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Synopsis:

The directivity of loudspeakers is an important factor for
the sound field production and perception. If controlling
the directivity at high frequencies is easy with waveg-
uides, it becomes much harder as long as the frequency
decreases and the wavelength becomes bigger than the
size of the sound source. An analytical study of tradi-
tional setups for controlling the low frequency directivity
is made, completed by Finite-Difference Time-Domain
simulations. Two solutions to improve the directivity
control are proposed. One based on an all pass filter
delaying the signal by different amounts at different fre-
quencies and another base on the difference of gain of the
signal applied on the different subwoofers. The different
solutions have been simulated with FDTD methods and
tested through measurements of a real setup. Improve-
ments have been noted with the proposed solutions.

The contents of this report are freely available, but publication (with specification of source) may only be done af-

ter arrangement with the authors.
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1
Project Description

The directivity of a loudspeaker is a parameter describing how a sound source radiates in its envi-
ronment and which sound field it produces.

For a long time loudspeaker manufacturers have tried to control the directivity of their loudspeak-
ers using different mounting arrangements to obtain a specific sound field. From the first horns
invented in the 17th century to the most advanced wave guide technologies used today on the line
source systems, the focus of manufacturers has mostly been on controlling the directivity at mid
and high frequencies.

One of the reason to that is also that the size of the wavelength at low frequencies makes impossible
the realization of waveguides of reasonable size for controlling the directivity of low frequencies.
Indeed, as long as the wavelength becomes higher than the size of the source, the control of the
directivity becomes harder and the source behavior becomes more and more omnidirectional.

However low frequency directivity control would be beneficial in different applications. In live-
music applications, it would help to reduce the amount of low frequency sent back to the stage
or to the technicians working in backstage nearby the subwoofers. In room acoustics Ferekidis
has shown in [12] the advantages of using cardioid subwoofers to limit the formation of modes in
small rooms even when the loudspeaker is positioned in a critical place (for example a corner).

Therefore the need of a directivity control at low frequency is real.

This project aims to propose and study different solutions for controlling the directivity of sub-
woofers. These solutions are studied through three different points of view: analytical, simulations
and measurements. One will mainly focus on the obtention of a cardioid pattern directivity as it is
the most common pattern desired in the audio industry.

After an analytical description of basic setups providing a control of the directivity at low fre-
quencies, one develops two solutions to improve the directivity control. A simulation tool based
on finite-difference time-domain is developed to simulate the behavior of the different proposed
solutions. Finally measurements are made to validate these solutions on a real setup.
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Analysis
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2
Fundamentals of gradient loudspeakers

2.1 Introduction

In 1973, Harry F. Olson introduced the term of gradient-loudspeaker as a reciprocal of the gradient
microphone [16]. According to Olson, and still by reciprocity to the different types of microphone,
loudspeakers can be divided in two categories: the wave-type loudspeakers and the gradient-type
loudspeakers.

Wave-type loudspeakers are the most common. Their directivity depends in some way upon wave
interference. With these loudspeakers a certain directivity can be obtained for frequencies whose
wavelengths are comparable to the dimensions of the radiators. So it is easy to understand that
achieving a good directivity at low-frequencies without using very large systems is difficult.

The term gradient-loudspeaker designates a loudspeaker consisting of two or more loudspeakers
separated in space and operating with a difference in phase. The dimension of gradient loudspeak-
ers are small compared to the wavelength, but combining them in certain way can lead to achieve
a good directivity at low-frequencies.

This chapter aims to introduce the fundamental principles of gradient-loudspeakers by presenting
the theoretical considerations of the performances of simple sound sources operating under various
orders of the gradient. For each order of the gradient, different MATLAB simulations are presented
and discussed in order to show the positive and negative points of such systems.

2.2 Zero-order gradient sound source: omnidirectional

The Zero-Order Gradient sound source-omnidirectional is the basis of all the other orders of gra-
dient sound source. So this section aims to find the proper expression that describes the sound
pressure produced by a Zero-Order Gradient sound source-omnidirectional.

