
Benchmarking Contention Management
Strategies in Clojure’s Software

Transactional Memory Implementation
Master’s Thesis

Peder R. L. Nielsen Patrick T. Kristiansen

Aalborg University
Computer Science Department

Database and Programming Technologies

Spring 2010



Department of Computer Science
Aalborg University

Selma Lagerlöfs Vej 300
DK-9220 Aalborg Øst
http://www.cs.aau.dk

Title
Benchmarking Contention Management Strategies in Clojure’s Software
Transactional Memory Implementation

Research group

Database and Programming Technologies

Project term

SW10, Spring 2010

Project group

d608a

Supervisor

Bent Thomsen

Abstract
Lock-based concurrent programs are difficult to write and prone to a variety
of well-known errors. Software transactional memory (STM) poses an
alternative to locks, promising to make concurrent programming easier.
One of the few languages that have included STM from an early stage is
Clojure, a Lisp dialect for the Java Virtual Machine.

In our work, we benchmark the contention management strategies Aggres-
sive, Priority and Karma in Clojure’s STM. Our results show that the choice
of strategy has significant impact on performance, but that there are only
a few specific cases where it is an advantage to use any of those tested
over Clojure’s original. None of these cases warrant a replacement of the
strategy that Clojure already uses.

Since we only investigate a limited selection of the strategies suggested
in STM research, future work is needed to find whether there exist other
strategies that surpass Clojure’s.
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Preface

The pitfalls of conventional concurrent programming are notorious and many.
Sadly, the types of applications programmers need to write in the future are
increasingly concurrent. In fact, as more and more applications move to the
World Wide Web requiring that single applications handle many users, concur-
rent programming is becoming a necessity. In other cases, we are faced with
the choice of either parallelizing our programs, making them concurrent, or
accept that they will not execute any faster.

Concurrent programming is difficult primarily because of the insufficiency
of the tools we use. Locks are the prevalent mechanism used to prevent race
conditions in accessing shared memory, but only experts use them correctly.
History has shown us many times the problems with locks.

Software transactional memory (STM) is the alternative to locks we have
chosen to investigate in the work presented here. Specifically, we have chosen
to work with Clojure’s STM, because Clojure offers an interesting combination
of features that seems to make software transactional memory viable in many
situations. Moreover, this combination of features appears to be unique and
has not been the subject of any academic literature that we know of.

Intended readers. Our thesis requires that the reader possesses basic knowl-
edge about concurrent programming, functional programming and computer
science. Even though we treat a relatively narrow subject, we have included
chapters that give the reader the prerequisites to understand the subject area.
We do, however, require that the reader has a basic ability to interpret the
diagrams we present as the result of our work.

Furthermore, this thesis is for readers interested in getting an impression of
Clojure’s specific blend of functional programming, persistent data structures
and software transactional memory. Besides evaluating different contention
managers in Clojure’s STM, we give an overview of Clojure the language and
Clojure’s existing STM implementation.

Acknowledgements. We are very grateful to our supervisor Bent Thomsen for
his insights, suggestions and thorough reviews of this work. Furthermore, we
thank the friendly people on Clojure’s IRC channel that have answered many
of our questions, especially Rich Hickey, the author of Clojure.
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Chapter 1

Introduction

Parallel computation is no longer restricted to supercomputers. Practically
every new computer system bought by consumers have CPUs with two or
more cores. There is good reason for that; the speed of individual CPU cores
are no longer increasing at the pace they used to. To make computation faster,
it must be parallelized. Parallelization demands concurrent programming.

Another tendency that demands concurrent programming is the develop-
ment of an increasing amount of software for the World Wide Web. New
web browsers allow development and execution of advanced applications that
would previously have needed installation on the computer they were used.
Such web applications, however, often need to handle large amounts of si-
multaneous users—users that expect the web applications to behave correctly.
Whatever the motivation, concurrent programming is known to be notoriously
difficult.

Locks are the prevalent mechanism for synchronizing access to shared mem-
ory and avoiding race conditions in concurrent systems. Unfortunately, history
and literature is filled with evidence of the problems that can arise when locks
are used. More specifically, locks are often the cause of deadlock, livelock,
priority inversion and convoying. Some of the problems merely impact the
potential performance gains of parallelization, while others lead directly to
incorrect programs—the worst kind of programs.

An abundance of possible solutions exist to make concurrent programming
less difficult. Some of these suggest replacing our conventional programming
languages with ones that employ different paradigms, such as Erlang’s [4]
implementation of the actor model [27]. Others have suggested algorithms
that employ non-blocking synchronization, i.e., synchronization that do not use
locks, but still guarantee that race conditions do not occur. The simplest form
of non-blocking synchronization is the primitive compare-and-swap operation
(or similar) found in many machine architectures, which is essential in the
implementation of more complex non-blocking algorithms.

The focus of our thesis is software transactional memory (STM), an alternative
to conventional locks. Several implementations employ non-blocking synchro-
nization [44, 25, 24, 22], although there is evidence that lock-using implemen-
tations are more efficient [15, 13]. It allows programmers to access shared
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memory transactionally, i.e., with the well-known transaction semantics seen
in many database systems. Shavit and Touitou published the first article [44]
on the subject, and a flurry of research has been published since, resulting in
the identification of a wide range of design issues. We give an overview of the
area in Chapter 2.

The canonical example of using software transactional memory is a bank
account scenario. Say we have two bank accounts A and B. Transferring money
from A to B involves two operations: first withdrawing m amount of money
from A and then depositing m amount of money on B. These two operations
together must be atomic; either they both happen or none of them happen. To
reflect this requirement, many suggestions for language support for software
transactional memory adds an atomic keyword. Here is a Java-like example of
the scenario just described:

void Transfer(Account A, Account B, double m) {

atomic {

Withdraw(A, m);

Deposit(B, m);

}

}

This thesis is focused on a specific STM implementation, namely the one
found in Clojure [28]—a functional programming language with Lisp syntax
that runs on the Java Virtual Machine.1 The language is one of the few that has
been designed to include software transactional memory from an early stage.2

Clojure’s combination of functional programming, persistent data structures
(see Section 3.1.1), and software transactional memory with MVCC (see Section
2.3) appears unique. Furthermore, while Clojure has been the subject of a
case study of multi-core parallelization [32], it seems that no or very little
academic literature has been published on Clojure’s STM. This has been a
major motivation behind the work we present here.

1.1 Problem and Method

One important aspect of STM designs is contention management. Briefly stated,
contention management deals with strategies that decide what happens when
two transactions conflict. Contention management has significant influence
on the performance of STM implementations, evidenced by the benchmarks
of different strategies that have been published. In this work, we implement a
selection of these in Clojure’s STM to investigate the consequences.

Problem statement: What are the implications of implementing a
selection of alternative contention management strategies in Clo-
jure’s STM?

We present different strategies found in the STM literature in Section 2.2.
Our choice of strategies to implement in Clojure’s STM is accounted for in
Section 3.4.

1A Clojure version of the bank account example is found in Section 3.1.
2Other notable examples include Fortress [1], Chapel [11] and X10 [49].
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The method for assessing the consequences is based on benchmarking,
which is the predominant method used in STM literature on contention man-
agement. We have instrumented the code for Clojure’s STM implementation to
collect data during the execution of the benchmarks. More details are presented
in Chapter 4.

1.2 Contributions

The major contribution of this thesis is an analysis of the implications of imple-
menting a selection of contention management strategies in Clojure’s STM (see
Chapter 5). In our work, we also have the following secondary contributions:

• A classification of Clojure’s STM in terms of key design issues found in
in the published STM literature. See Section 3.3.

• Discovery of a bug in the widely used DSTM2 [24] that casts some doubt
on results obtained in the past few years. See Section 3.4.

• Discussion of the STM literature on benchmarking and data analysis. See
Chapter 4 and Chapter 5.
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Chapter 2

Software Transactional
Memory

The problems and pitfalls of concurrent programming are well-known and a
range of tools and solutions have been proposed during the brief history of com-
puter science. Like any other tool, they each have benefits and drawbacks. But,
as a purely subjective observation, where some tools and models (e.g., Erlang
[4] and its implementation of the actor model [27]) require a radically different
mindset as a programmer, transactional memory seems straightforward to use
and adapt to. This argument is supported by the fact that programmers have
adopted transactions as the means to manage concurrency in database systems.

In this chapter, we will give an overview of the software transactional memory
landscape. We begin by briefly presenting the history and motivation behind
transactional memory and then turn our focus to STM and explain key design
issues faced in this research area together with the related terminology. We also
include a section on multi-version concurrency control, seen in many database
systems, because Clojure’s STM implements this mechanism.

2.1 Origins

Mutual exclusion through locks is the basic tool for synchronization in multi-
threaded programming. Unfortunately, locks are known to give rise to several
problems: the possibility of deadlocks, livelocks, priority inversion and con-
voying. Database systems have long offered transactions as an alternative to
locks. In such systems, transactions typically give the following correctness
guarantees [45]:

• Atomicity: All operations in a transaction occur or none do.

• Consistency: Every transaction takes the database from a consistent state
to another consistent sate.

• Isolation: All tentative changes in a transaction is visible only to that
transaction until it commits.
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• Durability: When a transaction commits, its changes will persist.

Herlihy and Moss [26] first suggested a hardware-based implementation of
transactional memory, which gave the guarantees of atomicity, consistency and
isolation.1 Their idea was to extend the instruction set of the CPU architecture
with the following instructions for accessing memory:

• Load-transactional: Read the value of a shared memory location into a
private register.

• Load-transactional-exclusive: Read the value of a shared memory lo-
cation into a private register and “hint” that the location is likely to be
updated.

• Store-transactional: tentatively writes a value from a private register to
a shared memory location. The value is not available to other processors
before the transaction commits.

The following instructions were proposed to manage transaction state:

• Commit: Attempt to make any tentative changes by the above instruc-
tions permanent. This instruction only succeeds if there are no conflicts
with other processes’ transactions, and if no such conflicts are detected,
the changes become visible to other processors.

• Abort: Discard all tentative changes.

• Validate: Returns an indication of the current transaction’s state; true if
the current transaction has not aborted, otherwise false.

One problem with hardware transactional memory (HTM) is that it puts
extra requirements on CPUs, i.e., to support the instructions mentioned above.
Although certain companies2 have produced systems supporting HTM, it is
not widespread. Research in hardware transactional memory is still continuing
nonetheless.

The problem mentioned above and the fact that the HTM proposed by
Herlihy and Moss is blocking inspired Shavit and Touitou’s software transactional
memory (STM) [44]. Their solution only required the instructions conventionally
offered by CPU architectures and it was designed to be lock-free and thus non-
blocking.

Shavit and Touitou’s original STM implementation is static, which means
that the set of memory locations to access transactionally must be specified
up-front. Although, as stated in their paper, this allows the implementation of
transactional algorithms for most of the known and proposed synchronization
operations in the literature, it has disadvantages. Herlihy, et al. [25] developed
a dynamic STM called DSTM that does not have this restriction, which made
it suitable for the implementation of dynamic-sized data structures. DSTM’s
progress guarantee in terms of non-blocking synchronization was weaker then
the original STM’s, but allowed for simpler implementation. We expand on
this in the next section.

1Durability is not a concern with regard to main memory, since it is volatile.
2Azul Systems and Sun (now Oracle) to mention a few.
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Hybrid transactional memory [12] (HyTM) has also been proposed as a means
to overcome the lack of hardware support for transactional memory. This ap-
proach uses hardware transactional memory if it is available; otherwise, software
transactional memory is used.

Many STMS implementations has been developed, and research is ongoing.
Some believe and argue that transactional memory is still a research toy and
that the future for STM looks challenging [8]. Others ask whether skepticism
towards STM is analogous to the skepticism that once was towards garbage
collection [18]. The jury is still out, but judging by the number of STM im-
plementations available at this point and the number of published research
articles, STM is far from dead.

2.2 Design Issues

There are many design decisions to make when developing an STM and an ideal
design is yet to be discovered. In this section, we present the prominent design
points we have found in the literature on software transactional memory.

