
FEED-FORWARD QUADRATURE PHASE
SHIFT KEYING FREQUENCY OFFSET

CORRECTION
The development of a hardware-implementable phase error estimator algorithm for use in third generation mobile

telephony systems

Master’s Thesis

Authors:
KASPER LUND JAKOBSEN
KARL DAMKJÆR HANSEN

Supervisors:
YANNICK LE MOULLEC
JES TOFT KRISTENSEN

June 3, 2010

Aalborg University
Department of Electronic Systems
Frederik Bajers Vej 7
9220 Aalborg Ø
Telephone 96 35 86 00
http://es.aau.dk/

Title: Feed-Forward Quadrature Phase Shift
Keying Frequency Offset Correction
The development of a hardware-
implementable phase error estimator
algorithm for use in third generation
mobile telephony systems

Project term:
Master’s Thesis, Fall 2009 and Spring 2010

Project group:
1043

Members of the group:
Kasper Lund Jakobsen
Karl Damkjær Hansen

Supervisors:
Yannick Le Moullec
Jes Toft Kristensen (Rohde & Schwarz)

Number of copies: 5

Number of pages: 72

Appendices and attachments:
6 and 1 CD-ROM

Completed 03/06 2010

Synopsis:

The objective of the project is to develop, analyze and
implement a frequency drift compensation algorithm
for use in 3G wireless transceiver systems.
It is shown that frequency drift severely degrades the
performance of 3G wireless communication systems,
thus making the compensation algorithm needed.
Three algorithms are analyzed for their individual
properties and one of these are chosen for implemen-
tation. This algorithm consists of a phase estimator
and a phase jump detector, where the phase estimator
averages the phase error of previous input in a filter
structure and the phase jump detector removes phase
ambiguities created by the phase estimator. The orig-
inal algorithm is developed for BSPK but as 3G uti-
lizes QPSK, making an extension necessary. The ex-
tended algorithm is then simulated and analyzed with
respect to fixed point and complex number representa-
tion. Based on these simulation it is concluded that the
performance converges towards the theoretical perfor-
mance of QPSK without frequency drift.
The Complexity of the algorithm is found to determine
a suitable platform for the implementation. The algo-
rithm is also pipelined and the inherent parallelism of
the algorithm exploited to minimize the execution time.
The platform chosen is the Altera Cyclone 3 FPGA.
A test system for finding the performance of the algo-
rithm is implemented onto the FPGA along with the
algorithm. The performance of the implemented algo-
rithm is shown to closely resemble the performance of
the MATLAB simulations of the algorithm. The de-
veloped algorithm is therefore considered working and
suitable for prototype use in 3G transceiver systems.

The contents of this report are freely available, but publication (with specification of source) may only be done

after arrangement with the authors.

ii

Preface

This project is conducted as a Master’s Thesis project on the Applied Signal Processing and Implementa-
tion (ASPI) specialization at the Department of Electronic Systems at Aalborg University. The project is
mainly targeted the people within the fields of signal processing, wireless communications and algorithm
implementation.

The project concerns the development, analysis and implementation of a frequency drift compensating
algorithm. Wireless communication systems performance is degraded because of frequency thereby mak-
ing an algorithm which compensates for this problem of interest.

The project is based on a project proposal made by Jes Toft Kristensen at Rohde & Schwarz regarding
"Digital Receivers and Carrier Frequency Drift". Initially the project concerned the 3G system, but the
developed algorithm can be utilized in many other wireless communication applications.

It is interesting to note that this project, unlike most conducted at the university, produced positive re-
sults. In fact, we have worked our way through a full design process, right from the beginning with a
specification over the initial information search and development of an algorithm to the end with the im-
plementation and test of the system. We think that it has been exiting to see the intangible math written
on the black boards the late evenings in the fall 2009 turn into a working implementation sitting here on
the table blinking away with its “Ready-to-Run” LED today almost one year later.

Although we managed to complete the design process, it hasn’t always gone as planed. We didn’t really
know the tools for synthesizing and simulating our VHDL code. (We didn’t really know how to write
VHDL either.) Also, we didn’t have a project manager with the sole purpose of keeping us on track. But
we managed to figure it out and finish on time. It gives us great pleasure to find out that we are indeed
able to do things and get things done... On our own.

Of cause our supervisors have made sure that we didn’t step too far of the path, and has always been keen
on giving us feedback. Indeed, we haven’t used your full potential. We owe you thanks for your support.
Specifically a thanks is given to Jes for helping out with VHDL and ModelSim.

We would also like to thank our sister group during the fall 2009, Pradeep Silpakar and Boris Sala for
shared work and discussions on the subject of frequency estimation.

In the end we would like to thank all of the students at ASPI 4 - 2010. Your have contributed to many
pleasant and fun-filled days, both at the university and in private.

Kasper Lund Jakobsen Karl Damkjær Hansen

iii

iv

Contents

Preface iii

Contents vii

1 Introduction 1
1.1 3G Mobile Communication . 1
1.2 Problem statement . 3

1.2.1 Sub Goals . 4
1.2.2 Limitations . 4

2 Methods 7
2.1 A3 . 7
2.2 Implementation Methodology . 8

3 Problem Analysis 11
3.1 Frequency Drift . 11

3.1.1 Drift Calculations . 13
3.1.2 Noisy Channel . 14
3.1.3 Bit Error Rate for QPSK Signals 15

3.2 Maximum Frequency Offset . 20
3.3 Interfaces . 21

4 Algorithms 23
4.1 Feedback and Feed-forward Algorithms 23

4.1.1 Frequency Estimator . 23
4.1.2 Sine Oscillator . 24

4.2 Algorithm Choice . 24

5 Rewriting the Algorithm for QPSK 25
5.1 Phase Estimator . 26

5.1.1 Frequency Modification . 29
5.2 Phase Jump Detector . 32
5.3 Simulations . 33

5.3.1 Results . 33
5.3.2 Discussion . 35
5.3.3 Conclusion . 35

6 Implementation Analysis 37
6.1 Complexity . 37

v

vi CONTENTS

6.1.1 Complex Number Format . 38
6.1.2 Number of Operations . 39

6.2 Pipelining . 45
6.3 Execution Time . 48
6.4 Determining Fixed-Point Format . 49

6.4.1 Dynamic Range . 50
6.4.2 Precision . 50

7 Implementation 53
7.1 Block Tests . 55
7.2 Test System . 56

7.2.1 The MATLAB part . 56
7.2.2 The FPGA part . 58

7.3 Phase Estimator . 60
7.3.1 Power four . 61
7.3.2 Filter . 61
7.3.3 Atan . 63
7.3.4 Phase Jump Detector . 63
7.3.5 Sine/Cosine . 65

7.4 Integration . 66

8 Test Results 67
8.1 Discussion . 69

9 Conclusion 71
9.1 Further work . 72

Appendices

A Phase Estimation Rewritting 73

B Phase Estimator Derivation 75

C Simulink Simulation Model 77
C.1 The Transmitter . 77

C.1.1 QPSK Baseband Modulator . 78
C.1.2 Root-Raised Cosine Transmit Filter 78
C.1.3 The Channel . 78
C.1.4 Phase/Frequency Offset . 78
C.1.5 Additive White Gaussian Noise 79

C.2 The Receiver . 79
C.2.1 Root-Raised Cosine Receive Filter 79
C.2.2 Phase Estimating Algorithm . 80
C.2.3 Error Rate Calculator . 80

C.3 Simulation . 81

D Trigonometric Functions Approximations 83
D.1 Arctangent Approximation . 84
D.2 Sine and Cosine Approximation . 86

CONTENTS vii

E Test System 89
E.1 Creating Test Vectors . 93
E.2 Processing Test Vectors . 94

F Papers 97
Maximum Likelihood Frequency Offset Compensation for Quadrature Phase Shift

Keying Systems . 97
Modeling Quantization Noise in Finite Impulse Response Filters 101

Biblography 106

viii CONTENTS

Chapter 1

Introduction

Wireless communication has over the years been a very attractive choice when develop-
ing a communication system because of its wireless nature. The systems that utilizes the
wireless communication technology are anything from GPS to mobile phone communica-
tion e.g. GSM or 3G. As the name indicates the main goal of wireless communication is
to transfer data from one terminal to another without the use of wires between them. To
be able to make this wireless link the data is first encoded which makes it more robust to
transmission errors. The new data stream is then modulated to some waveform, which is
then finally transmitted. In the receiver the inverse happens, which then should reconstruct
the transmitted data. This is a short and simplified version of how a wireless link between
two terminals work and in Figure 1.1 a block diagram of wireless transmission is shown.

Data Source Encoding Modulation Filter Transmitter

Channel

Data Sink Decoding Demodulation Filter Receiver

Figure 1.1: Simplified wireless transmission model.

Wireless communication is an interesting topic because it is so wide spred and widely used,
which makes the technology interesting to improve, but also hard to improve because of
the extensive research that has been going on in this technology.

Of the many different applications of wireless communication 3G is chosen for the topic
of this project, because of its wide spred usage and because of the interest in this specific
topic is high.

1.1 3G Mobile Communication
This section briefly describes 3G Mobile communication and gives a precise description of
the scenario of focus for the project.

1

2 Chapter 1 • Introduction

Figure 1.2: 3G phones communicating with use of basestations.

Figure 1.3: The uplink from mobile to base station scenario.

The 3G network uses base stations (BS) to communicate between two mobile phones. The
setup can be seen in Figure 1.2. As seen the signal from one phone is first transmitted to the
first base station (BS) which relays the signal to another which maintains the connection to
the other mobile phone, and thereby the connection between the two phones is established.
This also gives different scenarios to focus on, namely the connection between phone and
BS and the connection between BS’. Not only are the scenario important, but also the
direction of the communication. This is because the transmission differs for each scenario
and direction. The direction and scheme for this project is the uplink scenario from the
mobile phone to the BS which is shown in Figure 1.3.

To transmit data between two terminals in digital form, the data is encoded to a continuous
waveform which is then transmitted, probably distorted by the channel and finally received
and decoded. The encoding is done such that the data is represented with a sine wave
with some carrier frequency, which is altered in phase to represent a binary zero or one. A
detailed description of this is given in Section 3.1. The channel does, however, distorts the

Section 1.2 • Problem statement 3

signal. This distortion can have multiple effects on the sine signal; it can change the phase,
frequency and amplitude of the signal. Of the three this project concerns the frequency
distortion, also known as frequency drift. As shown in [7, p.424] this problem degrades the
performance of PSK systems in terms of BER (Bit Error Rate), which is the case for 3G
(see Section 3.1).

Because the 3G transmissions are well defined along with the structure of the front ends
as little change in these transmissions would be preferred. The suggested solution to the
problem should be implementable in as many already existing devices as possible without
changing the structure of the system.

1.2 Problem statement
As mentioned in the previous sections the transceiver system which the project focuses on
is 3G and the scenario is the uplink from mobile phone to base station. The frequency
drift problem that was more specifically of interest, as it has been found to degrade the
performance of transceiver systems. As the 3G system also has been found to be of interest
due to its wide usage and therefore it is interesting to analyze how exactly frequency drift
influences 3G signal. Given that the solution to this problem should be able to work within
the structure and form of the 3G system this gives the restriction that the structure 3G
system can not be changed. The structure restriction makes it suitable to develop a solution
to the frequency drift problem in the digital domain such that the RF frontend used in the
3G network is not changed.

Given these choices the project system is shown in a typical transceiver system block dia-
gram, which is seen in Figure 1.4.

Data Source Encoding Modulation Filter Transmitter

Channel

Data Sink Decoding Demodulation Filter Receiver

RF FrontendProject System

Figure 1.4: The project focus within the simplified transmission
model diagram shown in Figure 1.1.

Combining frequency drift, 3G and digital signal processing into the hypothesis, which is
the focus of the project, it becomes:

Hypothesis: It is possible to analyze, design and implement an algorithm, which mini-
mizes, with respect to constraints, the effects of frequency drift in 3G transceiver systems.

Here minimizes refers to reduce the effects frequency drift has on the signals in 3G in terms
of BER , such that the performance of the algorithm makes the transmission converges
towards the performance of the system without frequency drift. This is done under the
constraint that the before mentioned structure is not changed, thus making the algorithm
easily implementable in existing transceiver systems.

4 Chapter 1 • Introduction

This thesis involves analyzing the causes and effects of carrier drift, to be able to show
where the main problems are and where the optimal place is to resolve the problems caused
by frequency drift. Another aspect is the analysis of available algorithms to find measures
for testing and evaluate the designed algorithm and to find ways of approaching the prob-
lem. With this knowledge the algorithm is designed, implemented and evaluated.

1.2.1 Sub Goals
The sub goals of the project are defined to keep the focus of the project. The goals are
listed below and along with a brief discussion.

• Analysis of the frequency drift problem
The analysis gives knowledge about the problem and which existing algorithms that
can be used to solve the problem. The analysis i based on the results of the brief
analysis of 3G communication such that the problem is analyzed with respect to the
technologies used in 3G.

• Analysis of the interfaces to the 3G system
This analysis gives knowledge about how to interact with the 3G system such that
the developed algorithm can be implemented.

• Analysis of compensation algorithms
An analysis of the known methods of compensating for the effects of frequency drift
gives information about the common aspects that needs attention when designing
and/or implementing an algorithm of this type.

• Development of an algorithm for implementation
With the algorithms analyzed a new solution can be developed, simulated and ana-
lyzed such that it can be implemented.

• Implementation of the algorithm
This refers to the implementation of the algorithm.

• Testing the algorithm
Testing the implemented algorithm shows whether the implementation is in accor-
dance with results from the analysis of the algorithm.

With the topics of interest for the project defined the topics which are not considered are
described.

1.2.2 Limitations
The limitations explain what subjects that are not considered and the assumptions that are
made in the project.

As an entire transceiver system for 3G communication would be too comprehensive, the
project is limited. This is somewhat already done as the focus is the uplink scenario from
the mobile phone to the BS. The other limitation which has been taken is that the system
is only developed as a digital processing system to keep it in the scope of the learning
goals for the project. Further the system only concerns the frequency drift compensation
algorithm, such that other blocks in the transceiver system is not implemented.

Section 1.2 • Problem statement 5

A signification limitation or assumption for the project is that only an AWGN channel is
considered during the implementation of the system. Normally wireless signals, especially
in urban areas, would be subject to a multipath channel where replicas of the signal is
shifted in time but also received. This can, however, be investigated when the system is
designed such that the performance under these conditions can be documented.

The final limitation is regarding the platform. FPGAs are chosen as the platform of the
project, because of the interests of the project group. Due to prior knowledge about Altera
FPGAs and the availability of these FPGAs at the university the project only concerns these
platforms.

6 Chapter 1 • Introduction

Chapter 2

Methods

To prove or reject the hypothesis described in Section 1.2 the methods utilized is defined.
This structures the project and keeps the focus of the project.

2.1 A3

To structure the development of the system, the A3 model is used. The model is not de-
scribed in literature outside the university, but is very much used at Aalborg University.
Because of this, the description of the model presented here is based on lectures given at
Aalborg University.

The model, which is seen in Figure 2.1, divides the development of a system into three do-
mains, namely the; Application, Algorithm and Architecture domains. First the application
of the system that is to be developed is analyzed and specified, which results in choosing a
suitable application in the application domain. With this choice of application, the possible
algorithms which fulfills the requirements and functionality of the application is analyzed.
With the analysis, choices and compromises can cause the application to change which
then makes the mapping from application to algorithm iterative (Figure 2.2 line 1*).

The characteristics of the algorithm is then analyzed in terms of complexity and resources

Application

Algorithm

Architecture

Figure 2.1: The A3 Model without iterations. Here the three do-
mains are illustrated and the possible mappings.

7

8 Chapter 2 • Methods

Application

Algorithm

Architecture

1

2

3

4

1*

2*

3*

Figure 2.2: The A3 Model with the possible iterations marked as
dashed lines.

needed to find a suitable architecture. Here the choice of the architecture could also change
the algorithm making this mapping iterative (Figure 2.2 line 2*).

The final thing that can happen after the choice of architecture is that the architecture would
be suitable for a similar application or it could refine the application and algorithm resulting
in a an all new iteration (Figure 2.2 line 3*).

The way this model is used in the project is depicted by the structure of the project, which
is divided into the 3 domains of the model. The different domains are analyzed before the
mapping from one domain to another is made. The application part (Chapter 3) describes
the problem in detail and the system in which this problem arises. The algorithm part
(Chapter 5) describes different algorithms which solves this problem, and an analysis of
these aides the choice of architecture. Finally, the architecture part (Chapter 7) describes
how the algorithm is implemented onto on the chosen platform forming an architecture.

2.2 Implementation Methodology
The A3 model is used to structure the project, but it does not specify the way of mapping
from one domain in the model to another. Because of this, a method of doing so, has to
be defined. The method described here is used for the mapping from the algorithm domain
to the architecture domain from a functional point of view. This means that the method
describes how the functionality of the algorithm is mapped to the architecture.

The method used is based on the V-model, with its downward direction in design phase
where it continuously refine the design and its upward direction where it integrates and
validates. The model used here first defines the algorithm as a whole including how this
algorithm should be tested as a whole. The algorithm is then divided into blocks, which is
then again defined along with the tests of these.

After the algorithm has been chosen it is thoroughly analyzed thereby defining the algo-
rithm. This analysis can lead to small changes, which can be thought of as being searching
the neighbor algorithms in the algorithm domain in the A3 model. After this the algorithm
is analyzed for its feasibility to be implemented in terms of complexity and fixed point
representation of numbers. This can again lead to a new point in the algorithm domain
which is then finally chosen for implementation. With this choice the platform it is to be
implemented on is found. The platform that is to be chosen must accommodate for the

Section 2.2 • Implementation Methodology 9

complexity and number representation found in the analysis, which is needed in order to
implement the algorithm.

With the platform chosen the interaction with the system is determined which then makes
it possible to test the system. The test is used to determine if the performance of the system
is as expected. Now the algorithm is divided into different blocks which each maintains
a specific functionality. The division is based on the nature of the algorithm and not a
predetermined method. With the division the interfaces from one block to another is also
defined such that these is tested for their individual functionality. With all the blocks de-
fined and testable the implementation of them begins. During the implementation process
the blocks are continuously tested to remove unwanted behavior at an early stage. When
the implementation of the blocks are done they are ready for integration where the blocks
are combined back to form the algorithm as it was before the division. The implementation
is now tested as a whole and with this test passed the implementation is considered done.

The method is depicted in Figure 2.3 and as seen there is a high similarity with the V-model.

Floating point

algorithm

definition

Fixed point

algorithm

definition

Final algorithm

definition

Block

definition
Block tests

Timing

tests

Algorithm

functionality test

Fixed point analysis

Complexity analysis

Division into blocks Integration

Verification

Figure 2.3: The modified V-model which is used in the project.

10 Chapter 2 • Methods

Chapter 3

Problem Analysis

To be able to find solutions to the problem described in 1.2 the problem has to be ana-
lyzed. This analysis focusses on the theory of wireless communication (applicable to the
3G system) and also includes an analysis of the mathematical implications of frequency
drift, which derives the performance degration ferquency drift causes.

3.1 Frequency Drift
To determine the implications frequency drift has on wireless communication in general
the modulation form has to be analyzed. The following descibes the modulation used in
digital wireless communication which is a prerequisite for determining the BER for the
modulation scheme used in 3G both with and without frequency drift.

Phase modulation (PM), which is used in 3G [11, p.33], can be considered as a special case
of frequency modulation (FM), or it can be derived independently. Here the modulation
is described as being an independent type of modulation, as going from FM will involve
integration of the frequency components, most likely making the derivations more difficult
to understand.

Just as FM is widely used for transmission of analog signals e.g. commercial radio, PM can
also be used for analog signals. When using these modulations for transmission of digital
signals they are called frequency- and phase-shift keying (FSK and PSK respectively). In
essence PSK can be obtained by using a plain PM but letting the modulating signal take on
only binary values.

The most simple form of PSK is the binary-PSK (BPSK). It will modulate the bits onto
the carrier by changing the phase of the carrier 180◦. All the receiver needs to do is to
synchronize with the phase of the transmitter, and check if the phase is the same as the
local oscillator or the opposite. When sampling the signal and plotting it in the complex
plane, it will either fall in one of two message points, see Figure 3.2.

