

.

Department of Computer Science
Selma Lagerløfs Vej 300
DK-9220 Aalborg Ø
Telephone (+45) 9635 8080
http://www.cs.aau.dk

Title:
AI Modelling: Behaviour Trees

Project theme:
AI Modelling

Project period:
DAT6,
February 1st 2010 -
June 3rd 2010

Project group:
d615a

Participants:
Anders Tankred Holm
Mads Bøgeskov

Supervisor:
Zeng Yifeng

Print run:
4

Pages:
108

Abstract:

The report documents the de-
velopment of a set of tools and
techniques, which goal is to aid
the process of defining probabil-
ity values in a behaviour tree. A
formal model of behaviour trees
is presented that forms the ba-
sis for the problem. The re-
port presents measures for di-
versity and agent outcome for
behaviour trees. An optimal
selector probability distribution
guideline is achieved by utilising
linear programming using these
measures, that then afterwards
is used in the tool extensions.
The project is then evaluated by
a series of test subjects that con-
cludes the presented techniques
is beneficial.

Appendices (number, type):
1 DVD with source and binaries

The contents of the report are freely available, however publishing (with source) must

happen only by agreement with the authors.

4

Preface

This report has been written during the DAT6-project period, by group
D615A at Aalborg University. The main theme of the project is Artifi-
cial Intelligence modelling, with focus on development the creation of be-
haviour trees for an agent in a computer game. This report is addressed
to other students, supervisors, and anyone else who might be interested
in the subject. To read and understand the report correctly, it is nec-
essary to have knowledge equalling a bachelor in computer science and
basic knowledge concerning Artificial Intelligence. A resume of the report
has been written and can be found in Appendix C on page 107.

The entire report is written in British English and no translation will
be accessible. Abbreviations and acronyms will at first appearance be
written in parenthesis, to avoid breaking the reading stream. Specifica-
tion of gender in the report is not to be understood as suppression or any
other form of political/religious position. The gender is only specified to
simplify the process of writing for the authors.

References to sources is marked by [#], where # refers to the related
literature in the bibliography at the end of the report.

Attached to the report is a DVD, which contains the source code cre-
ated for the project, a PDF version of the report, and also the contents of
the Subversion repository used.

The report is written in LATEX and is accessible as a PDF-document,
which can be read with Adobe Acrobat Reader on Microsoft Windows, or
Preview on Apple Mac OS X.

Project group d615a

Anders Tankred Holm

Mads Bøgeskov

5

6

CONTENTS

1 Introduction 9

2 Behaviour Tree 11
2.1 Formal Model . 11
2.2 Behaviour Editor . 19
2.3 Problem . 20

3 Agent Diversity 23
3.1 Entropy . 24
3.2 Entropy to Represent Diversity 25
3.3 Diversity in Behaviour Trees 26

4 Agent Outcome 31
4.1 Utility . 31
4.2 Utility Value Type . 33
4.3 Expected Value . 35

5 Probability Value Guideline 37
5.1 The Diversity-Outcome Linear Program 37
5.2 Probability Distribution . 39
5.3 Recommended Node . 41

6 Tool Extensions 45
6.1 Benchmarks . 45
6.2 Path Markup . 47
6.3 Probability Value Lock . 48
6.4 Autogenerate Trivial Probability Values 49
6.5 Probability Value Constraint 51
6.6 Behaviour Packages . 53
6.7 Workflow . 54

7 Evaluation 61
7.1 The Formal Model . 61
7.2 The Behaviour Editor . 62
7.3 Tool Extensions . 62

7

Contents

7.4 Agent Comparison . 63
7.5 Results . 67

8 Epilogue 73
8.1 Reflection . 73
8.2 Conclusion . 75
8.3 Further Development . 75

A Linear Programming 79
A.1 Canonical Forms . 79
A.2 The Simplex Algorithm . 82

B Evaluation 89
B.1 Evaluation Agenda . 89
B.2 Results . 91
B.3 Behaviour Trees . 98
B.4 Mockups . 100
B.5 Agents . 105

C Resume 107

8

CHAPTER

1

Introduction

The objective of the project is to research behaviour trees and especially
the development of these in order to further ease the process of creating
Artificial Intelligences (AIs) for realtime games. The report focuses on the
design of tools to improve behaviour tree development, and takes it ba-
sis in a behaviour tree editing tool created by the same authors in their
DAT5 semester. This tool is called the Behaviour Editor and is designed
for games created using the Unity3D engine[1]. However all techniques
found in the project may be implemented in any other behaviour tree
editing tool as well.

The report uses the concept of an agent to describe the in-game ob-
ject, e.g. Non-Player Character (NPC), that has a AI component assigned,
which in this case it based upon behaviour trees. The report furthermore
uses the concept of an AI designer to describe the person in the game de-
velopment team assigned to creating these agents. Such an AI designer
will often be a person with limited knowledge of programming, but who
works in close correlation to the game programmers and game designers.
However because of this the tools must be usable by a person with lim-
ited technical skills. The AI designer knows the game context such as the
game conditions, goals, behaviours of other agents and so on, which is
used whenever a new agent is created.

The basis of the project is that the AI designer often is in a situation
where he has to assign probability values to the behaviour tree, which
can be challenging assignment with more complex agents. The AI de-
signer must find the correct balance between achieving a certain agent
outcome and a level of diversity in the agent behaviours. It is the goal of
the report to create tools which can aid the AI designer in defining these
probability values while at the same time maximise the diversity and se-
cure a certain agent outcome.

9

Chapter 1. Introduction

The report starts with a presentation of a formal model for behaviour
trees, which is useful as a reference when developing generic tools. The
report moves to a brief description of the Behaviour Editor tool and con-
cludes with a description of the problem which the tools should help to
solve.

The diversity chapter explains what diversity for an agent is, and why
it is desirable in a game. It also presents the Shannon entropy formulae
which is capable of calculating the diversity or entropy for an agent based
upon the probability values in the behaviour tree.

The agent outcome chapter describes what the outcome of an agent
is and how it can used to specify the final behaviour of the agent. The
chapter introduces the concept of utility and explains how the expected
utility of an agent can be calculated.

The next chapter describes how linear programming can be used to
create a guideline for the AI designer, which maximise the entropy and
maintains a defined utility value of the behaviour tree. The chapter also
presents how the AI designer can be helped further by auto generating
probability values, and recommendation of nodes to define.

The tool extensions chapter shows how these techniques can be im-
plemented into an existing behaviour tree tool, by utilising them in new
tool extensions that can aid the AI designer in defining the probability
values.

The evaluation chapter evaluates on the presented tools and the for-
mal model by presenting it and a demonstration game to a set of test
subjects. These test subjects is used to provide constructive feedback
on the problem itself, the presented tools, and the formal model. The
demonstration game is used to evaluate upon the behaviour of an agent
created using the presented techniques.

The last chapter of the report presents the reflection and conclusion
of the project and also a section regarding any potential future work of
the project.

10

CHAPTER

2

Behaviour Tree

This chapter presents a formal model for behaviour trees which is nec-
essary in order to help the AI designer to create good agents for games.
Using the formal model the next section introduces the Behaviour Editor
which is a behaviour tree editing tool used in the project as both inspi-
ration but also helping to design any of the tool extensions necessary to
help the AI designer. The last section introduces the problem that will be
researched through the rest of the report.

2.1 Formal Model

The concept of behaviour trees has been created to ease the collaboration
between AI designers and programmers by creating a common abstrac-
tion layer. The AI designer knows the game and the purpose of the agent
so he is able to create the overall behaviour scheme, and the programmer
is capable of creating the actual implementation of the agents behaviours
in-game. Behaviour trees uses this separation by introducing a graphi-
cal representation of the behaviours consisting of a tree structure with a
small set of nodes available to create the behaviour scheme. The tree has
a root node which serves as the main entry point, and it is then possible
for the AI designer to expand the tree with multiple sub-trees represent-
ing certain behaviours capable of handling certain situations, and create
a selection scheme that triggers these behaviours whenever a certain sit-
uation arises. The nodes available in the behaviour tree are decorators,
sequences, selectors, and actions, which each adds a certain functional-
ity to the tree structure. Most behaviour trees also contains some extra
functionality to handle sudden events in the game world, e.g. when the
agent is being shot at. Solutions include having multiple behaviour trees
running in parallel to the main tree, which handles such events, or by
using an interrupt system as was introduced in the Behaviour Editor.
However this is tightly coupled with the platform of which the behaviour
tree should run so this is let to the developers to chose a sufficient solu-
tion.

11

Chapter 2. Behaviour Tree

Both the graphical and the runtime tree structure is a connected
acyclic graph, so there are certain limitations upon the design of the
tree such as nodes that cannot connect to themselves and no node can
have more than one parent. The behaviour tree works by first entering
the node attached to the root node. This node will often start a sub-
tree designed to find the appropriate behaviour for the current situation
which then is executed. When the behaviour has finished executing the
behaviour tree starts over and chooses a new behaviour to execute. It is
important to realise that the behaviour tree does not model game states,
such as win state, but only behaviour states of the agent, e.g. defend
base. There is not a single way of building behaviour trees as this changes
for each type of agent.

2.1.1 The Nodes

The behaviour tree model contains four different types of nodes used to
create the behaviours for the agent. This section introduces the different
nodes as is seen on Figure 2.1 with regard to their purpose in the be-
haviour tree. The different nodes can be connected by the use of the arcs
shown in Figure 2.2 on the facing page.

Root

(a) Root

Sequence

(b) Sequence

Selector

(c) Selector

Decorator

(d) Decorator

Action

(e) Action

Figure 2.1: The graphical representation of the different nodes available in the
behaviour tree

12

2.1. FORMAL MODEL

(a) Standard Solid Arc

#

(b) Arc with Value

Figure 2.2: The two types of arcs used to denote the connections between the
nodes of a behaviour tree

2.1.1.1 Root

The root node serves as the main entry point into a behaviour tree, and
any behaviour tree must therefore have a root node assigned as the first
node in the tree. This node cannot be deleted without deleting the entire
tree. The root node can only have one child which will be the first node
to be executed in the tree. The root node is illustrated on Figure 2.1(a) on
the preceding page, and its connection to its child node is illustrated by
a standard solid arc as seen on Figure 2.2(a).

2.1.1.2 Sequence

The sequence is capable of executing a series of sub-behaviours which in
a specific order is set to perform one single grand behaviour. Figure 2.1(b)
on the preceding page shows the sequence node as it is illustrated graphi-
cally in a behaviour tree editor. The node is a rectangle which can contain
a word that describes the purpose of the node, e.g. Defend Base, if the
sequence started a series of actions needed to defend a base. Each sub-
behaviour assigned to a sequence will have an ordinal number assigned
to indicate its place in the queue in the sequence.

13

Chapter 2. Behaviour Tree

1

2

3

PickupFireExtinguisher

Move

UseItemOnFire

FireExtinguishing

Figure 2.3: An example of the use of
a sequence making an agent capable of
putting out a fire

The sequence node can have
any node as its parent and also
have an unlimited amount of child
nodes attached of the types dec-
orators, actions, selectors, and
other sequences. The relationship
is illustrated by the use of an value
arc as seen on Figure 2.2(b) on the
preceding page, where the value
on the arc represents the ordinal
number of the child node.

An example of the use of a se-
quence node would be to model
the behaviour necessary to be able
to put out a fire. The sequence shown on Figure 2.3 shows how this can
be dissected into three sub-behaviours each handling a part of the grand
behaviour. The first child node to be executed is the action node Pickup-
FireExtinguisher which is capable of picking up a fire extinguisher. The
next action node can move the agent near the fire, and the last utilises
the fire extinguisher to put out the fire.

2.1.1.3 Selector

The purpose of the selector is to make the agent capable of making a deci-
sion by selecting one of its child nodes for execution depending upon the
current game state. This selection is made by a selection scheme method
assigned assigned to the node, such as random selection, probability se-
lection, or priority selection. There are no finite set of selection scheme
methods and the choice depends upon the situation in the behaviour tree.

As illustrated on Figure 2.1(c) on page 12 the selector is denoted by a
squashed rectangle, and the word in the rectangle can contain the name
of the selection scheme chosen for the node. It utilises the value arc
which is illustrated on Figure 2.2(b) on the previous page to indicate a
connection to a child node. The selector can have unlimited decorators,
actions, sequences, and other selectors as child nodes, and any node type
as its parent. The selection method chosen for the selector node depends
upon the situation and the value on the arc is therefore also dependent
upon this choice.

14

2.1. FORMAL MODEL

2.1.1.4 Decorator

Root

Hurt ?

GetHealth

Figure 2.4: The
decorator adds
extra function-
ality to existing
behaviours

The decorator changes or adds functionality to be-
haviour subtrees. The decorator is necessary to make
it possible to fit generic behaviours into other loca-
tions in the behaviour tree, and also for general con-
ditioning of execution of a behaviour. The functional-
ity of the decorator is defined by the AI designer and
there are therefore no limitations upon what it can
do. The decorator is denoted by a diamond shape
as shown on Figure 2.1(d) on page 12, and can con-
tain a word that briefly explains the purpose of the
node. The decorator can only have one child, which
can be a action, sequence, selector, or another deco-
rator. The decorator can only have one parent, but
this can be of any node type. The decorator indicates
a connection to a child node with the standard solid
arc.

An example of the use of a decorator is where an agent has a behaviour
able to gather health. This behaviour should only be executed in the
situation where the agent is hurt and the decorator can then be added on
top of the sub-behaviour to limit access to it unless the hurt condition is
filled, as illustrated on Figure 2.4.

2.1.1.5 Action

The action node represents the actual action performed by the agent, e.g.
a behaviour capable of getting health will have two actions: one that finds
the health source and the second that moves the agent to this. The ac-
tions are made by the programmers and then utilised by the AI designer.

The action is represented by a circle shape as seen on Figure 2.1(e)
on page 12, and can contain the name of the action it performs. The
action node cannot have any children as it serves as the leaf node of the
behaviour tree, but it can have any node as its parent.

15

Chapter 2. Behaviour Tree

2.1.2 Termination Codes

The execution of the behaviour tree works by iterating down through the
tree where each node will report a termination code back to its parent
node. The parent node can then process the termination code and han-
dle it according to some predefined setting. The termination code can
be: Success, Failure, or Clean Failure. Success indicates that the sub-
behaviour completed its execution without complications, while failure
describes that the sub-behaviour did not succeeded and it has changed
the starting assumptions that lead it to this sub-behaviour. The clean
failure also describes that the execution of the sub-behaviour failed how-
ever the start assumptions were not compromised. An example of how
this can be implemented within the different nodes can be seen in our
previous report AISuite: Behaviour Editor[4].

2.1.3 Path

A path in a behaviour tree describes a route from the root of the behaviour
tree and as far down as possible in the tree. That is each path in the tree
represents one possible sequence of choices leading to the decision to
perform a certain action, so the complete set of paths of a behaviour tree
will represent all the possible decisions an agent can execute.

In the case of Figure 2.5 on the next page there are two possible paths,
where one is leading to the Action 5 node through Selector 1 and Deco-
rator 3. So this sequence of choices leads to the execution of the Action
5 action.

