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Abstract:

With the increased occurrence of pollution
in water bodies, there is a higher demand
by the European Union for member coun-
tries to monitor their marine environments
[1]. One of the reasons is that water contam-
ination can be estimated by the behavioral
change in animals living in the water body
[2]. This creates a need for having a com-
puter vision system that could monitor ani-
mals underwater. This system would highly
depend on the underwater visibility that is
influenced by several factors.
This master thesis builds on previous work
by Pedersen et al. [3] and experiments with
their unique underwater Brackish dataset
which is highly influenced by turbidity. The
aim of this project is to explore the effects of
turbidity on the underwater object detector.
Firstly, the project uses real-time object de-
tector YOLOv3 and manages to improve
baseline results from the original paper
by 9.2% mAP. The result is verified by
a newly introduced manually annotated
dataset called the Brackish X dataset which
can be used for evaluating the generality
abilities of a trained model.
Secondly, this project evaluates which tur-
bidity features are best for estimating tur-
bidity.
Lastly, the best model is evaluated on the
original test set divided into 3 subsets based
on their estimated turbidity. The result of
this experiment set a new course for a future
experiment in a controlled environment.
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Preface

This report documents a Master’s thesis at the Master’s Programme in Vision, Graphics, and
Interactive Systems (VGIS) at Aalborg University (AAU). The aim of this thesis is to investigate
the effects of turbidity on the underwater animal detection system based on deep learning.

The thesis starts with chapter Introduction which explains the motivation behind the
project and introduces the initial problem formulation. Chapter problem Analysis further
narrows down the problem which results in defining the Final problem formulation in chap-
ter 3. Subsequent chapter 4 - Theory, explains key topics in computer vision and deep learning
required for proposing a suitable solution in chapter 5 Methodology. Chapter 6 presents the
results acquired from the experiment. Chapter 7 - Discussion - explains the presented results.
Finally, the project is wrapped up by future work in chapter 8, and the conclusion is made in
the last chapter 9.

The citations utilize the IEEE reference style. Meaning that the author’s name is not al-
ways specified, but instead, the source is referred to with a number in square brackets, e.g.
[1]. This number corresponds to the full citation located at the end of the report. The citations
are organized in the order they have been referenced within the report. Figures that do not
have the reference in the caption were created by the author. Deep learning models in this
project were trained on Google Colab.

I would like to express my gratitude to supervisors Thomas B. Moeslund and Malte Peder-
sen, for guidance and valuable advice that helped me during the process of writing this thesis.

Aalborg University, May 10, 2020

Lukas Stranovsky
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Chapter 1

Introduction

One of the essential substances for humankind and all other forms of life is water. However,
because of the anthropogenic activities, many water sources are polluted which have led to
the deterioration of water quality. According to Heath, [2] water pollution is the presence
of hazardous material in water in excessive amounts to the extent that it is no longer safe
for humans, animals, plants, or aquatic life. It usually occurs when water bodies; such as
seas, oceans, aquifers, rivers, and groundwater are contaminated, mostly as a result of human
activity resulting in an alteration of the physical, biological or chemical properties of the water
to cause detrimental effects to live organisms.

Water pollution comes from different sources. The three major pollutant sources have
agricultural, industrial, and urbanization origin [4]. The pollution of water affects the envi-
ronment and every life form that depends on the water body [5]. It causes about 14 000 human
casualties every day as a result of diseases caused by the consumption of contaminated water,
especially in developing countries. It also causes an increased death of aquatic life; plastics
present a choking hazard to aquatic life, blocking the breathing passages and stomachs of
marine species. Pollution of water from toxic chemical wastes like lead and caladium disrupts
the food chain when the pollutants are consumed by small organisms, which are then eaten
by fish and eventually find their way to larger animals including people [6].

For these reasons, monitoring underwater life is essential to assess the risk in aquatic
ecosystems [7]. Detecting disturbance from pollutants and toxic substances in water bodies
can be an important early warning on the quality of water. Physiochemical characteristics
are not sufficient in examining aquatic ecosystem disturbances as they only detect known
pollutants for a specific period [2]. It is important to also apply behavioral monitoring that
investigates the condition of the environment by studying how indicator species respond to
the surrounding environment. It is efficient for monitoring aquatic ecosystems and the quality
of water in the long term. Due to their sensitivity to alterations in environmental parameters,
fish and daphnia are the best indicator species in assessing the quality of water.

The change in behavior of aquatic species, when stimulated by external factors like pollu-
tants, has a regular pattern [7]. According to Heath [2], most of the behavioral indicators used
to monitor and assess the quality of water include escape behavior; like swimming rapidly,
floating, and circuitous frequency, breathing behavior; such as the respiration depth and rate
of breathing, and motor behaviors; like the swerving frequency, swinging frequency, height,
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4 Chapter 1. Introduction

velocity, and dispersion. Behavioral data is analyzed [7] to evaluate the status and degree
of pollution in aquatic systems by check on for abnormal behavior. Monitoring the behavior
of underwater life offers the opportunity to detect disturbances in aquatic ecosystems and
mitigate them early enough to avoid the risks and losses that they would have later caused.
Moreover, European Union introduced a strategy for all member states with the title "Marine
Strategy Framework Directive (MSFD) which requires member states to observe their ma-
rine environments, in favor of improving decision making, law development, and economic
expansion [1].

To be able to observe marine animals, biologists have to go through an enormous amount
of data which can be manually demanding. The efficiency of this process can be improved
by taking advantage of a reliable computer vision system that could assist in finding animals
of interest in the data automatically [8]. For this purpose, scientists created various marine
datasets. One of them is the Brackish dataset proposed by Pedersen et al. [3] in 2019. The
Brackish dataset is one-of-a-kind because it was collected in a brackish channel with varying
visibility that is caused by turbidity. This master thesis is going to build on previous research
presented by Pedersen et al. by further investigating the area of object detection in underwater
environments and identifying opportunities for enhancements.

1.1 Initial Problem Formulation

Based on the current knowledge about the topic, the initial problem formulation was formu-
lated as follows:

How can a computer vision system be developed to detect animals in brackish water?

The consecutive chapter is going to elaborate on the problem in further detail and describe
the key terms required for constructing the final problem formulation.



Chapter 2

Problem Analysis

The main goal of this chapter is to narrow the initial problem down which is necessary in
order to form the final problem formulation. It starts by introducing the Brackish dataset,
then it deals with underwater challenges and explores related work in the field of underwater
vision.

2.1 Dataset Exploration

The dataset we are going to use in this project is called "The Brackish Dataset" which was pro-
posed by Pedersen et al. [3] in 2019. It is the first dataset made in an estuarine environment,
furthermore, it is the first publicly available dataset captured in Europe. The main motivation
behind it is to monitor the marine environment as it is obligatory to reach the plans of the
European Union’s marine framework [1].

Figure 2.1: "Limfjordbroen" - a bridge over Limfjord. The place where the Brackish dataset was collected.

The dataset was captured in Limfjord which is approximately 170km long shallow part
of the sea that connects the North Sea with Kattegat and separates Nordjutlandic island

5



6 Chapter 2. Problem Analysis

(Vendsyssel). Eastern current has very high salinity - 32 Practical Salinity Units (PSU) - this is
located in Thyborøn Channel, which is a place where the North sea enters the water network.
Moving on further over the channel, salinity can get as low as 18 PSU [9].

More specifically, the dataset was captured under the bridge - Limfjordbroen - that con-
nects Aalborg and Nørresundby (Figure 2.1). The data was collected using a setup shown in
Figure 2.2 that contains 3 cameras and 3 lights placed in a grid. The whole setup is sunken
9 meters underwater pointing downwards. Cameras that were used are 1/3" Sony ExView
Super HAD Color CCD providing resolution up to 1080x1920 pixels with a frame rate up to
30 fps. The intensity of the lights is about 1900 lumens. Annotation of the dataset was done
under the supervision of a biologist. There are 6 categories of animals: Big fish, Small Fish,
Crab, Jellyfish, Shrimp, and Starfish. Distribution of the frames for each category can be seen
in Figure 2.3 and more precisely in table 2.1.

Figure 2.2: Setup of the underwater frame made from stainless steel. Blue color represents position where cameras
are mounted, whereas yellow color represents lights.

Class Annotations Video Occurences

Big fish 3 241 30
Crab 6 538 29
Jellyfish 637 12
Shrimp 548 8
Small fish 9 556 26
Starfish 5 093 30

Table 2.1: Individual classes of the Brackish dataset together with the number of annotations and occurrences in
videos. [3]
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(a) Distribution of the data per each class in the Brackish
dataset shown in pie chart.

(b) Distribution of the data per each class in the Brackish dataset
shown in chart.

Figure 2.3

2.1.1 Baseline Results

Benchmark results presented by Pedersen et al. [3] their deep learning models are pre-trained
on the OpenImages dataset. As stated by Pedersen et al., the reason behind this is that
the OpenImages dataset contains relevant classes. Those classes are fish, starfish, jellyfish,
shrimp, and crab. However, the comparison with classes of other benchmark datasets where
pre-trained weights are also available for download is not made. Replacing the feature extrac-
tor could be a simple way of improving the baseline results. The available relevant feature
extractors are pre-trained on Pascal VOC [10], ImageNet [11] and COCO [12].

Tables 2.2 and 2.3 show baseline results. We can see that YOLOv3 outperformed the older
version of the algorithm YOLOv2 by 52.62% in AP50. The most challenging class to detect
is Small fish despite having the largest amount of annotations. The easiest class to detect is
Starfish.

AP AP50

YOLOv2 09.84 31.10
YOLOv3 38.93 83.72

Table 2.2: This table shows that YOLOv3 outperformed YOLOv2 in the original paper [3].



8 Chapter 2. Problem Analysis

Class YOLO Class AP50

Big fish 0 89.99
Crab 3 92.71
Jellyfish 4 82.05
Shrimp 2 76.62
Small fish 1 62.29
Starfish 5 98.67

Table 2.3: More detailed evaluation per individial classes from the original paper [3].
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2.1.2 Crab

Cancer pagurus also known as Edible Crab or Brown Crab of class Malacostraca is easily dis-
tinguishable from other species because of its body shape. It is characterized by the typical
brown-orange color of the carapace. The edible crab can grow up to 25cm, however, the aver-
age adult individuals have about 15cm. This crab lives in various depths, from coasts to depth
of 100m populating North Sea, English Channel, and coasts of Portugal to the Mediterranean
sea. Typical food of the Brown Crab consists of mollusks, crustaceans and also decaying flesh
of dead animals [13].

Typical Characteristics [13]:

• Black or dark brown colored claws with teeth.

• Clump of strands of hair on legs.

• The last part of the legs ends with a spine tip.

• The carapace has a specific shape with front-lateral margins with 10 rounded lobes.

Figure 2.4: Picture of an adult Brown Crab in its natural habitat [13]
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(a) (b)

(c) (d)

Figure 2.5: Interesting frames with crabs in them from the Brackish dataset.

Figure 2.5 shows how the crab looks like in the Brackish dataset. We can see that it looks
much different from the reference Figure 2.4. We cannot see the distinct brown color, either
the eyes or legs. The crabs in the dataset have various sizes from just very small sizes like
in 2.5 (c) but they sometimes swim in the stream and can appear huge and block the camera
vision as in 2.5 (d). The crabs look very similar to the background environment, especially
the rocks. This can create a lot of false positives. Moreover, when the frame is turbid as in 2.5
(b), the clearly visible shape of crab is not that distinct as when turbidity is low. When the
detector would be trained on low turbid frames, it could happen that it would not be able to
detect crabs in high turbid frames.
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2.1.3 Starfish

Asterias rubens of class Asteroidea are often referred to as Starfish or Sea stars (Figure 2.6). Al-
though they have name fish in the title, they are not really fish. The correct naming of these
underwater animals is echinoderms. Asterias Rubens occurs in the north-east Atlantic region,
especially in the North Sea with high frequency. The typical size of this echinoderm for adults
can be between 10 to 30 cm in diameter, rarely up to 52 cm. Size is highly dependant on food
availability, thus it is not a reliable age indicator. Asterias Rubens is a predator that feeds
upon a large scale of living organisms such as carrion, mollusks, sea worms, and also other
echinoderms. It lives at the bottom of the sea where it slowly crawls or floats with the current
[13].