Static or dynamic: STMs can either be static or dynamic. The first STM im-
plementation by Shavit and Dice [44] was static, meaning that the set of
accessed memory locations had to be specified in advance, i.e., before a
transaction started. Dynamic STMs do not impose this requirement, i.e.,
memory locations are determined during the transaction. Herlihy, et al.
[25] were the first to present a dynamic STM.

Granularity of sharing: Some STMs offer transactional access to memory at
the word-level (e.g., Shavit and Touitou’s original STM [44] and WSTM
[22]) and others at the object-level (e.g., Clojure’s STM and DSTM [25]).
An advantage of word-based STMs is that they apply to a larger range
of platforms, including platforms that are not object-based. However,
STMs that are word-based will have per-word overhead for transactional
access, which can lead to decreased performance. It appears that most
STMs are object-based.

Synchronization: Conventional synchronization in multithreaded program-
ming uses locks and mutual exclusion, but locks have, as is widely recog-
nized, several problems and disadvantages. As a response to these prob-
lems, researchers have developed a number of alternative synchroniza-
tion techniques that do not employ locks and mutual exclusion. These
techniques can give certain progress guarantees [23]:

• Wait-freedom: If a technique ensures that every thread will continue
to make progress despite delay or failure of other threads, then it is
wait-free.

• Lock-freedom: If a technique only ensures that some thread always
makes progress, it is lock-free.

• Obstruction-freedom: If a technique guarantees that when a thread
runs in isolation, with all other threads suspended, it will make
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progress, it is obstruction-free. In practice, the guarantee applies when
a thread runs for a while without encountering any synchronization
conflicts.

There is a hierarchy between these guarantees: any technique that is
wait-free is also lock-free, and any lock-free technique is also obstruction-
free. Wait-freedom is thus the strongest guarantee. These guarantees
describe properties of non-blocking synchronization and both lock-free and
obstruction-free software transactional memory have been implemented.

Shavit and Touitou’s original STM [44] was lock-free, but Herlihy, et
al. [23] argued that lock-free algorithms are too complex and awkward
to implement by using the primitive compare-and-swap operations con-
ventionally available. Instead, they suggested to weaken the guarantee
by introducing obstruction-freedom and showed examples of algorithms
providing this guarantee. In [25], Herlihy, et al. presented Dynamic STM,
or DSTM—the first obstruction-free STM implementation. In terms of
transactional memory, Guearroui, et al. [19] defines obstruction-freedom
as a guarantee that a transaction commits if it runs long enough without
conflicting with another transaction.

Even though the progress guarantee is weaker than lock-freedom, im-
plementations that are obstruction-free prevent deadlocks and priority
inversion. An external mechanism, known as a contention manager, is
needed to avoid livelock situations.

Ennals [15], however, noted that obstruction-freedom is an inhibiting
property in relation to performance. He rebutted the arguments for
obstruction-freedom and demonstrated how a faster STM could be im-
plemented, if obstruction-freedom is not a requirement. His findings
were backed up by Shavit and Dice [13].

Object metadata: Object-based STMs associate metadata with the objects that
are accessed transactionally. The metadata contains information used
by the STM, for example timestamps specifying reads and writes and a
handle to the transaction that last acquired (see below) the object. Such
information is necessary to resolve conflicts during transactions.

For some STMs, such as DSTM [25], there are several indirections between
the metadata and the actual object, which means that the metadata and
the object is unlikely to be stored adjacent to each other in memory. Such
indirections were one of the points of criticism that Ennals [15] posed
against obstruction-free STMs, since indirections may be the cause of
cache-misses that can significantly decrease performance.

Acquisition: Objects to be updated in a transaction must at some point be
acquired. Acquisition allows for conflict detection, i.e., detecting whether
two concurrently running transactions overlap in terms of which objects
they update. When a transaction T1 successfully acquires an object O, it
makes visible to other transactions, by modifying the metadata of O, that
it intends to use (read and/or write) that object. If T1 detects that O has
been acquired by another transaction T2, it must use a conflict resolution
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strategy to determine which transaction should retry and which should
continue. Such strategies are part of contention management.

Some STMs, such as DSTM [25], WSTM [22] and Clojure’s STM, use
eager acquire, which means acquisition on an object happens as soon as
the object is used in the transaction. In other STMs, such as Shavit and
Touitou’s original [44], acquisition is lazy, which means objects are first
acquired at the commit phase of a transaction. Eager acquire allows
conflicts to be detected early, and doomed transactions can retry as soon
as possible. In STMs with lazy acquire, doomed transactions will always
run until the commit phase before they detect whether they should abort,
which can be a waste of CPU time. On the other hand, with eager acquire,
a transaction may abort another transaction only to be aborted itself at
some point.

Reader visibility: Depending on the STM implementation, reading transac-
tions (readers) can be invisible or visible to other transactions. Writing
transactions (writers) are always visible to both readers and writers, since
they need to make their intention to update an object visible to other
transactions.

If readers are visible to writers, it allows writers to abort readers that
have previously read an object that the writer updates. In the first DSTM
version [25], readers were not visible. Instead, transactions maintained
a read list containing the values read during the transaction. An object
O read for the first time was stored in the read list. Every subsequent
read of O would be checked against the read list to ensure that the value
was the same as before. If not, the transaction would be aborted. Since
readers were invisible it meant that writers could not potentially abort
readers, but readers could potentially abort writers.

Contention management: When conflicts occur between transactions, some
form of strategy must be used to resolve it. A range of different named
strategies have been proposed (examples taken from from [43] and [25]):

• Passive: A transaction that discovers a conflict with another aborts
itself and retries.

• Aggressive: A transaction that discovers a conflict aborts the other
transaction.

• Polite: When a transaction discovers a conflict, it uses bounded
exponential back-off. Each time the transaction runs into the same
conflict, it doubles the time it waits before trying again until some
limit is exceeded. When the limit is reached, the conflict-discovering
transaction will abort the competing transaction and continue itself.

• Karma: For every object accessed during a transaction, the transac-
tion accumulates karma. This is a simplistic estimate of how much
work a transaction does—transactions that access many objects will
accumulate karma faster than transactions that access less objects.
Upon encountering a conflict, the transaction with least karma is
forced to abort. A transaction’s karma is not reset when it is forced
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to abort and retry, meaning that its karma increases for every try. Its
karma is reset when it commits.

• Eruption: This is a variation of karma. When a transaction detects
a conflict, it adds its own karma to its opponents karma thereby
(ideally) increasing the speed at which the opponent can complete.
If the opponent can complete faster, it is likely that the conflict-
detecting transaction can acquire the conflicting object subsequently
and then finish faster itself.

• Priority: When a transaction starts, the system time is recorded.
Older transactions are allowed to run in favor of younger transac-
tions, i.e., transactions started latest are forced to abort.

Benchmarks show that different contention management strategies gives
significantly different performance. In some cases, the results published
on contention management strategies are contradictory. Polka was pro-
posed by Scherer and Scott [43], because it performed well according to
their results. However, results by Guerraoui [19] contradict this claim,
saying that none of the benchmarked strategies won in all benchmarks.

We should note here that most contention management strategies, includ-
ing all of the ones presented, do not provably prevent livelock situations.
In practice, though, they do seem to provide progress.

2.3 Multiversion Concurrency Control

Clojure’s STM implements a concurrency control mechanism found in several
databases3 called multiversion concurrency control or MVCC for short. MVCC
ensures that a database transaction never has to wait for access to an object
because several versions of that object are maintained. Because of this version-
ing scheme, transactions appear to be running on a single, isolated snapshot
of the database—this is called snapshot isolation. MVCC can be a considerable
advantage over explicit locking in terms of throughput, especially if there are
many transactions that only read data. Transactions that read will not block
transactions that write and vice versa.

MVCC is based on timestamping to ensure serializability of transactions
[45]. Any transaction Ti is assigned a unique timestamp TS(Ti) at its beginning,
such that TS(Ta) < TS(Tb) if Ta started earlier than Tb. Each database object
P can be associated with different versions 〈P1,P2, . . . ,Pm〉 over time. Besides
storing a value, any version Pk also has a read and a write timestamp, denoted
Read-TS(Pk) and Write-TS(Pk). The values of the timestamps are as follows
[45]:

• Write-TS(Pk) is the timestamp of the transaction that created this version
of the object.

• Read-TS(Pk) is the largest timestamp of any transaction that successfully
read Pk.

3For example, PostgreSQL [42], MySQL [39] and Oracle [40]
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If a transaction Ti issues a read or write operation on database object P, then
Pk is the latest version of P that satisfies Write-TS(Pk) ≤ TS(Ti). The following
rules apply [45]:

1. If Ti issues a read operation on P, the value Ti will get is the value of Pk.

2. If Ti issues a write operation on P, and if TS(Ti) < Read-TS(Pk), Ti is rolled
back.

3. If Ti issues a write operation on P and TS(Ti) = Write-TS(Pk), then the
value of Pk is overwritten; otherwise a new version of P is created.

The first and the third rule are obvious. The second rule ensures that a
transaction cannot write a new version of P, if Pk have been read by another
more recent transaction.

Snapshot isolation suffers from an anomaly called write skew, which we
illustrate by example. Say a person has two bank accounts A and B. The
bank has the restriction that the sum of the balances must be non-negative,
i.e., Balance(A) + Balance(B) ≥ 0. This means that either account can have
a negative balance, as long as the other account compensates for the deficit.
Let T1 and T2 denote two concurrently running transactions. Each transaction
sees, for example, that Balance(A) = 100 and Balance(B) = 100. Now T1
thinks it can withdraw 200 from A and T2 thinks it can withdraw 200 from
B, because each transaction will not see the other transaction’s change, which
is the property of snapshot isolation. Thus, after each transaction has run,
we have that Balance(A) = −100 and Balance(b) = −100, which violates the
constraint. In database systems, such as Oracle’s, the programmer can specify
that an object to be written depends on another object that is read to avoid
write skew.
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Chapter 3

Clojure

Clojure is a new Lisp. It shares many traits with classic Lisp dialects such
as Scheme [48] and Common Lisp [31] but adds unique features as we shall
see. In this chapter, we first give an introduction to Clojure the language, its
persistent data structures and how to use its software transactional memory
implementation. This is followed by a section giving details about the STM im-
plementation. Finally we place Clojure in the landscape of STMs in accordance
with Chapter 2.

3.1 Language Introduction

Clojure is a new Lisp dialect with the characteristic syntax based on S-express–
ions, i.e., lists enclosed in parentheses. The language is authored by Rich
Hickey, who released version 1.0 in 2007 and version 1.1.0 at the end of 2009.
The information in this section is based on version 1.1.0, and what we present
here is essentially a selection of what can be found on Clojure’s official website
[28]. The reader should consult this website to learn more about the language
and its libraries. Alternatively, a book [21] is available. We only give a high-
level overview in this section, but hopefully enough that the reader can grasp
the benchmarks listed in Appendix A with relative ease.

Lists form the basic data structure in Clojure that programs are composed
of. That is, Clojure is said to be homoiconic, because programs are written using
the very same data structures that can be used in Clojure programs. As stated,
lists are enclosed in parentheses and its elements separated by whitespace. In
Clojure, commas are considered to be whitespace, which allows elements to be
separated by commas if the programmer wants to, although it is not idiomatic
Clojure to do so. Here is an example of a list of five elements:

(elem1 elem2 elem3 elem4 elem5)

The first element of a list is the name of a function or operator (which is
essentially the same thing in Clojure). Elements that follow the first are the
arguments. For example, the + operator to add numbers is used like so:

(+ 1 2 3 4)
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Lists support nesting. Say we want to sum two lists of numbers and then divide
the sums by each other:

(/ (+ 5 6 7 8) (+ 1 2 3 4))

All language constructs are used by employing lists. For example, an if
conditional does not have special syntax contrary to many other programming
languages. It is used as functions or operators are used (a semicolon denotes a
comment):

(if (= 2 2)

; then clause

(print "Obviously!")

; else clause

(println "Fatal error: axiom exception."))