Quadrature-PSK (QPSK), which is the modulation in focus for the project [11, p.33], is
essentially the same as BPSK. The difference is that QPSK has four message points instead
of the two of BPSK. This is accomplished by varying the phase of the carrier in steps of
90◦ instead of 180◦. Because of the double number of points, each point represents two
bits. How to map the two bits from the bit stream to the message points differs between

11

12 Chapter 3 • Problem Analysis

t
1 0 0 1 0

t

Figure 3.1: An example of phase shift keying (specifically BPSK).
Notice the 180◦ phase shifts when the data changes value.

Q
a
d
ra
tu
re

In-phase

10

Figure 3.2: The BPSK message points in the complex plane.

implementations. Usually a Gray code mapping is employed to make sure that the points
closest to each other only has one bit in difference[10, p.173], this minimizes the risk of bit
errors due to noise. The signal constellation for QPSK is illustrated in Figure 3.3.

The points of the constellation does not need to lay exactly on the axes like in Figure 3.3. In
Universal Mobile Telecommunications System (UMTS) standards [11] the imaginary and
the real bits are treated individually. This is in essence two individual BPSK processes, one
on a sine wave and one on a cosine wave. By doing this the message points are rotated 45◦,
as seen in Figure 3.4, which is the signal constellation used in 3G [11, p.25].

Q
a
d
ra
tu
re

In-phase

11

10

00

01

Figure 3.3: The message points in the conventional QPSK constel-
lation uses Gray coding to minimize BER due to noise.

Section 3.1 • Frequency Drift 13

Q
a

d
ra

tu
re

In-phase

I = 1, Q = 1

I = 1, Q = 0I = 0, Q = 0

I = 0, Q = 1

Figure 3.4: Signal constellation of the QPSK used by 3G. The
quadrature and the in-phase bits are treated individually, but in
essence, it is the same as conventional QPSK.

fd
dfd
dt

Frequency

M
a
g
n
it
u
d
e

Figure 3.5: The frequency offset between the transmitter and the
receiver fd can be caused by many things. The change in frequency
d fd
dt is called the drift.

3.1.1 Drift Calculations

Assuming a frequency offset fd between the transmitter and the receiver1. The entire offset
is modeled as coming from the transmitter. This can be convenient, as the receiver will
most likely also suffer from a degree of frequency offset which it cannot know of. But as it
has knowledge of its own frequency, this can be regarded as the "ideal" frequency, and only
the transmitter suffers from frequency offset. The frequency offset is illustrated in Figure
3.5. The frequency offset is not necessarily constant, the change of the offset is called the
drift.

The transmitter modulates the information sequence I(t) onto the offset carrier in (3.1) and

1The term fd has been chosen for frequency offset, as fo might be interpreted as some initial frequency. It
does not refer to frequency drift as that refers to the change in fd

14 Chapter 3 • Problem Analysis

Q
a

d
ra

tu
re

In-phase

Θ0

dΘ
dt

= fd

Figure 3.6: The top right quarter plane of the QPSK signal constel-
lation. The phase might be offset because of the distance between
the transmitter and the receiver. An offset frequency fd will move
the phase over time.

the receiver mixes the received signal with its local oscillator in (3.2).

k = 2π (fc + fd) t +πI(t)

l = 2π fct

s = cos(k) (3.1)
x = cos(k) · cos(l) . (3.2)

=
1
2

(
eik + e−ik

)
· 1

2

(
eil + e−il

)

=
1
22

[
ei(k+l)+ ei(k−l)+ e−i(k+l)+ e−i(k−l)

]

=
1
2
(cos [2π (2 fc + fd) t +πI(t)]+ cos [2π fdt +πI(t)]) (3.3)

The mixing process produces two new modulations of I(t) as seen in (3.3), one at double
the carrier frequency plus the offset frequency and another at the offset frequency. By low
pass filtering the signal the high frequency component can be neglected. The resulting
signal y in (3.4) would have been the pure information sequence, had the frequency offset
been zero.

y =
1
2

cos [2π fdt +πI(t)] (3.4)

This offset turns the signal constellation at a speed of the offset frequency as illustrated in
Figure 3.6.

The phase might initially be offset by the distance delay and and the fact that the receiver
does not know of the state of the transmitter oscillator. This initial phase is denoted θ0 in
Figure 3.6.

3.1.2 Noisy Channel
As with all wireless communication noise will corrupt the signals. An example of a con-
stellation plot of a signal corrupted by additive white Gaussian noise (AWGN) is illustrated
in Figure 3.7.

Section 3.1 • Frequency Drift 15

Q
a

d
ra

tu
re

In-phase

Sample points

Figure 3.7: When noise corrupts the signal the signal points will
vary around the transmitted signals message points.

Figure 3.8: When interpreting the signals as vectors, the noise is
merely a vector being added to the ideal signal. The average noise
energy is illustrated as the radius of the gray noise circle.

The distance from the origin to a sample point equals the energy received at that point.
Thus the signals can be interpreted as vectors as illustrated in Figure 3.8. This way the
noise itself is a vector that is added to the signal.

Low signal-to-noise ratio (SNR) will lead to more bit errors. Two factors influence the
SNR, namely the energy of the signal and the energy of the noise. Lowering the former
or increasing the latter will lead to lower SNR, see Figure 3.9. When combining the phase
offset with low SNR, the BER rises. This is illustrated in Figure 3.10

3.1.3 Bit Error Rate for QPSK Signals
In order to evaluate how a QPSK system performs when frequency drift is present the
theoretical bit error rate (BER) is calculated both for the scenario without frequency offset
and with frequency offset. With these calculations it is possible to show how the frequency
drift degrades the performance of QPSK. The section is inspired from [6, p.84 - 102] and
[5, p.9 - 23].

16 Chapter 3 • Problem Analysis

Q
a
d
ra
tu
re

In-phase

(a) Low signal energy

Q
a
d
ra
tu
re

In-phase

(b) High noise energy

Figure 3.9: Low SNR can occur when either the signal energy is low
(a) or the noise energy is high (b). The signal points painted black
are bit errors.

Q
a
d
ra
tu
re

In-phase

(a) High SNR, but severely offset phase.

Q
a
d
ra
tu
re

In-phase

(b) Low SNR and phase offset.

Figure 3.10: Phase offset produces bit errors (a), but when com-
bined with low SNR (b) the BER rises. The signal points painted
black are bit errors.

Section 3.1 • Frequency Drift 17

BER without Frequency Offset
To calculate the theoretical BER the channel over which the data is transmitted has to
be specified and here the AWGN channel is assumed. Further, the signal constellation is
assumed equal to be the one shown in Figure 3.4, grey encoding and the a priori probability
of a 1 or 0 is assumed equal.

The probability of an error and wrong decoding is described as:

P(Û 6=U | X = s1) (3.5)

Which is the probility that estmated bit Û is not equal to the transmitted bit U given that
transmitted signal X was s1.

As seen from the Figures of the signal constellation diagrams presented earlier (Figures
3.7, 3.9) the decision boundaries are the axis’. By using this and the fact that the distance
from the signal point to origin is the symbol energy

√
Es, the BER is found. It is only

necessary to calculate the BER for one signal point due to symmetry in the constellation
diagram and equal a priori probabilities.

It can be shown using Pythagoras that the message point in first quadrant has the coordi-

nates
(√

Es
2 ,
√

Es
2

)
. This means that in order for one bit to be decoded wrong (Û 6=U) the

noise components n1 and n2 in at least one dimension has to be bigger than
√

Es
2 . Because

of the AWGN channel, the noise is normally distributed with N (0, N0
2). Using this, the the

probability of error is found as:

P(Û 6=U | X = s1) =
1
2

P

(
n1 >

√
Es

2
or n2 >

√
Es

2

)
(3.6)

Assuming that n1 and n2 are independent and they have zero mean, this gives:

P(Û 6=U | X = s1) =
1
2

(
P

(
n1 >

√
Es

2

)
+P

(
n2 >

√
Es

2

))
(3.7)

Normalizing this with the variance of the noise this gives:

P(Û 6=U | X = s1) =
1
2

P

 n1√

N0
2

>

√
Es

N0

+P

 n2√

N0
2

>

√
Es

N0

 (3.8)

This is the same as the cummalative distribution function (Q) for one random variable with
N (0,1) and thereby the error probability is found as:

P(Û 6=U | X = s1) = Q

(√
Es

N0

)
(3.9)

18 Chapter 3 • Problem Analysis

Here because 2 bits are transmitted per symbol Es = 2Eb where Eb is the energy transmitted
per bit. Then finally the BER is given by:

BER = Q

(√
2Eb

N0

)
(3.10)

BER = Q
(√

2γ

)
(3.11)

Where γ is the average transmitted signal-to-noise ratio (SNR) per bit.

Then applying the frequency drift to the calculations the degration should be detectable
which is calculated in the following section.

BER with Frequency Offset
To calculate the BER for this case the same assumptions are made, as for the calculations
without frequency offset namely; an AWGN channel, equal a priori probabilities of a 1 and
a 0 and the signal constellation shown in Figure 3.4.

It has previously been shown that the signal output from the mixer for the in phase channel
when frequency offset is present is as follows (Section 3.1.1) (here the symbol sent is 00):

zi =

√
Es

2
cos(2π fdt)− j

√
Es

2
sin(2π fdt)+n1(t) (3.12)

The same is the case for the quadrature channel:

zq =

√
Es

2
sin(2π fdt)− j

√
Es

2
cos(2π fdt)+n2(t) (3.13)

As mentioned, to decode these signals, this result is integrated over the bit duration (T)
which then is compared to zero, which are the decision boundaries. After the integration
the signals become estimates of the I and Q values for the given signal as follows:

ŝi =

√
Es

2

∫ T

0
cos(2π fdt)dt− j

√
Es

2

∫ T

0
sin(2π fdt)dt +n1 (3.14)

=

√
Es

2
k1(fd)− j

√
Es

2
k2(fd)+n1 (3.15)

Where: k1(fd) =
∫ T

0 cos(2π fdt)dt and k2(fd) =
∫ T

0 sin(2π fdt)dt.

The result for the quadrature channel is:

ŝq =

√
Es

2

∫ T

0
sin(2π fdt)dt− j

√
Es

2

∫ T

0
cos(2π fdt)dt +n2 (3.16)

=

√
Es

2
k2(fd)− j

√
Es

2
k1(fd)+n2 (3.17)

Section 3.1 • Frequency Drift 19

As mentioned, the real parts of the two values ŝi and ŝq i.e. ℜ(ŝi) and ℜ(ŝq), are compared
to zero to determine which symbol was most probably sent. The real parts are used because
the imaginary part does not move the point in the real direction (see [7, p.424]). Therefore
the probability of an error P(Û 6=U | X = s1) is found as:

P(Û 6=U | X = s1) =
1
2

P(n1 <−ℜ(ŝi) or n2 <−ℜ(ŝq)) (3.18)

=
1
2

P

(
n1 <−ℜ

(√
Es

2
(k1(fd)− jk2(fd))

)
or

n2 < ℜ

(
−
√

Es

2
(k2(fd)− jk1(fd))

))
(3.19)

=
1
2

P

(
n1 >

√
Es

2
(k1(fd))

)

+
1
2

P

(
n2 >

√
Es

2
(k2(fd))

)
(3.20)

As the noise (n1 and n2) are normally distributed with N (0, N0
2) and normalizing the above

equations with variance of the noise this gives:

P(Û 6=U | X = s1) =
1
2

P

 n1√

N0
2

>

√
Es
2 k1(fd)√

N0
2

+
1
2

P

 n2√

N0
2

>

√
Es
2 k2(fd)√

N0
2

 (3.21)

=
1
2

P

 n1√

N0
2

>

√
Es

N0
k1(fd)

+
1
2

P

 n2√

N0
2

>

√
Es

N0
k2(fd)

 (3.22)

With this rewriting the BER is found using the cummulative distrubution function (the Q
function) and the fact that Es = 2Eb which gives:

BER =
1
2
Q

(√
2Eb

N0
k1(fd)

)

+
1
2
Q

(√
2Es

N0
k2(fd)

)
(3.23)

Again using γ = Eb
N0

is the SNR per bit.

20 Chapter 3 • Problem Analysis

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

0 hz frequency drift
10 hz frequency drift

Figure 3.11: BER plot for 0 hz frequency drift and 10 hz frequency
dift.

BER =
1
2
Q
(√

2γk1(fd)
)

+
1
2
Q
(√

2γk2(fd)
)

(3.24)

The plot of these BER curves is shown in Figure 3.11.

It is seen that because of the drift the message point in the constellation diagram will rotate
and therefore the BER will on average be 0.5 no matter how big the frequency drift is.
This is implies that even small frequency drifts will accumulate the phase error and give
the system a BER of 0.5 even for a good SNR. The reason that the result is 0.5 and not
0.25 although there are 4 message points is that the result BER is calculated per bit and two
message point will give a correct decoding of one bit. This means that the algorithm which
should handle this problem is very important.

3.2 Maximum Frequency Offset
To simulate and design a system that compensates for frequency drift an estimate of the
maximum frequency offset needs to be found.

The frequency offset can be caused by many different effects, therefore a rough estimate
of the interval it can be in has to be found. This determines which frequency offsets the
algorithm has to handle.

One of the causes for a frequency drift is the Doppler shift, that will arrise when the trans-
mitter is moving towards or away from the receiver. As such the frequency shift is a func-
tion of the velocity difference between the transmitter and the receiver and the carrier fre-
quency. The Doppler shift can be calculated as follows[13, p.525]:

Section 3.3 • Interfaces 21

f ′ =
(

v+ vt

v− vr

)
fc (3.25)

where v is the speed of light, vt is the speed of the transmitter, vr is the speed of the
receiver and fc is the carrier frequency. Given, as an example, that a carrier frequency
in the 3G communication system is 1937.6 MHz [12, p.17] and that the speed of light is
approximately 3 ·108 m/s the frequency error in PPM (Parts Per Million) in shown in Figure
3.12.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D
iff

er
en

ce
 fr

om
 f c in

 P
P

M

Transmitter velocity [km/h]

Figure 3.12: Example of carrier frequency errors due to Doppler
shift. Here the velocity of the receiver is 0.

As it is unlikely that the velocity difference between the transmitter and the receiver ex-
ceeds 1000 km/h one PPM is chosen as the upper bound for the frequency Offset. The
offset can however as shown also be negative and therefore the frequency offset range be-
comes [−1PPM+ fc,1PPM+ fc] with regard to the Doppler shift. This interval is in the
case of the example above [fc−1937.6, fc +1937.6] where fc = 1937.6 MHz. The highest
possible carrier frequency in 3G is found to be [12, p.17] 2567.6 MHz. Therefore the range
maximally becomes [2567597432.4; 2567602567.6] Hz which is chosen as the design pa-
rameter. This means that the algorithm is designed to compensate for frequency offsets of
maximally 2500 Hz.

3.3 Interfaces
As previously mentioned in Section 1.2 the structure, of which the project system is to be
implemented in, is of improtance. Therefore the place where the system can be imple-
mented has to be defined. Defining this gives the interfaces to the algorithm, such that it is
clearly defined under which prerequisites the algorithm has to work.

It is chosen not to implement an algorithm which alters the front-end of the transceiver
system. The reason for this is that it would mean redesigning the the front-end to include
another block, which as most frontends are single chips, would be difficult. Because of this
the system designed in the project focus on the signal processing which takes place after
the Analog to Digital Converter (ADC). This gives the benefits that the system can be easily
implemented as a digital signal processing algorithm in near or at baseband and that it can

22 Chapter 3 • Problem Analysis

be implemented easily in existing systems, making it an atractive improvement possibility.
By this choice and the context of 3G the interfaces for the project system is shown in Figure
3.13, with the project system being implemented in the "Baseband Detection" block.

5 MHz

bandwidth

Inverse of

transmitter shaping

filter

α = 0.22

3GPP TS 25.101 V9.1.0 - 6.8.1

Example:

1937.6 MHz

3GPP TS 25.101 V9.1.0 - 5ff

15.36 Msamples/s

(3x oversampling)

16 bit resolution

I and Q channel

Downmixing

&

A/D Conversion

Bandpass

Filter

Root Raised

Cosine

Down

Sampling

Baseband

Detection

3.84 Mchips/s

Figure 3.13: Block diagram showing the 3G frontend with inter-
faces for the different blocks including the block showing the inter-
face to the project system [12].

As seen by the figure the project system should handle 3.84 Mchips/s, meaning the input
to the system is 3.84 Msamples/s each 16 bit in two channels.

Chapter 4

Algorithms

4.1 Feedback and Feed-forward Algorithms
Algorithms concerning this topic can be divided into two groups, namely feedback and
feed-forward algorithms. The feedback algorithms uses iterations to compensate for the
error in frequency, whereas the feed-forward algorithms simply compensates for the error
based on the present and previous observations. Block diagrams of both feedback and
-forward are shown in Figure 4.1.

Input

Frequency

Estimator

Output

Oscillator

(a) Block diagram of feedback algorithms.

Input

Frequency

Estimator

Output

Oscillator

(b) Block diagram of feedforward algo-
rithms.

Figure 4.1: Block diagrams of the possible classes of algorithms.

As seen in Figure 4.1, the blocks used are the same in both cases. Because of this, the
algorithms are different ways of performing the functionality needed in these blocks.

4.1.1 Frequency Estimator
This block is the most crucial part of the algorithms. The functionality that this block has is
to find the frequency of the input signal and output this frequency. Estimating the frequency
can be divided into two methods. These are data aided and non data aided estimators.

The data aided methods use training sequences in the input signal to be able to lock on to
the phase and frequency of the signal. An example of such an algorithm is presented in [7,
p.311]. These methods are, however, not of interest for the 3G scenario because there is
only training sequences present when setting up the connection and as such the algorithms
cannot track the frequency through an entire transmission.

The non data aided algorithms, which are of interest, include both feed-forward and feed-
back algorithms ([1], [2], [4]). Some estimate the phase error of the signal, while others

23

24 Chapter 4 • Algorithms

estimate the frequency error. Because of this, the algorithm which is considered here must
either be an algorithm which estimates the phase varying over time i.e. the frequency.

4.1.2 Sine Oscillator
This block is essential for estimating the phase or frequency to be used for compensation.
The block can, however, also be included in the estimation block, like done by Viterbi
in [15]. This way the frequency estimator outputs an oscillating signal that is directly
mixed with the input. If the block is not included, implementing the functionality of the
oscillator is the same as implementing a sine and cosine function. These functionalities are
usually implemented by means of the CORDIC algorithm [16] or look up tables, as these
are efficient and easy to use.

Because the need for this block depends on whether the chosen estimation algorithm needs
an external oscillator or not, other algorithms are not discussed before the estimation algo-
rithm is chosen. The choice of sine oscillator algorithm can also depend on the platform
and/or architecture chosen for implementation.

4.2 Algorithm Choice
To choose an algorithm for the estimation block, the different algorithms are compared
based on their performance properties with regards to the range of the offset and noise level.
Based on this, three algorithms are singled out, which are presented by Costas [1], Divsalar
and Simon [2], and Yu, Shi, and Su[18]. The first algorithm is known as the Costas loop,
which uses a multiplication of the I- and Q-channel to output the instantaneous phase of the
input signal. The second algorithm removes the data dependency of the input signal from
the signal and then estimates the instantaneous phase based on multiple samples. The third
uses oversampling to determine the instantaneous frequency of the input signal by finding
the difference between the samples within on bit period. Of these the second one is chosen
because the first one has very poor performance for higher frequency offset (larger than 1
kHz) and the third has very poor performance in low SNR which is present when spread
spectrum is used, as it is in 3G. The second, however, performs very good under low SNR
conditions and for larger frequency offsets compared to the other algorithms. This is based
on initial investigations of the BER and the performance for different frequency offsets
done by Nicoloso [8, chap.6] and Divsalar and Simon [2].

The chosen algorithm is, as mentioned, presented in [2] and is a maximum likelihood phase
estimator which can be modified to comprehend frequency offsets. The algorithm is a feed-
forward algorithm and the output does not need a separate local oscillator as the output of
the algorithm is the oscillating signal. In [2] three similar algorithms are found and the one
chosen is scheme number two which in [8, chap.6] is found to perform good compared to
the others presented. The algorithm is, however, only defined for BPSK, which means that
it has to be modified to work in the 3G scenario using QPSK, which is the focus of the
project.

Chapter 5

Rewriting the Algorithm for QPSK

As described in Chapter 4 the algorithm chosen for analysis and implementation is devel-
oped by Divsalar and Simon [2]. They describe three variations of the algorithm and the
second one is chosen. The three algorithms is based on each other and therefore this chap-
ter first modifies the first variation of the algorithm to QPSK, and the results from here are
then used to modify the second variation. This algorithm is then simulated to determine its
performance, in terms of BER, to verify that its good properties from BPSK are maintained
for QPSK operation.

