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Preface

This report documents the Master Thesis project entitled Multi-Camera Person Tracking using
Particle Filters based on Foreground Estimation and Feature Points. The project was carried out
during the 9’th and 10’th semester of the specialisation Vision, Graphics, and Interactive Sys-
tems under the Department of Electronic Systems at Aalborg University in 2009/2010. Besides
this report, a paper has also been written in connection with the project. This has recently been
accepted for the EUSIPCO 2010 conference [28], and a draft of it is attached here as Appendix E.

The report is divided in to five parts plus appendices: Introduction, Modalities, Tracking System,
Implementation, and Evaluation. The first part motivates the project and concludes in a problem
formulation and a hypothesis that point out the direction of the project. Analysis of possible
solutions and design of our system are contained in the following two parts, and the fourth part
describes our C++ implementation. The last part evaluates the performance of our system
though a number of different tests and concludes on the project as a whole.

References to secondary literature sources are made using the syntax [number]. The number
refers to the alphabetically sorted bibliography found at the end of the report, just before the
appendices.

We would like to thank our supervisor at Aalborg University Zheng-Hua Tan for proposing
this intriguing project and for establishing contact with leading scientists within the area at
the Athens Information Technology (AIT) [1]. We would also like to thank our co-supervisor
from AIT Aristodemos Pnevmatikakis and phd. stud. Nikos Katsarakis both for inspiring and
assisting us in the project and for showing great hospitality during our stay in Athens, as well
as for making it possible to test our system on the CLEAR data set [19].

A CD is attached to this report which includes:

• Source code of the developed program. Build instructions and dependencies are listed in
Appendix C.

• Video files illustrating the performance of the developed system.

• PDF file of this report.

Aalborg - June 3, 2010

Martin Andersen Rasmus Skovgaard Andersen
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The project is in this first part motivated by analysing the need for and relevant applications of
a person tracking system. Previously developed algorithms and systems for person tracking are
also examined to provide the basis for developing an efficient approach that has not previously
been proposed. This leads to a problem formulation for the project in Chapter 3.
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Chapter 1

Motivation

Video surveillance in general has a large variety of potential applications including traffic control,
surveillance of automated production lines and surveillance of people. The latter covers many
different area and situations where the common denominator is to allow an automatic system to
sense the presence and state of one or multiple people, and much interest has in resent years been
directed at this area. Applications that have received extensive research include surveillance [61],
assistive living environments [35, 72], and human-machine interfaces [66, 76].

One widely used type of video surveillance systems for monitoring people are security systems
based on single cameras. These typically record video either continuously in a time-limited
circular buffer or based on events, where events can be detected using simple motion detection
algorithms. Such systems have proven to be very useful, when security officers after an event such
as a robbery are investigating what happened and who were responsible. In many situations it
will, however, be an advantage if an automated system more precisely can tell what is happening,
and only sound off an alarm if specific events or events that are out of the ordinary occur. This is
the case for both security systems, assistive living environments etc. Common for all applications
is that the more precisely an automated system are able to detect what is happening, the less
personnel will be required.

In this project we focus on the application of assistive living environments for elderly. In the
western societies in general, people live longer. This means that the average age of people and
the amount of retired elderly are increasing. In Denmark, the number of citizens above 65 is
expected to increase by 60% from 2010 to 2042 while the population in total only increases by
9% [20]. This means that the share of the population above 65 will increase 16% in 2010 to 25%
in 2042. Thus, systems that can increase the living standard of elderly while reducing the need
for assisting human service personnel is of major interest, and the demand will only increase in
the years to come.

To increase the capability of elderly to live in their own homes with minimal assistance, both
emergency and cognitive care are of significant importance. Emergency situations can easily
arise for weak elderly that e.g. might not be able to reach a telephone and call for help after
an accident. Cognitive care is important to become aware of behavioural changes that might
be caused by conditions such as depression or dementia, that are not easily discovered during
short consultations at a doctor. Therefore, we focus on fall detection and activity monitoring
for the elderly. This is done by tracking the position and determining the mobility of persons
present in the scene under surveillance in real-time and to reason about their body posture.
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CHAPTER 1. MOTIVATION

The mobility of a person can be classified as either mobile or stationary, and it can be used
to measure the activity of a person and, when combined with the location estimate, detecting
abnormal behaviour. The body posture can be classified as either standing, sitting or fallen and
can be used both to detect abnormal behaviour as well as detecting accidents when combined
with the location estimate.

While tracking systems based on one single camera suffice for some situations, they also have
severe limitations. For instance, persons can very easily become temporarily occluded behind
objects or other persons, and any position can only be determined relative to that camera - that
is, in two dimensions. For automated tracking systems it is therefore a major advantage to have
more information than a single camera. This information can besides additional cameras be
provided by other passive (i.e. non-intruding) or active sensors. Passive sensors can for instance
be microphones or infrared sensors while active sensors can be laser range finders or ultrasound
sensors [30].

Active sensors and to a certain degree microphones are well-suited to provide information about
the location of people. Cameras do, however, provide more information about what is happening
to the people besides their location. Therefore, we base our system on multiple cameras that in
combination are used to track present people and reason about their mobility and body posture.

1.1 Setup and Data Sets

When developing new algorithms, it is always essential to have the ability to produce test results
that are comparable with existing algorithms. Within vision based multi-camera tracking for
indoor use, the de-facto standard setup is illustrated in Figure 1.1. A total of 5 cameras are
used, and 4 of these placed in top corners while the last is placed in the middle of the ceiling
pointing down.

Figure 1.1: Camera setup.

1.1.1 Development Data Set and Setup

To assist in the development process, a test setup was established in a laboratory at Athens
Information Technology (AIT) [1], that matches the setup shown in Figure 1.1. The resolution
of the cameras are 1600×1200 for the four corner cameras and 1024×768 for the top camera

4



1.1. SETUP AND DATA SETS

and all cameras can record at 15 fps. An image from one of the corner cameras is shown in
Figure 1.2a. Two sequences were recorded to be used for development of the system; one of 1:40
minutes and one of 6:23 minutes. These are henceforth denoted the short/standard development
data set, respectively. The sets show up to 3 (for the short) and 4 (for the standard) persons
simultaneously moving around and/or remaining immobile for some time. To test the posture
reasoning, a person is falling at 3 occasions and sitting at 6 occasions in the standard development
data set. In the remainder of this report, the standard development data set is always used unless
otherwise specified.

When recording from the development setup, each camera is connected to separate, networked
computers, and this setup can also be used to test the live performance of the system.

(a) AIT (for development) (b) AIT (c) IBM

(d) ITC (e) UKA (f) UPC

Figure 1.2: Figure (a) is a frame from the data set used for development of the system, and the
remaining figures are frames from each of the locations included in the CLEAR 2007 data set, which is
used for testing.

1.1.2 CLEAR Test Data Set

While the development setup allows both the recording of an appropriate development data set as
well as live system tests, it is not suited to produce results that can be compared to performance
of previously developed systems. For this purpose, the CLEAR 2007 data set is chosen. This
data set originates from an international workshop, known as the 2007 CLEAR evaluation and
workshop [19]. It contains 40 video recordings of meeting rooms equipped with 5 cameras as
illustrated in Figure 1.1, and a number of background frames without any persons present are
available for each recording. The recordings are from five locations, so that 8 recordings exist
from each location, and the length of a recording is approximately 5 minutes. In each recording,
people are moving around and/or sitting at a table. An image from each location is shown in
Figure 1.2.

The CLEAR data set allows comparison of different tracking systems because the location of
all persons in the scene are hand annotated with a precision of 5-8 cm. For the CLEAR 2007
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CHAPTER 1. MOTIVATION

workshop, metrics defining how to measure the performance of a system was also introduced,
and a total 7 different systems participated in the original workshop. The performance of these
are now available for comparison, and the CLEAR 2007 data set has since the workshop to a
large degree become the de-facto standard for comparison of tracking systems.

The CLEAR evaluation metrics is described in the following section. The performance of the
system developed in this project are measured and compared to the participating systems in the
CLEAR workshop in Chapter 14.

A limitation with the CLEAR data set is that all recordings are from meeting rooms and no
persons are falling. For this reason, the development data set described in Section 1.1.1 must
be used to test posture reasoning. Also, the time consumption of the tracking systems are not
reflected in the CLEAR metrics. The development data set is therefore also used to measure the
time consumption of the developed system, with the prospect of real-time execution in mind.
These results are documented in Chapter 13.

1.2 The CLEAR Evaluation Metrics

The metrics used for evaluation of the system are from the CLEAR 2007 Evaluation Work-
shop [19], and combines four different measurements [9]:

• Misses (m): For the CLEAR evaluation an object is missed if it was not tracked within
50 cm accuracy.

• False positives (fp): Note that a track that is more that 50 cm wrong is also marked as
a false positive.

• Mismatches (mme): When a track belonging to an object switches to another object
this is counted as one mismatches.

• Position error (di): The position error di of the matched object i. Note that because
an object have to be tracked within 50 cm to be declared “matched”, a random guess will
have mean(di) =25 cm. Additionally it is worth noticing that the ground truth of the
CLEAR data set is hand annotated with a precision of 5-8 cm.

These four measurements are combined in to two metrics; the Multiple Object Tracking Precision
(MOTP) and the Multiple Object Tracking Accuracy (MOTA):

MOTP =

∑

i,n di
n

∑

t cn
(1.1)

MOTA = 1 −

∑

n(mn + fpn + mmen)
∑

t gn
(1.2)

where:
n is the frame number,
cn is the number of matches in frame n, and
gn is the correct number of persons present in frame n.

The MOTP shows the precision of the tracker system when it is able to track a person correctly.
In contrast, the MOTA value gives a measure of the trackers configuration errors, consisting of

6



1.2. THE CLEAR EVALUATION METRICS

false positives, misses and mismatches. It is worth noting that the number of mismatches are
only counted once per error, while the number of false positives and misses are calculated in
each frame. The number of mismatches will therefore contribute very little to the MOTA score.
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Chapter 2

Existing Systems

Before developing the person tracker it is important to investigate existing state-of-the-art track-
ing systems. In this chapter will give an overview of existing tracking methods before the tracking
methods for this project will be discussed and decided up on. This will be done by in Section 2.1
having a look at different modalities that are used for tracking and in Section 2.2 the existing
combination of different modalities are discussed and in Section 2.3 the modalities used in this
project will be chosen.

2.1 Modalities for Tracking

The measurement data to be used for tracking can be constituted by various different kinds of
information. We define a modality in the widest sense as any kind of cue that can be used to
identify and/or track people. Figure 2.1 illustrate tracking modalities that have been used in
literature and their relationships, and each of them are described here:

Figure 2.1: Modalities that can be used for tracking organised in a tree structure.

• Sound: People moving around and interacting with each other and/or the environment
make noise. By using multiple microphones, this can be used for tracking. This is e.g.
done in [64] by using stereo microphones to help tracking a head during tele-conferences.

9



CHAPTER 2. EXISTING SYSTEMS

Also, within the CLEAR evaluation and workshop [19], a number of papers use sound as
one of the modalities in multimodal 3D person tracking systems [8, 46].

• Visual:

– Colour: A very intuitive approach is to track persons using their colours. Different
approaches to colour tracking exist. In [67], a colour mixture model is used based on
Gaussian distributions that are fitted to the data using the Expectation Maximisation
algorithm [21]. In [59], the algorithm is further developed by making the mixture
model adaptive. While colour cues can in general not be used to detect, it is a
common modality in the tracking stage itself [8, 17].

– Contours: Contours are another intuitive approach to tracking. Using a standard
edge detector it will in most cases be possible to find the outline (or contour) of
persons, and these can then be tracked. Contour tracking in general is described in [2].
One problem when tracking people is that they can easily become partly occluded
when passing behind objects such as chairs etc. Therefore, instead of tracking the
contour of entire bodies, only the upper body can be detected [60] and tracked [8].
This also makes it possible to use contours to detect new persons, since upper bodies
seen from the front or back are very similar for different people.

– Face detection and recognition: Face is a modality that, disregarding false posi-
tives, is only present at real persons. Thus, it is well suited to distinguish people from
moving objects, and in multimodal tracking systems face detection is also suitable for
initialisation. A well-known face detection algorithm that is able to run in real-time
has been developed by Viola and Jones in [75] based on a boosted cascade of simple
classifiers. It is used for 2D tracking in e.g. [45, 63] and for 3D tracking in [44]. Face
recognition can increase the ability to distinguish between different present persons.

– Motion: In indoor environments, motion is a very strong cue indicating human
presence. It has in literature been treated in many distinct ways, including:

∗ Foreground: The simplest form of foreground detection is to take the frame-
by-frame difference. While this is a valid approach that have been used e.g. in
multimodal tracking systems [64], it has the limitation that it does not provide
foreground evidence when the persons are stationary. Instead, a background can
be estimated and compared with each frame to yield a 2D foreground [71]. By
combining foreground evidence from multiple cameras, people can be tracked in
3D [17, 50].

∗ Optical flow and feature points: Optical flow is defined as the motion of
points in the scene relative to the camera projected onto the 2D image plane. By
determining the optical flow of the entire image, moving objects can be separated
from the background. One way to use optical flow for tracking is by identifying
few particularly trackable feature points and then track these [69]. Such points
is e.g. used for tracking of larger objects in 2D in [23].

2.2 Combining Modalities

To improve the performance of tracking systems, different modalities can be combined. In
general, the more information that is used the better performance will be possible. Of course,
more modalities also mean more complexity and a slower system. Therefore, a limited number of

10



2.3. CHOICE OF MODALITIES

modalities are preferable, especially in real-time systems. When choosing modalities, it is desired
to have them complement each other without giving much redundant information. Sound does
e.g. not hold information that is redundant with any visual modality.

In literature, many combinations of modalities have been attempted. A well-known paper from
2004 by Blake et. al. investigates how modalities can be efficiently combined and builds a
system based on colour and motion [64]. They also design another system specifically for head
tracking during tele-conferences based on colour and sound. The CLEAR 2007 evaluation and
workshop compares several systems that uses multiple modalities [19, 72]. Two of the systems
that provide good performances, proposed by Stiefelhagen et. al. [8] and Canton-Ferrer et.
al. [17], are based on foreground and colour. The system by Stiefelhagen et. al. also utilise an
upper body detector, and this system performs best of all systems the in CLEAR 2007 workshop
(measured in the Multiple Object Tracking Accuracy metric, described in Section 1.2).

2.3 Choice of Modalities

As we wish to make a pure vision system, the sound modality will not be used. For visual
tracking systems the foreground modality is widely used. The foreground modality in most
cases gives a good indication of the location of people as stationary scene objects are efficient
sorted out by this approach. This modality will be used in our tracker.

The foreground modality depend on a foreground detection algorithms, this can work either by
estimating a background and comparing this to each frame, or comparing consecutive frames
to one another without storing a particular model of the background. The most common ap-
proaches include:

Offline background estimation: In offline background estimation, the a model of the back-
ground is build by analysing one or more frames without foreground present. This model
is then used unchanged for every frame during the foreground detection. In the simplest
case the background model can be one image. This approach will work well if and only if
the scene does not change significantly after the background model has been build. Also,
decided background frame(s) are required.

Frame by frame subtraction: Comparing consecutive frames on a frame-by-frame basis is an
efficient, fast and simple way to find motion, that is unaffected by permanent changes in the
scene. However, persons that are stationary will disappear immediately. Thus, a tracker
based on this approach will need to be able to handle frequent absence of foreground.

Adaptive background estimation: Instead of estimating a background model before fore-
ground is to be detected, it can be done simultaneously by using an adaptive background
model. Such an approach is able to detect stationary persons for a while, without relying on
decided background frames. Also, changes in the scene such as moved objects or changed
lightning conditions can be incorporated into an adaptive background model. However, a
trade-off is introduced between the ability to detect persons that have been stationary for
a long while, and the ability to incorporate various changes into the background.

In our scenario, objects can be moved around and sunlight can enter the scene. Since neither
lightning changed nor the movement of objects can be predicted, the offline background esti-
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CHAPTER 2. EXISTING SYSTEMS

mation are not suitable. In order not to complicate the tracker design too much, the adaptive
background estimation is chosen instead because of its robustness to immobile persons.

The adaptive foreground modality can both be used for tracking and detection of new persons,
but have some limitations e.g.:

Stationary persons: The foreground estimation needs to be adaptive in order to handle vari-
ations in lightning conditions and to incorporate moved scene objects. This also means
that stationary persons will tend to fade into the background as time passes by.

Separating persons standing close together: When two persons are close together and
their foreground merges, the foreground modality has no way to separate them.

To counter this a second modality with ability of tracking stationary people must be introduced.
Faces and contours cannot be guaranteed to be present if a person is partly occluded or located
in a unfortunate angle. Both colour and feature points should, however, be able to handle
these situations. Both of these has the potential to keep the track when two persons pass close
together. As the combination of foreground and colour has been used widely in the litterateur [8,
17, 50, 52, 64] we would like to design a combined foreground and feature point tracker.

Feature points cannot be used for detecting new persons. However, the foreground modality can
handle this task on its own as persons are moving when they enters the scene, thus this is no
problem. On a known person on the other hand feature points can be initialised and tracked,
in this way they are associated with a specific person. With this modality two persons passing
each other can be separated. The track of each feature point can be kept for as long as the
viewpoint of the feature point is not changed too much. This means that stationary persons
that are hard to track by the foreground modality are easily tracked using feature points. Thus
feature points and foreground should be a good combination.

An intuitive way to use feature points for 3D tracking is to find the same feature point in different
cameras and then triangulate. While this is definitely possible in theory [22], it will be difficult
to do robustly when viewpoints of the cameras are very different. Therefore, the feature points
in each camera are treated separately instead.

To our knowledge such a system has not previously been proposed in the literature. One
approach that uses both foreground and feature points is proposed in “Robust Detection and
Tracking of Moving Objects in Traffic Video Surveillance” by Borislav Antić et. al. [3]. They
use a motion detector to guide their feature point tracker. Our idea is different from these in
two ways: We wish to combine foreground and feature points so that both are used for tracking,
and the tracker is to be used in a multi-camera environment.
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Chapter 3

Problem Formulation

In Chapter 1 the need for systems that are able to track moving persons was discussed. Partic-
ularly the application of such a system on surveillance of elderly living alone in assisted living
environments was analysed. It was concluded that reasoning about the mobility as well as
detection of fallen persons would be advantageous to help the elderly live alone.

In the same chapter it was emphasised that proposed algorithms must be comparable to previ-
ously developed algorithms. Therefore the CLEAR data set was introduced [19]. Many papers
published in the last couple of years proposing algorithms for tracking multiple persons have used
these data sets for evaluation. The performance of the system developed here must therefore
also be evaluated using the entire CLEAR data set and compared to other systems.

With the choice of the CLEAR data set for evaluation, it follows naturally that the system
must be able to handle certain, typical situations occurring in these for a good performance to
be possible. The CLEAR metrics define what a “good performance” means. These situations
constitute in addition to the purpose of reasoning and real-time execution guide lines in the
design process:

• Entering and leaving: People are entering and leaving the scene throughout the CLEAR
videos. Additionally, in some of the videos people are present in the first frame (disregard-
ing the background frames). All of these situations must be supported.

• Mobility: The CLEAR data set has both persons moving around as well as persons
remaining stationary for several minutes. Thus, both cases must be supported.

• Multiple persons: In the CLEAR data sets, up to 5 persons are present simultaneously.

• Precision: The ground truth for the CLEAR data set is given with a precision of 5-8 cm.
This means that a larger precision is not required for our system.

• Real-time execution: For a real-life implementation to be possible, the system must be
able to run in real-time.

• Reasoning: Reasoning about the mobility and body posture of the tracked persons must
be able to run simultaneausly with the person tracking.

In Chapter 2, previously developed tracking modalities and algorithms was presented, and it was

13



CHAPTER 3. PROBLEM FORMULATION

chosen to base our system on both adaptive foreground estimation and feature points initialised
on each person. This leads to the following problem formulation:

Problem formulation:

How can a system be developed that based on combined information from adaptive
foreground estimation and feature points, is able to track multiple persons in a multi-
camera environment and reason about their mobility and body posture?

This problem formulation implicitly constructs the following hypothesis: A tracking system
based on a combination of adaptive foreground estimation and feature points must provide
better performance than a similar tracking system based solely on one of these modalities.
Thus, this hypothesis must also be verified.
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Modalities
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In the problem formulation is was chosen to base the tracking system on the two modalities
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Chapter 4

Foreground Detection in 2D

The term foreground means non-stationary persons or objects in the scene. For the human
visual system it is usually a trivial task to distinguish foreground from background in a video
sequence. This is, however, not the case for a computer vision system, and much research
has been carried out in this area. Most methods for foreground detection are based per pixel
background models [31, 41, 48, 53, 65]. This approach is also chosen for our system. A pixel
based method does not have any idea of general things in the scene and therefore noise and
shadows must be handled afterwards. The framework for our foreground detection is shown in
Figure 4.1. In Section 2.3 it was chosen to base foreground detection on adaptive background
estimation, and this algorithm is designed in Section 4.1. The efficiency and performance of the
algorithm are discussed in Section 4.3, and shadow and noise removal are described in Section 4.4
and 4.5, respectively. Table 4.1 at the end of the chapter shows the parameter values used as
default in our system.

Figure 4.1: Conceptual framework of a 2D foreground detector based on background estimation.

4.1 Adaptive Background Estimation

Adaptive background estimation per-pixel is a commonly used technique in computer vision,
and in general two approaches exist: Parametric and non-parametric. A parametric background
estimator assumes that the background is distributed as a predefined distribution, whereas a
non-parametric estimator can handle arbitrary distributions. On the other hand, non-parametric
approaches require a huge amount of memory to store the background [54] while parametric
approaches only require few parameters per pixel. Since our system must be able to run using
frames from five cameras of potentially high resolutions on a single computer, the parametric
approach is chosen.
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CHAPTER 4. FOREGROUND DETECTION IN 2D

4.1.1 Background Estimation using Mixture Models

The idea of a mixture model is to model each RGB pixel by several simple distributions such
as Gaussian distributions. In theory, every distribution can be modelled as a Gaussian Mixture
Model (GMM). However, it is only an advantage to use a parametric description if a relative
small number of simple distributions suffice to give a good approximation. The idea of apply-
ing mixture models to model pixels is that only one distribution shall be used to model the
background colour, while one or more additional distribution shall model the various foreground
objects or persons passing in front of the background. The idea is illustrated in Figure 4.2,
where red intensity values of a particular pixel from the development data set are plotted as a
function of time and in a histogram. Note that the values are divided in groups, which should
make it possible to model the distribution without using a large number of simple distributions.
In the figure, only the red intensity is shown, but the other colour channels are similar with a
high degree of correlation.
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(b) Histogram of red intensity values.

Figure 4.2: Red values of a pixel in a duration of the development data set where dark persons occa-
sionally pass a bright background. Most of the values are located in two groups in the histogram; one for
the bright background and one for the dark passing foreground.

4.1.2 Parametric Distributions

The most frequently used mixture model in the literature is the GMM [15]. This method was
originally introduced for image processing by Stauffer et. al. [71]. In 2008 over 150 differ-
ent papers were published, investigating different kinds of this method [15]. Some researchers
have, however, pointed out that there typically exists very little noise in indoor environments
when using quality cameras, and that the background is often better modelled as a Laplacian
distribution rather than a Gaussian distribution [48].

To determine which parametric distribution is suitable, tests have been carried out to determine
if the background fit into a simple, predefined distribution. In Figure 4.3 the distribution of one
pixel from the development data set that is background all the time is shown. The graphs indicate
that a Gaussian distribution models the pixel values quite well. This example is consistent with
the general situation, and Gaussian distributions are therefore chosen as the basis distribution
in the mixture model.
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Figure 4.3: The black line is the distribution of the pixels value for one pixel (in the development data
set described in Section 1.1). The dashed and the grey line are the best fitting Gaussian and Laplacian
distribution, respectively.

4.1.3 Multivariate Gaussian Distributions

The probability density function (pdf) of a multivariate Gaussian distribution is given as:

fGaussian(x,µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2
(x−µ)TΣ−1(x−µ) (4.1)

where:
x is a random variable vector,
µ is the mean value vector, and
Σ is the covariance matrix.

Thus, for each Gaussian distribution in the GMM, a 3 dimensional mean and a 3×3 covari-
ance matrix must be stored. Additionally, a weight also needs to be stored for each Gaussian
distribution. These means that a total of 13 variables must be stored per Gaussian. As each
pixel is usually modelled using 3-5 Gaussians, a total of 39 to 65 variables need to be stored per
pixel [71]. To save both memory and computation time, many papers using GMM do not use a
full covariance matrix. Stauffer et. al. e.g. only uses one standard deviation, averaged over all
the colour channels [71]. This corresponds to adding variations in all colour channels and mod-
elling using one univariate GMM. This approach both minimizes computation time, memory
consumption, and reduces the risk that the variance of a distribution collapse to almost zero if
no (quantized) noise exist for some period of time. Therefore we also apply this simplification:

Σ = σ2I (4.2)

4.2 The GMM Background Estimation Algorithm

A flowchart of the necessary steps in the GMM algorithm is shown in Figure 4.4. In every new
frame the colour of each pixel is compared against the distributions of the pixel to test if this
colour belongs to one of the existing distributions. The distributions are updated and sorted
according to the likelihood of being background. The pixel is afterwards marked as foreground or
background depending on the matching distribution. In the following the algorithm is explained
in depth.
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CHAPTER 4. FOREGROUND DETECTION IN 2D

Figure 4.4: Flowchart of the background estimation algorithm based on GMM. The input of the algorithm
is a RGB colour value for each frame, and the output is a classification of the pixel as either foreground
or background. Thus, the first two boxes from Figure 4.1 are covered, while noise and shadow removal
must be handled afterwards.