In certain cases a path may contain several actions, which whenever
executed in a certain order will lead to the completion of a grand action.
This is the case whenever one of the two paths leading to Action 4 is
chosen. One of these paths are illustrated in Figure 2.6 on the facing
page and the other is very similar in that it chooses Action 1 instead
of Action 2. This also illustrates the case where the grand action of a
sequence of actions is changed by choosing another action.

Probability

The probability of a path is a sub-problem of calculating the probability
of reaching a certain node in the behaviour tree. This section will start
by finding the path to the node, and then calculate the probability of this
path.

16

2.1. FORMAL MODEL

Root

Selector 1

Decorator 3

Action 5

Sequence

Action 2 Action 4

0.7 0.3

Decorator 2

Action 3

Decorator 1Selector 2

Action 1

0.4 0.6

Figure 2.5: An example of a behaviour tree with three possible paths

Root

Selector 1

Sequence

Action 2 Action 4

0.7

Decorator 2

Action 3

Decorator 1Selector 2

0.6

Figure 2.6: One of the possible paths in the behaviour tree shown in Figure 2.5

The probability of reaching a certain node in a behaviour tree can
be calculated by finding the total probability of the path to the node.
Since there can be several paths to the same node it is necessary to
decide whether one needs the most or the least probable path, e.g. in
the example of Figure 2.5 the probability of reaching the node Action
4 depends upon the choice taken in Selector 2 where one would chose

17

Chapter 2. Behaviour Tree

the right branch if the highest probable path was required, and the left
otherwise. When this is decided the path to the selected node must be
extracted, which following the previous example would look as illustrated
on Figure 2.6 on the previous page. It is interesting to notice how the
path goes through any previous branches of a sequence. The reason for
this is that the probability of reaching Decorator 1 after executing, e.g.
Action 2, depends upon the amount of times the Action 2 node succeeds
or fails, i.e. how often the sequence continues to the next branch, and
this is therefore indicated on the figure by making the path go from any
leaf node of a sequence branch to the first node in the next branch.

Root

Selector 1

Sequence

Action 2 Action 4

0.7

Decorator 2

Action 3

Decorator 1Selector 2

0.6

1.0

1.0
1.0

1.0 1.0

1.0

Figure 2.7: The path to the Action 4 node with all probability values assigned

As seen on Figure 2.6 on the preceding page only some of the proba-
bility values are known, and the rest must therefore be provided before
the probability of reaching a node can be calculated. Two solutions exists
to this problem, one being online sampling, i.e. running the tree in a
test environment and record the probabilities which is time consuming
or second merely define a set of preliminary probability values for each
type of node which is more fit for quick prototyping.

The preliminary values is set according to how the behaviour tree will
execute without any knowledge of the individual settings of the nodes. It
is known that the root node always will execute its child so the probability

18

2.2. BEHAVIOUR EDITOR

between the root and its child is therefore 1.0. In the sequence node there
is a probability for how often a branch will lead on to execute the next
branch in the sequence and it can be presumed that this will happen
often since a sequence often defines a single behaviour, so the probability
of reaching the next branch is 1.0. The decorator is a multi-purpose
node and one of its possible uses is to limit the access to a subtree, but
there is no way of knowing its purpose so the probability would also have
to be set to 1.0. Continuing the example with the extracted path from
Figure 2.6 on page 17 the new preliminary probability values can now
be inserted into the path which is illustrated on Figure 2.7 on the facing
page. The next goal is then to take the product of each probability value
and calculate the probability of reaching the selected node Action 4:

1.0 ∗ 0.7 ∗ 1.0 ∗ 0.6 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0 = 0.42

Following this it can be concluded that the probability of reaching Action
4 is 42%.

2.2 Behaviour Editor

During the previous semester the authors developed a tool called the Be-
haviour Editor[4] which was capable of creating AI components for agents
in games created using the Unity3D engine. The Behaviour Editor was
based upon an implementation of behaviour trees, however was rewritten
to fit the formal model in this semester. The Behaviour Editor can be seen
in Figure 2.8 on the next page.

As mentioned in the formal model the Behaviour Editor includes sup-
port for interrupts to handle sudden events in the game world. Interrupts
is sent by the agent to the AI component, and makes the behaviour tree
switch to the corresponding interrupt tree. When the interrupt tree is
done executing it will return control back to the main behaviour tree.

The Behaviour Editor is created so it fits into the existing environment
of Unity3D and therefore created so it should be intuitive for existing
Unity developers to use. The tool also includes functionalities expected
by users of the Unity3D engine, such as an integrated inspector capa-
ble of assigning values to variables in the scripts assigned to the nodes.
Scripts can be created for decorators, selectors, and action nodes so the
behaviour tree can behave to the wishes of the programmer and AI de-
signer.

19

Chapter 2. Behaviour Tree

Figure 2.8: The Behaviour Editor

2.3 Problem

When the behaviour tree of an agent has been created the AI designer
has to assign probability values to the probability selectors. As previously
said the selectors can use other selection schemes than probability, how-
ever this report focuses upon optimising the use of probability selectors.
Each of the probability value determines the final behaviour of the agent
and is thereby able to shift the final agent outcome. This means that in
order to achieve the wanted behaviour the AI designer has to perform a lot
of time consuming tests to figure out how a certain change in probability
value also changes the final outcome of the agent. It follows logically from
this that the more advanced behaviour, the more immense the behaviour

20

2.3. PROBLEM

tree will become which also leads to more probability values that must
be assigned. In an immense behaviour tree even the slightest change in
a probability value could shift the whole behaviour into another direction
than wanted so the AI designer will often end up in a situation where one
change created a ripple effect onto many other selector nodes in the tree.
The wanted behaviour is furthermore a balance between the agent trying
to fulfil its goal, but also to do it in such a way that it does not choose the
same action over and over again but tries other actions to secure a certain
level of diversity. This level of diversity is again a balance between keep-
ing the final outcome of the agent and to try new tactics once in a while.
Because of this it would be beneficial to help the AI designer to assign
these probability values by providing a set of extensions to a behaviour
tree editing tool that in combination with a set of guidelines would ease
the process.

As said the specification of probability values depend upon a combina-
tion of the outcome of the agent and a desired level of diversity. Since no
formal measure of diversity for behaviour trees exists as well as a mea-
sure of agent outcome these has to be defined. With a definition of these
measures it would be possible to calculate an optimal probability distri-
bution for the paths of the behaviour tree, which again also can serve as
a benchmark or guideline for the AI designer. These benchmarks can be
included into a behaviour tree editing tool where it in combination with a
graphical representation of the behaviour tree, and other tool extensions,
can help the AI designer to assign the probability values.

Summary

This chapter has presented the formal model of behaviours trees, which
includes a presentation of the nodes in the tree, and some concepts nec-
essary to know when working with behaviour trees such as path and
probability calculation. The chapter ends in a presentation of one of
the major hurdles when creating a good agent, which is to define good
probability values for the selector with the probability selection scheme
assigned in the behaviour tree.

21

Chapter 2. Behaviour Tree

22

CHAPTER

3

Agent Diversity

This chapter introduces the concept of diversity for behaviour trees by
finding a known measure tested to work in other situations. This mea-
sure is then tested to see if it can be adapted to be used with behaviour
trees. In order to do so the first section presents the concept of entropy
normally used to describe diversity in other areas such as information
theory. This leads to another section that introduces the correlation be-
tween diversity and entropy and makes it possible to in the last section
to show how to use this measure to calculate the level of diversity in a
behaviour tree. The sources for this chapter is an article on Entropy from
Wikipedia [8] and a text from MIT called Principle of Maximum Entropy:
Simple Form [6].

The chapter uses an example throughout the sections to illustrate
the concept of diversity. The example represents the set of possible be-
haviours a given agent can execute by shapes, which are grouped in a box
where the quantity of each depends upon the probability of these being
chosen in a random pass of the assigned agent type. Figure 3 illustrates
the example by having two boxes which each represents a different agent,
but where both has two types of behaviours available. It can be observed
that the diversity in Figure 3.1(a) is very limited as there only is a small
probability that one of the available behaviours will be executed, opposite
Figure 3.1(b) where the diversity is high as the probability of executing
either behaviour is equal.

(a) Less diverse (b) Very diverse

Figure 3.1: The boxes illustrates the concept of diversity for two different agents

23

Chapter 3. Agent Diversity

3.1 Entropy

This section introduces the concept of entropy which is used to measure
the uncertainty of a given environment, and has long been used in the
fields of thermodynamics and information theory.

Entropy is used to quantify the uncertainty related to the expected
value of a variable. In the example of a text string only consisting of A’s
the entropy would be very low as it is easy to predict the next character
in the string, but e.g. a completely random string would have a high level
of entropy.

A common measure of entropy is the Shannon entropy which is used
to express the entropy of an environment based upon the information
available regarding this environment. The Shannon entropy is denoted
by an H and the diversity of an environment is written H(p1, p2, p3.., pm)
where p is the probability of a certain action in the environment is exe-
cuted.

So to follow the previous example of the agent in Figure 3.1(a) on the
previous page the environment would be expressed as H(1

12 , 11
12), and the

environment for the agent in Figure 3.1(b) on the preceding page would be
H(6

12 , 6
12). It is obvious that the maximum entropy can be denoted as the

uniform distribution of probabilities as M = 1
M as this always provides

the highest level of uncertainty.

H(X) = −
M∑
i=1

(pi · log2(pi)) (3.1)

The Shannon entropy formulae is shown in Equation (3.1). This for-
mulae calculates the binary entropy, but could be changed to the natural
entropy or digit by changing the log2 to either loge or log10. The difference
between these is merely the range of the the diversity.

24

3.2. ENTROPY TO REPRESENT DIVERSITY

3.2 Entropy to Represent Diversity

This section presents the analogy between the two concepts entropy and
diversity. Consider an agent with two possible actions available, each
with probability p1 = 0.75 and p2 = 0.25. The Shannon entropy of this
agent can be calculated according to Equation (3.1)

p1 = 0.75
p2 = 0.25

H(R) = −
2∑

i=1

pi · log2(pi)

= −((p1 · log2(p1)) + (p2 · log2(p2)))
= −((0.75 · log2(0.75)) + (0.25 · log2(0.25)))
= 0.811

The Shannon entropy of this agent is 0.811 which means the agent
has a low level of entropy which fits with the fact that the agent has a low
level of diversity, seen by the fact that one of the actions always would be
chosen 75% of the time.

It is obvious that the entropy of an homogeneous group is trivial,
which is illustrated by the following example with an agent that only has
one possible action that by the definition has a probability of one:

p1 = 1

H(R) = −
1∑

i=1

pi · log2(pi)

= −(p1 · log2(p1))
= −(1 · log2(1))
= 0

An entropy of zero means that it is possible always to predict the out-
come of the environment in question, and it follows from this that the
diversity of the agent is non-existent. Figure 3.2 on the next page illus-
trates six more examples of entropy calculations on different sets of agent
behaviour distributions.

25

Chapter 3. Agent Diversity

(a) 0.00 (b) 0.41 (c) 0.82 (d) 1.00

(e) 1.59 (f) 2.00

Figure 3.2: Example of how the entropy value shows the diversity of different sets
of agent behaviour distributions

From these examples it is possible to state that H is minimised in
homogeneous situations like Figure 3.2(a). Opposite this H is maximised
when there are an equal probability of reaching behaviours, as seen on
(f) in Figure 3.2.

3.3 Diversity in Behaviour Trees

The diversity was in the previous section set to be dependent upon the
probability of a certain action being selected, however behaviour trees
does not have the concept of a single action since it often has multiple
action nodes that goes together to perform one grand action. Therefore
it is necessary to employ the concept of paths to represent the actions
in behaviour trees, and use the probability of each path as the basis for
the definition of diversity. As was discussed in Section 2.1.3 on page 16
a path in the behaviour tree represents one possible sequence of choices
and can therefore be analogous to an action as used in the previous sec-
tions.

26

3.3. DIVERSITY IN BEHAVIOUR TREES

Based upon this the Shannon entropy formulae from Equation (3.1)
can be used to calculate the level of diversity of a behaviour tree based
upon the probabilities of each possible path of the tree. Figure 3.3 illus-
trates the behaviour tree which is used as the example.

Root

Selector 1

Decorator 3

Action 5

Sequence

Action 2 Action 4

0.7 0.3

Decorator 2

Action 3

Decorator 1Selector 2

Action 1

0.4 0.6

Figure 3.3: The behaviour tree used to illustrate how to calculate the diversity of
a behaviour tree based upon entropy

The behaviour tree illustrated on Figure 3.3 has three paths shown in
Table 3.1.

Path Probability
Root, S1, D3, A5 0.30
Root, S1, S, S2, A1, D1, A3, D2, A4 0.28
Root, S1, S, S2, A2, D1, A3, D2, A4 0.42

Table 3.1: The paths from Figure 3.3 and their probability value

27

Chapter 3. Agent Diversity

These probability values can then be inserted into Equation (3.1):

H(R) = −
5∑

i=1

pi · log2(pi)

= −((p1 · log2(p1)) + (p2 · log2(p2)) + (p3 · log2(p3)))
= −((0.30 · log2(0.30)) + (0.28 · log2(0.28)) + (0.42 · log2(0.42)))
= 1.561

The result is that the entropy of this behaviour tree is 1.561, which means
it has a high level of entropy. The root starts with a selector that chooses
the left branch 70% of the times, and the second selector in the left
branch is nearly uniform distributed with a 40/60 distribution, hence
a high diversity. The right branch of the tree has one path, so the distri-
bution between the paths are close, which fits with the calculated entropy
value.

By changing the probability values of Selector 1 to increase the prob-
ability of selecting the right branch the behaviour tree should provide a
lower entropy value as the diversity decreases. In this example the prob-
ability of Selector 1 is set to 0.2 for the left branch and 0.8 for the right
branch which changes the probability values of the entire behaviour tree
to as shown in Table 3.2.

Path Probability
Root, S1, D3, A5 0.80
Root, S1, S, S2, A1, D1, A3, D2, A4 0.08
Root, S1, S, S2, A2, D1, A3, D2, A4 0.12

Table 3.2: The paths from Figure 3.3 on the previous page after having changed
probability values

These values can again be inserted into (3.1) to calculate the entropy:

H(R) = −
5∑

i=1

pi · log2(pi)

= −((p1 · log2(p1)) + (p2 · log2(p2)) + (p3 · log2(p3)))
= −((0.80 · log2(0.80)) + (0.08 · log2(0.08)) + (0.12 · log2(0.12)))
= 0.916

28

3.3. DIVERSITY IN BEHAVIOUR TREES

The entropy is now 0.916 which as expected is significantly lower than
in the previous case which indicates that the diversity of the behaviour
tree has lowered.

Summary

This chapter introduced the concept of entropy and illustrated its use in
behaviour trees. The definition of diversity for behaviour trees is based
upon paths to represent the concept of actions for behaviour trees and
it is therefore an equal probability distribution of paths that would pro-
vide the highest amount of diversity for an agent using behaviour trees.
The diversity of a behaviour tree is then calculated using the Shannon
entropy formulae based upon the probability distribution of the paths in
the behaviour tree.