That is, if can be considered a function that takes three arguments: a test, a
then clause and an else clause. But if is not really a function; it is called a special
form. Special forms are constructs that cannot be written in Clojure itself for
various reasons. Besides functions/operators and special forms, Clojure also
includes macros. They too can be considered a type of function, but a function
that produces code. The application of a macro is substituted by the code it
produces. Moreover, macros and functions are different because macros can
decide if and when its arguments are evaluated. Clojure’s core library contains
many macros which are commonly used in Clojure programs.

3.1.1 Data Structures

Besides lists, Clojure supports certain primitive data structures including num-
bers (integers, ratios and floating point), strings, characters and booleans. Fur-
thermore, Clojure has keywords and symbols. Keywords start with a colon and
are just names that evaluate to themselves (just like numbers evaluate to them-
selves). These are often used as keys in associative data structures such as hash
maps. Symbols have the same semantics as they do in other Lisp dialects: they
represent the value they are bound to. But symbols can be quoted (by placing
a apostrophe in front of an identifier), which essentially gives them the same
semantics as keywords, i.e., a quoted symbol evaluates to itself.1

Contrary to classic Lisp dialects such as Scheme and Common Lisp, Clojure
has a set of persistent data structures, which comprises lists, vectors, sets and
maps. Persistent data structures give certain guarantees [47]. Given an instance
a of a persistent data structure, making a modification of a will produce a new
instance a′ based on a but including the modification. That is, a remains
untouched by the modification.2 Full persistence is supported when both the
old and the new version can be accessed and modified subsequently. Partial
persistence is supported, when only the new version can be modified but not
the old. Clojure supports full persistence, and its implementation is efficient
in retaining old versions and producing new ones. Clojure’s persistent data

1In principle, quoted symbols could be used instead of keywords, but there are minor differences
between them. For example, a keyword cannot have metadata, but a quoted symbol can.

2One could say it is a misnomer to use the word modify here. Persistent data structures are
effectively immutable.
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structures use structural sharing meaning that as much data as possible is shared
between a and a′ to minimize the amount of data that needs to be copied.3

We have already seen the syntax for lists, but vectors, sets and maps also
have syntax for their literals:

; vectors are enclosed in square brackets

[1 2 3 4 5]

; sets

#{1 2 3 4 5}

; hash map using keywords for keys and strings for values

{:key1 "value1" :key2 "value2" :key3 "value3"}

Each type of data structure have corresponding functions to create them, i.e.,
functions named list, vector, set, hash-map and sorted-map.

Clojure has a plethora of functions to manipulate data structures. It is
outside the scope of this thesis to go through all of them. Instead, we refer to
Clojure’s website [28].

3.1.2 Function Definition

Functions are first-class in Clojure, as is the case in many other functional
programming languages. That is, functions can be defined and passed as argu-
ments, returned as results of other functions and be stored in data structures.
To define a function, Clojure provides the fn special form. A function can be
bound to a name with def. Here is an example, were we define a function that
sums two arguments and bind it to the name sum:

(def sum (fn [a b]

(+ a b)))

For convenience, Clojure provides the defn macro. Using this, we instead get:

(defn sum [a b]

(+ a b))

Clojure supports the definition of variadic functions. In the following ex-
ample, we extend sum such that it can take a variable number of arguments
and sum them.4

(defn sum [& args]

(apply + args))

In the above example, args is a sequence of all the arguments passed to sum.
The apply function is used here to apply a function to all the arguments in args
together.

3.1.3 Agents

Clojure has a special type of variable called an agent. Agents have some re-
semblance with actors [27] and processes in Erlang [4], but is not designed to

3The official Clojure website gives more information about the performance characteristics of
Clojure’s persistent data structures: http://clojure.org/data_structures. Also, an unofficial
overview is available at http://bit.ly/blhsPN.

4Of course, the + function could be used directly in all of these examples—but bear with us.
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support two-way message passing that uses blocking message loops. Agents
hold state that can be replaced asynchronously, and the basic operation for
doing so is send, which sends actions to an agent. Actions are functions of one
or more arguments that take the agents current state and returns the agents
new state.

In the following example, we first bind the name a to a new agent, which
initially holds an empty vector. Then we define a function that constitutes an
action that we will send to a. The function takes two parameters; one is the
agent’s current state, the other is an element to add to the vector that the agent
currently holds. The conj function is used to add an element to the end of a
vector. Finally we use send to add a few elements asynchronously.

(def a (agent []))

(defn action [old-state element-to-add]

(conj old-state element-to-add))

; Send the action a few times

(send a action 1)

(send a action 2)

(send a action 3)

After running the above program, the state of agent a will be a vector of three
elements. Using send will apply the action function to the agent’s state in
another thread at some point. The threads used by send come from a fixed-size
pool with C + 2 threads, where C is the number of CPU cores on the system.

Other threads could hypothetically have changed the state of the agent in
between the above calls to send, in which case the state of the agent is determined
by the interleavings of threads and the combination of send operations.

3.1.4 Refs and Transactions

A ref is a type of variable that can store an arbitrary value (an integer, a
map, a vector etc.), and a ref’s value can be retrieved using Clojure’s deref
function. Changing the value of a ref must happen inside a transaction, which
is created by using the dosync macro. Here we present the canonical example
of transferring money from one bank account A to another account B:

; Account A initially has a balance of 1000

(def A (ref 1000))

; Account B initially has a balance of 500

(def B (ref 500))

; Function to transfer amount

(defn transfer [from to amount]

(dosync
(alter A - amount)

(alter B + amount)))

; Transfer 250 from A to B

(transfer A B 250)
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First, the example shows how to bind the names A and B to a new ref each.
Then it shows how to define a function, using the defn macro to bind the name
transfer to a function that takes three arguments: from, to and amount. The
function uses dosync to make the two operations of transferring money from A
to B atomic. The last line shows how to use the transfer function to transfer 250
from A to B. Each account will end up with a balance of 750.

The function alter is used to replace the value of a ref with the result of
applying a function (+ and – are functions) to its old value. In this case, we
give alter three arguments: the ref to alter, the function to apply to it and the
amount to withdraw or deposit. The applied function will receive the old value
and the amount as arguments in said order.

It is also possible to call another function called ref-set to directly specify a
ref’s value. This function takes the ref as the first argument and its new value
as the second argument. If we were to use ref-set in the above example, transfer
would instead look similar to this:

(def transfer [from to amount]

(dosync
(ref-set A (- (deref A) amount))

(ref-set B (+ (deref B) amount))))

It is more idiomatic and convenient to use the alter function.
To avoid write skew (see Section 2.3) the ensure function is provided, which

must be called inside a transaction. It is used to indicate that the value of one
or more refs depend on the value read from another. The function returns
the value of a specified ref and protects the ref from modification by other
transactions until the current transaction commits.

3.2 STM Implementation

Here we will give an overview of the implementation of Clojure’s software
transactional memory system, such that the reader is equipped to better un-
derstand the consequences of the changes we make outlined in Section 3.4. In
this section we provide many details; a higher-level classification of the STM
is presented in Section 3.3. For even more details about the implementation,
the reader should consult [51]. We refer several times to central functions and
macros related to Clojure’s STM, which are explained in the previous section.

3.2.1 Creating Transactions

Transactions are started with the dosync macro. When a transaction is started
within a transaction, it joins the outer transaction. This means that any inner
transactions will commit when the outer transaction commits.

A transaction can retry for various reasons, which we will describe in the
subsequent sections. On every try, the transaction is assigned a new read point.
Read points specify the total order of transaction tries across all transactions
started, and is used to implement snapshot isolation. Transactions will retry a
maximum of 10,000 times before failing with an exception.
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From the perspective of the STM implementation, only operations per-
formed on refs in a transaction’s body are important. The refs that have been
assigned new values (see Section 3.2.3) will have their new values written when
the transaction commits.

3.2.2 Dereferencing a Ref

Much of the implementation of the STM lies within the operations that can be
used on refs. In what follows, we will use these operations as the basis for
explaining how Clojure implements software transactional memory.

A ref can be dereferenced—or read—outside transactions. If several refs are
to be read to get a consistent snapshot of their values at a single point in time, a
transaction is needed. In any case, reading data from a ref will not block other
readers or writers.

Dereferencing is done with the aptly named deref operation. If this op-
eration is used outside a transaction, the last commited value at the point of
dereferencing is returned. If it is used inside a transaction, the process is more
involved. Say we have a ref R and a transaction T. Upon dereferencing R
during T, a check is first performed to see if T has set a value for R earlier—this
value is called the in-transaction value of R and is not visible to other transac-
tions. If R has an in-transaction value in T, that value is returned. If that is
not the case, then dereferencing R returns the last committed value older than
T. When values are committed, they are assigned a commit point. The trans-
action’s read point is compared to commit points to find the newest committed
value older than the transaction.

Every ref has a bounded chain of committed values. When dereferencing
a ref inside a transaction, it may happen that the chain contains no values
committed before the current transaction. This situation can occur when many
transactions are running, and the consequence is that the transaction must
retry. When this is the case, a faults counter is incremented. This will instruct
Clojure’s STM to increase the size of the chain of committed values to decrease
the likeliness of this situation to occur again. The chain cannot grow beyond
the ref’s specified bound, which has a default value of 10. The bounds can be
changed programmatically.

The process of dereferencing a ref inside a transaction is illustrated in Fig-
ure 3.1.

3.2.3 Substituting the Value of a Ref

The operations to substitute the value of a ref must all be used inside a trans-
action. Using them outside a transaction will cause an exception to be raised.

Notice that we deliberately use the word substitute, not change. The value
inside a ref is not changed, because this is the nature of values: they do not
change.5 Instead, the value of a ref is replaced atomically by another value.
A consequence of Clojure’s data structures being persistent (see section Section
3.1.1) is that they have value semantics, and Clojure’s STM is only helpful if

5Rich Hickey has written an essay about the importance of this in Clojure, which is available at
http://clojure.org/state.
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Figure 3.1: A flow chart illustrating the process of dereferencing a ref.
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you use Clojure’s data structures. If you were to store a reference to a regular
Java object in a ref, for example, you are suddenly able to change what the ref
stores without using a transaction, since Java objects are not persistent (and
hence immutable).

The following operations can be used to replace the value of a ref with
another:

• ref-set: To directly specify a ref’s value.

• alter: To specify a ref’s next value by applying a function to the ref’s
current value.

• commute: To replace the value of a ref with the result of applying a com-
mutative function to its current value. This allows for more concurrency
as we will explain in Section 3.2.4.

We will explain the two operations ref-set and alter together, since alter can
be considered a convenience operation implemented in terms of ref-set. In case
alter is used, the new value of the ref is calculated by first applying a function to
the ref’s old value and using the result as the ref’s new value. In both cases, the
ref’s value is set using the same call to the underlying STM implementation,
and it is this call we are interested in explaining. We have illustrated the process
of using ref-set in Figure 3.2. In the following, we refer to using either ref-set or
alter as setting the value of a ref.

When, during a transaction, a new value for ref R is attempted set, the
STM first checks whether there is a write conflict. A write conflict occurs
when a transaction T1 detects that another running transaction T2 has already
acquired R (see Acquisition in Section 2.2). First, T1 will attempt to barge the
other transaction, which means T1 will try to make T2 retry, such that T1 itself
can continue and acquire R. If T1 does not succeed in barging, it will retry itself.

There are three conditions that must be met before T1 can barge T2. First, T1
must have run for at least 10 milliseconds. Second, T1 must be older than T2.
The third condition requires that we know the different statuses a transaction
can have:

• Running: The transaction is running.

• Committing: The transaction is in the process of committing.

• Retry: The transaction will retry, but has not begun yet.

• Killed: The transaction has been barged.

• Committed: The transaction has finished by successfully committing.

Transaction T1 can only successfully barge T2 when T2’s status is running. If T2
is committing, has committed, has been killed or is about to retry, then T1 will
retry.

If T1 cannot successfully barge T2 upon detecting a write conflict, then T1
will set its status to retry. Before actually retrying, T1 will block and wait for
a maximum of 100 milliseconds or until T2 stops by committing or retrying.
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This is to reduce the overall likeliness that the two transactions will experience
a write conflict again.