4.2.1 Finding Matching Distribution

A pixel value xk matches a distribution if: (In the following, the subscript n for the distribution
number has been left out for simplicity unless required)

(xk − µk−1)
T(xk − µk−1)

σ2
k

< τ2
σ (4.3)

where:
k is the frame number, and
τσ is a predefined number of standard deviations that the pixel value must
be within.

Stauffer et. al. uses a threshold of τσ = 2.5., which corresponds to misclassifying 1.2% of the
background pixels as foreground. This can easily be removed as noise, and the same threshold
is therefore chosen here.

4.2.2 Updating the Distributions

The update equation for the weight of a distribution is given as:

ωk = (1 − α)ωk−1 + α · Mk (4.4)

where:
Mk is 1 if the pixel value matches the distribution and 0 otherwise,
α is the weight learning factor, and
the weights are normalised using ωn,k =

ωn,k
PK

c=1 ωc,k

, where n is the distribution

number.

The mean and the variance of the matched distribution are updated according to:

σ2
k = (1 − ρ)σ2

k−1 + ρ(xk − µk−1)
T (xk − µk−1) (4.5)

µk = (1 − ρ)µk−1 + ρxk (4.6)

where ρ = α
ωk−1

is the learning factor for the distributions.

The learning factor ρ for σ2 and µ are scaled by the weight of the distribution. This technique
was introduced in [41], and it enables newly discovered distributions which are not known very
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4.2. THE GMM BACKGROUND ESTIMATION ALGORITHM

precisely to be learned faster. Note that the mean and variance of the unmatched distributions
are of course not updated.

The predefined learning factor, α, is treated in several different ways in literature. While Stauffer
et. al. uses a constant factor [71], Bowden et. al. has improved the performance especially
during the first minutes of video capturing by introducing an L-recent window [40, 41, 42]. This
technique is also used here, by setting α = max(αmin, 1/k), where αmin is a predefined constant.
For our experiments αmin is adjusted to give a window length of 26 seconds which corresponds
to a learning rate of 0.00256 at 15 fps.

4.2.3 Sorting Distributions and Classification of Pixels

When all distributions have been updated, the pixel must be classified as belonging to either
the background and or the foreground. This is done by arranging the distributions according
to a fitness factor f , indicating the relative likelihood that each distribution belongs to the
background. Background distributions are expected to be present most of the time, and at the
same time moving persons tend to yield a larger variance than stationary background. Therefore,
the fitness factor is calculated as fk = ωk

σk
. After sorting according to fk ,the first B distributions

are chosen as background according to:

B = argminb

(

b
∑

c=1

ωc,k > Tbackground

)

(4.7)

where Tbackground is a predefined portion of the time, the background must at least be present.

More elaborate approaches than this hard limit are definitely possible. However, this method
was used by Stauffer et. al. [71], and it provides good results using the development data set.
For our experiments Tbackground = 0.6 has been used.

An example of the performance of our GMM implementation is shown in Figure 4.5. As can
be seen from the figure, the persons are indicated as foreground relatively well by the GMM
foreground detector. However, the marked foreground includes beside the persons also shadows
and noise. This will be handled in Section 4.4 and 4.5. First the time consumption is analysed,
as we would like the program to run in real-time cf. Chapter 3.

(a) Original image. (b) Detected foreground.

Figure 4.5: Example of the foreground estimation. Note that noise and shadows have not been removed.
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4.3 Time Consumption of the GMM Implementation

A test on development data set has shown that the GMM algorithm takes around 1.9 second to
run on all 5 images with the resolution 1600×1200 for the four corner cameras and 1024×768
for the top camera, cf. Table D.1 in Appendix D. These high image resolutions might not
be required for the foreground detection algorithm. Therefore tests have been carried out to
investigate if whether an on-the-fly resolution reduction of the images can make the GMM
algorithm run significantly faster, without reducing the quality significantly.

The time consumption of the per-pixel GMM algorithm should in theory depend linearly of the
number of pixels that is used. Thus, it is expected that the algorithm will run approximately
twice as fast if the picture is of half resolution. A graph of the theoretical and measured time
consumption is shown in Figure 4.6. Note, that the measured time consumption follows this
theoretical except for an offset caused by downscaling of the image resolution. The conclusion
is that this approach will definitely reduce the time consumption.
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Figure 4.6: Time measurements of the GMM algorithm normalised to the time of the algorithm running
on the full resolution images. The theoretical and measured reduction in time consumption are almost
identical. The solid black line shows the time consumption including the time used for downscaling of the
images.

4.3.1 Quality using Images of Reduced Resolution

A scaling of the images must not reduce the quality of the detected foreground to a point, where
it is significantly more difficult to recognise the persons from the detections. Therefore, a number
of tests have been carried out where the foreground detector was using varying resolution scaling.
Some results for camera 0 and 4 (the top camera) are shown in Figure 4.7. A scaling factor at 16
clearly makes it difficult to precisely locate the persons. A scaling factor up to 4 does, however,
not seem to affect the quality too much. As this reduces the number of pixels handled by the
foreground detector by a factor of 42 = 16 the time consumption is similarly reduced according
to the measurements in Figure 4.6. Therefore a scaling factor of 4 is used for the development
data set. The recordings from the CLEAR data set that is to be used for testing the system
contains different resolutions, ranging from 640×480 800×600. Therefore the scaling factor is
made dependant of the frame resolutions, and the minimum width is set to 320 pixels.
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4.3. TIME CONSUMPTION OF THE GMM IMPLEMENTATION

(a) Full resolution image from a corner camera. (b) Full resolution image from the top camera.

(c) Scale 1 (d) Scale 2 (e) Scale 4 (f) Scale 8 (g) Scale 16

(h) Scale 1 (i) Scale 2 (j) Scale 4 (k) Scale 8 (l) Scale 16

Figure 4.7: Quality comparison of foreground detection using varying resolutions of images from frame
61 of the short development data set. The images in Figure (c) through (g) are identical (scaled) parts of
the detected foreground from a corner camera. The images in Figure (h) through (l) are similarly identical
(scaled) parts of the detected foreground from the top camera. The detected foreground in the complete
full resolution image are shown for each of the two cameras in Figure (a) and (b) respectively. Note that
noise but not shadows has been removed from both images.
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4.4 Shadow Removal

In this section the shadow removal algorithm is designed. As illustrated in Figure 4.1, the
shadow removal algorithm is supposed to be followed by noise removal. Thus, only the majority
of the shadows need to be removed in this step if the remaining shadow is distributed as noise. In
order to achieve the goal to make a real-time tracker it is chosen to do shadow removal per-pixel
instead of analysing larger areas of the foreground masks at once.

One way to handle shadows is to use a colour space with separate channels for brightness and
colour information. A conversion of the entire frame as well as the background model to another
colour space will, however, be very time consuming. Instead the conversion can be limited to the
pixels marked as foreground. In [36], a fast implementation of this is described. Two notations
are needed, namely the “brightness distortion” Db and “colour distortion” Dc. Db is a scalar
that indicates the brightness of a particular pixel compared to the background pixel. Dc is a
scalar that indicates the colour difference between a particular pixel and the background pixel.
In Figure 4.8 both are illustrated in the RGB space where a background pixel is showed together
with a foreground pixel. Db is defined as the length of the projection of the foreground pixel
colour cfg on the background pixel colour cbg:

Db = arg min
α

(

(cfg − α · cbg)
2
)

(4.8)

This can be solved by taking the derivative and setting to zero:

Db = arg min
α

(

c2
fg + α2 · c2

bg − 2α · cT
fgcbg

)

=
{

α
∣

∣ 0 = 2α · c2
bg − 2 · cT

fgcbg

}

=
cT
fgcbg

c2
bg

(4.9)
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Figure 4.8: The Dc and Db values for a set of a foreground and a background pixel in RGB space [36].

Dc is defined as the orthogonal distance from cbg to the line spanned by cfg:

Dc = ‖cfg − Db · cbg‖ (4.10)

With these definitions, shadow pixels can be found by comparing a foreground pixel with the
corresponding background GMM. To increase the speed, only the most likely distribution in the
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GMM is used. If Db is below 1 and above a threshold τDb
and Dc is below another threshold

τDc , the pixel is accepted as shadow. The threshold τDb
is introduced to prevent too many very

dark pixels from getting marked as shadow. The algorithm is summed up as pseudo-code in
Figure 4.9. In Figure 4.10, the performance of the shadow detection is illustrated.

• For each foreground pixel

– Calculate Db between the most likely background model
and the pixel.

– If 1 > Db > τDb then

• If Dc < τDc then

- Shadow found.

Figure 4.9: Pseudo-code for detection shadow.

(a) Original image. (b) Detected shadow (in grey).

Figure 4.10: Example of the foreground estimation with detected shadows marked in grey.

4.5 Noise removal

After shadow removal the only task left in 2D foreground detection is noise removal (as illus-
trated in Figure 4.1). The foreground detection is based on a stochastic model, where a certain
amount of the true background distribution can be expected to fall outside the threshold on the
standard deviation, as described in Section 4.2.1. This causes noise to be distributed randomly
pixel wise. Several approaches exist in literature to remove this noise, including neighbourhood
averaging [29], BLOB analysis [71], and a pixel persistence map (PPM) combined with binary
decision trees [51]. The PPM approach works by creating a map of the same size as the fore-
ground mask and store the weight of the fitted Gaussian for each pixel in this map. Thus,
lower values indicate pixels that are more likely to be foreground. A binary decision tree that
merges the most similar connected regions using a bottom-up approach are then applied, and
an appropriate similarity measure and stop criterion will enable this approach to sort out most
noise. One-way BLOB analysis, which Stauffer et al. uses [71], is the simplest and fastest of
these approaches, and it gives good results in many situations. One limitation is, that falsely
detected background due to high similarity between the background and the current foreground
is not removed (thus “one-way”).

For our system, two-way BLOB analysis is used, which removes small areas of both foreground
and background. If moving objects are similar to the background, this can give better results

25



CHAPTER 4. FOREGROUND DETECTION IN 2D

than one-way BLOB analysis without introduction much extra computation time. BLOBs with
an area less than a predefined threshold, τsize, are removed. For our experiments, the minimum
area has been set to τsize = 50, and the filtering result is illustrated in Figure 4.11.

(a) Original image. (b) Noise removed.

Figure 4.11: Example of the final foreground mask after shadows and noise have been removed.

4.6 Target Protection

In the previous sections, a purely pixel based foreground detector followed by noise removal has
been described. This is in many situation a very good general purpose foreground detector. It
has, however, a weakness if the foreground becomes immobile, as it will be incorporated into
the background after some time. To delay this effect, information from the tracking system can
be used to protect the tracked persons, also known as targets, from being incorporated into
the background as fast. The background update cannot be stopped completely, however, since
this can cause the background to never recover after an object has been moved. Therefore the
protection is handled by decreasing the learning rate of a rectangle around the target by 40%,
which for the development data set has proven to increase the performance significantly. This
means that the final foreground detector besides the input from the camera also gets input from
the tracker as feedback as illustrated in Figure 4.12.

Figure 4.12: Feedback from the tracker is used to decrease the learning rate of the background estimation
algorithm at locations where the persons are tracked.

The parameter values used as default in our implementation of the 2D foreground detection are
shown in Table 4.1.
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Parameter Symbol Value

GMM models:

Gaussian distributions per GMM - 4
Weight of new Gaussian in a GMM ωinit 0.01
Variance of new Gaussian in a GMM σ2

init 30
Part of the time the background distributions must
be present

Tbackground 0.6

Distance for a pixel colour to be accepted as belong-
ing to a Gaussian distribution

τσ 2.5 σ

Minimum weight learning rate αmin 0.0025 (at 15 fps)
Relative learning rate for protected targets - 40%

Shadow and noise removal:

Shadow brightness distortion threshold τDb
0.65

Shadow colour distortion threshold τDc 45
Minimum BLOB size τsize 50 pixels

Optimisations:

Minimum with of images for foreground detection - 320 pixels

Table 4.1: Parameters used by the 2D foreground detector.
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Chapter 5

Foreground Estimation in 3D

In this chapter it is discussed and explained how several 2D foreground masks can be combined
into a single 3D representation of foreground, as illustrated in Figure 5.1. The purpose of using
several cameras for tracking is both to filter out noise, but also to be able to track on the floor
plan in dimensions that are independent of the positioning of the cameras. Noise in the 2D
foreground exists no matter the method used. By combining information from a number of
cameras, the amount of noise can be reduced significantly and thus increasing the robustness of
the tracking algorithms. The chapter is organized as follows: In Section 5.1 it is analysed how
the 3D space can best be modelled, and in Section 5.2 it is discussed how to best convert the 2D
foreground masks into 3D foreground. In Section 5.3 a hierarchical grid structure is presented
and analysed, which can make the conversion from 2D to 3D more efficient. The various used
parameters are listed in Table 5.1 at the end of the chapter.

Figure 5.1: Steps in 3D foreground detection.

5.1 Modelling the Space in 3D

The 2D image plane of each camera is spanned discretely per pixel. The 3D space can either
also be spanned discretely or as a continuous space:

Discrete: Modelling 3D spaces discretely by spanning with 3 dimensional cubes known as voxels
is a well known method [50, 44, 46, 49]. This approach is very much similar to spanning
a 2D plane with pixels. The word “voxel” is a combination of “volume” and “pixel”, and
a voxel can thus to be considered as a 3D pixel. Using this representation can make it
possible to combine information from the different cameras per voxel instead of per person
or region.

Continuous: Continuous representations are also common in literature [16, 33]. Using such
representations, persons can be found in 3D e.g. by first estimating the position of the
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persons in 3D by first identifying large BLOBs of foreground in each camera and then
use epipolar geometry to estimate their positions in 3D. This has been done e.g. in [16],
where the top of 2D BLOBs in each camera is estimated and afterwards combined into
3D positions. Although this approach can work very well in some situations, it is based
on position estimates per camera, and will therefore not fully utilise the noise removal
capability of having multiple cameras.

Due to the simplicity and large potential for noise removal, the discrete voxel-based represen-
tation of the 3D space is chosen. As described in the introduction of the report, Chapter 3,
the precision of the tracker is not required to be larger than 5-8 cm. Also, the width of human
body parts such as arms or heads are typically at least 5 cm. Therefore, this resolution is also
chosen for the discrete representation of the room. The following section discusses how the 2D
foreground masks can best be combined into discrete 3D foreground.

5.2 Combination of 2D Foreground Masks into 3D Foreground

The basic principle in determining if a particular voxel contains foreground is to project it to
all of the camera image planes and check the corresponding foreground masks. How to do the
projection is described in Appendix A.3.1. If enough cameras detect significant foreground, the
voxel can be considered foreground. An important design decision is to determine what enough
and significant means in this context.

The most exact way to determine whether a voxel projected to the image plane of a camera
contains significant foreground is to consider all foreground mask pixels located within that
projected voxel. The percentage of pixels with foreground can then either be compared with
a threshold for significant foreground, or used as a non-boolean indication of foreground. This
is, however, computationally expensive, since pixels in the 2D foreground masks are included in
many voxels, and will thus be tested many times.

The speed of the foreground testing can be increased by making certain simplifications. Three
possibilities are analysed here:

Solution based on centre pixels: The foreground masks will typically contain a certain num-
ber of coherent foreground areas. Thus, in many cases, a projected voxel will be located
either completely inside or completely outside a foreground area. In these cases, the centre
pixel of a projected voxel indicates correctly if the voxel contains foreground, as illustrated
in Figure 5.2. Even when a projected voxel is located on the border of a foreground area,
the centre pixel will be a good indication of whether the projected voxel mostly contains
foreground as shown in Figure 5.2c.

Testing only centre pixels will save much computation time and give good results if no
noise is present. It will, however, not be very resistant to noise, since only one pixel needs
to be affected by noise for the algorithm to yield a wrong conclusion.

Solution based on blurring filter: Before testing the centre pixel of each projected voxel, a
blurring filter can be applied to the foreground masks. This approach has the strength
that it saves computation time because only one pixel are tested per voxel, while at the
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(a) Voxel inside foreground. (b) Voxel outside foreground. (c) Voxel on border of foreground.

Figure 5.2: Detected foreground is white and a projected voxel is red and has its centre marked. Projected
voxels are likely to be located either completely inside (a) or completely outside (b) a coherent foreground
area. If no noise is present, the centre pixel indicates correctly in these situations whether significant
foreground is present in that projected voxel. Even when a projected voxel is located in the border of a
foreground area (c), the centre pixel often indicates correctly whether most of the projected voxel is filled
with foreground.

same time retaining some resistance to noise. Additionally, a non-boolean indication of
foreground can be attained, allowing for a smart combination of information from the
different cameras.

A problem can be that the optimal kernel size for the blurring filter is very different for the
different projected voxels because the sizes of these are very different. This is caused partly
by different distances to the camera and partly by the voxels being of different sizes in 3D
(see Section 5.3). Figure 5.3 illustrates that it is impossible to select a kernel size that
makes it possible to determine correctly if two voxels of different sizes hold foreground. A
compromise can be to simply use a number of different sized kernel. However, many and
too large kernels will require much computation time.

(a) Large voxel. (b) Small voxel.

Figure 5.3: Detected foreground is white, a projected voxel is red, and a kernel of 5x5 pixels around
the voxel centre is marked in grey. In (a), foreground is falsely not detected, whereas foreground (might
be) falsely detected in (b). A larger filter can minimize the problem for large voxels as in (a) but will
simultaneously increase the problem for smaller voxels, and vice versa.

Solution based on distance transform: A way to maintain the property of only having to
consider the centre pixel of each voxel but at the same time making the algorithm more
robust to different voxel sizes, is to apply a distance transform instead of a blurring filter
to the foreground masks [12]. In this way, the distance to the nearest foreground can be
found by testing only the value of the center pixel. A comparison to a “radius” of the
projected voxel can indicate whether it contains foreground.

A problem with this approach is, that the projected voxels are not circular, and a true
radius can therefore not be found. Instead, the radius of an enclosing circle C can be used.
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As illustrated in Figure 5.4, this inevitably introduces the possibility to falsely detect
foreground.

Figure 5.4: A distance transform of the foreground masks will make it possible to determine the distance
to the nearest foreground. The can be compared to the radius of an enclosing circle C of a projected voxel.
As illustrated, false positive foreground detections may occur.

The advantages of the solution based on a blurring kernel is that it natively suppresses noise and
that it gives non-boolean foreground indications. However, it is not necessarily advantageous
to remove noise per camera in 2D, since noise is also suppressed when redundant foreground
information from multiple cameras are combined into 3D foreground. And if necessary, noise
suppression can be added to the other approaches by applying blob analysis. Therefore, and
to make the system able to handle all sizes of projected voxels in a generic way, the distance
transform based solution is chosen. This solution also makes it possible to detect foreground
using hierarchies of voxels, as is described in Section 5.3.

5.2.1 Implementation of Distance Transform

An exact distance transform is very time consuming. Therefore, we have implemented an efficient
approximating distance transform algorithm following the approach of [12]. It works by applying
a 3×3 kernel to the image in two steps. First, the upper/left half of the kernel is run from upper
left corner from left to right and afterwards runs the lower/right half of the kernel from button
right. This causes the calculated distances to be slightly imprecise, but also enables the time
consumption to be comparable to a 3×3 blur kernel. The kernel used is illustrated in Figure 5.5.

Figure 5.5: Kernel used for distance transform. The variables a and b are set to the optimal values
0.95509 and 1.36930 [12].

In our implementation, the optimal values 0.95509 and 1.36930 are used for the horizontal/ver-
tical and diagonal entries in the kernel, respectively. This causes the error in the distances to
be at most 4.49% [12].

With the choice of the distance transform to combine information from the different cameras,
3D foreground can be estimated. An example of the performance of the algorithm is shown
in Figure 5.6. The default settings used in our implementation marks a voxel as containing
foreground only if it can be seen from at least 4 of the 5 cameras and all cameras that can
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see it detect foreground. The remaining sections of this chapter concern time consumption and
optimisations of the algorithm.

(a) Frame from camera 3 (b) Frame from camera 2

(c) 3D foreground from a view point close to cam-
era 3

(d) 3D foreground from a view point close to cam-
era 2

Figure 5.6: Output from the 3D foreground estimator at frame 2916 in the development data set.

5.3 Hierarchical Grid Structure

Foreground in the 3D space will mostly be structured in coherent volumes that indicate the
presence of persons, as e.g. illustrated in Figure 5.6. Large areas of the space will be completely
without foreground. By dividing the space into hierarchies of voxels, these areas can be ruled
out efficiently by only testing very large voxels for foreground. Only if a large voxel contains
foreground is it necessary to test smaller voxels it contains (its children).

One efficient way to construct hierarchies is to use octrees; that is to divide every voxel on a
particular hierarchical level into 8 voxels on a lower level [27]. However, that is not necessarily the
most optimal way to partition the voxels. To be able to gain most advantage, our implementation
supports an arbitrary number of levels, where a voxel on each level can consist of an arbitrary
number of child voxels (e.g. 23 = 8, 33 = 27, or 43 = 64). The algorithm for converting the 2D
foreground masks into a grid of foreground voxels is summed up as pseudo-code in Figure 5.7.
In Section 5.4, it is investigated which number of hierarchy levels that is optimal with respect
to time consumption.
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• Span the room with a grid of voxels on N hierarchical

levels.

• Project the centre and corners of each 3D voxel on all
levels to the image plane of each camera. Use the corners

to determine the radius of the enclosing circle C.

• Remove voxels that cannot be seen by a sufficient number of
cameras.

• FOR each camera:

– Perform distance transform of the foreground mask.

• Let the set S consist of all voxels on the highest
hierarchical level.

• FOR each voxel in S:

1. FOR each camera:

– IF the value of the centre of the projected voxel

in the distance map is below the radius of C, THEN
foreground is detected.

2. IF all cameras that can see the voxel detect

significant foreground:

– IF the voxel has any children, THEN repeat 5.3 with

S consisting of all children of the voxel. ELSE

mark the voxel as a foreground voxel.

Figure 5.7: Recursive algorithm for converting the 2D foreground masks to a 3D grid of foreground
voxels. The number of cameras that must be able to see a voxel for it to be included in the grid is set to
4 of the 5 cameras as default in our system.

For our system, all of the cameras are stationary. This causes the projection of voxels to the
image plane of each camera to be identical for all frames. Therefore, the first tree items in
Figure 5.7 can be carried out off-line, leaving 3D foreground testing as the only potentially
computationally heavy part.

5.3.1 Comparison of Hierarchical and Non-Hierarchical Algorithms

The purpose of introducing a hierarchical structure is to decrease computation time. It must,
however, be avoided that the hierarchical structure in any way decreases the quality of the
algorithm. In order to get the same result of the algorithm no matter the number of levels the
top level voxel sizes, a few special situations must be taken into account:

1. Room dimensions: Voxels at the highest level (of the largest size) may not fill out the
room/camera view as good as the voxels on the lowest level.

2. Camera view: Some voxels may be visible from a particular camera, even though their
parent voxel is not.

3. Radii: It is possible for the enclosing circle of a projected voxel to include an area not
included in the enclosing circle of its projected parent voxel.
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Each of these cases are analysed in the following.

Room Dimensions and Camera View

There exist two simple ways to avoid the problem with room dimensions:

• The room can be spanned completely with voxels on the highest level, even though some
voxel centres must be placed outside the room. Of course the centres that are outside the
room cannot be tested for foreground, so instead these voxels must always be marked as
containing foreground.

• If the centre of a voxel is about to be placed outside the room, it can be discarded and
replaced by its child voxels. In this way, the room will be filled as best as possible with
voxels as large as possible, while avoiding centres outside the room.

The outcomes of the two approaches are identical, and since they are equally simple, the second
more efficient approach is chosen. It is illustrated in Figure 5.8 with 3 hierarchical levels.

Figure 5.8: Example of a distribution of voxels when using 3 hierarchical levels. The top level is shown
to the left and the bottom level is shown to the right. The grey areas are parts of the room that is fully
covered by voxels of the smallest size on a higher level and is therefore not considered on this level.

The problem with camera views is similar to the problem with room dimensions. A particular
camera might be able to see the centre of a particular voxel even though the centre of the parent
voxel is not visible. This is handled the same way as the problem with room dimensions: If a
particular voxel is seen by more cameras than its parent voxel, the parent is replaced by all of
its children.

Radii

In some cases, perspective and camera distortion can cause the enclosing circle of a child voxel
(Cchild) to contain an area not included in the enclosing circle of its parent voxel (Cparent). If
foreground is present in this area, but not in the rest of Cparent, this will cause the hierarchical
structure to sort out the child voxel, even though foreground exists within its enclosing circle.
Figure 5.9 illustrates how such a situation can occur. Minor tests have indicated that around
0.1% of the foreground voxels are sorted out for this reason. The issue could easily be avoided
by using a circle slightly larger than Cparent for parent voxels. However, since this only happens
when there is foreground inside the enclosing circle of a child voxel but not inside the voxel
itself, there is no actual reason to prevent it.
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(a) Case 1: Both voxels completely
present.

(b) Case 2: Some of the higher level
voxel is outside the room and/or
outside the view of a particular cam-
era.

Figure 5.9: Two cases where the enclosing circle of a voxel on a lower level covers an area that is not
covered on an upper level (marked in red).

5.4 Optimal Hierarchy Levels

This section analyses the reduction in time consumption that is possible by using the hierarchical
approach to 3D foreground detection. The purpose of this is to find the optimal number of
hierarchical octree levels. This is of course highly dependant of the data used, including the
resolution of the cameras and the number of people in the scene. For the test data presented
here, the short development data set described in Section 1.1 with between 0 and 3 people is
used.