29

Chapter 3. Agent Diversity

30

CHAPTER

4

Agent Outcome

The outcome of an agent can be described as the impact the agent has on
the game world, e.g. the outcome of a killer-agent would be a game world
with possibly less alive agents. So the goal when creating a new agent is
to define the outcome of the agent based upon its purpose in the game
world. This outcome depends upon which actions of the behaviour tree
are executed when and thereby it depends upon the probability values
of the selector nodes, where a change could mean that the agent loses
more often, acts less intelligently, or maybe becomes to difficult for the
player. The outcome is measured using a concept known as utility values
which is described in the first section. The next section introduces utility
value types which is a property to which the AI designer can relate when
assigning the utility values, and the last section shows how to calculate
the expected utility for a behaviour tree. This chapter uses a section on
utility from the book Artificial Intelligence: A Modern Approach [7] as its
source.

4.1 Utility

Utility is a measure normally used to quantify the concept of “the quality
of being useful” for an agent in a certain state. This concept can also
be used as the basis for a measure of the outcome of an agent or just
a single action. The utility value must be assigned to each path and
quantifies some property e.g. the cost of the path. However it can be
difficult to find the correlation between a certain path and the context of
the game so to let the AI designer assign utility values to each path would
be difficult. A better solution would be for the AI designer to assign utility
values to each leaf node instead, as they are easier to fit into the context
of the game, and thereby also easier to quantify. The utility value for the
path would instead be the summation of the utility values of its action
nodes.

31

Chapter 4. Agent Outcome

Figure 4.1 illustrates how the utility values can be assigned to a be-
haviour tree where the utility value type is set to cost. With this it is
possible to find the utility values of the paths as seen in Table 4.1.

Table 4.1: The paths and their utility values from Figure 4.2 on page 34
Path Utility Value
Root, S1, D3, A5 5
Root, S1, S, S2, A1, D1, A3, D2, A4 40
Root, S1, S, S2, A2, D1, A3, D2, A4 50

Root

Selector 1

Decorator 3

Action 5

Sequence

Action 2 Action 4

0.7 0.3

Decorator 2

Action 3

Decorator 1Selector 2

Action 1

0.4 0.6

Cost: 10 Cost: 20 Cost: 12 Cost: 18

Cost: 5

Figure 4.1: A behaviour tree with the utility value type cost and with utility values
assigned to each action node

32

4.2. UTILITY VALUE TYPE

4.2 Utility Value Type

Before the utility values can be applied to the behaviour tree the AI de-
signer must specify some property to which the outcome of the agent can
relate to. However behaviour trees can be used to construct any type of
agent with any type of purpose so there do not exist one common fitting
utility value type. Instead it is up to the AI designer to analyse the wanted
outcome of the agent in order to extract some property that he finds de-
scribes this outcome. This property can then be used as the utility value
type of the agent.

Below is series of different utility value types that can be used as in-
spiration when the AI designer has to choose a utility value type. However
these are only suggestions made by the authors and should only serve to
illustrate the meaning behind creating custom utility value types.

4.2.1 Aggressiveness

In combat games such as first person shooters, the opponent agents
could be defined by the amount of their aggressiveness towards the player.
For instance an agent could have an high level of aggressiveness and
could therefore often choose to storm the player, where a less aggressive
player could choose to take a more defensive position.

4.2.2 Pace

In sport games the AI designer could choose a utility value type such as
the pace of the agents on the field. The AI designer could then specify how
much the pace is increased or decreased by the different actions taken.

4.2.3 Experience Points

In role playing games the terminology experience points is a well known
concept, and this kind of value type would make sense for these kinds
of games. This value could be used by the game logic in order to in-
crease the experience points for the agent and therefore increase the level.
This could also provide the AI designer with an overview on the expected
amount of experience points the agent would receive by executing a cer-
tain sub-tree.

33

Chapter 4. Agent Outcome

4.2.4 Cost

Run

Selector

Walk

Cost: 1 Cost: 2

Figure 4.2: An example be-
haviour tree where the two ac-
tions nodes has had a cost util-
ity value assigned

The utility value type cost requires the AI
designer to consider what the cost of per-
forming an action might be. The advan-
tage of using the cost value type is that it
can be fitted to almost any type of agent,
but the disadvantage is that it also can be
difficult to assign a value. The reason for
this difficulty is that it is not always ob-
vious what the ratio of cost between two
actions might be. An example of the use
of the cost utility value is illustrated on
Figure 4.2. The goal of this selector is to
choose a way to get from point A to point
B, and the cost of doing so by e.g. walk-
ing is more expensive than running since
that takes a longer time. However this could also be the other way around
since running requires more energy than walking.

4.2.5 Difficulty

The difficulty utility value specifies a value which represents the amount
of difficulty an action supplies to the environment. Figure 4.3 shows
an example of the use of the difficulty utility selector, where the agent
must choose between using either a knife or a rifle to attack an enemy.
The knife will most likely provide a lower difficult to the environment,
whereas the rifle will provide a higher amount.

Rifle

Selector

Knife

Difficulty: 1 Difficulty: 2

Figure 4.3: An example behaviour tree where the difficulty utility value has been
assigned to each action

34

4.3. EXPECTED VALUE

4.3 Expected Value

When all of the utility values of the agent has been defined it is possible
to calculate the expected utility of the whole behaviour tree. The expected
value can be a useful indicator to see how much a certain behaviour tree
averagely provides in the defined amount of utility. This is useful when
modelling an agent as this provides continuous information regarding
the agent outcome. For instance if the utility value type was difficulty the
expected utility would show how difficult the agent is, and each change
in an utility value or probability value would change this.
The expected value for utility values is defined by

E(X) =
∑
x∈Ω

x ·m(x) (4.1)

where Ω is the sample space and m(x) is the distribution function. This
formula can also be used to calculate the expected utility value of a be-
haviour tree based agent based upon a AI designers specified utility val-
ues. For instance the expected utility value for Figure 4.1 on page 32
would be calculated like this:

E(X) =
∑
x∈Ω

x ·m(x)

= (0.8 · 5) + (0.08 · 40) + (0.12 · 50)
= 13.2

The expected cost of this behaviour tree is 13.2, but if one of the proba-
bility values were changed it would also change the expected cost value,
so e.g. by altering the values it could be possible to minimise the in-game
cost of executing the agent.

Summary

This chapter introduced a measure of the agent outcome by the use of
utility values. The chapter explained how to assign these values by first
finding some property to be the utility value type and provided a set of
utility value types as inspiration for the AI designer. Lastly it showed how
to calculate the expected utility of a behaviour tree, which is useful when
assigning probability values.

35

Chapter 4. Agent Outcome

36

CHAPTER

5

Probability Value Guideline

The diversity of behaviour trees was in Chapter 3 on page 23 defined to
be dependent upon the probability distribution of the paths, which rep-
resents the full set of possible actions to execute in a behaviour tree. So
if it is possible to find the probability distribution of the paths where the
Shannon entropy formulae would return a result larger than any other
probability distribution, and make the tree conform to this distribution
one would achieve the most diverse behaviour selection as possible. How-
ever the probability distribution should also ensure that the amount of
the AI designer specified utility, as defined in Chapter 4 on page 31, is
inside a specified range to ensure a certain outcome of the agent. A prob-
ability distribution that conforms to these requirements would provide
the AI designer with a guideline when assigning probability values to the
selectors.

The problem described above can be solved using a mathematical
technique called linear programming, which is explained in Appendix A
on page 79. The first section presents the linear program needed to solve
this problem, but also shows why this not is a trivial linear program.
The second section explains how this probability distribution is a step
in helping the designer to assign the probability values of a behaviour
tree. The last section uses sensitivity analysis to recommend a node to
the AI designer, that if defined would have the largest impact on the path
equations than any other probability value would have.

5.1 The Diversity-Outcome Linear Program

Based upon the description of linear programming from Appendix A on
page 79 it is possible to outline a linear program capable of finding the
maximum diversity and outcome probability distribution of a behaviour
tree. The objective of the linear program is to achieve the maximum diver-
sity based upon constraints set by the AI designer so the objective func-
tion is set to be the Shannon entropy formulae from Equation (3.1). The
first constraint of the linear program would be to ensure the AI designer

37

Chapter 5. Probability Value Guideline

specified outcome of the agent. To ensure this the linear program must
have two constraints that defines the expected utility of the behaviour
tree to be above the minimum range value V1 and below the maximum
range value V2 both set by the AI designer. The linear program should
also have constraints that ensure the standard constraints of probabil-
ity, such as the probabilities total is one and that each probability value is
above zero and below one. All of this is put together represents the linear
program capable of finding the probability distribution that maximises
diversity while keeping the agent outcome:

Maximise −
n∑

i=0

(pi · log2(pi))

subject to
n∑

i=0

(pi · Ui) ≥ V1

n∑
i=0

(pi · Ui) ≤ V2

n∑
i=0

pi = 1

p0, ..., pn ≤ 1
p0, ..., pn ≥ 0

Where Ui is the utility value of the path. This linear program does not
conform to any of the linear programming canonical forms but could eas-
ily be converted to do so.

As mentioned in the introduction this problem cannot be trivially ap-
plied to linear programming as the objective function is logarithmic and
not linear. However since the constraints of the linear program are linear
it is possible to use a method from the article Maximum Entropy Signal
Restoration with Linear Programming [5]. This article presents a solution
to a problem equivalent to this by making a piecewise linear approxima-
tion of the non-linear objective function. The approximation is illustrated
in Figure 5.1 on the facing page where it is obvious that this would not
create an exact solution however this is not required for this problem.
This solution is therefore also applicable for this case by replacing the
logarithmic objective function with the linear approximation. However
we refer to the article for a detailed walkthrough of how to create this
approximation as it is not the focus of the project.

38

5.2. PROBABILITY DISTRIBUTION

Figure 5.1: Illustrates how the piecewise approximation could look on the Shan-
non entropy formulae on a behaviour tree with only one path. This is of course
a trivial example as this path always would have a probability of 1.0. The dotted
line is the approximated piecewise linear function of the logarithmic solid line

5.2 Probability Distribution

By solving the linear program described in Section 5.1 on page 37 with
the AI designers agent outcome requirements it is possible to get the opti-
mal probability distribution for the behaviour tree with regard to diversity
and agent outcome. The next step is to use this information to find the
probability values for the selector nodes in the tree. Given that the be-
haviour tree can become quite immense the equation for calculating these
probability values becomes increasingly complicated based upon the vast
amount of unknown variables. To calculate the probability distribution
would be time consuming and the result would be difficult for the AI
designer to understand and make it harder to tweak the values of the
behaviour tree. A solution is to involve the AI designer in the process by
allowing him to assign probability values to the selector nodes in the be-
haviour tree. This would allow him to apply some of his own knowledge
regarding how the behaviours in the behaviour tree should be selected
which should be retained by the final result.

P1 = P11 · P12

P2 = P11 · P13

P3 = P22 · P21

P4 = P22 · P31

P5 = P22 · P32

(5.1)

39

Chapter 5. Probability Value Guideline

Root

Selector 1

Action 2Action 4

Selector 1

Action 3

Selector 2

Action 1

P21 P31

P22P11

P12

P1

Action 2

P33P13

P2 P3 P4 P5

Figure 5.2: A behaviour tree where the probability distribution of the paths P1,
P2, P3, P4, P5 has been found

Based upon the behaviour tree on Figure 5.2 it is possible to create
the equations shown in 5.1 on the previous page. The left side of the
equations are the path probabilities values received by the linear pro-
gram, and the right side are the probability values for the selector nodes
in their respective paths. It is obvious that it would be trivial to calculate
the rest of the selector probabilities if only P11 and P22 were given by the
AI designer, so the goal is to get him to assign enough probability values
to make it possible to calculate the rest.

The AI designer will often have a crude idea about what nodes should
be executed more often and their relationship in order to keep the be-
haviour of the agent in a certain way. In the case of Figure 5.3 on the
facing page the designer could require that the get flag action is called
more often in order to get a more aggressive behaviour, and since the AI
designer knows this he could deduct a fitting probability value for the first
selector node. The tool could then utilise this information to calculate the
rest of the probabilities.

40

5.3. RECOMMENDED NODE

Root

Selector 1

Action 2Action 1

P4

P1

Selector 2

Get Flag

P2 P3

Figure 5.3: By providing any probabil-
ity value it would be possible to calculate
the rest of the probability values

Based upon this the goal is to
get the AI designer to help with the
assignment of some of the proba-
bility values. The first solution to
get his input would be to present
a list of equations like the one
on 5.1 on page 39, which shows
the result of the linear program
and then a list of unknown prob-
ability value variables. The AI de-
signer could then specify the prob-
ability values he is able to deduct.
As soon as a sufficient amount of
probability values is specified the
tool could calculate the rest of the
probability values. This is however
not an optimal solution as the be-
haviour tree quickly becomes quite
immense, and the AI designer would have a difficult time finding the anal-
ogy between the equations and the game. A better way would be to intro-
duce it in a more graphically pleasing way, and still use the AI designers
knowledge about the game to solve the equations. The probability dis-
tribution for the paths could be illustrated in the behaviour tree editing
tool as a guideline for the AI designer when he is applying probability
values to the behaviour tree, and thereby help the tool to find rest of the
probability values in the behaviour tree.

5.3 Recommended Node

The previous section described how the AI designer is able to define prob-
ability values and thereby able to solve the set of equations representing
the paths in the behaviour tree given the path probability distribution by
the diversity-outcome linear program. However the AI designer does not
know all of the probability values so it would be beneficial to get the tool
to recommend a node that if defined would have the largest impact on the
system of equations with regard to the path probability distribution.

41

Chapter 5. Probability Value Guideline

The problem of finding this node can be solved by using a mathemat-
ical technique called sensitivity analysis. Sensitivity analysis is a useful
technique for computer modellers and is among other things used to sup-
port decision making of recommendation for decision makers. There are
several possible methods available to perform sensitivity analysis where
the most used are; sampling, screening and local methods. The source
for this section is the book Practical Optimization [2], that introduces
sensitivity analysis and how the technique is used to determine how dif-
ferent independent values can impact a particular dependent variable.

The local method has been chosen to solve the problem of finding the
node that impacts the equations the most. The local method provides the
solution by finding the derivative of the dependent output factor Y with
respect to an independent input factor Xi:

| ∂Y

∂Xi
| (5.2)

The output and input factors must be specified in order to adopt the
local method to the world of behaviour trees. The left side of the equa-
tions are as said the probability value of the path provided by the linear
program and the right side are the probability values of the selectors in
each path, so the path probability value is in this case a dependent vari-
able and can therefore be used as the output variable in the local method.
The input factor is then set to be the right side of the equations which
contains the independent probability values of the path.