At commit time, the STM will check that all refs attempted written by the
transaction have not been changed by others and that no other transactions are
causing a write conflict. If a write conflict is detected, the conflict resolution
process is the same as explained earlier.

The commute operation replaces the value of a ref with the result of applying
a commutative function6 to the ref’s current value. But whereas alter is used
when you rely on the resulting value during your transaction, commute is for
situations where you do not. Upon invoking commute, Clojure’s STM does not
try to detect any write conflicts—the reverse is true for alter (and ref-set). Write
conflicts for commutes will not be detected until commit time.

Refs can have validators attached, which are simply functions that take a
single argument. When a transaction reaches the commit phase, all the attached
validators are applied to the ref’s potentially new value. If the validator returns
false or raises an exception, the transaction aborts (without retrying) by raising
an exception and the ref remains unchanged.

3.2.4 Locks

Locks are used in several places in Clojure’s STM implementation, but care has
been taken to ensure that they are held for the shortest amount of time possible.
Clojure makes extensive use of a reentrant read/write lock, which allows multiple
readers or a single writer at any given time.7

To dereference a ref inside a transaction, a read lock is taken on the ref,
which is held while running through the chain of previously committed values
until a value older than the transaction is found. If dereferencing happens
outside a transaction, a read lock is taken to get the most recent value, which
does not involve running through the aforementioned chain.

When ref-set or alter is successfully used on a ref, i.e., without causing a
retry, a write lock is taken to associate data about the transaction attempting to
write to the ref. This data is used by other transactions during write conflict
resolution to determine what to do (retry or try to barge the other transaction).
The write lock is released as soon as this data has been set.

Clojure provides the ensure operation to avoid write skew in situations
where a transaction may read and depend on the value of a ref, but does not
change the ref. When ensure is successfully used on a ref, a read lock is taken on
that ref and held for the rest of the transaction. When the transaction commits
or retries, the read lock is released. Setting the value of a ref (via ref-set or alter)
that has already been ensured will release the read lock previously acquired.

Using commute will only take a short-lived read lock during the transaction,
which is the reason it allows for more concurrency than ref-set or alter, which
both take a write lock that excludes all other readers and writers.

At the commit phase of a transaction, all refs to be assigned a new value are
locked with a write lock. This also applies to refs that have been commuted.

6It is up to the programmer to make sure that the function is commutative.
7The corresponding class is called ReentrantReadWriteLock from Java’s concurrency package.
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As soon as the new values have been validated and written, the write locks are
released in the order they were taken.

3.3 Clojure in the STM Landscape

In this section, we place Clojure’s STM in the landscape of software transac-
tional memory according to the design decisions outlined in Section 2.2.

Static or dynamic: Clojure’s STM is dynamic. The range of refs accessed dur-
ing a transaction need not be specified in advance. Every ref that needs
to be given a new value in the commit phase of a transaction is added to
a list during the transaction. Commutes are added to a special list.

Granularity of sharing: The only objects that are considered by Clojure’s STM
are refs. Data in refs are not of any fixed size, i.e., there is no restriction
that the size of data in refs must align on machine word boundaries. The
granularity of sharing can thus be said to be at the ref-level.

Synchronization: Clojure uses blocking synchronization in its STM (see Sec-
tion 3.2.4). Rich Hickey, the author of Clojure, has confirmed in personal
correspondence with us that this decision was inspired by the paper by
Ennals [15].

During a transaction, when a transaction tries to replace the value of a ref
(via ref-set or alter) it will attempt to take a write lock (to acquire the ref) as
explained in Section 3.2.4. This attempt has a time-out (100 milliseconds)
that ensures a transaction will not wait indefinitely for a lock, which could
lead directly to deadlocks.

When a transaction enters the commit phase, other transactions can no
longer abort it and acquire refs that it is about to update. The other
transactions will abort and retry themselves. Thus, when in the commit
phase, the transaction can take write locks on the refs in any order.

Using commute will not acquire a ref during the transaction—the acqui-
sition does not happen until the commit phase. Here, the order of the
locks taken matters. Say two transactions T1 and T2 each use commute on
refs R1 and R2 but in different orders. If the locks were taken in the order
of the commute operations, a dead lock could occur in the commit phases
of the two concurrently committing transactions. For example, T1 would
first lock R1 then R2; T2 first R2 then R1:

T1 T2

lock R1 lock R2
lock R2 lock R1

This gives a deadlock, since T1 is never allowed to get the lock on R2 and
T2 never gets the lock on R1.

Object metadata: The metadata used by Clojure’s STM is stored together with
the refs. Refs have a reference to an object that encapsulates data about
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the last transaction that successfully acquired the ref, including the trans-
action’s timestamp and status. This is used by transactions to detect
which transaction last acquired the ref and to determine if a transaction
can be barged.

Acquisition: Clojure implements eager acquire in its STM. Acquisition means
setting the tinfo object mentioned under object metadata above. Since
acquisition is eager, conflict detection occurs on every attempt to replace
the value of a ref. Commutes do not acquire the ref during a transaction
but first in the commit phase.

Reader visibility: Read-only transactions (readers) are not visible to other
readers or writers, and thus writers (or other readers) will not be able
to barge readers. In terms of the implementation, only writing trans-
actions set metadata on the refs (which makes the transaction visible to
others).

Contention management: When conflicts occur in Clojure, the STM uses a
strategy similar but not identical to Priority (see Section 2.2). As with
Priority, a transaction T1 is allowed to abort another transaction T2 if T1
is oldest. But Clojure further imposes the requirement that T1 has run
for at least 10 milliseconds. The time is measured since the transaction
was created, not since the beginning of the last retry. As part of our
results, we show the difference between Priority and Clojure’s original
implementation in Chapter 5.

As mentioned in Section 2.3, Clojure employs multiversion concurrency control
in its STM implementation. Clojure’s persistent data structures fits particularly
well with this concurrency control mechanism:

• Creating a new version of an instance of a persistent data structure is an
efficient operation.

• Creating the new version will not in any way alter the old version.

• Since Clojure’s persistent data structures have structural sharing, the
memory needed to store several versions of a particular data structure
instance is low.

3.4 Selected Contention Management Strategies

We have selected the contention management strategies Aggressive, Priority and
Karma (see Section 2.2). The Aggressive strategy is in a sense simple and naı̈ve
since any detected conflict just forces an opposing transaction to retry right
away. Intuitively, this should make the strategy a cause of frequent livelocks,
and we are interested in observing whether this holds true in practice.

Priority is not very different from the contention management strategy
already found in Clojure. In Clojure’s original implementation, a transaction
T1 can only barge (see Section 3.2) another transaction T2 if T1 has run for at least
10 milliseconds, known as the barge time. This check is not performed in the
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public void resolveConflict(Transaction me, Transaction other)

{

ContentionManager otherManager = other.getContentionManager();

for (int attempts = 0; ; attempts++) {

if(other.isActive()) {

long delta = otherManager.getPriority() - priority;

if (attempts > delta) {

other.abort();

}

} else break;
}

}

Listing 3.1: The implementation of contention management with Karma
in DSTM2 [24].

Priority strategy, which handles conflicts by letting only the oldest transaction
continue. By removing the check whether the barge time has elapsed, we
effectively have an implementation of Priority in Clojure’s STM. This lets us
gauge the effect of the barge time to see if it has any real significance in our
benchmarks. It is worth noting here that our implementation of Priority was
inspired by the implementation found in DSTM2 [24].

Karma was by far the most difficult strategy to implement in Clojure’s STM.
To illustrate, we list the code to resolve conflicts with Karma from DSTM2 [24]
in Listing 3.1 and the implementation we have written for Clojure’s STM in
Listing 3.2. The code we list from DSTM2 is from the obstruction-free version,
i.e., it does not use locks. Clojure’s STM, on the other hand, uses locks, which
greatly complicates the implementation. We can safely say that our experience
with implementing a correct version of Karma in Clojure have proven to us
that programming with locks is a pain!8

The implementation of Karma from DSTM2 contains a bug, which is visible
in Listing 3.1: there is no sleep time between each check whether the opposing
transaction has more Karma. This means that a transaction that discovers a
conflict will gain Karma very quickly and will be able to abort the opposing
transaction accordingly. With this bug, Karma will resemble Aggressive to
a certain degree. It is worth mentioning that any published research based
directly on the available DSTM2 implementation may have been affected by
this bug.

Most published benchmarks using these strategies have used obstruction-
free (see Section 2.2) DSTM [25] or DSTM2 [24]. In general, it is interesting to
see the result of applying the strategies on an STM such as Clojure’s with its
rather unique combination of features.

8Not to say that our implementation is perfect. More experienced programmers, such as Bryan
Cantrill [7], would likely have been able to simplify and improve the implementation.
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private void karmaResolve(Ref ref) {

int attempts = 0;

boolean barged;

boolean locked;

while(true) {

if(!info.running())
throw retryex;

locked = false;
attempts++;

try {

if(ref.lock.writeLock().tryLock()) {

locked = true;

if(ref.tvals != null && ref.tvals.point > readPoint) {

throw retryex;

}

if(ref.tinfo == null || ref.tinfo == info) {

ref.tinfo = info;

return;
}

if(ref.tinfo.running()) {

LockingTransaction otherTx = ref.tinfo.transaction;

int otherPriority = otherTx.karmaPriority.get();

int thisPriority = karmaPriority.get() + attempts;

if(otherPriority < thisPriority) {

barged = ref.tinfo.status.compareAndSet(RUNNING, KILLED);

if (barged) {

ref.tinfo.latch.countDown();

ref.tinfo = this.info;
return;

}

}

ref.lock.writeLock().unlock();

locked = false;
spinSleep(1000);

}

else {

ref.tinfo = info;

return;
}

}

else {

spinSleep(1000);

}

}

finally {

if(locked)
ref.lock.writeLock().unlock();

}

}

}

Listing 3.2: Our implementation of Karma. Adapted for inclusion.
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Chapter 4

Benchmarking

The many published articles in the area of software transactional memory
research reveals benchmarking as the preferred method of gauging character-
istics of implementations and techniques. We borrow a definition from [46],
which defines a benchmark “as a test or set of tests used to compare the performance
of alternative tools or techniques.” A keyword in that definition is performance,
which is a source of much trouble because it is hard to define with respect
transactional memory.

Despite the prevalence of the method, there is no explicit consensus on
how to benchmark transactional memory. Several benchmark programs and
suites have been proposed but none have gained widespread adoption and
are ususally only available in just one or two languages, e.g.: STMBench7 [20]
is available in Java and C++, STAMP [37] in C, and Wormbench [55] in C#.
There is neither any consensus on the precepts for performing a benchmark as
evidenced by the diverse approaches to benchmarking found throughout the
literature. This situation is to be expected:

“During the early days, when a research area is becoming estab-
lished, it is necessary and appropriate to go through a stage where
diverse approaches and solutions proliferate. At this time, the
bounds of the area are being established and different methods
are being applied. This proliferation is desirable, so there will be a
variety of tools and techniques to be compared by the benchmark.”
[46]

The literature attests to the proliferation of tools and techniques with dif-
ferent approaches to transactional memory, such as hardware, software and
hybrid transactional memory, the introduction of adaptive mechanisms, eager
and lazy strategies, and different levels of guarantee, e.g. wait- and obstruction-
freedom, to name a few. How far the area is in establishing it’s bounds is
unclear, but there are signs of it beginning to take place:

“Evidence that a community has reached the required level of ma-
turity and is ready to move to a more rigorous scientific basis comes
in many forms. Typical symptoms include an increasing concern
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with validation of research results and with comparison between
solutions developed at different laboratories; attempted replication
of results; use of proto-benchmarks (or at least attempts to apply
solutions to a common set of sample problems), [...]” [46]

There is a growing concern with results gathered from current benchmark-
ing efforts. Some researchers have proposed frameworks in which different
STM algorithms can be implemented and benchmarked against a common
workload [24]. From using mostly simple benchmarks, such as red-black trees
and lists, generally called micro-benchmarks, researchers have built, and are
continuing to build, ever more complex benchmarks because of a growing
concern for the validity of results [37, 20, 52, 55]:

“One common limitation for all the TM evaluations referred to so
far is that they use micro-benchmarks or benchmarks where the
parallel structuring has already been done, and therefore do not
properly examine the practicality of TM programming.” [52]

Some researchers have turned their attention to investigating the bench-
marks in use to assess whether or not they are representative of real workloads.
One effort looked at the characteristics the benchmark suites SPLASH-2 [53],
PARSEC [5] and STAMP [37], and found a high degree of clustering with re-
spect to several metrics, meaning a lack of diversity in the ways in which they
stress a TM system, and concluded that “more emphasis should be placed on
the design and implementation of transactional memory programs if this field
is going to continue to grow” [29]. That opinion is also found in [24] which
says: “the community needs more experience with applications written in a
transactional style before we can reach consensus on the best ways to support
this API.”