In Section 5.4.1 the possible time reduction is analysed from a theoretical point of view. In
Section 5.4.2 this is compared to the actual time reduction achieved by our implementation.

5.4.1 Theoretical Time Reduction

As described in Section 5.1, the voxel size is chosen to 5 cm (on the lowest hierarchical level). This
causes the total number of voxels in the area under surveillance to be above 400,000. The amount
of these that contain foreground is of course directly dependant of the amount of foreground
present in the cameras, which is dependant both of the number of people present in the scene
and of the amount of noise. Figure 5.10 shows the average percentage of voxels that contain
foreground in the short development data set as a function of the voxel size, after noise and
shadow removal. Note that only a few percentages of the lowest level voxels contain foreground.
This indicates that the potential for time reduction by using the hierarchical approach is large
for this data set.

From these data, a theoretical time reduction by applying hierarchies can be calculated. If no
hierarchy is used, the total time consumption in converting the distance maps to 3D foreground
is:

ttot = tvoxel · N1 (5.1)

where:
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Figure 5.10: The amount of voxels with foreground as a function of voxel size (height and width). Since
larger voxels contain a larger volume of the space, they are more likely to contain foreground.

tvoxel is the time required to determine if one voxel has foreground, and
N1 is the number of voxels on level 1 (the lowest level).

When k hierarchical octree levels are used, the total time consumption is:

ttot = tvoxel (Nk + Nk-1ak + Nk-2ak-1 + ... + N1a2)

= tvoxel · N1

(

1

8k−1
+

k
∑

n=2

(

1

8n−2
an

)

)

(5.2)

where:
Nx = 1

8x−1 · N1 is the number of voxels on level x, and
ax is the amount of voxels on level x that has foreground.

By examining Equation (5.2), the theoretical change in time consumption by adding another
level k + 1 can be determined to be:

ttot,k,k+1 = Nk+1 + Nkak+1 − Nk

=
1

8
Nk + Nkak+1 − Nk

= Nk

(

ak+1 −
7

8

)

(5.3)

This means that time can be saved by adding of additional level if and only if the amount of
voxels with foreground on that new level is below 7

8 . As shown in Figure 5.10, this is the case
for the first 5 levels (up to 80 cm) for the short development data set. The theoretical time
consumption for different number of layers compared is compared to the actual measured time
consumption in Figure 5.11.

5.4.2 Actual Time Reduction

The total time consumption using between 1 and 6 hierarchical levels is shown in Figure 5.11.
The shape of the (theoretical) predicted time reduction curve and the measured time reduction
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is similar, but the time is not reduced as much as expected. While around 95% time reduction
is expected at 4 hierarchical levels, only around 88% is measured. The reason for this is partly
overhead in the implementation and partly the fact, that higher level voxels does not “fit” the
room perfectly, as described in Section 5.3.1. This causes some voxels to remain unaffected by
the addition of higher levels, and this effect has not been included in the theoretical model.
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Figure 5.11: Time consumption in converting distance maps to 3D foreground voxels using a different
number of hierarchical octree levels. The value 1 on the x-axis corresponds to only using voxels with 5
cm on each side, 2 corresponds to also using voxels with 10 cm on each side, and so forth. Thus, with 6
levels, the following voxel sizes are used: 160, 80, 40, 20, 10, and 5 cm. A resolution scale factor for the
2D foreground masks of 4 has been used for all measurements.

Four hierarchical levels provide around 88% reduction in time consumption on the short devel-
opment data set. Additional levels do not affect the time consumption significantly, according to
both the measured and the predicted time consumption. For these reasons, a 4-level hierarchical
octree structure will be used as the default setting for the system. This is listed in Table 5.1
together with other relevant parameter settings used as default in our system.

Parameter Value

Voxel size 5 cm
Hierarchy levels 4
Minimum number of cameras to see a
voxel for it to be included in the grid

4

Table 5.1: Parameters used in the 3D foreground estimation.
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Chapter 6

Feature Point Tracking

The concept of feature point tracking and its application to tracking moving objects or persons
is both simple and intuitive. Local features, also referred to as corners or Points of Interest in
literature, can be selected, which are easily recognisable from frame-to-frame, and which do not
change significantly with movement and limited rotation. In this Chapter, a general introduction
to known feature point trackers are given in Section 6.1 followed by a more in depth analysis of
the KLT-tracker in Section 6.2. Finally in Section 6.3 an integration of feature point tracking
for the purpose of person tracking is designed. Table 6.1 at the end of the chapter shows the
parameters used as default in our system.

6.1 Feature Point Detection and Tracking Algorithms

The three basic steps required in a full feature point tracking algorithm are shown in Figure 6.1.
Many algorithms for feature detection and tracking in 2D and even in 3D exist in literature.
Some of these include all steps in Figure 6.1 while some only include either detection or frame-
by-frame matching. In the following subsections a brief overview of relevant algorithms is given,
including some of the most well known approaches.

Figure 6.1: Basic steps in feature point tracking.

6.1.1 Algorithms for Feature Detection

One of the earliest feature detectors was proposed by H. Moravec in 1980 [62]. It works by
comparing window W to all neighbouring windows using a sum of squared differences (SSD)
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measure. If W is significantly different from all neighbours, it is chosen as a feature. Although
this approach is able to detect many feature points, it is not well-suited for feature point tracking
since the actual structure of W is not considered. Instead, only what causes a change in the
SSD measure is used.

Another feature detector is the Harris corner detector [32]. This provides a much better perfor-
mance than the Moravec detector, and has become the basis of several more modern detectors
such as the the KLT-tracker and the SIFT-detector. It works by estimating the gradients in the
image within a window W . It is detected whether the gradient direction vary much within the
window and if it does, a corner is present.

6.1.2 Algorithms for Both Detection and Recognition of Features

A classic feature point tracker that has been used very much since its introduction as a tracker
is the Kanade-Lucas-Tomasi (KLT) feature point tracker [56, 69, 74]. The KLT tracker was
introduced in 1991 by Tomasi and Kanade [74] and is based on a feature matching algorithm
developed in 1981 by Lucas and Kanade [56]. Even though it is not a new method it is still
very popular for a variety of applications, including face coding and medical image registration,
besides optical flow estimation and feature point tracking [4]. Many variations and improvements
have been proposed. One of the most popular improvements was proposed in 1994 by Shi and
Tomasi [69] (hence the name Kanade-Lucas-Tomasi), and several open source implementations
are available of this version. The algorithm has also been extended to be able to track features
in 3D using several cameras [5, 22].

Another very popular and robust feature detector is the Scale-Invariant Feature Transform
(SIFT) proposed by Lowe in 1999 [55]. It has been used for a large variety of applications,
including video stabilisation and different kinds of tracking [6, 79, 37, 77, 47]. Contrary to the
pure detectors, the SIFT algorithm outputs a description of each feature which is invariant to
scale, orientation and affine transformations. This makes it possible to locate the same feature
in consecutive images and thus use it for tracking. Unfortunately, the algorithm is not very fast
and is therefore not suited for real-time applications [55].

An attempt to decrease the computation time of the SIFT algorithm is the Speeded-Up Robust
Features (SURF) introduced in 2006 by Bay et. al. [7]. This is designed to run in real-time by
making use efficient use of Haar-like feature and integral images, originally introduces in image
processing by Viola and Jones in 2004 [75]. It claims to provide similar or better quality than
all previous methods, while being several times faster [7]. The exact time consumption of the
algorithm is not known, however, and a full open source implementation is not available.

Since the KLT feature point tracker is both fast, reliable and available as an open source imple-
mented, this is chosen. The following section explains the algorithm in more detail.

6.2 The KLT Feature Point Tracker

The KLT feature point tracking algorithm is explained in the Section 6.2.2 through 6.2.3, and
available implementations are discussed in Section 6.2.4.
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6.2.1 Tracking Features Between Frames

The algorithm used for tracking was developed in 1981 with a very different purpose than
tracking in mind [56]. The purpose was to perform efficient template matching, denoted as
image registration, to be used for stereo vision. For this reason no feature detection algorithm
was presented simultaneously. The tracking algorithm is explained in this section, and the
tracking equation is derived mostly following the approach of [10] and [74].

The basic principle of the algorithm is to find the displacement vector d that minimizes the
following error function:

ǫ =

∫∫

W

[J(x + d) − I(x)]2w(x)dx (6.1)

where:
x =

[

x
y

]

is a location vector,
I(x) is a location in the original image,
J(x + d) is a displaced location in the new image, and
w(x) is a weighting function, e.g. a Gaussian distribution.

The minimisation is done through Newton-Raphson-like iterations. The Newton-Raphson algo-
rithm locates zeros of a function by performing the following step until convergence:

xn+1 = xn −
f(xn)

f ′(xn)

The problem at hand requires the error function in Equation (6.1) to be minimised. This can be
done by the Newton-Raphson method by first differentiating with respect to d and then search
for a zero. When J(x + d) is approximated by its first order Taylor expansion J(x) + g ·d, this
differentiation can be determined:

ǫ ≈

∫∫

W

[J(x) + gT(x)d− I(x)]2w(x)dx ⇒ (6.2)

∂ǫ

∂d
≈

∫∫

W

[J(x) − I(x) + gT(x)d]g(x)w(x)dx (6.3)

where:

g(x) =
[ gx

gy

]

=

[

∂J(x)
∂x

∂J(x)
∂y

]

is the gradient vector of J(x).

Setting the derivative of the error in Equation (6.3) to zero yields:

∫∫

W

[J(x) − I(x) + gT(x)d]g(x)w(x)dx = 0 ⇔ (6.4)

∫∫

W

[J(x) − I(x)]g(x)w(x)dx = −

[
∫∫

W

g(x)gT(x)w(x)dx

]

d ⇔

Gd = e (6.5)

where:
G =

∫∫

W
g(x)gT(x)w(x)dx, and

e =
∫∫

W
[I(x) − J(x)]g(x)w(x)dx.
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Equation (6.5) is the tracking equation that needs to be solved in every iteration. The 2-by-2
matrix G is given as (with the window w(x) set to one for simplicity):

G =

[ ∫∫

W
g2
xdx

∫∫

W
gxgydx

∫∫

W
gxgydx

∫∫

W
g2
ydx

]

(6.6)

where:
gx and gy are the entries of the gradient vector g(x), which are summed over
the window W and weighted according to w(x).

The tracking equation is a system of two equations with two unknowns (the entries of d), and
it therefore only has a unique solution if the rank of G is 2. This is the case if G has two
eigenvalues above 0 (G cannot have eigenvalues below 0). This is only the case if the window
under consideration contains texture and thus a varying gradient direction. If for instance the
direction of all of the gradients in the window is identical, at least one of the eigenvalues of G
will be 0, since the determinant of G is also 0:

det(G) = Wg2
xWg2

y − (Wgxgy)
2 = 0 (6.7)

This is also known as the aperture problem: Texture must be present in more than one direction
for tracking to be possible [69]. This also makes intuitively sense, since a horizontal edge of
course only can be tracked in the vertical direction.

One limitation of this approach is that the first order Taylor expansion used to approximate
J(x + d) in Equation (6.2) must be good enough to enable each iteration to start with a better
approximation of d than the previous one. This might not be the case if the displacement d

is large compared to the size of the window W . A very large window can of course reduce
this problem, but this simultaneously reduces the precision. For this reason tracking is in most
implementations done iteratively, either varying the window size or by (similarly but faster)
varying the resolution of the images. The latter approach works by fixing the size of the window
to a relatively small area and building resolution pyramids of the images I and J . Tracking is
then initiated in images with a very low resolution, and the outcome of this tracking is used as
a starting point for tracking on images with a larger resolution. This approach is described e.g.
in [13], and it allows precise tracking of features even when features have moved significantly
between the images.

6.2.2 Feature Detection

The feature detection algorithm used in the KLT tracker was introduced in 1991 [74], 10 years
after the original tracking algorithm, and it is in many ways very similar to the Harris corner
detectorfrom 1988 [32]. It is designed specifically to choose the areas that can be most reliably
tracked as features. Feature detection is for this reason based on the tracking equation, given
in Equation (6.5). For a feature to be easy to track, the matrix G must have large eigenvalues.
Therefore, features are chosen at the locations where the eigenvalues are largest and at least
above a predefined threshold:

min(λ1, λ2) > λthr (6.8)

Thus, for possible window location in the image G is calculated. The locations are then sorted
according to the minimum eigenvalue, and finally features are chosen from the top of this
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list. Each new feature is only accepted if its window do not overlap with previously selected
features. The feature detection can either be stopped after a desired number of features have
been detected, or be continued until no more features have eigenvalues that fulfil Equation (6.8).

6.2.3 Removal of Occluded Features

Features can be removed for several reasons, including:

• Out of bounds: The iterative algorithm causes the window to get too close to the border
of the image. This may mean, that the feature has left the view of the camera.

• Small determinant of G: If the determinant det(G) is 0 it means that its rank is less
than 2. Thus, the matrix equation Gd = e either has no or an infinite number of solutions.
If det(G) on the other hand is very small, the matrix equations can be solved, but not
very reliably. Therefore, the feature point is considered lost if det(G) gets too small. This
can happen if the feature point becomes occluded.

• Max iterations: The iterative algorithm does not converge within a fixed number of
iterations. This may happen either if the feature point has become occluded, or if it has
changed much e.g. due to rotation.

All of these reasons are based on frame-by-frame difference. It may also be an advantage to
monitor, if the feature has changed too much over time. In the introduction paper of the KLT
tracker from 1991 it is proposed to do this by calculating a dissimilarity between the feature
window in the frame where it was initialised and in the current frame [74]. The dissimilarity
measure is the RMS intensity difference between the two windows.

In the later paper “Good Features to Track” from 1994, which is often referred to as the origin
of the KLT-tracker, it is proposed to use a more advanced dissimilarity measure [69]. Instead
of calculating the RMS intensity difference between the window translated from the first to the
current frame, an affine transformation model is used. Instead of matching the first and the
current frame by using Equation (6.1), the following more general matching equation is used:

ǫ =

∫∫

W

[J(Ax + d) − I(x)]2w(x)dx (6.9)

where:
A is a transformation matrix.

The dissimilarity is then defined as the RMS intensity difference between the original window
I(x) and the window of the transformed feature in the current frame, J(Ax + d). While the is
a much more difficult system of equations to solve, experiments in [69] show that it provides a
more reliable detection of which features that have become occluded.

6.2.4 Implementation of the KLT Tracker

Several open source implementations of the KLT-tracker are available, including a full implemen-
tation by Birchfeld et. al. [73], a partial implementation in OpenCV [13], and in implementation
for NVidia GPU’s [70]. Here, the implementation by Birchfeld et. al. is chosen since this is
the only one available that includes the affine dissimilarity check while not being dependent of
specific hardware.
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6.3 Feature Points for Person Tracking

The KLT-tracker is able to initialise feature points that can be tracked, track them between
frames, and remove them if they change too much, e.g. due to occlusion. This means that if a
feature point is located on a person, it will be inclined to follow that person. The feature points
must first be initialised on known persons, however. Also, if a feature point by mistake looses
the track of a person there must be some way to remove it again. These subjects are discussed
in the next two subsections.

6.3.1 Initialisation of Feature Points

When initialising new feature points, two sources of information are available indicating the
position of the persons: Targets and foreground masks. The targets are the previously tracked
positions of all known persons in the scene, and the foreground masks indicate areas of recent
motion, as described in Chapter 4. Based this information, the feature points can be initialised
on the targets. The approach is illustrated as a flowchart in Figure 6.2.

Figure 6.2: Procedure for initialisation of new feature points on targets.

Two aspects must be considered to ensure that new feature points are initialised correctly: They
must not be initialised on a wrong person and they must not be initialised on the background.
To ensure that points are not initialised on a wrong person, the position of the targets relative
to other targets (if any) must be determined. If two targets seen from a particular camera are
located behind each other, initialisation of feature points on either of them cannot be guaranteed
to be located on the correct person. This is illustrated in Figure 6.3, where feature points can
only be safely initialised on target 3.

When a target seen from a particular camera is not overlapping other targets, feature points can
still risk being initialised on the background. This can be partially prevented by only initialising
feature points where movement has recently occurred by comparing with the available foreground
mask. While feature points can still be falsely initialised on recently moved objects, most points
outside the actual person can be prevented. The complete feature point initialisation algorithm
is illustrated in Figure 6.4.

Each feature point corresponds to a window, as explained in Section 6.2, and for our tracker a
window size of 7×7 pixels are used. This means that points located on the border of a person
also include part of the background. The more background a feature point includes, the more
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likely it will be to stick to the background instead of the person. To avoid initialising points
with much background, the foreground mask is first preprocessed using morphology, as shown in
Figure 6.4d. Closing is first applied to remove noise and erosion is thereafter applied to shrink
the mask.

6.3.2 Removal of Odd Feature Points

The KLT-tracker is able to eliminate feature points in two distinct ways: If the frame-by-frame
difference becomes too large, and if the difference between the originally initialised feature
points and the currently tracked feature points becomes too large (measure after an affine
transformation) [69]. An additional elimination function must be included here since the feature
points occasionally might be initialised on the background or move to background similar to its
target. This is done by measuring the distance between the target and feature point in the view
of the camera (see Figure 6.3). If the distance for a point becomes very large it is removed.
This approach has proven to work, even though more sophisticated approaches are definitely
possible.

6.3.3 Resolution

Even though the KLT-tracker is fast compared to other tracking algorithms, very high resolution
tracking cannot be done in real-time. The time consumption of the algorithm when using the
development data set in full resolution has been measured to 1.65 seconds (cf. Figure 13.1 in
Chapter 13). Therefore the quality of the tracking using different reductions has been compared,
and Figure 6.5 shows the result for the full resolutions and a scale factor of 4.

It is worth noting that some persons actually have more feature points when using reduced
resolution images, for instance the middle person in Figure 6.5c and 6.5d. This is caused by two
things: Firstly, when using higher resolution, the same window size for the features was used.

Figure 6.3: Feature points are only initialised where targets do not overlap. This means that feature
points can be initialised on target 3 in this example, but not on target 1 and 2.
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(a) Target. (b) Initialised fea-
ture points.

(c) Mask. (d) Processed mask. (e) Remaining fea-
ture points target.

(f) Complete image.

Figure 6.4: Initialisation of new feature points. A target that do not overlap other targets are first
found (a), and feature points are then initialised (b). The processed foreground mask (d) is used to
remove feature points initialised on the background, and the final result is shown in (e) and (f).
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(a) Frame 393 in full resolution. (b) Frame 393 in downscaled resolution.

(c) Frame 1136 in full resolution. (d) Frame 1136 in downscaled resolution.

(e) Frame 1354 in full resolution. (f) Frame 1354 in downscaled resolution.

Figure 6.5: Feature points in three different frames using full resolution frames to the left and frames
with a resolution reduced by a factor of 4 to 400×300 pixels to the right.
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This causes the algorithm to search for smaller features, which might not be significant enough
if the images are slightly blurred. Secondly, to limit time and memory consumption, a limit of
30 feature points per target per camera was used. With the full resolution images, many points
can be grouped on one small background object, and thus few points might be left for the real
persons. A the lower resolution reduces the number of points that can be located in a small
area.

A scale factor of 4 on the development data set corresponds to using image resolutions of 400×300
for the corner cameras. Experiments have shown that this is the minimal resolution that does
not significantly reduce the number of points that can be located, and therefore a minimum
width of 400 pixels is chosen as default. This reduces the time consumption for feature point
tracking in all cameras to 90 ms per frame, cf. Chapter 13.

The paramenters used for the feature point tracking are given in Table 6.1.

Parameter Value

Window size for feature points 7×7 pixels
Maximum number of feature points per target 30
Preprocessing closing kernel 3×3 pixels
Preprocessing erosion kernel 3×3 pixels
Minimum width for images 400 pixels

Table 6.1: Parameters used in the feature point tracking. Many additional features can be adjusted for
the KLT feature tracker, but these have been left unchanged in the used implementation [73].
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Chapter 7

Framework and Target Management

The purpose of this chapter is to present a general framework for tracking multiple persons. The
tracking framework is introduced in Section 7.1, and the various utility functions required in a
tracking system such as initialisation etc. are grouped in Target Management. These functions
are designed in the remaining sections of this chapter.

7.1 Tracking Framework

A proper tracking system must include everything necessary to track people in the scene under
surveillance, including new people entering the scene and people leaving the scene. Whenever
a person is inside the scene, the system must output a target indicating the state including
the position of this person. A tracking system must include functions to initialise new targets,
remove obsolete targets and estimate the state of existing targets. A general tracking framework
is illustrated in Figure 7.1 and each of the main tasks are described here:

State estimation: The core of any tracking system is the state estimation algorithm, which
has the purpose of estimating the state of the targets in each frame based on the states
from the last frame as well as the measurement data. A state includes the location(s), but
might also include other characteristics such as size or velocity. The measurement data to
be used for state estimation were discussed Part II, and state estimation techniques are
presented in Chapter 8. The state estimation algorithms for our system are designed in
Chapter 9 and 10.

Target management: Target management includes initialisation and elimination of targets.
To be able to initialise new targets, people present in the scene must be detected first.
When a person is detected that cannot be matched with an existing target, a new target
can be initialised. Targets can become obsolete either if the measurement data contains
too little evidence for them to be tracked properly, or if several targets seem to be following
the same person. Such targets must be removed. Target management for our system is
designed in the following sections in this chapter.

Reasoning: Reasoning is not necessary in a general tracking system whose only purpose is
to detect and track people present in the scene. However, if it is intended for a more
elaborate application, post-processing can be integrated here. As described in the problem
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Figure 7.1: Tracking framework.

formulation, Chapter 3, one purpose of our system is to determine the mobility of persons
in the scene and to detect if a person falls. If all persons can be tracked correctly, this
is simple to detect by applying filters to the detected position and height of each person.
The precise posture and mobility detection algorithms are developed and implemented for
this project are presented in Appendix B.

Most of the functions in the tracking framework presented in Figure 7.1 are part of the target
management. This is designed for our system in the following sections. Its main purpose is
to initialise new targets when new people enter the scene and eliminate obsolete targets when
people have left the scene. To allow initialisation of a hypothetical target without announcing
it before sufficient evidence in the measurement data has been collected, a measure of reliability
is introduced. A new target can then be introduced in a frame, even if it is impossible to differ
between noise and a real new person in the scene. Only if the person can be detected for several
consecutive frames, the target will be announced.

In Section 7.2 an algorithm for detection of persons is designed, which forms the basis for both
initialisation of targets as well as updating of the reliability measure. The reliability is examined
more closely in Section 7.3, and the final initialisation and elimination algorithms are designed
in Section 7.4.

7.2 Detection of Persons

The tracker uses two different modalities for tracking, namely foreground and feature points.
As described in Chapter 6, feature points are initialised on existing target. This means that
only the foreground information can be used to detect new targets, this information comes in
the form of foreground voxels from the 3D foreground estimator.
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One way to perform target detection is to divide the foreground into groups of coherent voxels
by performing BLOB analysis and then consider each large BLOB as a detected person. This
method will be able to separate all the persons in the scene if all persons are fully separated and
all voxels belonging to the same person are fully connected. The second constraint is rarely a
problem. The constraint that different people must be fully separated can easily be a problem,
however. When two or more persons are standing close together, this method will detect them
as a single person.

Another approach is to use a more general clustering algorithm to count the number of voxel
groups. One elementary but very popular method of unsupervised clustering is k-means [25].
In the basic form this algorithm needs to know the number of clusters k in advance. If, in each
frame, the number of clusters and their locations from the previous frame are used as a starting
point, then the number of clusters only need to be adjusted whenever a person enters or leaves
the scene. This can be detected by measuring the internal distance in each cluster as well as the
distance between the cluster. If an internal distance becomes very large, a new cluster can be
initialised, and when the distance between two clusters becomes very small, they can be merged.
This method will be able to separate all persons if they are located far from each other, and it
will give a good guess of the location of the persons even if they are standing very close together.

The purpose of detection is partly to be able to initialise new targets on people entering the
scene and partly to update the reliability. Of these, the first is by far the most important, since
the reliability can also be updated according to the measurement data itself (see Section 7.3).
When new people are entering the scene they are very likely to be easily seperable. BLOB
analysis is chosen partly for this reason, and partly because this method does not require any
post processing to detect new persons entering the scene.

7.2.1 Top/Down BLOB Analysis

The basic BLOB analysis algorithm can be adjusted in several ways to be suitable to the purpose
of target detection. A typical situation is illustrated in Figure 7.2, where two persons are
positioned close together. It is indicated that the head and the upper body can be separated,
while they are connected closer to the ground. This can easily happen, e.g. because of shadows
and limited view from the cameras. Near their heads they will, however, often be easier to
separate, partly because the heads are located farther from the ground, and partly because the
head is thinner than the rest of the body. The idea of the top/down BLOB analysis algorithm
is to separate such a BLOB into two different clusters by starting at the top, where they can be
separated. When a connection point between two clusters is reached, its height is compared with
a threshold, τ1. The clusters are merged only if they are connected above this τ1. To prevent
that people sitting down or fallen are separated into many BLOBs, an additional threshold τ2

is used. If the height of one of the clusters relative to the connection point is less than τ2, they
are also merged.

7.2.2 Efficient Implementation of Top/Down BLOB Analysis

To make the algorithm run in real-time the computational complexity is analysed here. There
are a number of parameters that affect the time consumption, including:
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τ1
τ2

Cluster1 Cluster2

Figure 7.2: Slice through the 3D foreground in a typical situation. Two people are present, but the
foreground is connected into one single, coherent BLOB of voxels. The two persons can be separated
by using top/down BLOB detection, and only merging clusters that are connected above a threshold τ1.
Clusters with individual heights compared to the connection point below τ2 are also connected.

