
ds104f19:
Assembler typesystem

Software
Aalborg University

http://www.aau.dk

Title:
Assembler typesystem

Theme:
Security

Project Period:
Fall Semester 2019

Project Group:
ds104f19

Participant(s):
Kenneth Husum Stick

Supervisor(s):
René Rydhof Hansen

Copies: 0

Number of Pages: 18

Date of Completion:
February 26, 2020

Abstract:

This rapport propose a syntax, semantic
and typesystem for x86-64, with discussion
of how to handle problems that arice from
reuse of registers. How to handle the mem-
ory, the stack and registers is also discused.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the authors.

http://www.aau.dk

Part I

Introduction

2

1. Introduction
The intention with this report is to make a system that can add type informa-
tion to binary �les so they become easier to reverse engineer, this is done by
making a syntax, semantic and typesystem for a subset of the x86-64 instruc-
tion set. As there is no types in assembler a new set of types have to be made
both to �x the information that is available in the binary and what types that
would be preferable when reverse engineering. The analysis will have to be
context aware as x86-64 only implement the core language and leave other
implementation details vague so they are not uniform over different systems.

1.1 Resume

The previous rapport proposed a system to add type information to x86-64
by making a system that added type constraints too the language. The report
looked into how unix device drivers worked, with focus on how that informa-
tion can be used to restore the type information that is lost when compiling.
If knowledge of types were restored there would be fewer binary bloobs that
contains data. The focus on driver was chosen as their are an integral part of
model operation systems, where the plug and play approach gives new secu-
rity challenges, drivers for most devices have to be available for this system to
work, but any errors in these can be abused by adversary’s.
Not all drivers make their source code available for external security analy-
sis, this leaves only the binary �les. To reverse engineer any program require
a time as most of the program have to be analysed manually, any tools that
can do some of this analysis make the entire process faster. The �rst part of
this process is to make a type system that is both general enough to �t with the
typeless x86-64 and speci�c enough to give more information, as most drivers
are written in c or c++ these languages was chosen as the base for typesystem,
the type hierarchy 1.1 show how types interact with each other an arrow a1 ->
a2 means that in every case where a2 can be used a1 can also be used, this is
show best by > as it can be used in all cases.
A system for type inference was proposed where every instruction would add
a set of constrains, based on the knowledge that was available, all constraints
would be coalesced into a set of constraints on the programs, that when solved
would give a upper and lower bound on the type of every variable, this ap-
proach had a problem with scoping as register dont work like variables in
other programming languages that often only hold one type, register will be
over written several times over the course of a execution.
How information would be propagated through function call was looked at,
as the program state when a function is called is that state that is handed over
to the function, with the exception of setting up a new stack frame, it would
just be needed to keep the program state and not do anything else.
Functions can be seen as inline code this approach will not require any ad-
ditional work, but if a function is use several times it will be analysed many
times, this problem can be countered by making a function summary, where
the function is only analysed once and sum down to a single constrain. If done
manually external well de�ned function would not be analysed but the know
functions summary will be used saving computation time, this could also al-
low for custom function summary’s so if there is a common function that is
use several time by the binary it can be manually analysed and a function sum-
mary can be made.

3

>

reg64t reg32t reg16t reg8t

num64t ptr(t) num32t num16t num8t

int64tcodet uint64t int32t uint32t int16t uint16t int8t uint8t

⊥

Figure 1.1: Subtypes

4

2. Language
2.1 Drivers

Drivers is use as an abstraction of the functionality of hardware, it can either
be written as a specialised driver or a general driver. An example of a general
driver is the VMMOUSE driver in unix, it can be used by most mouse, an ex-
ample of a specialised driver is the NVIDIA graphic drivers they either work of
a single model or a family of models. Drivers can either run the kernel mode
or user mode, if it is possible user mode is recommended as errors here can
be handled much easier then if they run in kernel mode, some driver need
functionality from kernel mode and therefor is needed run as kernel module.
Kernel modules is part of the kernel that can be loaded and unloaded at will,
before kernel modules all drivers had to be compiled into the kernel, if a new
device needed to be added the kernel need to be recompiled with that driver.
Kernel modules added usability to consumer computers, but as the kernel can
be modi�ed at run time it also added security risks. With kernel modules op-
eration system got a list of drivers and what devices they support, every time a
new device is added, a search is done through this list for a driver that support
this device, when one is found it is loaded into the kernel. The unix kernel got
strict rules about how code can be added into it, this make sure several people
have looked at the code and tested it before it can become a part of the kernel,
but drivers does not necessarily undergo the same rigorous process.