The algorithm can be seen in Figure 5.1 and the two main parts of the algorithm are shown
in the dashed boxes. These parts are derived separately for QPSK based on the findings in
[2].

Matched

Filter

(●)2 z-1 z-1

γTγ2γ1

●●●

●●●

Σ

(●)

ǀ●

z-1 (●)*

Re(●) m(●, threshold)

-1 if ● > 0

otherwise 1
m z-1

2

Phase Estimator

Phase Jump Detector

Figure 5.1: Block diagram of the algorithm with the phase esti-
mator and phase jump detector illustrated by the dashed boxes. γ

represents the sinc function used in (5.24).

25

26 Chapter 5 • Rewriting the Algorithm for QPSK

5.1 Phase Estimator
The main functionality of the phase estimator is to estimate the phase error of the carrier
signal based on samples obtained from the output of the matched filter. The estimator
explained in [2] is for BPSK, while the derivation here is made for QPSK (for the 3G
system), but is based on the same methodology.

The first step is to look at the estimator dealing with only static phase offset. The output of
the matched filter can be represented as:

rk =
√

2Pe j(φk+θ)+nk (5.1)

where nk is a sample of white Gaussian noise with zero mean and variance σ2
n = N0

T in
both directions of the complex plane (N (0, N0

T) + jN (0, N0
T)), P is the transmit power

and φk is the phase of the transmitted signal. Now, the received sequence r becomes r =
rk−1,rk−2, · · · ,rk−N which has the length N and it is assumed that the carrier phase θ is
constant over this length (the case with frequency offset is considered in Section 5.1.1).
With this, the likelihood function for receiving this sequence becomes:

p(r | φ ,θ) =
(

1
2πσ2

n

)N

e
− 1

2σ2n

N

∑
i=1

∣∣∣rk−i−
√

2Pe j(φk−i+θ)
∣∣∣
2

(5.2)

This is rewritten to the following:

p(r | φ ,θ) = Fe
α

N

∑
i=1

ℜ

[
rk−ie− j(φk−i+θ)

]

(5.3)

where:

F =

(
1

2πσ2
n

)N

e
−NP

σ2n
+

N

∑
i=1
|rk−i|2

and α =

√
2P

σ2
n

The rewriting is found in Appendix A.

As F and α are independent of the data phase φk, they are unimportant for the Maximum
Likelihood (ML) function. The ML estimator (θ̂ML,k) of the phase error θ is then found as:

ln[p(r | θ̂ML,k)] = max
θ

[ln p(r | θ)] (5.4)

As seen, the above equations define p(r | φ ,θ). The one needed is p(r | θ), but this value
can be found be taking the expectation of p(r | φ ,θ) with respect to φ , therefore:

p(r | θ) = E [p(r | φ ,θ)] (5.5)

Section 5.1 • Phase Estimator 27

The possible values of φk−1 in the QPSK case are
[
0, π

2 ,π,
3π

2

]
, the case for 3G is actually[

π

4 ,
3π

4 , 5π

4 , 7π

4

]
(see constellation diagram in Figure 3.4), but this is makes no difference for

the derivations. Therefore:

p(r | θ) = F
N

∏
i=1

[
1
4 ∑

φk−i

eαℜ

[
rk−ie

− j(φk−i+θ)
]]

(5.6)

This is rewritten as:

p(r | θ) = F
N

∏
i=1

[
1
4

(
eαℜ[rk−ie− j(0+θ)] + eαℜ

[
rk−ie

− j(π
2 +θ)

]

+ eαℜ[rk−ie− j(π+θ)] + e
αℜ

[
rk−ie

− j(3π
2 +θ)

])] (5.7)

Now using that ℜ

[
e− jx+ π

2

]
= ℑ

[
e− jx

]
and ℜ

[
e− jx+π

]
=−ℜ

[
e− jx

]
, this gives:

p(r | θ) = F
N

∏
i=1

[
1
4

(
eαℜ[rk−ie− jθ] + eαℑ[rk−ie− jθ]

+ e−αℜ[rk−ie− jθ] + e−αℑ[rk−ie− jθ]
)] (5.8)

As the cosine hyperbolic function is defined as cosh(x) = 1
2 (e

x + e−x) this gives the fol-
lowing:

p(r | θ) = F
N

∏
i=1

[
1
4

(
2cosh

(
αℜ

[
rk−ie− jθ

])
+2cosh

(
αℑ

[
rk−ie− jθ

]))]

= F
1
2

N

∏
i=1

[
cosh

(
αℜ

[
rk−ie− jθ

])
+ cosh

(
αℑ

[
rk−ie− jθ

])] (5.9)

And then ln[p(r | θ̂ML,k)] is found, to ease the calculations, as:

ln[p(r | θ̂ML,k)] = ln(F)+
N

∑
i=1

ln
(

1
2

(
cosh

(
αℜ

[
rk−ie− jθ

])

+ cosh
(

αℑ

[
rk−ie− jθ

]))) (5.10)

To find this maximum value, the derivative is found and set to zero such that the value of θ

which maximizes (see [7, p.318]) becomes θ̂ML,k. This means that:

28 Chapter 5 • Rewriting the Algorithm for QPSK

∂ ln(p(r | θ))
∂θ

= 0 =

∂ ln(F)+
N

∑
i=1

ln
(

1
2

(
cosh

(
αℜ

[
rk−ie− jθ̂ML,k

])
+ cosh

(
αℑ

[
rk−ie− jθ̂ML,k

])))

∂θ

(5.11)

Using the chain rule and that the real and imaginary operators can be moved outside deriva-
tives this becomes:

∂ ln(p(r | θ))
∂θ

=

N

∑
i=1

2
(
−sinh

(
αℜ

[
rk−ie− jθ̂ML,k

])
αℜ

[
jrk−ie− jθ̂ML,k

]

cosh
(

αℜ

[
rk−ie− jθ̂ML,k

]) . . .

. . .
−sinh

(
αℑ

[
rk−ie− jθ̂ML,k

])
αℑ

[
jrk−ie− jθ̂ML,k

])

+cosh
(

αℑ

[
rk−ie− jθ̂ML,k

]) (5.12)

Now for a low SNR (the case for spread spectrum transmission), meaning that σ2
n →∞ and

thereby α → 0 then sinh(αx)≈ α

(
αx+ α3x3

6

)
(this is the second order Taylor expansion

around 0) and cosh(αx)≈ 1 this gives:

∂ ln(p(r | θ))
∂θ

=

N

∑
i=1

(
αℜ

[
rk−ie− jθ̂ML,k

]
αℜ

[
jrk−ie− jθ̂ML,k

]

−α
1
6

α
3
ℜ

[
rk−ie− jθ̂ML,k

]3
αℜ

[
jrk−ie− jθ̂ML,k

]

−αℑ

[
rk−ie− jθ̂ML,k

]
αℑ

[
jrk−ie− jθ̂ML,k

]

+ α
1
6

α
3
ℑ

[
rk−ie− jθ̂ML,k

]3
αℑ

[
jrk−ie− jθ̂ML,k

])
(5.13)

This is reduced to:

∂ ln(p(r | θ))
∂θ

=

N

∑
i=1

α
4 1

6

(
−ℜ

[
rk−ie− jθ̂ML,k

]3
ℑ

[
rk−ie− jθ̂ML,k

]
+

· · ·ℑ
[
rk−ie− jθ̂ML,k

]3
ℜ

[
rk−ie− jθ̂ML,k

])
(5.14)

Section 5.1 • Phase Estimator 29

Now, knowing that ∂ ln(p(r|θ))
∂θ

= 0 in the maximum point, α4 and the 1
6 are neglected, the

equation is also multiplied with minus one to ease calculations.

N

∑
i=1

ℜ

[
rk−ie− jθ̂ML,k

]3
ℑ

[
rk−ie− jθ̂ML,k

]
− ℑ

[
rk−ie− jθ̂ML,k

]3
ℜ

[
rk−ie− jθ̂ML,k

]
= 0 (5.15)

Solving this for e jθ̂ML,k the estimator of the instantaneous phase becomes (The derivation
are shown in Appendix B):

e jθ̂ML,k = 4

√√√√√√√√√

N

∑
i=1

r4
k−i

∣∣∣∣∣
N

∑
i=1

r4
k−i

∣∣∣∣∣

(5.16)

When (5.16) is compared to the result of the first algorithm in [2] it is seen that these are
very similar. The only difference is the exponents and the root, which is very intuitive
taking the number of message points into account. This previous derivations therefore
proves the intuition for the estimator.

5.1.1 Frequency Modification
To accommodate that the algorithm has to work with frequency offsets and not just phase
errors, the algorithm has to be modified to handle this. This is also explained in [2] for
BPSK and is derived here for QPSK.

First equation (5.9) is modified to include the frequency dependency of the data, which
gives the following [2]:

p(r | θ , f) = F
1
2

N

∏
i=1

[
cosh

(
αℜ

[
rk−ie− jθ e j2π f iT

])

+ cosh
(

αℑ

[
rk−ie− jθ e j2π f iT

])]
(5.17)

Where T is the period time for one bit and f is the frequency error.

In order to find p(r | θ) the expected value of the frequency is found by averaging over the
frequency by integrating. Here the probability of the frequency is assumed to be uniformly
distributed (see Figure 5.2) such that p(r | θ) becomes:

p(r | θ) = F
4 fmax

∫ fmax

− fmax

N

∏
i=1

[
cosh

(
αℜ

[
rk−ie− jθ e j2π f iT

])

+ cosh
(

αℑ

[
rk−ie− jθ e j2π f iT

])]
d f (5.18)

30 Chapter 5 • Rewriting the Algorithm for QPSK

f

P(f)

-fmax fmax

Figure 5.2: The assumed probability distribution of the frequency
offset.

The value of e jθML,k which maximizes the above equation is found by differentiating the
above equation. This is done by using the following equation:

∂

∂x

[
k

∏
i=1

fi(x)

]
=

k

∑
i=1

(
∂

∂x
fi(x)∏

j 6=i
f j(x)

)
(5.19)

This results in the following derivative:

∂ p(r | θ)
∂θ

=
F

2 fmax

∫ fmax

− fmax

∂

N

∏
i=1

1
2

[
cosh

(
αℜ

[
rk−ie− jθ e j2π f iT

])

. . .

. . .
+ cosh

(
αℑ
[
rk−ie− jθ e j2π f iT

])]
d f

∂θ

=
F

4 fmax

∫ fmax

− fmax

N

∑
i=1

(
∂

∂θ

1
2

cosh
(

αℜ

[
rk−ie− jθ e j2π f iT

])

+
1
2

cosh
(

αℑ

[
rk−ie− jθ e j2π f iT

])

·∏
j 6=i

1
2

cosh
(

αℜ

[
rk−ie− jθ e j2π f iT

])

+
1
2

cosh
(

αℑ

[
rk−ie− jθ e j2π f iT

]))
d f

(5.20)

which is rewritten to:

∂ p(r | θ)
∂θ

=
F

4 fmax

∫ fmax

− fmax

N

∑
i=1

(
1
2

sinh
(

αℜ

[
rk−ie− jθ e j2π f iT

])

·αℜ

[
jrk−ie− jθ e j2π f iT

]

+
1
2

sinh
(

αℑ

[
rk−ie− jθ e j2π f iT

])
αℑ j

[
rk−ie− jθ e j2π f iT

]

·∏
j 6=i

1
2

cosh
(

αℜ

[
rk−ie− jθ e j2π f iT

])

+
1
2

cosh
(

αℑ

[
rk−ie− jθ e j2π f iT

]))
d f

(5.21)

Section 5.1 • Phase Estimator 31

Now using the low SNR assumption the sine and cosine hyperbolic functions are approxi-
mated with sinh(x)≈ x+ 1

6 x3 and cosh(x)≈ 1 this gives:

∂ p(r | θ)
∂θ

=
F

4 fmax

∫ fmax

− fmax

N

∑
i=1

(
−1

2
α

2
ℜ

[
rk−ie− jθ e j2π f iT

]
ℑ

[
rk−ie− jθ e j2π f iT

]

− 1
8

1
6

α
4
ℜ

[
rk−ie− jθ e j2π f iT

]3
ℑ

[
rk−ie− jθ e j2π f iT

]

+
1
2

α
2
ℜ

[
rk−ie− jθ e j2π f iT

]
ℑ

[
rk−ie− jθ e j2π f iT

]

+
1
8

1
6

α
4
ℑ

[
rk−ie− jθ e j2π f iT

]3
ℜ

[
rk−ie− jθ e j2π f iT

]
∏
j 6=i

1

)
d f

=
F

4 fmax

1
48

α
4
∫ fmax

− fmax

N

∑
i=1

(
−ℜ

[
rk−ie− jθ e j2π f iT

]3
ℑ

[
rk−ie− jθ e j2π f iT

]

+ ℑ

[
rk−ie− jθ e j2π f iT

]3
ℜ

[
rk−ie− jθ e j2π f iT

])
d f

(5.22)

Setting the equation to equal zero, and using the derivation from Appendix B and neglecting
F and 1

192 results in the following, which is then integrated over f :

∫ fmax

− fmax

N

∑
i=1

(
rk−ie− jθ̂ML,k e j2π f iT

)4
−
∣∣rk−ie j2π f iT ∣∣4 d f = 0

[
N

∑
i=1

(
rk−ie− jθ̂ML,k

)4
e j8π f iT −|rk−i|4

∣∣e j8π f iT ∣∣
] fmax

− fmax

=

N

∑
i=1

(
rk−ie− jθ̂ML,k

)4 e j8π fmaxiT

j8π fmaxiT
−|rk−i|4

∣∣∣∣
e j8π fmaxiT

j8π fmaxiT

∣∣∣∣

−
(

rk−ie− jθ̂ML,k
)4 e− j8π fmaxiT

j8π fmaxiT
−|rk−i|4

∣∣∣∣
e− j8π fmaxiT

j8π fmaxiT

∣∣∣∣= 0

N

∑
i=1

2
(

rk−ie− jθ̂ML,k
)4

sinc(8 fmaxiT)−2
∣∣r4

k−i

∣∣ |sinc(8 fmaxiT)|= 0

(5.23)

Solving this for e jθML,k the estimator becomes:

e jθ̂ML,k = 4

√√√√√√√√√

N

∑
i=1

r4
k−isinc(8 fmaxiT)

∣∣∣∣∣
N

∑
i=1

r4
k−isinc(8 fmaxiT)

∣∣∣∣∣

(5.24)

Here fmax denotes the maximum possible frequency offset expected for the algorithm to
handle. This value is as such the maximum value specified in Section 3.2.

32 Chapter 5 • Rewriting the Algorithm for QPSK

5.2 Phase Jump Detector
Because the estimator defined in Eq. (5.16) is a result of the fourth root, this causes a 4
fold ambiguity in the estimator [7, p.317]. This means that the estimator only tracks the
phase 90 degrees at a time. The implication of this is that the estimator only outputs a
signal with a phase between −π

4 and π

4 . This also means that when the output reaches ±π

4
it jumps to ∓π

4 . Because this is where the estimator should proceed to the next quadrant
of the complex plane, these jumps are important for moving the estimator to the correct
position.

To detect these jumps, a modified version of the phase jump detector presented in [2] is
created. A diagram of it is shown in Figure 5.3. As seen, the present estimate is multiplied
with the previous complex conjugated estimate. The imaginary part of this multiplication
is then compared to a threshold value and if the value exceeds that a jump has taken place
between the two estimates, which has to be handled.

When the jump is detected and the estimator has jumped from −π

4 to π

4 , the estimator is
multiplied with− j and j when it has jumped from π

4 to −π

4 . To continue the multiplication
with j or− j when a jump has not been present for the given sample, the last delay element
and multiplier of the figure are introduced. If the output of the comparator is 1 when a jump
is not present, the compensation is maintained for all samples.

Simulations of the algorithm is shown in Figure 5.5. Here it is shown that the jump detector
can change due to noise even for a very high filter order. This can make the estimator end
up in a wrong quadrant. This problem is not addressed in this project, but it is a possible
point for improvement.

The above definition of the Phase Estimator and the Phase Jump Detector is shown in the
block diagram in Figure 5.3. Comparing this to the block diagram in Figure 5.1 it is seen
that there are small differences in the Phase Jump Detector and the Phase Estimator, but
the overall structure of the algorithm is the same.

The following section describes the simulations of the algorithm which should clarify if the
algorithm performs as good for QPSK as for BPSK and it should also determine the best
suited number of inputs to be averaged over in the estimator.

Section 5.3 • Simulations 33

Matched

Filter

(●)4 z-1 z-1

γTγ2γ1

●●●

●●●

Σ

(●)

ǀ●ǀ

z-1 (●)*

Im(●) m(●, threshold)

-j if ● > threshold

j if ● < -threshold

otherwise 1

m
z-1

4

Phase Estimator

Phase Jump Detector

Figure 5.3: Block diagram of the algorithm with the phase esti-
mator and phase jump detector illustrated by the dashed boxes. γ

represents the sinc function used in (5.24).

5.3 Simulations
The functionality of the algorithm is simulated using MATLAB and Simulink. The model
of the algorithm is built in Simulink, and MATLAB is used to initialize the constants of
the simulation, run the Simulink model and collect and present the resulting data. The
description of this model is found in Appendix C.

5.3.1 Results
The SNR/BER plots was done for a range of filter orders from 16 to 512 within the ordinary
operating frequency offset of 0–2500 Hz. The simulation was also run for frequencies
outside the normal operating interval with delay line lengths 128, 256 and 512. The results
shown are only for filter lengths of 128, 256 and 512 as it is found in [8] that these are the
ones which performs the best and are therefore the most interesting.

The BER plots are made from -4 to 10 dB SNR with a step size of 2 dB. Further the relative
phase error for the 128 taps configuration is plotted in a 3D plot to see the phase error of
the output of the system.

34 Chapter 5 • Rewriting the Algorithm for QPSK

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

Delay line: 128 taps

Statistical limit
0 Hz
25 Hz
250 Hz
2500 Hz

Figure 5.4: SNR/BER plot of the algorithm employing a delay line
length of 128 for offsets of 0, 25, 250 and 2500 Hz.

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

Delay line: 256 taps

Statistical limit
0 Hz
25 Hz
250 Hz
2500 Hz

Figure 5.5: SNR/BER plot of the algorithm employing a delay line
length of 256 for offsets of 0, 25, 250 and 2500 Hz.

Section 5.3 • Simulations 35

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

Delay line: 512 taps

Statistical limit
0 Hz
25 Hz
250 Hz
2500 Hz

Figure 5.6: SNR/BER plot of the algorithm employing a delay line
length of 512 for offsets of 0, 25, 250 and 2500 Hz.

The relative phase error of the system is shown in 5.7.

5.3.2 Discussion
The plots show a trade-off between the ability to “lock onto a signal” and the length of the
delay line. The relative phase error plots indicate that the angle estimator works rather well
for SNR above 0 dB as the estimates are located around either the correct angle or quarter
circle intervals away. This is because of the phase jump detector not being able to “lock”
onto a specific quadrant. But as the SNR decreases, the phase jump detector is less likely
to be “fooled” into making a jump correction.

As the delay line length is increased, the noise is filtered away, and the phase jump detector
begins to work properly. But a longer delay line means that the offset angle between the
oldest and the youngest samples in the line getting more significant, thus affecting the
performance of the filter, because it is “trying” to estimate one single angle, but is getting
different angles as input.

The drawbacks of a short filter is that it produces quarter circle disambiguations thus mak-
ing the system useless at low SNR. This can be seen in the relative phase error plot. The
relative errors group around either the correct angle or at 90◦ clockwise, 90◦ counterclock-
wise or 180◦ relative to the correct angle. This happens when the noise admitted though
the filter “fools” the phase jump detector. The advantages of the short filter is, however,
that it gives a more precise angle estimate, as the real angles of the inputs are not too far
apart; furthermore, it is tractable when considering implementation.

5.3.3 Conclusion
Based on the simulations it is decided that the filter order used in the rest of the project is
128. This choice is based on the lack of visible differences in the BER plots for 0, 25 and
250 Hz frequency offsets and the small increase in BER for the higher filter orders for 2500
Hz.