Typical Characteristics [13]:

• Usually 5 tapering arms, infrequently 4-8.

• Adult individuals have an orange color, faded brown, or violet. Infants are more brown-
ish. Color is dependant on the environment and water depth.

• Soft and flexible papulae in spongy areas.

• Ventro-lateral ossicles in slanting rows with white color.

Figure 2.6: 2 echinoderms hanging out in gravel benthic zone. Adult individual in the background, and infant
damaged individual with 3 arms in the foreground [13]
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(a) (b)

(c) (d)

Figure 2.7: Interesting frames with starfish in them from the Brackish dataset.

Interesting frames from the Brackish dataset can bee is seen in Figure 2.7. It can be ob-
served that the number of their arms is not always 5. Moreover, some of the starfish have
color if they are closer to the camera, but some do not mainly if there are attached to the block
and exposed to direct artificial light as in 2.7 (b). Some of the frames are annotated as one
starfish even though it is visible that there are more of them (2.7 (a)). The size of them also
varies, there are adults and infant individuals. For example in 2.7 (c), the starfish is not even
annotated.
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2.1.4 Small fish

Small fish consists of 4 types of fish (Figure 2.8). Namely Sticklebacks (Gasterosteus aculeatus),
Gobies (Pomatoschistus microps), European Sprats (Sprattus sprattus), and Atlantic Herrings
(Clupea harengus). Sticklebacks, Gobies, and Sprats are small fish about 5 to 10 cm long which
makes them extremely difficult to recognize. Sticklebacks, Sprats, and Herrings are colored
in silver, and in their natural habitat, they swim in schools. However, Gobies are mottled
with sandy color. Gobies are able to tolerate a wide range of water salinity, although they
prefer low salinity waters. It is an abundant fish that migrates to shallow waters during the
breeding season. Herrings can grow up to 45cm, however, in the Brackish dataset they appear
as infants. Thus, they are classified as small fish [13].

(a) Herrings (Clupea harengus) (b) Goby (Pomatoschistus) [14]

(c) European Sprat (Sprattus sprattus) (d) Sticklebacks

Figure 2.8: Species belonging to the class Small fish in the Brackish dataset.

According to the authors of the Brackish dataset [3], the first intention was to classify fishes
into classes according to their species. However, this was not possible with certainty because
of turbidity, light attenuation, and color weaken. Thus, they were all put into the same class

Sources of the images: 2.8 (a) - https://animals.net/herring/; 2.8 (c) - http://www.freenatureimages.eu/;
2.8 (d) - https://phys.org/news/2013-06-brother-art-thou-sticklebacks-relatives.html

https://animals.net/herring/
http://www.freenatureimages.eu/
https://phys.org/news/2013-06-brother-art-thou-sticklebacks-relatives.html
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"Small fish". This can create issues in the future because the difference with the "Big fish"
class is only the size of the fishes. Therefore, we cannot be completely sure whether the fish
belongs to those 4 species, but it can also be species that are included in the "Big fish" class.

(a) (b)

(c) (d)

Figure 2.9: Interesting frames with "Small fish" class in them from the Brackish dataset.

Regarding the representation of the class in the dataset which can be seen in Figure 2.9.
The annotation of the small fish can be very small as in 2.9 (b), but when they swim in front
of the camera they can appear big as in 2.9 (d). When they swim in the schools there is a lot of
occlusion going on which would make them not only difficult to classify by computer vision
system but also by an annotator. In Figure 2.9 (d) 2 fishes are annotated as one. Furthermore,
when they swim they are rotating so sometimes there is their back visible, sometimes it is
stomach and sometimes just head, tail, and so on.



2.1. Dataset Exploration 15

2.1.5 Shrimp

Brown shrimp (Crangon crangon) (Figure 2.10) belongs to the phylum of Arthropoda - animals
with segment body and limbs. It has mottled brown color but this can vary depending on
the environment. The body shape is cylindrical narrowing to the posterior end that ends with
a fanned tail. Adult individuals are usually about 8.5 cm in length. It has 2 short antennae
and 2 long antennae coming from its head that can be almost as long as the whole body. It
occurs on sandy and muddy ground and sometimes can be hard to spot because it likes to dig
under the surface with only eyes and antennae sticking out. It’s often hunted by predators for
instance birds and fish. [13].

Typical Characteristics [13]:

• The last segment of the body has two pairs of lateral spines.

• Cylindrical body with fin tail.

• 5 pairs of walking legs and 5 pairs of swimming legs (swimmerets).

Figure 2.10: Adult shrimp crawling on the bottom of the aquarium [13]
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(a) (b)

Figure 2.11: Interesting frames with shrimp class in them from the Brackish dataset. Adult individual in (a) and
infant in (b).

First of all, the number of frames of shrimps is low in comparison with other classes.
The uneven number of classes can create an unwanted bias for our computer vision detector.
Then the problem is in the appearance of infant individuals swimming around because they
look similar to small fish (Figure 2.11 (b)), moreover the shrimp in figure 2.11 (b) is wrongly
annotated as small fish. When shrimp crawls on the bottom of the body water, it might be
falsely classified as crab.
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2.1.6 Jellyfish

5 species of Jellyfish can be found in Danish marine environments. Those are Blue jellyfish
(Cyanea lamarckii), Lion’s mane jellyfish (Cyanea capillata), Moon jellyfish (Aurelia aurita),
Compass jellyfish (Chrysaora hysoscella), Barrel Jellyfish (Rhizostoma pulmo)1. Because of
the occlusion, turbidity in the water that leads to light attenuation, it is problematic to reliably
distinguish between them in the dataset. Probably, for this reason, creators of the brackish
dataset did not mention which one of them is occurring in the frames. To our best knowledge,
we think that the jellyfish in the Brackish dataset is the Common jellyfish, which is the most
wide-spread. Thus we have a closer look into this species.

(a) Lion’s mane jellyfish (Cyanea capillata) (b) Common jellyfish (Aurelia aurita)

(c) Blue jellyfish (Cyanea lamarckii) (d) Moon jellyfish (Chrysaora hysoscella)

Figure 2.12: Figure shows 4 types of jellyfish species that occur in the North Sea [13]

1https://wildaboutdenmark.com/jellyfish-along-the-danish-coast/
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Moon jellyfish have a completely transparent smooth, flatten, thick umbrella. The gonads
can have various colors, e.g. mauve, violet, reddish, pink, or yellowish. The diameter of an
adult individual can be between 25 cm to 40 cm [13]. They can be often seen washed up on
the shores. It is harmless to humans.

Typical Characteristics [13]:

• It has a thin transparent umbrella.

• Gonads can have various colors.

• Short, hollow tentacles.

• 4 purple-blue gonads formed into the "horseshoe" shape contained into the gastrovas-
cular cavity.

• Gonads do not exceed the umbrella surface like in most of the jellyfish species.

(a) (b)

Figure 2.13: Interesting frames with jellyfish class in them from the Brackish dataset.

Similarly to the shrimp, the jellyfish class is also lack of frames with jellyfish in them. We
have observed the dataset and the only species of jellyfish occurring there is the Common
jellyfish (Figure 2.12 (b)). The problem with this jellyfish is that it is transparent and in the
turbid water it is hard to spot as can be seen in Figure 2.13 (a) where it looks like some floating
abiotic object. Whereas when the turbidity is low as in 2.13 (b), the umbrella and the gonad
can be distinctly visible.
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2.1.7 Big fish

There are 2 kinds of big fishes occurring in the dataset (Figure 2.15). Those are Lumpsuckers
(Cyclopterus lumpus) and Sculpins (Myoxocephalus scorpius).

Lumpsuckers live in depth from 50m to about 300m, however, during spawning, they
migrate to shallow waters. The spawning season is between February and May. Male changes
its color during the spawning season to reddish. Adults grow between 30 to 50 cm [13]. The
ventral fins from the bottom side of Lumsuckers are adjusted into a suction disk that allows
them to attach on solid surfaces.

• Various colors from reddish, bluish to slate gray.

• Distinct dorsal ridge.

• Can be seen attached to a rock in a fixed position.

Sculpins also are known as Bull-rout are fish residing at the bottom of the benthic layer. It
is a very flexible fish, it lives in salt waters the same as in fresh rivers. The common length is
30cm in southern parts, however, in northern parts, it can grow up to 90cm. Male’s stomach
is cherry red and light orange in females [13].

• It has a large head in comparison with the rest of the body.

• Two dorsal fins narrowly attached on the back.

• Black stripes.

• Mottled skin fins and skin color.

(a) Male Lumpsucker (Cyclopterus lumpus) (b) Sculpin (Myoxocephalus scorpius)

Figure 2.14: Fish that are occuring in the Brackish dataset under the label "Big fish" [13].
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(a) (b)

(c) (d)

Figure 2.15: Interesting frames with big fish class in them from the Brackish dataset.

Big fishes from the Brackish dataset can be seen in Figure 2.15. It can be seen that fish
can be partly occluded and it can have different shapes when it swims under different angles
relative to the camera. In the 2.15 (a) there is a big fish swimming in the opposite direction to
the camera. It casts a shadow that could confuse a computer vision detector to falsely classify
the shadow as a fish. In the next frame 2.15 (b) when fish is too far away from the camera,
it appears just as a blot. The frames 2.15 (c) show big fish occluded with only head in the
field of the camera vision. The last frame 2.15 (d) shows again the back of the fish in mid
turbid water, however, it moves which makes the shape blurry and it appears to be like some
underwater floating stick.
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2.1.8 Review

By reviewing the dataset, we have learned how the animals in the Brackish dataset look like
and what difficulties there are for an object detector to deal with. The major challenges are
turbidity, occlusions, animals overlapping, changing illumination conditions, blur, incomplete
annotations, animals have different scales and varying angles. Floating objects such as leaves,
seaweed can cause false positives. The bottom of the water body can also cause many false
positives because animals are naturally camouflaged which means that they share certain
features with the environment they live in. This helps them to stay away from predators.
Some animals have a similar shape, for example when shrimp are swimming it has similar
features as a small fish. Moreover, the dataset classes are uneven. The class "Small fish" has
9 556 annotations, whereas class "Shrimp" has only 548. This can create an unwanted bias.
Lack of data is also an issue. A rule of thumb when training deep learning object detectors is
having at least 2 000 annotations per class for training.
There are also phenomena typical for underwater vision such as color diminishing and halo
effect. Color diminishing [15] illustrated in Figure 2.16 causes low contrast of colors under-
water. This is because light with higher wavelength intervals does not travel far in water
substance. Therefore, red color occurs only up to 5m underwater, whereas blue color and
violet colors travel the furthest. The Halo effect, on the other hand, is caused by turbidity. It
occurs when the amount of dissolved particles in the water is too high. Rays of light scattered
from an artificial light source reflect those particles in all directions. This decreases the overall
visibility and creates false edges.

Figure 2.16: Illustration of color diminishing correlated with the depth of light. It shows the percentage of light
that penetrates to certain depths. The reach of red color is the shortest whereas, the blue light is the longest.
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Figure 2.17: Venn diagram with factors influencing visibility underwater.

Turbidity has the highest influence on the vision in the Brackish dataset, we will analyze
it in more detail in the following section. More precisely we will look into what turbidity
is, what it causes, and how it can be measured. Since the overall visibility is mostly affected
by turbidity, the difference between visibility and turbidity might be not completely clear.
According to definitions, turbidity measures the number of dissolved particles in the water2,
whereas, visibility is defined as the distance that object can be readily recognized3. Therefore,
it can be concluded that turbidity is just one of the influencing factors of the overall visibility.
The other influencing factors are illustrated in Figure 2.17.

2https://www.lenntech.com/turbidity.htm
3https://dtmag.com/thelibrary/visibility-illuminating-facts-unclear-situation/
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2.2 Turbidity

Turbidity is the optical property of a fluid or transparent solid which describes how clear or
hazy the sample is (Figure 2.18). It comes as a result of the suspension or dissolution of parti-
cles in a fluid, which scatters light giving the water a cloudy or murky appearance [16]. Water
is characterized as turbid when the particulate matter in it is conspicuous enough to reduce
the penetration of light. According to Lawler [17], particulate matter may include sediments-
like silt and clay, substances that could either be inorganic or organic, algae, colored organic
compounds that can dissolve in water, and microscopic organisms.