2.2 Example

1 c a l l _ _ fen t ry__ ; PIC mode
2 push rbp
3 mov rdx , o f f s e t aBcm203x ; " bcm203x "
4 mov r s i , o f f s e t __this_module
5 mov rdi , o f f s e t bcm203x_driver
6 mov rbp , rsp
7 c a l l u s b _ r e g i s t e r _ d r i v e r ; PIC mode
8 pop rbp
9 retn

Listing 2.2 show the registration function of the bcm203x driver. The func-
tion start by calling fentry, this is used by the ftrace tool, this happens if the
binary was compiled with the -pg -mfentry �ags, this function does not have
an impact on how the function runs and will be ignored. First the base pointer
is pushed to the stack to prepare to call the usb_register_driver function, the
3 addresses is moved into the appropriate registers, that being rdx, rsi and rdi
these are the third second and �rst argument as can be seen in Table 2.1. mov
rbp, rsp set up the base pointer for the function call that happen as the next in-
struction. After the function call the base pointer is restored and the function
return.

2.3 Syntax

2.3.1 Language

All values in this language is encoded as a 64 bit value. Values cover both ad-
dresses and intermediate values used by instructions. It is not possible for all

5

Regiset Common use
RAX Caller saved
RBX Callee saved
RCX Fourth argument
RDX Third argument
RSI Second argument
RDI First argument
RSP Register stack pointer
RBP Register base pointer
R8 Fifth argument
R9 Sixth argument
R10 Caller saved
R11 Caller saved
R12 Callee saved
R13 Callee saved
R14 Callee saved
R15 Callee saved

Table 2.1: Register common use

instruction to know if a value is an address or an intermediate value without
context from other instructions.

val = B64 where B = {0,1}

x86-64 de�nes 17 registers, 16 of witch is general purpose registers, and
one for the program counter. Some of the general purpose registers is used
for special tasks like RSP is used to store the stack pointer, these common
uses can be seen in Table 2.1. The program pointer RPC can be read from like
all other registers but can not be written to directly by instructions like mov.

GPR =
{RAX,RBX,RCX,RDX,RSI,RDI,RSP,RBP,R8, R9, R10, R11, R12, R13, R14, R15}

ControlRegister = {RPC}
Register = GPR ∪ ControlRegister

Assembler does not de�ne how registers should be used, so for programs
to be able to interface with librarys call conventions are used to de�ne how
registers should be handled before and after a function call. Currently the two
most used call conventions are Microsoft x64 calling convention and System
V AMD64 ABI, Windows systems use the Microsoft calling convention, while
unix and mac use the System V. Call convention de�ne how arguments are
saved but also it is the caller or the callee responsible to make sure the value
of a register is saved. This report will be looking at unix drivers and therefor
is only looking at the System V AMD64 ABI, a list of the rules for every register
can be seen at Table 2.1

Registers is a complete function from a register to a value.

GPRS = GPR→ val
ControlRegisters = ControlRegister → val

Registers = Register → val

6

Bit Lable Description
0 CF Carry Flag
1 1 Reserved
2 PF Parity Flag
3 0 Reserved
4 AF Auxillary Carry Flag
5 0 Reserved
6 ZF Zero Flag
7 SF Sign Flag
8 TF Trap Flag
9 IF Interrupt Enable Flag
10 DF Direction Flag
11 OF Over�ow Flag
12-13 IOPL I/O Privilege Level
14 NT Nested Task
15 0 Reserved
16 RF Resume Flag
17 VM Virtual-8086 Mode
18 AC Alignment Check
19 VIF Virtual Interupt Flag
20 VIP Virtual Interupt Pending
21 ID ID Flag
22-63 0 Reserved

Table 2.2: x86-64 Flags

2.3.2 �ags

x86-64 use one register for �ags, as registers are 64 bit it can have up to 64
�ags. most of the bits are not used for �ags but are assigned a value of 0 or 1
that it have to have. Table 2.2 shows the the bits in the �ag register and what
they are used for.