36 Chapter 5 • Rewriting the Algorithm for QPSK

−4
−2

0
2

4
6

8
10

−pi
−pi/2

0
pi/2

pi
0

0.2

0.4

0.6

0.8

1

SNR−level [d
B]

Relative phase error [Radians]

Figure 5.7: 3D plot of the relative phase error for 512 filter taps
and 2500 Hz frequency offset. Notice the Phase Jump Detector fails
to lock onto the correct quadrant for -4 and -2 dB SNR.

Chapter 6

Implementation Analysis

This chapter serves two purposes. The main purpose is to aid the choice of hardware
platform. Secondly, the choice of complex number representation is considered.

To aid the choice of the platform, some key figures for the algorithm are calculated. These
are the estimated execution time of the algorithm and the multiplier count. To estimate the
execution time, the critical path in the algorithm must be found. To do this, the maximum
number of operations are found for fully sequential operation, and then by considering the
inherent parallelism in the algorithm, the number of sequential operations in the critical
path are found. The execution time of the operations are then estimated and combined with
the number of operations used, to give a rough estimate of the total execution time of the
system. This estimate is refereed to as the complexity of the algorithm.

Because the algorithm use complex numbers, the complexity analysis also investigates
which is the best way to represent these complex numbers. The complex numbers can be
represented in either Cartesian or polar format. The differences between these formats and
their impact on the execution of the algorithm are investigated. The algorithm is divided
into three main blocks; the filter, the estimator, and the phase jump detector. The number
of operations needed for executing each block for both of the formats are then evaluated,
making it possible to evaluate the difference between the complex number formats.

Some of the operations which are defined for the individual blocks are more complex than
simple additions or multiplications. These operations are defined in terms of simpler oper-
ations. This results in the algorithm being defined in terms of simple operations and using
the least complex type of the calculations with respect to this particular algorithm.

6.1 Complexity
The section finds the complexity of the algorithm in terms of the number of operations
used. To find the complexity of the algorithm it is first divided into blocks. The individual
blocks are then analyzed for their complexity individually before these results are added to
get the complexity of the entire algorithm.

The main blocks of the algorithm are the filter, the estimator, and the phase jump detector,
shown in Figure 6.1. This division was chosen, as the interfaces between the blocks could

37

38 Chapter 6 • Implementation Analysis

be easily defined. Also, as will be described later, the interfaces between the blocks are
suitable points in which to introduce complex format conversions.

Matched

Filter

(●)4 z-1 z-1

γTγ2γ1

●●●

●●●

Σ

(●)

ǀ●

z-1 (●)*

Im(●) m(●, threshold)

-j if ● > threshold

j if ● < -threshold

otherwise 1

m
z-1

4

Estimator block

Filter block

Phase Jump Detector block

*

Figure 6.1: Block diagram of the algorithm using the cartesian com-
plex format. In this figure, the three functional blocks of the algo-
rithm are framed.

6.1.1 Complex Number Format
There are two ways of representing complex numbers, in Cartesian form with a real and
an imaginary part, and polar form with magnitude and angle. Both of these formats can be
used for the algorithm but the best suited has to be chosen.

The input to the algorithm is in Cartesian form, because the I and Q channels are sampled
individually. Thus, a conversion has to be introduced in order to use the polar format. A
representation of the algorithm in the Cartesian format results in the block diagram shown
in Figure 6.1. The points where the conversion blocks can be inserted are either in front of
or after the blocks. The placement of a conversion in front of a block depends on the type
of operations that are performed in the block, and whether it is an advantage to do them in
polar format.

Performing the conversion before the filter would result in the filter being a matter of sum-
ming complex numbers in polar format, which would not be efficient because this operation
would include a conversion back and forth between the polar and the Cartesian format.

After the Filter block a conversion would, however, be very suitable. The operations taking
place after the filter block only concerns the phase of the complex number. As seen, the
output of the filter is normalized in the estimator block which then means that the length
of the complex number is irrelevant for the further computations. Effectively, the fourth
root divides the phase of the number by four, which is very easily computed in the fixed
point polar format, because this would mean just two shift operations on the phase of the
complex number.

The phase jump detector in the polar would also be simpler than in the Cartesian format.

Section 6.1 • Complexity 39

Only the phase of the current and previous estimates have to be compared and if they are
different by more than 45°, then 90° are added to or subtracted from the current phase
estimate.

Taking these observations into consideration a conversion to polar format is placed in front
of the estimator block and a reconversion block is placed after the phase jump detector.
This gives the modified algorithm shown in the block diagram shown in Figure 6.2.

Matched

Filter

(●)4 z-1 z-1

γTγ2γ1

●●●

●●●

Σ

(●)

z-1

90 if sign(m1)>sign(m2)

-90 if sign(m1)<sign(m2)

otherwise 0

z-1

4

Convert

Vec. -> Pol.

Convert

Pol. -> Vec.

m1

m2

Phase Jump Detector Block

Estimator

Block

Filter Block

Figure 6.2: Block diagram of the algorithm using the polar complex
format.

Based on these setups the complexity of the algorithm is found for both formats, which is
then used to choose the best suited format for implementation.

6.1.2 Number of Operations
As described previously the complexity of the algorithm is based on the number of opera-
tions that needs to be executed for the algorithm. Because of the different complex number
formats, the number of operations are found for each block for both formats and for both
sequential and parallel operation. The number of operations in parallel operation is found
by utilizing all inherent parallelism in the algorithm.

As the algorithm is divided into the blocks shown in Figure 6.1 and Figure 6.2, the com-
plexity of the algorithm is found by adding the complexities of the individual blocks for
both the complex number formats. The count of the simple operations are found by use of
data flow graphs derived from the two algorithm diagrams in Figure 6.1 and Figure 6.2.

Filter Block

The number of operations needed for the filter block is found by means of the data flow
graph shown in Figure 6.3. The two top left multiplications are the power of four operation.
The number of operations for utilizing the parallelism is directly the number of operations
in the critical path in the data flow graph.

40 Chapter 6 • Implementation Analysis

●●●

●●●

●●●

Figure 6.3: Partial data flow graph for the filter block. The ellipses
indicate that the amount of multiplications and additions varies de-
pending on the desired filter length. Note that all operations in the
data flow graph are complex. The critical path of additions in case
of parallel processing is found to be log2(n) where n is the filter or-
der. The filter order throughout has been set to n = 128 thus the
critical path is 7.

The number of operations are found by examination of the data flow graph. The filter length
is as mentioned in Section 5.3.3 set to 128 taps, which is therefore used in this analysis.
Note that the operations are complex, meaning that each operation is an operation with
complex numbers as input and output. As the conversion to polar format happens after the
filter, the number of operations are the same for both complex formats.

The number and types of operations needed for this block both with and without utilizing
parallelism are shown in Table 6.1.

Sequential Parallel
Multiplications 130 3
Additions 127 7

Table 6.1: The critical paths for the filter block in sequential and
parallel operations.

Estimator Block Complexity

The number of operations for the estimator block are based on the data flow graphs shown
in Figure 6.4.

The number of operations are shown in Table 6.2. As seen by the figures in Table 6.2;
there is a big difference between the two number formats, but only a small reduction in the
number of operations in the critical path when utilizing the inherent parallelism. It is also
seen that if the division has a longer execution time than the trigonometric function this
block is preferred to be executed in the polar format.

Section 6.1 • Complexity 41

(●)

(●)

c

c

c

(●)

(a) Cartesian
format.

>>

arctan

(b) Polar
format.

Figure 6.4: Data flow graphs for the estimator block with the differ-
ent complex number formats.

Sequential Operation
Cartesian Polar

Division 2 1
Trigonometric 0 1
Shift 0 1
Multiplication 2 0
Addition 1 0
Square Root 1 0
C Square Root 2 0

Parallel Operation
Cartesian Polar

Division 1 1
Trigonometric 0 1
Shift 0 1
Multiplication 1 0
Addition 1 0
Square Root 1 0
C Square Root 2 0

Table 6.2: The critical paths for the filter block in sequential and
parallel operations.

42 Chapter 6 • Implementation Analysis

Phase Jump Detector Block Complexity
The data flow graphs for the phase jump detector blocks are shown in Figure 6.5 for the
Cartesian and polar format. Based on these, the number of operations are shown in Table
6.4.

C

c

c

c

c

(a) Cartesian for-
mat.

C

c

sin cos

(b) Polar format.

Figure 6.5: Data flow graphs for the phase jump detector block with
the different complex number formats.

The different complex formats makes that the number of operations for the block are dif-
ferent. The number of operations for the block in cartesian and polar format is shown in
Table 6.3. Again only a small reduction is seen between sequential and parallel operation,
which is because of the small amount of inherent parallelism for this block in both formats.

Sequential Operation
Cartesian Polar

C Multiplication 4 1
Compare 1 1
Addition 0 2
Trigonometric 0 2

Parallel Operation
Cartesian Polar

C Multiplication 4 1
Compare 1 1
Addition 0 2
Trigonometric 0 1

Table 6.3: Number of complex operations needed for the filter block.

Trigonometric Operation Because the Trigonometric operations can be implemented in
many different ways the best suited for the algorithm needs to be found. With the method
specified the operation execution time can be estimated, and then the algorithm execution
time can be estimated.

The two conversion blocks shown in Figure 6.2 do not have the same functionality, as one

Section 6.1 • Complexity 43

converts from Cartesian to polar format and the other does the opposite. The first has to
find the angle of a complex number. The other and opposite convert operation finds the real
and imaginary values from the angle of a complex number. Note that some operations can
be left out as this implementation has no need for the magnitude when it has been converted
to polar format.

The phase v of a complex number A can be found as v = arctan
(

ℑ(A)
ℜ(A)

)
.

The real and imaginary values of the number A can be found from the phase v as: ℜ(A) =
cos(v) and ℑ(A) = sin(v).

This means that the convert operations combined uses 3 real trigonometric functions and 1
real division.

The trigonometric is chosen to be implemented as a look up table with a linear approxi-
mation between the points in the table. This is done because of the results of [14] where
the CORDIC, look up table and piece wise linear approximation methods are compared.
They found that the piecewise linear approximation is less power- and area-consuming
and by nature it is also less memory consuming, than the look up table. This means that
the trigonometric functions are substituted with one compare, one multiplication and one
addition.

By means of this the number of operations of the algorithm is found for sequential and
parallel operations. The resulting number of operations are shown in Table 6.4 and 6.5
respectively.

Operation Fi
lte

r

E
st

im
at

or
C

ar
te

si
an

E
st

im
at

or
Po

la
r

Ph
as

e
Ju

m
p

D
et

ec
to

r
C

ar
te

si
an

Ph
as

e
Ju

m
p

D
et

ec
to

r
Po

la
r

C
ar

te
si

an
To

ta
l

Po
la

r
To

ta
l

Multiplication 2 1 2 2 3
- complex 130 4 1 134 131
Addition 1 1 (1) 4 1+(1) 5
- complex 127 127 127
Division 2 1 2 1
Square root 1 1
- complex 2 2
Comparison 1 1 3 1 4
Shift 2 1

Table 6.4: An overview of the operations count for the different
blocks for sequential operation, in the end summarized for Cartesian
and polar solutions. The (1) in the Cartesian phase jump detector
signifies a complex conjugation.

44 Chapter 6 • Implementation Analysis

Operation Fi
lte

r

E
st

im
at

or
C

ar
te

si
an

E
st

im
at

or
Po

la
r

Ph
as

e
Ju

m
p

D
et

ec
to

r
C

ar
te

si
an

Ph
as

e
Ju

m
p

D
et

ec
to

r
Po

la
r

C
ar

te
si

an
To

ta
l

Po
la

r
To

ta
l

Multiplication 1 1 1 1 2
- complex 3 4 1 7 4
Addition 1 1 (1) 3 1+(1) 4
- complex 7 7 7
Division 1 1 2 1
Square root 1 1
- complex 2 2
Comparison 1 1 2 1 3
Shift 1 1

Table 6.5: An overview of the operations count for the different
blocks for parallel operation, in the end summarized for Cartesian
and polar solutions. The 1 in parenthesis in the Cartesian phase
jump detector signifies a complex conjugation.

Section 6.2 • Pipelining 45

It is easy to see from Table 6.4 and 6.5 that using parallel processing the algorithm has a
much shorter critical path. This is especially due to the filter block which has a high degree
of inherent parallelism.

6.2 Pipelining
To further decrease the execution time of the algorithm, pipelining is utilized [9, p.66-67].
It decreases the time between outputs of the algorithm, but increases the latency and the
number of operations executed in parallel.

To utilize pipelining, the algorithm is split into nodes each maintaining a specific func-
tionality. The connections between nodes (arcs) denotes the data dependencies between
the nodes. Pipelining is utilized in order to reduce the critical path of the algorithm in
exchange for a longer latency and control of the data. The control of the pipeline is not
considered here, but in the implementation of the algorithm in Section 7.3. The neglec-
tion of the control of the pipeline gives a small overhead in the execution time which is
not taken into account, but this is chosen for simplicity. Two new blocks are introduced
here, which are the "Power Four" and "Complex Mult", which until this point have been
considered part of the "Filter" and "Phase Jump Detector" blocks respectively. This is done
to further decrease the critical path of the algorithm compared to a pipeline with the three
stages equal to the blocks defined in the previous section.

The signal-flow graph can be seen in Figure 6.6. This leads to a coarse grain pipelining,
but it still significantly reduces the critical path of the algorithm.

Power Four

Filter

Atan

Phase Jump

Detector

Sine/Cosine

Complex Mult

Figure 6.6: Signal flow graph of the algorithm containing the two
extra blocks that are introduced for pipelining purpose. This SFG is
used for both complex formats.

To implement pipelining feed-forward cutsets are introduced in the signal flow graph as
shown in [9, p.66-67], and delays are introduced where the arcs and the cutsets intersect.
This means that the signal flow graph is divided into several independent signal flow graphs.
The signal-flow graph with the cutsets is shown in Figure 6.7. With the graph the pipeline
is shown in Table 6.6. The input to the algorithm is denoted r(k).

It is seen that the critical path now has been reduced from tcrit = tPower four+tFilter+tEstimator+
tPJD + tComplex mult to tcrit = max

(
tPower four, tFilter, tEstimator, tPJD, tComplex mult

)
which is a sig-

nificant reduction. However, the number of operations remains the same in the same

46 Chapter 6 • Implementation Analysis

Power Four

Filter

Atan

Phase Jump

Detector

Sine/Cosine

Complex Mult

D

D

D D

D

5D

Figure 6.7: Block diagram of the algorithm using the cartesian com-
plex format.

Clock 1 Clock 2 Clock 3 Clock 4 Clock 5
Power four(r(k)) Power four(r(k+1)) · · · · · · · · ·

Filter(r(k)) · · · · · · · · ·
Estimator(r(k)) · · · · · ·

PJD(r(k)) · · ·
Complex Mult(r(k))

Table 6.6: The table shows when the different inputs to the algorithm
are processed in each node.

amount of time, but they can be executed in parallel as they do not have any data de-
pendencies.

In Table 6.7 the number of operations in each of the 5 blocks are shown

With these numbers the estimated execution time of the algorithm is found.

Section 6.2 • Pipelining 47

Operation Po
w

er
Fo

ur

Fi
lte

r

E
st

im
at

or
C

ar
te

si
an

E
st

im
at

or
Po

la
r

Ph
as

e
Ju

m
p

D
et

ec
to

r
C

ar
te

si
an

Ph
as

e
Ju

m
p

D
et

ec
to

r
Po

la
r

C
om

pl
ex

M
ul

tip
lic

at
io

n

Sequential
Multiplication 2 1 2
- complex 2 128 3 0 1
Addition 1 1 (1) 4
- complex 127
Division 2 1
Square root 1
- complex 2
Comparison 1 1 3
Shift 2

Parallel
Multiplication 1 1 1
- complex 2 1 3 0 1
Addition 1 1 (1) 3
- complex 7
Division 1 1
Square root 1
- complex 2
Comparison 1 1 2
Shift 1

Table 6.7: An overview of the operations count for the different
blocks in the pipeline.

48 Chapter 6 • Implementation Analysis

6.3 Execution Time
To estimate the time for execution of the algorithm, the operations in Table 6.7 are analyzed
for their individual execution time. To find the execution time, experiments are conducted.
This is due to the fact that it has not been possible to find reasonable estimates for the
execution time for the different operators. As mentioned in Chapter 1, the platform is
chosen as an Altera FPGA, which means that the execution of the different operators also
depends on their individual implementation. To avoid this, the functions are implemented
with the IP cores available in the development tool (Quartus II v. 9). This means that the
time needed to implement the algorithms for e.g. the square root and divide operations are
reduced to a minimum. The execution times that have been found through experiments are
shown in Table 6.8 with their respective execution time. The FPGA’s considered are the
Cyclone 2, Cyclone 3 and Stratix 2.

Execution time [ns]
Operation Cyclone 2 Cyclone 3 Stratix 2
Addition 11.2 12.5 11.74
- complex 11.2 12.5 11.74
Multiplication 15.5 15.3 15.3
- complex 18.2 15.22 17.56
Square root 15.5 13.4 14.13
- complex 137.8 97.8 93.44
Division 48 46.0 41.7
Compare 10 10 13.19

Table 6.8: The operations and their execution times in [ns] derived
from experiments on the different FPGAs.

Using these results the execution time of the algorithm is estimated for both sequential and
parallel operation. This is done by summing the number of operations multiplied with the
execution times for the operations.

In Table 6.9 it is shown that both parallelism and pipelining should be utilized to be able to
deal with the real time requirement to the algorithm. As described in Section 3.3 the sample
frequency is 3.84 MSamples/s which gives approximately 260 ns for the algorithm. As the
estimated execution time shown in Table 6.9 is without any kind of control the fastest of the
complex formats is chosen, which is the polar format, when both parallelism and pipelining
are utilized.

Another aspect of the platform choice is the number of embedded multipliers on the FPGA’s.
The parallel configuration considered in the previous sections has up to 270 multipliers in
parallel but the analyzed FPGA’s has only up to 132 (the Cyclone 3). Because of this and
the similar results presented in Table 6.9, the FPGA with the highest number of embed-
ded multipliers is chosen as platform for the implementation (the Cyclone 3). How the
multipliers are utilized is described in Chapter 7.

Section 6.4 • Determining Fixed-Point Format 49

Device Po
w

er
Fo

ur

Fi
lte

r

E
st

im
at

or
C

ar
te

si
an

E
st

im
at

or
Po

la
r

Ph
as

e
Ju

m
p

D
et

ec
to

r
C

ar
te

si
an

Ph
as

e
Ju

m
p

D
et

ec
to

r
Po

la
r

C
om

pl
ex

M
ul

tip
lic

at
io

n

Sequential
Cyclone 2 36.4 3752 429.3 84.7 64.6 105.8 18.2
Cyclone 3 30.44 3535.7 344.1 83.8 55.66 110.6 15.22
Stratix 2 35.12 3738.7 326.75 81.93 65.87 117.13 17.56

Parallel
Cyclone 2 36.4 96.6 365.8 84.7 64.6 69.1 18.2
Cyclone 3 36.4 96.6 282.8 83.8 55.66 72.8 15.22
Stratix 2 35.12 95.96 269.75 81.93 65.87 76.9 17.56

Table 6.9: Estimated execution time in [ns] for all the blocks defined
in Section 6.2 on the different FPGA’s.

6.4 Determining Fixed-Point Format

The issue when moving to fixed point is: How many bits of word length are needed for
the algorithm to work properly? Fewer bits reduces the amount of possible values of the
numbers thus reducing the accuracy of the output, whereas more bits demands more re-
sources from the system. In determining the fixed-point format for representing the values
in the system, two choices must be taken. The word-length and the fraction length. The
word-length determines the amount of possible values that a variable can represent, and the
fractional length how accurately a number can be represented, see Figure 6.8 and Example
6.1. The choices depend on the possible values of the variable to be represented can take
on.

0 1 0 1 1 1 1 0 = 5.875
Word Length = 8

Fraction Length = 4

Figure 6.8: An example of the value 5.875 being represented by
an 8-bit word with a fraction length of 4. The stored integer
“01011110” in decimal is 94. The fraction length of four effectively
divides the stored integer by 24 giving the value 5.875. The accu-
racy is 2−4 = 0.0625 meaning that any value in [5.8438; 5.9063[is
rounded to 5.875.

50 Chapter 6 • Implementation Analysis

Example 6.1

Given a fixed-point number with a word length of 8 bits and a fraction length of 4 bits.
The amount of different values it can represent is 28 = 256 and the smallest number it can
represent (next to 0) is 2−4 = 0.0625 thus the largest representable number is 15.9375.