The causes of turbidity are complex and greatly varied and are influenced by the physical,
chemical, and microbiology characteristics of the water [16]. The particles causing turbidity
also vary in size. In natural waters, turbidity may be caused by soil and rock weathering. Hu-
man activity has also contributed greatly, for instance, sewage and wastewater releases from
industries, the use of powerboats and vehicles on water bodies, etc. Inorganic silt and clay
and natural organic substances from decaying plant and animal material are among the most
common particulate matter in water [17]. Other causes of turbidity include inorganic precip-
itates like metals, biological organisms like algae, macro, and micro bacteria, and naturally
occurring minerals. Water treatment additives and components of the system can also cause
turbidity.

Figure 2.18: Glass flasks with water samples of various turbidity [18]. The sample with 40 NTU is almost trans-
parent, but sample with 200 NTU is almost opaque.

According to guidelines for drinking water, there are two major types of turbidity [19];

• Inorganic particles include silt, clay, natural precipitants, and mineral fragments. They
affect the water pH, affect its taste, and give it a cloudy appearance. They also act as a
source of micronutrients, metals, and metal oxides in the water.
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• Organic particles include decomposing plant and animal debris, organic macromolecules,
and microorganisms. They affect the taste, color, pH, and smell of the water.

Measuring the turbidity is a key test of the quality of water [20]. The use of a turbidity tube
is the most simple and cheapest way to measure turbidity. This is a tube which has a black X
at the bottom. The analyst continuously pours water into the tube until the cross disappears
and notes the scale on the tubes outside in NTU (Nephelometric Turbidity Units) [17]. Secchi
disks can be also used; they involve lowering a colored disk that is attached to a line into a
fluid until the disk disappears. The part of the line dipped into the fluid is noted and then
recorded as NTU. Even though these methods are simple, they are not accurate as they rely
on a user’s consistency and are unable to measure very low turbidity. According to Kitchener
et al. [20] more accurate measurements can be obtained using optoelectronic meters that work
by emitting a known light intensity through a sample. The particles suspended in the sample
then absorb or scatter this light. The last step is the measurement of the scattered light for the
turbidity of the sample. This measurement of turbidity is classified into two categories:

• Nephelometry for low turbidity samples (less than 40 NTU) where the light after scat-
tering is measured at a 90° angle.

• High turbidity samples (between 500-1000 NTU) which are visibly colored are measured
at an angle of 180°.

Regarding turbidity annotation in the Brackish dataset. As mentioned previously, turbid-
ity causes light attenuation which has an influence on overall visibility and might have an
effect on the results of the object detector. By taking advantage of the reference block oc-
curring in the dataset we can observe 3 levels of Turbidity: low turbid, mid turbidity, high
turbidity (Figure 2.19). Low turbidity occurs when all the numbers on the reference block are
clearly visible. Mid turbidity can be observed when the smallest number 6 on the reference
block is not visible due to turbidity. And subsequently, the high turbidity, where any of the
numbers cannot be distinctly recognized.

Figure 2.19: 3 levels of Turbidity that can be observed with the unaided eye. From left to right: Low turbidity,
semi turbid, high turbid.

By looking into possibilities of detecting turbidity, it was found out that turbidity can
be also detected using computer vision. Since our computer vision system should operate
in varying visibilities where turbidity has the most effect on the camera vision, it would
be beneficial if our system could detect different turbidity levels. Thus, the next section will
proceed with analyzing related research focused on detecting turbidity using computer vision.
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2.3 Traditional Computer Vision vs Deep Learning

Deep Learning achieved better performance in many computer vision tasks and surpassed
traditional computer vision methods such as SIFT, SURF, FAST, HOG, Haar-like features, etc.
Does this mean that the traditional approach is now obsolete? Mahony et al. [21] tries to
answer this question in their paper.

The latest improvements in computing power, memory sizes, power consumption require-
ments, cameras improvement were the main factors that helped deep learning to rise. DL has
achieved state-of-of-the-art performance in Image classification, semantic segmentation, object
detection, and simultaneous localization and mapping (SLAM). Even though utilizing DL has
led to jump in terms of accuracy, this has its cost which is in the form of billions of additional
math operations. It is necessary to have a high powered GPU or TPU available.

The pipeline of traditional CV techniques starts firstly by feature engineering which con-
sists of manual feature extraction. Then after the features are obtained a classifier with shallow
structure is employed to perform prediction. Classifiers with a shallow structure are con-
sidered to be for instance Support Vector Machines, K-Nearest Neighbours, shallow neural
networks. On the other hand, DL has introduced the concept of end-to-end learning which
consists of feeding data into the network where it is up to the network to decide which features
are meaningful and how much impact they will have on final prediction. The main difference
between DL and traditional technique is that traditional CV models have to be programmed
whereas DL models are trained. DL requires less proficiency, thus it is criticized to be a black
box. The challenge with the traditional approach is that it is up to the developer to decide
which features are important. This can become challenging especially when the difficulty of a
problem increases. DL is often criticized to be a black box because it is not always clear why
and what is deep neural network learning, whereas a traditional CV is fully transparent. Fur-
thermore, the issue where DL pulls the shorter end is, for instance, 3D CV. 3D vision requires
hand-crafted information about smoothness, silhouette, and lighting conditions.

Another approach is a combination of handcrafted features and DL, these are called Hy-
brid approaches. One of the examples is to utilize CV techniques to find the area of interest
and then perform DL just on small patches. This will result in increased performance because
the network does not have to process entire frames.

Mahony et al. [21] claim that a lot of CV algorithms developed in the past 20 years
have become irrelevant. However, knowing only DL would greatly limit the abilities of a CV
engineer. There are areas where DL is not the best option and traditional CV techniques are
still necessary to know. However, we think that a deep learning solution is more suitable for
our problem. The next section is going to explain evaluation methods that are common in the
field of deep learning object detectors and are approved by the scientific community.
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2.4 Related Work in Marine Object Detection

There has been a lot of research done recently in the field of object detection. Thanks to
improvements in the field of marine optical imaging technology. Namely, improvements in
digital cameras, autonomous underwater vehicles (AUV), and unmanned underwater vehicles
(UUV). Moreover, increasing requirements by the European Union for member countries to
monitor their marine environments has contributed to the popularization of the field of marine
object detection.

The main difference between a common object detection and marine object detection is that
underwater vision lacks natural illumination that is caused by light attenuation. According
to Moniruzzaman et al. [22] underwater marine detection is focused on several different
categories based on the target group they are attempting to detect. Target groups that are
subjects of Moniruzzaman et al research are Fish, Planktons, Corals, and Seagrass.

Villon et al. [8] compares traditional approach with deep learning based approach and
proves that deep learning outperforms traditional CV technique utilizing HOG and SVM
classifier. Mahmood et al [23] uses VGGNet to detect corals on Moorea coral dataset4.

When talking about the detection of plankton, Py et al. utilizes a deep convolutional net-
work inspired by GoogleNet on the National Data Science Bowl dataset 5. Dai et al [24] pro-
pose a network called ZooPlanktoNet which is an adjusted network inspired by AlexNet and
VGGNet. They employ data augmentation techniques such as rotation, translation, rescaling,
shering, and flipping. Then the networks were trained on ZooScane System Dataset6.

By studying related research in the field of marine vision, it was found out that deep
learning architectures utilized underwater do not differ from those used for overland datasets.

By studying the related work in the field of marine object detection, it was found out that
researchers use traditional CV approaches and deep learning neural networks. Deep neural
networks were prevalent. This is because deep learning has surpassed traditional CV in many
tasks. Therefore, the next section is going to strive to answer the question of whether the
traditional techniques are still viable.

4http://vision.ucsd.edu/content/moorea-labeled-corals
5https://www.kaggle.com/c/datasciencebowl
6https://www.seanoe.org/data/00446/55741/
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2.5 Related Work in Turbidity Estimation based on Computer Vi-
sion

As mentioned in the section about turbidity, turbidity is measured using various methods.
According to [25], these methods are either very inaccurate because they rely on the human
observer or they are expensive (thousands of dollars), require a professional operation, and
are not able to run real-time in large scale. This opens an opportunity to take advantage of
computer vision. The general framework proposed by Liu et al. [25] for estimating turbidity
with computer vision can be seen in figure 2.20.

The essential hardware requirements for the system based on computer vision require 3
main components: light source, image acquisition device, and image processing unit.

Furthermore, Liu et al. divide turbidity detection systems based on computer vision into
4 types depending on how the source image was acquired. They distinguish 4 types: sampled
image, water surface image, underwater image, and invisible light image.

Figure 2.20: A common framework for turbidity estimation systems based on computer vision.

Sampled Image
Mullis et al [26] use a method called Sampled Image. The principle behind this method is to
create an artificially controlled setup where the source image is acquired. Subsequently, the
features are extracted and the relation between features and turbidity values is established.
The setup used in the research consists of a vessel with sample water where the camera points
to the vessel under angle 0° and artificial light is placed in the same plane in 90° The vessel
is placed on top of a magnetic stirrer. The setup can be seen in Figure 2.21.

Underwater Image
As the name suggests, the source of the features is an image acquired from a camera sub-
merged underwater. This camera can detect turbidity in various depths and it is suitable for
fixed-point, long-term detection running in real-time. The drawback of this method is the cost
because it requires an underwater camera, artificial light source, and additional operational
requirements. This also brings new challenges because the background on underwater image
constantly changes [25].

Water Surface Image
This remote sensing method utilizes water surface images to determine the turbidity. An
interesting approach was proposed by Leeuw and Boss [27] where they use a mobile camera
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Figure 2.21: Controlled setup for measuring turbidity with a camera by Mullis et al [26].

which is a low cost and efficient solution. This method can also be used in real-time.
The problem with this approach is, however, a requirement for a huge amount of training data
and small differences in sensors since the quality of cameras varies depending on the age of
smartphone and company.

Invisible Light Image
Invisible light images used for turbidity detection can be captured with infrared or hyperspec-
tral cameras. These images provide different features because the proportion of wave range
from RGB cameras is limited. One of the approaches is presented by Hussain et al [18] based
on Mie-scattering principle7 where they made a portable tool that can be attached to a mobile
phone. Advantage of this method is that the infrared sensor is able to detect turbidity of low
NTU units with values such as drinking water has.

According to Liu et al [25] state-of-the-art performance can be achieved with manual fea-
ture extraction combined with the neural network. Manually extracted features by other
researchers were luminance, color, shape, gray histogram, frequency-domain feature, gray
feature, and gray gradient.

Now when we know how turbidity can be detected, we can finally look into related work
in the field of underwater object detectors. The subsequent section will analyze relevant
researches and find a suitable object detector algorithm for our problem.

7https://www.sciencedirect.com/topics/engineering/mie-scattering-theory
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2.6 Evaluation Methods

In order to be able to evaluate object detectors, we have to define evaluation methods. In the
field of computer vision, there are accepted metrics used for evaluating object detectors. In the
Brackish dataset [3] the main metric they used is Average Precision (AP) which was also used
by public domain datasets such as COCO [12] and Pascal VOC [10]. For the comprehension
of AP, we have to first introduce primary building blocks that are used in calculating AP. Each
prediction by a model can be divided into one of the 4 categories: FP (False Positives), FN
(False Negatives), TP (True Positives), and TN (True Negatives). FP is when a model predicts
that given condition will happen but it actually does not happen which is a type I error. FN,
when giving condition, will not happen but it does that is a type II error. We are talking about
TP and TN, on the other hand, when the model predictions are correct. These 4 categories
are commonly summarized in the so-called Confusion Matrix (figure 2.22), which is frankly
designed to explain the result of a classifier.

Figure 2.22: Confusion matrix with example values. 35 in upper columns is TP, 5 is FP, 10 represents FN and last
35 is number of TN.