Not all �ags are used for control �ow of basic programs and have been cut
from the �nal semantic, as to keep it cleaner. These will have to be reintro-
duced if thing like debugger, nested tasks and virtual 8086.

Flag = {CF, PF, AF, ZF, SF, TF, IF, DF, OF} Flags = Flag → B

2.3.3 Formalisation

Here the syntax for the language is shown.

Inst ::= mov gpr r |mov gpr i | push r | push i | pop gpr | call r | call i | retn | cmp r r | cmp r i| je r | je i
gpr ∈ GPRS

r ∈ Registers

i ∈ val

7

A program is a partial function from a value to an instruction.

Program = val→ inst

Memory is complete function from a value to a value.

Memory = val→ val

The formal con�guration of the structural operational semantics then is as
follows:

Conf = Program×Registers×Memory × Flags

The semantic is complete with the addition of a reduction relation from C
to C’ that is as forllows:

C ⇒ C ′ where C,C ′ ∈ Conf

2.4 Semantic

The memory segment have to be initialised with the proper values, these can
be found in different way depending on the format of the program. For elf
�les the sections that is most important is the .text .data and .rodata, as they
are copied into memory, the .bss data is not de�ned by x86-64 but is left up
to the operation system of how to handle, this can be zeroing on initialisation,
zero on use or nothing. For this paper we will look at zeroing on initialisation
as used by unix like systems and windows. All �ags are initialised as 0, same
for registers. The program counter is update by adding 8 as the size of an
instruction is 8 bytes. The compare instruction Equation 2.8 also change CF,
OF, SF, AF and PF �ags but as they are not used any other place in the semantic
this was cut to make the compare instruction more readable.

8

[mov − r − r]
P (R(rpc)) = mov gpr r

〈P,R,M,F 〉 → 〈P,R[gpr → R(r), rpc→ R(rpc) + 8],M, F 〉
(2.1)

[mov − r − i]
P (R(rpc)) = mov gpr i

〈P,R,M,F 〉 → 〈P,R[gpr → i, rpc→ R(rpc) + 8],M, F 〉
(2.2)

[push− r]
P (R(rpc)) = push r

〈P,R,M,F 〉 → 〈P,R[rsp→ R(rsp)− 8, rpc→ R(rpc) + 8],M [R(rsp)→ R(r)], F 〉
(2.3)

[push− i]
P (R(rpc)) = push r

〈P,R,M,F 〉 → 〈P,R[rsp→ R(rsp)− 8, rpc→ R(rpc) + 8],M [R(rsp)→ i], F 〉
(2.4)

[pop− r]
P (R(rpc)) = pop gpr

〈P,R,M,F 〉 → 〈P,R[rsp→ R(rsp) + 8, R(rpc)→ R(rpc)− 8, R(gpr)→M(R(rsp))],M, F 〉
(2.5)

[call − r]
P (R(rpc)) = call r

〈P,R,M,F 〉 → 〈P,R[rpc→ R(r), rbp→ R(rsp)− 8],M [R(rsp)→ R(rpc)− 8, R(rsp)− 8→ R(rbp)], F 〉
(2.6)

[call − i]
P (R(rpc)) = call i

〈P,R,M,F 〉 → 〈P,R[rpc→ i, rbp→ R(rsp)− 8],M [R(rsp)→ R(rpc)− 8, R(rsp)− 8→ R(rbp)], F 〉
(2.7)

[CMP − r − r − true]
P (R(rpc)) = cmp r1, r2

〈P,R,M,F 〉 → 〈P,R[rpc→ R(rpc) + 8],M, F [zf → 1]〉
if r1 == r2 (2.8)

