking for nondominated labels ----
69 dominated <- list ()
70 if( length ( labels _ acceptable ) > 0){
71 dominated <- lapply (1: length ( labels _ acceptable ), function (x)
72 is_ dominated (tmp_ labels [x,], labels [[ labels _ acceptable [x]]]))
73 }else{
74 dominated [[1]] = TRUE
75 }
76
77 # listing all nondominated labels appropriately ----
78 rmv_add <- lapply (1: length ( dominated ), function (x) if(! dominated [[x]])

{
79 labels [[ labels _ acceptable [x]]] <- matrix (tmp_ labels [x,], nrow = 1,

ncol = 3)
80 })
81
82 # adding non dominated labels to list of labels ----
83 for(i in 1: length (rmv_add)){
84 if( dominated [[i]] == FALSE){
85 labels [[ labels _ acceptable [i]]] <-rbind( labels [[ labels _

acceptable [i]]], rmv_add [[i]][1 ,])}
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86 }
87
88 i = searchable [ which .min(tmp)]
89 index <- lapply (1: grid ^2, FUN = function (x) if(!is_empty( labels [[x]])){

seq (1, nrow( labels [[x]]) ,1)} else{NULL })
90
91
92 treated [[i]] <- sort(c( treated [[i]],as. numeric (k)))
93
94 tmp_rmv = c(tmp_rmv , i)
95 if(all( compare .list(index , treated ))){
96 stopping _ criteria <- NULL
97 }
98 }

Label Setting Algorithm for multiple scenarios simultaneously.
1 GLA_ Multi <- function ( scenario _maps , max_dist , domination ){
2
3 #early buildup , mapsetup , distance between all pair of nodes etc.
4
5 graphmap <- scenario _maps [[1]]
6 g1 <- graphmap [[1]]
7 resource <- graphmap [[2]][ ,3]
8 g2 <- g1 %>% set.edge. attribute (" weight ", value = resource )
9 dummy <- length ( uncertainties )

10 adjmat <- lapply (1: dummy , function (x) as_ adjacency _ matrix ( scenario _maps [[
x]][[1]] , attr = " weight ")) #for probabilities

11 adjmat2 <-as_ adjacency _ matrix (g2 , attr = " weight ") #for distance
12
13 adj <- lapply (1: dummy , function (x) as. matrix ( adjmat [[x]]))
14 adj2 <- as. matrix ( adjmat2 )
15
16 for(i in 1: dummy){adj [[i]][ adj [[i ]]==0] <- NA}
17 adj2[adj2 == 0] <- NA
18
19 par_prob <- lapply (1: dummy , function (x) floyd(adj [[x]]))
20 par_dist <- floyd(adj2)
21
22 pairs_res_min <- list(par_dist , par_prob)
23
24 node_succ <- lapply (1: grid ^2, function (x) neighbors (g1 , x, "out"))
25 origin <- 1
26 goal <- grid ^2
27 q <- 1L
28
29 # cleaning
30
31 rm(adj ,adj2 , adjmat , adjmat2 , par_prob , par_dist)
32 if( origin == goal){ stop("Error: not applicable , origin and goal is at

same node")
33 }
34 if( pairs_res_min [[1]][1 , goal] > max_dist){stop("Error: No feasible path ,

distance condition too strict ")
35 }
36 # initialisation of labels and indexing ----
37
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38 label <- rep(list(c()), grid ^2)
39 prob_min <- c()
40 for(i in 1: dummy){prob_min[i] <- pairs_res_min [[2]][[ i]][1 ,1]}
41
42 label [[1]] <- matrix (c( pairs_res_min [[1]][1] , prob_min , 0), nrow = 1, ncol

= 2+ length (prob_min))
43 index <- lapply (1: grid ^2, FUN = function (x) nrow(label [[x]]))
44 treated <- rep(list(c()),grid ^2)
45 stopping _ criteria <- 1L
46 tmp_rmv <- c(0)
47
48 while (!is_ empty( stopping _ criteria )){
49 # finding label to treat -- step 1 in algorithm ----
50
51 searchable <- which(! compare .list(index , treated ))
52 label_ search <- mapply (setdiff ,index , treated )
53 label_ search <- lapply (1: length (label_ search ), function (x) if( length (

label _ search [[x]]) == 0)
54 {label _ search [[x]] <- NULL} else{label _ search [[x]]})
55
56 tmp <- suppressWarnings ( lapply (1: length ( searchable ), FUN = function (x)

label [[ searchable [x]]][ ,2:( length ( uncertainties )+1) ]))
57
58
59 i_pos <- searchable [ minimax _ label(tmp , label , dummy ,q)]
60 i <- i_pos[which .min( lapply (1: length (i_pos), function (x) sum(label [[i_

pos[x]]][ ,2:(1+ length ( uncertainties ))])))]
61 q <- i
62 multi_ labels <- c()
63 k_1 <- c()
64 k <- find_k(label , i, label_search , treated )
65
66 label_ treat <-label [[i]][k,]
67
68 # treating label , step 2 in algorithm ----
69
70 labels _tmp <- which(label_ treat [1] + pairs_res_min [[1]][i,node_succ [[i

]]] + pairs_res_min [[1]][ node_succ [[i]], goal] <= max_dist)
71 label_ acceptable <- as_ids(node_succ [[i]][ labels _tmp ])
72
73 tmp_dist <- label _treat [1] + pairs_res_min [[1]][i, label_ acceptable ]
74 tmp_prob <- unlist ( lapply (1: dummy , function (x) label _treat [1+x] + pairs