2.6.1 Intersection over Union

Intersection over Union (IoU) is a metric used for the evaluation of computer vision algo-
rithms. It is also a base for other important metrics such as Average precision. It calculates
the ratio between the ground truth bounding box and the predicted bounding box. This ratio
is then thresholded. The prediction is either true or false if it passes the threshold or not. A
popular public domain benchmark dataset Pascal VOC considers prediction as correct if the
IoU is above 50% [10].
In order to apply IoU it is necessary to have:

1. Ground truth bounding boxes of objects from the testing set.

2. Predicted bounding boxes by a machine learning model.

If F and G denote rectangles with arbitrary lengths, the Intersection over Union can be
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expressed with the following equation 2.1 The equation is visualized in figure 2.23 [10].

oU =
Are(�F ∩�G))

Are(�F ∪�G)
(2.1)

(a) (b)

Figure 2.23: Figure (a) shows the Overlap area of the rectangles F and G. Figure (b) shows the Union area of the
identical rectangles.

Algorithm 1 demonstrates an implementation of the IoU algorithm in pseudocode.

Algorithm 1 Intersection over Union

1: procedure intersection_over_union(F,G)
2: FArea = |F[2], F[0]| * |F[3], F[1]|
3: GArea = |G[2], G[0]| * |G[3], G[1]|
4:

5: Fx = max(F[0], G[0])
6: Gx = max(F[1], G[1])
7: Fy = min(F[2], G[2])
8: Gy = min(F[3], G[3])
9:

10: InArea = (Fy - Fx) * (Gy - Gx)
11: return InArea / (FArea + GArea - InArea)

2.6.2 Precision

The precision (equation 2.2) of a given class is defined as a ration between True positives
divided by the sum of True positives with False positives. It measures the accuracy of the
predictions, in other words, the percentage of predictions being correct.

Precson =
TP

TP+ FP
(2.2)
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2.6.3 Recall

Recall (equation 2.3) is defined as ratio between True positives and sum of True positives and
False negatives. It describes how well we find all the positives.

Rec =
TP

TP+ FN
(2.3)

2.6.4 Average Precision

Benchmark datasets (COCO, OpenImages) are evaluated with Average Precision (AP). AP is
calculated as an area under the precision-recall curve and can be expressed by Equation 2.4.
An example of this curve can be seen in Figure 2.24.

AP =

∫ 1

0
p(r)dr (2.4)

Figure 2.24: Precision and Recall plotted against each other.

To avoid approximation the precision is adjusted to be monotonically decreasing by re-
placing precision value with the maximum precision value to the right. This is illustrated
with green line in Figure 2.25 [10]. After this step the are under the green curve is equal to
average precision.

2.6.5 Mean Average Precision

Mean Average Precision denoted as mAP is AP calculated for each class of the dataset divided
by number of classes. This can be shown by Equation 2.5 where  is number of classes and
AP() is AP of a single class.

mAP =

∑
1 AP()


(2.5)
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Figure 2.25: Precision and Recall plotted against each other with adjusted precision illustrated by gree line.

This is the end of the problem analysis chapter. The next chapter is going to introduce the
final problem formulation of this master’s thesis.
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Problem Formulation

By performing the problem analysis, we narrowed the problem down into the following:

• Match or improve baseline results from Pedersen et al. [3]:

– Big Fish AP@[IoU = 0.5]: 0.8999

– Crab AP@[IoU = 0.5]: 0.9271

– Jellyfish AP@[IoU = 0.5]: 0.8205

– Shrimp AP@[IoU = 0.5]: 0.7662

– Small fish AP@[IoU = 0.5]: 0.6229

– Starfish AP@[IoU = 0.5]: 0.9867

Moreover, the problem formulation consists of following question we will try to answer in
this thesis:
How does turbidity affects performance of the models?
To our best knowledge there is no research that would study effects of turbidity on underwa-
ter computer vision object detector.

The next chapter is going to examine theory that is necessary for comprehension and carrying
out the experiment.
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Chapter 4

Theory

This chapter introduces what computer vision is and explains foundations of artificial neural
networks which are currently the state-of-the-art in 2D object detection task.

4.1 Computer Vision

Computer vision (CV) is a computer science field that involves an analysis of digital images
and videos. The type of information extracted could vary from augmented reality applica-
tions, measurements in space, or just identification [28]. It entails a set of algorithms that can
understand image content and use it in different applications. It is an interdisciplinary field
bringing together mainly physics, math, artificial intelligence, computer graphics, and others
which are needed for the development of CV models.

Recent advances in machine learning computing capabilities increased data storage and
lowered cost, high-quality input devices have improved computer vision. With the advent of
camera phones, the world is increasingly being filled with billions of digital images whose
viewing and analysis are past human capability. CV helps consumers in organizing and ac-
cessing their photos without the need for tags. The list of practical uses of CV is endless. Any
futuristic situation would most likely require a CV application [29]. Facial recognition used in
surveillance and security systems, payment portals, in social media, and even in retail stores
to monitor inventories and tracking clients. According to Alhaija et al. [30], computer vision
has made autonomous vehicles like Tesla and Ford a reality as they need to continuously pro-
cess visual data. In healthcare, it helps in diagnosis, improves surgeon sight in operations and
with most medical data being in the form of images, CV helps with the analysis of medical
reports using algorithms.

The most common tasks in CV are:
Image classification - also referred to as object classification or image recognition, involves
labeling images. It can either be a binary classification like marking an x-ray image as cancer
or not or multiclass classification like naming a photograph or handwritten digits [31].
Object detection - a more advanced version of image classification is image classification
with localization which involves labeling an image and showing its location by drawing a box
around it (bounding box). Object detection is more advanced than image classification with

35
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localization as it involves several objects in different types of images [32].
Object (semantic) segmentation - entails drawing a line around each object detected in the
image. Unlike object detection, Chen [32] suggests that it identifies the specific pixels of an
object in an image, segmenting them to different categories [32].
Image reconstruction - entails filling in parts of an image that may be missing or corrupt
through a photo filler or transform that may not necessarily have an objective evaluation.
Image super-resolution - is the generation of a new version of an image with more detail and
higher resolution than the original image [31].

When evaluating CV systems, it is necessary to have ground truth labels that are compared
with predictions made by a CV model. The next section will break down the process of
creating ground truth labels which are called data annotation.

4.2 Data Annotation

According to Schreiner [33], the data annotation or data labeling is a process of marking data
acquired from a sensor. The data can be of any type, such as audio, images, text, time-series,
etc. These annotations are used as ground truth for training and evaluating the accuracy
of machine learning algorithms. For labeling the data, in this project, we are going to use
software proposed by Bahnsen et al. [34]. Screenshot of the interface is presented in figure
4.1. The annotation software is divided into two annotation tools: Multimodal Pixel Annotator
and Bounding Box Annotator. Pixel Annotator is used for marking pixels and assigning them
into classes, while the Bounding Box Annotator is employed to create 2D bounding boxes
which are rectangles enclosing the object area. The Annotation tool was implemented in C++
using OpenCV1 and Qt 2. The app is cross-platform supporting Windows, Linux, and macOS.

Annotations are usually stored as string in different formats such as XML3, JSON4, csv,
etc.

In order to understand how the up-to-date CV systems work, we will first look into artifi-
cial neural networks in the subsequent section.

1https://opencv.org/
2https://qt.io/
3https://en.wikipedia.org/wiki/XML
4https://www.json.org/json-en.html
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Figure 4.1: Annotating fish with the "AAU Multimodal Annotation Toolboxes" tool proposed by Bahnsen et al.

4.3 Artificial Neural Networks

Neural Networks, also known as Artificial Neural Networks (ANNs) are made to imitate
biological neural network located in the brain of humans and animals. The general concept
is to utilize the process of training or learning rather than using a precise set of programmed
rules [35].

The Neuron (figure 4.8), also known as perceptron is the main building block of the ANNs.
Neuron takes an input or multiple inputs from previous nodes, applies weights (learning
parameters) to generate a weighted sum. Weights represent what is important and what
signal will be passed through. The higher the weight is, the more impact the feature is going
to have on the final result. Each neuron has also a bias that describes how flexible the neuron
is. The sum of learning parameters is then passed to the activation function (ϕ) that computes
the prediction or probability. The output of the perceptron is denoted as ŷ and will be referred
to as Predicted value. Predicted value can be continuous, regression, binary, or categorical.
This architecture is also known as Single Layer Perceptron and can be seen in Figure 4.8 [35].

Basic ANN consists of 3 types of layers: Input layers, Hidden layers, and Output layers.
The illustration of the ANN can be seen in figure 4.3. The Input layer depicts features that
enter the network, for instance, color, height, price, or pixels of an image. The output layer
is responsible for the output we want to predict, for example, what should be the price of an
apartment, or whether skin stain is carcinogenic or not. Hidden layer stores neurons that are
used for learning the features. The number of hidden layers depends on the complexity of our
data and task we are trying to solve. First, the hidden layer can learn low-level features such
as whether pixels are light or dark, the next layer is then able to extract higher-level features,
for example, shapes and edges [35].
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Figure 4.2: Illustration of an artificial neuron that has 3 inputs 1,2,3 with weights 1,2,3, activation
function ϕ and output y.

Figure 4.3: Illustration of fully connected artificial neural network with one hidden layer.

Activation function ϕ has to be chosen based on a specific problem there are attempting
to solve. We will now look into 6 most used activation functions and explain their advantages
and disadvantages. The mathematical equations of the activation functions are presented in
table 4.1.
Binary Step is the simplest activation function which just outputs 1 or 0 based on whether the
input value is below or over an arbitrary threshold. The binary step can be used for binary
classifiers but for predicting multiple classes it is not useful.
Linear function is suitable only for simple tasks because the derivative of the linear function
is only a constant which will result in biases and weights being updated by the same factor
every time.
The Sigmoid function is non linear function best for predicting probabilities. For example,
what is the probability that the picture is a dog or a cat? It is one of the most used activation
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Activation Function Equation Range

Linear ƒ () =  (−∞,∞)

Binary Step ƒ () =

(

0, ƒ < 0

1,otherse

)

{0, 1}

Sigmoid ƒ () = σ() = 1
1+e− (0, 1)

Hyperbolic Tangent ƒ () = tnh() = e−e−
e+e− (−1, 1)

ReLU ƒ () =

(

0, ƒ < 0

,otherse

)

< 0,∞)

Leaky ReLU ƒ () =

(

0.01∗ , ƒ < 0

,otherse

)

(−∞,∞)

Table 4.1: Comparison of the most used activation functions [36].

function.
Hyperbolic tangent works best for binary prediction, it is basically zero centered sigmoid
function.
Rectified Linear Unit (ReLU) is a linear function that has been rectified. ReLU is less compu-
tationally demanding than Sigmoid and Hyperbolic Tangent function. Problem with ReLU is
that some neurons might never get activated, this phenomenon is called dead neuron and it
is addressed by Leaky ReLU.
Leaky ReLU is an improved version of ReLU where instead of function outputting 0 for all
negative  values, Leaky ReLU returns small component of  to tackle the dead neurons
problem.

The training process of the neural network is done utilizing Forward propagation and Back
propagation. Backpropagation is used to minimize the error of the neural network by adjusting
the weights until we get such an error which is satisfying enough for our system. The error is
the difference between Predicted value and Actual value and it is expressed by a Cost function.
However, calculating the optimal weights for the neural network may require a huge amount
of computing power. This problem is solved by using Gradient Descent.

Gradient descent is a great way of finding global minima when our function is convex.
Nevertheless, if the function is more complex, there is a chance that gradient descent finds
a local minimum instead of the global one. This can lead to weights not being optimized
which is undesirable. The solution is to use Stochastic Gradient Descent. The difference
between them is that Gradient Descent adjusts weights based on the batch of samples, whereas
Stochastic Gradient Descent updates them based on each sample.

When calculating gradient descent one has to first define cost function (Equation 4.1).
Then the gradient descent is defined by first-order derivative as shown by equation 4.2 [35].

ƒ (m,b) =
1

N

n
∑

=1

(y − (m+ b))2 (4.1)
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�

(4.2)

The size of steps the gradient descent makes depends on the learning rate denoted as α.
Larger the learning rate is, the learning process will be faster but might never reach the local
minima. On the other hand, when the learning rate is too low, the learning process can be
way too long.