To illustrate how this technique can be used in behaviour trees to
aid the AI designer in selecting a probability value to define an example
must be presented. When the tool has completed the diversity-outcome
linear program and the AI designer has defined some initial probability
values in the behaviour tree he can ask the tool to show him the recom-
mended node. The tool then utilises the result from the linear program
and any probability values defined by the AI designer to create the equa-
tions. Figure 5.4 on the facing page illustrates a behaviour tree where
each probability value has a variable that denotes its value. In this par-
ticular example the AI designer might have a good idea on the probability
distribution for P21 and P22 and has therefore defined these. The AI de-
signer is afterwards uncertain of what probability values to define next
and therefore needs the tool to recommend a node. The problem can be
set up as the following equations:

42

5.3. RECOMMENDED NODE

P1 = P11 · P21 · P31
P2 = P11 · P21 · P32
P3 = P11 · P22 · P41
P4 = P11 · P22 · P42
P5 = P11 · P22 · P43
P6 = P12

In this example it is not needed to calculate and compare all of the
probability factors but instead it is sufficient to take a subset of them.
The AI designer is in doubt of which subtree of Selector 2 to define. Be-
cause of this it is only required to compare factors from each subtree,
and in this case P1 is chosen from the left branch and P3 from the right
branch. These variables can be chosen randomly from each subtree as
the comparison is made between the subtrees and not the children in the

Root

Selector 1

Action 4Action 2

Selector 3

Action 1

Selector 4

Action 3

P41 P42

P12P11

P31

P1

Action 5

P43P32

P2 P3 P4 P5

Selector 2 Action 6

P21 P22 P6

Figure 5.4: An illustration of a behaviour tree used as an example for the sensi-
tivity analysis

43

Chapter 5. Probability Value Guideline

subtree. The output factor for the sensitivity analysis derivation is the
path probability, and the input factor is the probability factor for which
the influence needs to be analysed.

∂P1
∂P31

= P11 · P21

∂P3
∂P41

= P11 · P22

The result from sensitivity analysis can be used to compare the two
probability factors and determine which one impacts the most. Both P1
and P3 is influenced by P11 but each of them is also influenced by a
second factor. It can therefore be said that if

P21 > P22 (5.3)

then P41 impacts P3 less than P31 impacts P1. Since the AI designer as
previously mentioned has defined P21 and P22 the tool can suggest that
the recommended node is Selector 3 and the AI designer can then choose
to define it.

In this example the AI designer would have defined enough variables
in order to calculate the rest of the tree but the technique scales to larger
trees. In a larger tree the tool would use all the defined variables by the
AI designer to find the node that impacts the behaviour tree the most. It
it however not always possible to recommend a node for a AI designer and
given the amount of defined variables and the structure of the tree, there
could exist multiple solutions for a recommended node. One of these
nodes can then chosen to be presented to the AI designer.

Summary

This chapter showed how the diversity-outcome linear program could find
the path probability distribution that maximises diversity while keeping
the agent outcome according to the AI designers wishes. By combin-
ing the path probability distribution with the game context from the AI
designer it was shown how it would be possible to calculate probability
values based upon this. Lastly it was shown how sensitivity analysis can
be used to recommend a selector node that if defined impacts the system
of paths the most.

44

CHAPTER

6

Tool Extensions

The path probability distribution, expected utility, and diversity provides
information about the behaviour tree that combined with the knowledge
of the game context can help the the AI designer to create the optimal
behaviour selection scheme. This combined information can serve as the
basis for tool extensions for a behaviour tree editing tool such as the
Behaviour Editor [4], that serves to guide the AI designer to create the
optimal behaviour selection scheme with regard to agent outcome and
diversity.

The section begins with an introduction into benchmark values that
provides the AI designer with hard numbers about the behaviour tree. It
then continues to a section that suggests highlighting paths in a behavior
tree to help the AI designer to keep focus. The next section shows how
probability values in the behaviour tree can be locked to distinguish final
probability values, which then is used in the following section that ex-
tends the principle of autogeneration probablity values from Section 5.2
on page 39 to include this. The next section presents a solution to the
problem where the AI designer assigns probability values to the behaviour
tree that breaks the path probability distribution. The following section
introduces the concept of packages in behaviour trees to abstract generic
behaviours into reusable nodes. The last section presents a workflow that
utilises all of the tool extensions in the process of creating a behaviour
tree.

6.1 Benchmarks

Benchmark values in this context means values that provide hard in-
formation about a behaviour tree, e.g. statistical information like the
number of nodes in a behaviour tree. The benchmark values can be com-
bined with the AI designers knowledge about the game context to provide
an estimate about how the behaviour tree is constructed and in what ar-
eas, e.g. the diversity of the behaviour tree, that should be looked into for
improvement.

45

Chapter 6. Tool Extensions

Statistics

Statistical information about the behaviour tree such as the number of
nodes and paths provides the AI designer with structural information.
This information can be utilised to provide an estimate of the current level
of complexity in the behaviour tree used when building the behaviour
tree.

Diversity

Presenting the diversity value of the behaviour tree would allow the AI
designer to first and foremost get an idea about the current level of diver-
sity in the behaviour tree, but also allow him to see how a change in a
probability value would change the diversity. For instance the AI designer
could change one probability value in the behaviour tree and observe that
this decreased the diversity of the agent, however he also knows that this
change would shift the intended behaviour in the wanted direction. The
AI designer could then allow this decrease or try another solution to see
if that keeps the level of diversity while improving the agent behaviour.
There are cases where the diversity of the agent not equals the maximum
possible diversity, but where the AI designer concludes that the achieved
behaviour selection scheme is diverse enough for the purpose and stops.

Agent Outcome

The outcome of the behaviour tree or any selected single node would
be useful to the AI designer as it provides an idea about the current
outcome of the agent, e.g. if the utility value type is aggressiveness and
the expected utility is large the AI designer would know that this agent is
very aggressive. This value of course depends upon the AI designer having
chosen a utility value type and defined utility and probability values for
the whole tree. This benchmark can also be used by the AI designer to
deduct a range for the expected outcome condition needed to get the path
probability distribution. This can also be used if the AI designer wants
agents with the same basic behaviour tree, but with different levels of the
utility value type, e.g. if the utility value type was difficulty the AI designer
could use this benchmark to create agents with different difficulty levels.

46

6.2. PATH MARKUP

Path Probability Distribution

The path probability distribution is the optimal goal for the AI designer
to achieve based upon his requirements of the agent outcome. The path
probability distribution should be written at the end of each path such
that it represents a goal to achieve. The AI designer can then try to
approximate the path probability distribution when assigning the proba-
bility values to the selectors.

The path probability distribution can also provide the AI designer with
some initial ideas about how to assign the probability values of the selec-
tors before any of them has been assigned. An example is a path which
according to the probability distribution should be 70%, where the AI de-
signer then would know that the whole subtree containing the path at
least would require 70% probability of execution to adhere to the path
probability distribution.

The path probability distribution depends upon the correct assign-
ment of utility values to achieve it, but by combining the knowledge of
the game context and the probability distribution it would be possible
for the AI designer to deduct if the distribution fits with his idea. For
instance the AI designer could notice that an important path has a low
probability value, which thereby makes it possible for him to conclude
that some of the utility values in that branch might be poorly assigned.
After having updated the utility values the AI designer could then ask
the tool to recalculate the path probability distribution and continue the
cycle until he is satisfied with the result.

6.2 Path Markup

It is difficult to find a direct correlation between the path probability value
and the game context so it is not sufficient to show the path probability
distribution to the AI designer. However it is possible to use the path
probability distribution as a guideline for the AI designer when a prob-
ability value on a path is to be changed. As Figure 6.1 on the following
page shows, the behaviour tree can illustrate the paths going away from
the probability node, and thereby highlight which of the paths this prob-
ability value affects, which in effect helps the AI designer to approximate
the path probability distribution.

The AI designer will in some cases be able to deduct the probability
values of a path and would therefore be beneficial to highlight the path
to help him to keep focus on the task at hand. Figure 6.2 on page 49

47

Chapter 6. Tool Extensions

Selector 3

Selector 1

Selector 2

Selector 4

A1 A2

A3

A4 A5

Utility: 400
Prob: 0.03

Utility: 100
Prob: 0.07

Utility: 50
Prob: 0.4

Utility: 300
Prob: 0.2

Utility: 150
Prob: 0.11

Root

0,4Minimum:

0,5Current:

0.5

Figure 6.1: An example of a behaviour tree with three possible paths

illustrates this where the AI designer in (a) has selected one path, and in
(b) has selected another. After having selected this path the AI designer
can set any probability values to the path and try to approximate the path
probability.

6.3 Probability Value Lock

When assigning probability values to the behaviour tree the AI designer
can in some cases deduct one or more probability values based upon his
knowledge of the game context. In this case the AI designer needs a way
to indicate that this setting is final and should not be changed e.g. when
he is tweaking the behaviour tree. Such settings can be locked to indicate
that the value is final, and the AI designer can write a note in the tool that
explains why this value is locked. The use is illustrated in Figure 6.3 on
the facing page, where the first probability value is locked, and the rest
are not, so in this case the AI designer has deducted that the leftmost
branch must be executed 30% of the times but are uncertain about the
rest. If the AI designer at some point changes his mind the probability
value can be unlocked to allow changes to the variable.

48

6.4. AUTOGENERATE TRIVIAL PROBABILITY VALUES

Selector 1

Sequence

Selector 4

A1 A2

A3

Utility: 400 Utility: 100

Root

 ...

Utility: 254
Path 1: Prob: 0.4
Path 2: Prob: 0.1

(a)

Selector 1

Sequence

Selector 4

A1 A2

A3

Utility: 400 Utility: 100

Root

 ...

Utility: 254
Path 1: Prob: 0.4
Path 2: Prob: 0.1

(b)

Figure 6.2: An illustration of how values can be automatically calculated in the
behaviour tree.

Selector 1

Action 2Action 1

0.20.3

Action 3

0.5Action 1 requires 30%

Figure 6.3: Probability values in the behaviour can be locked and a note can be
written that describes why

6.4 Autogenerate Trivial Probability Values

When the AI designer locks a probability value in the behaviour tree he
indicates that this setting is final and should not be changed, however
the same cannot be said for the rest of the unlocked variables. The tool
can test if any probability values can be calculated based upon the locked
variables. This test is performed every time a new variable is locked as
described in Section 5.2 on page 39. This auto generation of probability
values removes some of the complexity of the behaviour tree for the AI
designer and makes it possible for him to concentrate on assigning only
a subset of the variables.

49

Chapter 6. Tool Extensions

The equations illustrated in Section 5.2 on page 39 can be set up for
a behaviour tree and the path probability distribution and the locked
variables can be inserted into the equations. The tool can then test if
it is possible to find the values of any of the unlocked variables based
upon this. Figure 6.4 illustrates this where (a) is the empty tree with
the unknown variables and (b) is after the AI designer has defined and
locked a probability value. As is illustrated in the equations in 6.1 this
complies with the requirement of the right branch, and makes it possible
for the tool to calculate suggested values for the rest of the variables in
this example.

0.14 = P11 · P21
0.08 = P11 · P22
0.45 = P12

(6.1)

Selector 1

Selector 2

A1 A2

A3

Prob: 0.14 Prob: 0.08

Prob: 0.45

P11 P12

P21 P22

(a) The behaviour tree before any
probability value is defined

Selector 1

Selector 2

A1 A2

A3

Prob: 0.14 Prob: 0.08

Prob: 0.45

0.450.55

0.750.25

A3 is locked

(b) The behaviour tree after a probability value
has been defined and locked

Figure 6.4: This behaviour tree only requires one lock to make it possible to
calculate suggested values for the rest

50

6.5. PROBABILITY VALUE CONSTRAINT

6.5 Probability Value Constraint

Selector 1

Action 2

Selector 2

Action 1

Action 3

0.90.1

X

0.7

Y

0.2

0.1

Figure 6.5: The values assigned
by the AI designer might not
comply with the path probability
distribution

The AI designer is able to insert any prob-
ability value in a selector as long as the
sum of the values is 1.0 and that each
value p complies with 0.0 ≤ p ≤ 1.0.
This makes it possible for the AI designer
to assign probability values that renders
the path probability distribution impos-
sible. This is possible since the AI de-
signer might know that some variable
should be set to a certain value in or-
der to acheive the wanted behaviour, how-
ever that value makes it impossible to
comply with the path probability distribu-
tion. The problem is illustrated in Fig-
ure 6.5 where the AI designer has as-
signed the probability distribution {0.1,
0.9} to Selector 1 which makes it impos-
sible to achieve the path probability dis-
tribution.

The solution to the problem is that the tool after the AI designer has
locked a variable tests if the newly defined variable breaks the path prob-
ability distribution. This can be done by setting up the equation for the
path and check if it is possible to solve. If this check fails and the defined
variable renders the path probability distribution impossible to achieve
the AI designer will be presented with a choice. Either he changes the
value to one that fits with the path probability distribution or he sets the
setting as a constraint. If the AI designer chooses not to change the value
the tool must calculate a maximum possible probability value of each
path which the probability value affects. The pseudo code to calculate
the value for one path is shown in Listing 6.1.

Listing 6.1: This function calculates the maximum possible probability value of a
path

1 var maximum_path_prob = 1
2 foreach probability value p in the path
3 if p is locked
4 maximum_path_prob *= p
5 return maximum_path_prob;

51

Chapter 6. Tool Extensions

These values can then be added as constraints to the diversity-outcome
linear program, so when it is run again the linear program will either
output a new path probability distribution that complies with the current
settings or tells the AI designer that no solution is available. In the ex-
ample of Figure 6.5 on the preceding page the linear program would look
like below.

Maximise− (p1 · log2(p1) + p2 · log2(p2) + p3 · log2(p3))
subject to p1 · U1 + p2 · U2 + p3 · U3 ≥ V1

p1 · U1 + p2 · U2 + p3 · U3 ≤ V2

p1 + p2 + p3 = 1
p1 ≤ 0.1
p2 ≤ 0.1
p3 ≤ 0.9

p1, p2, p3 ≥ 0

The path probability distribution can be rendered impossible to achieve
for instance if the AI designer has chosen difficulty as utility type and the
action node which reflects the goal of the game, for instance capture the
flag, has a high difficulty value. The AI designer sets the agent to have
a low difficulty level, i.e. set a low range for the utility constraint, and
the tool will then calculate the path probability distribution. However the
result of this might be a probability distribution which rarely executes
the goal of the game, and the AI designer knows the probability of exe-
cuting this particular action and therefore sets the probability value to a
high amount. This breaks the path probability distribution, but the AI
designer is aware of this and locks the value, and thereby forces the tool
to calculate a new probability distribution that fits with the setting.

The AI designer is able to use as many of the defined variable as con-
straints as needed, but at some point it might not be possible to solve the
linear program given the constraints. If that is the case the tool provides
the AI designer with two options again. First to loose some of the defined
variables to satisfy the utility range constraint or secondly change the
utility range as it is not possible to solve given the other constraints.

52

6.6. BEHAVIOUR PACKAGES

6.6 Behaviour Packages

Often the behaviour tree consists of a series of generic behaviours which
not necessarily has any probability correlation to the rest of the behaviour
tree. This means that no probability value in this generic behaviour
should depend upon other probability values in the rest of the behaviour
tree. An example could be a behaviour that follows some leader agent.
This behaviour would be identical in all agents sharing this behaviour
and should therefore have the same probability values among the agents.
This subtree can then be put into a package and the AI designer can see
this as a single node with only one utility value and no path branching. So
even though this node after compilation might branch into several paths
it will only be seen as one in the main tree. The main tree then becomes
smaller and thereby makes it easier to assign the rest of the probabil-
ity values with the rest of the tools available. This is also illustrated on
Figure 6.6 where (a) shows a behaviour where the sub-tree beginning in
node Selector 2 is a generic behaviour, which then in (b) is replaced by
a package node making the behaviour tree smaller and easier to assign
probability values to.