6.4.1 Dynamic Range
Both the word length and the fractional length determine the maximum (and in case of
signed values the minimum) representable value of the number. Choosing the word length
is fairly easy for band-limited signals, as the number must be able to represent both the
highest and the lowest number of the signal. If the signal on the other hand has infinite
bandwidth, like white Gaussian noise, the signal will not be fully representable, and some
limit must be decided. The error function of the signal’s probability density function might
be used to find the limits which includes statistically e.g. 95 % of the expected values.

Furthermore it must be decided what will happen with the values that are unrepresentable
by the number, this is called overflow. One possibility is for the number to saturate and
just represent the maximum. Another approach is to make the number wrap, i.e. to just
start from the other end of the scale, see example 6.2. The saturation is preferred for inputs
like the Cartesian samples for the phase estimator, because it does not make sense to make
them wrap and represent some extremely large positive number with a large negative value.
The wrapping method, however, works great for representing angles. where incrementing
π radians will make it wrap to −π , which is the intended operation.

Example 6.2

A fixed-point number with a word length of 8 bits and a fractional length of 0 will be able
to represent integer numbers 0–255. If the number saturates when overflow occurs, the
numbers: 255, 256 and 257 will be represented as [255 255 255]. If, on the other hand the
number wraps the overflow the resulting numbers will be [255 0 1].

6.4.2 Precision
The fractional length will determine the resolution of the number. But deciding on the
this length might not be as straightforward as deciding on the word length. The longer the
fractional length the finner grained the number representation, but then more computing
resources are needed. So on one hand the designer has the desire to represent numbers
as close to their original values as possible, and in the other the need to reduce the word
length (and thereby the fractional length) to a degree that is realizable, using the resources
available.

Every value not representable by the fixed-point number will be rounded to a representable
value in the vicinity of the original value. Whether the value is rounded up or down is a
matter of the rounding method employed, see table 6.10.

All the rounding methods will add noise to the signal. The mean of this noise will differ
according to the rounding method, but the probability density function (pdf) of the noise
will be uniformly distributed with a width equal to the quantization step. Widrow et al.
show in [17] that quantization of the value is in many respects the same as discretization of

Section 6.4 • Determining Fixed-Point Format 51

Rounding Method Behavior
ceil Round toward positive infinity.
convergent Round toward nearest. Ties round

to the nearest even stored integer.
fix Round toward zero.
floor Round toward negative infinity.
nearest Round toward nearest. Ties round

toward positive infinity.
round Round toward nearest. Ties round

toward negative infinity for negative
numbers, and toward positive infin-
ity for positive numbers.

Table 6.10: The different rounding methods included in the Fixed
Point Toolbox in MATLAB

the time, and essentially the same approach can be taken in analyzing the impact it has on
the system.

To obtain the pdf of the signal after quantization the pdf of the original input must be con-
volved with the pdf of the quantization noise. By Fourier transforming the pdfs, they can
be multiplied instead. The Fourier transform of the pdf is called the characteristic func-
tion (CF). This allows for constructing a model of the quantization processes of the entire
system. The paper “Modeling Quantization Noise in Finite Impulse Response Filters” in
Appendix F discusses the work done in this project on how this approach can be used to
model the filter part of the phase estimator. In essence it shows that when enough uniformly
distributed pdfs are convolved, they approximate a Gaussian distribution with the variance
of the sum of the variances of the uniform pdfs. Thus the resulting simplified noise model
of the filter is an additive white Gaussian noise (AWGN) source with a variance equal to
the sum of the variances of all the filter taps. This noise source can then be plugged into a
floating point simulation, in stead of running an actual fixed point simulation. Alternatively,
the variance of the quantization noise can be added to the variance of the noise source in a
calculation of the BER for an ideal QPSK system. This was done for a 128 tap filter with
fraction lengths between 3–10 and inputs between -1–1. The results can be seen in Figure
6.9.

The plot shows that any word length above 6 bits exhibits about the same performance as
the theoretical limit. This suggests using a word length of 7 bits.This analysis only deals
with the filter part of the system, but the rest of the system will certainly also add some
quantization noise. However, the filter adds noise in each tap. Thus the quantization noise
of the many taps dwarfs the noise from the few following blocks. A design choice of 9 bits
word length was done in order to be on the “safe” side of the 7–8 boundary and including
one bits for sign, in all 9 bits. The fraction length is set to 8 so that the resulting dynamic
range becomes [-1; 0.9961], almost encompassing the interval -1–1 saturating only very
little. This is done in stead of almost wasting a bit by setting the fraction length to 7 and
encompassing [-2; 1.922].

52 Chapter 6 • Implementation Analysis

−10 −5 0 5 1010−5

10−4

10−3

10−2

10−1

100

B
it

E
rr

or
 R

at
e

SNR [dB]

Theoretical limit
BitF: 3, Variance: 0.1667

BitF: 4, Variance: 0.0417
BitF: 5, Variance: 0.0104

BitF: 6, Variance: 0.00260

BitF: 7, Variance: 0.000651

BitF: 8, Variance: 0.000163

BitF: 9, Variance: 0.000041
BitF: 10, Variance: 0.000010

Figure 6.9: The BER vs. SNR plot when augmenting the calculation
with the variance of word lengths between 3–10. When the word
length rises beyond 6, the performance is very close to the theoreti-
cal limit.

Chapter 7

Implementation

This chapter describes the implementation of the algorithm on to the chosen Cyclone III
FPGA. An overall overview and block diagram of the implementation is presented along
with the controlling state machine of the system. Following this the individual blocks are
described and tested and finally integrated

First a block diagram for the implementation is developed. It is based on the blocks which
are also used in Section 6.2 which is done to have easier control of the scheduling of the
blocks. The diagram is shown in Figure 7.1.

Test system

Memory

User Interface

ADC Emulator

Phase Estimator

Power Four

Filter

Atan

Phase Jump

Sine/Cosine

Complex Mult

Detector

Im Re

I Qφ

φ

LEDS
Reset
Rewind

Output
Input

I

Q

Im Re Im Re
I Q

Reset
Start
Done

Enable

Figure 7.1: Block diagram of the VHDL implementation of the al-
gorithm. The control signals of the low hierachy blocks is omitted.

As seen by the diagram the test system encapsulates the algorithm. This is done to emulate

53

54 Chapter 7 • Implementation

the interfaces the algorithm would have if it was implemented in a 3G base station. When a
block surround another block this means that the surrounding block controls the surrounded
block, and therefore also the hierarchy is illustrated by the figure.

The different blocks and their functionality is shortly described below.

• Test System
Emulates the interfaces to the algorithm and maintains the test facilities for the sys-
tem, mainly in- and outputs.

• User Interface
Controls the entire system and indicates to the user the state of the system and allows
interaction to e.g. start the algorithm.

• ADC Emulator
Emulates the behavior of an ADC.

• Memory
Stores the in- and outputs of the algorithm.

• Phase Estimator
Includes the overall structure of the algorithm. The block therefore also takes care of
pipelining the algorithm.

• Power Four
Outputs the 4th complex power of the complex input.

• Filter
Filters the input with the sinc function derived in Section 5.1.1.

• Atan
Outputs the atan (angle) of the division of the imaginary input part with the real part.

• Phase Jump detector
Handles the ambiguity of the estimator and thereby ensure the estimator is defined
from 0 to 360 degrees.

• Sine/Cosine
Outputs the sine and cosine of the input angle, thus the output is a complex numbers
real and imaginary part with angle equal to the input of the block.

• Complex Mult
Multiplies the estimator with the input to the algorithm and thereby compensates the
input for the frequency offset.

In order to control the blocks they have common interfaces. These can be seen in Figure
7.2. Other than the in- and outputs, the system clock and reset there are done and strobe
signals. These are used to control when the block should run and when it is done. The
blocks internal behavior is determined by a finite state machine.

The in- and output signals are as the name indicates the in- and outputs of the block. Other
than these signal the strobe signal is used to start a block while the input to the block is
set and the done signal then indicates when a block has set the output and is therefore also

Section 7.1 • Block Tests 55

Generic BlockClock

Strobe

Reset

Done

Inputs

Outputs

Figure 7.2: Diagram of a generic block with specific common inter-
faces which is used throughout the implementation.

ready to begin a new calculation. The reset signal is used to set all registers which are
used by the block to its initial value. The clock signal is used by the block to clock all
actions within the block. With these common interfaces it is easy to design, interconnect
and control the blocks.

Before the implementation of the algorithm is described the tests which are conducted
during the design of the blocks are designed.

7.1 Block Tests
To design the blocks, tests have to be conducted in order to verify, that the blocks fulfill
their functionality. These tests eases the design of the blocks such that they do not have
to be implemented in the entire implementation before they can be tested. This Section
describes the design of these tests and how they are conducted.

To test the blocks ModelSim is enployed. This program enables the user to simulated
VHDL code and does so in a quick and easy way. Then to test VHDL code in the program
test benches is written, which is also done in VHDL code, but these files has other prop-
erties than the design VHDL files as they are created only for simulation purposes. This
means that these files can use timing commands which can not be used in design files as
they are not synthesisable to logic gates. Therefore, in these test benches all the in- and
outputs to a specific design, which is simulated/tested, are created. The control signals are
created to fit the implementation of the block. Therefore the test does not test every possi-
ble input control input values but only the values which are expected for normal use. The
input data however is made using random inputs. Because every input cannot be tested e.g.
with complex input, the inputs to the blocks are made as random values. These values are
created using MATLAB and written to a file which can be loaded using the test benches in
ModelSim. As the inputs are made using MATLAB where the fixed point simulations are
also made the expected output from the block under test is also calculated here. The output
from the simulation in ModelSim can then be compared to the fixed point simulation to
determine if the block performes as expected.

The tests are run throughout the block design process where errors and bugs are corrected.
This ensures that the bugs and errors are quickly found and corrected such that errors does
not propergate to other parts of the block, making it harder to identify the error.

The following describes the blocks individually along with their state machines, when their

56 Chapter 7 • Implementation

behavior is described they are tested according to the tests described in Section 7.1. Only
the Complex Mult block is not described as it is implemented as an IP-core and it is tested
with the Phase Estimator block.

7.2 Test System
The test setup emulates the analog-to-digital converter, automatic gain control, and every-
thing else sitting before the frequency estimator algorithm in the signal chain in an actual
system. It also collects the output of the system. This way, the system is stimulated with
known inputs and thus its behavior can be tested and compared to the MATLAB imple-
mentation. An outline of the work flow of the test system is depicted in Figure 7.3. An
explanation of the MATLAB implementation is given in Appendix E.

7.2.1 The MATLAB part
MATLAB is used to create both the stimulus for the system and to process the output of
the system calculating the BER. The stimulus creating part is divided into two stages, first
the stage creating the actual simulated input signal and secondly the stage converting the
MATLAB vector to an Intel HEX file for loading into the internal memory of the FPGA.
The first stage is shown in Figure 7.4

The input signals are constructed in MATLAB using components from the communications
toolbox. The input system includes a quasi-random data source, a QPSK-modulator, a root-
raised transmit filter, an additive white Gaussian noise (AWGN) channel with frequency
offset, a receive filter matching the transmit filter, and a automatic gain control (AGC).
These quasi-randomness of the values are controlled by two seeds, one for the data and one
for the AWGN in the channel, this ensures that a test can be repeated with the same random
data and noise as in a previous test. The transmit-/receive filtering is done to match the
performance of existing 3G systems, as the standard prescribes the use of these filters.

Because the system is operating in fixed point, the values must be bounded within the
dynamical range of the system. This is no problem when no noise is present as the QPSK-
modulator will represent the symbols with either -1 or 1. But when noise is added the input
starts to saturate when the values exceed -1 or 1 on either axis. To counter this, an AGC
is simulated. It does not work in the traditional way, by continually measuring the input
power and then scaling it to a certain level. Instead the entire vector of generated samples
are normalized by the maximum norm sample before before being filtered by the receive
filter.

Downloading the Samples to the FPGA The test system uses the internal memory
modules of the FPGA to store the input and output signals. The IP-core provided by Altera
lets the In-System Memory Content Editor tool in Quartus®II edit this memory during
runtime via JTAG. This way, the input vectors can be input to the system in an easy fashion
without reconfiguring the FPGA or even resetting the delay elements.

The In-System Memory Content Editor takes an Intel hex-file as an input for loading the test
signals into the memory and also outputs hex-files. Because of this, the MATLAB array of
test input must be saved as Intel hex-file and the output converted back to MATLAB arrays.
Two MATLAB functions for this has been written for the project: Array2IntelHex and
IntelHex2Array.

Section 7.2 • Test System 57

Create test

vectors

MATLAB

Reference
data

Calculate

BER

Decode

.hex-file

In-system memory content editor

Save memory

contents to file

Custom test

system

R
ea

dy
 to

 ru
n

LE
D

Te
st

 d
on

e
LE

D

R
un

 te
st

 b
ut

to
n

Emulate ADC

9

9

I

Q

Data strobe

9

9

I

Q

Data strobe

Save results

in memory

Make

.hex-file

Load file into

FPGA memory

System under test

Done with PC Done in FPGA

Figure 7.3: The work flow for testing the frequency estimator in-
cludes; creating the input vectors, loading it into the FPGA, running
the test, retrieving the output and calculating the BER

Create test vectors

Random

Data

Seed

QPSK

Modulator
Transmit

Filter

Normalization
Receive

Filter

Seed SNR

AWGN

channel

Frequency

Offset

Figure 7.4: The first block in the test system in Figure 7.3. The block
constructs a vector on the basis of a data seed, a noise seed, and a
SNR.

58 Chapter 7 • Implementation

Uninitialized

Idle
Running

Rewinding
End of

Run

Run

Rewind

Reset

E
n
d
 o

f S
e
t

Figure 7.5: The finite state machine governing the outer part of
the test system in the FPGA. The transitions without labels are the
default for the states if they receive no other input.

The input samples might not fit into the integrated memory, as the memory is limited and
the amount of samples needed for statistical significance at low SNR is considerable. For
this reason the files has to be split, the MATLAB script makeTestVectors takes care
of this.

Running a Test The test system in the FPGA takes only one user input and gives two
feedbacks; that is the run command and the ready-to-run and end-of-test feedbacks. When
a set of input samples has been loaded, the ready-to-run feedback is sent to the user by
lighting up an LED on the board. Then the user can execute the test by pressing the run
command button. When the entire set has been processed, the end-of-test LED lights up
to indicate to the user that he can upload the output to his computer using the In-System
Memory Content Editor.

Processing Output The MATLAB script calculateBer takes the output file (or
files), converts it into a MATLAB array and compares this to the reference data provided
by makeTestVectors. The outputs is the bit error rate (BER) vs. SNR and the relative
angle error also computed in the initial simulations.

7.2.2 The FPGA part
As shown in Figure 7.3 the FPGA part of the test system is divided into an outer and an
inner system. The outer system takes care of the input from, and output to the user along
with the routing of the input and output of the phase estimator to the ADC emulator.

The finite state machine that is running in the outer part of the test system is shown in
Figure 7.5. The user has three buttons as input to the test system: A run button, a rewind
button, and a reset button, and there are two outputs to the user: A ready to run LED and
an end of run LED. The buttons changes the states as shown in the state machine diagram.
The ready to run LED flashes when the state is “Idle” and the end of run LED is constantly
on when the state is end of run. The rewind button resets the address counter in the ADC
emulator but leaves the delay elements of the phase estimator untouched, this way more
files can be run in sequence. The reset button on the other hand resets everything.

The ADC emulating block is an interface to the internal memory of the FPGA, holding the

Section 7.2 • Test System 59

Uninitialized Ready to

Output
Output

Sample

Wait for

Input
Write

Data
End of

Run

Baud

Clock

Return Data

StrobeEnd of
Set

R
e

w
in

d

Figure 7.6: The finite state machine governing the ADC-emulating
block of the test system. The transitions without labels are the default
for the states if they receive no other input.

stimulation data for the phase estimator. When supplied with a baud rate signal, it outputs
the data in the memory as if it was being sampled at the given baud rate. It employs a
binary counter to traverse all of the addresses of the memory.

The finite state machine for the ADC emulator is shown in Figure 7.6. It starts in the
“uninitialized” state. Here it sets the address counter to the highest possible address, so
that it is ready for the first count, wraping around to the 0x00 address. The “Ready to
Output” state is an idling state where the system is waiting for the first signal from the baud
rate clock, when this is received it moves on to the “Output Sample” state. Here the next
sample in the memory is output and the data strobe asserted. Then the emulator waits in the
“Wait for Input” state for a data strobe from the phase estimator. When this comes, the data
is written to memory and the emulator once again is ready to output a sample. If, however,
the counter has reached the last address and asserts the carry-out, the state changes to “End
of Run”. The emulator then stops counting and signals to the outer test system that the
entire memory has been traversed. The state machine has an extra state, the “Error” state,
that is not displayed in the figure. This is the state that the emulator defaults to if the input
is undefined, or if a baud clock signal is received while the emulator is in the state “Wait
for Input”.

The same memory is used for both the input to and the output from the phase estimator.
This is done in order to maximize number of samples in the test vectors, and thus reduce the
confidence interval of the calculated bit error rate. But doing this imposes some constraints
on the read/write cycles. This means that the phase estimator must react on the recently
output data before the next baud rate clock signal. An example of a memory write/read
cycle is presented in Figure 7.7. Here we see the assertion of the incoming data strobe from
the phase estimator, that the data is written into the memory and the next sample is output.
In this example, the rising edge a of the system clock moves the state of the emulator into
“Write Data” where the write enable signal is sent to the memory that writes the data on
the data-in port (not shown) into the memory (thus changing the data on the output). On
the rising edge b the state changes to “Ready to Output” that again changes to “Output
Sample” on the rising edge c because of the Baud Clock signal being high. The new data
is available on the data-out and the state changes to “Wait for Input” on the rising edge d.
The write/read operation, in the end, takes three clock cycles i.e. 60 ns at a clock frequency

60 Chapter 7 • Implementation

Clock

Baud Clock

Count Up

Address

Data

Write Enable

Data Strobe

Data Strobe
Return

1*

1

2

3

3*

4

5

6

a b c d

Figure 7.7: Write cycle for the test system memory. Here, the phase
estimator is delivering a data strobe (1). This combined with the
rising edge a (1*) asserts the Write Enable, that in turn deasserts
the Data Strobe (2). The Baud Clock (3) combines with rising edge
c (3*) and counts up the address counter (4). The memory content is
clocked out on the falling edge c (5) and the Data Strobe is asserted
on rising edge d (6).

of 50 MHz. This is quite a lot compared to the baud time of 260 ns, but that is the price for
reusing the memory for the output. A way to save a some time is to make a “shortcut” from
the state “Write Data” to “Output Sample” so that the waiting state “Ready to Output” is
bypassed if the baud rate signal is already available.

With the time for reading and writing deducted from the symbol time, the phase estimator
has 200 ns to finish a calculation. In case pipelining are being used, the total execution
time through the system might be some multiple of the symbol time plus 200 ns. The
baud rate clock is generated by an internal phase locked loop (PLL) tuned to 260.4 ns. For
prototyping purposes, the baud rate can be lowered by setting the PLL to a lower output
frequency.

7.3 Phase Estimator
As previously mentioned the Phase Estimator block controls the other blocks in the algo-
rithm and this is done through a Finite State Machine (FSM).

The FSM in Figure 7.8 shows the behavior of the Phase Estimator block. The block in-
cludes others blocks as depicted in Figure 7.1 and its main functionality is to control and
provide inputs to the blocks. This means that the block also controls the pipeline of the
implementation.

As seen by Figure 7.2 all the blocks are controlled using the strobe and done in- and output
respectively. Therefore when a new input to the phase estimator is received the input is
stored in a register until it is used in the "Complex Multiplication" block and also copied
as input to the "Power Four" block. The other blocks inputs are also set as the previous
outputs from the respective preceding blocks, thus forming a pipeline.

The next state of the "Phase Estimator" then waits for all the blocks to return a done signals

Section 7.3 • Phase Estimator 61

Initialize signals

and variables

Strobe='0'

Strobe='1'

Update pipeline

registers and set

outputs

Setup inputs and

control signals

for included

blocks

Wait for blocks to

finish

Figure 7.8: Finite state machine of the Phase Estimator block.

and then the output of the blocks is stored until new data is ready for the algorithm again.

7.3.1 Power four
This blocks functionality is to find the complex fourth power of the input. This is done by
using one complex multiplier twice. This is also indicated by the FSM describing the block
in Figure 7.9.