Fundamentals of the wave equation

Under some assumptions relative to the properties of the fluid where the acoustic wave propagates
and depicted more precisely in [9], a system of equations describing the state of the fluid when
submitted to an acoustic wave can be fund. The analysis is limited to waves of relatively small

7



amplitude so the acoustic pressure p is small compared to the atmospheric pressure. The changes
in the density of the medium ρ0 are small compared to its equilibrium value so the condensation s is
also very small (s << 1). The acoustic processes are nearly isentropic (adiabatic and reversible).
The first fundamental equation is the linear continuity equation:

∂s

∂t
+∇.~u = 0 (2.1)

with

• s: the condensation at (x,y,z)

• u: the particle velocity

The second fundamental equation is the Euler equation:

ρ0
∂~u

∂t
= −∇p (2.2)

with

• ρ0 the equilibrium density at (x, y, z)

• u the particle velocity of a fluid element

• p the acoustic pressure at (x,y,z)

The third equation is the equation of state:

p = ρ0c
2s (2.3)

with

• p the acoustic pressure at (x,y,z)

• ρ0 the equilibrium density at (x,y,z)

• c the thermodynamic speed of sound of the fluid

• s the condensation at (x,y,z)

Combining these three equations 2.1, 2.2, 2.3 and respecting the approximations stated before
leads to the linear wave equation:

∇2p− 1
c2

∂2p

∂t2
= 0 (2.4)

Velocity potential

While calculating the rotational of equation 2.2, it can be found that

ρ0
∂(∇× ~u)

∂t
= ∇× (−∇p) (2.5)
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By definition
∇× (∇p) = 0 (2.6)

So the particle velocity ~u is irrotational∇×~u = 0. Moreover, using the definition 2.6, the particle
velocity can be expressed as the gradient of a scalar function φ, where φ is called the velocity
potential.

~u = ∇φ (2.7)

The Euler equation 2.2 can then be written:

ρ0
∂φ

∂t
+ p = 0 (2.8)

And φ satisfies also the wave equation:

∇2φ− 1
c2

∂2φ

∂t2
= 0 (2.9)

Solution in spherical coordinates

When expressing the wave equation in spherical coordinates the laplacian operator ∇2 becomes
∇2 = ∂2

∂r2 + 2
r
∂
∂r . Therefore the wave equation in spherical coordinates is:

∇2(rφ)− 1
c2

∂2(rφ)
∂t2

= 0 (2.10)

The solution of the wave equation is rφ and so:

φ =
α

r
exp j(ωt− kr) (2.11)

with α the amplitude of φ.

In order to find the expression of the pressure, equation 2.8 is used. It can thus be fund that:

p = −jρ0αω

r
exp j(ωt− kr) (2.12)

Acoustic reciprocity

In equation 2.12, α is still defined as the amplitude of φ 2.11. It is possible to determine an
expression of α by using the concept of acoustic reciprocity.

As explained in details in [], if a region of the space containing two irregularly shaped sources A
and B is considered, then if p1 is the pressure at B when source A is active with a velocity ~u1 (see
figure 2.1)and p2 is the pressure at A when source B is active with a velocity ~u2 (see figure 2.2),
then the concept of acoustic reciprocity gives:∫

SA

p2 ~u1 . n̂ dS =
∫
SB

p1 ~u2 . n̂ dS (2.13)

If the pressure is uniform over each source:

1
p1

∫
SA

~u1 . n̂ dS =
1
p2

∫
SB

~u2 . n̂ dS (2.14)

9



Figure 2.1: p1 is the pressure at B when source A is active with a velocity ~u1(page 174
[9])

Figure 2.2: p2 is the pressure at A when source B is active with a velocity ~u2 (page 174
[9])

The complex source strength Q is defined as:

Q exp (jωt) =
∫
S
~u . n̂ dS (2.15)

Therefore, substituting 2.15 and 2.12 into 2.14 gives:

Q1

P1(r)
=

Q2

P2(r)
(2.16)

with
p(r) = P (r) exp j(ωt− kr) (2.17)

If the example of a pulsating sphere of radius a and amplitude velocity U0 vibrating in an infinite,
homogenous and isotropic medium is taken, it is possible to find that the source strength Q of this
pulsating sphere is a real number such that:

Q = 4πa2U0 (2.18)

and that the pressure generated at a distance r is

p =
jρ0ωU0a

2

r
exp j(ωt− kr) (2.19)

Therefore, if a simple source is in free space, 2.18 and 2.19 show that the ratio 2.16 is always:

Q

P (r)
= −j 2λr

ρ0c
(2.20)
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Introducing in 2.20 the expression of P(r) found for 2.12 , the expression of Q becomes

Q = −j 2λr
ρ0c
× −j ρ0αω

r
(2.21)

Q = −4πα (2.22)

As Q is also equal to the complex volume velocity ∂V
∂t =

∫
S~u . n̂ dS, thus

Q = S × U0 (2.23)

with S the area of the source and U0 the maximum velocity over the surface S.