Root

Selector 1

Action 5

Action 2

Selector 1

Action 1

Selector 2

Action 3

P1

Action 6

P2 P3

P4

P5

Sequence

Action 4

P4

(a)

Package

Root

Selector 1

Action 2

Selector 1

Action 1

P1 P2

P3

(b)

Figure 6.6: Shows how a behaviour tree after having put generic behaviours into
packages can make it smaller and thereby remove some of the complexity of prob-
ability values assignments

53

Chapter 6. Tool Extensions

6.7 Workflow

This section describes the workflow of creating an agent for a game with
the help of the new tool extensions. The workflow is based upon mockup
images of how the tool extensions would look in the Behaviour Editor as
presented in Section 2.2 on page 19, however any of the tools can be im-
plemented in any type of behaviour tree editing tool.

Figure 6.7: A behaviour tree as it looks in the Behaviour Editor

When the AI designer opens the Behaviour Editor it will only show an
empty canvas, and the AI designer can create a new AI component. When
the AI designer has created this he is able to draw the behaviour trees re-
quired by the agent using the same notation as presented in the formal
model. Figure 6.7 shows a behaviour tree drawn in the Behaviour Editor.
The name on the action nodes are automatically set to be the name of
the action script, which performs the action on the agent, assigned to the
node. In this behaviour tree the AI designer knows that the third subtree
of the topmost selector performs the generic behaviour for walking ran-
domly around the level. The AI designer needs the behaviour in another
agent so he chooses, as shown in Figure 6.8 on the facing page to turn
this subtree into a package to simplify the behaviour tree. The AI de-

54

6.7. WORKFLOW

signer is at this point able to compile the behaviour tree and attach it to
an agent in a game and run it. However the selectors are using the ran-
dom selection scheme, and it is therefore unlikely that the outcome of the
agent represents the desirable agent outcome and the AI designer must
therefore switch some of the selectors to other selection methods such as
probability to tweak the behaviour. When a selector scheme is switched
to probability the children of the selector will automatically received an
equal share of probability.

Figure 6.8: A subtree is recognised as containing a generic behaviour and is
therefore converted into a package

The AI designer is often not able to define all probability values in the
behaviour tree, but knows some of them from the game context. The AI
designer is encouraged to define as many probability values as possible
as this makes it easier to assign the last probability values later. In the
case of Figure 6.9 on the next page the AI designer knows that the agent
only should move random around the level 10% of the times and has
therefore set this value and locked it. The figure also illustrates how path
markup helps to see which nodes are affected when the probability values
of the selector is changed. It is at this point possible to see the diversity
level of the agent, which is available in the inspector on the left.

To assign the last probability values the AI designer can use the prob-
ability value guideline tool extension. First the AI designer specifies some
utility type that represents the agent outcome. The AI designer should
then assign utility values to each leaf node of the behaviour tree, as is
illustrated in Figure 6.10 on page 57. The utility type can be seen in

55

Chapter 6. Tool Extensions

Figure 6.9: Probability values has been defined by the AI designer

the inspector window on the left, and the utility values can be seen in
a box beneath a leaf node by selecting the blue icon. The inspector also
shows how many leaf nodes that lack utility values before it is possi-
ble to continue. When the AI designer has specified all utility values
the tool will calculate the path probability distribution based upon the
locked probability values, the utility values, and the utility value range.
The probability value of each path is then shown beneath each leaf node
as seen in Figure 6.11 on page 58, and the AI designer can then define
the missing probability values by using these as a guideline. If the AI de-
signer does not find the path probability distribution to fit with his idea
about the agent design he can change any of its constraints, e.g. utility
values, and allow the tool to recalculate a new distribution. Each locked
probability value makes the tool calculate other trivial probability values
as described in Section 6.4 on page 49.

The AI designer might know the importance of a certain leaf node but
because the behaviour tree is immense he is in doubt of which selector
nodes that influences it. The AI designer can then select the node and
one by one select the paths going to the node to see them highlighted as
illustrated on Figure 6.12 on page 58. There are also situations where the
AI designer does not know what node to define next, and can then use
the node recommendation system to find the node that if defined would
affect the final outcome of the behaviour tree the most.

56

6.7. WORKFLOW

Figure 6.10: The inspector shows the benchmark values such as diversity and
expected utility, and also makes it possible to change the utility type and create
the path probability distribution. The main canvas shows the utility values as
defined by the AI designer

Figure 6.13: The tool has
found some new trivial prob-
ability values and they are
then presented for approval

The AI designer can define a probability
value which will make it impossible to achieve
the path probability distribution. In this case
the AI designer is presented with a dialog box
asking him if he wants to keep the value.
In the case he does the tool must recalcu-
late the probability distribution with the new
constraints, otherwise the AI designer must
assign a probability value that adheres to
the probability distribution. As previously
mentioned each locked probability value will
make the tool recalculate trivial probability
values, however before they are set the AI de-
signer must approve them as illustrated on
Figure 6.13.

When all of the probability values are defined the behaviour tree is
complete, and the maximum level of diversity based upon the constraints
set by the AI designer are achieved.

57

Chapter 6. Tool Extensions

Figure 6.11: The probability distribution for each path has been calculated

Figure 6.12: By selecting a path in the drop down menu it will highlight all of the
nodes in the path

58

6.7. WORKFLOW

Summary

This chapter presented a series of tool extensions that utilised the con-
cepts presented in the previous chapters to help the AI designer create a
good behaviour selection scheme for an agent. The tool extensions cov-
ered hard numbers about the behaviour tree, how to help the AI designer
to keep focus, locking and autogeneration of trivial probability values,
and packaging generic behaviours. One section also covered how to han-
dle probability values in the behaviour tree that does not comply with
the path probability distribution. The chapter ended in a section that
presented a suggested workflow for the new set of tool extensions.

59

Chapter 6. Tool Extensions

60

CHAPTER

7

Evaluation

To review the contribution made by the formal model, the Behaviour Edi-
tor, and the tool extensions, it is necessary to evaluate these. This is done
by presenting the project to a series of different test subjects in order to
get their subjective opinion.

Two different types of test subjects are required, one who has experi-
ence creating agents but no direct experience using behaviour trees, and
another with behaviour tree experience. This allows for two types of views
on the project, as the one with behaviour tree experience can provide ad-
ditional feedback about the project and the unexperienced provides some
fresh insight into behaviour trees. The evaluation is the presentation of
the different parts of the project and works as a discussion between the
test subject and the tester, in such a way that the tester will ask into
different areas to allow the test subject to provide his own opinion. Be-
cause of this there are no locked set of questions, but more an agenda
containing the different areas which must be covered. The agenda can be
found in Appendix B.1 on page 89. Besides having test subjects evaluate
the techniques a demonstration game is developed in order to evaluate
upon an agent created using the proposed techniques.

The evaluation is split up into four discussion areas where the first
discusses the formal modal, second the Behaviour Editor, three the tool
extensions, and fourth a demonstration game using different agents.

7.1 The Formal Model

The formal model that was presented in Section 2.1 on page 11 is largely
responsible for how easy the process of building a good agent is and the
comprehensibility of this agent. If the formal model is incomprehensible
the advantage of using it would be severely limited, and it is therefore
important to get an evaluation of it.

61

Chapter 7. Evaluation

The formal model is to be presented to the test subjects in the form of
pre-made behaviour trees as seen in Appendix B.3 on page 98. The tester
should then start a discussion regarding the readability of the formal
model to uncover if the test subject understands the behaviour trees and
thereby the formal model. After this the tester must ask the test subject if
he sees it possible to create all types of agents, or if something is lacking
in the formal model.

7.2 The Behaviour Editor

The Behaviour Editor, as presented in Section 2.2 on page 19, is an ex-
ample of a behaviour tree editing tool. The Behaviour Editor has im-
plemented the formal model, and thereby makes it possible to draw be-
haviour trees according to the model. The Behaviour Editor is also used
as the basis for the presentation of the tool extensions for the test sub-
jects and it is therefore necessary to have an evaluation of the tool itself.
The tool is evaluated by taking the test subjects though the process of
building a standard behaviour tree in the Behaviour Editor, so they can
provide continous feedback on both the tool and the workflow.

7.3 Tool Extensions

After having run through a standard workflow in the Behaviour Editor
the test subjects is presented with the tool extensions. Each tool exten-
sion is illustrated in a mockup that bases its graphical appearance on
the look of the Behaviour Editor in order for the test subjects to have a
known tool to relate to.

The first tool extension to be evaluated is the probability value guide-
line which is the main tool extension capable of helping the AI designer
to assign probability values to the selector nodes. The evaluation begin
with a discussion of how important diversity is to the test subject when
creating an agent. The tester then start a discussion about utility types
and utility values to see if the test subject would be able to relate to such
terms and if how hard it would be for him to assign such values to a be-
haviour tree after this. The tester must engage in a discussion regarding
the automatic assignment of probability values and how the node recom-
mendation system would help.

62

7.4. AGENT COMPARISON

Secondly the other tool extensions, such as benchmarks, path markup,
and locking is presented using the mockups, and it must then be dis-
cussed how much they each would help in the process of creating the
final behaviour tree.

7.4 Agent Comparison

The formal model, the tool, and the tool extensions can be combined into
a common solution for creating agents for realtime games. The best way
to get the solution evaluated is to create an agent using the new tech-
niques, and then compare it against other agents created using different
techniques. The agents must then be compared with regard to diversity
and the required agent outcome. All of the agents must use the same be-
haviour tree, but with different probability distributions on the selectors
to ensure that it is not the behaviour tree itself that improves the agent
behaviour.

7.4.1 The Demonstration Game

The demonstration game is based upon a game mode known as King of
the Hill, where the goal of the players is to stand on the “Hill” to receive
points. The game is described in detail in AISuite: Behaviour Editor [4].

The Behaviour Editor uses the concept of interrupt trees to enable the
agents to react to sudden events in the game world, e.g. if the agent is be-
ing shot at, and thereby overwrite the main behaviour until the situation
has been handled.

As mentioned each of the agents has been implemented using different
selection methods, where the first agent uses a selection algorithm based
upon random. Random selection should create an agent with the highest
amount of diversity but where the difficulty of the agent will vary. The
second agent is created using probability selectors, but without using
the new techniques. The probability values is therefore defined by an
AI designer and it is difficult to measure the level of difficulty the agent
provides to the game. The third agent is implemented using the new
proposed techniques for defining probability values. Using this technique
the AI designer is able to control the difficulty of the agent and at the same
time maximise the diversity of the agent.

63

Chapter 7. Evaluation

The agents uses interrupt trees, but only the probability values on
the main tree differs between the agents. The main tree, as seen on
Figure 7.1, controls the overall behaviour of an agent, and the interrupt
trees handles the behaviours responsible for situations such when the
agent is being shot at, sees an enemy, or is near the target. The utility
type of the agents is set to difficulty, and the utility values is assigned to
each action node in the behaviour tree.

Root

Selector 1

Pickup
Bazooka

Sequence 2

Pickup
Health

Selector 3

P12

P11

P21 P22

Sequence 1

Selector 2 Go To
Target

Selector 4

P31

Pickup
Quad

Pickup
Bazooka

P41 P42

Go To
Cover

P43

Attack

P32

Locate
Random

Defend
Target

P13

Move

P1 P2

A3 A4

P5 P6 P7

P8
P9 P10

Figure 7.1: The main behaviour tree used by the agents in the demonstration
game

As there exists no implementation of the diversity-outcome linear pro-
gram with piecewise approximation the probability values has been found
by approximating the optimal configuration of the behaviour tree in a
spreadsheet capable of calculating the diversity and the expected util-
ity based upon the probability values of the nodes. The spreadsheet is
shown in Figure 7.2 on the facing page.

Figure 7.3 on page 66 illustrates the main behaviour tree of the agent
that has been implemented using the new proposed techniques. The
utility condition was set to high and the agent should therefore provide
a high amount of difficulty in the game. The settings of the two other
agents can be seen in Appendix B.5 on page 105.

Each of the agents is then placed in the demonstration game and it

64

7.4. AGENT COMPARISON

Figure 7.2: The spreadsheet capable of calculating diversity and expected utility
based upon the probability values and the utility settings

Table 7.1: Theoretical diversity and utility levels for each agent
Sir Manual Sir Random Sir Tool

Difficulty: 309,975 736,74 1128,5
Diversity: 0,348 0,754 0,661

is possible to see the scores and their diversity for each agent in the
game. The agents has a theoretical diversity and utility level as seen in
Table 7.1. The score can be used to benchmark each of the agents perfor-
mance and the agent implemented using the new techniques must have
a higher amount of difficulty according to the utility values and should
therefore often win. The diversity for each agent is calculated while the
game is executed by sampling the behaviours executed in the game. The
calculated diversity can later be compared with the theoretical diversity
in order to ensure the agent implemented using the new techniques has
a high amount of diversity. Figure 7.4 on page 67 illustrates the running
game with three different agents.

65

Chapter 7. Evaluation

Figure 7.3: The main tree used by a agent in the game

7.4.2 Evaluation method

As said the agent created with the use of the presented solutions should
be evaluated by comparing it to other agents. This comparison can be
accomplished by running the game multiple times and let the tool sample
the scores and diversity for each agent. The sampled data can afterwards
be analysed and compared with the theoretical data in order to show
the new techniques ensures an agent with a high amount of diversity
and an agent outcome with in the range defined by the AI designer. The
sampled data should also show that the agent implemented using the
random selection technique has the highest amount of diversity but that
the difficulty of the agent would vary.

It is not sufficient to calculate the agent diversity and scores in the
game. Therefore it is required to analyse upon the agents behaviours
by letting the test subjects provide subjective feedback by showing them
the running demonstration. The demonstration game therefore features
the three different agents competing in a game of King of the Hill. The
tester then interviews the test subjects during the execution of the game
regarding the behaviours of the agents.

66

7.5. RESULTS

Figure 7.4: The game running with three different agents

7.5 Results

Four test subjects were interviewed and the interview notes can be found
in Appendix B.2 on page 91. Two of the test subjects had previous ex-
perience with behaviour trees, and the other two had experience in the
field of AI but no direct experience with behaviour trees. The following
sections is a summary of the four interviews, which is divided into each
of the discussion areas.

67

Chapter 7. Evaluation

Formal Model

Since two of the test subjects has no previous experience with behaviour
trees it is important if they can understand the model and see how to
use it. They both found it to be easy to read and understand, and as
long as the scripting was let to the programmers it should be easy for
them to use the model. The test subjects with behaviour tree experience
also noted that the formal model clearly illustrates how behaviour trees is
constructed. The test subjects was also inquired regarding if they could
find any lacks in the formal model that would need to be fixed before
the formal model could be used to create an agent, however none of the
test subjects could notice any such limitation. It should be noted that
the non-experienced with behaviour trees only had limited time to un-
derstand the formal model which did not provide enough time for an in
depth analysis of the structure, however the experienced had previously
created agents with behaviour trees that had the same set of nodes with-
out any obvious limitations. The test subjects all understood the principle
of path and how to calculate the probability of this, which was important
for the later parts of the evaluation.