• The total number of voxels in the room vroom.

• The number of foreground voxels vFG.

• The number of neighbouring voxels to each voxel vneighbours - that is, if e.g. 6-, 18- or
26-neighbourhood is used.

• The number of clusters nclusters.

• The number of foreground voxels for a person. Each cluster correspond in must cases
to a person. The number of foreground voxels constituting each person can therefore be
approximated by vperson ≈ vFG

nclusters
.

Only the values vroom, vFG and nclusters depend on the room size and/or the number of persons
in the scene. Therefore, the complexity of the algorithm is sought minimized with respect to
these. The values vroom and vFG also depend on the resolution, which has been chosen to
5 cm voxels, cf. Section 5.1. The value vneighbours can be chosen to something between 6 to
26, where vneighbours = 6 means that only voxels that share four corners are neighbour voxels,
while vneighbours = 26 will include all voxels that share at least one corner with the voxel under
consideration. To minimise the computation time, vneighbours is chosen to 6, since the final result
of clustering is almost the same in the development data set (described in Section 1.1).

The room must be searched for foreground voxels from ceiling to floor. Therefore, the voxels
are first sorted. This limits the number of voxels that need to be tested for membership of a
cluster to half of the neighbours. The algorithm is written as pseudo code in Figure 7.3.

The test to determine if a neighbouring voxel belongs to a cluster is central to the algorithm,
because it must be carried out for each foreground voxels, for each neighbour. It can be done
in two ways:

Span a matrix of the entire room where each entry correspond to a voxel. If the voxel belongs
to a cluster, the matrix entry holds the cluster number. If the voxel is not a foreground
voxel, it holds “-1”. When the next foreground voxel (from the sorted list) is to be
categorised, only three table look-ups are performed. However, time and memory are
required to initialise the grid in the beginning of each iteration. The number of calculations
Cmatrix and the algorithm complexity is:

Cmatrix = vroom + vFG ·
vneighbours

2
(7.1)

∼ O (vroom + vFG) (7.2)
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• Sort foreground voxels with according to there position in
the room.

• For all foreground voxels

– Test neighbour foreground voxels for membership of a

cluster.

– If at least one neighbour cluster is found

• Include this voxel in the cluster.

• If more than one neighbour cluster has been found

- If the clusters are to be merged (according to

the conditions in Figure 7.2), merge.

– Else

• Initialise a new cluster with this voxel.

Figure 7.3: Pseudo-code for top/down BLOB analysis used to group the foreground voxels into clusters.

where
vneighbours

2 = 3 can be neglected in the complexity since it is a constant.

Lists of foreground voxels belonging to each cluster. For each foreground voxel, the list of
voxels associated with each cluster is searched. As the voxels are put into the clusters from
a sorted list, the clusters can also be kept sorted by just resorting whenever two clusters
are merged. When vneighbours = 6, 3 voxels have to be tested, and because of the sorted
lists, one of these is the last in a cluster (if it contains foreground). The search for the
two remaining neighbour voxels can be carried out by using the binary search algorithm,
which as the complexity O (log(n)) [26]. The number of calculations Clist required and the
algorithm complexity is then:

Clist = vFG · nclusters ·
(vneighbours

2
− 1
)

· log

(

vFG

nclusters

)

(7.3)

≈
v2
FG

vperson
·
(vneighbours

2
− 1
)

· log(vperson)

∼ O
(

v2
FG

)

(7.4)

where the constants are disregarded from the complexity and vFG
nclusters

is replaced by vperson.
Note that vperson can also be considered a constant, since each person can be expected to
cause a similar amount of foreground.

The lower memory requirement as well as the decoupling of the number calculations from the
room size in Equation (7.3) is an advantage for the list approach. On the other hand, the
linear complexity in Equation (7.2) compared to the quadratic complexity in Equation (7.4)
is of course an advantage for the matrix approach. However, it is possible to optimise the
list approach considerably by using bounding volumes. A bounding volume is for this purpose
defined as a box containing a cluster plus one voxel in each direction. These can enable new
voxels to be compared only with clusters that include them in their bounding volume [26]. In
this way, a simple test determining if the voxel is located inside a box can replace many of the
clusters searches. In most cases only one cluster is left after this step. If this is assumed to be
true, Equation (7.3) can be split up into two:

Clist ≈ Clist, one cluster + Clist, bb test (7.5)

55



CHAPTER 7. FRAMEWORK AND TARGET MANAGEMENT

where Clist, bb test is the number of calculations required to test all foreground voxels against all
bounding boxes. The number of required calculations can be rewritten as (again disregarding
constants in the complexities):

Clist, one cluster = vFG · nclusters ·
(vneighbours

2
− 1
)

· log

(

vFG

nclusters

)

(7.6)

≈ vFG ·
(vneighbours

2
− 1
)

· log (vperson)

∼ O (vFG) (7.7)

Clist, bb test = vFG · nclusters ≈
v2
FG

vperson
(7.8)

∼ O
(

v2
FG

)

(7.9)

By comparing Equation (7.3) and 7.8 it is clear that the bounding box approach removes the
constant

(vneighbours

2 − 1
)

· log (vperson) from the quadratic complexity part. The complexity is
still quadratic, however, so if the amount of foreground vFG could be arbitrary high, the matrix
approach would be preferable. As described in Chapter 3, the purpose of this system is to
monitor indoor environments with one or few people present, which means that the amount of
foreground present will be limited. Partly to avoid making the algorithm dependant of the room
size, and partly to limit the memory requirements, the list approach is chosen.

7.3 Reliability of Targets

When a person enters the scene, a new target is supposed to be initialised. It might not always
be possible to tell targets and noise completely apart, though. A reliability measure of each
target can make it possible to initialise non-reliable targets, and then attempt to track them for
some time without announcing them. Only if evidence in the measurement data support the
hypothesised target for some duration, it will become reliable. Thus, the reliability measure can
be seen as a filter on the amount of evidence present in the measurement data, supporting a
target. The idea is illustrated in Figure 7.4.

Figure 7.4: The reliability measure can be between 0 (non-reliable) and 1 (very reliable), and the reliable
threshold controls how reliable a target must be, before it is reported by the system.
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7.3.1 Present Targets

An important design decision is what evidence to require before increasing the reliability. A basic
approach is to use the output of the target detection algorithm described in the previous section.
If a tracked target can be matched with a detected target, declare it as present. The reliability
of all present targets can the be increased, while the reliability of the remaining targets can be
decreased. A problem with this approach is that targets that have faded into the background
will be lost - even though they might be perfectly trackable if many feature points are present.
To keep targets in such situations, the amount of evidence must also be taken into account,
given as the likelihoods (see Chapter 9 for explanation of the likelihood values). If the likelihood
from either the foreground or the feature points is large, the target should also be declared as
present. Figure 7.5 illustrates this concept.

Figure 7.5: A tracked target is declared present in a frame if either it is matched with a detected target,
or if its likelihood is large for either foreground or feature points (the likelihood is explained in Chapter 9).
The reliability value is increased for detected targets and decreased for undetected targets.

7.3.2 Reliability Update Rates

A number of goals must be taken into consideration when designing the reliability filter:

1. Real persons: New targets initialised on real persons must become reliable as fast as
possible.

2. Moved objects: New targets initialised incorrectly, e.g. on an opened door or a moved
chair must not become reliable before they are incorporated into the background.

3. Old targets: It must be possible for a reliable target to remain reliable for a long duration,
even if it has little supporting measurement data and cannot be declared as present. This
should prevent targets that are stationary a long distance from any doors or other possible
exit points from being lost.

Obviously, item 1 and 2 conflict. To meet both of these requirements, the difference must be
examined between moved objects and real persons that have recently entered the scene. Both
objects and persons have moved - otherwise they would not have become foreground and would
not have caused the initialisation of a new target. However, an object is expected to remain
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stationary when no person is moving it. On the other hand, a person that has just entered
a room will usually keep moving, at least for a few seconds. Thus, mobility can be used to
distinguish objects and persons. Mobility detection is discussed in Chapter B.2, and here it is
just assumed that each target is either mobile or immobile.

Item 3 suggests that targets that have been reliable for a long duration should have a small
learning rate. This means that the learning rate of a target must depend of the age of that
target. All of these requirements is combined into a IIR-filter in the following equation, and is
illustrated in Figure 7.6a.

rn = (1 − k)rn−1 + k · Pn with k =

{

kmin if target is immobile
min( 1

n
+ kmin, kmax) if target is mobile

(7.10)

where:
rn is the reliability of a target at frame n, with r0 set to the reliability value
reliminate to just prevent the target from being eliminated.,
Pn is 1 if the target is present and 0 otherwise, and
k is the reliability learning factor

To make sure that stationary targets are incorporated into the background before they become
reliable as required in item 3, the learning rate of imobile targets kmin must be compared to
the learning rate of the adaptive background model. The update equation for the background
model is given in Equation (4.4) on page 20, and is repeated here:

ωn = (1 − α)ωn−1 + α · Mn (7.11)

where:
ωn is the weight of a Gaussian distribution, and ω0 is set to a predefined
value ωinit,
Mn is 1 if the pixel value matches the distribution and 0 otherwise, and
α is the weight learning factor.

By comparing Equation (7.11) with Equation (7.10) for immobile targets it is clear that kmin

must be adjusted to be significantly lower than α. The reliability and background updates are
compared in Figure 7.6 with α = 0.00256, kmin = 0.0015 and kmax = 0.03. When a target is
considered reliable if it has a reliability value above 0.6, this gives a margin of at least 10 seconds
from fading into the background to potential reliability, which is considered sufficient.

7.4 Initialisation and Elimination of Targets

While both initialisation and elimination has already been superficially discussed in the previous
sections, this section gives a complete and systematic overview over the area.

7.4.1 Initialisation of New Targets

Target initialisation is mostly based on the target detection algorithm described in Section 7.2.
This algorithm simply and efficiently separates 3D foreground voxels into multiple clusters,
where each clusters corresponds to a detected person. Note that even though the detection
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(a) Reliability learning rates.
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Figure 7.6: Reliability of newly initialised mobile and immobile targets. In (b), the reliability of new
targets is compared with the learning speed of the adaptive foreground detection, described in Chapter 4 to
make sure that moved objects are incorporated into the background before its target becomes reliable. The
background curve is marked where it crosses 0.5, since the object in all practical situations latest at that
point will have become incorporated into the background. The reliability threshold is set to 0.6 to give at
least 10 seconds buffer between background incorporation and reliability.

algorithm is not always able to separate people located very close together, this is not an issue
for initialisation, since people entering the scene are moving, and the separation is only required
in a single frame. Only in very crowded areas it might be impossible to ever separate a new
person, and our intended is not designed for such situations (cf. Chapter 3).

The output of target detection is a number of clusters, each constituted by a 2D location. These
locations must be matched to the locations of the targets in the previous frame. This is a
classical assignment problem: The cost of a match is set to the Euclidean distance between the
2D positions, and the set of matches which give the minimum cost is chosen. The assignment
problem is efficiently solved using the Munkres assignment algorithm, also known as the Hun-
garian algorithm [11]. Matches larger than a predefined threshold are discarded subsequently,
and unmatched detected clusters are then used to initialise new targets.

Two special situations are taken into account to increase the performance of the tracker. To
decrease the risk of initialising targets on moved objects, targets are only initialised on detected
clusters, that are high enough to be considered standing persons (see Section B.1 on page 123).
Since people entering the scene are practically always standing, this only reduces the performance
at the beginning of a recording. Attached to the recordings used to test our tracker from CLEAR
2007 are a number background frames, and when switching to the actual recordings, people might
appear sitting instantaneously [19]. For this reason, targets are also initialised on low targets
in the first non-background frame. Targets initialised in this frame are furthermore also made
reliable immediately. The complete target initialisation design is illustrated in Figure 7.7.

7.4.2 Elimination of Obsolete Targets

Targets can become obsolete for several reasons:
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Figure 7.7: Initialisation of new targets.

1. Tracking nothing: The target has lost its person, and is not tracking anyone anymore.

(a) Person left: The person has left the scene.

(b) Tracking error: The person is still present, but the tracker is not tracking anything.

2. Tracking wrong person: The target has lost its person, and has instead begun tracking
a wrong person, which is already tracked by another target.

Item 1b and 2 are due to tracking errors, and item 2 is easily handled simply by merging targets
that are located very close for several consecutive frames. Item 1b can in general not be handled
efficiently because it conflicts when the desire to be able to maintain targets, even though they
have little supporting evidence in the measure data. Thus, a compromise must be found by
setting elimination threshold on the reliability appropriately, see Figure 7.4.

Item 1a is the only situation, where the target should be eliminated even though tracking has
not failed. Thus it makes sense to be particularly aware of people leaving the tracking area.
Different approaches can be taken to this:

• Exit zones: Persons can only leave the scene at specific locations, e.g. at a door. Thus,
one solution is to make it very easy for a target to be eliminated in specific zones.

• Fast disappearance: When a persons leaves the scene, the amount of 3D foreground
inside the target will be reduced very fast. Note that this can only happens when the
person leaves the room - if he is stationary and thus fades into the background, the amount
of 3D foreground present will be reduced more slowly.

While both approaches definitely have the potential to work, the first approach need tuning for
each specific scene. Therefore the second and more general approach is chosen. it is implemented
by maintaining an average amount of foreground present inside a target. If the average is large,
but suddenly drops close to zero, the target is eliminated.
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Chapter 8

Bayesian State Estimation

Recursive Bayesian estimation is a general approach to estimate the probability density function
(pdf) of a process. The basic idea is to estimate the state of a process at a certain time using
all available measurement data up to and including that point in time. When the process state
at time k is denoted xk and the measurement data is denoted z1, z2, ..., zk = z1:k, the estimate
of the pdf of the state using all available measurement data is denoted p(xk|z1:k). Because all
measurement data is used to estimate this pdf, including data from time index k, it is known
as the posterior pdf. In contrast, the prior pdf is given as p(xk|z1:k−1). The motivation for
calculating the posterior pdf is, that this makes it possible to estimate the state itself using any
desired criterion [68]. For example, either the Maximum A Posteori (MAP) or the Minimum
Mean-Square Error (MMSE) estimate can be used. As an example, the MMSE estimate of the
state xk is shown here:

x̂MMSE
k|k = E{xk|z1:k} =

∫

xk · p(xk|z1:k)dxk (8.1)

where the notation x̂k1|k2
means the estimate of x at time k1 given measurements z1:k2 .

8.1 Conceptual Bayesian Approach

The Bayesian approach assumes that the process is a Markov process of order one with unob-
servable state, meaning that the state xk does only depend on xk−1 and not of states previous
to k − 1 and that the true state cannot be measured directly. The process and measurement
models can be written respectively as:

process: xk = fk−1(xk−1,vk−1) (8.2)

measurement: zk = hk(xk,wk) (8.3)

where:
{vk−1, k ∈ N} and {wk, k ∈ N} are i.i.d. noise sequences, and
fk and hk are (possibly non-linear) functions.

When estimating the posterior pdf of xk, both the previous state xk−1 and the measurement
zk must be taken into account. In general, this is done through a prediction and an update
equation. The prediction equation predicts the state of xk from xk−1 by using a state evolution
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model p(xk|xk−1), and the update equation takes the output of the prediction equation and
updates according to the measurement data zk using the Bayes’ rule: [58]

predict: p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (8.4)

update: p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(8.5)

where:
p(zk|xk) is a likelihood function, and
p(zk|z1:k−1) =

∫

p(zk|xk)p(xk|z1:k−1)dxk is a normalising constant.

Note that the likelihood function p(zk|xk) is not to be confused with a probability function,
since it is the outcome measurement zk that is known, while the state xk is unknown. For this
reason it is often denoted L(xk|zk), which more intuitively indicates that the function gives the
likelihood of the state xk given the measurement zk. The likelihood function is not required to
integrate over its variable xk to 1, and this is why a normalising function is required in update
Equation (8.5).

A wide variety of methods exist to implement Equation (8.4) and (8.5) and thus to estimate
the posterior pdf of the state, p(xk|z1:k). Two of the most well known groups, the Kalman filter
and its extensions and the Particle filters are described in Section 8.2 and 8.3 respectively.

8.2 Kalman Filters

The Kalman filter was first developed in 1960 by R. E. Kalman [43]. It was in the following
around 40 years the most important method for state estimation, e.g. for tracking, and it is still
widely used.

The Kalman filter is under certain conditions an optimal solution to the Bayesian estimation
problem defined in Equation (8.4) and (8.5) in the sense, that no algorithm can perform bet-
ter [68]. It assumes that the posterior p(xk|z1:k) is always Gaussian and can thus be described
completely by its mean and covariance. The conditions are that the state estimate from the
previous time step p(xk−1|z1:k−1) must also by Gaussian, and that Equation (8.2) and (8.3) can
be rewritten: [68]

process: xk = Fk−1xk−1 + vk−1 (8.6)

measurement: zk = Hkxk + wk (8.7)

where:
vk−1 and wk are zero-mean Gaussian white noise sequences with known
covariances, and
fk−1 and hk from Equation (8.2) and (8.3) are linear and thus replaced by
the matrices Fk−1 and Hk.

Under these conditions, it is relatively simple to implement the prediction and measurement
equations from Equation (8.4) and (8.5). The predicted mean is e.g. estimated simply using
the process matrix from Equation (8.6) as x̂k|k−1 = Fk−1x̂k−1|k−1. The specific equations are
outside the scope of this description, but can be found in [68].
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8.3. PARTICLE FILTERS

8.2.1 Non-linear Variants of the Kalman Filter

The Kalman filter is optimal when the mentioned restrictions are met. One of these restrictions
is that the process and measurement equations (8.2) and (8.3) must be linear, and this is rarely
the case in real life. Several variants have been developed to deal with such situations, two of
the most common being the Extended Kalman Filter (EKF) and the Unscented Kalman Filter
(UKF). The EKF has been used for several decades, and works by assuming that Equation (8.2)
and (8.3) can be rewritten as: [68]

process: xk = fk−1(xk−1) + vk−1 (8.8)

measurement: zk = hk(xk) + wk (8.9)

where:
fk−1 and hk are differentiable, possibly non-linear functions, and
vk−1 and wk are additive white Gaussian noise with known covariances.

The principle in the EKF is, for each time step, to make local linearisations of fk−1 and hk (by
first order Taylor transforms) and their covariance matrices (by Jacobian matrices) around the
current state. Like the EKF, the UKF also avoids assuming that the process and measurement
equations are linear, and the UKF has become very popular since it was proposed in 1997 [39]. It
attempts to give a better approximation of the non-linearity by only assuming that the posterior
p(xk|z1:k) is Gaussian, instead of the assumptions in Equation (8.8) and (8.9). The non-linearity
of the process and measurement models are incorporated by letting a large number of particles
pass the models, instead of only relying on one local linearisation. Note, that both the EKF
and the UKF are approximating filters and cannot be considered optimal.

8.3 Particle Filters

The Kalman filter and its variations all assume that the posterior distribution p(xk|z1:k) is
Gaussian. In many situations such as tracking, this might not be the case. Instead, the posterior
can have an arbitrary shape as illustrated in Figure 8.1. The particle filters, first introduced as
the CONDENSATION algorithm in 1998 by Isard and Blake [38], approximate such arbitrary
shapes of the posterior density by using many particles with different hypothesised states. For
our system, the posterior density cannot be assumed to be Gaussian, and it might even have
more than one local maximum. Therefore it is chosen to design the state estimation based
on particle filters instead of Kalman Filters. Different variants of relevant particle filters are
presented in the following subsections to provide a foundation for the design of particle filters
for our system.

(a) Kalman assumption for posterior. (b) Possible real-world posterior.

Figure 8.1: The Kalman filter and its variations assume that the posterior distribution is Gaussian. In
real-world situation it might have as arbitrary shape.
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8.3.1 Sequential Importance Sampling

Sequential Importance Sampling (SIS) is a technique to implement the conceptual Bayesian state
estimation presented in Section 8.1 by Monte Carlo simulations that forms the basis for particle
filters. Monte Carlo simulations can be described by comparing to deterministic modelling:
Where a deterministic model can produce a single output hypothesis by using the most likely
input, a Monte Carlo simulation produces a large number of discrete hypotheses by sampling
inputs according to probability density functions. While the Kalman filter expresses the posterior
distribution by a Gaussian defined by its mean and covariance, the central idea of the SIS
algorithm is thus to represent the posterior by a set of particles with associated weights instead.
Randomness is used in addition to a state evolution model to update the state of each particle,
and the SIS algorithm approaches the optimal Bayesian estimator if the number of particles
approaches infinity, Np → ∞. If the true posterior is shaped as in Figure 8.1b, the particles with
associated weights will be distributed in the same way. Because each particle has a hypothesised
state, a particle filter can be seen as a multi-hypothesis tracker.

Ideally, the particles should be distributed according to the posterior p(xk|z1:k). Usually it is
not possible to sample the posterior, however, so instead a proposal distribution π(xk|z1:k) (also
known as importance density) with the same support is used. This distribution can reflect both
a state evolution model and additive noise. The principle of importance sampling is applied
by calculating the weight of the particles according to the “error” in the proposal distribution
compared to the posterior distribution. After k time steps, the weights must be given according
to the joint posterior:

wi
k ∝

p(x1:k|z1:k)

π(x1:k|z1:k)
(8.10)

In this way, the particles with normalised weights will reflect the posterior as:

p(xk|z1:k) ≈

Np
∑

i=1

wi
kδ(xk − xi

k) (8.11)

For the proposal distribution to be usable in the Bayesian framework, it must depend only on
the previous state and measurements; that is π(xk|z1:k) = π(xk|xk−1, zk). The weight update
equation can then be rewritten as a recursive formulation, yielding the complete SIS algorithm
in Figure 8.2 (refer to [68] for derivation).

The choice of proposal distribution is of major importance. In general, the optimal choice would
be the proposal distribution, as this would eliminate the need for weights, c.f. Equation (8.10).
When the estimation is required to be recursive, the optimal proposal distribution has been
proven to be: [24]

πopt(xk|xk−1, zk) = p(xk|xk−1, zk) (8.12)

This equation is optimal in the sense, that the variance of the weights is minimised, and a
lower variance is equivalent to a distribution of particles that is more similar to the posterior
distribution. It is not always possible to sample from this distribution, however. Another popular
choice as proposal distribution is the state evolution model (also known as the transitional
prior): [68]

π(xk|xk−1, zk) = p(xk|xk−1) (8.13)
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• For i = 1 : N

– Draw xi
k from proposal distribution:

xi
k ∼ π(xk|xk−1, zk) (a)

– Evaluate importance weight up to a normalising

constant:

w̃i
k = wi

k−1

L(xi
k|zk)p(xi

k|x
i
k−1

)

π(xi
k|x

i
k−1

, zk)
(b)

• For i = 1 : N, normalise importance weights:

wi
k =

w̃i
k

∑N

j=1
w̃j

k

(c)

Figure 8.2: Pseudo-code for the SIS filtering algorithm [58].

Comparing with Equation (b) in Figure 8.2, the weight update equation reduces to sampling
the likelihood function with this proposal distribution:

w̃i
k = wi

k−1L(xi
k|zk) (8.14)

To sum up, the SIS algorithm implements the conceptual Bayesian estimation given in Section 8.1
by the use of Monte Carlo simulations. The general update and prediction equations given as
Equation (8.4) and (8.5) can be directly compared with Equation (a) and (b) in Figure 8.2 if
the proposal distribution is chosen as in Equation (8.13).

8.3.2 Particle Filter with Resampling

The SIS algorithm suffers from the problem that the variance of the importance weights will
increase over time, no matter the choice of proposal distribution [24]. After some time, one of the
normalised weights will be close to 1 and the remaining close to 0. Thus, much computational
power will be spend on particles with almost no influence in the final estimate of the posterior
distribution.

A technique to avoid this is to use resampling of the particles [68]. Resampling means that the
set of particles replaced by a new set, where the particles in the new set are drawn from the
particles in the old set with probabilities corresponding to the weights. That is, a particle with a
large weight will probably be copied several times to the new set, while a particle with a weight
close to 0 will probably not be copied at all. The weight of the new particles are set to 1

Np
,

with Np being the number of particles. The resampling algorithm thus distributes the new set
of particles according to the weight of the old set, without changing the pdf that are reflected
by the particles. Resampling can either be carried out after each iteration of the SIS algorithm,
or only when the variance of the importance weights have passed a threshold.

The combined SIS/resampling algorithm constitutes a complete particle filter, as described e.g.
as the CONDENSATION algorithm in [38]. A very common variant of the particle filter is the
Sampling Importance Resampling (SIR) algorithm. Here resampling is performed in every step,
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and the proposal density π is chosen to the transitional prior as in Equation (8.13). This is
illustrated in Figure 8.3 illustrates.

Resampling

Draw from

proposal distribution

Update weights

xi
k−1

x̃i
k

L(xk|zk)

{x̃i
k, w

i
k}

xi
k

Figure 8.3: Single cycle of a one-dimensional SIR particle filter. The SIS algorithm from Figure 8.2
is followed by resampling to avoid the degeneracy problem. In other types of particle filters, the weight
might depend on the more general expression given in Equation (b) in Figure 8.2 instead of only on the
likelihood. Also, resampling is not always performed in each cycle. If not, the states xi

k will not be grouped
as shown here but have different weights instead.
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Chapter 9

Likelihood Functions

In any state estimation it is of major importance how to determine from measurement data how
probable a hypothesised state is. In particle filters, this is done by the likelihood function L(x|z),
which measures how likely a state x is given measurement data z. As described in Section 8.1,
the likelihood is not a probability density function, but is instead only required to integrate over
x up to a normalising constant. In this Chapter, the likelihood functions for the foreground
based and feature point based tracking is designed in Section 9.1 and 9.2, respectively. The used
parameters are listed in Table 9.1 at the end of the chapther.