In this section, we have described important building blocks of artificial neural networks
and the process of learning. However, neural networks with only a single input and output
layer are not sufficient for computer vision tasks on their own. In order to use neural networks
for end-to-end object detection, deeper architectures are needed and we will analyze these in
the following section called Deep learning.
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4.4 Deep Learning

ANN with more than 1 hidden layer is referred to as Deep Neural Network (DNN). Utilizing
multiple layers, DNNs are able to represent data with numerous levels of abstraction that leads
to imitating the human brain even better. In comparison, ANN requires handcrafted features
to be set as input, while DNN (figure 4.4) will find the features itself, without human inter-
ference. This, however, comes with drawbacks, for instance, having a high amount of training
data is required, training time is much longer. Taking advantage of the recent improvements
in hardware allowed deep learning to outperform previous state-of-the-art methods in various
tasks such as object detection, image classification, and many others [28].

Figure 4.4: Architecture of Convolutional Neural Network.

Convolutional Layer
Convolution is a method for extracting feature maps from the input image using a feature
detector (kernel). Multiple feature maps are created to obtain a convolutional layer. The goal
of the convolution layer is to make the image smaller which will lead to lower processing
times. By performing a convolutional operation, some of the information from the original
image will be lost, but at the same time, the goal is to detect features of the image that are
essential. This is done by using multiple feature detectors which results in multiple feature
maps that preserve features that are important for the network [37]. When the feature maps
are extracted an activation function takes into effect. In this case, ReLU is used in order to
increase non-linearity which makes sense because images have lots of non-linear elements
[38]. The convolution equation can be seen in equation 4.3 and it is visualized in figure 4.5.
The feature detector iterates on image in a sliding window style.

(ƒ ∗ g)(t) =

∫ ∞

−∞
ƒ (τ)g(t − τ)dτ (4.3)



42 Chapter 4. Theory

Figure 4.5: Illustration of the convolution operation. Feature detector is a kernel that iterates on the input image.
Number of matches is then recorded in feature map.

Max Pooling Layer (Downsampling)
Max Pooling is another vital layer utilized in CNNs. The main purpose is to decrease the size
of feature maps by disregarding information that is not necessary, while still being able to
preserve important features. This results in CNN being more robust - invariant to rotations
and other distortions, moreover it prevents over-fitting as we are removing information. The
process of Max Pooling is straightforward. Similarly, as during convolution, we are using a
sliding window with an arbitrary size that iterates over a feature map (Figure 4.6). The sliding
window moves by steps which are also called strides. From each position of the window, the
highest number is extracted it is saved in Pooled Feature Map that will be used in the next
layer of the network. [39]

Figure 4.6: Illustration of Max-Pooling. The highest number from the red square in the right is recorded into the
Pooled feature map.

Flattening Layer
Flattening Layer as the name suggest flattens the feature map by converting matrix of m rows
and n columns into 1 dimensional vector with dimension of 1x(m*n). The values are then used
as an input layer of an ANN.
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Fully Connected Layer
Fully Connected Layer is a fully connected ANN that takes care of final classification predic-
tions.

Softmax
Softmax is an activation function utilized in the output layer when we want from DNN to
predict the probability of multiple mutually exclusive classes.

ƒj(z) =
ezj

∑

k e
zk

(4.4)

This is done by equation 4.4 where k is the number of neurons in the last layer, in other words,
the number of classes we want to predict, z is a vector with length k - unnormalized predic-
tions. zj is jth unnormalized prediction from the last layer we want to normalize. This is
divided by sum of e with exponent being unnormalized predicted values. The result is then
normalized prediction where

∑k
k=1 ƒk(z) = 1.

Cross-Entropy
Cross-Entropy (Formula 4.5) is the common loss function used to calculate the error of the
network. Cross-Entropy is preferred over mean squared error for classification tasks, whereas
mean squared error performs better for regression tasks. For this reason, Cross-Entropy is
utilized in CNNs since it has the ability to punish more the classification error which affects
the computation of the gradient and has an impact on the overall performance of the neural
network.

H(y, ŷ) = −
∑



y log ŷ (4.5)

4.4.1 Overfitting

When training deep learning models it is important to understand the concept of overfitting.
This is because a model with the highest accuracy does not always mean this model is the
best one. Overfitting is a phenomenon when deep learning models exactly model the train-
ing data so it does not generalize on testing data. This can be spotted when looking at an
error/iteration graph (Figure 4.7). Overfitting occurs when error on the training dataset still
decreases but the error on the test dataset changes its direction and starts increasing. When
this happens, we choose a model from checkpoint before the error on the test dataset started
increasing as Figure 4.7 shows [35].
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Figure 4.7: This figure demonstrates phenomenon of overfitting and early stopping point.

In this section, we have explained how deep neural networks can represent features from
images. We have also learned that training deep neural networks is time-consuming and that
phenomena such as overfitting can occur. Therefore, in the next section, we will look into
transfer learning which is an inevitable part of training deep learning models and a common
way of tackling the flaws in deep learning.

4.4.2 Transfer Learning

One of the common techniques to decrease training time is to transfer learning [40]. Transfer
learning can be described as taking knowledge learned from other tasks and applying it to
another task. This can be highly beneficial because a lot of the low-level features learned from
a large relevant dataset can help our model to perform better on the new task. Using a transfer
learning makes sense for example when pre-trained model is trained on a large amount of
data, while the problem we are transferring our knowledge to, has notably fewer data. For
instance, a model can be trained on millions of samples where it learns a lot of low-level
features. Then this can be transferred to a problem where we have only 1000 samples.

To summarize: Transfer learning of task A to task B makes sense when:

• Task A and B have the same input x (similar task and same nature of data).

• We have a lot more data for Task A than Task B.

• If low-level features from Task A could be helpful in task B.
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Figure 4.8: Illustration of Transfer learning in used in the Brackish dataset.

The current most used public domain benchmark datasets compared in table 4.2 are Im-
ageNet[11], OpenImages [41], COCO[12] and Pascal VOC [10]. OpenImages is by far the
biggest one. This, however, comes as a drawback because it contains a lot of false and am-
biguous annotations. The deep learning model that performed the best in the results provided
by Pedersen et al. [3] on the Brackish dataset was pre-trained on OpenImages. The relevant
classes in the OpenImages for our problem are 6: Fish, Goldfish, Starfish, Jellyfish, Crab, and
Shrimp. COCO and Pascal VOC have no relevant objects that could be used for animal de-
tection underwater. In the ImageNet there are 11 relevant classes: Starfish, Goldfish, Lionfish,
Anemone fish, Crayfish, Jellyfish, Dungeness crab, Rock crab, Fiddler crab, King crab, Hermit
crab. Using backbone pre-trained on ImageNet appears to be a better choice than on OpenIm-
ages. This is because the focus of OpenImages is spread among 600 classes whereas ImageNet
only 200. Furthermore, there are more relevant classes for our problem in ImageNet than in
OpenImages.

Dataset Images Boxes Classes Boxes per Image Annotated

Pascal VOC 11.5k 27k 20 2.4 Yes
ImageNet 477k 534k 200 1.1 Yes
COCO 123k 896k 80 7.4 Yes
OpenImages 1,515k 14,815k 600 9.8 Partially

Table 4.2: Comparison of the benchmark public domain datasets used for computer vision. More specifically for
the 2D object detection task.

The next section is going to explain a deep learning algorithm called YOLO. It was utilized
in the original Brackish dataset [3] and it is considered as state-of-the-art among 2D real-time
object detectors.
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4.5 You Only Look Once Algorithm

You Only Look Once algorithm also known as YOLO is a novel object detection system. It
was firstly introduced in 2016 by Redmon et al. [42], later that year improved by introduc-
ing YOLOv2 [43] and finally the last upgraded version YOLOv3 was published in 2018 [44].
The reason why YOLO is so powerful is that a single neural network is used for predicting
bounding boxes and class probabilities directly from an image in one run. Approaches before
YOLO were mostly utilizing sliding window [45] or more recent approaches such as R-CNN
[46] used region proposals. In other words, these approaches were originally object classifiers
but were repurposed for object detection. Redmon et al. claim that these approaches had
complex pipelines which resulted in slow detection that was hard to optimize because each of
the individual components had to be trained separately. That is where YOLO stands out since
they frame detection as a single regression problem without the need for a complex pipeline.

Figure 4.9: Shows predictions made by grid cells filtered with non max suppression. Thickness of a bounding box
represents confidence of the detector that there is an object inside. Class of the object is going to be predicted in
the next step.

YOLO uses a Grid Cell that predicts all bounding boxes simultaneously. It divides the
image into a grid of SS cells, each grid is then responsible for predicting 1 object. Each
grid also predicts a fixed amount of bounding boxes B together with confidence scores for
those boxes (figure 4.9). Confidence scores represent how confident the model is that the
predicted box contains some object in it. Moreover, each grid cell also predicts C conditional
class probabilities P(Css|Object) which is the probability that the detected object belongs
to a class. [42]

Using non-max suppression to remove low probability predictions. Then for each class
use non-max suppression to generate final predictions.

Advantages in comparison with other methods: generating less false positives on back-
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ground because it looks into the whole image and can see the larger context. YOLO can also
learn generalizable representations of objects relatively well, in the original paper they trained
YOLO on natural images and then compared Each cell predicts a fixed number of bounding
boxes, however only one object, thus there is a limitation on how close the objects can be. It
can run in real-time.

Since the initial YOLO publication in 2015, there have been 2 upgrades: YOLOv2[43] and
YOLOv3[44]. They have stopped using arbitrary guesses of boundary boxes and started using
the concept of anchor boxes. Moreover, batch normalization was added into convolutional
layers, the new backbone was employed and a new activation function was used. These
adjustments led to increased accuracy, speed, a decline of false positives which makes YOLO
the state-of-the-art among real-time object detectors.

Describing the YOLO algorithm wraps up the chapter Theory. The subsequent chapter is
going to describe what and how the experiments will be performed.





Chapter 5

Methodology

This chapter describes methods with reasonings that will be used for carrying out the research
experiment in order to answer the outlined problem in Chapter 3. It concists of 3 modules
that are outlined with all the steps thei contain in figure 5.1. Those modules are: 1. Deep
learning solution, 2. Turbidity estimation, 3. Effect of turbidity on detection result.

Figure 5.1: Overview of the proposed solution for the final problem formulation. It consists of 3 main parts: 1.
Deep learning solution, 2. Turbidity Estimation and 3. Effect of turbidity on detection result.

Deep Learning solution
First of all, we need to decide whether we will create our own custom deep neural network
or we will use some of the existing object detection networks. Authors of the Brackish dataset
used state-of-the-art YOLOv2 and YOLOv3. YOLOv3 has shown to be a better option even

49
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though they used different backbones in their experiment. This was expected becauseYOLOv3
has better accuracy on smaller objects than YOLOv2. The authors of the dataset also mention
that their results are just baseline and have the potential to be improved. Because we see
potential in improving their best results achieved with YOLOv3 and at the same time, YOLO
is still considered a state-of-the-art, we will also use YOLOv3 for our experiment as well.
The improvements could be accomplished by utilizing different feature extractors described
in subsection 4.4.2 - Transfer learning. Moreover, increasing input resolution of the network
could increase the accuracy of Small fish since according to Mahony et al. [21], image resolu-
tion is important when we want to detect objects in distance.

After the training, we will choose the best performing model and proceed to the next
stage. The best performing model will be chosen based on mAP metrics described in section
2.6. However, as we learned, mAP does not describe how well the deep learning model gen-
eralizes on a new unseen data. To tackle this, we will introduce a new testing dataset called
the Brackish X dataset. This dataset will consist of new data acquired from the same place in
the Limfjord, however, with the camera tilted to a different side.

(a) (b)

(c) (d)

Figure 5.2: This figure shows examples of the most frequent mistakes during annotation and how the correct
annotations should be. (a) - the bounding box is not tight enough, (b) - bounding box is correctly tight, (c) - single
bounding box covers incorrectly multiple starfish (d) - each starfish has its own bounding box.

The original paper of the Brackish dataset [3] lacks annotating guidelines. Thus, based on a
heuristic review of the Brackish dataset, we introduce the following rules that will be applied
for annotating the new Brackish X dataset.

• The bounding box has to cover all the visible area of the animal.
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• The bounding box has to be drawn as tightly as possible.

• The bounding box should include only one instance of the animal.

• If the animal is occluded, it will be annotated only when the visible part of the animal
is more than 30%.

• If it is not possible to identify an animal from a single frame, for instance when turbidity
is too high. In this case, the later sequence of the video can be observed to find out what
class the animal belongs to. If it is not possible to identify the animal, these frames are
not going to be included.