[CMP − r − r − false]
P (R(rpc)) = cmp r1, r2

〈P,R,M,F 〉 → 〈P,R[rpc→ R(rpc) + 8],M, F [zf → 0]〉
if r1! = r2 (2.9)

[je− r − true]
P (R(rpc)) = je r

〈P,R,M,F 〉 → 〈P,R[rpc→ R(r)],M, F 〉
if f(zf) = 1 (2.10)

[je− r − false]
P (R(rpc)) = je r

〈P,R,M,F 〉 → 〈P,R[rpc→ R(rpc) + 8],M, F 〉
if f(zf) = 0 (2.11)

[retn]
P (R(rpc)) = retn

〈P,R,M,F 〉 → 〈P,R[rpc→M(R(rbp)− 8), rsp→ R(rbp)− 16, rbp→M(R(rbp))],M, F 〉
(2.12)

9

2.4.1 Registers

The initial value of registers is de�ned in the ABI for the machine and therefor
there is no single way it is done. The UNIX elf ABI handle this by zeroing all
registers this way will be used for this language. The special purpose registers
RIP is initialised to the entry point of the program.

RIP
RIP is a special purpose register that contains the next instruction to be exe-
cuted, every instruction that is executed got a side effect of updating the in-
struction pointer. RIP can not be change by the program other then by side
effect. RIP can still be used for position-independent code addressing.

RSP
RSP is used to store the stack pointer, it contanis the address of the last value
on the stack. It is used by the push and pop instruction to access the stack

RBP
RBP is the base pointer, holding a pointer to the start of the current frame. RBP
is commenly used to access the local variables of the current frame, it is also
used when the return instruction is called, as the old base pointer is stored
on the stack at the location that the current base pointer is pointing. It can
be used as a general purpose register but have to be restored before return is
called.

2.4.2 Memory

In theroy x86-64 would make it possible to address 64bit of memory but as
that is far larger then what is needed for applications as of 2019, therefor chips
does not implement the entire 64bit address space but only a limited address
space, the current AMD64 architecture only use the lower 48bit to address
memory. As this is a limit set by proccessor developers and not by the x86-
64 language it is not re�ected in the semantics, as this limit will in theory be
removed in time.[1]

2.4.3 Stack

The stack is a memory region that is used to store values, the stack is when
calling functions depending on the calling convension. As this is not part of
the language the only part that is in the syntax is the push and pop instruction
that is made for interaction with the stack

2.5 Typesystem

The base of the type system is introduced in section 1.1 and will be slightly
modi�ed and used.

2.5.1 Types

The typesystem that was proposed in the old paper and shown in the intro-
duction Figure 1.1 show a complete typesystem for x86-64. For the subset that
will be made type rules for only the 64bit types are intresting and therefor all

10

the other types have been removed. The arrows show the relations between
type so that a w b, mean that a is a sub type of b. So every place where you can
use a you can also use b. This relation is transitive meaning that int64t can be
substituted with num64t.

>

reg64t

num64t ptr(t)

int64tcodet uint64t

⊥

Figure 2.1: Subtypes

2.5.2 Formalisation

Tr(pc) = Register → Type
Tm(pc) = V al→ Type

Both Tr and Tm are complete functions, and all registers and memory ad-
dresses start with the type > as there are no type information on them. As
only 64 bit types are left

Tr(pc) w Tr(pc+ 1)iff∀r ∈ Reg : Tr(pc)(r) w Tr(pc+ 1)(r)
Tr(pc) w\r′ Tr(pc+ 1)iff∀r ∈ Reg \ {r′} : Tr(pc)(r) w Tr(pc+ 1)(r)

Tm(pc) w Tm(pc+ 1)iff∀addr ∈ V al : Tm(pc)(addr) w Tm(pc+ 1)(addr)
Tm(pc) w\addr′ Tm(pc+ 1)iff∀addr ∈ V al \ addr′ : Tm(pc)(addr) w