9.1 Foreground Likelihood

Humans are bounded in their freedom to 2 dimension given by the floor plan. Thus it is sufficient
to track in these two dimensions. The 3D representation of the foreground described in Chapter 5
are therefore projected to the floor plan as shown in Figure 9.1. The resulting representation
is illustrated in Figure 9.1c. Each pixel corresponds to a column of voxels, and the brightness
of a pixel is given by the number of voxels that contain foreground in that column. Therefore,
this form can be considered a “2.5D” representation of foreground: The vertical dimension is
left out but information about the amount of motion in that direction is kept.

(a) Frame from a corner camera. (b) Detected 3D foreground. (c) Foreground projected to the
floor plan to 2.5D.

Figure 9.1: The detected 3D foreground are projected to the floor plan to ease tracking. The projected
foreground can be considered a 2.5D representation, since the amount of foreground in the vertical direction
is known but not its position.
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9.1.1 States to be Estimated using Foreground

The design of a likelihood function depends on the states to be estimated. In general, this must
be kept as low as possible to minimise the required number particles in the particle filter. The
minimal possible number of states to estimate with the foreground likelihood function is the two
dimensions (x, y) required to represent a position on the floor plan. In addition to this, a size
parameter α is also introduced since different persons in different positions will not fill the same
area, as is also evident in Figure 9.1c. With this number of parameter, the shape of a state
can be chosen either to be a square or a circle. While the circle probably in some situations
will be able to describe the measurement data better, it does not fit very well with the discreet
representation of the foreground. Therefore, the square shape is chosen. The three parameters
to be estimated with foreground are illustrated in Figure 9.2.

α

x

y

Figure 9.2: The states that can be estimated using foreground projected to the floor are the position
(x, y) and the size α.

9.1.2 Foreground Likelihood Function

A number of values can be taken into consideration when designing the foreground likelihood
function (in the following, the position (x, y) has been excluded as function parameters for
simplicity):

Volume: A person is expected to constitute a certain volume, which can be given as a number
of voxels N(α).

Density: A person is expected to fill most of the volume, V , inside his 3D bounding box. This
amount is expressed as:

F (α) =
N(α)

V (h, α)
=

N(α)

h · (2α + 1)2
(9.1)

where α and h are measured in number of voxels. Even though it cannot be determined
from the 2.5D foreground representation exactly what lies inside the 3D bounding box of
a person, a good approximation can be achieved by assuming that all columns start from
the floor. The height h is thus set to the maximum number of voxels in a single column
in the area.

Derivative of density: A good state will be centred close to the centre of a person and include
most of that person. This means that F (α) is expected to drop fast if α is increased. This
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is due to the fact, that most of the area around a person typically is without foreground.
The change in F (α) can be measured by its derivative ∂F (α)

∂α
, which discreetly is given by:

Fd(α) =
∆F (α)

∆α

=
F (α + k) − F (α − k)

2k

≈
1

2kh

(

N(α + k)

(2(α + k) + 1)2
−

N(α − k)

(2(α − k) + 1)2

)

(9.2)

where h is simplified to be the maximum height of the smaller area (which in most cases is
identical to that of the larger area).

In Figure 9.3a a 2.5D foreground is shown that comes from a situation where two persons are
standing very close together. A good likelihood function must be able to separate these, and
the box in the figure indicates a state with α = 5 that separates one person well from the other.
The rest of Figure 9.3 shows F (α), Fd(α) and N(α) as well as the final likelihood function L(α)
when α is varied while x and y are fixed to the centre of the box. From the graphs in Figure 9.3
it seems that L(α) = −Fd(α) would constitute a good likelihood function since it has a clear
maximum at α = 5. This is not sufficient for the likelihood function, however, since Fd(α) reacts
equally strongly on few voxels of noise and a real person. To counter this effect, the likelihood
function could be chosen to L(α) = −Fd(α) ·N(α). N(α) biases towards larger areas. A problem
with this approach is apparent by comparing Figure 9.3a and Figure 9.3c. When α grows to
include both persons, N(α) just keeps growing. To avoid including multiple persons, F (α) is
also used. When a square state covers multiple persons (corresponding to a cube state in 3D),
much of the square will be filled with little or no foreground. This is also evident in Figure 9.3b.

When using a particle filter, the likelihood function needs to be evaluated (at least) once for each
particle for each person. Therefore it is essential that this does not take up much computation
time. One of the parts that does take some time is to count the number of voxels inside a
square, and when evaluating the function Fd(α), the number of particles for two squares must
be determined as shown in Equation (9.2); namely N(α+k) and N(α−k). To save computation
time, these are also used to evaluate F (α) and N(α), resulting in the final likelihood function:

L(α) = −F (α − k)2 ·
√

N(α + k) · Fd(α) (9.3)

The functions are weighted by squaring F (α−k) and taking the square root of N(α+k) to bias
towards single coherent persons. Figure 9.4 illustrates the performance of the likelihood for a
particular situation. In Figure 9.4a, the likelihood for all values of x and y with α fixed to 5 is
shown. The position (xi, yi) that satisfies (xi, yi) = argmax(x,y)(L(x, y, 5)) is marked, and α is
adjusted at that location to satisfy αi = argmaxα(L(xi, yi, α)). The state S(xi, yi, αi) is shown
as a box in Figure 9.4a.

9.2 Feature Point Likelihood

Based on the KLT-tracker [69], feature points are initialised and tracked for each person in each
camera as described in Section 6.3. Using these, the feature point likelihood must provide a
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(a) 2.5D representation of foreground with two persons standing
very close together. The shown state has been found by manually
fixing x and y and then optimising L with respect to α. The
maximum is at α = 5.
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(b) Amount of target filled with voxels, F (α).
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(c) Number of voxels within target, N(α).
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(d) Approximate derivative of F (α), Fd(α).
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(e) Complete foreground likelihood function, L(α).

Figure 9.3: Different values as a function of α when the position (x, y) is fixed in the example in (a).

(a) Figure 9.3a zoomed out to include a third person. (b) Illustration of the likelihood L(x, y, α) with α

fixed to the optimal value from (a).

Figure 9.4: Illustration of likelihood function.
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measure of how likely it is that a person is located at a hypothesised location on the floor plan,
similar what has been described in the previous section for foreground. The foreground is used
to estimate both the position (x, y) and the size α. The feature points do, however, not reliably
indicate the size of the targets, since they are located randomly on the persons where these have
trackable features. Therefore, it is chosen to only estimate the position with the feature points.

Figure 9.5 illustrates how independent feature points located on the same person but seen from
different cameras can be used to estimate the position of that person. A feature point in a camera
frame corresponds to a line in the 3D space, and how to do the transformation is explained in
Appendix A.3.2. If points from different cameras are located on the same person, their lines will
pass each other closely near that person. If all lines are first projected to the floor plan they
will intersect near their person instead, and this can be used to track a person moving on the
floor plan.

Figure 9.5: Feature points from different cameras are used to determine 3D lines, which are then
projected to the floor plan. The large grey circle is the actual person seen from above.

After the 3D lines have been projected to the floor, each of them only indicates the position of the
target in one dimension; namely the angle seen from the camera. Some additional information
can be represented by first analysing the position of the (natively infinite) 3D lines: They all
originate from cameras placed near the ceiling and all of them point downwards. Thus, they
will cross the ceiling, the floor and borders of the scene under surveillance at some point. Since
persons cannot be located outside these limits, the lines can be cut when they reach either of
these. Usually it can be assumed that all persons are located within a certain distance from the
floor, and the lines can also be cut above this threshold. Figure 9.7 shows an example of lines
tracked on three persons from the development data set, and the algorithm is given in Figure 9.6
as pseudo-code for clarity.

9.2.1 Feature Points Likelihood Function

The likelihood function must primarily give higher values, the more lines that pass the hy-
pothesised target. Additionally, since lines from one camera only indicates the position in one
dimension, the likelihood function should prefer lines from different cameras. This leads to the
following logarithmic likelihood function:

LFP(x, y, α) =
Ncams
∑

i=1

log2(Li + 1) (9.4)

where:
Ncams is the number of cameras, and
Li is the number of lines from camera i intersecting the target.
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• For all targets

– For all feature points in all cameras belonging to that

target

• Determine the infinite 3D line that the feature
point represents.

• Cut the line when it are outside the scene
border, below the floor plan or above a predefined

threshold, τheight.

• Project the (finite) lines to the floor plan.

– The person is most likely to be located where many

lines cross.

Figure 9.6: Pseudo-code for person tracking using feature points. The targets are all known persons in
the scene. In the implementation, each the finite, projected line of each pixel in all cameras is calculated
offline to minimise the computation time of the algorithm.

(a) Frame from a corner camera. (b) 2.5D foreground representation with feature
points projected to the floor plan as finite lines.

Figure 9.7: Example of detected feature points on three persons in (a) and the projection of the points
to the floor plan as lines in (b). Each line in (b) corresponds to a feature point and is coloured depending
on which target it belongs to. The lines originate from the cameras (indicated as white squares), and they
are cut below the floor and above a threshold.
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A one dimensional example of this likelihood function is shown in Figure 9.8, where the bias
towards multiple cameras is obvious.
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Figure 9.8: Example of feature point likelihood in one dimension. While the total number of lines is
largest around 20 on the x-axis, the likelihood are biased towards preferring lines from more cameras. The
likelihood is therefore largest around 50, where all cameras see line(s).

9.2.2 Registration of Lines at Hypothesised Targets

Since the size of the target is not estimated with the feature points, a predefined size is used
instead. If the shape of the hypothesised targets are defined to be circular, it is very simple
to determine if a line intersects. The distance between the line and the target centre is first
calculated and then compare with the radius of the circular target. One problem remains,
however, which is illustrated in Figure 9.9a. Since the lines from one camera originates from the
same camera, the lines will be located denser closer to that camera. This will cause targets to
move towards cameras that see many points on them. A solution is illustrated in Figure 9.9b
and 9.9c. Projected lines from a camera do, as previously described, only contain information
about the location of the person in one dimension; the angle seen from that camera. Therefore,
all targets located at the same angle should receive the same contribution to the likelihood value
from that camera. This is done by moving the targets to have the same distance to the camera
when evaluating the likelihood, as shown in Figure 9.9c. The distance used is the distance
between the target and the camera in the previous frame.

To sum up, the feature points are used to estimate the position of persons in the scene, but
not their size. Feature points are converted to 2D lines in the floor plan, and the number of
lines intersecting a hypothesised target is determined as illustrated in Figure 9.9. This is used
to calculate the likelihood according to Equation (9.4). Table 9.1 shows the parameter values
used as default in the system.

Parameter Symbol Value

Step size for approximating Fd(α) k 1 voxel
Max feature point height τheight 2 m
Radius for feature points target size rFP 20 cm

Table 9.1: Parameters used in the likelihood functions. The voxel size was chosen to 5 cm in Section 5.1.
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(a) Target will tend to move to-
wards each camera.

(b) The lines from each camera
can only indicate the targets posi-
tion in one dimension, not the dis-
tance from the camera.

(c) To avoid affecting the dimen-
sion in the direction of the cam-
era, all targets are moved to have
equal distance to the camera when
evaluating the likelihoods.

Figure 9.9: For each camera, the lines will be denser closer to the camera. To avoid that the targets
tend to move toward the cameras, they are for each camera moved to have the same distance to the camera
when evaluating the likelihood.



Chapter 10

Particle Filter

In this chapter the main part of the tracking system is designed: The state estimator. As
described in Section 8.3, particle filters have been chosen as the basis for state estimation due
to their ability to track arbitrary distributions. To be able to test the hypothesis from the
introduction, Chapter 3 claiming that a combination of foreground and feature points is better
than a tracker using one of these modalities, both a combined particle filter and two individual
particle filters will be designed in this chapter. These three particle filters can each be put
into the tracking framework described in Chapter 7. This chapter is organised as follower:
Section 10.1 introduces the common parts for the particle filters, followed by Section 10.2, 10.3
and 10.4 where the three particle filters are designed. The constants used through out the
chapter can be fined in Table 10.1 on page 82 at the back of this chapter.

10.1 Introduction

The particle filters will be designed based on the standard SIS filter followed by resampling
as described in Section 8.3. The actual state estimation is then done based on the particle
states. The original CONDENSATION algorithm by Blake et. al. [38] was designed to track
a single object. It was indicated that the approach should be able to track multiple targets
simultaneously. The particle filter is a multiple hypothesis tracker and thus has multi-object
tracking potential. The particles should ideally distributed according the posterior probability
density function (pdf) and have particles located at all positions where targets might be present.
This is the why the authors of the original CONDENSATION algorithm claimed that it should
natively be able to track multiple persons. However the multi-target tracking does not come for
free, the more the particles are spread over a large area the more particles are needed to have a
dense representation of the state space. Most particle filters are implemented to track a single
object [18]. This is also the approach that is going to be used here. The design is to a great
extent inspired by Blake et. al. [64], and will be based on a single particle filter per target.

In Figure 10.1 the state estimation framework that is used in this chapter is shown. The four
blocks in Figure 10.1 and the state space are discussed here:

Dimensionality of the state space: The tracker is, as described in the problem formulation,
Chapter 3, meant to track people when they are located in a room monitored by multiple
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Figure 10.1: General state estimation framework based on a particle filter. The vectors xk and xk−1

includes the states of all particles, and x̂k|k is the estimated target state at time k given all measurements
z1:k.

cameras. Thus the target position on the floor-plane is needed in the state vector xk for
the particle filter. Other dimensions might also be useful for the given particle filter but
not needed in the final output. These will be discussed in the section of the respective
particle filter.

The proposal distribution π(xi
k|x

i
k−1, zk): This is of mayor design importance in the par-

ticle filter design. As described in Section 8.3 the optimal proposal distribution includes
the state evolution model, p(xi

k|x
i
k−1), and the measurement data zk. However, this is in

practice often impossible to sample and often just the evolution model is used (cf. Sec-
tion 8.3). The proposal distributions is designed in the section of the respective particle
filter.

Weights: The update equation is given as (cf. Section 8.3):

wi
k ∝ wi

k−1

L(xi
k|zk)p(xi

k|x
i
k−1)

π(xi
k|x

i
k−1, zk)

(10.1)

With
∑Np

i=1 wi
k = 1. The likelihood functions LFG(xi

k|zk) and LFP(xi
k|zk) designed in

Chapter 9 will be used in this chapter.

Resampling: As discussed in Section 8.3 resampling is needed because otherwise the variance
of the importance weights will increase over time. This will eventually result in one of the
normalised weights be close to 1 and the remaining close to 0. As the resampling principles
does not depend on the modality it will be discussed in Section 10.1.2.

Target state estimation: The general Minimum Mean-Square Error MMSE estimate (cf.
Equation (8.1) on page 61) was used for state estimation by Blake et. al. [38] in the
original CONDENSATION algorithm. This is also the algorithm that is going to be used
here. That is the target state will be estimated using the weighted average of the particle
states:

x̂k|k =

Np
∑

i=1

xi
k · wi

k (10.2)

where:
Np is the number of particles in the particle filter,
xi

k is the i’th particle state at time k, and
wi

k is the weight of the i’th particle state at time k
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Before designing the three particle filters, the state evolution model will be investigated in
Section 10.1.1, as the particle filters are going to be used to track the same persons, and thus
has this in common. In Section 10.1.2 resampling will be discussed before moving on the the
design of the unique parts of three particle filters.

10.1.1 State Evolution Model

Most objects are moving in fairly predictable patterns and that is why it is good practice in
general to design a state evolution model [64]. However, in our scenario there are no obvious
paths that the people are following and abrupt movement can be present. For this reason a
very general model for the evolution of the state is selected: A Gaussian random walk model.
To deal with situations where the track is lost and help the tracker to recover after possible lost
tracks, a uniform component is also included as in [64]. The state evolution model is then given
by:

p(xk|xk−1) = (1 − βu)N (xk|xk−1,Σ) + βuUEvul(xk|xk−1) (10.3)

where:
xk is the particle states at time k,
N (.|µ,Λ) is the Gaussian distribution with mean µ and covariance Λ,
UEvul(xk|xk−1) is a uniform distribution, and
Σ is the diagonal matrix with the variances of the random walk models on
the components in the state vector.

If the uniform component is spread over the entire state space as in [64] it will have a very little
value and the importance will change depending on the size of the room. A uniform component
spanning the entire room would also result in particles from all targets would tend to seek to
the one location in the room with the largest likelihood and not stay at the target they were
meant to track. Therefore it is decided to only distribute it over a set around the particle state.
The size of UEvul(xk|xk−1) the in practice controls how far a particle are allowed to jump in one
step.

10.1.2 Resampling

Two things are to be decided concerning resampling: When to resample and which particles to
copy:

When: Compared to the remaining algorithms in the system the resampling takes up minimal
computational power and resampling in every iteration is done for simplicity as in the
standard SIR approach (cf. Chapter 8.3).

How: It is important to ensure that a good hypothesis can survive a short lack of measurement
evidence. A “tunneling” effect is therefore needed to avoid killing all particles without
measurement data in one iteration [38]. In the resampling the probability of a particle
to survive depends on the weight of the particle. This weight is proportional to the
likelihood function, and will thus for the likelihood functions in Chapter 9 be zero if no
measurements support this particle. Thus it is chosen to also use a uniform component,
and let βresample · Np particles be randomly selected.
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After the presentation of the general particle framework and the common components for the
three particle filters the three remaining sections of this chapter present the two individual and
the combined particle filter.

10.2 Foreground based Particle Filter

In this section the foreground based particle filter will be designed based on the approach in
Figure 10.1 and the foreground likelihood function developed in Chapter 9. From the chapter
introduction three points where listed to be designed for each particle filter:

Dimensionality of the state space: As mentioned the output of the tracker is a 2D posi-
tion of the person on the floor-plane. In additional the foreground likelihood function
introduced α that describes the target size. The state vector will thus be: x = [x, y, α]T.

Proposal distribution: This is designed in Section 10.2.1.

Weights: Updating of the particle weights is done using Equation (10.1) inserting the state
evolution model developed in Section 10.1.1, the foreground likelihood function from Sec-
tion 9.1 and the foreground proposal distribution.

10.2.1 Foreground Proposal Distribution

As described in Section 8.3, the optimal proposal distribution is based on the state evolution
model and the measurement data. However, in practice it is often not possible to include all
measurement data and simplifications needs to be made. The standard SIR approach handles
this by assuming that the proposal distribution is distributed like the state evolution model (cf.
Section 8.3). However, in some cases a better approximation of the optimal proposal distribution
(cf. Equation (8.12) on page 64) can be advantageous. This is the case if the track get locked
or is lost for a short period, e.g. the track can be locked on a shadow or the person can pass by
a spot where he cannot be separated from the background. Also sometimes a better proposal
distribution can guide the particles better and fewer particles are required for tracking.

Such an approximation of the optimal proposal distribution is e.g. used by Blake et. al. [64]
for their motion modality based on absolute frame subtraction. They use a combination of the
evolution model and measurement data. The latter is introduced by evaluating the likelihood
function on a regular grid spanned on a subset of the state space. The proposal distribution is
then constructed as a sum of the state evolution model and motion likelihood on some grid points
symmetrically spread in the room at a resolution depending on the available computational
resources. In the beginning of each iteration the likelihood is evaluated on these grid points,
and all grid points with a likelihood value larger then a predefined threshold are selected. A
Gaussian distribution is then centred on each of the points phigh and added to the proposal
distribution. The equation is:

π(xk|xk−1, zk) = βRW · N (xk|xk−1,Σ) +
1 − βRW

Nhigh

Nhigh
∑

i=1

N (xk|phigh,i,Σ) (10.4)
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where:
βRW is a constant determining the ratio between the evolution model (a
random walk) and the grid points, and
Nhigh is the number of grid points that have a likelihood that exceeds the
predefined threshold.

This way of constructing the proposal distribution has the advantage that the tracker can always
recover as the proposal distribution can guide the particles to places with motion. This comes at
the cost of evaluating the grid points, but the requisite number of particles needed will also be
reduced as each particle can search most of the state space. In our case, however, the particles
cannot jump to an arbitrary location in the state. In order not to make all targets jump to
the person with the largest likelihood value it is chosen to only allow the particles to jump to
an area around the current location (cf. Section 10.1.1). Thus a grid inside this area will be
used. With this limitation a proposal distribution that supports jumps inside the area can be
made. To decrease the computational complexity and focus on the most important dimensions,
the grid will only be spanned according to the position, leaving the α unchanged. As the grid
points are located around the target position, all grid points are valid new state positions and
there are no need to threshold to get rid of weak grid points. Thus it is decided to give each
grid point positions pi a probability depending on the likelihood value at the grid point:

πFG(xk|xk−1, zk) = βRW · N (xk|xk−1,Σ)

+
1 − βRW

∑Ngrid

i=1 LFG(pi, αk−1)

Ngrid
∑

i=1

LFG(pi, αk−1)N (xk, yk|pi, (σx, σy)) (10.5)

where:
Ngrid is the total number of grid points and
LFG(.) is the foreground likelihood function defined in Section 9.1.

The number of grid points Ngrid is chosen to be odd in order to have a grid point on the location
of the old particle state. In Figure 10.2 a one dimensional example of the proposal distribution
is shown with three grid points.

10.3 Feature Point based Particle Filter

As for the foreground based particle filter the feature point likelihood function is designed in
Chapter 9. From the chapter introduction Section 10.1 three points where listed to be decided
up on in the particle filter design:

Dimensionality of the state space: As previously mentioned, the output of the tracker is a
2D position of the person on the floor-plane. No additional dimensions was introduced in
the feature point likelihood function, thus the state vector is: x = [x, y]T.

Proposal distribution: This is designed in Section 10.3.1.

Weights: Updating of the particle weights is done using Equation (10.1) using the state evo-
lution model developed in Section 10.1.1, the feature point likelihood function designed in
Chapter 9 and the feature point proposal distribution.
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Figure 10.2: A one dimentional example of the foreground proposal distribution with three grid points.
The likelihood value at the grid point located at -2,0,2 are from left: 8, 3 and 1. The Proposal distribution
is a sum of the three Gaussian located at grid points and the state evolution model.

10.3.1 Proposal distribution

For the foreground particle filter proposal distribution the standard evolution model based ap-
proach was supported by measurement data. This was done mainly to guide the particles better
after possible lost tracks. For the feature points, however, new points cannot appear on the
person if the track is lost, as new feature points are initialised inside the target box (cf. Sec-
tion 6.3). Thus an advanced proposal distribution will have very little impact on this matter
and the standard SIR approach described in Chapter 8 is chosen.

10.4 Combined Particle Filter

In this section the combined state estimator is designed by fusing the foreground and feature
point modalities. Two ways of combining different modalities are layered sampling and combined
likelihood [8, 64]. The idea of combined likelihood is to compose a joined likelihood function
and use this as the foundation of a combined particle filter, e.g.:

Lcomb(x) = f
(

LFG(x), LFP(x)
)

= c · LFG(x) + (1 − c) · LFP(x) (10.6)

where c is a weighting constant.

The idea of layered sampling is to cascade two particle filters with resampling in between. If the
state space can be divided into independent subspaces so that each dimension in the original
space is searched in only one subspace, this is also known as partitioned sampling [57, 64].
In partitioned sampling each subspace can be searched independent of the others. Since the
dimensionality of all subspaces are lower that that of the original space, the number of particles
can be reduced significantly while providing the same tracking performance.

For our system, however, it is not possible to make two independent subspaces because both
modalities describe the position. However, only the foreground modality uses the size α which
does allow layered sampling to provide some improvement. In this case with correlated subspaces
the sequence of the two modalities is important for the precision of the tracker. The first modality
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10.4. COMBINED PARTICLE FILTER

can be used to guide the particles in the right direction, as areas with high likelihood from the
first modality will have a more particles after resampling than areas with a low likelihood. This
means that the main effort on the second modality can be used to increase the precision in the
area where the person is most likely to be located. The precision of the foreground modality
is higher than the precision of the feature point modality, as foreground is most likely to be
present at the position of person while feature points are present wherever they are initialised
inside the 2D foreground mask (cf. Section 6.3). This combined with the higher dimensionality
of the foreground likelihood means that the foreground modality must come last in a layered
sampling approach.

So even though the modalities both describes the position, layered sampling does have some ad-
vantages compared to a joined likelihood. Here, the following the two candidates are compared:

• Layered sampling:

– Reduces the needed number of particles as the first layer (of reduced dimensionality)
can guide the second.

– Updating according to the most precise modality last ensures the same precision as
the most precise modality in the situations where this is present.

• Joined likelihood:

– A smart combination can ensure that the most reliable likelihood function is weighted
most, e.g. use foreground when targets are perfectly separable and feature points
otherwise.

– The likelihood value of the modalities must have the same order of magnitude, e.g.
by using normalised likelihood values.

A good combined likelihood function depend on the ability to combine inputs from the different
modalities. Equally good measurements from the modalities must give a comparable likelihood
value. It is often difficult to design good normalised likelihood functions, however, and as
documented in Chapter 9 this has not been attempted for our system. Thus a good combination
of the modalities might be tricky. Although a combined likelihood function has a good potential
it might require much work to make the behaviour similar in different video recordings as no
good way of normalisation the likelihood functions were discovered in Chapter 9. Because of the
problems with the combined likelihood together with the effectiveness of the layered sampling
approach, the latter is chosen. This means that the combined particle filter will be a cascade
of the two individual particle filters as shown in Figure 10.3. After each of the two elements in
the cascade, resampling is performed as in [64] in order to utilise the first modality to guide the
next.

All parameters used in the particle filter are shown in Table 9.1 along with their default setting.
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Figure 10.3: Flowchart of the combined tracker designed using layered sampling.