The common mistakes that annotators made are shown in figure 5.2.

Figure 5.3: The upper left side of the image contains a floating device. The upper right side contains a reference
block. The central part of the bottom image is cropped out. The outer area is our region of interest.

Turbidity Estimation
In order to understand how does the turbidity influence results of the underwater object
detector, it would be beneficial to have a system that could detect turbidity levels in brackish
water. In section 2.5 it was found out that most used features for detecting turbidity are
gradient image, sharpness, contrast, and luminance. An experiment will be carried out to
find out which of the mentioned features can characterize turbidity levels in the Brackish
dataset. This information would be useful for future turbidity detector in brackish waters.

In the Brackish dataset, there are frames with reference block and floating device in them.
These were used for other research purposes. We want to remove possible bias and thus, in
order to use all the frames, we cropped the central part of the image that differs and kept only
the outer part (Figure 5.3). The part of the image that remained will be referred to as Region
of interest (ROI).
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In order to find out which feature is the best for detecting turbidity in brackish water,
we will employ Forest of trees method1 used for evaluating feature importance and K-means
clustering algorithm2 [47].

To increase the reproducibility of this research, we will calculate the turbidity features with
the following equations:

Brightness - for computing brightness we have employed the following pseudocode 2.

Algorithm 2 Computing brightness from a single image.
get image histogram
number of all pixels = width x height
for all the bins in histogram do

ratio = number of pixels in current bin / number of all pixels
brightness = brightness + ratio * (index - scale)

end
return brightness / scale

Sobel edge intensity (Sobel) is defined by applying 2 kernels to the image. G takes care
of the vertical direction, whereas Gy of the horizontal direction. This is demonstrated by
equation 5.1.

Then the gradient image is expressed by gradient magnitude defined by equation 5.2.
Then we summed up all the intensities and divided it by the number of pixels.

G =





−1 0 +1
−2 0 +2
−1 0 +1



∗ ;Gy =





−1 −2 −1
0 0 0
+1 +2 +1
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Sharpness can be estimated by averaging the gradient magnitude as illustrated by equation
5.3.
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Luminance of an image is calculated with equation 5.4. M stands for width and N for height
of an image. R, G, B stands red, green and blue component respectively.

Y =
1

MN

∑

M

∑

N

.2126R+ .7152G+ .0722B (5.4)

1https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
2https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Root Mean Square (RMS) Contrast is computed with equation 5.5 which is just a standard
deviation of R,G,B pixel intensities. M stands for width and N for height of an image. j is the
i-th j-th pixel, and ̄ is the average intensity of all pixels.

RMS =

√

√

√

1

MN

∑

M

∑

N

(j − ̄)2 (5.5)

We have included python snippets for all the feature in Appendix E.

Effect of Turbidity on Detection Results
Once the turbidity will be annotated, and deep learning model will be trained, we will split
the original Brackish test dataset into 3 sub-datasets based on the estimated level of turbidity.
The best performing deep learning model will be chosen based on their mAP performance on
the new Brackish X dataset. Detection runs on each of the datasets. Finally, the results will be
analyzed.

This is the end of the Methodology chapter. The next chapter is going to take care of
presenting results.





Chapter 6

Results

This chapter presents results from the proposed solution in the previous chapter 5 - Method-
ology. It follows the same structure as outlined in Figure 5.1: 1. Deep learning solution, 2.
Turbidity estimation and finally 3. Effect of turbidity on the detection result.

6.1 Deep Leaning Solution

The first task is to match or improve baseline results from Pedersen et al. [3]. For this we have
trained 6 YOLOv3 models with different settings.

6.1.1 Description of the models

All models were trained for 30 000 iterations except model 4# where early checkpoint on 12
000 iteration was used. All models were evaluated using AP and mAP which were introduced
previously. A confidence treshold of 0.01 is chosen, same as in original Brackish paper [3].
Summary of the results can be seen in Table 6.1.

0#Pedersen et al. - Baseline results from the original paper.

1#YOLOv3 - This is our attempt to replicate results from the original paper utilizing the same
training settings. Resolution 416x416, pre-trained weights on OpenImages and freeze of the
starting layers.

2#YOLOv3 - Using the same settings as the model 1#, however, with increased precision from
416x416 to 608x608.

3#YOLOv3 - This model is overfitted on purpose. We changed the backbone to ImageNet, we
used the original 416x416 resolution, and turned off the freeze.

4#YOLOv3 - This model uses the same settings as 3#, however, early checkpoint on 12 000th
iteration is used.
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5#YOLOv3 - Same settings as the original paper, however, the different backbone is used.

6#YOLOv3 - Increased precision to 608x608.
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0#Pedersen et al. [3] Æ 416x416 83.72 89.99 92.71 82.05 76.62 62.29 98.67 - - -
1#YOLOv3 Æ 416x416 87.24 90.27 73.66 80.09 97.64 82.67 99.12 2243 3373 156
2#YOLOv3 Æ 608x608 86.4 92.84 83.75 79.97 96.76 65.87 99.19 2257 2462 142
3#YOLOv3 4 416x416 97.96 99.26 96.35 99.97 99.99 92.57 99.59 2367 336 32
4#YOLOv3 4 416x416 95.71 96.48 90.65 96.94 99.34 91.27 99.59 2329 1444 70
5#YOLOv3 4 416x416 91.87 94.48 83.81 86.62 98.25 88.46 99.59 2254 1172 145
6#YOLOv3 4 608x608 92.92 95.78 84.48 87.65 98.23 91.81 99.59 2264 1033 135

Æ - OpenImages
4 - ImageNet

Table 6.1: Results evaluated with mAP for all our trained models compared with the results from the original
paper.

The next section is going to present the Brackish X test dataset which we proposed for
verifying generality of a computer vision system trained on the Brackish training dataset.
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6.2 The New Brackish X Dataset

The Brackish X dataset is a manually annotated dataset proposed in this master thesis. Its
main purpose is to evaluate the generality capabilities of the underwater computer vision
system trained on the original Brackish training dataset.

The Brackish X dataset was capture mostly in the same position as the original Brackish
dataset. However, it also contains frames from a completely new position which was achieved
by tilting the whole underwater capturing setup. An example frame can be seen in Figure 6.1
together with annotations containing crabs, small fish, and starfish. The whole environment
together with the animals differs a lot from the original training data. As demonstrated in
Figure 6.2, 71.67% of the frames in the Brackish X dataset are from the original position and
the rest 28.33% is from the new one, similar to Figure 6.1.

Figure 6.1: Frame from the new camera position containing 3 crabs, 1 starfish and 1 small fish.

Figure 6.2: Ratio of frames from the old camera position and new camera position in the new Brackish X dataset.
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The whole Brackish X dataset consists of 3 254 manually annotated frames. All in all,
there are 14 545 annotations. The distribution between classes can be seen in Table 6.2. Visual
distribution of the classes based on their position is shown in Figure 6.3. Note that there are
no shrimps in the new position and there are no jellyfish at all in the whole dataset.

Class Annotations

Big fish 789
Crab 5 582
Jellyfish 0
Shrimp 139
Small fish 3 331
Starfish 4 704

Table 6.2: Number of annotations for each class in the new Brackish X dataset.

Figure 6.3: Distribution of the annotations based on position they were taken from.

The next section is going to present results from evaluating our trained models on the
Brackish X dataset.
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6.3 Evaluation on the Brackish X

This section presents the results of our 6 trained models that were trained on: 1. The whole
Brackish X dataset (Table 6.3), 2. The Brackish X dataset old camera position (Table 6.4) and
3. The Brackish X dataset new camera position (Table 6.5).

6.3.1 Result on the Brackish X dataset
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1#YOLOv3 Æ 416x416 13.8 0 25.82 11.23 13.56 - 18.39 2888 31959 8463
2#YOLOv3 Æ 608x608 13.63 0 16.88 12.74 23.69 - 14.86 2846 18237 8505
3#YOLOv3 4 416x416 18.2 0 36.99 24.82 20.22 - 8.99 2122 4233 9229
4#YOLOv3 4 416x416 17.98 0 26.37 32.92 20.96 - 9.67 2283 4944 9068
5#YOLOv3 4 416x416 7.674 0 20.31 4.93 6.28 - 6.85 1355 9926 9996
6#YOLOv3 4 608x608 11.1 0 13.34 12.86 17.52 - 11.78 2358 10986 8993

Æ - OpenImages
4 - ImageNet

Table 6.3: Results evaluated with mAP for all our trained models on the whole Brackish X dataset.

6.3.2 Result on the Brackish X dataset old position
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1#YOLOv3 Æ 416x416 25.06 0 67.93 14.08 22.79 - 20.5 2583 4674 5779
2#YOLOv3 Æ 608x608 23.14 0 52.31 15.38 31.08 - 16.95 2524 4446 5838
3#YOLOv3 4 416x416 27.5 0 69.76 28.24 29.47 - 10.04 2019 2402 6343
4#YOLOv3 4 416x416 22.35 0 55.31 17.85 28.71 - 9.89 2199 5944 6163
5#YOLOv3 4 416x416 15.44 0 54.54 6.6 9.66 - 6.39 1292 5074 7070
6#YOLOv3 4 608x608 21.63 0 58.21 13.31 26.78 - 9.86 2104 4111 6258

Æ - OpenImages
4 - ImageNet

Table 6.4: Results evaluated with mAP for all our trained models only on the old camera position of the Brackish
X dataset.
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6.3.3 Result on the Brackish X dataset new position
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1#YOLOv3 Æ 416x416 1.79 0 0 - 1.31 - 5.83 305 27285 2684
2#YOLOv3 Æ 608x608 2.85 0 0 - 11.39 - 0 322 13791 2667
3#YOLOv3 4 416x416 1.11 0 0 - 4.44 - 0 103 1831 2886
4#YOLOv3 4 416x416 3.49 0 0 - 13.46 - 0.48 260 4098 2729
5#YOLOv3 4 416x416 3.4 0 0 - 0.55 - 13.03 63 4852 2926
6#YOLOv3 4 608x608 8.55 0 0 - 0.64 - 33.56 254 6875 2735

Æ - OpenImages
4 - ImageNet

Table 6.5: Results evaluated with mAP for all our trained models only on the new camera position of the Brackish
X dataset.

The next section is going to present results of the turbidity features proposed in the chapter
5 - Methodology.

6.4 Turbidity Estimation

For each of the turbidity features the same experiment was performed where we measured
and analyzed signals from frames with the referenced box in them. Namely, we have extracted
Sobel edge intensity, sharpness, luminance, contrast, and brightness. Results can be seen in
the Appendix B.

For evaluating which of the features describe the turbidity the best we have utilized Ran-
dom forest feature importance. Result is shown in Figure 6.4. From the experiment we have
learned that sharpness is the best for detecting turbidity in our research case, second is Sobel
edge intensity. Contrast and luminance are not that descriptive and brightness is negligible.

Figure 6.4

The Sobel and Sharpness were selected for classifying turbidity levels in videos with a
floating device in them. For this, we have utilized the unsupervised clustering algorithm
K-means. The result can be seen in Figure 6.5.
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Figure 6.5: Visualized output of the K-means. Each point on the Figure represents averaged signal from single
video with floating device.

6.5 Effects of Turbidity on Detection Results

The model that performed the best on the Brackish X dataset was model 3# which is the
overfitted one. This means we will have to choose the best model based on the mAP result
only from the Brackish X new position subset. The best performing model was model 6#.
Table 6.6 shows the performace of the model 6# on 3 subsets of the original Brackish dataset
divided by estimated turbidity levels.
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6#YOLOv3 Low 90.89 97.21 87.33 70 99.63 91.91 99.29 1104 388 63
6#YOLOv3 Mid 93.61 97.21 82.35 94.01 96.98 - 97.5 342 182 10
6#YOLOv3 High 92.66 94.58 80.2 84.51 97.26 100 99.41 818 463 62

Table 6.6: Results evaluated with mAP for 3 subsets of the Brackish test dataset divided by estimated turbidity
levels.
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Figure 6.6: The figure shows the unbalanced distribution of objects among classes in the original Brackish dataset
divided based on estimated turbidity levels.