_res_min [[2]][[ x]][i, label_ acceptable ]))
75
76 if(!is_empty(tmp_prob)){tmp_prob <- matrix (tmp_prob , nrow = length (

label _ acceptable ), ncol = length (prob_min))}
77
78 tmp_ labels <- cbind(tmp_dist ,tmp_prob , i)
79 tmp_ labels <- unname (tmp_ labels )
80
81 # checking for nondominated labels ----
82
83 dominated <- list ()
84 if( length (label_ acceptable ) > 0){
85 dominated <- lapply (1: length (label_ acceptable ), function (x)
86 domination (tmp_ labels [x,], label [[ label _ acceptable [x]]]))
87 }else{
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88 dominated [[1]] = TRUE
89 }
90
91 # listing all nondominated labels appropriately ----
92
93 new_label <- lapply (1: length ( dominated ), function (x) if(! dominated [[x

]]){
94 label [[ label_ acceptable [x]]] <- matrix (tmp_ labels [x,], nrow = 1, ncol

= (2+ length ( uncertainties )))
95 })
96 # adding non dominated labels to list of labels ----
97
98 for(i in 1: length (new_label)){
99 if( dominated [[i]] == FALSE){

100 label [[ label_ acceptable [i]]] <- rbind(label [[ label _ acceptable [i]]],
new_label [[i]])}

101 }
102
103 index <- lapply (1: grid ^2, FUN = function (x) if(!is_empty(label [[x]])){

seq(as. numeric (1) ,nrow(label [[x]]) ,1)} else{NULL })
104 treated [[q]] <- sort(c( treated [[q]],as. numeric (k)))
105 tmp_rmv = c(tmp_rmv , q)
106
107 if(all( compare .list(index , treated ))){
108 stopping _ criteria <- NULL
109 }
110 }

Domination Criterion and Label Selection
Domination criterion for the single scenario optimisation.

1 is_ dominated <- function (a,b){
2 if(is.null(b)){label _ dominated = FALSE}
3 else{
4 label_ dominated <- any( unlist ( lapply (1: nrow(b), function (x) ifelse ((

a[1] == b[x ,1]) & (a[2] == b[x ,2]) ,FALSE , TRUE))))
5 label_ dominated <- any( unlist ( lapply (1: nrow(b), function (x)
6 ifelse (any(a [1:(1+ length ( uncertainty ))] < b[x ,1:(1+ length (

uncertainty ))]), FALSE , TRUE))))
7 }
8 return (label_ dominated )
9 }

Domination criterion for multiple scenarios.

1 is_ dominated _ multiple <- function (a,b){
2 if(is.null(b)){label _ dominated = FALSE}
3 else{
4 label _ dominated <- any( unlist ( lapply (1: nrow(b), function (x) ifelse ((a

[1] == b[x ,1]) & (a [2:(1+ length ( uncertainties ))] == b[x ,2:(1+ length (
uncertainties ))]),FALSE , TRUE))))

5 label _ dominated <- any( unlist ( lapply (1: nrow(b), function (x)
6 ifelse (any(a [1:(1+ length ( uncertainties ))] < b[x ,1:(1+ length (

uncertainties ))]), FALSE , TRUE))))
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7 }
8 return (label _ dominated )
9 }

Parts of the Label Selection for the minimax regret labels.

1 minimax _label <- function (tmp , label , dummy , q){
2 df <- as.data. frame(do.call(rbind , tmp))
3 df1 <- as.data. frame( matrix (label [[q]][ ,2:(1+ dummy)], nrow = length (label

[[q]])/(dummy +2) , byrow = T))
4 min_vals <- as. vector ( apply(df1 , MARGIN =2, min))
5 df1 <- data.frame ( matrix ( unlist ( lapply (1: nrow(df), function (x) df[x,]- min

_vals)), nrow =nrow(df), byrow = T))
6 min <- which.min( apply(df1 , MARGIN =1, max))
7 best <- matrix (t(df[min ,]) , nrow = 1, byrow = T)
8 d <- c()
9 i <- which( unlist ( lapply (1: length (tmp), function (x) if( length (tmp [[x]])/

dummy == 1){all(best == tmp [[x]])
10 }else{for(i in 1: nrow(tmp [[x]])){d[i] <- all(tmp [[x]][i,] == best)}
11 any(d)})))
12 return (i)
13 }

1 find_k <- function (label ,i, label _search , treated ){
2 if(nrow(label [[i]]) == 1 || is_empty(label [[i]])){k <- 1
3 }else if( length (label_ search [[i]]) == 1){k <- label_ search [[i]]
4 }else if(is_ empty( treated [[i]])){
5 multi _ labels <- data. frame(label [[i]])
6 multi _ labels <- multi_ labels [ ,2:(1+ length ( uncertainties ))]
7 min_vals_k <- as. vector ( apply(multi_labels , MARGIN =2, min))
8 df1_k <- data. frame ( matrix ( unlist ( lapply (1: nrow(multi_ labels ), function (x

) multi _ labels [x,]- min_vals_k)), nrow =nrow(multi_ labels ), byrow = T)
)

9 minmax <- which .min(apply (df1_k, MARGIN =1, max))
10 k <- minmax }else{
11 multi_ labels <- data. frame(label [[i]])
12 multi_ labels <- multi_ labels [- treated [[i]] ,2:(1+ length ( uncertainties ))]
13 min_vals_k <- as. vector (apply (multi_labels , MARGIN =2, min))
14 df1_k <- data. frame( matrix ( unlist ( lapply (1: nrow(multi _ labels ), function

(x) multi _ labels [x,]- min_vals_k)), nrow =nrow(multi_ labels ), byrow
= T))

15 minmax <- which.min( apply(df1_k, MARGIN =1, max))
16 k <- minmax
17 }
18 return (k)
19 }
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