Parameter Symbol Value

Variance of the dynamics (σx, σy, σα) (1.5, 1.5, 0.3)
Grid step size NgridStep 2
Number of grid points Ngrid = NgridWidth × NgridWidth 3 × 3
Area of the uniform part of the
state evolution model

- 7 × 7

Number of particles Np 50
Ratio of the particles to choose
randomly when resampling

βresample 0.3

Ratio of the influence of the grid in
πFG(xk|xk−1, zk)

βu 0.5

Table 10.1: Parameters used by the particle filters. All distances are relative to the voxel size which has
been chosen to 5 cm, cf. Section 5.1.
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Chapter 11

Software Design

This chapter documents the design of the C++ software framework that has been developed for
the implementation of the tracking algorithms designed in the previous parts of the report. The
framework is designed to run in real-time and to support the documentation of the project.

As the algorithms needed for tracking and the large amount of video data that is used by the
system can be very heavy to handle in real-time by a standard single core CPU, the framework
is designed with parallelism in mind. Apart from running in real-time, additional requirements
exist. Firstly, the framework must be configurable in order to ease the development during the
project, i.e. it must be possible to select video input, and modify parameters of algorithms etc.
without recompilation. Secondly, the framework must support displaying intermediate and final
results for documentation and debugging purposes i.e. a 3D view of the estimated foreground.

The algorithms must also be able to run sequentially to make it possible to measure the time
consumption of the individual algorithms. The basic structure and central elements of the
program are described in Section 11.1. In Section 11.2 the additional threads needed for a
parallel execution of the algorithms are introduced, and in Chapter 12 a network distributed
version of the system is designed.

11.1 Central Classes

The tracking algorithms can be divided into two groups: The algorithms that is to be executed
per camera which can be run in parallel, and the algorithms that combine the information
from the cameras. Additionally, the framework must be able to display both intermediate and
final results of the tracking algorithms. These three tasks are handled by the three classes
PerCam, Sequential, and Renderer respectively, which are illustrated in Figure 11.1. In order
to synchronise the algorithms in PerCam and Sequential, they are called from the Application
class. Renderer is running in parallel with the tracking algorithms by having Renderer execute
in a separate thread while Application is executed in the main thread. The results in smooth
GUI rendering and window resizing without delaying the tracking algorithms.

The implementation of the “active” class Renderer and later on the parallel executing of PerCam,
an abstract class Runnable is made. The Runnable class has a pure virtual run function, which is
executed in a new separate thread when an instance of a derived class is created. The inheritance
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from Runnable is shown in the class diagram in Figure 11.1.

Figure 11.1: Class diagram showing the four main classes Application, PerCam, Sequential, and Ren-
derer (marked in bold) along with the abstract class Runnable and Data/Manager/ProtectedData which
implement buffering of the intermediate tracking results.

As can be seen in Figure 11.1, two classes are introduced in addition to the previously men-
tioned: DataManager and ProtectedData. They are necessary to give Renderer access to the
intermediate results from the tracking algorithms. ProtectedData is introduced to hold all data
to be shared and thus contains intermediate results from the tracking along with the estimated
target positions. Some of the results, which are calculated by PerCam and Sequential, depend
on the output from last frame. This means that two ProtectedData instance is required, which
can be switched between all frames. Renderer also need access to an instance of ProtectedData,
however, and to avoid delaying the tracking algorithms when they need to switch frames, 3
instances of ProtectedData are created. The one used by Renderer is called the front buffer,
the one used to store results by the algorithms is called the back buffer, and the last one is an
unused, free buffer. The algorithms that require results from the old frame can access these in
the front buffer. The buffering of the ProtectedData is implemented by the class DataManager,
and whenever tracking has completed for a particular frame and all results are stored in the
back buffer, Application requests DataManager to swap the buffers. If Renderer is not actively
using the front buffer, the front and back buffers are switched. Otherwise, the back buffer is
switched with the free buffer.

Apart from the classes in Figure 11.1, two utility components are worth mentioning. These
are the class Configuration and the function onKey. The onKey function receives keyboard
commands, e.g. to pause the video and rotate the 3D view of the room. The four main classes
from Figure 11.1 together with Configuration are described in the following:

Configuration: The Configuration class keeps track of all configuration settings, and thus
serves to make the program easy to reconfigure. It is a singleton, so the settings can be
retrieved (and some settings changed) from all other parts of the program. When the
program is launched, one or more configuration file(s) can be specified and loaded by this
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class. Although the program can execute without configuration files, they enable the user
to override most of the default hard-coded configuration settings. Three main categories
of parameters that can be adjusted in the configuration file:

• Video source: A path to a web-cam, a video file or to a folder of images.

• Algorithm parameters: Most parameters of the tracking algorithms can be speci-
fied to tune performance.

• Intermediate Displays: It can be specified if each of the intermediate results are
to displayed.

Application: This class is responsible for executing the tracking algorithms. After the class
is created it runs the main thread. The thread runs in a loop which first calls PerCam
followed by a call to Sequential to run the tracking algorithms and ends by requesting
DataManager to swap the ProtectedData buffers.

PerCam: This class contains all the algorithms that are to be run per camera, as illustrated in
Figure 11.2. In the beginning of each iteration PerCam is called by Application to execute
the algorithms. All results are stored in the back buffer.

The algorithms must be able to run both sequentially to make time measurements of the
different algorithms possible and also in parallel to decrease the execution time. Therefore
the algorithms in PerCam is designed so that they can run for all the cameras or for a
specific camera.

Figure 11.2: Overview of the algorithms implemented in the class PerCam.

Sequential: This class contains all the algorithms that cannot be parrallelised for each camera,
as illustrated in Figure 11.3. In each iteration Application executes these algorithms and,
as for the algorithms in PerCam, all results are stored in the back buffer.

Figure 11.3: Overview of the algorithms implemented in the class Sequential.

Renderer: The purpose of this class is to render everything of interest on the display. This
can include the videos, the 3D view, the reasoning results, and any debugging displays
that have been enabled. It has a member function onDisplay which performs all rendering
of a single frame, and this function is called whenever no other events are pending in the
thread, which on a sufficiently fast computer means it runs with the frame rate of the
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graphics card. If no new results are to be displayed and the windows have not been resized
Renderer will just sleep a few milliseconds.

11.2 Parallel Implementation

The software framework for sequential execution of the algorithms was designed to allow easy
parallelisation of the algorithms that are to be performed per camera. More parallelisation are
indeed possible, e.g. the first algorithms in Sequential that combines 2D foreground into 3D
is independent of the feature point tracking. Also feature point tracking is independent of the
foreground estimator, except initialisation of new feature points. However, 97% of the time is
spend on the algorithms in PerCam (cf. time test carried out in Chapter 13) and it is therefore
chosen to parallelise only these algorithms for simplicity. The algorithms in PerCam can easily
be split into five parallel tasks which is more than enough to utilise a dual core CPU. In this
section the additional active class PerCamRunner is introduced. This class utilises the abstract
class Runnable as shown in Figure 11.4.

Figure 11.4: The class diagram from Figure 11.1 extended with the active class PerCamRunner (marked
in bold).

When the algorithms in the PerCam class is called, it is specified which cameras the algorithms
are to be executed on, as described in Section 11.1. Thus, Application initialises an instance
of PerCamRunner with a camera number specified. The internal thread in PerCamRunner will
wait for signal to start executing the algorithms in PerCam on the current frame, and will signal
to Application when the algorithms has finished. Therefore five instances of the PerCamRunner
class can use the same PerCam class to run the algorithms in parallel.

The parallelisation can be enabled/disabled in the configuration file. The source code of the
tracker prototype is found on the attached CD-ROM together with build instructions and de-
pendencies are listed in Appendix C.
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Chapter 12

Network Distribution

The tracking system is intended to be able to run in real-time, cf. Chapter 3) which is not
possible on a single computer caused by the computational complexity of the algorithms. Instant
we have access to six computers at AIT [1] where five of them are connected to a USB-camera as
discussed in Section 1.1.1. In this chapter a distributed version of the program from Chapter 11
is designed to run live at this setup.

12.1 Network Topologies and Protocol

A lot of different network distribution topologies exists. In our system, the information extracted
from each camera needs to be combined in each iteration on one computer. For instance, the
2D foreground from all cameras must be combined when estimating a complete 3D foreground.
Thus we need a central computer to control the flow. For this, two topologies exist: “Master-
Slave” and “Divide and Conquer”. The latter is preferred if the tasks that are to be carried
out can be divide into subtasks that again can be split. In this case, however, the obvious way
to go is to have the algorithms performed at the computer that are connected to the camera if
possible. This will eliminate the need for sending the colour images between different computers.
Thus the “Master-Slave” approach is chosen, where the master is functioning as server and the
slaves are functioning as clients.

The computers at AIT are connected with Ethernet through a 1 GBit switch. There are two
commonly used protocols for this kind of connection, namely User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP). For our system, data loss is not acceptable and the
overhead implemented in TCP to ensure that all data arrives exactly as intended is preferred
over the faster but unreliable UDP. This also means that the communication in the distributed
system will be connection oriented.

12.2 Network Interface

When distributing the system between multiple computers, an important design decision is which
parts of the computation to perform on the slaves and which parts to perform on the master.
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For our system, the algorithms in the class PerCam (cf. Chapter 11) can easily be distributed
since they are already designed to be able to run in parallel. This is therefore chosen.

Depending on the amount of data to be sent from the slaves to the master, some kind of data
compression might be advantageous. The input to the PerCam class is the projected targets and
the output is a floating point distance map and some feature points, as indicated in Figure 11.2
on page 87. This means that distance maps and some feature points must be send to the master
while the projected targets must be send to the slaves. The total time of sending the raw data
from a slave to the master is:

tslave-master =
sdistMap · npixels + sFP · nFP

BW
(12.1)

where:
sdistMap is the size of the data type used to store the distance map,
npixels is the image size of the distance map, and
nFP is the number of feature point,
sFP is the memory size of one feature point,
BW is the bandwidth of the Ethernet connection.

The distance maps are of the same resolution as the video frames. For the development data
set, the image resolution is 1600 × 1200 for the four corner cameras and 1024 × 768 for the top
camera (cf. Section 1.1) and these are scaled down by a factor of 4 as described in Chapter 4.
On the used platform the floating point numbers used for the distance map are stored in 4 bytes
(sdistMap=4) and the feature points are stored in two integers of 4 bytes each (sFP = 2 · 4 = 8).
The number of feature points varies from frame to frame, an a worst case value cannot generally
be chosen. Here, 30 feature points per per camera per person and 10 persons is assumed. The
network speed is 1 GBit/s = 1/8 GByte/s, if discarding network delay and network overload
the time of sending the data from a slave with the two different resolutions are:

When using are a network connection of 1 GBit/s = 1/8 GByte/s the theoretically time of
sending the data from a slave with the two different resolutions are:

tcorner-master =
4 · 1600

4 · 1200
4 + 8 · 10 · 30

1/8 · 109
= 3.84 ms + 19.2 µs = 3.86 ms (12.2)

ttop-master =
4 · 1024

4 · 768
4 + 8 · 10 · 30

1/8 · 109
= 1.57 ms + 19.2 µs = 1.59 ms (12.3)

This times must be expected to be a bit higher i practice as, network delay and network overload.

If all slaves are sending the data at the same time, the total time of receiving the data will be:

tslaves-master = 4 · tcorner-master + ttop-master

= 4 · 3.86 ms + 1.59 ms = 17.02 ms (12.4)

However the slaves will in practice never finish the algorithms at the exact same time and thus
not start sending the data at the same time. There are multiple ways to reduce this time
consumption, e.g. reduce the resolution of the distance maps by using 2 bytes per pixel instead
of 4 or calculate the distance map on the master and send the binary foreground mask from the
slaves instead. Both of these solutions will of course take up a bit more time on the master,
either because of the distance transformation or because of required decompression. However,
the 17 ms out of a total time of 1/15 = 66.7 ms is not considered a problem and this interface
will be kept for simplicity. Therefore, the algorithms in PerCam are executed on slaves and the
algorithms in Sequential are executed on the master for the distributed system.
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12.3 Program Flow

With the network interfaces in place, the program flow can be designed. First the flow at the
slaves will be discussed followed by the flow on the master.

12.3.1 Slaves

The algorithms to be executed on the slaves are the ones included in the PerCam class, shown in
Figure 11.2. When the algorithms have finished, the distance maps and feature points are ready
to be send to the master. To utilise the slaves as much as possible, the slaves could start the
next iteration while sending the results to the master. However, some kind of synchronisation
between the master and slaves is needed. Also, both the 2D foreground detection and the feature
point tracking need feedback from the person tracker. The slaves therefore need to wait for the
projected targets from the master. The two first functions to be performed on the slaves (loading
of images and downscaling of the images) do, however, not depend on the algorithms performed
on the master. Therefore, the slaves can perform these two tasks first, grupoed into the function
prepareFrames. When the projected targets have been received from the master, the remaining
algorithms can be executed, grouped into processFrames.

One can argue that the loading of the next frame should wait for signal from the master in order
to be synchronised. However, the system is designed to run in real-time, which for the test setup
at AIT is 15 fps. With this frame rate, one synchronisation per iteration is sufficient, as the
speed difference between the slaves is small compared to the movement of the persons between
two frames. The flow on the slaves after TCP connections have been established to the master
is shown as pseudo-code in Figure 12.1.

• Wait for start signal from the master.

• While not exit

– Call the function prepareFrames of the class PerCam.

– Wait for projected targets from the master.

– Call the function processFrames of the class PerCam.

– Start sending the distance map and the feature points

to the master.

Figure 12.1: The program flow on the slaves.

12.3.2 Master

The master receives the distance maps and feature points from the slaves and stores these in the
back buffer instance of the ProtectedData class (see Section 11.1), and the algorithms to be run
by the master is the algorithms of the Sequential class, illustrated in Figure 11.3. After finishing
this, the master must send the projected targets to the slaves so that they can continue on the
next iteration. The program flow on the master is summed up as pseudo-code in Figure 12.2.
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• Send start signal to the slaves.

• While not exit

– Send the projected targets to the slaves so that they

can go on with the next iteration.

– Wait for the distance maps and feature points from the

slaves.

– Call the algorithms of the class Sequential.

Figure 12.2: The program flow on the master.

12.4 Implementation

To ease the implementation and at the same time make it possible to send/receive data at the
same time as running the algorithms, a separate thread is created on both sides per connection
from the master to the slaves. These extra threads are implemented as active classes, Mas-
terConnectionHandler and SlaveConnectionHandler in the same manner as the Renderer class
described in Chapter 11. A class diagram of both the master and slaves is shown in Figure 12.3.
The two classes Renderer and ProtectedData are the same as introduced in Chapter 11 but of
course not all functions are used by neither master nor slaves.

The master is implemented as a TCP server. When the program is started, it blocks waiting
for five slaves to connect and starts a separate thread with a socket for each connecting slave.
Initial data such as camera calibration parameters and various configuration parameters is shared
between the master and slaves. When all connections have been established, the master sends
a signal to the slaves indicating that they can start the algorithms. The master also sends an
empty list of projected targets to the slaves so they can start the first iteration. A sequence
diagram is shown in Figure 12.4.

12.5 Discussion

In this chapter the design of a distributed version of the full system implemented in Chapter 11
has been described. However, due to limited time for this project, some parts of this was not
actually implemented:

• No feedback of the projected targets is implemented, only a signal is sent from the master
to the slaves indicating when they can continue with the next iteration.

• The feature point tracker is not available and no feature points are sent from the slaves.

• Only the camera id and image resolution are sent as initial data. The rest of the configu-
ration parameters are manually specified in the configuration files for both the master and
the slaves before the system can be started.

This limited system has been tested to run live at 14 fps on the test setup at AIT, cf. Chapter 13.
The most important missing part of the tracking system, which is also the most time consuming
part that has not been included in the distributed system, is the feature point tracker. As
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Figure 12.3: Class diagram of the master and slaves with new classes introduced in the distributed
system marked in bold.

discussed in Section 11.2, this part is mostly independent of the other algorithms that runs per
camera, an can thus be parallelised since the benefit of this on a single dual-core computer will
be very limited. However, in the distributed system this could be advantageous. Also the feature
point tracking can run in parallel with sending of the distance maps to the master. This also
means that the master can begin executing the algorithms that do not depend on the feature
points, which is the combination of the distance maps and some of the target management
algorithms.
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Figure 12.4: Sequence diagram of the distributed system.



Part V

Evaluation



Contents

The developed system is in this part evaluated through various tests to provide the foundation
for a conclusion on the entire project in Chapter 15. In Chapter 13, the time consumption
of the system is measured and analysed with the purpose of real-time execution in mind. A
qualitative test of the systems ability to reason about the mobility and body posture of persons
in the scene is also presented. In Chapter 14, the systems ability to track multiple persons
is determined by testing on the standardised CLEAR 2007 data set. The performance of the
system using either foreground, feature points, or both for tracking is measured and compared to
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Chapter 13

Time Consumption and Reasoning
Tests

The purpose of this chapter is both to measure the computational requirements of the devel-
oped system and to determine whether real-time execution is possible, and to test the systems
performance for reasoning about mobility and body posture of the persons in the scene. As
described in Section 1.1.1, the development setup will be used to test the live performance of
the system distributed to 6 computers, 5 of these connected to cameras and one functioning as
master. Ideally, both the reasoning performance as well as the time consumption of the system
should be measured on standardised data sets to allow comparison with similar systems. How-
ever, reasoning and time consumption is not part of the CLEAR evaluation metrics, and papers
using the CLEAR data set does not generally publish the time consumption of their algorithm.
Therefore it is chosen only to measure both reasoning performance and time consumption on a
single set of videos; the development data set described in Section 1.1.1. The time consumption
measurements are presented in Section 13.1 and 13.2 and the reasoning performance is evaluated
in Section 13.3.

The time consumption with four different settings of the system is tested:

• Non-optimised: The non-optimised setting uses full resolution images and the non-
hierarchical 3D foreground estimation.

• Optimised: The optimized setting uses downscales the images by a factor of 4 for both
foreground detection and feature points, and uses the hierarchical 3D foreground estima-
tion algorithm designed in Chapter 5 with a 4 level octree.

• Parallel: The parallel setting uses the same algorithm as the optimised setting, but
performs a number of the calculations in parallel to take full advantage of the dual core
CPU. The parallelisation is described in Section 11.2

• Distributed: The distributed system described in Chapter 12 running on live video.

The performance with the first three settings can be compared directly since the same hardware
and the same recording is used. Additionally, the quality with the optimised/non-optimised
settings are almost identical, as described in Section 4.3.1, 5.3.1 and 6.3.3, while the parallelisa-
tion does not affect the algorithms at all. The performance with the distributed setting cannot
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be compared directly with the other, however, for a number of reasons including: Only the
foreground only tracker is used, other computers perform the test and live video is used with a
different number of persons than in the recorded data set.

13.1 Single Computer Tests

All single computer tests was carried out on a 2.2 GHz dual-core computer with 5 GB of
memory. Figure 13.1 shows the time consumption for the optimised and non-optimised settings
(the precise time comsumption are given in the Appendix in Table D.1). The optimisation
reduced the total time from 4.01 sec to 535 ms, primarily by reducing the image resolution
and thus the time required both to detect foreground in 2D and to track feature points. Also
the time to estimate 3D foreground is reduced significantly, however, by using the hierarchical
approach designed in Chapter 5.
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(a) Absolute time consumption with different
settings.
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(c) Relative time consumption with the optimised setting.

Figure 13.1: Time consumption using the non-optimised and optimised settings. The total time is
reduced from 4.01 sec to 535 ms by applying the optimisations. Most of the reduction is achieved by
reducing the image resolution and thus the time required both to detect foreground in 2D and to track
feature points.

With the parallel setting, it is not possible to measure the time consumption of the different
parts of the system in a meaningful way. Instead, the computation speed for the entire system
with the three different settings has been measured. The results are illustrated in Figure 13.2.
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The time consumption has been reduced to 372 ms per frame compared to 535 ms with the
optimised sequential setting. This corresponds to a frame rate of 2.69 fps.
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Figure 13.2: Computation speed for the non-optimised, optimised and parallel implementations.

13.1.1 Discussion

With the optimised setting, the single computer tests show that most of the time consumption is
devoted to loading of images. As shown in Figure 13.1c, the loading constitutes 55% of the total
time consumption with the optimised sequential setting. Since this time is used to load from
the hard drive, it will not have changed significantly in the parallel system. On a live system,
however, use of the hard drive is not required, and capturing of images can be expected to run
significantly faster.

Loading, downscaling images, detecting 2D foreground, and tracking feature points together
constitute 96% of the time consumption with the optimised sequential setting, as illustrated in
Figure 13.1c. All of these parts is well suited for distribution to multiple computers, as described
in Chapter 12. Therefore, distribution can also be expected to speed up the computation speed
significantly.

13.2 Distribution Test

The distributed test was carried out on the system described in Section 1.1.1 using live video
for 33 minutes. All computers in the setup are dual-core and running at 3.0 GHz, and the frame
rate achieved was 14.03 fps. The time consumption for the different parts of the algorithm run
on the distributed system is is illustrated in Figure 13.3 for the master and slaves, respectively.
The exact measured time consumptions are given in the appendices in Table D.2.

13.2.1 Discussion

In Figure 13.3a, the time consumption for each of the slaves is shown, and especially the first and
the last slave behaves differently than the rest. Both of these are older model computers than

99



CHAPTER 13. TIME CONSUMPTION AND REASONING TESTS

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Capture frames

Downscale

Detect 2D foreground

Distance transform

Wait for master

(a) Slaves

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Capture frames

Downscale

Detect 2D foreground

Distance transform

Wait for master

(b) Slave average

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Wait for slaves

Estimate 3D foreground

Track

(c) Master

Figure 13.3: Relative time consumptions for the distributed system. The total time consumption for
one cycle took in average 71.3 ms, but has here been normalised to 1. Note that data transfer is handled
in parallel threads, and is therefore included in the waiting times here.

the rest, and even though their CPU run at the same clock frequency they are slightly slower.
The first slave was connected to the top camera. This camera has a lower resolution and this
causes the computation time for this slave to be smaller for the calculation tasks (downscaling,
detecting 2D foreground, and performing distance transform). Also, the driver used for the top
camera was different, resulting in a larger time necessary to capture new images.

As described in Section 1.1.1, it is possible to record from the cameras in the test setup at a speed
of 15 fps. Therefore, with the achieved frame rate of approximately 14 fps, it is not immediately
clear whether capturing of new images or the bandwidth of the network is the major bottleneck
in the system. Figure 13.3b shows that the master uses almost all of its time waiting for the
slaves, and Figure 13.3c shows that the slaves use most of their time waiting for the master.
Capturing of images only takes up about 12% of the time consumption for the slaves in average.
This seems to indicate that the network is the limiting factor in the system.

Figure 13.3a shows that the first computer uses about 35% for capturing images, however, which
could also be a limiting factor. According to the calculations in Equation (12.2) on page 90
concerning data transfer from the slaves to the master, the time required to send data from each
slave (except the top camera slave) will be at least 3.86 ms. This means that the total time
required to send the data from all four corner camera slaves is 15.36 ms, corresponding to 21.7%
of the total measured time consumption of 71.3 ms. By comparison of the different slaves in
Figure 13.3a it can be seen that the time from the first slave starts sending until the top camera
slave starts sending is approximately 17% of the total time. This means that the corner slaves
have not finished the transfer when the top camera slave begins, and the long time required to
capture the images does therefore not delay the total time consumption. It must therefore be
concluded that the network is indeed the bottleneck in the system.
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The feature point part of the combined tracking algorithm was not implemented in the dis-
tributed system due to time constraints of this project. As described in Section 12.5, the feature
point tracking can be carried out on the slaves while the distance maps are send. For the single
computer sequential implementation, the feature point tracking took up 90 ms in total, corre-
sponding to 18 ms per camera. The computers used in the distributed setup are faster than the
one used for the single computer tests, and thus the time consumption can be expected to be
lower. Since is takes at least 17 ms to send the distance maps (cf. Equation (12.4) on page 12.4),
including the feature point tracking cannot be expected to increase the total time consumption
significantly. Therefore it is concluded that real-time execution of the entire combined tracking
system should be possible.

13.3 Qualitative Reasoning Tests

As described in the problem formulation, Chapter 3, one purpose of our system is to determine
the mobility of persons in the scene and to detect if a person falls. Due to the absence of
standardised test material to test these abilities, the standard development data set has been
used to perform a qualitative test instead. In this, up to four people move around in the scene,
and at 3 occasions in total does a person fall while a person sits down at 6 occasions. All of
these events are detected correctly and there are no standing/sitting persons that are falsely
detected as fallen. When a person kneels or bows he is occasionally classified as sitting but not
as fallen.

The mobility detection is able to correctly classify all persons that are completely immobile
as stationary and all people that are walking as mobile. People that are not walking but
are active in the same location (e.g. by moving objects around) are sometimes classified as
stationary and sometimes as mobile. An example of both mobility estimation and fall detection
is shown in Figure 13.4, and a video documenting the reasoning performance of the system on
the development data set is provided on the CD attached to this report.

(a) 3D foreground with detected targets and
reasoning results. Targets not shown as “im-
mobile” have been classified as mobile.

(b) Frame from corner camera with the same
reasoning information as in (a).