Tm(pc+ 1)(addr)
T64 = reg64t ∨ ptr(t) ∨ num64t ∨ codet ∨ int64t ∨ uint64t

11

[MOV −R−R]
Tr(pc)(r2) = T T w Tr(pc+ 1)(r1) Tr(pc) w\r1 Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : mov r1 r2 : Inst
(2.13)

[MOV −R− im]
Tr(pc)(r) = T T w T64 Tr(pc) w\r Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : mov r im : Inst
(2.14)

[CMP −R−R]
Tr(pc)(r1) w reg64t Tr(pc)(r2) w reg64t Tr(pc) w Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : cmp r1 r2 : Inst
(2.15)

[CMP −R−R]
Tr(pc)(r1) w reg64t T64 w reg64t Tr(pc) w Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : cmp r1 im : Inst
(2.16)

[JE − r − false]
Tr(pc)(r)ptr(codet) Tr(pc) w Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : je r : Inst
f(zf) = 0 (2.17)

[JE − r − true]
Tr(pc)(r) w ptr(codet) Tr(pc) w Tr(R(r)) Tm(pc) w Tm(R(r))

Tr, Tm ` pc : je r : Inst
f(zf) = 1 (2.18)

2.5.3 Push and pop

The instruction show in the prior section is the basic control �ow instructions,
push and pop is used to access memory more speci�cally the stack.

[push−R]
Tm(pc)(rsp) = T T w Tr(pc+ 1)(r) Tr(pc) w Tr(pc+ 1) Tm(pc) w\rsp Tm(pc+ 1)

Tr, Tm ` pc : push r : Inst
(2.19)

[pop−R]
Tr(pc)(r) = T T w Tm(pc+ 1)(rsp) Tr(pc) w\r Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : pop r : Inst
(2.20)

2.5.4 Example

The code the syntax is used on is the same from section 2.2 but it stop af-
ter the call instruction as the stack is modi�ed inside the function call. The
stack is presumed to be empty when the program function is called this not
the case when calling the function, but as this is a driver it does not have the
initialization code as part of the program.

12

R = {rbp = 0x1808, rsp = 0x1808}

M = {}

F = {} (2.21)

[push−R]
P (R(rpc)) = push rbp

〈P,R,M,F 〉 → 〈P,R[rsp→ R(rsp)− 8, rpc→ R(rpc) + 8],M [R(rsp)→ R(rbp)], F 〉
(2.22)

R = {rbp = 0x1808, rsp = 0x1800}

M = {0x1808 = 0x1808}

F = {}

[mov −R− I]
P (R(rpc)) = mov rdx 0x0786

〈P,R,M,F 〉 → 〈P,R[rdx→ 0x0786, rpc→ R(rpc) + 8],M, F 〉
(2.23)

R = {rbp = 0x1808, rsp = 0x1800, rdx = 0x0786}

M = {0x1808 = 0x1808}

F = {}

[mov −R− I]
P (R(rpc)) = mov rsi 0x0D40

〈P,R,M,F 〉 → 〈P,R[rsi→ 0x0D40, rpc→ R(rpc) + 8],M, F 〉
(2.24)

R = {rbp = 0x1808, rsp = 0x1800, rdx = 0x0786, rsi = 0x0D40}

M = {0x1808 = 0x1808}

F = {}

[mov −R− I]
P (R(rpc)) = mov rdi 0x0EB8

〈P,R,M,F 〉 → 〈P,R[rdi→ 0x0EB8, rpc→ R(rpc) + 8],M, F 〉
(2.25)

R = {rbp = 0x1808, rsp = 0x1800, rdx = 0x0786, rsi = 0x0D40, rdi = 0x0EB8}

M = {0x1808 = 0x1808}

F = {}

[mov −R−R]
P (R(rpc)) = mov rbp rsp

〈P,R,M,F 〉 → 〈P,R[rbp→ R(rsp), rpc→ R(rpc) + 8],M, F 〉
(2.26)

R = {rbp = 0x1800, rsp = 0x1800, rdx = 0x0786, rsi = 0x0D40, rdi = 0x0EB8, rbp = rsp}