In other cases, researchers have sought to provide a better understanding
of programs that exhibit transactional behavior by analyzing 35 lock-based
programs [9]. Three programs from the STAMP [37] suite, vacation, genome
and k-means along with Lee-TM [3] were investigated in [2]. Some efforts with
the explicit goal of providing realistic benchmarks include STMBench7 [20] and
Lee-TM [3].

The benchmarks mentioned so far, and in fact nearly all benchmark pro-
grams and suites available, are implemented in imperative languages. The
authors of [41] provide the first and only benchmark for the well-known func-
tional programming language, Haskell. The dominance of languages, such as
C, C++ and Java, with respect to benchmarking of STM systems is noted in [10]
where the authors translated the Delaunay Mesh Refinement benchmark from
the Lonestar [33] benchmark suite, from C++ to Common Lisp. They intend to
translate the STAMP suite to Common Lisp.

The dearth of STM benchmarks for functional programming languages in
general, and the complete lack of ones written in Clojure or Common Lisp,
requires that we develop some ourselves. This brings up several questions, but
one in particular, which is the scale, or size, of the benchmark or benchmarks.
This we deal with in the next section.
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4.1 Micro or Macro

Generally, benchmarks are distinguished by their scale and labelled as either
micro- or macro-benchmarks. To our knowledge these categories have not been
clearly defined, but most articles apply the term micro-benchmark to workloads
that consists of operations performed on a single data structure, e.g., red-black
tree, hash-map or linked-list, and macro-benchmark to anything more complex
than that. Examples of macro-benchmarks include: Atomic Quake [56], a
transactified version of the server application for the once popular multiplayer
game; STMBench7, which consists of “a set of graphs and indexes intended to
be suggestive of many complex applications, e.g., CAD/CAM” [20] and Stanford
Transactional Applications for Multi-Processing [37], or STAMP, which as of
version 0.9.10 includes eight applications that do various tasks, such as gene
sequencing, maze routing and simulation of a travel reservation system.

A single micro-benchmark by itself, provides only a narrow view of the
performance of a TM design and can produce misleading results, for the reason
that it is unlikely to be representative of the tasks that the STM eventually will
be subjected to. Using several different micro-benchmarks can provide more
insight, but [29] notes that:

“If too few benchmarks are chosen, the applications may not pro-
vide the stressors needed to evaluate a design. If too many bench-
marks are chosen, their behavior may overlap and increase design
time without providing additional useful information.”

The microbenchmarks are losing in favor of larger and more complex bench-
marks, such as STMBench7, based on the rationale that:

“Measuring performance of an STM in an overly simplified setting
can be at best uninformative and at worst misleading as it may steer
researchers to try to optimize irrelevant aspects of their implemen-
tations.” [20]

The authors of [20] found that of the four STMs they benchmarked with
STMBench7, all “crashed at some point or another” [14]. They explain in detail
that the problems were mostly related to memory management. An important
finding of [14] is that the use of micro-benchmarks had not revealed the fact
that none of the four STMs were unbounded and dynamic—a point which
hardware transactional memory is often critized for. Additionally, the authors
found that:

“Performance results we gathered also differ from previously pub-
lished results. We found, for instance, that conflict detection and
contention management have the biggest performance impact, way
more than other aspects, like the choice of lock-based or obstruction-
free implementation, as typically highlighted.” [14]

In their conclusion they note: “[. . . ] observations made on small-scale tests do
not translate well to large-scale, thus testing of larger-scale systems is necessary.” [14]
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In light of the critique of microbenchmarks, or small-scale tests in general,
it seems large-scale benchmarks are the way to go. However, constructing a
benchmark of considerable scale, such as STMBench7, is a major undertaking in
itself that requires much effort—far more than the scope of this project allows.
The difficulty of developing good, representative, large-scale benchmarks is
discussed in [46, 50, 30].

A great deal of research has been conducted with the use of micro-bench–
marks and produced valuable results. Precisely because they are small, they
can be tailored to stress a particular aspect of an STM, which is valuable to the
researcher who needs data on how a particular part of an STM behaves when
stressed excessively. The major pitfall is being unaware of the limitations of
small-scale, or micro-benchmarks, and stretching ones conclusions too far.

Rather than settling on a single, large benchmark, we opt for a collection
of smaller programs of varying size. Instead of writing up all the programs
from scratch, we have found inspiration in various existing benchmarks. Our
benchmark programs are presented in Section 4.4. We believe this to be a
reasonable collection as our purpose is not to compare Clojure’s STM to other
implementations, but to gauge the impact of the changes we make.

4.2 Metrics

We have found no set of generally accepted metrics for benchmarking STM
algorithms in the literature. On the contrary, there is a variety of metrics used,
some more esoteric than others. For example: [29] counts instructions and
memory addresses, uses nine metrics, six of which are ratios and an additional
five metrics, four of which are counted in processor cycles; [34] measures only
speedup ratio, execution time and transaction abort ratio; [36] uses transactions
per second exclusively; [41] uses 15 metrics, counts transactions and size of
read- and write-sets. Agreement upon the usage of metrics or at least a form of
guideline in this respect would benefit future research by making results more
amenable to comparison.

We use a selection of metrics from [2]. They are well-defined, provide a good
deal of information and in some cases complement each other. Descriptions
are adapted from the same source.

• Speedup: A measure of how performance scales as the number of threads
increase. The closer the speedup is to being linear, the better.

• Wasted work: The percetage of time spent executing transactions that
was wasted due to of retries/rollback. High values can indicate poor
contention management

• Aborts per commit (retries): The average number of aborts per commit.
In conjunction with Wasted work, it gives an indication of whether the
wasted work was caused by many or only by a few, but long transactions.

• Contention management time: The percentage of the total execution
time spent managing contention.
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4.3 Methodology

As noted in the beginning of this chapter, there is no discernable agreement
about how to approach benchmarking in the field of transactional memory
research. In particular methodology and data analysis is approached in many
different ways and with varying levels of rigor [16]. This section gives a detailed
description of the central elements of our method.

Blackburn et al. [6] states that there are at least five degrees of freedom in
experimental evaluation that can introduce bias into the obtained results. Two
of them, the host platform (hardware and operating system) and the language
runtime, are common to managed as well as unmanaged languages. The
remaining three, heap size, nondeterminism and warm-up, are only relevant
to managed languages.

Researchers are exhorted to experiment with different hardware and oper-
ating systems to avoid results that are biased towards a particular configuration
[6]. We have only access to a single machine with eight cores and because it
is used by other researchers, we have to settle for the operating system that is
already installed.

The size of the heap greatly impacts how active the garbage collector is
as well as overall performance [54]. Generally, a smaller heap means more
frequent collections which is desirable in some circumstance, but not in this
one. The transactions in our benchmarks are in many cases so short that even
a fast collect can extend the measured duration significantly. With faster but
more frequent collections, a greater number of transactions are affected which
exacerbates the distortion because the duration of a fast collect, in some cases,
is greater than the durations of the transaction it affects. Furthermore, very
frequent activity from the garbage collector can slow down the program [54]
In contrast, by configuring the JVM to use most of the available memory, many
of the benchmarks can be executed without invoking the garbage collector at
all during measurements. In the cases where the garbage collector is invoked,
only a few transactions are affected, albeit to a larger extent.

The JIT-compiler in Sun’s HotSpot JVM nondeterministically optimizes
parts of a program as it runs, based on information collected at runtime. In-
tuitively, compilation activity is greatest during the first iteration after which
it tapers off. This is the issue of warm-up. Furthermore, the compiler may
optimize the same program more aggressively in some cases and less so in
others. It is possible to start the JVM in interpreter-mode, but performance is
greatly reduced.

For the obtained results to be credible, it is necessary to control nondeter-
minism sufficiently. This is by some considered the most challenging aspect
of experimental evaluation, from a methodological standpoint [6]. This is
understandable, considering that seemingly insignificant changes can have a
significant impact, such as the alignment of the C stack in memory [38]. Two
strategies have been proposed but neither have seen any significant adoption
within the area of software transactional memory research. One is replay com-
pilation [17] in which a compilation plan is created from a series of training
runs and subsequently used to deterministically apply optimizations. This
however requires support from the virtual machine.
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An alternative which does not require any support is multi-iteration deter-
minism [6]. This strategy counters nondeterminism by means of repetition.
Specifically, the run-time is started multiple times and in each instance, the
benchmark is executed multiple times. This is the basic idea in our slightly
modified version of the “practical statistically rigorous methodology” [16].

Invoking the run-time several times makes it possible to obtain statistically
independent results [16]. Multiple iterations of the benchmark allows for the
JIT-compiler to warm up the code. As compiler activity decreases, we expect
most programs to reach steady-state. This general notion is made quantifiable
by the methodology proposed in [16].

Specifically, steady-state is determined by what is called the coefficient of
variation or CoV, which is defined as the standard deviation divided by the
mean. For a friendly introduction to these concepts we refer to [35]. By
measuring the time it takes for each iteration of a benchmark, an average
duration can be calculated for series of iterations and the coefficient of variation
can be determined. If this value falls below a preset threshold, for example 0.01
or 0.02 as suggested by [16], the iterations are considered to be steady-state. For
data analysis, an estimate of the average duration and it’s associated confidence
intervals are calculated based on the mean of the steady-state iterations in each
instance. The reason is that the durations measured within the same instance
are not statistically independent, but the means from different instances are
[16].

As described in [16] a fixed number of iterations is performed for each
instance of the run-time. At a later stage, steady-state is determined for each
instance by considering a window of iterations, starting from the last and
extending backwards to include prior iterations, as long as the coefficient of
variation does not exceed a desired threshold. The approach we take differs
in that we use a sliding window of fixed size. As a benchmark is executed
repeatedly, the new duration is included, the oldest excluded and the coefficient
is determined anew. If it is below the specified threshold, the instance is shut
down and the next is instance started. If the benchmark is executed a specificed
maximum number of times, the instance is shut down.

The sliding window serves two purposes, one of which is to save time.
Because we have several benchmarks, contention managers and CPU core
configurations, doing a full run can easily take several days if configured too
optimistically. This is especially true if some benchmarks are unstable, as
determined by the CoV-threshold, and thus exhaust the maximum number of
iterations allowed in each instance.

For anyone doing experiements, especially with managed languages, [6, 16,
38, 54] are recommended reading.

4.3.1 Benchmark Rig

To conduct the experiements in a methodical manner, we constructed a rig
which entirely automates the process of executing the experiments and collect-
ing data. The rig is comprised of the following components: instrumentation,
scaffolding and a shell script.

There are two parts to the instrumentation: the code injected at certain
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places in Clojure’s LockingTransaction class to collect information about each
transaction and a number of arrays constituting a global transaction log. In
addition there are utility functions for initializing and resetting the log, writing
the log to a file, collecting metadata about the JVM instance and calculating the
coefficient of variation.

The scaffolding is written in Clojure and uses the utility functions exposed
by the instrumentation to perform repeated runs of a benchmark until steady
state is reached or a maximum number of runs has been performed. Before
each run the garbage collector is invoked to do a full collect, the log is reset
and the benchmark is initialized. After each run the log is written to a file. The
source code for the scaffolding is included in Appendix B. Note in particular
the functions dobenchmark, run-until-steady and timed-run in the scaffolding API.