The complex multiplier that is used by this block is implemented using a Quartus II IP-
core where the in- and output port widths are define. This IP-core is then implemented to
be used by the "power four" block and as such the block is a matter of interconnections to
the IP-core, and scheduling when which input is given to the IP-core, and when to store
the outputs. The transitions between the nodes in the FSM are given as the rising edge of
the input clock to the block. This does however demand that the IP-core is fast enough to
calculate the output before the next rising edge. This is the case as seen by Section 6.3
when the clock frequency is 20 ns.

The block is tested as described in Section 7.1 using complex random inputs and the output
of the block is then compare to the same fixed point calculation in MATLAB. The test
shows that the block behaves as expected which means only small rounding errors differ
from the results of the MATLAB calculation.

7.3.2 Filter
The filter block is as mentioned in Chapter 5 used to compensate for the uniform distributed
frequency offset. The filter FSM is straight forward and can be seen in Figure 7.10.

As seen by the Figure the FSM controls the scheduling of the filter onto the, by the FPGA,

62 Chapter 7 • Implementation

Initialize signals

and variables

Strobe='0'

Strobe='1'

squaring of the
complex input

Square the output
of the multiplicaiton

Setup up the

Set outputs

Figure 7.9: Finite state machine for the Power Four block.

Initialize signals

and variables

Strobe='0'

Strobe='1'

Sum real outputs

and store imag

results

Setup up the

real input

multiplications

Setup up the imag

input multiplications

and store the real

results

Sum imag outputs

Setup outputs

Figure 7.10: Finite state machine for the Filter block.

Section 7.3 • Phase Estimator 63

given resources. As seen only a number of multiplications equal to the filter order are exe-
cuted at the same time, even though the double is needed by the filter because of complex
inputs. When the results of these multiplications are stored they have to be summed. This
is done in state 4 and 5. The additions are made in a sequential manner with a maximum
of additions in parallel equal to the filter order for each part (real and imaginary).

The additions also introduce another problem. The outputs from the multiplications are 18
bits because the two inputs to the multiplier is 9 bit each, which are truncated to the 9 most
significant bits (omitting one of the sign bits). When adding this number overflow will
happen and as such the in- and outputs of the adders has to accommodate for this problem
by making the word lengths of the input values longer. This is done by appending sign bits
of the inputs to the input values. The number of sign bits needed are found by finding the
maximum possible output value of the filter. This value is found by knowing that the inputs
and filter coefficient are values between -1 and 1. This means that in the worst case the
maximum output must be the sum of the absolute values of the filter coefficients. This is
approximately equal to 108 for 128 filter taps. Because of this the number of bits has to be
able to represent 108, therefore 7 bits has to be appended to the inputs.

When the outputs of the block is set the results are again truncated to nine bits, which is
then used in the proceeding blocks.

Again the input test vectors are created using MATLAB and evaluated using ModelSim
and the results are equal to the fixed point implementation in MATLAB and there are only
minor differences due to roundoff errors.

7.3.3 Atan
This block finds the argument (angle) of the inputted complex number. This means, as
mentioned, that it divides the inputs imaginary part with the real part and finds the arctan
of the result. The FSM for the block is shown in Figure 7.11.

First the two input parts are divided and then the argument is found. To implement the
division another IP-core is used, where the inputs word length are defined and the function
is then generated by Quartus II. The function is not clocked and therefore this is done as
seen by the FSM in the Figure.

The actual arctan function is implemented using the look up table (LUT) with interpolation
as designed in Appendix D.1. This means that comparators are used to find the interval in
which the input lies and the value of arctan in this interval is then estimated using a straight
line. This means that this is implemented using comparators, one multiplier and one addi-
tion. The values used for the comparators and the coefficients for the linear approximation
is shown in Appendix D.1.

The test vectors for this block is made in the same way as for the other blocks and the
results are the same meaning that the results are approximately equal to the MATLAB
implementation.

7.3.4 Phase Jump Detector
This block takes care of the making the angle output go from −π to +π instead of from
−π/8 to +π/8. The FSM for this block is shown in Figure 7.12.

As seen by the figure the essential state is to determine whether a phase jump has taken
place. This is done be comparing the inputs sign and the previous inputs sign and if these

64 Chapter 7 • Implementation

Initialize signals

and variables

Strobe='0'

Strobe='1'

Set up

approximation

multiplication

Setup up the

division

Wait for

division output

Sum result with

approximation

constant

Setup ouputs

Figure 7.11: Finite state machine for the Atan block.

Section 7.3 • Phase Estimator 65

Initialize signals

and variables

Strobe='0'

Strobe='1'

Add the result to

the input value

and update

registers

Determine if a

phase jump has

occurred and set

compensation

angle

Add old and value

of the new

compensation

angle

Setup outputs

Figure 7.12: Finite state machine for the Phase Jump Detector
block.

are different a phase jump has taken place or the input has crossed zero. Because a zero
crossing does not necessarily mean a phase jump this is taken care of by checking if the
absolute value of the current input is larger than pi/16. This could in practice give problems
for large frequency offsets, but not in this case due to the chosen fmax. Therefore if the
system is implemented in a scenario with large frequency offsets care has to be taken in
choosing this threshold value. With a given sample frequency the maximum fmax for this
design is given by 1/(2 ·16 · sample time). The other states in the Figure are implemented
as written in the Figure.

The block is tested with both increasing and decreasing input values in the entire input
range and it behaves as expected.

7.3.5 Sine/Cosine
The block finds the sine and cosine values of the input and outputs these as the real and
imaginary numbers for the complex phase estimator. The FSM for this block is similar to
the one for "Atan" block as seen in Figure 7.13.

As shown in the figure the sine and cosine values are calculated in parallel which naturally
increases the number of resources used for the given time instant, but it has been found the
saving the comparators, one multiplication and one addition does not significantly improve
the performance such that e.g. a longer filter could be used.

Here the scaling of the coefficients from the Atan block also come into account, because
this block also needs to scale the coefficient which is multiplied onto the input. The co-
efficient is scaled by a factor of π , and the coefficient which is added to the result of the

66 Chapter 7 • Implementation

Initialize signals

and variables

Strobe='0'

Strobe='1'

Setup additions

Handle negative

input and set up

comparators

Setup

multiplications

according to

comparators

Handle saturation

needs and set

outputs

Figure 7.13: Finite state machine for the Sine/Cosine block.

multiplication remains the same.

Again the test is conducted in the same manner as for the other blocks, and ending up with
the same positive result.

7.4 Integration
The integration of the system is made in two steps. First the Phase Estimator is constructed
with all the blocks that it includes and second the Phase Estimator is included into the Test
system.

Because the Phase Estimator and Test System blocks is designed this section concerns the
output of the tests.

The tests for the Phase Estimator is conducted using test vectors designed in MATLAB
with values similar to the values used for the performance tests. Because of this the values
can also be compared to the MATLAB fixed point implementation which should reveal the
same similar outputs in ModelSim. This is and should be the case as all the parts of the
algorithm is tested and this test only test the integration of the blocks.

In similar manner the Test System integration test is constructed using the same test vectors
as for the Phase Estimator integration test and thus the result should be same as this block
also includes the includes other block. Because of this the test only tests the interconnection
between these blocks. Along with the test vectors different control signals for this block
emulating the user interacting is also included in the test vectors. The result of the test is
compared to the results from the Phase Estimators integration test and they are the same
and therefore the system is concluded to have the desired behavior.

Chapter 8

Test Results

Two different analyses of the data from the tests has been done. The one is the bit error
rate as a function of the signal-to-noise ratio (BER vs. SNR), the other is the distribution of
the relative phase difference between the original modulated signal before frequency offset
and the frequency corrected signal from the system. The tests have been conducted with
offsets of: 0, 10, 100 and, 1000 Hz at SNRs between -10 and 10 dB.

The BER vs. SNR analysis is not a direct measure of the performance of the frequency
estimator. It actually measures the performance of the entire system, right from the mod-
ulation scheme to the wireless channel. However, we can construct a mathematical model
for a perfect system with an additive white Gaussian noise channel. When comparing the
performance of the system with that of the model we will see how close the system perfor-
mance comes to the theoretical case. If the system performs a perfect frequency correction,
the results should match those of the theoretical calculations. If the frequency correction is
less than perfect, the system will increase the BER as more samples are allowed to cross the
decision boundary (see a description of this in Chapter 3). The plots are shown in Figure
8.1.

In all four frequency offset settings does the system perform well, in the sense that the
results tends to follow the theoretical performance, they are, however, generally slightly
worse. Figure 8.2 shows the difference between the phase of the original modulated signal
and the signal processed by the system along with the phase correction done by the system
for the test run with 4 dB SNR and 100 Hz offset. It is seen from the figure that the
approximations of trigonometric functions results in sinusoidal-like errors. The shift in
correction from−π to π at 3.5 ms may seem extreme, but as angles are only defined within
this region, the shift is not at all noticeable in the system.

The implemented system does not output the phase estimate directly, so the phase correc-
tion must be deduced by comparing the inputs and outputs. The two plots are constructed
from the difference between the original modulated signal and the output of the system and
the difference between the offset-impaired input signal and the output respectively. This
means that the phase error plot also includes the phase offset introduced by the channel
noise.

At some points in the plots in Figure 8.1 the BER "jumps" to around 0.5. The reason is a
wrong guess of which half-quadrant the correct phase is within. Such an event can be seen
in Figure 8.2 around 0.7 ms where the correction (and thus the relative phase error) shifts

67

68 Chapter 8 • Test Results

−8 −6 −4 −2 0 2 4 6 8
10−4

10−3

10−2

10−1

100

Signal−to−Noise Ratio [dB]

B
it

E
rr

or
 R

at
e

0 Hz

10 Hz

1000 Hz

100 Hz

Offsets

Figure 8.1: BER vs. SNR plots of the test data. The theoretical BER
performance is outlined in light gray. The relative phase error of the
4dB run from the 100 Hz set is shown in Figure 8.2

0 1 2 3 4 5 6 7
−pi

−pi/2

0

pi/2

pi

R
el

at
iv

e
ph

as
e

er
ro

r [
R

ad
ia

ns
]

Time [ms]

Relative phase error
Phase Correction

Figure 8.2: The relative phase error between the original non-offset
signal and the output of the system along with the phase correction
done by the system. This plot is from the run shown in Figure 8.1
with a 100 Hz offset and an SNR of 4 dB. Notice the "half-quadrant"
error at around 0.7 ms resulting in the poor BER.

Section 8.1 • Discussion 69

−pi

−pi/2

0

pi/2

pi

−8
−6

−4
−2

0
2

4
6

8
10
0

0.005

0.01

0.015

0.02

0.025

0.03

Relative
 phase erro

r [R
adians]

SNR−level [dB]

Figure 8.3: The distribution of the correction errors for the 100
Hz offset test. Notice the two wrong half-quadrant guesses at the
SNRs 2 and 4, resulting in the poor BER shown in Figure 8.2. The
distributions are normalized with reference to the greatest value in
the set, and filtered by a moving average filter to print better.

π

4 radians. In Figure 8.3 the distributions of the correction errors from the 100 Hz offset
test run (shown in Figure 8.1) are presented. The correction error is the difference between
the phase correction (or equivalently the phase estimate) seen in Figure 8.2. In this figure
the two wrong half-quadrant guesses are visible, and it is seen that if some system were to
correct this offset, the overall system would not suffer from such high BER.

8.1 Discussion
The biggest defect of the system is that it sometimes makes wrong “guesses” about the
phase of the signal. The operations throughout the algorithm creates an ambiguity for every
π/4 radians on the unit circle. The shifts between these half-quadrants are done by the
phase jump detector, when a sudden change of phase is detected, but sometimes the noise
spikes leads the phase jump detector to erroneously change to another half-quadrant. But
this static offset seems quite stable, and could possible be corrected by a channel estimator,
if the phase estimator is incorporated into a larger radio system. Figure 8.3 shows that the
phase error is quite stable around 0 even at low SNRs. If the phase jump detector was doing
a lot of wrong “guesses”, the surface would have more peaks per SNR like the test run at
-9 dB. But this is not the case.

70 Chapter 8 • Test Results

Chapter 9

Conclusion

This project concerned the development and implementation of an algorithm which com-
pensates for the effects that frequency drift has on the wireless communication links in 3G
telephony system.

The nature of frequency drift in wireless transmission schemes has been investigated in
theory and the implications are shown to significantly degrade the transceiver system’s
performance. This shows the necessity of an algorithm, which handles the problem. The
algorithm is also constrained by the structure of 3G such that the algorithm does not demand
changes to the RF front end, but instead can be “plugged” into existing systems.

Three algorithms has been analyzed and one was chosen to be the best suited for imple-
mentation in the 3G scenario. The algorithm is an extension of an algorithm developed by
D. Divsalar and M.K. Simon [3]. The new algorithm was extended from BPSK to QPSK,
and therefore it was analyzed thoroughly to verify that the algorithm keeps its good prop-
erties when used for QPSK systems. The algorithm consists of 2 parts; a phase estimator
and a phase jump detector. The phase estimator averages the phase error by using a filter
and the phase jump detector removes ambiguities introduced by the phase estimator. Sim-
ulations of the developed extended algorithm done in MATLAB shows good performance
in terms of BER, which indicates that the algorithm is suited for implementation in the 3G
transceiver systems, and that the aforementioned filter should be 128 taps long.

This choice of platform is based on analyses of the complexity of the algorithm and it is
found that both parallelism and pipelining should be utilized to obtain an implementation
which could work within the real time requirements for the system. The platform chosen
for the implementation was the Altera Cyclone 3 FPGA with 132 embedded multipliers.
To implement the algorithm onto this FPGA the word lengths by which variables should be
represented was found. This was done through an analysis of the fixed point effects on the
filter and it was found here that 9 bit gives a suitable precision.

The actual implementation of the algorithm was done within a test system which makes it
possible to interact with the implementation on the FPGA and thus to evaluate the perfor-
mance of the implementation, which is then compared to the performance of the algorithm
in MATLAB. It was found that the algorithm almost performs as good as the MATLAB
implementation and as such the results from MATLAB can be extrapolated when changing
values the in MATLAB implementation, such as the filter length or trigonometric functions.

71

72 Chapter 9 • Conclusion

On this ground it is concluded that the developed algorithm can reduce the effects of fre-
quency drift in 3G transceiver systems, within the structure constraints set by the 3G front
end which are not changed.

9.1 Further work
There are some topics which should be researched further on basis of the initial research
done in this project. The following describes these topics which is of interest for future
work.

An interesting topic is to look at the distribution function of the frequency error. The
algorithm developed in this project assumes the frequency error to be uniform within some
limit, but it has not been researched if there are better functions which exist based on an
even more detail analysis of when the problem occurs, e.g. urban areas traveling with car.

The filter length could be adaptive. As seen by the simulation results, the long filters
performs better with small frequency offsets, but worse for larger frequency offsets. It
could be analyzed if there is an optimal length for this filter or if it could be changed
adaptively to improve the performance of the algorithm.

The test system developed for the algorithm could be used for many other algorithms and
not necessarily wireless communication algorithms. The test system is very generic and the
timing setup is easy to change, which makes it ideal to verify the performance of algorithms
implemented on FPGAs by utilizing MATLAB.

Appendix A

Phase Estimation Rewritting

p(r | φ ,θ) =

(
1

2πσ2
n

)N

e
− 1

2σ2n

N

∑
i=1

∣∣∣rk−i−
√

2Pe j(φk−i+θ)
∣∣∣
2

(A.1)

=

(
1

2πσ2
n

)N

e
− 1

2σ2n

N

∑
i=1

(
rk−i−

√
2Pe j(φk−i+θ)

)
·

· · ·
(

r∗k−i−
√

2Pe− j(φk−i+θ)
)

(A.2)

=

(
1

2πσ2
n

)N

e
− 1

2σ2n

N

∑
i=1

(
rk−ir∗k−i +

√
2Pe j(φk−i+θ)

√
2Pe− j(φk−i+θ)−

·· · rk−i
√

2Pe− j(φk−i+θ)−r∗k−i
√

2Pe j(φk−i+θ)
)

(A.3)

=

(
1

2πσ2
n

)N

e
− 1

2σ2n

N

∑
i=1
|rk−i|2 +

∣∣∣
√

2Pe j(φk−i+θ)
∣∣∣
2
−

·· · 2ℜ

[
rk−i
√

2Pe− j(φk−i+θ)
]

(A.4)

=

(
1

2πσ2
n

)N

e
− 1

2σ2n

N

∑
i=1
|rk−i|2 +2P−2ℜ

[
rk−i
√

2Pe− j(φk−i+θ)
]

(A.5)

= Fe
− 1

2σ2n

N

∑
i=1
−2ℜ

[
rk−i
√

2Pe− j(φk−i+θ)
]

(A.6)

= Fe
−α

N

∑
i=1
−ℜ

[
rk−ie− j(φk−i+θ)

]

(A.7)

= Fe
α

N

∑
i=1

ℜ

[
rk−ie− j(φk−i+θ)

]

(A.8)

73

74 Appendix A • Phase Estimation Rewritting

Appendix B

Phase Estimator Derivation

N

∑
i=1

ℜ

[
rk−ie− jθ̂ML,k

]3
ℑ

[
rk−ie− jθ̂ML,k

]
· · ·

−ℑ

[
rk−ie− jθ̂ML,k

]3
ℜ

[
rk−ie− jθ̂ML,k

]
= 0 (B.1)

N

∑
i=1

ℜ

[
rk−ie− jθ̂ML,k

]
ℑ

[
rk−ie− jθ̂ML,k

]
· · ·

·
(

ℜ

[
rk−ie− jθ̂ML,k

]2
−ℑ

[
rk−ie− jθ̂ML,k

]2
)

= 0 (B.2)

1
2

N

∑
i=1

(
rk−ie− jθ̂ML,k

)4
−
(

ℜ

[
rk−ie− jθ̂ML,k

]2
−ℑ

[
rk−ie− jθ̂ML,k

]2
)2

· · ·

−4ℜ

[
rk−ie− jθ̂ML,k

]2
ℑ

[
rk−ie− jθ̂ML,k

]2
= 0 (B.3)

N

∑
i=1

(
rk−ie− jθ̂ML,k

)4
−
(

ℜ

[
rk−ie− jθ̂ML,k

]4
+ℑ

[
rk−ie− jθ̂ML,k

]4
· · ·

−2ℜ

[
rk−ie− jθ̂ML,k

]2
ℑ

[
rk−ie− jθ̂ML,k

]2
)
· · ·

−4ℜ

[
rk−ie− jθ̂ML,k

]2
ℑ

[
rk−ie− jθ̂ML,k

]2
= 0 (B.4)

N

∑
i=1

(
rk−ie− jθ̂ML,k

)4
− ·· ·

(∣∣∣rk−ie− jθ̂ML,k
∣∣∣
4
−2ℜ

[
rk−ie− jθ̂ML,k

]2
ℑ

[
rk−ie− jθ̂ML,k

]2
· · ·

−2ℜ

[
rk−ie− jθ̂ML,k

]2
ℑ

[
rk−ie− jθ̂ML,k

]2
)
· · ·

−4ℜ

[
rk−ie− jθ̂ML,k

]2
ℑ

[
rk−ie− jθ̂ML,k

]2
= 0 (B.5)

75

76 Appendix B • Phase Estimator Derivation

N

∑
i=1

(
rk−ie− jθ̂ML,k

)4
−
∣∣∣rk−ie− jθ̂ML,k

∣∣∣
4

= 0 (B.6)

N

∑
i=1

(
rk−ie− jθ̂ML,k

)4
−|rk−i|4 = 0 (B.7)

e− j4θ̂ML,k =

N

∑
i=1
| rk−i |4

N

∑
i=1

r4
k−i

(B.8)

e jθ̂ML,k = 4

√√√√√√√√√

N

∑
i=1

r4
k−i

N

∑
i=1
|rk−i|4

(B.9)

Appendix C

Simulink Simulation Model

Using Simulink for modeling is convenient for both constructing and presenting the model.
The graphical editor enables quick and robust code generation and a nearly one-to-one
mapping of the data flow diagram in [2].

The model is divided into four parts: A transmitter, a channel, a receiver and an error
rate calculator. The Simulink top-system is shown in Figure C.1. The receiver part holds
the proposed algorithm, whereas the transmitter and channel are providing the test input.
The error rate calculator measures the bit error rate by comparing the data input for the
transmitter to the data output of the receiver.