One of the test subjects had concerns regarding what would happen
if the behaviour tree got immense, however the authors feel that if such
a behaviour tree is required to achieve the wanted behaviour it is a sign
that the behaviour tree should either be redesigned or perhaps behaviour
trees is not the right structure for that type of agent. A test subject also
requested some way of reusing subtrees of the behaviour tree, and it was
noted that even though this is introduced later as a tool extension this
should be added as a part of the formal model as well.

Behaviour Editor

The test subjects played around with the Behaviour Editor tool and cre-
ated small behaviour trees in order to get first hand experience both with
the tool and also the interactive version of the formal model used in the
Behaviour Editor. There was a general consensus between the test sub-
jects that there was a clear correlation between the formal model and the
model used in the tool, however they did note that the graphical repre-
sentation of the root node and the arrows could be better implemented to
better fit with the formal model. The root node and the connection arrow
as used in the Behaviour Editor is illustrated on Figure 7.5 on the facing
page.

68

7.5. RESULTS

Figure 7.5: The root
node does not look like
the rest of the nodes,
and the connection indi-
cator in the tool ends in
a circle instead of arrow

The tool was written for Unity so it is impor-
tant that it does fit into the existing infrastruc-
ture and the test subjects all agreed that the
overall look and feel of the Behaviour Editor fit-
ted well into Unity. The test subjects also thought
the inspector, and the fact that most nodes in the
behaviour tree can be scripted to the wishes of
the programmer and designer was clear advan-
tages of the tool. There was some discussion if
the inspector should be in a window for itself to
fit a bit more into the Unity experience. The test
subjects also found the add node to canvas and
the node connection utility to be unintuitive.

Some of the test subject was concerned re-
garding the use of interrupt trees as they felt it
could be difficult to understand and use. The ex-
ample used by one of the test subjects was whether or not the main tree
should be reset after an interrupt tree had run, which is a consideration
needed to be made. One test subject also wished to have built in support
for debug information shown when executing the tree. The last part of
the Behaviour Editor was the workflow required to create an agent for a
game which all of the test subject found to be the proper way to construct
an agent and in overall find the tool to be useful.

Tool Extensions

The test subjects was inquired regarding how important diversity was for
agents, and the general consensus was that as long as it did not mean
that the agent would perform an unintelligent action and thereby disrupt
the goal of the agent it was desired. The test subjects was then told
about the concept of agent outcome and again it was agreed that it would
be beneficial to define a level of outcome and then try achieve the highest
possible amount of diversity while keeping the outcome.

After having described utility as used in the project to the test subjects
they were inquired if they would find it difficult to assign such values. The
test subjects did here provide some thoughts on how they would do it, e.g.
one would assign a common value to all leaf nodes where there was doubt
of the value and thereby create a basis for the rest of the values. But in
general the test subjects did not find it to be a difficult task. The test
subjects found the idea of custom utility types to be intriguing and one

69

Chapter 7. Evaluation

found that e.g. agents in a real time strategy game also could be modelled
by using a utility type called level of exploration.

They all agreed that to assign probability values to the behaviour tree
that keeps the balance of outcome and diversity could provide a chal-
lenge, and that tools helping with this would be well received. The test
subjects was presented to the whole suite of tool extensions, and gen-
erally liked how they could add their knowledge from the game by e.g.
locking values in the behaviour tree, while still getting help to achieve
an optimal distribution. It was important for the test subjects that they
should keep control, e.g. automatically completing the behaviour tree for
them would not be beneficial as they then would have lost both control
and overview. However they did like how it could calculate trivial proba-
bility values as they had to be approved before use. They also liked that
the tool could help them by recommending a node to define next.

The test subjects had some general improvements for the look and
feel of the new extensions however the consensus was that they would be
helpful in developing an agent.

Agent Comparison

Most of the test subjects could easily see how each agent behaved dif-
ferently in the game, and they found it easy to spot the agent which has
been implemented using the new techniques. However one of the test
subjects pointed out that in order to get a complete grip on the difference
in behaviour the game must run for a longer period of time.

The demonstration game was also run ten times where the scores and
the diversity of the different agents was calculated. Table 7.2 on the next
page illustrates the calculated data from ten game executions.

The game winner was Sir Tool which also was the agent created using
the new techniques. The diversity values for each agent is close to the
theoretical calculated value. The agent with the largest amount of diver-
sity is Sir Random closely followed by Sir Tool. The agent with the lowest
amount of diversity is Sir Manual. Sir Manual has a quite small level of
diversity compared to the rest because his probability values are poorly
defined. Based upon these observations it is apparent that the use of the
new techniques allows one to create an agent that has a certain agent
outcome while maximising the diversity. Sir Random does provides the

70

7.5. RESULTS

Table 7.2: The calculated data for each agent from ten game executions.
Sir Manual Sir Random Sir Tool

Score Diversity Score Diversity Score Diversity
1 0 0,293 468 0,731 2000 0,652
2 51 0,258 36 0,692 2000 0,584
3 396 0,307 1573 0,703 2000 0,639
4 720 0,388 856 0,706 2000 0,641
5 0 0,169 2000 0,678 1792 0,655
6 571 0,243 1102 0.685 2000 0,701
7 922 0,237 398 0.726 2000 0,608
8 -187 0,192 85 0.711 2000 0,572
9 -100 0,415 2000 0,748 1861 0,589
10 287 0,264 1295 0.736 2000 0,622

Average 266 0,277 981,3 0,712 1965,3 0,626
Wins 0 2 8

highest level of diversity as expected, but does not keep the agent out-
come as well as Sir Tool. Also just assigning probability values in the
behaviour tree as done with Sir Manual requires large amounts of testing
before a good result can be achieved.

Summary

The evaluation covered all the main areas of the project to ensure that
the result would be beneficial for potential users. The formal modal was
seen as a readable and easy structure to create agents for games. The
Behaviour Editor had its flaws but generally it provided the users with
the functionality they would require of such a tool. The test subjects also
liked the idea of having a tool capable of helping them to assign probabil-
ity values to the behaviour tree, and they felt that the set of proposed tool
extensions would cover this. The demonstration game illustrated how an
agent quickly could be set to be difficult and have its diversity maximised
when using the new techniques, which was further proved by letting it
fight against a baseline agent created manually, and a random agent.

71

Chapter 7. Evaluation

72

CHAPTER

8

Epilogue

The following sections describes the reflection, the conclusion and the fu-
ture development of the proposed techniques and the behaviour editing
tool Behaviour Editor. The first section reflects upon why a formal model
has to be created and also the final experiences with using the new pro-
posed tool extensions for Behaviour Editor. This is then followed by a
project conclusion, and lastly the future development section that e.g.
presents suggestions for how the tool can be improved and researched in
greater detail.

8.1 Reflection

The formal model of behaviour trees had to be created before any re-
search into easing the development of behaviour trees could be created as
no formal model previously existed. The formal model makes it possible
to have the same graphical appearance as well as the same behaviours
for the nodes and the same definitions for paths in all tools following
the model. This also makes it easier for users to make the transition to
other tools but also to implement the features presented in the report if
they follow the model. The formal model also made it possible to define
diversity and agent outcome measures for behaviour trees and thereby
effectively making it possible for the authors to create a tool based upon
linear programming to help the users define probability values for the
behaviour tree. All in all the formal model was a great aid through the
project to keep the ideas on track and constantly having a model to check
the theories towards.

In the beginning it was chosen to utilise standard linear programming
for calculating the path probability distribution as this seemed to be able
to produce a proper solution. Linear programming was then researched
in great detail in order to fully understand the mathematical technique,
but late in the project the authors realised that the objective function
based upon entropy was logarithmic and since linear programming re-

73

Chapter 8. Epilogue

quires a linear objective function another solution had to be found. An
article was found which presented a problem nearly identical to this, that
proposed a solution called piecewise approximation of the logarithmic
objective function. After having read the article it was concluded to be
applicable for this case as well, however in order to evaluate the perfor-
mance and the results of utilising this technique it has to be analysed
and implemented.

The evaluation of the Behaviour Editor and the new tool extensions
proved that the proposed techniques is a valuable aid for AI designers
developing agents for games. The two introduced measures diversity and
agent outcome was found to be understandable and usable when dis-
tributing probability values to the behaviour tree, but also a great factor
when comparing agents among each other.

A demonstration game were made where the agent created with the
use of the presented techniques was evaluated by comparing it again
two other agents. The results was positive as the measured diversity
values for each agent was close to the theoretical value. This shows that
using the new techniques makes the AI designer able to create an agent
who’s diversity level is lower but close to the agent implemented using the
random selection technique. However the amount of games won shows
that the agents difficulty level is the highest which fits with the fact that
it was designed to have this in the behaviour tree as well. The test also
showed that the agent implemented by manually assigned probability
values without the new techniques has the lowest diversity and the lowest
overall score. This shows that by designing an agent without using any
tools to aid the process it is hard to ensure a high level of diversity and
agent outcome.

Besides the verification of the tool to be beneficial for an AI designer,
the evaluation also provided new possible improvements which would in-
crease the ease of use of the tool. It is however necessary to implement
the tool extensions for the Behaviour Editor in order to conduct tests
which could provide more detailed results. By having this implementa-
tion it would be possible to have an AI designer actually use the tool to
create an agent. The test should prove that it is difficult to assign proper
probability values which maximises the diversity and retains a defined
outcome of the agent without the help of a tool.

74

8.2. CONCLUSION

8.2 Conclusion

The goal of the project was to ease the process of defining probability
values in a behaviour tree. To fulfil this the authors produced a formal
model for behaviour trees, that can be used as a model for others to create
behaviour tree tools. The formal model was also used for the development
of the new benchmarking measures for behaviour trees.

Two benchmark measures was proposed and was found to be valu-
able measures of an agents performance and behaviour. These measures
could then be used together with a mathematical technique known as lin-
ear programming. The linear program created from this is able to calcu-
late a probability distribution for each path in a behaviour tree which can
be used both as a guideline when defining probability values but also for
automatic generation of probability values. These extensions then serve
as the basis for a set of proposed tool extensions for use in a behaviour
tree editing tool such as the Behaviour Editor.

An evaluation of the formal model and the tool extensions were made
and proved that the formal model was understandable and that the new
extensions to the tool is a valuable aid in the process of defining proba-
bility values. Lastly an evaluation of an agent that was developed using
the new proposed techniques showed that the agent behaved as desired,
and that using the techniques made it easier to find out what to change
in order to switch the agent behaviour in a certain direction.

8.3 Further Development

As previously mentioned linear programming can not directly be used to
solve the problem for this project. A piecewise approximation technique is
proposed but has not been researched in greater detail nor implemented
so in order to evaluate the performance and the results of using this tech-
nique, future work would include researching how the technique works
and how it can be implemented in the Behaviour Editor.

During the evaluation of the tool extensions the test subjects observed
improvements for the tool. An important suggestion for improvement
are regarding the graphical representation of a behaviour tree in the tool
where the test subjects pointed out that the graphical representation did
not fit completely. Other issues included the tool that draws connections
between nodes in the canvas and the add node functionality which the

75

Chapter 8. Epilogue

test subjects did not find easy to use. The last issue with the tool is
the implementation of interrupt trees, where test subjects was uncertain
whether or not an AI designer would understand the system and thereby
be able to use it. These suggestions has be taken into consideration of
the next version of the Behaviour Editor to have a more functional and
powerful behaviour tree tool.

Lastly it would be required to perform more tests such as a functional
test of the tool, but also a practical test of the workflow by letting a de-
signer create an agent for a specific game.

76

BIBLIOGRAPHY

[1] Unity3d. http://www.unity3d.com. 9

[2] John W. Chinneck. Practical Optimization: a Gentle Introduction.
2000. 42

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, 2 edition, 2005.
79, 87

[4] Anders Tankred Holm and Mads Bøgeskov. Aisuite: Behaviour ed-
itor. https://services.cs.aau.dk/cs/tools/library/details.
php?id=1262691382, January 2010. 16, 19, 45, 63

[5] Gary A. Mastin and Richard J. Hanson. Maximum entropy signal
restoration with linear programming. 05 1988. 38

[6] Jr. Paul Penfield. Principle of maximum entropy: Simple form, March
2010. [Online; accessed 23-March-2010]. 23

[7] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2 edition, 2003. 31

[8] Wikipedia. Entropy (information theory) — wikipedia, the free ency-
clopedia, 2010. [Online; accessed 19-March-2010]. 23

77

http://www.unity3d.com
https://services.cs.aau.dk/cs/tools/library/details.php?id=1262691382
https://services.cs.aau.dk/cs/tools/library/details.php?id=1262691382

Bibliography

78

APPENDIX

A

Linear Programming

Linear programming is a mathematical concept capable of solving prob-
lems where the goal is to maximise or minimise the variables of a linear
function, which somehow are limited, e.g. in the case of resources or by
competing constraints. The source for this section is Introduction to Al-
gorithms [3], which is recommend for a more thorough exposition of the
subject. Such problems is called linear programming problems, and is
constructed as a linear program. A linear program consist of an objective
function, which is the linear function who’s variables needs to be max-
imised or minimised. The constraints of the linear program are called
linear constraints and are represented as equalities or inequalities on the
variables.

A feasible solution to a linear program is any setting of the variables
in the objective function which satisfies all the constraints, while a in-
feasible solution is where at least one constraint is violated. A setting of
the variables in the objective function is denoted by x̄, and the result of
the objective function with a certain setting applied is called the objective
value. A feasible solution x̄ whose objective value is larger than any other
feasible solution is called the optimal solution, and the objective value is
called the optimal objective value. A linear program is feasible if there
exist a feasible solution to it, otherwise it is infeasible. If there are no
finite optimal solution the linear program is unbounded.

The section starts with an introduction of the different canonical forms
in which a linear program can be presented, and continues on to discuss
the simplex algorithm which is capable of solving linear programming
problems.

A.1 Canonical Forms

A linear program can be represented in two types of canonical forms
called standard and slack. The standard canonical form is the max-

79

Appendix A. Linear Programming

imisation of a linear function subject to a set of linear inequalities, and
the slack form is the same except it requires linear equality constraints.
Standard is a more convenient and readable way to express a linear pro-
gram, however the simplex algorithm works internally on slack forms so
in order to explain it it is presented. It is possible to convert a linear
program into standard form and then from that into the slack form.