Figure 13.4: Example of the fall detection from the development data set. A video documenting the
reasoning performance of the system on the entire development data set is provided on the attached CD.
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Chapter 14

CLEAR Evaluation

As described in Chapter 1, the developed system is to be tested on the CLEAR 2007 data set [19]
to be able to compare its performance with similar systems. The CLEAR data set contains
40 video recordings of meeting rooms equipped with 5 cameras. The videos are recorded at
five different locations with 8 recordings of 5 minutes from each location (cf. Section 1.1). The
performance of the tracking systems running on these recordings are evaluated by comparing
with hand annotated ground truth. The scores are calculated according to the official CLEAR
evaluation metric, which is described in Section 1.2. The test results for our tracker system is
presented in Section 14.1, and a comparison with the participating systems from the CLEAR
2007 workshop is given in Section 14.2. The exact results for each video sequence are shown in
Appendix D.

14.1 Test Results

In Table 14.1 the CLEAR test results of the three trackers are shown; the foreground only, the
feature point only and the combined tracker. The displayed values are averages over all the 40
recordings in the CLEAR data set. The parameters of our system have been adjusted identically
for all recordings as described in the report except for the recordings from AIT. The camera
setup is different for these recordings, in the sense that much of the room is only visible by
2-3 cameras. Therefore, all voxels in scene that can be seen by at least two cameras have been
used for the 3D foreground repressentation here, compared to four required cameras for all other
recordings.

A comparison of the foreground only and feature point only trackers reveals that the MOTP is
much better for the foreground tracker than the feature point tracker, as was to be expected.
On the other hand, the MOTA score is better for the feature point tracker.

Even though the MOTA score for the feature point tracker is better than for the foreground
tracker, Table 14.1 shows that it is not better in every sub-score. The foreground tracker has a
miss rate that is more than twice as high as the feature point tracker, while the feature point
tracker has a much larger amount of false positives than the foreground tracker.

Table 14.1 also includes the results of the combined tracker. The MOTA value is increased
from 29% and 37% for the individual trackers to 50% for the combined tracker. The combined
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Tracker
type

MOTP
(mm)

Miss rate
(%)

False pos.
rate (%)

Mismatches
MOTA

(%)

Foreground 137 65.42 4.70 247 29.30
Feature points 215 30.76 31.09 422 37.16
Combined 145 43.87 5.57 334 49.80

Table 14.1: CLEAR test results for the three trackers.

tracker does not outperform the individual trackers on all sub-scores, but has almost as low a
false positive rate as the foreground tracker while the miss rate is approximately the average of
the two individual trackers. The MOTP value is only slightly lower for the combined tracker
than for the foreground tracker. This is caused by the fact that foreground is not always present.
When no foreground is present, the foreground tracker simply fails, while the combined tracker
might be able to keep tracking correctly, although with a lower precision.

14.1.1 Discussion

A number of aspects are worth pointing out in the scores, first in the comparison between the
different tracking systems:

Precision of trackers: The combined tracker achieved almost as good MOTP as the best of
the individual trackers. That the foreground tracker performed slightly better is not a real
problem, since a match with low precision is much to be preferred compared to a miss.

Difference between individual trackers: Even though the feature point tracker got a higher
MOTA score than the foreground tracker, it is an important point that these scores com-
pletely different sub-scores, both seen per parameter and per video. This is a major
reason that these modalities was selected in the first place (cf. Section 2.3). The fore-
ground tracker can easily loose track of a person if he remains immobile for a period, and
this gives a high miss rate. The feature point tracker on the other hand is able to keep
track of immobile targets. If a stationary scene object by mistake is tracked by the feature
point tracker, however, it will result in a high false positive rate.

A closer look at the performance of the combined tracker has revealed three general problems:

Modality infighting: The miss rate of the combined tracker was approximately the average
of the two individual trackers, which is of course higher than what should be expected.
A look through the tracking performance expose the reason. A problem occurs when a
person is faded into the background but still is well marked with feature points. In this
case the feature point tracker has no problem keeping the track but the combined tracker
tends to fail if a person is mobile nearby. What happens is that the foreground part of the
tracker tries to move the target to the area with foreground, while the feature point part
tries to keep the target at the originally tracked person. The target is first moved so that
it is located between the two persons. This fight between the different parts are always
lost by the feature point part because feature points far away from the target are erased.
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Initialisation problems: The results that the individual trackers scored below 40% in the
MOTA is not ostentatious. In Appendix D the results from the CLEAR data set is shown
per test video. It shows that especially on some of the test videos from UKA both trackers
have huge problems. In some of the UKA videos all persons are sitting and remaining very
immobile during the entire video. Since the system is designed to only initialise targets
in the first frame or on persons that are standing, no targets are initialised after the first
frame. This means that the system relies very much on the frames of the background
provided with the video to separate the persons from the background in the first frame. In
some of the videos, the people are sitting very close and pens and papers have also been
moved around while the lightning conditions has changed between the background frames
and the first frame. This causes the initialisation algorithm (designed in Section 7.2) to
be unable to separate the persons, and therefore too few targets are initialised. The lack
of movement leaves very little chance to initialise new feature points even if the target is
tracked, and therefore all targets that are initialised, are lost after some time.

Few feature points: Another thing that is obvious when looking through the tracking results
of the feature point tracker is that in scenes with many persons, only feature points from a
few cameras are present. This is caused by the design decision that feature points are only
initialised in a particular camera if the person from that point of view does not overlap
with another persons.

To sum up on the performance of the combined tracker, each parameter it almost as good as
for each of the two individual trackers except the miss rate which is close to the average of the
two. Overall, the combined tracker is much better than the individual trackers and thus fulfils
the hypothesis in Chapter 3.

14.2 Comparison with Previous Systems

To determine how well the tracker performs, the results are compared with the participants of
the CLEAR 2007 workshop. Table 14.2 presents the result of the combined foreground and
feature point tracker together with the 7 CLEAR 2007 systems. The precision of our tracker
is comparable to the other systems, as our tracker with regards to the MOTP value is placed
4’th of the 8 systems. Compared to the other systems, our tracker has a very low number of
mismatches and a low rate of false positives. However, a large miss rate causes the MOTA value
to be only 7’th. As described in Section 1.2 the mismatches do not have a big impact on the
score and the low false positive rate is not enough to compensate for the high miss rate.

Although the performance of our combined foreground and feature point tracker is significantly
better than the individual trackers, it can not keep up with most of the competing systems in
the CLEAR scenario where the persons are sitting down and remaining stationary most of the
time. The primary reason is that the persons tend to fade into the background after some time.
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System
MOTP
(mm)

Miss rate
(%)

False pos.
rate (%)

Mismatches
MOTA

(%)

AIT Prim. [46] 92 30.86 6.99 1139 59.66
AIT Cont. [46] 91 32.78 5.25 1103 59.56
FBK [52] 141 20.66 18.58 518 59.62
UKA Prim. [8] 155 15.09 14.50 378 69.58
UKA Cont. [8] 222 23.74 20.24 490 54.94
UPC Prim. [17] 168 27.74 40.19 720 30.49
UPC Cont. [17] 147 13.07 7.78 361 78.36
Proposed
system

145 43.87 5.57 334 49.80

Table 14.2: CLEAR test results for the 7 systems presented at the CLEAR 2007 workshop compared
with our proposed combined foreground and feature point tracker.



Chapter 15

Conclusion

In this project methods for tracking multiple people in multi-camera environments have been
examined, and a novel algorithm based on a combination of adaptive foreground estimation and
feature point tracking has been proposed. Tracking systems are relevant for many applications,
one of these being assistive living environments for elderly. The importance of this area is already
huge and it will only increase in the coming decades since the amount of elderly in the western
societies are going to increase significantly; in Denmark from 16% of the population in 2010 to
25% in 2042 [20]. With this application in mind, reasoning about mobility and body posture of
the tracked persons was also developed.

15.1 Methods

A general framework for tracking was presented in Chapter 7, and for this system it was chosen
to base tracking on particle filters. This is a discrete multi-hypothesis approach to Bayesian
filtering, and it natively supports the integration of more modalities. Much research has previ-
ously been done within particle filter tracking using both one or multiple modalities. For this
project, a novel approach based on adaptive foreground estimation and feature points was cho-
sen. Both techniques are well known: The adaptive foreground estimation is based on work by
Stauffer et. al. [71] and the feature point tracking based on the KLT-tracker [69]. It was argued
in Chapter 2 that they complement each other well, since foreground is present when a person
is moving while feature points can be tracked indefinitely when a person is stationary. Thus, it
was hypothesised that a tracker based on both will outperform a tracker based solely on one of
them.

The particle filter technique was presented in Chapter 8 and the particle filter used for this
project was designed in Chapter 10. The two modalities are combined using a layered sampling
approach, first introduced by Blake et. al. in 2000 [64]. The developed algorithm was imple-
mented in software as described in Chapter 11, and a distributed version was designed to allow
the program to run live. The distributed version is described in Chapter 12. It was only partly
implemented, however, so the distributed system tracks persons based only on foreground.
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15.2 Results

The tracking performance of the system was tested on a standardised data set from the CLEAR
2007 evaluation and workshop [19]. This data set contain 40 multi-camera recordings from 5
different locations. Ground truth exist for the entire data set and metrics have been defined
(described in Section 1.2), which allow comparison of different tracking systems, and it has been
used by several other previously developed systems [72].

The main result for our system was a Multiple Object Tracking Accuracy (MOTA) score of
49.80, cf. Chapter 14. To test the hypothesis that a tracker using both foreground and feature
points will outperform a tracker based solely on one of them, the system was also tested using
each individual modality. The hypothesis was accepted, since the individual trackers both scored
below 40.

The CLEAR data set does not show people falling and the CLEAR metrics does not measure
the speed of the algorithms. Therefore, a data set was created using a multi-camera setup at
the Athens Information Technology [1] with 0-4 people moving around and occasionally falling.
Using this, a qualitative test showed that our system could detect 3 of 3 falls without showing
any false positives, while also registering whenever each person moved or remained stationary.
The speed of the algorithm was measured in Chapter 13, and a frame rate of 2.69 fps was
achieved on a 2.2 GHz computer. Much time was spend simply on loading the images from
the hard drive, however, and the distributed system was able to run live at 14.03 fps using 6
computers with 3.0 GHz CPU’s. The distributed system does not include the feature point
tracking, but an analysis of the time consumption has shown that this should not reduce the
frame rate significantly. Thus, real-time performance was not achieved on a single computer but
is theoretically possible on a distributed setup.

15.3 Perspectives and Possible Improvements

Our foreground tracking system has been described in a paper entitled “Three-Dimensional
Adaptive Sensing of People in a Multi-Camera Setup”, which has recently been accepted for the
2010 EUSIPCO conference [28]. It is attached to this report as Appendix E (note that this is a
draft, and that the final version might include minor changes based on the reviews).

Our complete system currently scores 7’th of 8 when compared to the tracking systems partic-
ipating in the CLEAR 2007 workshop [72]. While this is not an impressive performance, we
believe that significant improvements are possible. Three major problems of the system are
described in Section 14.1.1, and each of these could be minimised or eliminated completely:

• Modality infights: When no foreground is present at a stationary person, the tracker
tends to jump to a nearby moving person. This could be avoided by balancing the fore-
ground and feature point parts better, e.g. by combining modularities in a combined
likelihood, as described in Section 10.4, Equation (10.6). Another possibility is to con-
sider the foreground part as unreliable and only let it affect the target little if no or little
foreground has been present for some time.

• Initialisation problems: To avoid initialising targets on moved objects such as chairs, an
object is required to be as tall as a standing person to cause initialisation. Only in the first
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frame is it accepted for targets to be initialised on lower objects. In some of the CLEAR
videos this causes persons which are sitting the entire videos to be missed completely. We
believe the initialisation procedure could be improved, either by fine tuning or by using
an additional modality such as face detection to detect stationary persons.

• Few feature points: When many persons are located close to each other they might
overlap from most of the cameras. To avoid initialising feature points on a wrong person,
no points are initialised in this situation. If no or very few points get initialised on a
stationary person, the tracker will fail when he fades into the background. A possible
improvement could be to instead initialise feature points in the part of each target that
do not overlap with other targets.

It is our goal to get an additional paper, describing the entire system, accepted in a recognised
journal. For this to succeed, the performance of the system must not be significantly worse than
the state-of-the-art in the field. Therefore, some or all of these improvements will be attempted.
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Finding Correspondences in Multiple View Geometry Environments. In International Con-
ference on Computational Science (2), pages 281–289, 2005.

[17] C. Canton-Ferrer, J. Salvador, J. R. Casas, and M. Pardàs. Multi-person Tracking Strategies
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Appendix A

Camera Calibration

Calibration of a fixed camera establishes a correspondence between its images and the surround-
ing world. It is highly relevant for this project, since images from multiple cameras need to be
compared to find foreground in 3D.

A camera can be described using two sets of parameters: Extrinsic and intrinsic parameters. The
extrinsic parameters describe a transformation from world coordinates to camera coordinates,
while the intrinsic parameters describe a transformation from camera coordinates to image
coordinates. The relationships are illustrated in Figure A.1.

Figure A.1: Intrinsic and extrinsic parameters.

For camera calibration in this project, the Camera Calibration Toolbox for Matlab has been
used [14] which is based on a paper by Heikkilä et. al. [34]. This toolbox uses the well-defined
structure of a 2D checkerboard to estimate all camera parameters from a number of images. For
using the calibration parameters to transform 3D points in the world coordinate system into 2D
points in the camera image planes, we have made our own C++ implementation that follows
the approach of the Matlab implementation.

119



APPENDIX A. CAMERA CALIBRATION

A.1 Extrinsic Parameters

The extrinsic parameters describe how the camera is positioned and oriented in the world. The
extrinsic parameters are given by a rotation matrix R and a translation vector t that we define
according to [78]. If pw is a point in the world coordinates and pc is the coresponding point in
camera coordinates, these can be combined as follows:

[

pw

1

]

=

[

R t

0 1

]

·

[

pc

1

]

(A.1)

This equation can be rewritten to give the transformation from world coordinates to camera
coordinates:

pc = RT · (pw − t) (A.2)

The extrinsic parameters R and t are estimated using the previously calibrated intrinsic pa-
rameters and an image containing a checkerboard. By keeping the checkerboard fixed while
calibrating the extrinsic parameters of all cameras, it is ensured that camera coordinates from
all cameras can be transformed into the same world coordinate system.

A.2 Intrinsic Parameters

The intrinsic parameters describe the properties of the camera itself, and they are constituted
by the focal length, the principal point, skew coefficient, and distortions [14].

Calibration of the intrinsic parameters of a camera is normally only necessary once, even if the
camera is moved. Only if some of the cameras own parameters are changed, e.g. the focal
length, recalibration is necessary. The intrinsic parameters are estimated by the toolbox based
on a number of images containing a 2D checkerboard as seen from different viewing angles. Once
the intrinsic parameters of the camera have been estimated, it is possible to use this information
for calibrating extrinsic parameters from any image containing that same checkerboard.

As an example, both the extrinsic and intrinsic parameters for one calibration of camera 1 is
shown in Table A.1:

A.3 Implementation

For our system it is necessary to map both from a world coordinate 3D point to image plane
coordinates and back into a 3D vector shooting from the camera in world coordinates. How to
do this is explained in the following subsections.

A.3.1 Mapping of 3D Point to Image Plane Pixel

Using the precalibrated extrinsic and intrinsic parameters it is simple to transform from world
coordinates to image coordinates in four steps:
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A.3. IMPLEMENTATION

Type Parameter Value for camera 1 Comments

Extrinsic Translation: t =





422
210
2259



 [mm]

Rotation: R =





0.66 −0.25 0.71
−0.75 −0.17 0.64
0.03 −0.95 −0.30





Intrinsic Focal length: f =

[

1087
1084

]

[pixels]

Principal point: c =

[

779
562

]

[pixels]

Skew coefficient: α = 0
Typical 0 in modern
cameras. Not used in
our calibrations.

Distortions: k =













k1

k2

p1

p2

k3













=













−0.36
0.13

−0.0011
0.0014

0













k1, k2, and k3 are dif-
ferent orders of radial
distortion and p1 and
p2 are tangential distor-
tion. Only the fish-eye
camera uses k3.

Table A.1: Calibrations parameters. The values for camera 1 are shown as an example.

Step 1:

Use the extrinsic parameters to convert the point from world coordinates to camera coor-

dinates according to Equation (A.2) to give pc =
[

xc
yc
zc

]

.

Step 2:

By normalizing according to the z-value, pc is projected to the image plane (without taking
distortion into account):

pn =

[

xn

yn

]

=

[xc
zc
yc

zc

]

(A.3)

Step 3:

Both tangential and radial lens distortion is taken into account:

nn = (1 + k1r
2 + k2r

4 + k3r
6) · pn + dx (A.4)

where the tangential distortion vector dx is defined by:

dx =

[

2p1xy + p2(r
2 + 2x2)

p1(r
2 + 2y2) + 2p2xy

]

(A.5)

Step 4:

The final pixel coordinates can now be found by using the focal length f and principal
point c (ignoring the skew coefficient α):

ppix(i) = f(i) · pn(i) + c(i) for i = {1, 2} (A.6)
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APPENDIX A. CAMERA CALIBRATION

A.3.2 Mapping of Image Plane Pixel to 3D Vector

Unfortunately, there exists no general algebraic solution to this inverse mapping due to the
high order of the distortion model [14]. Instead a numerical iterative algorithm from [14] is
implemented in four steps. The first two steps convert the 2D image plane pixel ppix into the
normalized (2D) image projection pn. This can be converted to a vector shooting out of the
camera in the direction of the pixel under consideration in the third step simply by adding 1 as a
z-coordinate. The fourth and last step is to convert this vector into the world coordinate system
using the extrinsic parameters. The names of all camera parameters are given in Table A.1.

Step 1:

The normalised image projection is approximated by ignoring distortion:

pd(i) =
ppix(i) − c(i)

f(i)
for i = {1, 2} (A.7)

Step 2:

The first guess of the non-distorted projection is pn = pd. The distortions are included
by repeating iteration the following equations until convergence of pn =

[

x
y

]

or for a fixed
number of times:

r =
√

x2 + y2

kradial = 1 + k1r
2 + k2r

4 + k3r
6

dx =

[

2p1xy + p2(r
2 + 2x2)

p1(r
2 + 2y2) + 2p2xy

]

pn =

[

x
y

]

=
pd − dx

kradial
(A.8)

Step 3:

This is converted to a vector shooting out of the camera in the direction of the pixel under
consideration by adding 1 as a z-coordinate: pc =

[ pn
1

]

, where the index c stands for the
camera reference frame.

Step 4:

Equation (A.1) is used to rotate and translate pn into the world coordinate system point
pw. The 3D line l is then a line from the camera through the point pw:

l = t + α · (t − pw) (A.9)

where:
α ∈ [0,∞[
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Appendix B

Reasoning

As discussed in the introduction, one important application of tracking is to support elderly in
living on their own. Therefore a post processing reasoning stage is implemented on top of the
tracker to determine whether a person has fallen, is sitting, or is immobile. Fall detection can
be used to alarm assisting personnel while the other detections can be used in higher-level post
processing to determine whether a person is behaving “normally” or “anomalous”.

B.1 Body Posture

When noise is present in the detected 3D foreground, it is mostly located close to the floor. This
is partly due to shadows and partly due to the fact, that other kinds of noise in the 2D foreground
detections in most cases are filtered out by the combination of the cameras. This means that the
height of the persons can be accurately estimated by taking the maximum vertical position of
the foreground voxels located within the 2D-area of the tracked target. By comparing the height
with different thresholds, the body posture is identified as either standing, sitting or fallen. A
flowchart of the approach is shown in Figure B.1.

no

 yes  yes

no

 Sitting? Fallen?

Sitting filter
+ -

Fallen filter
+ -

Compare: Compare:
h < τh,fallen? h < τh,sitting?

h

Figure B.1: Body posture reasoning is based on the maximum height, h, of each target. Counter based
filters are applied to provide robustness to noise.

Noise may cause the maximum height of a target to fall below a threshold in a single frame or
for a short duration. To make the posture detection robust, filters are applied on the output.
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APPENDIX B. REASONING

Counting filters are chosen to make it possible to control the delay from the first time the height
gets below a threshold until a fall or sit is detected:

sfallen = sfallen + 2dfallen − 1 (B.1)

ssitting = ssitting + 2dsitting − 1 (B.2)

where:
dfallen = 1 if h < τh,fallen and 0 else, and
dsitting = 1 if τh,fallen ≤ h < τh,sitting and 0 else.

When the counters sfallen and ssitting gets above specified thresholds, the particular body posture
is detected. The counters are thresholded to remain within 0 and 4/3 of the detection delays.

B.2 Mobility

Whether tracked persons are mobile or stationary can be detected by analysing the movement
of each target over a predetermined period of time, T . The structure of the mobility reasoning
is shown in Figure B.2. The standard deviation in the distance σdist from the mean 2D location
in the period under consideration is calculated and compared to a threshold. If σdist is below
the threshold, immobility is detected. A filter on the mobility detection is not necessary, since
σdist is already an average over a time window with length T .

Buffer Detector Compare
Mobile?

x(t)

y(t)

x(t, .., t − T )

y(t, ..., t − T )
σdist

τσdist,mobile

Figure B.2: Mobility reasoning is based on the 2-dimensional position of the targets within a window
of length T . The standard deviation in the distance from the mean position within the window σdist is
compared to a predefined threshold to determine if the target is mobile.
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Appendix C

Software Dependencies

The software framework is written in C++ and is developed, tested, and run in Linux (Ubuntu
9.10). It requires a number of external libraries for capturing video, performing some standard
computer vision calculations, rendering etc. These are all open source libraries1, and they are
listed here:

• OpenCV: Open Computer Vision Library provides high-level functions for capturing
video, working with images, and performing computer vision related calculations.

• S. Birchfeld et. al. KLT-tracker: Used for feature point tracking [73].

• OpenGL: Is used for rendering.

• GLUT: Also used for rendering, and for managing render window and OpenGL context.

• Boost: Provides utility classes, e.g. smart pointers and thread support.

The source code of the tracker prototype is found on the attached CD-ROM together with build
instructions.

1Some are released under the GPL (GNU General Public License), thus forcing the framework to be GPL.
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Appendix D

Test Results

Table D.1 shows the measured time consumption for the different parts of the algorithm using
a non-optimised setting and an optimised setting, respectively, and Table D.2 shows the time
consumption for each computer during the live test of the distributed system. In Table D.3, D.4
and D.5 the complete CLEAR test results for the three trackers are shown.

Function Non-optimised Optimised Parallel

Load frames 305.94 ms 295.38 ms -
Detect persons 5.90 ms 6.01 ms -
Detect 2D foreground 1876.29 ms 118.93 ms -
Distance transform 108.09 ms 6.36 ms -
Estimate 3D foreground 54.46 ms 5.25 ms -
Feature points 1654.02 ms 89.70 ms -
Track 2.52 ms 2.39 ms -

Total 4007.24 ms 535.35 ms 372.26 ms

Table D.1: Data from the time test performed on the development data set.