M = {0x1808 = 0x1808}

F = {}

13

[call −R]
P (R(rpc)) = call 0x10B8

〈P,R,M,F 〉 → 〈P,R[rpc→ 0x10B8, rbp→ R(rsp)− 8],

M [R(rsp)→ R(rpc)− 8, R(rsp)− 8→ R(rbp)], F 〉 (2.27)

R = {rbp = 0x1800, rsp = 0x1800, rdx = 0x0786, rsi = 0x0D40, rdi = 0x0EB8, rbp = rsp}

M = {0x1808 = 0x1808 0x1800 = R(rpc)− 8}

F = {}

(2.28)

14

Type Example

[push−R]
Tm(pc)(rsp) = T T w Tr(pc+ 1)(rbp) Tr(pc) w Tr(pc+ 1) Tm(pc) w\rsp Tm(pc+ 1)

Tr, Tm ` pc : push rbp : Inst
(2.29)

Tm = {rsp w tr(rbp)}

Tr = {}

[MOV −R− im]
Tr(pc)(rbx) = T T w T64 Tr(pc) w\r Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : mov rdx 0x0786 : Inst
(2.30)

Tm = {rsp w tr(rbp)}

Tr = {rbx w T64}

[MOV −R− im]
Tr(pc)(rsi) = T T w T64 Tr(pc) w\r Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : mov rpc 0xd40 : Inst
(2.31)

Tm = {rsp w tr(rbp)}

Tr = {rbx w T64, rsi w T64}

[MOV −R− im]
Tr(pc)(rdi) = T T w T64 Tr(pc) w\r Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : mov rdx 0x0eb8 : Inst
(2.32)

Tm = {rsp w tr(rbp)}

Tr = {rbx w T64, rsi w T64, rdi w T64}

[MOV −R−R]
Tr(pc)(rsp) = T T w Tr(pc+ 1)(rbp) Tr(pc) w\r1 Tr(pc+ 1) Tm(pc) w Tm(pc+ 1)

Tr, Tm ` pc : mov rbp rsp : Inst
(2.33)

Tm = {rsp w tr(rbp)}

Tr = {rbx w T64, rsi w T64, rdi w T64}

(2.34)

The example does not have any real type information, with the current
type system and the call function will add a bit of information as the location
that is called is know to be code. But as the syntax is mainly control �ow there
is not much type information that can be gained.

15

Part II

Closing

16

3. Conclution
A syntax and typesystem for a subset of x86-64 have been proposed, [2] was
used as inspiration for the syntax. Both the syntax and typesystem is mainly of
control �ow instruction because of this there are not much type information
that can be gained from this, adding a few instruction like addition, subtrac-
tion, multiplication and division would be able to narrow the types more. Type
information is found for every value of the program counter, this way the type
information of the volatile registers is saved, the same is true for the stack that
is mean to reused. As memory protection is not implemented all memory is
actually volatile there is nothing that stop the program from changing it. Hard
coded data like the name of the driver from section 2.2 is normally stored in
memory and is considered none volatile as compilers wont used the memory
space for other things even it is done using it for the hard coded value.

17

Bibliography
[1] amd. (2012). Bios and kernel developer’s guide(bkdg)for amd family 10hpro-

cessors. English, amd, [Online]. Available: http://developer.amd.
com / wordpress / media / 2012 / 10 / 31116 . pdf (visited on Oct. 7,
2019).

[2] R. Hansen, K. Larsen, M. Olesen, and E. Wognsen, “Formal modelling and
analysis of bit�ips in arm assembly code”, English, 5, vol. 18, Springer, Jun.
2016, pp. 909–925. DOI: 10.1007/s10796-016-9665-7.

18

http://developer.amd.com/wordpress/media/2012/10/31116.pdf
http://developer.amd.com/wordpress/media/2012/10/31116.pdf
https://doi.org/10.1007/s10796-016-9665-7

	Front page
	Abstract
	I Introduction
	Introduction
	Resume

	Language
	Drivers
	Example
	Syntax
	Language
	flags
	Formalisation

	Semantic
	Registers
	Memory
	Stack

	Typesystem
	Types
	Formalisation
	Push and pop
	Example

	II Closing
	Conclution
	Bibliography