A.1.1 Standard Form

The first form to be presented is the standard form which is presented
below:

Maximise
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi

xj ≥ 0

where c is the coefficients of the objective function, b is constants in the
constraints, and a is the mn matrix containing all the coefficients in the
constraints. x is the set of variables that must be maximised. From this
it is possible to find four conditions that must be fulfilled before a linear
program can be said to be in standard form:

1. The objective must be to maximise the objective value

2. All variables must have a non-negativity constraint

3. Equality constraints with equal signs must be converted to use less-
than-or-equal sign

4. Inequality constraints with greater-than-or-equal sign must be con-
verted to use less-than-or-equal sign

A.1.2 Slack Form

The slack form is similar to the standard form with the exception of only
allowing one inequality constraint which is the non-negativity constraint

80

A.1. CANONICAL FORMS

and the rest must be equality constraints. However an inequality con-
straint, as seen in Equation (A.1) can be converted to an equality con-
straint by introducting the notion of a slack variable that measures the
difference between the two sides of expression. This slack variable can
be seen in Equation (A.2) and Equation (A.3), and it is obvious that both
must hold before the original expression is true.

n∑
j=1

aijxj ≤ bi (A.1)

s = bi −
n∑

j=1

aijxj (A.2)

s ≥ 0 (A.3)

The result is that the standard form rewritten to conform to the slack
conditions looks like this:

Maximise
n∑

j=1

cjxj

subject to bi −
n∑

j=1

aijxj = xn+1

x0...xn+1 ≥ 0

where xn+1 is the slack variable. However slack form is a more concise
structure than this, as it omits the “maximise” and “subject to” and rep-
resents the objective value by z:

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B

The variables on the left side of the constraint are called basic variables,
and the variables on the right side are called non-basic variables. This
representation makes it possible to represent the linear program by a tu-
ple: (N, B, A, b, c, v). Where N and B is the respective sets of indicies for

81

Appendix A. Linear Programming

the non-basic and basic variables, A is the mn matrix containing the coef-
ficients of the constraint variables, c is a vector containing the coefficients
of the variables in the objective function, and b and v are the constants of
the constraints and objective function respectively.

A.2 The Simplex Algorithm

The simplex algorithm is an algorithm capable of solving linear program-
ming problems. Simplex takes a linear program as input represented in
the concise form as shown in Section A.1.2 on page 80. This section ex-
plains how the algorithm works, and utilises the linear program shown
in A.4 as an example to illustrate certain points of the algorithm.

z = 2 + 3x1 + x2 + 2x3

x4 = 23 − 2x1 − x2 − 3x3

x5 = 53 − x1 − 2x2 − 2x3

x6 = 10 − 2x1 − x2 − 2x3

(A.4)

Simplex works by converting the provided slack form into an equiva-
lent slack form, where the objective value of the basic solution is either
equivalent or better. This is done until all the coefficients in the objective
function are negative, which indicates that the optimal solution has been
found. A basic solution is a setting where all the non-basic variables
is set to zero so the basic variables can be calculated, and it is obvious
that this is equivalent to setting the basic variables to the same value
as the constant in their respective equations. In A.4 the basic solution
would be (x̄1, x̄2, x̄3, x̄4, x̄5, x̄6) = (0, 0, 0, 23, 53, 10), and the objective value of
this would be 2. The algorithm is split up into three parts called main,
initialise simplex, and pivot.

A.2.1 The Main Function

The main function is the entry point of the algorithm, and the pseudo
code for the algorithm can be found in Listing A.1. This function is re-
sponsible for continuously finding an equivalent slack form with a hope-
fully higher objective value given the basic solution. This is done by
finding a non-basic and a basic variable and then switching their place.
The entering variable is found by finding the constraint that has the the
tighest constraint on the entering variable, and then selecting the basic
variable of that constraint as the leaving variable. That is the constraint

82

A.2. THE SIMPLEX ALGORITHM

where it is possible to assign the largest value to the entering variable
without violating the constraints. E.g. if x1 was chosen to be the entering
variable in the example, then the x4 constraint would allow x1 to be 11,
x5 53, and x6 5, before the non-negativity constraint is violated. So in this
case x6 has the tightest constraint so this would be chosen to become the
leaving variable.

When all the variables in the objective function has negative coeffi-
cients the system can return the basic solution for this slack form, which
when inserted into the original slack form provides the maximum objec-
tive value.

Listing A.1: Pseudo code for the main part of the simplex algorithm
1 float[] Simplex(float[,] pConstraintCoef, float[] pConstraintConst, float[]

pObjCoef)
2 {
3 SlackForm slackForm = InitialiseSimplex(pConstraintCoef, pConstraintConst,

pObjCoef);
4 if (slackForm == null)
5 return null;
6
7 while (terminate(slackForm.NonBasicIndicies, slackForm.ObjCoef))
8 {
9 // Choose a non-basic variable which has a non negative coefficient in the

objective function
10 int enteringVariable = ChooseEnteringVariable();
11
12 float[] limitation = new float[slackForm.BasicIndicies.Length];
13 for (int i = 0; i < slackForm.BasicIndicies; i++) {
14 int BasicIndex = slackForm.BasicIndicies[i];
15 if (slackForm.ConstraintCoef[BasicIndex, enteringVariable] > 0)
16 limitation[i] = slackForm.ConstraintConst[BasicIndex] / slackForm.

ConstraintCoef[BasicIndex, enteringVariable];
17 else
18 limitation[i] = Math.Infinity;
19 }
20
21 // Choose a basic leaving variable which allows the most severe increase

without violating the constraints
22 int leavingVariable = ChooseLeavingVariable(limitation);
23
24 if (limitation[leavingVariable] == Math.Infinity)
25 return null; // The solution is unbounded
26 else
27 slackForm = SimplexPivot (slackForm);
28 }
29
30 float[] solution = new float[slackForm.BasicIndicies.Length + slackForm.

NonBasicIndicies.Length];
31 for (int i = 0; i < solution.Length; i++) {
32 if (slackForm.BasicIndicies.Contains (i)) // Is this index a basic

indicies ?
33 solution[i] = slackForm.ConstraintConst[i];
34 else
35 solution[i] = 0;

83

Appendix A. Linear Programming

36 }
37
38 return solution;
39 }

Listing A.2: The termination condition for the simplex algorithm. As long as there
are positive coefficients in the objective function this function returns true

1 bool terminate(int[] pNonBasicIndicies, float[] pObjCoef)
2 {
3 foreach (int NonBasic in pNonBasicIndicies)
4 if (pObjCoef[NonBasic] > 0)
5 return true;
6
7 return false;
8 }

A.2.2 The IntialiseSimplex Function

The slack form that originally is provided to the simplex algorithm is not
guaranteed to have a feasible basic solution, or to be feasible at all, so
the algorithm needs to investigate this before trying to find an optimal
solution to the slack form.

The algorithm starts by testing if the basic solution for the original
slack form is feasible, and then returns the original slack form. If not it
must be determined if there are a feasible basic solution, and Initialis-
eSimplex does this by creating an auxiliary linear program based upon
the provided slack form. This auxiliary linear program is guaranteed to
have a feasible basic solution, which then can be used to determine if the
original linear program is feasible, and if so provide a slack form which
has a feasible basic solution back to the main simplex function.

The auxiliary program is created by converting the original linear program
into this form:

Maximise − x0

subject to
n∑

j=1

(aijxj − x0) ≤ −bi for i = 1, 2, ..m

xj ≥ 0 for j = 0, 1, ...n

This corresponds to setting the objective function to −x0, and adding
−x0 to each constraint. Based upon this it is possible to deduct that the

84

A.2. THE SIMPLEX ALGORITHM

original linear program is feasible if and only if the optimal objective value
of the auxiliary program is 0.

Listing A.3: This function determines if a linear program is feasible or not.
1 SlackForm InitialiseSimplex(float[,] pConstraintCoef, float[] pConstraintConst,

float[] pObjCoef)
2 {
3 int minConstraintConstantIndex = Find index of the minimum constraint constant;
4
5 if (pConstraintConst[minConstraintConstantIndex] > 0)
6 return new SlackForm(new int[]{1, 2, ... , nNonBasic }, new int[]{ n + 1,

..., nNonBasic + nBasic }, pConstraintCoef, pConstraintConst, pObjCoef,
0);

7
8 SlackForm Auxiliary = CreateAuxiliaryLinearProgram();
9

10 leaving = minConstraintConstantIndex + nNonBasic;
11
12 SlackForm FeasibleAuxiliary = SimplexPivot (Auxiliary, leaving, 0);
13
14 // Run while loop from Simplex and extract the basic solution from the slack

form
15 FeasibleAuxiliary = FindOptimalSolution(FeasibleAuxiliary);
16 float[] solution = GetBasicSolution(FeasibleAuxiliary);
17
18 if (x0 in solution == 0)
19 {
20 SlackForm final = Remove x0 from FeasibleAuxiliary and restore original

objective function
21 return final;
22 } else
23 return null; // The slack form is infeasible
24 }

The psuedo code for the algorithm can be seen in Listing A.3. The
function starts by finding the minimum constraint constant, and tests if
this is above zero. If it is the basic solution is feasible and the slack form
can be returned. In line eight the function creates the auxiliary program
as described above, and finds the index of the basic variable which has
the minimum constraint constant in its equation by adding the amount of
non basic variables to its index in line ten. Since the original slack form
basic solution was not feasible neither will the auxiliary basic solution be,
so line 12 does a pivot with x0 as entering, and xleaving as leaving, which
is guaranteed to provide a slack form with a feasible basic solution. Line
15 then runs the while loop from Listing A.1 in order to find the optimal
solution, which is extracted in line 16. As said above the original linear
program is feasible if and only if x0 is zero in the basic solution, so this
is checked in line 18. If so, the final slack form from line 15 will have x0

removed and its original objective function restored, and then returned,

85

Appendix A. Linear Programming

otherwise the linear program was infeasible.

A.2.3 The Pivot Function

The pivot operation is the basic operation in the simplex algorithm which
handles switching a basic and non-basic variable in a slack form, and
thereby create another equivalent slack form.

Listing A.4 shows the pseudo code behind this operation. The algo-
rithm takes the slack form as input including the indices of the leaving
and entering variables. The algorithm starts out by creating the set of
variables necessary to represent the new slack form. This is, as seen on
lines four to nine, based upon the original slack form.

The second step is to create the new equation where the entering vari-
able is basis, i.e. on the left side of the equation. To continue the example
of illustrated in Equation (A.4), the entering variable could be x1, and the
leaving would be x6 as this has the tightest constraint, i.e. this is the
equation where x1 can be set to the lowest value without violating the
non negativity constraint. So in the example x1 should be converted into
becoming a basis variable like this:

x6 = 10− 2x1 − x2 − 2x3

x1 = 5− 1
2
x2 −

1
2
x3 −

1
2
x6

This begins in line 13 where the constant of the new equation is calcu-
lated on basis of the old constant divided by the coefficient of the entering
variable. Lines 16 to 21 then calculates the coefficients of the non-basic
variables in the new equation, and line 24 calculates the coefficient of the
leaving variable.

The third step is to replace any occurrence of the entering variable
in the other constraints with the equation created in step two. In the
example this would look like:

x4 = 23− 2x1 − x2 − 3x3

x4 = 23− 2(5− 1
2
x2 −

1
2
x3 −

1
2
x6)− x2 − 3x3

x4 = 13− 0x2 − 2x3 + x6

86

A.2. THE SIMPLEX ALGORITHM

Line 27 iterates over the set of constraints, and ignores the one that was
rewritten in step two. Lines 32 to 44 then performs the same operation
as when it in the above example multiplies the coefficient of the entering
variable with the equation for the entering variable, and then shortens the
whole equation. The fourth step is to update the objective function which
is done in lines 47 to 57, and this works in the same way as the previous.
The last step is to update the sets of basic and non-basic variables, and
then return the new slack form.

Listing A.4: The pivot algorithm used in the simplex algorithm. This is based
upon the pseudocode from [3].

1 SlackForm SimplexPivot(int[] pNonBasicIndicies, int[] pBasicIndicies, float[,]
pConstraintCoef, float[] pConstraintConst, float[] pObjCoef, float pObjConst,
int pLeaving, int pEntering)

2 {
3 // 1. Create the variables for the new slack form
4 float[] newConstraintConst = pConstraintConst.Clone();
5 float[,] newConstraintCoef = pConstraintCoef.Clone();
6 float[] newObjCoef = pObjCoef.Clone();
7 float newObjConst = pObjConst;
8 int[] newBasicIndicies = pBasicIndicies.Clone();
9 int[] newNonBasicIndicies = pNonBasicIndicies.Clone();

10
11 // 2. Create a new equation with the entering variable as basis
12 // 2.1. The constant of the new equation is the constant of the leaving equation

, divided with the coef of the entering
13 newConstraintConst[pEntering] = pConstraintConst[pLeaving] / pConstraintCoef

[pLeaving, pEntering];
14
15 // 2.2. The coefs of the rest of the variables also requires a division with the

coef of the entering
16 foreach (int NonBasicIndex in pNonBasicIndicies) {
17 if (NonBasicIndex == pEntering)
18 continue;
19
20 newConstraintCoef[pEntering, NonBasicIndex] = pConstraintCoef[pLeaving,

NonBasicIndex] / pConstraintCoef[pLeaving, pEntering];
21 }
22
23 // 2.3. The coef for the leaving in the new entering equation is 1 divided with

the entering coef
24 newConstraintCoef = 1 / pConstraintCoef[pLeaving, pEntering];
25
26 // 3. Update the coeficients of the other constraints
27 foreach (int BasicIndex in pBasicIndicies) {
28 if (BasicIndex == pLeaving) // This is the equation that was fixed in 2.
29 continue;
30
31 // 3.1 Update the constant
32 newConstraintConst[BasicIndex] = pConstraintConst[Basicindex] -

pConstraintCoef[BasicIndex, pEntering] * newConstraintConst[
pEntering];

33
34 foreach (int NonBasicIndex in pNonBasicIndicies) {
35 if (NonBasicIndex == pEntering)

87

Appendix A. Linear Programming

36 continue;
37
38 // 3.2 Update the nonbasic coefficient
39 newConstraintCoef[BasicIndex, NonBasicIndex] = pConstraintCoef[

BasicIndex, NonBasicIndex] - pConstraintCoef[BasicIndex,
pEntering] * newConstraintCoef[pEntering, NonBasicIndex];

40 }
41
42 // 3.3 Applies a constant to the leaving variable
43 newConstraintCoef[BasicIndex, pLeaving] = -1 * pConstraintCoef[BasicIndex,

pEntering] * newConstraintCoef[pEntering, pLeaving];
44 }
45
46 // 4. Update the objective function
47 newObjConst = pObjConst + pObjCoef[pEntering] * pConstraintConst[pEntering];
48
49 foreach (int NonBasicIndex in pNonBasicIndicies)
50 {
51 if (NonBasicIndex == pEntering)
52 continue;
53
54 newObjCoef = pObjCoef[NonBasicIndex] - pObjCoef[pEntering] *

newConstraintCoef[pEntering, NonBasicIndex];
55 }
56
57 newObjCoef[pLeaving] = -1 * pObjCoef[pEntering] * newConstraintCoef[pEntering,

pLeaving];
58
59 // 6. Return to sender
60 // 6.1 Update the basic and nonbasic sets
61 newNonBasicIndicies.Remove(pEntering);
62 newNonBasicIndicies.Add(pLeaving);
63
64 newBasicIndicies.Remove(pLeaving);
65 newBasicIndicies.Add(pEntering);
66
67 // 6.2 Return the new slack form
68 return new SlackForm(newNonBasicIndicies, newBasicIndicies, newConstraintCoef,

newConstraintConst, newObjCoef, newObjConst);
69 }

88

APPENDIX

B

Evaluation

B.1 Evaluation Agenda

The evaluation is divided into parts, where each parts should be dis-
cussed in detail and the following topics should be included.