Function Server Client 1 Client 2 Client 3 Client 4 Client 5

Capture frames - 7.1 ms 4.3 ms 4.2 ms 4.5 ms 23.1 ms
Downscale - 2.9 ms 2.9 ms 2.9 ms 2.9 ms 1.8 ms
Detect 2D foreground - 24.7 ms 20.1 ms 19.9 ms 19.8 ms 14.4 ms
Distance transform - 2.0 ms 1.6 ms 1.5 ms 1.5 ms 1.2 ms
Waiting 69.0 ms 33.6 ms 41.7 ms 42.2 ms 41.9 ms 30.4 ms
Estimate 3D foreground 1.3 ms - - - - -
Track 0.4 ms - - - - -

Total 70.7 ms 70.3 ms 70.7 ms 70.7 ms 70.6 ms 70.9 ms

Table D.2: Data from the live test on the distributed system.
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APPENDIX D. TEST RESULTS

Video
MOTP
(mm)

Miss rate
(%)

False pos.
rate (%)

Mismatches
MOTA

(%)

AIT 20061020 A 180 50.57 8.37 13 39.42
AIT 20061020 B 117 77.97 0.17 0 21.86
AIT 20061020B A 122 71.84 0.86 6 26.72
AIT 20061020B B 123 69.75 0.33 2 29.69
AIT 20061020C A 116 60.55 3.89 4 35.05
AIT 20061020C B 127 63.50 4.52 14 30.67
AIT 20061020D A 121 73.74 3.24 3 22.48
AIT 20061020D B 163 32.68 26.83 6 37.56
IBM 20060810 A 150 28.24 2.09 3 69.45
IBM 20060810 B 170 24.24 10.17 10 64.86
IBM 20060811 A 128 47.64 9.67 3 42.49
IBM 20060811 B 120 55.27 11.22 2 33.38
IBM 20060814 A 149 55.29 7.75 3 36.74
IBM 20060814 B 160 69.64 11.57 4 18.47
IBM 20060815 A 135 35.76 2.57 10 60.97
IBM 20060815 B 135 24.76 7.62 6 67.21
ITC 20060922A A 176 69.64 2.36 1 27.91
ITC 20060922A B 161 84.71 1.43 6 13.38
ITC 20060922B A 157 70.73 3.47 4 25.48
ITC 20060922B B 191 68.15 8.55 10 22.43
ITC 20060927 A 118 63.48 1.87 1 34.54
ITC 20060927 B 90 85.14 0.11 0 14.75
ITC 20060928 A 131 37.22 0.10 2 62.47
ITC 20060928 B 128 60.02 0.11 2 39.65
UKA 20060912 A 30 99.93 2.26 0 -2.19
UKA 20060912 B 0 100.00 0.78 0 -0.78
UKA 20061116 A 208 94.16 6.20 9 -1.02
UKA 20061116 B 227 91.08 3.87 6 4.64
UKA 20061120 A 141 62.27 8.05 10 28.36
UKA 20061120 B 110 85.28 1.15 1 13.49
UKA 20061207 A 166 73.19 6.14 10 19.94
UKA 20061207 B 180 82.38 5.06 16 11.67
UPC 20060620 A 148 73.54 3.83 10 21.91
UPC 20060620 B 148 82.05 5.33 14 11.70
UPC 20060713 A 120 86.89 0.59 6 12.13
UPC 20060713 B 124 74.12 1.18 4 24.44
UPC 20060720 A 106 72.84 0.90 1 26.19
UPC 20060720 B 154 70.29 3.85 18 24.67
UPC 20060720B A 129 56.63 1.56 7 41.17
UPC 20060720B B 139 31.48 8.59 20 58.14

Overall 137 65.42 4.70 247 29.30

Table D.3: CLEAR test results for the foreground only tracker shown individually for all CLEAR videos
together with the overall score.
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Video
MOTP
(mm)

Miss rate
(%)

False pos.
rate (%)

Mismatches
MOTA

(%)

AIT 20061020 A 201 12.80 19.26 26 64.64
AIT 20061020 B 134 75.66 1.73 3 22.36
AIT 20061020B A 239 32.57 7.38 1 59.96
AIT 20061020B B 220 35.60 15.40 14 47.43
AIT 20061020C A 206 51.63 9.42 8 37.94
AIT 20061020C B 249 34.43 25.12 15 39.04
AIT 20061020D A 259 50.54 4.68 4 44.06
AIT 20061020D B 209 27.80 40.00 9 27.80
IBM 20060810 A 226 3.58 53.06 24 41.58
IBM 20060810 B 257 17.03 61.62 28 19.34
IBM 20060811 A 208 23.23 70.24 20 5.15
IBM 20060811 B 268 26.17 89.46 7 -16.11
IBM 20060814 A 310 63.91 116.01 13 -80.87
IBM 20060814 B 325 52.93 58.96 6 -12.37
IBM 20060815 A 154 9.79 15.76 20 73.06
IBM 20060815 B 189 11.84 47.21 16 39.86
ITC 20060922A A 194 9.09 18.45 6 71.91
ITC 20060922A B 154 33.76 14.97 6 50.80
ITC 20060922B A 163 31.61 48.95 13 18.39
ITC 20060922B B 202 29.14 55.24 17 14.14
ITC 20060927 A 115 0.82 4.67 3 94.17
ITC 20060927 B 119 0.33 0.00 0 99.67
ITC 20060928 A 163 4.19 11.15 5 84.15
ITC 20060928 B 141 2.07 1.74 0 96.19
UKA 20060912 A 452 97.81 45.65 0 -43.46
UKA 20060912 B 458 99.87 59.68 1 -59.61
UKA 20061116 A 202 75.55 31.68 7 -7.74
UKA 20061116 B 287 66.97 21.93 13 10.19
UKA 20061120 A 281 31.13 35.36 23 30.47
UKA 20061120 B 124 25.16 18.34 1 56.41
UKA 20061207 A 274 30.78 31.86 23 35.69
UKA 20061207 B 218 49.25 16.23 29 32.91
UPC 20060620 A 175 2.60 26.03 5 71.01
UPC 20060620 B 207 41.29 59.49 12 -1.56
UPC 20060713 A 164 11.87 24.52 3 63.41
UPC 20060713 B 137 19.80 7.91 9 71.70
UPC 20060720 A 171 4.19 4.39 0 91.42
UPC 20060720 B 163 18.83 22.55 7 58.16
UPC 20060720B A 172 2.01 18.85 3 78.87
UPC 20060720B B 190 12.88 28.71 22 56.44

Overall 215 30.76 31.09 422 37.16

Table D.4: CLEAR test results for the feature point only tracker shown individually for all CLEAR
videos together with the overall score.
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APPENDIX D. TEST RESULTS

Video
MOTP
(mm)

Miss rate
(%)

False pos.
rate (%)

Mismatches
MOTA

(%)

AIT 20061020 A 165 32.32 9.13 15 56.65
AIT 20061020 B 113 75.08 0.00 0 24.92
AIT 20061020B A 141 66.48 2.01 7 30.84
AIT 20061020B B 119 58.48 2.46 5 38.50
AIT 20061020C A 124 55.28 2.26 6 41.71
AIT 20061020C B 158 54.47 5.46 18 38.38
AIT 20061020D A 125 72.48 0.90 2 26.26
AIT 20061020D B 147 33.17 24.39 8 38.54
IBM 20060810 A 149 17.66 4.02 4 78.02
IBM 20060810 B 167 9.16 11.54 7 78.79
IBM 20060811 A 134 7.79 9.60 4 82.34
IBM 20060811 B 178 19.99 11.56 2 68.32
IBM 20060814 A 159 29.71 12.03 4 57.97
IBM 20060814 B 187 37.67 13.33 4 48.67
IBM 20060815 A 141 32.08 3.06 8 64.31
IBM 20060815 B 143 20.95 7.14 6 71.50
ITC 20060922A A 136 32.36 2.45 8 64.45
ITC 20060922A B 137 47.61 2.47 6 49.44
ITC 20060922B A 144 56.53 6.21 3 37.02
ITC 20060922B B 174 24.35 7.33 5 67.89
ITC 20060927 A 120 9.92 1.40 1 88.56
ITC 20060927 B 147 0.22 0.33 0 99.45
ITC 20060928 A 124 19.73 0.20 3 79.75
ITC 20060928 B 124 32.14 0.11 2 67.54
UKA 20060912 A 214 99.67 3.79 1 -3.52
UKA 20060912 B 119 99.81 1.10 0 -0.91
UKA 20061116 A 184 76.79 9.71 18 12.19
UKA 20061116 B 159 70.41 4.71 9 24.24
UKA 20061120 A 121 55.94 8.31 10 34.43
UKA 20061120 B 143 53.29 2.55 6 43.67
UKA 20061207 A 179 44.15 13.44 25 40.61
UKA 20061207 B 158 56.25 6.34 19 36.35
UPC 20060620 A 141 51.12 5.64 12 42.37
UPC 20060620 B 132 41.48 6.18 21 50.98
UPC 20060713 A 125 59.21 1.05 10 39.08
UPC 20060713 B 124 47.06 1.63 6 50.92
UPC 20060720 A 125 50.97 2.26 17 45.68
UPC 20060720 B 163 49.07 3.65 19 46.02
UPC 20060720B A 106 25.98 2.56 7 70.81
UPC 20060720B B 140 28.00 10.38 26 59.30

Overall 145 43.87 5.57 334 49.80

Table D.5: CLEAR test results for the combined foreground and feature point tracker shown individually
for all CLEAR videos together with the overall score.
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Appendix E

EUSIPCO 2010 Paper

Our foreground tracking system has been described in a paper entitled “Three-Dimensional
Adaptive Sensing of People in a Multi-Camera Setup”, which has recently been accepted for the
2010 EUSIPCO conference [28]. This is attached in this appendix. Note that this is a draft,
and that the final version might include minor changes based on the reviews.
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ABSTRACT

Sensing the presence and state of people is of paramount im-
portance in assistive living environments. In this paper we
utilise a set of fixed, calibrated cameras to model the bodies
of people directly in three dimensions. An adaptive fore-
ground segmentation algorithm is run per camera, provid-
ing evidence to be collected in 3D body blobs. A particle
filter tracker allows monitoring the modelled bodies across
time, offering estimations of their state by using hot-spots
and body posture. We apply our system on fall detection
and activity monitoring for the elderly, addressing both emer-
gency and cognitive care.

1. INTRODUCTION

Much interest has in resent years been directed at sensing the
presence and state of people. The possible applications in-
clude surveillance [1], assistive living environments [2, 3],
and human-machine interfaces [4, 5]. In this paper we build
a system for tracking the position and posture of human bod-
ies in 3D in real-time. For this, a set of 5 fixed and calibrated
cameras is utilized. An adaptive foreground segmentation al-
gorithm runs per camera. The detected 2D foregroundmasks
for each camera are combined into one set of 3D foreground
cubes using a hierarchical approach based on octrees [6].
Segmentation separates the cubes into a number of bodies,
giving indications of the number and position of persons in
the scene. A particle filtering tracker allows monitoring the
modeled bodies in time, offering estimations of their state.

We apply our system on fall detection and activity mon-
itoring for the elderly, addressing both emergency and cog-
nitive care. To do so, the state estimations from the tracker
are used to detect abrupt height changes and position persis-
tence. The former are classified as “person siting down” or
“person falling” and the later are compared against prede-
fined hot-spots, to reason on possible activities like “person
at dinner table”, “at kitchen”, or “by the TV”. Also multiple
human tracks indicate visits, again classified as “for dinner”,
“for tea”, etc.

The novelty of the proposed system lies partly in the ef-
ficient combination of 2D foreground masks into 3D fore-
ground bodies and partly in the utilization of a bodymeasure-
ment likelihood function within the particle filtering frame-
work. From the 3D foreground representation, projections
onto the floor plan are obtained by summing the body evi-
dence at all heights for the given position. The resulting 2.5D
representation is used to evaluate the measurement likelihood
function of the proposed particle filter tracker.

This paper is organized as follows: In Section 2 the pro-
posed tracking system is detailed. Test results of the imple-

mented system are presented in Section 3, based on test video
from the setup at the AIT. The performance of the system is
evaluated and concluded upon in Section 4.

2. TRACKING SYSTEM

In this section our method for foreground detection in 3D,
target management and tracking is detailed. Tracking is done
using a particle filter based on an effective likelihood func-
tion, and the tracking results are interpreted to determine im-
mobile bodies located near hot spots and the posture of each
body.

2.1 Body Detection

Body detection is carried out in three stages: First foreground
evidence is collected in 2D per camera. This is then com-
bined to 3D foreground, which is finally used to model 3D
bodies. Foreground detection in 2D utilises the per pixel
Gaussian Mixture modelling inspired by Stauffer et. al. [7].
The performance of the algorithm at the start-up phase is im-
proved by increasing the learning rate according to a window
based approach, inspired by [8]. Robustness of foreground
blobs is increased by removing shadows as in [9].

2.1.1 Modelling the space in 3D

The purpose of using several cameras for tracking is partly to
be able to track in 3 dimensions, but also to filter out noise.
Noise in the 2D foreground exists no matter the method used.
By combining information from a number of cameras, this
noise can be reduced significantly, thus increasing the robust-
ness of the body detection.

The 2D space for each camera is spanned per pixel, i.e.
discretely and, the 3D space can be spanned either discretely
or as a continuous space. The latter can work e.g. either by
combining information per-pixel for all cameras or by esti-
mating the position of persons in each camera, and use epipo-
lar geometry to estimate their positions in 3D. Combining
information per-pixel for all cameras is, however, computa-
tionally expensive, and estimating the position of persons in
each camera will not fully utilise the noise removal capability
of havingmultiple cameras. Another well known approach is
to model the 3D space discretely by spanning a grid of small
cubes [10, 11, 12]. Information from the different cameras
can then be combined for each cube, instead of for each per-
son or region.

The novelty of our 3D body detection system is the speed
improvement by using a hierarchy of cubes of different sizes,
and the efficient implementation using distance transform ,
both described in the following.
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1. Span the room with a grid of cubes on N
hierarchical levels.

2. Project the centre and corners of each 3D

cube on all levels to the image plane of

each camera. Use the corners to determine

an enclosing circle C.

3. Let the set S consist of all cubes on the

highest hierarchical level.

4. For each cube in S:

(a) For each camera:

• Test foreground mask for foreground

evidence within the enclosing circle C.

(b) If enough cameras detect significant

foreground:

• If the cube has any children, then

repeat 4 with S consisting of all

children of the cube. else mark the

cube as a foreground cube.

Figure 1: Recursive algorithm for converting the 2D fore-
ground masks to a 3D grid of foreground cubes using dis-
tance transforms.

2.1.2 Hierarchical Grid Structure

Foreground in the 3D space will mostly be structured in co-
herent volumes that indicate the presence of persons. Large
areas of the space will be completely without foreground. By
dividing the space into hierarchies of cubes, these areas can
be ruled out efficiently by only testing very large cubes for
foreground. Only if a large cube contains foreground, is it
necessary to test smaller cubes it contains (its children) to
improve the resolution of the model.

An efficient way to construct hierarchies is to use octrees;
that is to divide every cube on a particular hierarchical level
into 8 cubes on a lower level [6]. For the test results in this
paper we use a 4-level octree with the following cube widths:
40 cm, 20 cm, 10 cm and 5 cm. Only if a parent cube con-
tains foreground are its children cubes tested for foreground.
A problem for this approach arises in the border areas of the
3D space of interest, where the larger cubes might not fit very
well. If a cube is partly outside the 3D space but with its cen-
tre inside the space, it is used directly. If the centre is outside
the room, it cannot be tested for foreground, and must there-
fore be omitted. Instead, the border region is filled directly
with smaller cubes (that have centres inside the 3D space).
The algorithm for converting the 2D foreground masks into
a grid of foreground cubes is summed up as pseudo-code in
Figure 1.

For our system, all of the cameras are stationary. This
causes the projection of cubes to the image plane of each
camera to be identical for all frames. Therefore, the items 1
and 2 in Figure 1 can be carried out off-line, leaving 3D fore-
ground testing as the only potentially computationally heavy
part.

The hierarchical algorithm is a speed optimization of the
non-hierarchical version, and has been tested to reduce the
time consummation of the algorithm by around 80 % when
a distance transform is used to combine the 2D foreground
masks into 3D foreground as described in the following sec-
tion.

2.1.3 Efficient Combination of 2D Foreground Masks into
3D Foreground

To test whether a cube projected to the image plane of a cam-
era contains foreground, all foreground mask pixels located
in that projected cube should ideally be tested. The percent-
age of pixels with foreground can then either be compared
with a threshold for significant foreground, or used as a non-
boolean indication for foreground. This is, however, compu-
tationally intensive, since pixels in the 2D foreground masks
are included in many cubes, and will thus be tested many
times.

The speed of the foreground testing can be increased by
making certain simplifications. In many cases, the centre
pixel of the projected cube indicates correctly if the cube con-
tains foreground. To give some resistance to noise, a blurring
kernel can be applied before testing. The hierarchical grid
structure causes, however, the cubes to be of very different
sizes, which again causes the optimal kernel size to be very
different. Therefore it is chosen to apply a distance trans-
form instead, where each pixel gets a value corresponding
to the distance to the nearest pixel with foreground. After
the distance transform has been applied, the centre pixel can
be tested and compared to the radius of the enclosing circle,
C, of the projected cube, calculated off-line. This reduces
item 4a in Figure 1 to testing one pixel and comparing to
the radius of C. To minimize the computation time of the
distance transform an approximating 3×3 kernel is applied
following the approach in [13]. This causes the calculated
distances to be slightly imprecise, but also enables the time
consumption to be comparable to a 3×3 blur kernel. In our
implementation, the optimal values 0.95509 and 1.36930 are
used for the horizontal/vertical and diagonal entries in the
kernel, respectively.

It is worth noting that the results of the hierarchical and
non-hierarchical algorithms when based on distance trans-
forms are not completely identical. In some cases, per-
spective and camera distortion can cause the enclosing cir-
cle of a child cube (Cchild) to contain an area not included
in the enclosing circle of its parent cube (Cparent). If fore-
ground is present in this area, but not in the rest of Cparent,
this will cause the hierarchical structure to sort out the child
cube, even though foreground exists within its enclosing cir-
cle. Minor tests have indicated that around 0.1% of the
foreground cubes are sorted out for this reason. The issue
could easily be avoided by using a circle slightly larger than
Cparent for parent cubes. However, since this only happens
when there is foreground inside the enclosing circle of a child
cubes but not inside the cube itself, there is no actual reason
to prevent it.

2.2 Target Management

Target management includes detection and initialization of
new targets and destruction of older targets.

2.2.1 Detection of Targets

Target detection is necessary for initialization of new targets.
A simple and fast approach which in many cases will work is
to do 3D blob analysis of the detected foreground cubes. For
our system, additional measures are taken in an attempt to
utilise the typical structure of the 3D foreground. These are
illustrated in Figure 2. When two individuals are positioned
close together, their detections will easily be connected near
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BLOB1 BLOB2

τ1
τ2

Figure 2: Top/down detection of targets.

the ground, e.g. because of shadows. Near their heads they
will, however, often be more easily separable, partly because
the heads are located farther from the ground, and partly be-
cause the head is thinner than the rest of the body. For this
reason the height of the connection of two connected blobs
are compared with a threshold, τ1. The blobs are merged
only if they are connected above this τ1. To make the system
robust to people sitting down or falling, an additional thresh-
old τ2 is used. If the height of one of the blobs relative to the
connection point are below τ2, they are always connected.

2.2.2 Maintenance of Existing Targets

To determine which targets that have significant supporting
evidence in the measurements, the position of all targets are
associated with the detected blobs using theMunkres or Hun-
garian algorithm [14]. Non-associated blobs are used to ini-
tialize new targets. A variableM for each target is set to 1 if
it is associated, and 0 otherwise. The reliability of targets is
updated using a simple IIR-filter:

r = r+ l(M− r) (1)

where r is the reliability and l is the learning rate. By com-
paring r with two thresholds, it can be determined whether
the target should be trusted as an individual and (if not) if it
should be destroyed. To allow new targets to become reli-
able relatively fast if they are associated in each frame, while
preserving older targets even if they have been unassociated
for some frames, the learning rate is adjusted according to
the age (given as the number of consecutive frames that the
target has existed). The following equation is used:

l = min(lmax,
1

age
+ lmin) (2)

It may occasionally happen, that two targets follow the
same individual. Therefore targets that are placed very close
to one another consecutively for several frames are merged.

2.3 Tracking

The tracking algorithm used in the system is Particle Filter-
ing (PF) [15, 16]. PF’s are able to provide a numerical solu-
tion to the recursive Bayesian estimation problem when the
system dynamics are not linear and/or the noise models are
not Gaussian. They hence provide robust solutions to the
tracking problem when the object model or the measurement
likelihoods are multimodal. This is offered at the expense of
additional computational complexity due to their numerical
nature. We build a PF that follows the approach for motion
tracking described in [16].

Foreground detection is done in 3D and thus tracking
should ideally also be done in 3D. To make the tracking al-
gorithm fast enough to allow real-time tracking, we propose
what we call a 2.5D approach. All cubes are projected to

α

α x

y

Figure 3: The state space consists of the coordinates x and
y on the floor-plan, and the size variable α . The variable α
can vary from 0 to the distance between the centre and the
boarder of the projection map. Note that the area of a state is
given as (2α +1)2.

the floor, and the number of cubes in each column are used
to calculate likelihood. The vertical dimension thus provides
some additional data for tracking, without itself being part of
the target state, hence the term “half dimension”. The states
related to position can thus be limited to x and y. Note that
the vertical position will provide little extra information for
tracking since the difference in height between different per-
sons humans are typically small.

To reduce the dimensionality of the state-space as much
as possible, only a single dimension α is used to determine
size. The state space S is therefore 3 dimensional, and the
dimensions are illustrated in Figure 3.

2.3.1 Likelihood Function

The multi hypothetical nature of the particle filter allows
tracking of non-global maxima. However, to achieve robust
tracking the likelihood function must in as many situations as
possible give local maxima close to the correct location and
size of the persons in the scene.

To determine a good likelihood function, a number of
values can be taken into consideration (where x and y have
been left out as function arguments for simplicity):

Volume: A person is expected to constitute a certain vol-
ume, which can be given as a number of cubes N(α).

Density: A person is expected to fill most of the volume,
V , inside his bounding box. This amount is expressed as:

F(α) =
N(α)

V
=

N(α)

h · (2α+1)
(3)

where α and h are measured in number of cubes. The height
h is set to the maximum number of cubes in a single column
in that area.

Derivative of density: A good state will be centred close to
the centre of a person and include most of that person. This
means that F(α) is expected to drop fast if α is increased.
This is due to the fact, that most of the area around a person
typically is without foreground. The change in F(α) can be

measured by its derivative
∂F(α)
∂α

, which can be approximated
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Figure 4: Different values as a function of α .

by:

Fd(α) =
∆F(α)

∆α

=
F(α + k)−F(α− k)

2k

≈
1

2kh

(

N(α + k)

(2(α + k)+ 1)2
−

N(α− k)

(2(α− k)+ 1)2

)

(4)

where h is simplified to be the maximum height of the
smaller area (which in most cases is identical to that of the
larger area).

Figure 4 shows F(α), Fd(α) and N(α) along with the
final likelihood function when α is varied in the example
shown in Figure 5a. In this example, the maximum of
−Fd(α) is located at the α = 5, which Figure 5a proves is
a good result. This is not sufficient for the likelihood func-
tion, however, since Fd reacts equally strongly on few cubes
of noise and a real person. To counter this effect, the like-
lihood function could be chosen to L(α) = −Fd(α) ·N(α).
N(α) biases towards larger areas. A problem with this ap-
proach is apparent by comparing Figure 5a and N(α) in Fig-
ure 4. When α grows to include both persons, N(α) just
keeps growing. To avoid including multiple persons, F(α) is
also included to give the final likelihood function:

L(α) = −F(α− k)2 ·
√

N(α + k) ·Fd(α) (5)

Instead of F(α) and N(α), F(α − k) and N(α + k) are
used to avoid calculating N(α). The functions are weighted
by squaring F(α− k) and taking the square root of N(α + k)
to bias towards single coherent persons. Figure 5 illustrates
the performance of the likelihood for a particular situation,
where two persons are located close to one another. The
projection of the cubes to the floor is shown in Figure 5b,
where a brighter colour correspond to more cubes in the same
column. Figure 5a illustrates the likelihood for all values
of x and y with α fixed to 4. The set (xi,yi) that satisfy
(xi,yi) = argmaxα(L(x,y,4)) is marked, and α is adjusted at
that location to satisfy αi = argmaxα(L(xi,yi,α)). The state
S(xi,yi,αi) is shown as a box in Figure 5a.

(a) Projection of cubes to the floor.
L is optimised with respect to α with
fixed x and y. The optimal value is
found to be α = 5.

(b) Likelihood L((x,y,4)|~y).

Figure 5: Illustration of likelihood function.

2.3.2 Body Posture and Hot Spots

When noise is present in the detected 3D foreground, it is
mostly located close to the floor. This is partly due to shad-
ows and partly due to the fact, that other kinds of noise in
the 2D foreground detections in most cases are filtered out
by the combination of the cameras. This means, that the
height of the persons can be accurately estimated by taking
the maximum vertical position of the cubes located within
2D-position of the tracked target. By comparing the height
with different thresholds, the body posture is identified as
either standing, sitting or fallen. FIR-filters are applied to
ensure robustness to noise.

People staying near hot spots are detected by analysing
the movement of the targets over a predetermined period of
time. The variance in the distance from the mean 2D location
in the period under consideration is calculated and compared
to a threshold.

3. RESULTS

The system is tested on a setup of 5 calibrated cameras avail-
able at AIT. Four cameras are placed in the corners of a room
and one camera with a fish-eye lens is placed in the ceiling.
Using this setup, qualitative tests of the systems ability to de-
tect people falling, sitting, and spending time on hot spots are
carried out.

In a test sequence, up to four people move around in the
area under surveillance for 6:23 min. At 3 occasions in to-
tal a person falls and at 6 occasions a person sits down. All
of these events are detected correctly and there are no stand-
ing/sitting persons that are falsely detected as fallen. When a
person kneels or bows he can be classified as sitting but not
as fallen.

An image from one of the corner cameras from the test
sequence is shown and compared with the detected fore-
ground in Figure 6 and the complete test videos of both de-
tected foreground and images from the camera are available

on our website1.

With a recorded set of test videos, a single dual-core
2.2 GHz computer is capable of processing a frame in ap-
proximately 1/8 second excluding the time required to load
the images from the hard drive. To make the system run in
real time, a distributed version has been developed, which
enables the whole system to run in real-time on five 3.0 GHz

1http://kom.aau.dk/~zt/online/3DSensing/
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(a) Detected foreground is shown as
green cubes, targets are shown using
wire frame boxes, and info boxes
are shown for each target.

(b) Frame from one of the corner
cameras with targets and info super-
imposed.

Figure 6: Detected 3D foreground are shown in (a) and rea-
soning results are shown both on top of the foreground and
in (b) superimposed on a frame from a corner camera. The
person lying in the floor is marked as “Fallen”.

dual-core computers when the cameras are recording at
15 fps.

4. DISCUSSION AND CONCLUSION

We have in this paper presented an adaptive 3D approach
for sensing people in a multi camera setup. Foreground is
found per camera using a per pixel Gaussian Mixture Model
and combined to a discrete 3D foreground. For this, a novel
approach is used to determine the 3D foreground that com-
bines a hierarchical octree structure with distance transforms
to computational cost of the algorithm.

Our tracker is based on a 2.5D particle filter that pro-
vides fast tracking with relatively little computational cost.
A likelihood function is developed that uses the amount of
foreground, the density of the foreground, and the approxi-
mate derivative of the density with respect to the size of the
target.

The system has been tested on a test video and is able
to detect all occasions were a person falls or sits down. It
should be noted that the system can fail in detecting a fall
if another person is standing close by. This is, however, not
critical for monitoring elderly since the fallen can get help
from the other person.

It is possible for the system to run in real-time using 5
cameras at 15 fps when distributed to 5 computers. Using
5 computers might not be optimal in a real-life implementa-
tion. The major reason is that the computers use USB 2.0,
whose bandwidth prevents more cameras from running si-
multaneously. However, when USB 3.0 gets available one
computer will be able to handle a much larger data flow than
our test computers.

One major limitation in our system is that tracking is
based solely on foreground estimation which again is based
solely on motion. Therefore, if a person stays immobile for
a long duration, the associated target will eventually be lost.
This can be avoided by adding additional modalities to the
tracker such as colour, faces, or even sound [11, 16].
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