Chapter 7

Discussion

Deep Learning Solution
From our first performed experiment presented in Table 6.1 the best model which was over-
fitted on purpose achieved mAP of 97.96%. When comparing the baseline results from the
original paper with 83.72 mAP (model 0#) using weights pre-trained on OpenImages we have
achieved an increase by 8.15 mAP just by changing the backbone to ImageNet which is much
more similar to our detection problem. Then changing the input size, first on the model 2#
pre-trained on OpenImages to 608x608 it increased mAP on small Fish from 73.66 to 83.75.
However, the jellyfish decreased from 82.67 mAP to 65.87. It seems like when there are more
features, it is harder to detect jellyfish. When increasing the input size of the model 5# pre-
trained on ImageNet it led to a slight increase of mAP by 1.05 and a decrease of false detections
by 149.

Figure 7.1: Detection results from the whole Brackish X dataset. Evaluation of the model 6# which performed the
best on the Brackish X new position.
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(a) AP Crab (b) AP Shrimp

(c) AP Small Fish (d) AP Starfish

Figure 7.2: Precision recall curves plotted for calculating AP. Big fish class is not plotted because there were no
true positives and Jellyfish class because there are no jellyfish in the Brackish X dataset whatsoever.

In the next step, we have presented the new Brackish X dataset where the majority of data
comes from the old camera position and only 28.33% from the new one. All the data are
videos that the models have not seen during the training.

Firstly, we have evaluated all our 6 trained models on the whole Brackish X dataset that can
be seen in Table 6.3. The highest mAP of 18.2 achieved the overfitted model 3#. This would
mean that the Brackish X dataset is not suitable for the purpose it was created that was testing
the generality capabilities of the trained model. Thus, we further split the dataset into the old
position and the new position. Results from the new position can be seen in Table 6.4 where
model 3# achieved the highest accuracy of 27.5 mAP. The results of the models evaluated on
the new position can be seen in Table 6.5. The overfitted model 3# had the lowest mAP of
1.11. The best model was the model 6# with mAP of 8.55. From the table, we can see that the
number of false detections on models pre-trained on OpenImages is 3-6 times higher than on
the models pre-trained with ImageNet.

The best model achieved performance on Starfish class as high as 33.56, this is probably
because of its distinctive star shape. The Crab AP was only 0.64 and Big fish together with
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Small fish class had AP equal to zero. The reason behind the poor performance (Figure 7.1
and Figure 7.2) is that the animals in the new camera position look very different from the
animals in training data. This means that there is a need for more training data.
The models in on the original test Brackish dataset achieved great performance mainly be-
cause the test dataset consists of randomly chosen frames from the training data. The time
difference between the frames is low, thus the test data look very much alike as the training
data.

Turbidity Estimation
First of all, we have manually annotated the videos with the reference box in them. Then
we performed an experiment where we measured the importance of turbidity features in
the Brackish dataset. The best performing features were Sharpness and Sobel edge intensity.
Those 2 features were used for estimating turbidity in the videos with the floating device in
the using K-means clustering (Figure 6.5).

The issue with this approach is that we are not sure about the real turbidity in the videos.
Even though using computer vision for estimating turbidity can be a relatively cheap and easy
way, we lack ground through information validated by a turbidimeter.

By cropping out the central part of the image, we have lost the most distinct turbidity
features. However, it was a necessary step to make all the frames equal. We were thinking
about utilizing only the frames with the reference box, however, the majority of videos contain
floating device. We would lose the majority of testing data in this case.

Effects of turbidity on detection result
The best model was the model 6# since it achieved the best accuracy of 8.55 on the Brackish
X new position. We have divided the original Brackish test dataset into 3 subsets based on
their estimated turbidity level. The results can be seen in Table 6.6. Looking at the table we
can observe that mAP is quite similar. We expected that there will be a higher gap between
the mAP. Also, we hypothesized that low turbidity will create much more false detections
because of the higher amount of features present in the frames. This cannot be concluded
from our experiment. The reason is that the distribution of the animals in the 3 subtests is
uneven (Figure 6.6). Moreover, the animals in the scenes behave differently, which makes it
difficult to compare.





Chapter 8

Future Work

Underwater Object Detection
The results of our deep learning solution on the Brackish test dataset was satisfactory (mAP
92.92%). However, the results on the new Brackish X dataset were poor even in the old posi-
tion which open possibilities for improvements. Firstly, we have found annotation errors and
ambiguities in the original Brackish dataset. The videos with incorrect annotations are men-
tioned in Appendix C. Secondly, the results could be further improved by utilizing more com-
plex data augmentation such as mixing Images, meta-learning or deep learning augmentation
approaches. We have studied and described these methods and can be found in Appendix F.

Thirdly, for future work, there is a need for a much larger dataset in case there is a need
for a reliable deep learning-based computer vision system.

Moreover, The manual annotations we made in this master thesis are only student anno-
tations and cannot be considered expert level. The annotation process should consist of a
pipeline with multiple people called annotators and validators as Shao et al. suggest [48].
Because of the nature of our dataset, a biologist should be present to verify the annotations.
Thus, because of the limited workforce, there might be minor errors in the dataset that should
be verified before using it in future work.

Lastly, the crucial thing is that researcher will have to keep in mind when working with
data acquired from Limfjord is that there is much more fish species that they occur in the
Brackish dataset. This is because there are about 200 living fish species in the North Sea and
some of them can also occur in the Limfjord.

Effects of turbidity on detection result
As we found out in this project, using the Brackish dataset [3] it was not possible to come with
any useful conclusion. This is because the amount of animals in each test dataset divided by
turbidity into low, mid, and high is always different. To explore this, a controlled environment
would have to be made. The setup of our proposed artificial environment can be seen in Figure
8.1. It consists of an aquarium that is placed on a stand containing a steering wheel located in
the center. The purpose of the steering wheel is to stir the water so the particles will not sink
to the bottom. The aquarium has a rectangular shape with length at least 1m and width 35cm.
A light would be provided by the artificial light source from the longer side and camera from
the shorter. In addition, an artificial fish could be used in the aquarium to simulate a living
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animal. For this purpose, a fishing swimbait could be utilized by attaching it to a fixed wire
that would be mounted on a mobile robotic arm in order to pass the same trajectory for each
of the individual experiments. Moreover, it is necessary to know the exact turbidity values
instead of just guessing them as we did in this master thesis. This should not be difficult in a
controlled environment.

Figure 8.1: Proposed setup of the controlled environment for the future experiment.



Chapter 9

Conclusion

This master thesis aimed to improve the baseline results presented by Pedersen et al. [3] on
the unique Brackish dataset. Moreover, the direction was to investigate the effect of turbidity
on detection results produced by real-time object detector YOLOv3. In chapter 5 we proposed
methodology that split problem into 3 modules: 1. Deep learning solution, 2. Turbidity
estimation and 3. Effect of turbidity on the detection result.
Deep learning solution: Our improvements in object detection led to increase in mAP of
9.2%. The results were verified on a dataset called the Brackish X dataset which was proposed
in this thesis. It consists of 3 254 frames including 14 545 manually created annotations.
The dataset was evaluated with 6 different models. From the experiment, we can conclude
that only the part from the new camera position can be used for evaluating the generality
capabilities of deep learning models trained on the original Brackish dataset. Furthermore,
there is in general lack of training data for such a complex problem which can lead to a false
impression of good results.
Turbidity estimation: This module tested 5 different turbidity features that were introduced
in section 2.5. We found out that sharpness and Sobel edge intensity are best for detecting
turbidity for our case.
Effect of turbidity on detection result: The results of modules 1 and 2 were used as inputs for
module 3 as it was indicated in chapter 5 - Methodology. Based on the analysis of the result
we can conclude that it was not possible to find out what effect different turbidity levels have
on deep learning object detector. A new experiment will have to be done in the future. We
have proposed an artificial setup for measuring the effects of turbidity which was outlined in
chapter 8.
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Appendix A

Attachments

This chapter describes attachments in alphabetical order that were submitted together with
the master thesis for the sake of reproducibility of the results achieved in the chapter 6 -
Results.

• Predictions/ - Raw predictions from YOLO for each model on the whole original Brack-
ish dataset and Brackish X dataset.

• The_Brackish_X_annotations/ - Manual annotations of the Brackish X dataset.

• YOLO_config_files/ - Darknet config files of all 6 YOLOv3 models.

• brackish_x.txt - List of frames in the whole Brackish X dataset.

• brackish_x_new.txt - List of frames from the new position of the Brackish X dataset.

• brackish_x_old.txt - List of frames from the old position of the Brackish X dataset.

• Feature_importance.ipynb - Google Colab notebook containing code of computing the
turbidity feature importance and estimating turbidity level using K-means.

• features_floating_device.csv - Sharpness, Sobel edge intensity, and predicted turbidity
level computed for all videos in the brackish dataset with the floating device in them.

• features_reference_block.csv - Normalized turbidity features computed for all videos in
the original Brackish dataset with reference block in them.

• test_high.txt - List of frames from the original Brackish test dataset with turbidity esti-
mated to be high.

• test_low.txt - List of frames from the original Brackish test dataset with turbidity esti-
mated to be low.

• test_mid.txt - List of frames from the original Brackish test dataset with turbidity esti-
mated to be mid.
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Appendix B

Turbidity Measurements

This chapter presents individual measurements of turbidity features extracted from the Brack-
ish dataset from frames containing a reference box in them. Each line in the presented figures
represents one video. The blue color stands for low turbidity, greed for mid turbidity, and red
for high.

B.0.1 Sobel Edge intensity

Figure B.1
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B.0.2 Sharpness

Figure B.2

B.0.3 Luminance

Figure B.3
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B.0.4 Contrast

Figure B.4

B.0.5 Brightness

Figure B.5





Appendix C

Videos with incorrect annotations

These videos contain incorrect annotations and were use to manually check if a trained model
was overfitted or not.

1. 2019-02-22_22-22-06to2019-02-22_22-22-14_1-0027 - big fish not annotated

2. 2019-03-06_22-27-01to2019-03-06_22-27-14_1-0179 - big fish not annotated

3. 2019-02-22_22-11-57to2019-02-22_22-12-10_1-0002 - starfish not annotated

4. 2019-03-19_17-01-06to2019-03-19_17-01-19_1-0029 - starfish not annotated

5. 2019-03-21_04-10-54to2019-03-21_04-11-06_1-0017 - crab not annotated

6. 2019-03-07_08-57-30to2019-03-07_08-57-40_1-0077 - big fish not annotated
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Annotated Turbidity

Videos with the reference box that were annotated manually:

High Turbidity
2019-03-19_11-42-13to2019-03-19_11-42-21_1.avi
2019-03-20_23-30-18to2019-03-20_23-30-28_1.avi
2019-03-20_23-43-34to2019-03-20_23-43-42_1.avi
2019-03-20_23-44-38to2019-03-20_23-44-46_1.avi
2019-03-20_23-53-40to2019-03-20_23-53-56_1.avi
2019-03-20_23-54-24to2019-03-20_23-54-35_1.avi
2019-03-21_00-14-36to2019-03-21_00-14-49_1.avi
2019-03-21_00-26-58to2019-03-21_00-27-06_1.avi
2019-03-21_00-29-09to2019-03-21_00-29-17_1.avi
2019-03-21_00-58-45to2019-03-21_00-58-55_1.avi
2019-03-21_01-41-04to2019-03-21_01-41-16_1.avi
2019-03-21_03-22-18to2019-03-21_03-22-29_1.avi

Mid Turbidity
2019-03-19_11-41-37to2019-03-19_11-41-47_1.avi
2019-03-19_11-42-56to2019-03-19_11-43-14_1.avi
2019-03-19_13-33-15to2019-03-19_13-33-25_1.avi
2019-03-19_14-30-38to2019-03-19_14-30-50_1.avi
2019-03-19_17-02-30to2019-03-19_17-02-42_1.avi
2019-03-20_20-18-49to2019-03-20_20-18-57_1.avi
2019-03-21_03-26-50to2019-03-21_03-27-04_1.avi
2019-03-21_03-27-02to2019-03-21_03-27-17_1.avi
2019-03-21_04-10-54to2019-03-21_04-11-06_1.avi
2019-03-21_04-11-22to2019-03-21_04-11-31_1.avi