Figure C.1: The top system of the Simulink model is divided into a
transmitter, a channel, a receiver and an error rate calculator. Each
of these boxes is a subsystem containing more components.

C.1 The Transmitter
The Transmitter takes an input in the form of an integer between 1–4. This input is con-
verted into a complex QPSK-modulated baseband signal and filtered by a root-raised cosine

77

78 Appendix C • Simulink Simulation Model

Figure C.2: The Transmitter model uses a build-in QPSK base-
band modulator from the communications block-set in Simulink and
a root-raised transmitter shaping filter.

filter. The output is up-sampled 4 times, as this matches the input specified for the receiver.
The Simulink subsystem is showed in Figure C.2.

C.1.1 QPSK Baseband Modulator
The input to the Modulator is an integer in the range 1–4. Each of the integers is mapped to
a corresponding messaging point in the complex plane. The points are Gray coded in order
to minimize the bit error, as described in the specification.

C.1.2 Root-Raised Cosine Transmit Filter
The filter up-samples the symbols from the modulator and shapes them according to the
root-raised cosine response with a roll-off factor of 0.22 specified in [12, Sec.6.8.1]. A
group delay of 4 symbols is introduced, as the filter coefficients at that width are negligible.

C.1.3 The Channel
The purpose of the channel subsystem is to introduce the frequency offset and additive
white Gaussian noise (AWGN). The Simulink subsystem is displayed in Figure C.3.

C.1.4 Phase/Frequency Offset
As the signal from the transmitter is a complex baseband signal, the frequency offset is ac-
complished by turning this signal around the origin in the complex plane at the given offset
frequency. This is done with the Phase/Frequency Offset block from the Communications
Toolbox. The block takes the offset frequency (both positive and negative) as input.

Section C.2 • The Receiver 79

Figure C.3: The channel models both phase- and frequency offset
and adds white noise. The noise can be bypassed if needed.

C.1.5 Additive White Gaussian Noise
White Gaussian noise is then added to the signal using the AWGN block. This block can
also be bypassed if the simulation demands it. The variance of the noise is determined by
the SNR of the signal, for this calculation, the strength of the signal needs to be known.
As the length of the complex numbers produced in the QPSK modulator is always one, the
signal power is also one, and so this is put into the AWGN block.

As some simulations might need to run without noise present, a switch has been included
in order to bypass the AWGN block, this is done from the MATLAB workspace.

C.2 The Receiver
The receiver includes a root-raised cosine receive filter, the proposed algorithm to correct
frequency offset and a baseband QPSK demodulator. And outputs the estimate of the data
sequence input to the transmitter. Due to group delays in both receiver and transmitter, the
data is delayed in time. The Simulink model is shown in Figure C.4.

C.2.1 Root-Raised Cosine Receive Filter
The receive filter is a time-reversed version of the shaping filter in the transmitter i.e. a
root-raised cosine filter with a roll-off factor of 0.22. For the simulation, in order to match
the filter to the transmit filter, a group delay of 4 symbols is introduced.

80 Appendix C • Simulink Simulation Model

Figure C.4: The receiver mainly consists of the phase estimation
part and the phase jump detector part. In the end a QPSK demodu-
lator estimates the output symbols.

C.2.2 Phase Estimating Algorithm
The Simulink model closely resembles the derived algorithm showed in Section 5. How-
ever two MATLAB functions are used instead of built-in Simulink functions. The first is
the Variable Delay Line and the second the Complex Quadrant Detector.

In order to evaluate the impact of extending the delay line of the algorithm, a MATLAB
function has been written that enables the simulation to work with variable delay line
lengths. It needs to be initialized through the MATLAB workspace by passing it a vec-
tor with a length of equal to the desired length of delays. The entries of the vector should
be the sinc function filter coefficients of each of the delays (see Section 5). Before the
filtering, the values on the delay line are raised to the power of four.

The Complex Quadrant Detector acts as a part of the 90◦ phase jump detector. It mon-
itors the imaginary part of the resulting vector of the one-delayed product of the error
signal (dicussed in Section 5.2). If it raises above a value determined though the MATLAB
workspace, it will output − j (imaginary j) if it on the contrary drops below the negative
of the value a j is output, otherwise the output will be 1. Multiplying the output with the
error signal, enables it to turn 2π in the complex plane, where it otherwise would only be
defined within −π/2 and π/2.

C.2.3 Error Rate Calculator
The bit error rate (BER) is the metric used in most of the simulation test cases for evaluating
the performance of the algorithm. The Error Rate Calculator compares the transmitted
information stream to the one estimated by the receiver. The output is the ratio between the
amount of wrongfully estimated bits and total amount of bits. Because of the group delay

Section C.3 • Simulation 81

in the filters of the transmitter and receiver, the comparison between the two information
sequences is delayed accordingly.

The simulation works with symbol values between 1–4, but each symbol equals two bits.
To obtain the BER, each symbol must be converted into bits before comparing. If e.g. a
symbol 1 (bits 00) was transmitted but a symbol 2 (bits 01) was estimated, the symbol
error rate is 1 whereas the BER is only 0.5. The Error Rate Calculator accomplishes this
by converting each symbol into a vector with two entries, and comparing the entries in
parallel. The output is written into the MATLAB workspace. The Simulink model is
shown in Figure C.5.

Figure C.5: The error calculation compares sent and received bits
rather than symbols, the reason why two calculators, as each QPSK-
modulated symbol represents two bits.

C.3 Simulation
The Simulink model is used for evaluating the functionality of the receiver, as well as
providing a floating point reference for the fixed point results. The variable constants of the
simulation, i.e. delay line length, decision threshold of the Phase Jump Detector, as well as
the waveform, i.e. offset frequency and baud rate, are independent of the implementation of
the algorithm. So the results of the Simulink floating point simulation is readily comparable
with the results of any other implementation of the algorithm.

The simulation is run by executing the MATLAB "main" file. The program sets up the
required constants, and runs the Simulink model. The output of the Error Rate Calculator
is stored into the MATLAB variable "ErrorVec" as a vector containing the BER, faulty
symbols and total received symbols.

82 Appendix C • Simulink Simulation Model

Appendix D

Trigonometric Functions Approx-
imations

To implement the trigonometric functions they have to be designed. As mentioned in Sec-
tion 6.1 the operations are implemented as a piece wise linear approximation. To find these
linear pieces MATLAB simulations are conducted.

First the error introduced by the approximation, that can be tolerated by the algorithm is
found. This is done through simulations of the algorithm with noise added to the angle of
the estimator. The noise is uniform within ranges with a mean value of 0 and a maximum
value. This maximum value is changed to find the value where the error introduced by the
noise is acceptable. In Figure D.1 the performance of the algorithm is shown for different
values of this maximum error.

As seen by the figure an error of 0.01 gives almost the same performance in terms of BER
as the case where no noise is introduced. Therefore the trigonometric approximations are
designed such that they do not have a maximum error larger than the 0.01. The following
sections describes the design of the approximations of the trigonometric functions and how
they are made in order to minimize the look up table.

83

84 Appendix D • Trigonometric Functions Approximations

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

Phase error in radians vs. BER

Statistical limit
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
Without error

Figure D.1: The performance of the algorithm with different maxi-
mum errors in radians introduced on the estimator angle. This sim-
ulation shows how sensitive the algorithm is to angle errors. The
simulation is made with a frequency offset of 250 Hz. All errors less
than 0.01 gives the same results as 0.01 and the results are therefore
plotted on top of each other.

D.1 Arctangent Approximation
To minimize the number of lookups the longest linear pieces are wanted, but the longer they
are the more likely it is, that the error between the real arctan and the approximation will
grow. Because of this the length of the pieces where maximum error is 0.01, which then
results in the approximation respecting the requirements. To find the length brute force is
employed using MATLAB.

To find the length a vector of values between 0 and 100 is made with a sufficiently small
sampling interval. The sampling interval is determined on how accurate the point between
these linear pieces are wanted. For this simulation 0.001 is found to be a suitable trade-off
between simulation time and precision. Then the arctan of this vector is found. This arctan
vector is used as a reference signal of which the lines approximate. The lines are made
by using the polyfit function in MATLAB which uses the least squares method and then
finding the error between the real arctan and the approximation. If the error is below 0.01
then the line is made longer and a new approximation is found. This is repeated until the
error exceeds 0.01. Then the coefficients, the start and end point for the line are stored and
then the next approximation is found in a similar manner. Thereby it is ensured that the
maximum error does not exceed 0.01.

The results of the simulation is shown in table D.1 and Figure D.2. The output for the neg-
ative input values are found by the fact that atan(−x) =−atan(x), as it is an odd function.

Section D.1 • Arctangent Approximation 85

Start End a coefficient b coefficient
0.001 0.502 0.9328 0.0073
0.502 0.941 0.6600 0.1438
0.941 1.473 0.4108 0.3783
1.473 2.232 0.2290 0.6469
2.232 3.463 0.1123 0.9089
3.463 5.765 0.0465 1.1388
5.765 10.976 0.0149 1.3230
10.976 27.140 0.0031 1.4561
27.140 100.00 0.0003 1.5331

Table D.1: Table of the borders and coefficients of the linear ap-
proximation of arctan. The linear model is y = ax+b.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

O
ut

pu
t

Input [rad]

Real and linear approximation of arctan function

real
approx

Figure D.2: The linear piece wise approximation of arctan and the
real arctan function. The two curves are almost on top of each other.

86 Appendix D • Trigonometric Functions Approximations

D.2 Sine and Cosine Approximation
The sine and cosine approximations are made in the exact same way. The only difference
are the negative input values where the cosine function is an even function and as such
cos(−x) = cos(x). The sine function is odd which means that the output for negative input
values are found as for the arctan approximation. The resulting linear approximations and
the figure of the function is shown in Table D.2 and Figure D.3.

Start End a coefficient b coefficient
0 0.5930 0.9483 0.0068
0.5930 0.9980 0.6981 0.1540
0.9980 1.3580 0.3829 0.4678
1.3580 1.7070 0.0397 0.9334
1.7070 2.0630 -0.3067 1.5241
2.0630 2.4530 -0.6308 2.1925
2.4530 2.9630 -0.9009 2.8554
2.9630 3.6720 -0.9725 3.0549

Table D.2: Table of the borders and coefficients of the linear ap-
proximation of sinus. The linear model is y = ax+b.

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

Input [rad]

O
ut

pu
t

Real and linear approximation of sine function

real
approx

Figure D.3: The linear piece wise approximation of sine and the
real sine function. Again the curves are almost on top of each other.

The cosine approximation is likewise shown in Table D.3 and Figure D.4.

With all these functions defined their performance can be simulated in form of BER plots.
The result of this is shown in Figure D.5. As seen from the figure the performance is
roughly equal to the performance of the of algorithm without approximations, except for
high SNR. This can be corrected by creating a more accurate approximation, but results in
bigger look up tables, therefore this is chosen as a reasonable compromise.

Section D.2 • Sine and Cosine Approximation 87

Start End a coefficient b coefficient
0.0010 0.3520 -0.1736 1.0101
0.3520 0.7240 -0.5094 1.1278
0.7240 1.1660 -0.8057 1.3423
1.1660 2.0860 -0.9776 1.5363
2.0860 2.5050 -0.7464 1.0553
2.5050 2.8700 -0.4385 0.2849
2.8700 3.2190 -0.0981 -0.6915

Table D.3: Table of the borders and coefficients of the linear ap-
proximation of cosine. The linear model is y = ax+b.

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

Input [rad]

O
ut

pu
t

Real and linear approximation of cosine function

real
approx

Figure D.4: The linear piece wise approximation of sine and the
real sine function. Again the curves are almost on top of each other.

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

Performance in BER with trigonometric approximations

Statistical limit
With approximations
Without approximations

Figure D.5: The performance of the algorithm in terms of BER with
the trigonometric approximations. The two curves are very close to
each other.

88 Appendix D • Trigonometric Functions Approximations

Appendix E

Test System

The test system is divided into two parts. The first part produces the input for the phase
estimator, the second receives and analyzes the out put. The test system is implemented
partly in MATLAB and partly in the FPGA. A block diagram of the overall test system is
shown in Figure 7.3 in Section 7.2. The MATLAB part of the test system uses a graphical
user interface to receive the parameters for the test set from the user. The input process is
shown in Figure E.1 and the output processing in Figure E.3.

The MATLAB code uses some functions from the communications toolbox. These are the
random data source, the QPSK modulator/demodulator, the square root-raised cosine trans-
mit/receive filter, and the AWGN channel. The following MATLAB code is an example of
how to create and process the test vectors:

89

90 Appendix E • Test System

(a) Choose to create files (b) Specify a folder for the files.

(c) Enter a name for
tis test set.

(d) Choose the SNR lev-
els.

(e) Set the seeds. (f) Set the frequency
offset.

(g) Set a maximum amount of
files per SNR.

(h) The program creates the files.

(i) The folder structure with HEX files.

Figure E.1: The process of creating the HEX files for a test set.

91

Figure E.2: The Altera Quartus In-memory contents editor, reading
the contents of the internal memory of the embedded test system.

92 Appendix E • Test System

(a) Choose to process the files (b) Navigate to the test set folder.

(c) The program processes the files. (d) A test report is produced.

Figure E.3: Processing the output files from the phase estimator.

Section E.1 • Creating Test Vectors 93

E.1 Creating Test Vectors
A bitstream is created:

reference_bitstream = ...
randi(randomstream_data, [0 1], number_of_samples, 1);

The bitstream is modulated and transmit-filtered:

modulated_signal = ...
modulate(qpsk_modulator, reference_bitstream);

transmit_signal = ...
rcosflt(modulated_signal, 1, oversampling_factor, ’filter’, rrc_filter);

A frequency offset vector is created and multiplied width the signal:

offset_frequency_signal = ...
exp(1i*2*pi*offset_frequency/(baud_rate*oversampling_factor) ...

*(1:length(transmit_signal)));
impaired_signal = ...

transmit_signal .* offset_frequency_signal’;

Noise is added to the signal:

noisy_signal = ...
awgn(impaired_signal, test_snrs(idx), ’measured’, randomstream_noise);

The signal is receive-filtered and down-sampled to one sample per symbol. The extra
couple of samples coming from the filter are truncated:

filtered_signal = ...
rcosflt(noisy_signal, 1, oversampling_factor, ’Fs/filter’, rrc_filter);

downsampled_signal = ...
downsample(filtered_signal,oversampling_factor);

downsampled_signal = ...
downsampled_signal(group_delay*2+1:end-group_delay*2);

The amplitude of the signal is normalized:

normalized_signal = ...
downsampled_signal/ ...

max([real(downsampled_signal)’ imag(downsampled_signal)’]);

The signal is quantized. The function used, does not recognize negative values, so these
are wrapped to the values above the positive values:

q = quantizer(’fixed’, ’floor’, ’saturate’, [word_length word_length-1]);
real_part = quantize(q, real(normalized_signal))*2^(word_length-1);

94 Appendix E • Test System

for idx2 = 1:length(real_part)
if sign(real_part(idx2)) == -1

real_part(idx2) = 2^word_length+real_part(idx2);
else

real_part(idx2) = real_part(idx2);
end

end
imag_part = quantize(q, imag(normalized_signal))*2^(word_length-1);

for idx2 = 1:length(imag_part)
if sign(imag_part(idx2)) == -1

imag_part(idx2) = 2^word_length+imag_part(idx2);
else

imag_part(idx2) = imag_part(idx2);
end

end

The real and imaginary parts are concatenated and passed to the function that creates an
Intel HEX file:

mem_array = (real_part*2^word_length + imag_part);
Array2IntelHexSmpl(file_name, width_byte, depth, ...

mem_array((idx2-1)*depth+1:idx2*depth));

E.2 Processing Test Vectors
The contents of the output file are read:

file_content = IntelHex2Array(file_name);

The data is converted to fixed point objects:

fi_data = fi(file_content, 0, word_length*2, 0);

The real and imaginary parts of the data is extracted, converted to the wanted numeric type
(signed and 8 bit fraction length) and combined to form a complex number:

T = numerictype(1, word_length, word_length-1);
real_data = bitsliceget(fi_data, word_length*2, word_length+1);
real_data = reinterpretcast(real_data, T);
imag_data = bitsliceget(fi_data, word_length, 1);
imag_data = reinterpretcast(imag_data, T);
combined_data = double(real_data) + 1i * double(imag_data);

The data is demodulated while accounting for the latency in the system:

demodulated_stream = demodulate(qpsk_demodulator, compensated_signal);
[errors, ber] = biterr(...

reference_bitstream_log{idx}(1:(end-symbols_latency*2)),...
demodulated_stream((1+symbols_latency*2):end)...
);

Section E.2 • Processing Test Vectors 95

The confidence interval is calculated:

x = xor(reference_bitstream_log{idx}, demodulated_stream);
sample_variance = sqrt(sum((x-ber).^2)/(number_of_symbols(idx)*2-1));
confidence_interval = tinv(0.95,(number_of_symbols(idx)*2))...

*sample_variance/sqrt(number_of_symbols(idx)*2);

96 Appendix E • Test System

Appendix F

Papers

The following papers were prepared for the course “Publishing Papers in the Peer-Reviewing
System” conducted at Aalborg University 2010 by Prof. Jakob Stoustrup. The students of
the course included several branches of study, and because of this, the papers were expected
to be written in a more popular manner.

The paper “Maximum Likelihood Frequency Offset Compensation for Quadrature Phase
Shift Keying Systems” reviews the algorithm designed for this project.

The paper “Modeling Quantization Noise in Finite Impulse Response Filters” describes the
method for estimating the quantization noise in an FIR filter used in this project.

97

Maximum Likelihood Frequency Offset
Compensation for Quadrature Phase Shift Keying

Systems

Kasper Lund Jakobsen ∗

∗ B.Sc.EE, Aalborg University, Danmark, Email: kalund@kom.aau.dk

AbstractThis paper presents a Maximum Likelihood (ML) frequency error estimator for QPSK (Quadra-
ture Phase Shift Keying) digital communication systems. The estimator is based on findings from
Divsalar [1995] which showed the ML frequency error estimator for BPSK (Binary Phase Shift Keying)
signals. Therefore the presented algorithm is development of earlier works. The estimator is based on
averaging earlier input signals and thereby uses this information to estimate the present frequency error.
Simulations have shown that the estimator improves the performance of the receiver and converges
towards the performance of the QPSK communication system without frequency error.

1. INTRODUCTION

Wireless communication has, over the last few years, been
subject to a huge development, due to a constant demand for
more and more wireless devices. For example a mobile phone
can now, through the wireless mobile phone networks, access
the Internet, at almost as high speeds as computers through
wired connections. The demand for higher speeds is always
present which makes development of better communications
systems an important research area.

When data is transferred over a wireless communications chan-
nel, it has to be different, with respect to frequency, data or time,
from all other wireless communications taking place in the
same geographical place. Further than that, it also has to have a
certain range dictated by the specific application. For example
there are many differences between the communication for mo-
bile phone communications and satellite tv communications.

To distinguish between the different communications and to
gain a large connection range, the different communications
are transmitted within certain frequency bands [Haykin, 2001,
p.183]. How this is done is not discussed here, but it is an
effective way of separating the communication. A problem
arises when the frequency band in which the data is transmitted
changes during the transmission (see Figure 1). Normally the
frequency band is predefined for the application, but it can
change during the transmission e.g. due to the doppler effect
[Raymond A. Serway, 2004, p.525]. This is the effect that
happens when the transmitter and receiver moves relative to
each other. These changes, though they should not happen seri-
ously degrades the performance of the wireless communication
system. This can be seen by Figure 1.

This article describes the extension of a previous described
algorithm Divsalar [1995], which makes it suitable for modern
wireless communication and more specifically the 3G commu-
nication system which is used in modern mobile phones.

To explain the algorithm a basic understanding of the communi-
cation is needed. When data is transmitted digitally either a “0”
(zero) or a “1” (one) is transmitted. When these are transmitted
they can be represented graphically as shown in Figure 2. In
Figure 2 it is shown that one bit (a “1” or a “0”) is represented

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

0 hz frequency drift

10 hz frequency drift

Figure 1. Theoretical performance of wireless transmission
with and without frequency error Land and Fleury [2005].
The lower the BER (Bit Error Rate) is the better per-
formance. As seen the performance is severely degraded
when a frequency drift is present.

by a message point in a two-dimensional plane. This plot is
known as a constellation diagram.

Q
a
d
ra
tu
re

In-phase

10

Figure 2. Constellation diagram with two message points, one
per bit.