The shell script is responsible for continually invoking the JVM. It consists
primarily of four nested for-loops. The three outermost loops produces the
Cartesian product of contention managers, benchmarks and number of cores
to use. The innermost loop repeats each combination a given number of times,
in our case ten. The shell script is included in Appendix B.

We designed the rig to have the smallest possible overhead. The shell script
has effectively no impact and the scaffolding code is only executed inbetween
the repeated runs of a benchmark when no measurements are being made.
The instrumentation is essentially the sole contributor of overhead because it
imposes extra work on each transaction. However, the added work is neglible
in comparison with the overhead of the transactions themselves.

As data is collected during a transaction, it is stored temporarily in instance
variables in the LockingTransaction object. When the transaction has finished
committing and effectively ended, the data is written to the shared log. By
postponing the writes until the transaction has ended, only a minimum number
of accesses are made to the shared log. Any delays at that point affect the
measured duration of the benchmark iteration, which, by virtue of being several
orders of magnitude longer, is less sensitive. Finally, the LockingTransaction

object and the instance variables that hold the data are likely in the cache
because each thread reuses the object for subsequent transactions. While there
is no guarantee that a certain thread will not be executed on a different core
and thus with an outdated cache, the potential overhead is insignificant.

4.4 Benchmark Suite

We have developed four benchmarks to test Clojure’s STM with the different
contention managers we have implemented. We describe them below, and the
source code for them is included in Appendix A. Note that the benchmarks have
not been written for best performance in their respective scenarios. Instead,
they have been adapted to stress Clojure’s STM in different ways.

The number of threads started by each benchmark is either 1, 2, 4 or 8,
depending on which configuration is currently running.

Shared Integer: This is the simplest of the benchmarks. Multiple threads are
started and each of them has the simple task of incrementing a shared
integer. Each thread starts a transaction and increments the integer by
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one 100,000 times. The benchmark will resultingly run a large number of
short transactions. We found the inspiration for this benchmark in [41].

Vacation: A simulation of a system for vacation planning. The system holds
four Clojure refs as shared memory, each representing a table containing
cars, flights, rooms and customers. Each car, flight and room has an
associated ID, total count and available count. Each customer has a list of
reservations associated, which specifies what has been reserved, the ID
of the reserved item and the price.

Multiple threads will run an equal fraction of 25,000 rounds, and in each
round they will perform four actions. These four actions are selected at
random in each round:

• make a random reservation of a car, room or flight,

• delete a random customer and that customer’s reservations, or

• update the total count of an item by adding or subtracting a random
number while ensuring that no customer will loose reservations,
and that there will be no state of inconsistency.

Each action involves reading and writing multiple tables. The transac-
tions are longer than the transactions in the Shared Integer benchmark, and
their duration will vary slightly. The duration of a transaction depends
on which of the above actions are seleced for that transaction.

The benchmark was inspired by the vacation benchmark in the STAMP
suite [37].

Monte Carlo Pi: Monte Carlo methods refer to algorithms that use repeated
random sampling to compute results. In our case, we use the Monte
Carlo method to calculate an approximation of Pi.

Calculating π is done by first randomly scattering a number of points
into a coordinate system represented by a square grid. We now imagine
that we inscribe a circle into the grid. Let c denote the number of points
inside the circle and t the total number of points. The approximation P of
π is then defined as P = 4 c

t .

In our implementation, each cell in the grid is represented by a ref. Points
are placed into these refs through transactions. Occasionally, two or
more threads will conflict, which ensures contention. The transactions in
this benchmark are relatively long-lived compared to Shared Integer and
Vacation.

K-means: This benchmark is a parallelized version of the K-means algorithm.
The algorithm’s goal is to find k clusters of data by using continual re-
finement. Data is represented as feature vectors and as such can be
understood as points in some n-dimensional space.

The actual clustering happens when each data point (feature vector) is
assigned to the cluster that has the closest centroid. A centroid is a single
n-dimensional vector that represents the mean of all data points in a
cluster. When data points have been added to clusters, the centroid of

32



each cluster is recalculated and potential reassignment of data points is
done. The algorithm stops when centroids do no longer change or when
a specified maximum number of iterations has been reached.

Parallelization of this algorithm can be done by dividing the complete set
of data points into c partitions, where c is the number of CPU cores avail-
able, and then have c threads take care of the actual cluster assignment of
each partition. The clusters are represented as Clojure refs.

We were inspired to implement k-means by both the STAMP [37] suite
and a Clojure parallelization case study [32]. In the latter case, the case
study was done to perform comparisons with other implementations of
parallel k-means. This is not our aim, which is the reason we have made
no effort to optimize our implementation to make it particularly fast.

Compared to the other benchmarks, the K-means benchmark uses trans-
actions that are longer-lived, depending on the size of the data set.
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Chapter 5

Results

We here give an overview of the results obtained through our benchmarks
and highlight the most interesting findings. The confidence intervals shown
in the following diagrams are at the 95 % level unless otherwise noted. For all
diagrams showing a confidence interval, three numbers are displayed per data
point. The number at the top is the upper bound of the confidence interval, the
middle number is the average, and the bottom number is the lower bound of the
confidence interval. We show diagrams according to the metrics presented in
Section 4.2. When we refer to Clojure in the following, we mean the contention
management strategy found in the Clojure’s STM.

Figure 5.1 shows the speedup ratio of contention managers across bench-
marks and CPU cores. Clojure, Karma and Priority has a speedup in K-means
as the number of cores increases. Aggressive, on the other hand, slows down
dramatically when going from two to four cores. In the three other bench-
marks, this pattern does not occur. In Monte Carlo Pi (abbreviated mcp in the
diagrams), Clojure and Priority speeds up for two and four cores, but slows
down for eight cores. All contention managers experience a slowdown in the
Shared Integer and Vacation benchmarks. Karma and Aggressive exhibits a
similar pattern in both Monte Carlo Pi, Shared Integer and Vacation, i.e., they
slow down as the number of cores increases.

Figure 5.2 shows benchmark durations for the different contention man-
agers as the number of CPU cores increases. It is clear from the large confi-
dence intervals that Aggressive is very unstable in the K-means and Monte
Carlo Pi benchmarks, especially for four and eight cores. Clojure and Priority
are practically identical in K-means independent of the number of cores, but
in Shared Integer, Vacation and Monte Carlo Pi they differ significantly with
non-overlapping confidence intervals. Karma performs comparably to Clojure
and Priority in K-means and Vacation. For Shared Integer, Karma is better than
Priority but worse than Clojure. Finally, in Monte Carlo Pi, Karma is dramat-
ically worse than Clojure and Priority for eight cores. The pattern is the same
for less cores, albeit less pronounced.

Figure 5.3 shows the average percentage of wasted work per transaction.
Aggressive’s confidence intervals are large for K-means in general and for
Monte Carlo Pi with two cores, indicating a significant amount of fluctuation
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Figure 5.3: Wasted work.
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in these benchmarks. For two cores in Vacation, Aggressive has significantly
more wasted work compared to the other contention managers, but as the
number of cores increases, they approach Aggressive, and for eight cores,
Priority is slightly worse than Aggressive. Clojure and Priority are almost
the same in the K-means benchmarks. Shared Integer and Vacation, shows a
pattern where Priority is better than Clojure on two cores, but the reverse is
true for four and eight cores, although the difference is small. Karma shows
a significantly higher percentage of wasted work in Monte Carlo Pi compared
to Clojure and Priority, but is still better than Aggressive. Karma is the best
contention manager in terms of wasted work for four and eight cores in Shared
Integer and Vacation.
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Figure 5.4: Retries per commit.

Figure 5.4 shows the average number of retries for every succesful commit.
Aggressive causes a high number of retries per commit in K-means and Monte
Carlo Pi as the number of cores increases. For four and eight cores in Vacation,
Aggressive is comparable to Clojure, but on two cores Aggressive is signifi-
cantly worse. The number of aborts per commit decreases for Aggressive on
Vacation, but increases for the other contention managers. Clojure, Karma and
Priority are similar on the K-means benchmark. In Monte Carlo Pi, Clojure is
always best, followed by Priority and then Karma with more than twice the
number of retries as Priority.

Figure 5.5 shows the average amount of time spent on contention managent
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Figure 5.5: Contention management time.
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per transaction. For K-means, Shared Integer and Vacation, Aggressive, Clojure
and Priority spend roughly the same amount of time on contention manage-
ment. Karma, on the other hand, consistently uses more time for contention
management than all the others.

5.1 Discussion

It is obvious that Aggressive is unstable, especially when the number of cores
increases. The reason is that Aggressive is more sensitive to the timing of
thread interleavings because: (1) there is no waiting between retries, and (2)
there is no priority ordering of transactions, i.e., any transaction can force any
transaction to retry. This makes Aggressive more sensitive to non-determinism
introduced through the underlying platform’s thread scheduler. In some cases,
the threads running transactions may execute in an order that causes many
conflicts and thus retries (a livelock situation). In other cases, threads may just
happen to execute in an order that causes less conflicts. Furthermore, the reason
that we see more fluctuation in Monte Carlo Pi and K-means than the other
benchmarks is that transactions in these are longer. Longer transactions have
a wider window of time in which they can potentially be aborted, increasing
the likeliness of them having to retry. Short transactions, such as those in
Shared Integer and Vacation, are more likely to get their work done before
being aborted.

Contrast this to Priority and Clojure. Here, the priority ordering ensures
that the set of transactions that can cause a transaction T to restart becomes
smaller over time. At some point, T will take precedence over any other
transaction, simply because it is the oldest.

One of our results show that the benchmark duration, retries per commit
ratio and percentage of wasted work is high for the Monte Carlo Pi benchmark
on Karma. We attribute this to the fact that Karma waits for a constant amount
of time for every attempt to acquire a ref. This happens in a loop until either
the accumulated Karma is so high that the ref can be acquired, or until the
transaction is aborted by another with higher priority. Since transactions are
relatively long in Monte Carlo Pi and because many refs are writte, the potential
for retries increases. Every retry incurs more wait time.

Compared to the contention management strategies we tested, it seems that
Clojure’s current contention management strategy provides the best overall
performance. There are some cases where Priority, Karma and even Aggressive
has slight advantages, but not enough to warrant substituting Clojure’s current
strategy with one of them. There may be other strategies that can provide better
overall performance than the one currently offered in Clojure. Our results
have clearly shown that the choice of contention management strategy is very
significant for performance of STMs.

40



Chapter 6

Conclusion

Concurrent programming with locks is difficult and brings a well-known range
of problems with it. In the introduction to this thesis, we set out to explore an
alternative to lock-based concurrency known as software transactional memory
(STM). We chose to investigate the STM implementation found in Clojure—a
functional programming language with the characteristic Lisp syntax. Clojure
has a unique set of features including software transactional memory that
employs multiversion concurrency control, and persistent data structures. To our
knowledge, this combination has not previously been investigated in academic
literature.

One of the STM design issues that can have significant impact on per-
formance is contention mnagement, which deals with strategies for handling
conflicts between transactions. Our specific goal was to investigate the con-
sequences of implementing a selection of different contention management
strategies in Clojure’s STM.

We began our investigation by presenting an overview of software transac-
tional memory in general, including a history of its origins and a list of the most
important design issues that we have come across in STM literature. Besides
contention managent, synchronization is an important factor in the design of
STMs. Much previous work has been invested in obstruction-free STMs, which
do not employ locks in their implementations, but newer research indicates
that faster STMs can be developed if locks are used. We also included a section
describing multiversion concurrency control, which Clojure—as mentioned—
uses in its STM.

In the subsequent chapter, we gave an introduction to Clojure the language.
The reader was presented with a basic overview of Clojure’s syntax, data struc-
tures and how to use the STM. We explained how the STM is implemented in
Clojure and followingly placed Clojure in the landscape of STMs in accordance
with the design issues mentioned previously. Finally, we discussed the con-
tention management strategies that we chose to implement in Clojure’s STM,
namely Aggressive, Priority and Karma.