Finally the expression for α is obtained with 2.22 and 2.23:

α =
S × U0

4π
(2.24)

Pressure and polar directivity pattern of a monopole sound source

The expressions 2.12 and 2.24 give the pressure generated by a Zero-Order Gradient sound source-
omnidirectional:

p(r) = −jρ0U0Skc

4πr
exp j(ωt− kr) (2.25)

Extracting the real part gives:

p(r) =
ρ0U0Skc

4πr
sin (ωt− kr) (2.26)

  

!

p(r,t,!)

r

Source 

Figure 2.3: Schematic diagram of a Zero-Order gradient sound source

Since the expression 2.26 is independent of θ the angle between the line joining the sound source
and the observation point and some reference line as shown on figure 2.3, it is proven that the
Zero-Order Gradient sound source radiates equally in all the directions and the polar directional
pattern Rθ is constant (see Figure 2.4):

Rθ = K (2.27)

Thus the expression 2.26 is a good analytical model to simulate the behavior of an omnidirectional
sound source like subwoofers.
The next sections of this chapter aims to present the analytical models of different First and
Second-Order Gradient sound sources that use different combinations of Zero-Order Gradient
sound sources.
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Figure 2.4: Polar directivity pattern of a Zero-Order gradient sound source

2.3 First-order gradient sound source: Bidirectional

The First-Order gradient sound radiator with bidirectional characteristics consists of two Zero-
Order Gradient sound sources separated by a small distance D and operating with 180 ◦ difference
in phase as shown in Figure .

  

Input

Polarity: - Polarity: +

D

Figure 2.5: Schematic diagram of a First-Order gradient sound source-bidirectional

The goal of this section is to calculate the pressure generated by this setup in far field and its polar
directivity pattern.

Approximations

Figure 2.6 shows the setup for a First-order gradient sound source-bidirectional with a geometrical
point of view.
The far field approximation gives:

• D << r

• ∆r << r

• ∆r1 ≈ ∆r2 ≈ D
2 cos θ = ∆r
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!

D

D/2

!r 2 !r 1

Source 1Source 2

p(r,t,")

r

Figure 2.6: Geometrical diagram of a First-Order gradient sound source-bidirectional

Pressure radiated by a First-Order gradient sound source-bidirectional

According to equation 2.25, the pressures generated by sources 1 and 2 at a distance r are respec-
tively:

p1(r) = − jρ0U0Skc

4π(r −∆r1)
exp j(ωt− k(r −∆r1)) (2.28)

p2(r) = − jρ0U0Skc

4π(r + ∆r2)
exp j(ωt− k(r + ∆r2)) (2.29)

The resulting pressure at a distance r is the sum of p1 2.28 and p2 2.29 with a coefficient of
multiplication of -1 for p2 in order to model the 180 ◦ difference of phase between both sources.

p(r) = p1(r) + (−1)× p2(r)
= − jρ0U0Skc

4π(r−∆r1) exp j(ωt− k(r −∆r1)) + jρ0U0Skc
4π(r+∆r2) exp j(ωt− k(r + ∆r2))

= − jρ0U0Skc
4πr [ exp (jk∆r)

1−∆r
r

− exp (−jk∆r)

1+ ∆r
r

] exp j(ωt− kr)

= − jρ0U0Skc
4πr [exp (jk∆r)− exp (−jk∆r)] exp j(ωt− kr)

= − jρ0U0Skc
4πr × 2j sin (k∆r) exp j(ωt− kr)

So finally, the pressure generated by a First-Order gradient sound source-bidirectional is:

p(r) = 2
ρ0U0Skc

4πr
× sin (k

D

2
cos θ) exp j(ωt− kr) (2.30)

Extracting the real part from 2.36 gives:

p(r) = 2
ρ0U0Skc

4πr
× sin (k

D

2
cos θ) cos (ωt− kr) (2.31)