The algorithm, previously mentioned (Divsalar [1995]), which
the algorithm presented in this paper is developed from is made
for this constellation. It is, however, possible to put more points
into this constellation by using the quadrature channel (see
Figures 2 and 3), which makes the performance better. An
example of this is shown in Figure 3.

When these are received they are corrupted by noise due to the
wireless transmission. This influences the constellation diagram

Q
a

d
ra

tu
re

In-phase

I = 1, Q = 1

I = 1, Q = 0I = 0, Q = 0

I = 0, Q = 1

Figure 3. Constellation diagram with four message points.
Notice that two bits are transmitted per message point,
however, the points are closer to each other compared to
the two point scenario.

at the receiver where the points that are received deviates from
the original points. This is shown as the difference between
Figure 3 and 4.

Q
a

d
ra

tu
re

In-phase

Sample points

Figure 4. Constellation diagram at the receiver with four mes-
sage points and with noise added. This figure shows how
the noise corrupts the signals.

When the frequency changes during the transmission this
means that the message points will go around origo (where
the two axis intersect) in the constellation diagram as shown
in Figure 5.

Q
a

d
ra

tu
re

In-phase

Θ0

dΘ
dt

= fd

Figure 5. Part of the constellation diagram at the receiver with
frequency error. The figure shows how frequency errors
cause the message points to rotate and an instantaneous
phase error (Θ0).

With both low SNR (Signal to Noise Ratio) and frequency
error it proves very difficult to use the communications system,
which again can be seen by Figure 1.

2. METHOD

The main idea is; if a point is received then it is dependent on
the bit or bits that were transmitted, but if the dependency can
be removed from the signal, the frequency error for that signal
can be found by averaging the phase error (difference in angle
between actual sample and message point (see Figure 5)) for all
the previous signals that are received. It has in Divsalar [1995]
been shown that for two message points, the data dependency
can be removed by taking the square of the input, and it has
been shown that this is the theoretical best solution, when it is
assumed that these frequency errors are equally likely within
some interval.

The method is to use the same mathematical verification
method as for two message points to find the best theoretical
solution for four message points.

The derivations use complex numbers and statistics, and will
therefore not be shown here.

To find the performance of this estimator simulations of its
performance are conducted. The simulation results are the
number of bit errors per transmitted bit for a given SNR value.
These results are compared to the theoretical performance of
QPSK. If the results converges towards the theoretical, it can
be concluded that the esitmator can improve the performance
of a QPSK system where frequency errors are present.

3. RESULTS

It is with the method derived by Divsalar [1995] shown that the
data dependency with four message points in the constellation
can be removed by squaring the input signal twice (taking the
power of four of the input). The estimate of the frequency error
is found by averaging the frequency error of as many previous
inputs as possible. Mathematically the estimator can be shown
by the following:

ejθ̂ML,k = 4

√√√√√√√√√√

N∑

i=1

r4k−isinc(8fmaxiT)

∣∣∣∣∣
N∑

i=1

r4k−isinc(8fmaxiT)

∣∣∣∣∣

(1)

This functionality can also be shown in a block diagram, this is
shown in Figure 6.

The performance of this estimator is then simulated to test
the performance of the derived estimator. The performance is
shown in Figure 7 and 8 for two different numbers of inputs
that are averaged over.

As seen the performance converges towards the theoretical
performance for wireless transmission without frequency error.
It is also important to notice that the performance of the
algorithm does not necessarily increase with averaging over
more samples, as this is dependend on the frequency error.

Matched

Filter

(●)4 z-1 z-1

γTγ2γ1

●●●

●●●

Σ

(●)

ǀ●ǀ

z-1 (●)*

Im(●) m(●, threshold)

-j if ● > threshold

j if ● < -threshold

otherwise 1

m
z-1

4

Figure 6. Block diagram of the developed algorithm. The
matched filter should be disregarded here.

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

Performance plot with n=128

SNR [dB]

B
E

R

Statistical limit
0 Hz
25 Hz
250 Hz
2500 Hz

Figure 7. Theoretical performance of wireless transmission
with and without frequency error averaged over 128 in-
puts. As seen the performance converges towards the sta-
tistical performance of a QPSK system without frequency
error. Low BER means better performance.

−4 −2 0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

Performance plot with n=512

SNR [dB]

B
E

R

Statistical limit
0 Hz
25 Hz
250 Hz
2500 Hz

Figure 8. Theoretical performance of wireless transmission
with and without frequency error averaged over 512 in-
puts. The performance still converges towards the statis-
tical performance of a QPSK system without frequency
error, for small frequency errors, but the performance de-
grades for large frequency errors.

4. DISCUSSION

Simulations have shown that the estimator performs as the math
has shown it should. This means that frequency error can be
removed from a QPSK signal. The optimal number of inputs
that are averaged over is, to be determined for the specific
application, where the algorithm is to employed. The initial
simulations shows the tendency that; the more inputs that are
averaged over the better performance, but an optimal number

might exist for a specific application and with better knowledge
about the expected frequency error.

Another research that could be conducted is to further develop
the algorithm to work for even higher numbers of message
points, which then makes the algorithm usable for even more
communication systems.

If the algorithm is to be used in practice the number of in-
puts that are averaged over should be carefully analysed to
reduce the computational complexity as much as possible while
maintaining the performance needed for the algorithm given a
specific application.

ACKNOWLEDGEMENTS

Thanks to Karl D. Hansen for coorporation in developing the
algorithm, simulating it and creating the figures for this paper.
Thanks to Yannick Le Moullec the supervisor of the project for
ideas and advice. Finally a thanks to Jes Toft Kristensen (Rohde
& Schwarz) for the project proposal and advice.

REFERENCES

Marvin K. Divsalar, Dariush; Simon. Pseudocoherent demodu-
lation of dpsk radio signals. NASA Tech Briefs, 19(6):48–49,
June 1995. ISSN 0145-319X.

Simon Haykin. Communication Systems. John Wiley & Sons,
4. edition, 2001. ISBN 0-471-17869-11.

Ingmar Land and Bernard Fleury. Digital modulation 1, 2005.
John W. Jewett Jr. Raymond A. Serway. Physcis for Scientists

and Engineers. THOMSON BROOKS/COLE, 6 edition,
2004. ISBN 0-534-40844-3.

 1

Abstract—Quantization noise can be regarded as a
random process, and can thus be analyzed like any
other random process. However, the prevailing
method of estimating the quantization noise in a
signal processing system is by simulation. This paper
investigates the possibility of doing analytical
computations of the resulting quantization noise in
Finite Impulse Response (FIR) filters by estimating
the noise by Additive White Gaussian Noise (AWGN).
The possible impacts are: Lower design time and/or
a more thorough design space exploration.

Index Terms—FIR-filter, Characteristic Function,

Quantization Noise

I. INTRODUCTION

ignal processing algorithms have been developed and
refined for over 50 years; they work well and are well

understood. Usually these generic algorithms are
designed using algebraic math. But computers do not
understand algebraic math, they use numbers with finite
resolution, this is called fixed point representation.
Converting the, otherwise, mathematically perfect
algorithms to the fixed point domain introduces
imperfections. By increasing the resolution of the
computations, these imperfections can be reduced. But
doing this demand more resources of the computer and
this is a problem in small battery-driven applications
where cost and energy considerations dictate small and
inexpensive devices.

A much used approach to convert these algorithms
from algebraic math to fixed point math is to run
simulations of the algorithm with a range of different
resolutions, and compare them to a high resolution
simulation to find the resulting errors from the different
implementations. This is a relative slow process and thus
often ends up as being considered a final step in the
design process where the designer accepts the resulting
error and moves on to implementation.

If models for the resulting quantization noise can be
constructed, the final step of finding the quantization
noise will be quicker and more exact than the simulation-
based approach, and will thus be easier and more
convenient to use as an integrated part of the design
process. But trouble arises because the quantization

process is not linear, i.e. the noise from one part of the
algorithm cannot simply be added to the noise of another
part, so more elaborate methods must be used.

In this project, a method for linearizing the
quantization process is investigated. An analog to the
well known digital Fourier transform of discretely
sampled time signals is used on the discrete probability
density function (PDF) resulting in a “band-limited”
characteristic function, i.e. it is undefined for values over
half the quantization interval (much like the Nyquist
sampling theorem, see [1] and [2]). As the combination
of PDFs in the value domain is done by convolution, they
are multiplied in the characteristic domain:

 𝑓 ∗ 𝑔 𝑡 = 𝑓 𝜏 𝑔 𝑡 − 𝜏
∞

−∞

𝑑𝜏
ℱ
 𝐹 𝑢 𝐺 𝑢

This way the quantization process is linearized within

the limiting band, allowing for model-based quantization
noise estimates.

This paper exemplifies how the above method can be
used to model the quantization noise of an FIR-filter. It
further shows that the noise of a filter with a reasonable
amount of taps can be estimated with an Additive White
Gaussian Noise (AWGN) source. Using this estimate, the
bit lengths of the individual filter taps are reduced in
order to achieve the lowest possible amount of bits being
processed at a specified noise tolerance level.

II. FIR-FILTERS

The results are based on simulations of a FIR-filter. A
small introduction to the nature of this kind of filter is
included here.

Filters are used in many applications to either remove
unwanted signals or (essentially the same) enhance
wanted signals. One of the best known applications of a
filter is the bass filter on a regular hi-fi stereo set.
Turning the knob one way reduces the bass, turning it
the other way enhances it.

The FIR filter is a discrete-time filter. Its behavior is
completely described by the signal at its output port
when presented with a Kronecker Delta signal [1] at its
input port. The output will be different from filter to
filter depending on the filter coefficients, but the main

Modeling Quantization Noise in Finite
Impulse Response Filters

Karl D. Hansen B.Sc.EE , Kasper L. Jakobsen B.Sc.EE

S

 2

characteristic is that the output at some point will return
to zero.

A small example of a FIR-filter is a moving average
filter with three taps, i.e. three filter coefficients. Its
behavior can be mathematically described via its impulse
response:

 𝑛 =
1

3
𝛿 𝑛 +

1

3
𝛿 𝑛−1 +

1

3
𝛿 𝑛−2

Where 𝛿 𝑛 is the Kronecker Delta function. The data

flow graph of the filter is shown in Fig. 1 and a graphical
representation of its impulse response in Fig. 2

Fig. 1. The data flow graph for a three tap moving average filter. The
input is delayed by one time unit in the boxes labeled z-1 and multiplied
by one third in the multipliers marked with an X. In the end the
processed samples are summed up in the box labeled Σ and output.

Fig. 2. The impulse response of the filter described in (1). On the input
side a Kronecker Delta, on the output side three samples with the value
1/3.

III. QUANTIZATION NOISE

The trouble with the notation in (2) is that it is not
necessarily using fixed point. The time is discretized but
the values are not. This will lead to inaccuracies when
implemented in a computer. This is called quantization
noise, as it can be regarded as having a random
distribution when the input is also randomly distributed,
see [2] and [3] for elaboration. The filter in the example
will quantize the values in 5 places. The first quantization
takes place in the input. This is not directly visible in Fig.
1 but is necessary for the filter to “understand” the input.
Next is the multiplication of the input with the
coefficients. Each of the outputs of these multiplication
will be quantized i.e. three more quantizations. In the
end, the outputs from the taps are summed up. This leads
to yet another quantization. In general we can say that
given an FIR-filter with N taps, N+2 quantizations are
done.

IV. METHODS

As described by Widrow et al. in [3], the quantization
process can be modeled as area sampling of the PDF of
an input signal. The quantization noise is then modeled

as a uniformly distributed additive noise. In order to
linearize the process Widrow Fourier transforms the
noise into the characteristic domain. The characteristic
function (CF), i.e. the fourier transformed function, of a
uniform PDF is a sinc function, defined by:

 sinc 𝑥 =
sin(𝜋𝑥)

𝜋𝑥

If several quantizations are done, then the CFs of each

quantization stage can be multiplied together in order to
obtain the resulting quantization noise, this is equivalent
to convolving the PDFs of the quantizations in the value
domain. Multiplying several sinc functions approximates
a Gaussian distributed CF, which is also a Gaussian
distribution in the value domain. Fig. 3 shows how the
convolution of three equal uniform distributions
approximates a Gaussian distribution.

Widrow’s research leads us to this: Because of the
combined noise being normally distributed, we can
model the quantization noise as one single AWGN source
instead of several separate quantization noises. As the
PDF of AWGN is indeed a normal Gaussian distribution.

Fig. 3. The convolution two and three uniformly distributed PDFs. The
original PDF is the dark gray graph. Convolved once with itself the light
gray triangular PDF results. Convolved two times, i.e. three uniform
PDFs convolved together gives the black PDF. The dashed line is a
Normal distribution with a variance equal to the sum of the three
uniformly distributed PDFs.

The approximate Gaussian distribution in the value
domain can be estimated without transforming back and
forth to and from the characteristic domain by summing
up the variances of the individual quantization noises,
thus creating a simple model of the quantization noise.
This, however, requires that several quantizations are
done, i.e. over 10. Fig. 3 shows an approximation by
summing variances of only three uniformly distributed
PDFs which rather well fits the actual convolution of the
PDFs.

V. RESULTS

An FIR-filter with 512 taps has served as an example
for the examination of this method. This is a part of a
frequency error detector depicted in Fig. 4. The entire
system is described in depth in [4]. Just like in the
moving average example. The noises of each of the taps

 3

in the filter are being added by the summing of the taps,
and because of the great number of taps, a AWGN source
will adequately model the quantization noise of the filter.
The approximate AWGN source of the noise is defined
only by the variance of the noise. This variance has been
obtained by simply summing the variances of the
different noises in the taps alone. Compared to the large
number of taps, the input and summing quantizations are
negligible.

Fig. 4. The example filter is a part of a frequency error detector being
developed for 3G telephony. The FIR-filter part sits in the middle,
having 512 taps in the implementation proposed in [4].

The AWGN approximation allows for the simulation of
the system, using several different fixed point
representations. In [4] it shows that a 9 bit
representation is adequate to meet the requirements.

VI. CONCLUSION

The simulation using AWGN sources are tractable as
AWGN channels are widely used and already
implemented in many simulation tools. But furthermore,
this approach enables actual analytical evaluation of the
quantization noise. This is very interesting in systems
with many bits in its fixed point representation, as many
bits results in a small quantization error. When the error
is very small, a large number of simulation samples is
needed in order to produce statistically significant
results. And when the simulations are needed to run at
e.g. everything between 24 and 32, it might take quite a
while to get the results.

The AWGN modeling lets the engineer compare the
results after just 9 computations (24—32 bit
configurations). It even lets him compare every
combination of bit lengths for the individual taps at a
fraction of the time it takes to simulate the first results.

In the end this method might speed up design time and
allow the designers to do a more extensive and thorough
design space exploration.

VII. REFERENCES

[1] E. Kreyszig, Advanced Engineering Mathematics, 9th ed. Wiley,
November 2005.

[2] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 2nd ed. Prentice Hall, January 1999.

[3] B. Widrow, I. Kollár, M. Liu, “Statistical theory of quantization,”
IEEE Trans. on instrumentation and measurement, vol. 45, no. 2,
pp. 353—361, Apr. 1996.

[4] K. D. Hansen, K. L. Jakobsen, “Frequency error detector for 3G
basestations using feed-forward technique,” unpublished.

104 Appendix F • Papers

Bibliography

[1] J. Costas. Synchronous communications. Communications Systems, IRE Transactions
on, 5(1):99–105, March 1957.

[2] Dariush Divsalar and Marvin K. Simon. Pseudo-coherent demodulation for mobile
satellite systems. In Proceedings of the Third International Mobile Satellite Con-
ference (IMSC 1993), pages 491–496. Jet Propulsion Lab., California Inst. of Tech.,
Pasadena, June 1993.

[3] Marvin K. Divsalar, Dariush; Simon. Pseudocoherent demodulation of dpsk radio
signals. NASA Tech Briefs, 19(6):48–49, June 1995.

[4] R. Hamila and M. Renfors. New maximum likelihood based frequency estimator for
digital receivers. In Wireless Communications and Networking Conference, 1999.
WCNC. 1999 IEEE, pages 206–210 vol.1, 1999.

[5] Anders Riis Jensen, Niels Terp Kjeldgaard Jørgensen, and Kim Laugesen. Non-data
aided carrier offset compensation for SDR implementation, 2008.

[6] Ingmar Land and Bernard Fleury. Digital modulation 1, 2005.

[7] Heinrich Meyr, Marc Moeneclaey, and Stefan Fechtel. Digital Communication Re-
ceivers: Synchronization, Channel Estimation, and Signal Processing. John Wiley &
Sons, Inc., New York, NY, USA, 1997.

[8] Steven P. Nicoloso. An investigation of carrier recovery techniques for PSK modu-
lated signals in CDMA and multipath mobile environments. Master’s thesis, Virginia
Polytechnic Institute and State University, June 1997.

[9] Keshab K. Parhi. VLSI Digital Signal Processing Systems - Design and Implementa-
tion. John Wiley & Sons, 1999.

[10] John G. Proakis. Digital communications. McGraw-Hill, New York, 2001.

[11] 3rd Generation Partnership Project. TS 25.213 V7.5.0, May 2008.

[12] 3rd Generation Partnership Project. TS 25.101 - User Equipment (UE) radio trans-
mission and reception (FDD), September 2009.

[13] John W. Jewett Jr. Raymond A. Serway. Physcis for Scientists and Engineers. THOM-
SON BROOKS/COLE, 6 edition, 2004.

105

106 BIBLIOGRAPHY

[14] A. Th. Schwarzbacher, A. Brasching, Th. H. Wahl, P.A. Comiskey, and J. B. Foley.
Optimisation and implementation of the arctan function for the power domain. In
Electronic Circuits and Systems Conference, pages 33–36, 1999.

[15] A. Viterbi. Nonlinear estimation of PSK-modulated carrier phase with application
to burst digital transmission. Information Theory, IEEE Transactions on, 29(4):543–
551, Jul 1983.

[16] Jack E. Volder. The CORDIC trigonometric computing technique. Electronic Com-
puters, IEEE Transactions on, EC-8(3):330–334, Sept. 1959.

[17] Bernard Widrow, István Kollár, and Ming-Chang Liu. Statistical theory of quantiza-
tion. Instrumentation and Measurement, IEEE Transactions on, 45(2):353–361, Apr.
1996.

[18] Zaihe Yu, Y.Q. Shi, and Wei Su. A blind carrier frequency estimation algorithm for
digitally modulated signals. In Military Communications Conference, 2004. MIL-
COM 2004. IEEE, volume 1, pages 48–53 Vol. 1, Oct.-3 Nov. 2004.

	Preface
	Contents
	Introduction
	3G Mobile Communication
	Problem statement
	Sub Goals
	Limitations

	Methods
	A3
	Implementation Methodology

	Problem Analysis
	Frequency Drift
	Drift Calculations
	Noisy Channel
	Bit Error Rate for QPSK Signals

	Maximum Frequency Offset
	Interfaces

	Algorithms
	Feedback and Feed-forward Algorithms
	Frequency Estimator
	Sine Oscillator

	Algorithm Choice

	Rewriting the Algorithm for QPSK
	Phase Estimator
	Frequency Modification

	Phase Jump Detector
	Simulations
	Results
	Discussion
	Conclusion

	Implementation Analysis
	Complexity
	Complex Number Format
	Number of Operations

	Pipelining
	Execution Time
	Determining Fixed-Point Format
	Dynamic Range
	Precision

	Implementation
	Block Tests
	Test System
	The MATLAB part
	The FPGA part

	Phase Estimator
	Power four
	Filter
	Atan
	Phase Jump Detector
	Sine/Cosine

	Integration

	Test Results
	Discussion

	Conclusion
	Further work

	Phase Estimation Rewritting
	Phase Estimator Derivation
	Simulink Simulation Model
	The Transmitter
	QPSK Baseband Modulator
	Root-Raised Cosine Transmit Filter
	The Channel
	Phase/Frequency Offset
	Additive White Gaussian Noise

	The Receiver
	Root-Raised Cosine Receive Filter
	Phase Estimating Algorithm
	Error Rate Calculator

	Simulation

	Trigonometric Functions Approximations
	Arctangent Approximation
	Sine and Cosine Approximation

	Test System
	Creating Test Vectors
	Processing Test Vectors

	Papers
	Maximum Likelihood Frequency Offset Compensation for Quadrature Phase Shift Keying Systems
	Modeling Quantization Noise in Finite Impulse Response Filters

	Biblography