Our method for gauging the consequences of using the aforementioned
contention managers is based on benchmarking. We presented an overview of
the literature on benchmarking, including the problems and pitfalls associated
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with benchmarking in a relatively new research area—a category that software
transactional memory falls under. A choice in benchmarking is scale, i.e.,
whether to use micro or macro benchmarks. Much research on STM uses micro
benchmarks, but some argue that macro benchmarks are more representative.
In our work, we chose to use a combination of smaller programs to benchmark
the different contention managers, and these programs were presented. In
the final section about benchmarking, we gave a detailed overview of the
statistically rigorous method we used in obtaining and analyzing results.

The results we have obtained from running our benchmarks showed that
the choice of contention management strategy has a significant influence on
the performance of Clojure’s STM. Nonetheless, Clojure’s original contention
management strategy is best of the ones tested, except for a few specific cases.
The Aggressive strategy appeared to cause many livelock situations resulting
in a large amount of wasted time and longer benchmark durations. Karma and
Priority both performed better in most cases, but did not top the contention
management strategy already found in Clojure.
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Chapter 7

Future Work

As our results show, the choice of contention management strategy has a sig-
nificant influence on the performance of Clojure’s STM. While the ones we
tested mostly performed worse than Clojure’s own, there is still a wide range
of strategies in published research that have not been tested in Clojure’s STM.

Our results also showed that in certain cases, some of the other contention
management strategies were a little better than Clojure’s. Some research has
suggested that STMs should be adaptive so as to dynamically choose the strat-
egy that suits the current situation best. Again, this is something that has not
been done in Clojure’s STM.

It is our impression that more work needs to be done to standardize bench-
marking for software transactional memory. Because STM implementations
are relatively complex and because the requirements posed by applications
differ, it is impossible to design the one true benchmark that tests everything.
Many questions are still left unanswered and much work is ahead to assess
the viability of software transactional memory as a tool for writing concurrent
programs in the future.
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Appendix A

Benchmarks Source

This appendix gives the source code for our benchmarks. None of the programs
are written for any sort of real-world usage but merely to stress Clojure’s STM
in certain ways. All of them are adapted to our needs in terms of running the
benchmarks.

SharedInt

(ns
benchmarks.shared-int
"This namespace contains the simple SharedInt benchmark inspired by the one
mentioned in the article ’Dissecting Transactional Executions in Haskell ’. The
benchmark is very simple; it spawns a number of threads matching the number of
available cores. Each thread will continually increase a shared integer, until
it reaches 100000."
(:use benchmarks.core))

(def *shared-integer* (ref 0))

(def max-value 100000)

(defn agent-action
"Represents the action performed by the agents to increase the value of the
shared integer."
[increments]
(dotimes [_ increments]

(dosync
(alter *shared-integer* inc))))

(defn run-benchmark
"Starts n agents, where n is the number of available cores on the machine.
Each agent will run agent-action. This function will wait for each agent to
finish, and then display the value of *shared-integer*."
[]
(let [agents (for [_ (range *core-count*)]

(agent (/ max-value *core-count*)))]
(print "Starting" (count agents) "agents... ")
(doseq [a agents]

(send a agent-action))
(println "Done.")
(print "Waiting for agents to finish... ")
(flush)
(apply await agents)
(println "Done.")
(println "Value of shared int:" @*shared-integer*)))
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Vacation

(ns
benchmarks.vacation
"This namespace contains a benchmark inspired by the one found in STAMP called
vacation."
(:use

clojure.contrib.def
benchmarks.core))

(def cars (ref {}))
(def rooms (ref {}))
(def flights (ref {}))
(def customers (ref {}))

(defvar *config* {:queries-per-action 4
:table-item-count 500000
:actions 25000})

(defstruct item
:price
:total-available -count
:reserved-count)

(defstruct reservation
:type ; :room, :car, :flight
:id
:price)

(defn make-table [max-relations]
(loop [i 0

table (transient {})]
(if (< i max-relations)

(let [item (struct item
(rand-int 1000)
(rand-int 500)
0)]

(recur (inc i) (conj! table [i item])))
(persistent! table))))

(defn initialize -tables!
"Initializes the tables by adding a number of tuples to them. The number of
tuples is specified in the :table-item-count config setting. Each tuple gets
a key used to look it up in the table."
[]
(let [relations (*config* :table-item-count)

cars-table (make-table relations)
rooms-table (make-table relations)
flights-table (make-table relations)
; we represent the customer’s reservation as a vector of reservation
; structs
customers -table (zipmap (range relations) (repeat relations []))]

(dosync
(ref-set cars cars-table)
(ref-set rooms rooms-table)
(ref-set flights flights-table)
(ref-set customers customers -table)))

; return nil for convenience - when using the REPL, we don’t want to have the
; contents of any tables printed - they may be pretty large.
nil)

(def item-type->item-table {:car cars
:flight flights
:room rooms})

(defn reserve-item!
"Reserves an item of a given type by increasing the item’s :reserved -count and
adding the reservation to the customer ’s list of reservations. Must run in a
transaction and the tables must have been initialized. Returns the reservation
(an instance of the reservation struct.) if succesful , nil if not."
[item-type item-id customer-id]
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(let [item-table (item-type->item-table item-type)
customer (@customers customer-id)
item (@item-table item-id)]

(if (and item-table item customer)
(let [free-items (- (item :total-available -count)

(item :reserved-count))]
(if (< 0 free-items)

(let [price (item :price)
reserv (struct reservation

:car
item-id
price)]

(alter item-table update-in [item-id :reserved-count] inc)
(alter customers update-in [customer-id] conj reserv)
; return reservation to signify that items were available for the
; given id
reserv)

; return nil to signify that there were no free items
nil))

; return nil to indicate that neither the item-table, customer or item
; was found using the specified params
nil)))

(defvar reserve-car!
(partial reserve-item! :car)
"Reserves a car. See reserve-item!.")

(defvar reserve-flight!
(partial reserve-item! :flight)
"Reserves a flight. See reserve-item!.")

(defvar reserve-room!
(partial reserve-item! :room)
"Reserves a room. See reserve-item!.")

(defn make-random-reservations!
"Attempts to make a random number of reservations (a flight, room or car.) for
a random customer."
[n-max]
(dotimes [_ (inc (rand-int n-max))]

(let [item-type ([:car :flight :room] (rand-int 3))
item-table (item-type->item-table item-type)
item-id (rand-int (count @item-table))
customer -id (rand-int (count @customers))]

(dosync
(reserve-item! item-type item-id customer-id)))))

(defn delete-customer!
"Deletes a specified customer and the customer’s reservations. Returns the
customer (i.e. a vector of the customer’s reservations) that was deleted. Must
run in a transaction."
[customer -id]
(let [customer (@customers customer-id)]

(if customer
(do

; remove customer
(alter customers dissoc customer-id)
; decrease :reserved-count for the items that the customer had reserved
(doseq [{item-type :type id :id} customer]

(let [item-table (item-type->item-table item-type)
old-item (@item-table id)
updated-item (update-in old-item

[:reserved -count]
dec)]

(alter item-table assoc id updated-item)))
customer -id)

; return nil if the customer wasn’t found
nil)))

(defn delete-random-customer!
"Deletes a random customer and the customer’s reservations. A random customer
ID is chosen between 0 and (count @customers), which may mean that no customer
is deleted in a random number of cases."
[]
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(let [customer (rand-int (count @customers))]
(dosync

(delete-customer! customer))))

(defn update-item-count!
"Adds delta-count to the total available count of the specified item. If an
item with the specified ID doesn’t exist, if the count will become negative,
or if the count will become less than :reserved -count, return nil. If it does
exist, return the updated item."
[item-type item-id delta-count]
(let [item-table (item-type->item-table item-type)

item (@item-table item-id)
updated-item (update-in item [:total-available -count] + delta-count)
{new-total :total-available -count
reserved :reserved-count}

updated-item
consistent? (and (<= 0 new-total)

(<= reserved new-total))]
(when consistent?

(alter item-table assoc item-id updated-item)
updated-item)))

(defn update-random-item-count!
"Attempts to update a random item’s count in a random table a random number of
times."
[]
(let [item-type ([:car :flight :room] (rand-int 3))

item-table (item-type->item-table item-type)
rand-op ([+ -] (rand-int 2))
rand-count (rand-op 0 (rand-int 100))
rand-id (rand-int (count @item-table))]

(dosync
(update-item-count! item-type rand-id rand-count))))

(defn client-action [actions queries-per-action]
(dotimes [_ actions]

(let [possible-actions [#(make-random-reservations! queries-per-action)
delete-random-customer!
update-random-item-count!]

action (possible -actions
(rand-int (count possible-actions)))]

(action))))

(defn initialize -benchmark
"Run before benchmarking."
[]
(initialize -tables!))

(defn run-benchmark
"Run benchmarks. Remember to call initialize -benchmark beforehand."
[]
(println "Number of cores:" *core-count*)
(let [agents (for [_ (range *core-count*)]

(agent (/ (*config* :actions) *core-count*)))]
(println "Number of agents:" (count agents))
(flush)
(doseq [a agents]

(send a client-action (*config* :queries-per-action)))
(apply await agents)))

K-means

(ns benchmarks.kmeans
"A benchmark based on a parallelized version of the k-means (Lloyd’s)
algorithm."
(:use

clojure.set
benchmarks.core))

(defstruct cluster :centroid :data)
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(def clusters nil)

; Copied from Clojure 1.2
(defn partition -all

"Returns a lazy sequence of lists like partition , but may include
partitions with fewer than n items at the end."
{:added "1.2"}
([n coll]

(partition -all n n coll))
([n step coll]

(lazy-seq
(when-let [s (seq coll)]

(cons (take n s) (partition -all n step (drop step s)))))))

(defn generate-random-data
"Returns a seq of random 2-dimensional vectors. The seq has n elements , and
the vectors lie within the bounds of x-max and y-max."
[n x-max y-max]
(for [_ (range n)]

[(rand-int x-max) (rand-int y-max)]))

(defn distance
"Calculates the distance between two n-dimensional coordinates (vectors)."
[p q]
(let [squared-coord-diffs (map #(Math/pow (- %1 %2) 2) p q)]

(Math/sqrt (reduce + squared-coord-diffs))))

(defn closest-cluster
"Gets the ref of the cluster in cluster-refs that is closest to v."
[v cluster-refs]
(apply min-key #(distance v (:centroid (deref %))) cluster-refs))

(defn unique-initial-centroids
"Attempts to find k unique initial centroids by iterating over the data points
in data. Stops as soon as the centroids are found or when all data has been
iterated through.