The polar directivity pattern of a First-Order gradient sound source-bidirectional is:

Rθ = sin (k
D

2
cos θ) (2.32)
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2.4 First-order gradient sound source: Unidirectional

The First-order gradient sound source with unidirectional characteristic consists of two Zero-Order
gradient sound sources separated by a small distance D

2 operating with 180 ◦ difference in phase
and with a delay to one of the source as shown on Figure 2.7

  

Input

Polarity: - Polarity: +

D/2

delay

Figure 2.7: Schematic diagram of a First-Order gradient sound source-unidirectional

Delay

The action of delaying can be thought in time domain or in space. Delaying in the time domain
a loudspeaker is equivalent to move it physically in the space. Let x be a sound signal such
that x(t) = f(ωt). If a delay of ∆t is applied to this signal, then x(t) becomes x(t − ∆t) =
f(ω(t −∆t)). As ω = kc, it is possible to write ω(t −∆t) = ωt − kc∆t. With c the celerity of
the sound in the considered medium. By definition

c =
distance

∆t
(2.33)

Therefore ω(t−∆t) = ωt− k × distance.
For convenience in the way for expressing the polar directivity pattern, the delay will be applied
in the space domain in the next part of this section.

Pressure radiated by a First-Order Gradient sound source-unidirectional

Figure 2.8 shows the setup for a First-Order Gradient sound source-unidirectional with a geomet-
rical point of view. The approximations already discussed in 2.3 are still valid in this section.
In order to simplify the calculations, instead of applying a delay of d

2 meters to source 2, it is
preferred to delay source 2 of only d

4 meters and advance source on of d4 meters.
Therefore, using equation 2.25,the pressure generated by sources 1 and 2 at a distance r are re-
spectively:

p1(r) = − jρ0U0Skc

4π(r −∆r1)
exp j(ωt− k(r −∆r1 −

d

4
)) (2.34)

p2(r) = − jρ0U0Skc

4π(r + ∆r2)
exp j(ωt− k(r + ∆r2 +

d

4
)) (2.35)
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Figure 2.8: Geometrical diagram of a First-Order gradient sound source-unidirectional

The resulting pressure at a distance r is the sum of p1 2.34and p2 2.35 with a coefficient of multi-
plication of -1 for p2 in order to model the 180 ◦ difference of phase between both sources.

p(r) = p1(r) + (−1)× p2(r)
= − jρ0U0Skc

4π(r−∆r1) exp j(ωt− k(r −∆r1 − d
4)) + jρ0U0Skc

4π(r+∆r2) exp j(ωt− k(r + ∆r2 + d
4))

= − jρ0U0Skc
4πr [ exp (jk∆r+j kd

4
)

1−∆r
r

− exp (−jk∆r−j kd
4

)

1+ ∆r
r

] exp j(ωt− kr)

= − jρ0U0Skc
4πr [exp (jk∆r + j kd4 )− exp (−jk∆r − j kd4 )] exp j(ωt− kr)

= − jρ0U0Skc
4πr × 2j sin (k∆r + kd

4 ) exp j(ωt− kr)

So finally, the pressure generated by a First-Order gradient sound source-unidirectional is:

p(r) = 2
ρ0U0Skc

4πr
× sin (k

d

4
+ k

D

4
cos θ) exp j(ωt− kr) (2.36)

Extracting the real part from 2.36 gives:

p(r) = 2
ρ0U0Skc

4πr
× sin (k

d

4
+ k

D

4
cos θ) cos j(ωt− kr) (2.37)

The polar directivity pattern of a First-Order gradient sound source-unidirectional is:

Rθ = sin (k
d

4
+ k

D

4
cos θ) (2.38)

2.5 Second-order gradient sound source: Unidirectional

The Second-Order gradient sound source with unidirectional characteristics consists of two First-
Order gradient sound sources with bidirectional characteristics separated by a small distance D

2
operating with 180 ◦ difference of phase and with a delay to one of the First-Order units as shown
on Figure 2.9.
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Figure 2.9: Schematic diagram of a Second-Order gradient sound source-unidirectional

Figure 2.10 shows the setup for a Second-order gradient sound source-unidirectional with a ge-
ometrical point of view. The approximations introduced in section 2.3 are still considered here
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Figure 2.10: Geometrical diagram of a Second-Order gradient sound source-
unidirectional

as well as the paragraph about delay in section 2.4. The pressure in far field generated by each
units of First-Order gradient sound source-bidirectional is given by 2.36 from section 2.3. When
including a delay of d