B.1.1 The Formal Model

Present the user with pre-made behaviour trees, which include the dif-
ferent nodes available. Important to get feedback on the following:

• Remember to ask the test subjects background

• Discuss how each node in the tree is used

• Discuss the structure of behaviour trees, how each node is linked
with another

• Describe how the execution of the tree is handled

• Present the idea behind paths in a tree, especially when sequences
are involved

• Introduce probability values for each node in the tree, and how these
values can be used to calculate the probability of reaching a path

• Does the formal model feel sufficient and flexible to any possible
agent the test subject could think of

B.1.2 The Behaviour Editor

Present the user with the Behaviour Editor running inside Unity. The
demo game is used as base for the discussion. Let the user play around
with the tool and guide the user towards creating a simple tree and be-
haviour for the agent. Important to get feedback on the following:

89

Appendix B. Evaluation

• How does the tool feel compared with the formal model. Is all nodes
and features denoted in the formal model possible in the tool

• Describe the implementation of interrupt trees and how they should
be used

• Does the tool fit into the Unity environment, regarding the features
and look and feel

• Is the tool intuitive to use, is it easy to draw trees in the canvas

• Is the inspector understandable, does it lack information regarding
the tree

• How is the workflow of creating an agent for a game, could some-
thing be optimised

B.1.3 The Tool Extensions

Present the user with the new extensions to Behaviour Editor using mock-
ups. The mockups is used to discuss the following:

• Discuss the idea behind agent diversity, and why it is important to
maximise

• Discuss agent outcome, how the outcome can be presented. What
could the different utility types be, the subject might have some to
share

• How hard would it be to define utility types for a tree

• Discuss the idea behind ease the process with defining probability
values using linear programming.

• Discuss why all the nodes is not automatic calculated

• Discuss the tool extensions, benchmark information in inspector,
path markup and how the locking mechanism works

• Does these tools aid in the process of defining probability values

• Is it hard to define probability values, and find the proper place to
define the values

• Introduce recommended node system

90

B.2. RESULTS

B.1.4 Agent Comparison

The user is presented with the demo game, where four different agents
is competing against each other. The following is important to include in
the evaluation:

• Describe the different agents for the user, and present the trees for
each agent

• Present the game for the user, so the goal of the game is known

• Discuss how each agent perform in the game, how does they behave

• Is it possible to see the difference between the agents

• Is it beneficial to have a system, which can ease the process with
creating agent with for instance different difficulty types.

B.2 Results

Four different test subjects where used for this interview, and the notes
from each interview is presented below.

B.2.1 First Interview

Martin Midtgaard an SW10 student in the MI department of Aalborg
University. Martin has no previous experience with behaviour trees or
Unity3D.

Formal Model

• The behaviour seems easy enough for a designer to use, if the ac-
tions scripts is developed by programmers.

• The structure seems very static.

• It might be confusing when the tree is growing to big.

• The test subject understands the path and probability principle.

• Wants the tree to be reusable, often the same behaviours is used
multiple times.

91

Appendix B. Evaluation

The Behaviour Editor

• The drag connection buttons does not make sense.

• Maybe use small boxes the connections can be pulled from.

• The tool is a 1 to 1 comparison with the formal model, except the
graphical representation.

• Understands the idea behind the inspector.

• The interrupts might be confusing for some.

• The interrupts might invalidate the old action and it might be infea-
sible to execute the old action.

• In some conditions you might not want to interrupt the tree.

• The look and feel fits with Unity.

• The inspector could be placed in its own window, so it is it can be
dragged.

• The presented workflow is how it should be done.

• He wants to be able to compile tree without scripts attached, so the
tree can still be used even if it not done.

• Debug information regarding the runtime execution of the tree.

Tool Extensions

• It makes perfectly sense to discuss diversity for an agent.

• Utility values might be difficult to balance in a tree.

• If the utility value is mistyped the agents behaviour is wrong.

• It is impossible to define probability values by hand, so a tool would
be needed.

• Is it always desirable to have a high amount of diversity?

• The package system is a nice addition to the tool.

• The locking system works, but it could also be nice to define the
value when clicking on the arch.

92

B.2. RESULTS

• The utility and path information should also be present in the in-
spector.

• The information box in the canvas is nice.

• It is very nice to be able to execute the linear program again with
new constraints.

• Wants a button to distribute the remaining values in the tree.

• The tool could be nice for a designer to use.

Agent Comparison

• It is a bit difficulty to see the different behaviour.

• The game should run a bit longer, then it is easier to see the differ-
ence.

B.2.2 Second Interview

Rasmus Kristensen a DAT6 student in the SSE department of Aalborg
University. Rasmus has previous experience with behaviour trees or
Unity3D.

Formal Model

• The model makes perfect sense, and describes how behavior trees is
structured.

• The path principle makes sense and is a good addition.

• Preliminary values is understandable.

• The model is flexible and can be used for any thinkable agent.

The Behaviour Editor

• Drag and connect system is a bit broken.

• The tool and the formal model fits perfect together, so the tool is
easy to use.

• The tool fits into Unity look and feel.

93

Appendix B. Evaluation

• The workflow seems to easy to be true, so it is kind of magic.

• The graphical representation should however fits more into the for-
mal model.

Tool Extensions

• Diversity is important for him.

• It makes sense not to lock the designer into a specific utility type.

• It is not difficult to assign utility values, but it might be alternated
by debugging.

• It is very needed with help to assign probability values.

• Makes sense not to auto generate all the values, as the information
regarding the game world is important.

• The package system is sweet, removes generic behaviours and in-
crease focus on agent specific tasks.

• The lock system make sense.

• Path markup is usable, especially in large unstructured trees.

• Expected utility is nice to compare agents.

• The path guideline system is understandable, and the recommended
node system is very nice.

• The system is a nice addition as he is not required to define all
probability values by hand.

Agent Comparison

• There is a clear difference in the agents behaviour.

• The random agent is truly random.

B.2.3 Third Interview

Allan Mørch Christensen a SW10 student in the MI department of Aalborg
University. Allan Mørch Christensen has no previous experience with
behaviour trees or Unity3D.

94

B.2. RESULTS

Formal Model

• The principle behind behaviour trees is understandable and feels
nice for a designer.

• The path principle makes sense to introduce for behaviour trees.

• Wants to use the environment from the game to control the selection
algorithm, which is possible.

The Behaviour Editor

• Needs tooltips for different nodes.

• Graphical representation is not 1 to 1 for the formal model.

• Connect and Drag system is a bit confusing.

• Beside the graphical representation the formal model and tool fits
together.

• The inspector is great and clever.

• Besides the graphical glitches, the tool looks nice and fits with Unity.

• The interrupt system is important for the behaviour trees to be use-
ful.

• Does find a bit troublesome with multiple trees.

Tool Extensions

• Diversity is a important factor for an agent.

• Does not feel it difficult to assign utility values, if in doubt just use
a average value.

• It would be difficult to assign probability values in order to increase
diversity and secure outcome.

• Would be clever to have a system that could be used after you have
defined some values.

• The package system could be nice, but in doubt.

95

Appendix B. Evaluation

• The locking system seems to be working nice, but the markup is a
bit to crazy.

• The numbers in the benchmarks window, might be confusing for a
designer.

• Recommended node is a nice additions as long it is not required to
define, it is not.

• The test subject find it very useful for a designer to have a system
like this.

Agent Comparison

• It is possible to see the different behaviours.

• The red agent, the one implemented using the new system, is great
and wins.

B.2.4 Fourth Interview

Anders Ejlersen a DAT6 student in the SSE department of Aalborg Uni-
versity. Anders Ejlersen has previous experience with behaviour trees or
Unity3D.

Formal Model

• The graphical notation make sense, and behaviour trees is very in-
tuitive to use.

• Path principle makes good sense.

• Find it hard to see any limitation of behaviour trees.

The Behaviour Editor

• The drag and connection system is a bit clunky.

• Why is there not and arrow on the arch.

• The tool and formal model fits together besides the graphical repre-
sentation.

96

B.2. RESULTS

• The inspector might be placed in the opposite side, to fit more into
Unity.

• The tool fits good together with Unity.

• The scripts system with public variables is a clever solution.

• The workflow seems quite simple and smart to use.

Tool Extensions

• Diversity makes sense to discuss about an agent.

• Can see the benefit from having the designer define his own utility
type.

• Does not feel it should be difficult to assign utility values for all
actions.

• It is is not difficult to assign probability values, but to define them
so an outcome is secured is.

• It makes sense not to auto generate all values as the information
about the game is lost.

• Package system is smart, but the designer might loose the overview
of the tree.

• The graphical representation of the package node should be changed.

• The locking system makes sense and easy to use.

• Path markup feel like a great addition.

• The graphical representation of the new tool is very nice.

• Does not initially wants a recommended node, wants to be in con-
trol.

• Propose the same solution as us, when discussing the variable prob-
lem.

• The system feels like a great aid in defining probability values.

97

Appendix B. Evaluation

Agent Comparison

• The is a clear difference between the agents.

• Yes the red agents is clearly more as intended as the rest.

B.3 Behaviour Trees

Root

Selector 1

Action 2

Sequence 2

Action 1

Selector 3

45

45

50 50

Sequence 1

Selector 2 Action 3

Selector 4

55

Action 6Action 5

33 33

Action 7

34

Action 8

45

Action 9

Action 4

10

Action 10

100

700 900 450

800

500

50

700375

300

A1 A2

A3 A4

A5 A6 A7

A8
A9 A10

Decorator

Figure B.1: An illustration of a behaviour tree

98

B.3. BEHAVIOUR TREES

Package

Root

Selector 1

Action 5

Action 2

Selector 1

Action 1

Selector 2

Action 3

P1

Action 6

P2 P3

P4

P5

Sequence

Action 4

P4

Root

Selector 1

Action 2

Selector 1

Action 1

P1 P2

P3

Figure B.2: An illustration on how the package node works

99

Appendix B. Evaluation

B.4 Mockups

Figure B.3: A behaviour tree as it looks in the Behaviour Editor

100

B.4. MOCKUPS

Figure B.4: A subtree is recognised as containing a generic behaviour and is
therefore converted into a package.

Figure B.5: Probability values has been defined by the AI designer

101

Appendix B. Evaluation

Figure B.6: The inspector shows the benchmark values such as diversity and
expected utility, and also makes it possible to change the utility type and create
the path probability distribution. The main canvas shows the utility values as
defined by the AI designer.

Figure B.7: The probability distribution for each path has been calculated

102

B.4. MOCKUPS

Figure B.8: By selecting a path in the drop down menu it will highlight all of the
nodes in the path.

Figure B.9: Recommended node system and a warning due to poorly defined
variable.

103

Appendix B. Evaluation

Figure B.10: The tool has found some new trivial probability values and they are
then presented for approval.

Figure B.11: The final tree, with all probability values defined.

104

B.5. AGENTS

B.5 Agents

B.5.1 Random Agent

Figure B.12: The main tree used by the random agent in the demo game

105

Appendix B. Evaluation

B.5.2 Manually Assigned Probability Values

Figure B.13: The main tree used by the manually assigned probability value agent
in the demo game

106

APPENDIX

C

Resume

The report documents the development of a set of tools and techniques
designed to aid the process of creating agents using an AI modelling tech-
nique known as Behaviour Trees.

The reports starts with an formal model of behaviour trees. This
presents the tree structure and the different nodes used in the model
and thereby creates a common foundation that supports the new tech-
niques. By using the formal model it would enable other developers to
use the presented techniques as well. The formal model then creates ba-
sis for a presentation of the problem, which is to ease the development of
agent using behaviour trees. This must be done by finding techniques to
ease the assignment of probability values in the selector nodes that is set
to use this selection scheme.

In the agent creation process the AI designer tries to achieve a cer-
tain agent outcome, while maximising diversity in its selection scheme.
To create an technique that achieves this measures must be found for
diversity and agent outcome that fits with behaviour trees.

The concept of entropy is researched and the formulae for Shannon
entropy is tested to work with behaviour trees by utilising it to calculate
the diversity of the paths in the behaviour tree. To measure the agent
outcome the authors use the known concept of utility and presents how
this can be defined by the AI designer. It is important to note that the
agent outcome measures some property of the agent which must be set
by the AI designer. The property is a characteristic of the agent, e.g.
difficult or aggressive.

These measures are then used in correlation with the mathematical
technique linear programming to create the optimal path probability dis-
tribution with regard to diversity and a AI designer specified level of agent
outcome. Having this probability distribution allows the tool to automat-
ically calculate probability values in the behaviour tree whenever enough
probability values has been defined by the AI designer. A method for rec-
ommending nodes to the AI designer is also presented. This method is
based upon sensitivity analysis which basically finds the selector node
that if defined has the largest impact than any other undefined selector

107

Appendix C. Resume

node on the agents behaviour.
To utilise these techniques a series of tool extensions are presented.

The first tool extension presents benchmark data regarding the behaviour
tree, like diversity and expected utility. The next tool extension tries to
help the AI designer to keep focus on the assignment of probability val-
ues of a certain path by highlighting it. To specify that certain variables
in the behaviour tree are final configurations the AI designer can lock
them. This is used to extend the principle of auto generating probability
values to calculate the values of the unlocked variables using the locked
variables and the path probability distribution. It is possible for the AI
designer to specify probability values that renders it impossible to achieve
the path probability distribution, when this happens the AI designer must
either recalculate a new path probability distribution with the current
settings as constraints in the linear program or redefine the probability
values in the behaviour tree. The last tool extension shows how to divide
and conquer the behaviour trees by placing generic behaviours in pack-
ages and thereby only see them as one in the main behaviour tree. Lastly
a workflow is presented which takes all of the new tool extensions into
consideration in the process of creating a behaviour tree.

The techniques and the tools are then evaluated by a series of test sub-
jects who finds them to ease the development of agents using behaviour
trees considerately. A demonstration game is created where three agents
are competing against each other. One of these agents are created us-
ing the new techniques and after having performed a series of tests it is
concluded that it performed as expected.

108

	Introduction
	Behaviour Tree
	Formal Model
	Behaviour Editor
	Problem

	Agent Diversity
	Entropy
	Entropy to Represent Diversity
	Diversity in Behaviour Trees

	Agent Outcome
	Utility
	Utility Value Type
	Expected Value

	Probability Value Guideline
	The Diversity-Outcome Linear Program
	Probability Distribution
	Recommended Node

	Tool Extensions
	Benchmarks
	Path Markup
	Probability Value Lock
	Autogenerate Trivial Probability Values
	Probability Value Constraint
	Behaviour Packages
	Workflow

	Evaluation
	The Formal Model
	The Behaviour Editor
	Tool Extensions
	Agent Comparison
	Results

	Epilogue
	Reflection
	Conclusion
	Further Development

	Linear Programming
	Canonical Forms
	The Simplex Algorithm

	Evaluation
	Evaluation Agenda
	Results
	Behaviour Trees
	Mockups
	Agents

	Resume