This function has O(n) complexity , where n is the number of data points.
Hopefully the data is varied enough that n is never reached."
[k data]
(let [data-count (count data)]

(loop [centroids #{}
iter 0]

(if (and (< iter data-count)
(< (count centroids) k))

(recur (conj centroids (nth data iter))
(inc iter))

centroids))))

(defn initial-clusters
"Creates a seq of k initial clusters, i.e., clusters where the first cluster
contains all data points (in a set) and the others are empty. Each of the
clusters have a centroid randomly selected from the data set. Clusters will
not share a centroid."
[k data]
(let [centroids (unique-initial-centroids k data)

first-cluster (struct cluster (first centroids) (set data))
rest-clusters (for [c (rest centroids)]

(struct cluster c #{}))]
(cons first-cluster rest-clusters)))

(defn centroid
"Calculates the centroid from the vectors in data. The centroid is calculated
by finding the arithmetic mean of the vectors. This function assumes that all
vectors have the same dimensions as the first one."
[data]
(let [d (count (first data))

component -seqs (for [i (range d)] (map #(% i) data))
component -sums (map #(reduce + %) component -seqs)
component -means (map #(/ % (count data)) component -sums)]

(vec component -means)))
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(defn assign-clusters!
"Assigns each vector in data to a cluster in cluster-refs by first removing
the vector from any previous cluster it may have been in and then adding it to
the closest one."
[data cluster-refs]
(doseq [subset (partition -all 2 data)]

; add 2 points per transaction
(dosync

(doseq [v subset]
; add v to closest cluster
(let [closest (closest-cluster v cluster-refs)]

(alter closest update-in [:data] #(conj % v)))))))

(defn centroids -converged?
"Determines whether the seq of centroids in a are equal to the seq of
centroids in b. The order of the centroids is significant."
[a b]
(every? true? (map = a b)))

(defn assign-centroid!
"Calculates and assigns a cluster’s centroid."
[cluster-ref]
(dosync

(let [cluster-data (:data @cluster-ref)]
(when (seq cluster-data)

(alter cluster-ref assoc :centroid (centroid cluster-data))))))

(defn complete-data-set
"Returns a set containing all data vectors from all clusters in clusters.
(NOTE: The clusters are expected not to be refs.)"
[clusters]
(let [data-sets (map :data clusters)]

(apply union data-sets)))

(defn cluster-refs->centroids
"Gets a seq of centroids from a seq of cluster refs."
[cluster-refs]
(doall (map #(:centroid (deref %)) cluster-refs)))

(defn initialize -benchmark
"Initializes the benchmark."
[k data]
(alter-var-root (var clusters)

(fn [_]
(doall (map ref (initial-clusters k data)))))

; return nil for convenience (no printing of clusters)
nil)

(defn run-benchmark
"Runs the k-means benchmark , creating k clusters in a maximum of max-iter
iterations using the specified data."
[max-iter]
(println "Running k-means on" *core-count* "cores")
(let [cluster-refs clusters

data-set (complete -data-set (map deref cluster-refs))
data-set-size (count data-set)
centroid -assigner (fn [cluster-refs]

(dosync
(doseq [c cluster-refs]

(assign-centroid! c))))]
(loop [iter 0]

(if (< iter max-iter)
(let [old-centroids (cluster-refs->centroids cluster-refs)

partition -size (/ data-set-size *core-count*)
partitions (partition -all partition -size data-set)
data-agents (doall (map agent partitions))]

; empty clusters before assigning data to them
(dosync

(doseq [c cluster-refs]
(alter c assoc-in [:data] #{})))
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; first we assign the data to the right clusters
(doseq [a data-agents]

(send a #(assign-clusters! % cluster-refs)))
(apply await data-agents)

; then we calculate the new centroids
(let [partition -size (/ (count cluster-refs) *core-count*)

partitions (partition -all (/ (count cluster-refs)
*core-count*)

cluster-refs)
centroid -agents (map agent partitions)]

(doseq [a centroid-agents]
(send a centroid-assigner))

(apply await centroid-agents))

(let [new-centroids (cluster-refs->centroids cluster-refs)]
(if (centroids -converged? old-centroids new-centroids)

(do
(println "Convergence! Iterations:" (inc iter))
; centroids didn’t change - return resulting cluster-refs
cluster-refs)

; another iteration is necessary and allowed
(recur (inc iter)))))))))

Monte Carlo Pi

(ns benchmarks.monte-carlo-pi
(:use

[clojure stacktrace]
[benchmarks core]))

; The number of cells along each axis. The grid is a square.
(def *grid-size* 256)

(def grid nil)

(defn create-grid
"Returns a square grid of the size n x n as a vector of vectors."
[n]
(for [_ (range n)]

(for [_ (range n)]
(ref ()))))

(defn insert-point
"Inserts the point x,y in the grid."
[x y grid]
(let [col (Math/floor x)

row (Math/floor y)
cell-ref (nth (nth grid col) row)]

(alter cell-ref conj [x y])))

(defn in-circle
"Returns true if the point x,y lies within the circle."
[point]
(let [center (/ *grid-size* 2)

[x y] point
dx (- x center) ; adjust for displacement of coordinate system.
dy (- y center)
distance (Math/sqrt (+ (* dx dx) (* dy dy)))]

(<= distance center)))

(defn calculate -pi
"Calculates the value of pi based on the ratio between the number of points
that lie within the unit-circle and the total number of points in the grid.
Assuming the points are normally distributed , the ratio will approach pi/4.
Multiplying by 4 yields the approximated value of pi."
[grid]
(let [all-points (apply concat (map deref (apply concat grid)))
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points-in-circle (count (filter in-circle all-points))
points-total (count all-points)]

(* 4 (/ points-in-circle points-total))))

(defn agent-action
"This is the function that agents execute. An agent performs txs
transactions that each insert points number of points in to grid."
[_ grid txs points-count]
(dotimes [_ txs]

(let [points (doall (for [_ (range points-count)]
[(rand *grid-size*)
(rand *grid-size*)]))]

(dosync
(doseq [[x y] points]

(insert-point x y grid))))))

(defn initialize -benchmark []
(println "Initialized!")
(alter-var-root (var grid)

(fn [_]
(create-grid *grid-size*)))

; return nil for convenience - no printing of grid
nil)

(defn run-benchmark
[]
(let [total-txs 4000

txs-per-agent (/ total-txs *core-count*)
points-per-tx 128
agents (for [_ (range *core-count*)] (agent nil))]

(doseq [a agents]
(send a agent-action grid txs-per-agent points-per-tx))

(println *core-count* "agents working...")
(flush)
(apply await agents)))
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Appendix B

Benchmark Tools

During the course of this project, we have developed several tools to run our
benchmark. This appendix lists the source code for two important tools we
have used, and we have included them to increase the transparency of our
benchmark method.

Benchmark Runner Script

This is a Bash script used to run all the necessary benchmarks.

#!/bin/bash

CLASSPATH=’clojure-contrib.jar:../src’
JAVA_OPTS=’-server -Xmx14G -Xms14G -XX:NewSize=13G -XX:SurvivorRatio=64

-XX:MinHeapFreeRatio=80 -XX:MaxHeapFreeRatio=95
-XX:+UseParallelGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps ’

CLOJURE_VARIATIONS=(aggressive karma priority clojure)
BENCHMARKS=(kmeans mcp vacation shared_int)
COV_WINDOW=4
MAX_ITERATIONS=20
CORES=(1 2 4 8)
MAX_JVM_INSTANCES=10
COEFF_VARIATION="0.01"
LOG_FILE=log.txt

for cm in ${CLOJURE_VARIATIONS[@]}
do

for bm in ${BENCHMARKS[@]}
do

for c in ${CORES[@]}
do

for ((i=1; i<=$MAX_JVM_INSTANCES; i+=1))
do

(
echo
echo "=========================================="
echo
echo " Contention manager: $cm"
echo " Benchmark: $bm"
echo " Cores: $c"
echo " JVM invocation: $i"
echo
echo "==========================================="
echo
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java $JAVA_OPTS -cp "$CLASSPATH:$cm.jar" \
clojure.main \
"run_$bm.clj" \
$cm \
$bm \
$c \
$i \
$COEFF_VARIATION \
$COV_WINDOW \
$MAX_ITERATIONS

sleep 1
) | tee -a $cm-$LOG_FILE

done

done
done

done

Scaffolding

To hook benchmarks up with the instrumentation the following scaffolding
code is used. We first present a scaffolding API, and subsequently the scripts
that call this API to initialize and run the benchmarks.

Scaffolding API

(ns benchmarks.scaffolding
"Contains utilities to run benchmarks. This namespace requires that the
customized , instrumented version of Clojure is on the classpath."
(:use benchmarks.core)
(:import d608a.Instrumentation)
(:import d608a.Statistics)
(:import java.util.Calendar))

(defn toInt [s]
(Integer/parseInt s))

(defn toDouble [s]
(Double/parseDouble s))

(def args *command-line-args*)

(def *cm-name* (nth args 0))
(def *bm-name* (nth args 1))
(def *cores* (toInt (nth args 2)))
(def *invocation* (toInt (nth args 3)))
(def *cov* (toDouble (nth args 4)))
(def *cov-window* (toInt (nth args 5)))
(def *max-iterations* (toInt (nth args 6)))

(defn initialize -instrumentation []
"Initializes the instrumentation. Currently only allocates
space for storing collected data."
(Instrumentation/allocateLogSpace 100000))

(defn get-filename [iteration]
"Returns the name of the file in which to store the data from a benchmark."
(str *cm-name* "-" *bm-name* "-" *cores* "-" *invocation* "-" iteration ".txt")

)

(defn timed-run [init-fn benchmark -to-run iteration]
"Executes benchmark -to-run once, writes the output to a file and finally
returns the duration of the benchmark in nanoseconds."

(init-fn)
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(Instrumentation/resetLog)
(System/gc)
(let [t (.. (Calendar/getInstance) (getTime))]

(println "*** BENCHMARK BEGIN @ "
(.getHours t) ":"
(.getMinutes t) ":"
(.getSeconds t)))

(Instrumentation/beginBenchmark)
(benchmark -to-run)
(Instrumentation/endBenchmark)
(let [t (.. (Calendar/getInstance) (getTime))]

(println "*** BENCHMARK END @ "
(.getHours t) ":"
(.getMinutes t) ":"
(.getSeconds t)))

(Instrumentation/dumpData (get-filename iteration))
(- Instrumentation/benchmarkEnd Instrumentation/benchmarkBegin))

(defn multiple-timed-runs [init-fn benchmark -to-run k]
"Executes benchmark -to-run k times and returns a vector the durations
for each of the k executions of the benchmark."
(doall (vec

(for [i (map inc (range k))]
(timed-run init-fn benchmark -to-run i)))))

(defn steady-state?
"Determines if steady state has been reached by calculating the coefficient of

variation
for durations. Steady state is achieved when the coefficient of variation of

the durations
is below the value specified in the command line."
[durations]
(let [threshold *cov*

current-cov (Statistics/coefficientOfVariation (long-array durations))]
(println "Current coefficient of variation: " current-cov)
(< current-cov threshold)))

(defn run-until-steady
"Executes benchmark -to-run until the *cov-window* last iterations are

considered steady state
executions or until *max-iterations* has been performed."
[init-fn benchmark -to-run]
(loop [durations (multiple-timed-runs init-fn benchmark -to-run *cov-window*)

iteration (inc *cov-window*)]
(println "Durations: " durations)
(if-not (steady-state? durations)

(if (<= iteration *max-iterations*)
(recur (conj (subvec durations 1)

(timed-run init-fn
benchmark -to-run
iteration))

(+ iteration 1))))))

(defn dobenchmark
"Run a benchmark represented by benchmark -fn. The init-fn function is called
before each run."
[init-fn benchmark -fn]
(initialize -instrumentation)
(run-until-steady init-fn benchmark -fn)
(System/exit 0))

Clojure Script for running Shared Integer

; Shared integer benchmark

(use ’benchmarks.shared-int
’benchmarks.scaffolding)

(require ’[benchmarks.core :as bmcore])

(binding [bmcore/*core-count* benchmarks.scaffolding/*cores*]
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(dobenchmark (fn []) run-benchmark))

Clojure Script for running Vacation

; Vacation benchmark

(use ’benchmarks.vacation
’benchmarks.scaffolding)

(require ’[benchmarks.core :as bmcore])

(binding [bmcore/*core-count* benchmarks.scaffolding/*cores*]
(initialize -benchmark)
(dobenchmark (fn []) run-benchmark))

Clojure Script for running K-means

; K-means Benchmark

(use ’benchmarks.kmeans
’benchmarks.scaffolding
’clojure.contrib.duck-streams)

(import ’java.io.File
’java.io.PushbackReader)

(require ’[benchmarks.core :as bmcore])

(declare *data*)

(defn run []
(binding [bmcore/*core-count* benchmarks.scaffolding/*cores*]

(let [init-fn #(initialize -benchmark 128 *data*)]
(dobenchmark init-fn #(run-benchmark 3)))))

(let [data-file (File. "kmeans.dat")]
(if (.exists data-file)

(binding [*data* (read (PushbackReader. (reader data-file)))]
(run))

(let [data (generate-random-data 1000 1000 1000)]
(with-out-writer data-file

(pr data))
(binding [*data* data]

(run)))))

Clojure Script for running Monte Carlo Pi

; Monte Carlo Pi Benchmark

(use ’benchmarks.monte-carlo-pi
’benchmarks.scaffolding)

(require ’[benchmarks.core :as bmcore])

(binding [bmcore/*core-count* benchmarks.scaffolding/*cores*]
(dobenchmark initialize -benchmark run-benchmark))
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