Low Turbidity
2019-03-19_14-02-47to2019-03-19_14-03-00_1.avi
2019-03-19_15-42-11to2019-03-19_15-42-25_1.avi
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2019-03-19_17-01-06to2019-03-19_17-01-19_1.avi
2019-03-19_17-01-23to2019-03-19_17-01-32_1.avi
2019-03-19_17-02-04to2019-03-19_17-02-12_1.avi
2019-03-19_17-07-53to2019-03-19_17-08-34_1.avi
2019-03-19_18-01-56to2019-03-19_18-02-13_1.avi
2019-03-19_18-15-37to2019-03-19_18-15-45_1.avi
2019-03-19_18-26-35to2019-03-19_18-26-46_1.avi
2019-03-19_19-30-33to2019-03-19_19-30-45_1.avi
2019-03-19_19-56-16to2019-03-19_19-56-24_1.avi
2019-03-19_20-53-30to2019-03-19_20-53-39_1.avi
2019-03-19_22-56-30to2019-03-19_22-56-38_1.avi
2019-03-20_02-06-34to2019-03-20_02-06-42_1.avi
2019-03-20_03-33-35to2019-03-20_03-33-42_1.avi
2019-03-20_05-40-25to2019-03-20_05-40-33_1.avi
2019-03-20_06-00-48to2019-03-20_06-00-56_1.avi
2019-03-20_06-47-19to2019-03-20_06-47-29_1.avi
2019-03-20_10-50-55to2019-03-20_10-51-03_1.avi
2019-03-20_11-11-18to2019-03-20_11-11-25_1.avi
2019-03-20_11-52-23to2019-03-20_11-52-31_1.avi
2019-03-20_15-15-12to2019-03-20_15-15-19_1.avi
2019-03-20_20-08-39to2019-03-20_20-08-48_1.avi
2019-03-21_03-21-54to2019-03-21_03-22-09_1.avi
2019-03-21_05-01-24to2019-03-21_05-01-31_1.avi
2019-03-21_07-08-28to2019-03-21_07-08-35_1.avi
2019-03-21_07-40-40to2019-03-21_07-40-50_1.avi
2019-03-25_23-17-56to2019-03-25_23-18-04_1.avi

Videos with floating device with estimated turbidity levels based on Sobel and Sharpness:

High Turbidity
2019-02-21_06-50-24to2019-02-21_06-50-40_1.avi
2019-02-21_06-50-54to2019-02-21_06-51-01_1.avi
2019-02-21_06-52-16to2019-02-21_06-52-34_1.avi
2019-02-21_06-52-52to2019-02-21_06-53-01_1.avi
2019-02-21_06-55-09to2019-02-21_06-55-16_1.avi
2019-02-21_06-56-08to2019-02-21_06-56-28_1.avi
2019-02-22_22-11-57to2019-02-22_22-12-10_1.avi
2019-02-22_22-18-13to2019-02-22_22-18-20_1.avi
2019-02-22_22-19-45to2019-02-22_22-19-53_1.avi
2019-02-22_22-21-06to2019-02-22_22-21-16_1.avi
2019-02-22_22-21-31to2019-02-22_22-21-44_1.avi
2019-02-22_22-22-06to2019-02-22_22-22-14_1.avi
2019-02-22_22-22-16to2019-02-22_22-22-27_1.avi
2019-02-22_22-31-28to2019-02-22_22-31-38_1.avi
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2019-02-22_22-32-01to2019-02-22_22-32-15_1.avi
2019-02-22_23-58-37to2019-02-22_23-58-49_1.avi
2019-03-06_22-03-36to2019-03-06_22-04-08_1.avi
2019-03-06_22-16-56to2019-03-06_22-17-10_1.avi
2019-03-06_22-27-01to2019-03-06_22-27-14_1.avi

Mid Turbidity
2019-02-20_19-01-02to2019-02-20_19-01-13_1.avi
2019-02-20_19-40-26to2019-02-20_19-40-35_1.avi
2019-02-20_19-43-37to2019-02-20_19-43-46_1.avi
2019-02-22_23-27-24to2019-02-22_23-27-39_1.avi
2019-02-22_23-28-21to2019-02-22_23-28-34_1.avi
2019-02-26_00-44-33to2019-02-26_00-44-47_1.avi
2019-03-06_22-00-43to2019-03-06_22-00-51_1.avi
2019-03-06_22-01-00to2019-03-06_22-01-09_1.avi
2019-03-06_22-01-44to2019-03-06_22-01-52_1.avi
2019-03-06_22-04-39to2019-03-06_22-04-49_1.avi
2019-03-06_22-24-20to2019-03-06_22-24-31_1.avi

Low Turbidity
2019-02-20_19-18-56to2019-02-20_19-19-06_1.avi
2019-02-20_19-19-23to2019-02-20_19-19-40_1.avi
2019-02-20_19-23-53to2019-02-20_19-24-12_1.avi
2019-02-21_06-36-31to2019-02-21_06-36-39_1.avi
2019-03-06_22-11-06to2019-03-06_22-11-17_1.avi
2019-03-06_22-12-29to2019-03-06_22-12-37_1.avi
2019-03-06_22-46-20to2019-03-06_22-46-32_1.avi
2019-03-07_08-57-30to2019-03-07_08-57-40_1.avi





Appendix E

Python Snippets

E.1 Sharpness

1 def getSharpness(image):
2 image = image.astype("int32")
3 """ Get the Image gradient in both directions """
4 gy, gx = np.gradient(image)
5 """ Calculate the magnitude of the gradient """
6 gnorm = np.sqrt(gx ** 2 + gy ** 2)
7 """ Average the magnitude """
8 sharpness = np.average(gnorm)
9

10 return sharpness

E.2 Luminance

1 def getLuminance(path):
2 image = cv2.imread(path)
3 b, g, r = cv2.split(image)
4 b = b * 0.0722
5 g = g * 0.7152
6 r = r * 0.2126
7 result = np.add(b,g)
8 result = np.add(r,result)
9

10 return result.sum() / 518400
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E.3 Sobel

1 def getSobel(image):
2 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
3 image = image.astype("int32")
4 image = ndimage.gaussian_filter(image, 1)
5 dx = ndimage.sobel(image, 0, mode="nearest")
6 dy = ndimage.sobel(image, 1, mode="nearest")
7 mag = np.hypot(dx, dy)
8 mag *= 255.0 / np.max(mag)
9

10 return mag

E.4 Brightness

Source1

1 def getBrightness(image):
2 image = np.array(image)
3 image = Image.fromarray(image)
4 greyscale_image = image.convert('L')
5 histogram = greyscale_image.histogram()
6 pixels = sum(histogram)
7 brightness = scale = len(histogram)
8 for index in range(0, scale):
9 ratio = histogram[index] / pixels

10 brightness += ratio * (-scale + index)
11

12 return 1 if brightness == 255 else brightness / scale

E.5 Contrast

1 def getContrast(image):
2 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
3

4 return image.std()

1https://gist.github.com/kmohrf/8d4653536aaa88965a69a06b81bcb022



Appendix F

Data Augmentation and Image Synthe-
sis

Data augmentation is a technique used for generating new training data in order to train ro-
bust models that can adapt better to different variations of detecting an object. Mikolajczyk
& Grochowski [49] claims that this is one of the ways of tackling the problem of insufficient
training data mentioned in the previous section. They utilized data augmentation for improv-
ing the results of the image classifier used for medical diagnosis. Shorten & Khoshgoftaar
[50] divides Data augmentation techniques into 3 main categories (Figure F.1): Basic Image
Manipulators, Deep Learning Approaches, and Meta-Learning.
Basic Image Manipulators This category of augmentation techniques is characterized by a
relatively simple implementation. Those are for instance flipping, rotation, cropping, color
jittering and edge enhancement, kernel filters, and others. When performing these transfor-
mations it is important to consider the "safety" of each of them which depends on a specific
problem we want to solve. Safety can be defined as a probability that the label will be pre-
served after transformation [50].

Deep Leaning Approaches
The popularity of Deep Learning Approaches has recently raised and most of the research
is currently focused on this category. One of the methods is Feature space augmentation. It
consists of manipulating features in the feature space. Feature space is a name for high-level
features that can be found in high-level layers of CNN. These features are represented by
tensors that can be used for various vector level operations, for instance adding noise, inter-
polation, extrapolation, etc. Drawbacks of this approach are that these vector operations can
be hard to comprehend. Wong et al [51] proved that augmentation in data space will in most
cases outperform augmentation in feature space in terms of computation demand.

Meta Learning
Meta-learning could be explained in short as learning to learn which is a concept of applying
evolutionary algorithms. One of the approaches is called Smart Augmentation proposed by
Lemley et al [52]. It consists of using 2 neural networks: Network A - augmentation net-
work and Network B - Classification network. Network A picks 2 images by random from
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Figure F.1: 3 main categories of image augmentation techniques shown in a tree structure with subcategories.

the dataset and creates augmentation from them. These images are then used for training
Network B. Eventually, the error is then backpropagated to Network A to update weights.
Meta-learning is quite new and not enough research has been carried out. Moreover, it is
time-consuming to implement and troublesome to understand.

F.0.1 Geometric Transformations

Flipping
Flipping one of the easiest augmentation techniques to implement and it is quite effective. It
works well on the ImageNet dataset, however, it’s not suitable for MNIST because for instance
labels for 6 and 9 would not be preserved. Horizontal axis flipping is preferred instead of
flipping the vertical axis. This makes sense because when having a picture with ground or
sky, flipping picture vertically could confuse network which would have a negative influence
on the results.
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Rotation
The rotation consists of rotating an image by on an axis by the angle from interval 1◦ to 359◦.
Safety of this augmentation depends on the magnitude of the angle.

Translation
Image translation is an efficient way to tackle positional bias. This is done by moving the
central patch to side in a random direction. If the image exceeds from its frame, then the
empty area is usually colored with values 0 or 255, or filled with Gaussian noise. Positional
bias can occur when dealing with datasets where are of interest is in the same place in every
frame. This is the case for most face datasets.

Cropping
Cropping consists of cutting parts of the image. This can be useful when we work with the
date of different widths and heights by preserving the central patch of the image. Also, it can
be used by cutting random parts from images. Cropping is similar to translations, however,
cropping alters dimensions of an image whereas translation will keep them.

Color Jittering
Color jittering is an augmentation method that operates in image color channels. Images are
stores as tensors with dimensions height × width × color channels. This opens an oppor-
tunity to alter color channels, e.g. isolate a single color, apply single matrix operations to
adjust brightness, alter histogram, increase or decrease pixel values by constant, restrict pixel
values to a specific minimum or maximum values. This augmentation is suitable for handling
lighting biases. However, it is important before applying this

F.0.2 Kernel Filters

The principle of applying kernels is similar to using a feature detector in a convolutional layer.
A kernel is a matrix of size n× n which slides on the image and adjusts its pixel values. The
most used filters are Gaussian blur or High contrast filter. Gaussian blur can be applied to
blur images. The network might be better in terms of handling blurred images. Contrast filter,
on the other hand, can make edges sharper which can lead to more features for a network to
learn.

F.0.3 Mixing Images

Mixing images consists of taking image pairs and averaging their pixel values. Horoshi [53]
describes a method called SamplePairing where for each image of the dataset he picks another
image by random. Performs basic data augmentation on both of them. Then crops random
patch of size 224 × 224 from both of the images. In the next step, both images are merged by
averaging intensity of two patches for each pixel. According to Shorten and Khoshgoftaar [50]
this is counter-intuitive because to a human, products of these transformations are not going
look very useful. Utilizing SamplePairing has helped to reduce the error rate on CIFAR-100
dataset by 8.58 %.
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F.0.4 Random Erasing

Random erasing introduced by Zhong et al [54] consists of removing random patches of
size n×m from images and replacing them by rectangles with random pixels intensity from
interval 0 to 255. This idea corresponds to the dropout layer where a certain percentage of
the data is discarded. The dropout layer is ingrained within network architecture whereas
random erasing is done in the input data space. This will influence the network to focus
more on the entire image and find other descriptive features rather than some specific place.
Moreover, it is a great way of tackling problems such as overfitting and occlusion. It improved
the performance of Fast R-CNN [55] from 70.0 mAP to 76.2 mAP.

Random erasing is a relatively safe augmentation technique, however, there might be cases
where random erasing is not suitable. For example MNIST dataset [56] of handwritten digits.
When Erasing random patches, it can occur that number 8 will become 6.
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