4 to units 2 and an advance of d
4 to unit 1, therefore the pressures produced

by units 1 and unit 2 in far field are respectively:

p1(r) = 2
ρ0U0Skc

4πr
× sin (k

δ

2
cos θ) exp j(ωt− k(r −∆r − d

4
)) (2.39)

p2(r) = 2
ρ0U0Skc

4πr
× sin (k

δ

2
cos θ) exp j(ωt− k(r + ∆r +

d

4
)) (2.40)

The resulting pressure at a distance r is the sum of p1 2.39and p2 2.40 with a coefficient of multi-
plication of -1 for p2 in order to model the 180 ◦ difference of phase between both sources.
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p(r) = p1(r) + (−1)× p2(r)
= 2ρ0U0Skc

4πr × sin (k δ2 cos θ) exp j(ωt− k(r −∆r − d
4))

−2ρ0U0Skc
4πr × sin (k δ2 cos θ) exp j(ωt− k(r + ∆r + d

4))

= 2ρ0U0Skc
4πr × sin (k δ2 cos θ)[ exp (jk∆r+j kd

4
)

1−∆r
r

− exp (−jk∆r−j kd
4

)

1+ ∆r
r

] exp j(ωt− kr)

= 2ρ0U0Skc
4πr × sin (k δ2 cos θ)[exp (jk∆r + j kd4 )− exp (−jk∆r − j kd4 )] exp j(ωt− kr)

= 2ρ0U0Skc
4πr × sin (k δ2 cos θ)× 2j sin (k∆r + j kd4 ) exp j(ωt− kr)

So finally the pressure generated by a Second-Order Gradient source- unidirectional is:

p(r) = 4j
ρ0U0Skc

4πr
× sin (k

δ

2
cos θ)× sin (k

D

4
cos θ +

kd

4
) exp j(ωt− kr) (2.41)

Extracting the real part from 2.41 gives:

p(r) = −4
ρ0U0Skc

4πr
× sin (k

δ

2
cos θ)× sin (k

D

4
cos θ +

kd

4
) sin (ωt− kr) (2.42)

The polar directivity pattern of a Second-Order gradient sound source-unidirectional is:

Rθ = sin (k
δ

2
cos θ) sin (k

D

4
cos θ +

kd

4
) (2.43)

2.6 Simulations and analysis of the results

In sections 2.2, 2.3, 2.4 and 2.5, the expressions of the pressure and the directivity pattern have
been determined for different orders of gradient sound sources. In this section, different simula-
tions are carried out, in order to determine the influences of the frequency and the distance between
the sound sources on the pressure emitted ”on-axis” and on the polar directivity pattern for each
order of gradient.

2.6.1 Zero-Order Gradient sound source-omnidirectional

As already discussed in section 2.2, equation 2.26 shows that this order of gradient radiates equally
in all the directions and thus has a constant polar directional pattern for all the frequencies as shown
on figure 2.4.

The frequency response of the sound pressure delivered by a Zero-Order Gradient source following
equation 2.26 - assuming that ρ0U0Skc is independent of the frequency - is independent of the
frequency as shown on figure 2.11.
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Figure 2.11: The frequency response of the sound pressure produced on-axis by a Zero-
Order gradient source

2.6.2 First-Order Gradient sound source-bidirectional

The frequency response of the sound pressure produced on-axis (for θ = 0 ◦) by a bidirectional
First-Order gradient sound source employing to simple sound sources is shown on figure 2.12.
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Figure 2.12: The frequency response of the sound pressure produced on-axis by a First-
Order gradient source-bidirectional

The polar directional pattern for a First-Order Gradient sound source-bidirectional is given by the
equation 2.32.
Changing k by 2π

λ in 2.32 leads to a new expression of the directional pattern 2.44:

Rθ = sin (π
D

λ
cos θ) (2.44)

The polar directivity 2.44 is now expressed in function of the ratio between the distance separating
the two simple sound sources and the wavelength.

Figure 2.13 shows the polar directional patterns for different values of Dλ .
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Figure 2.13: Polar directivity pattern for a First-Order gradient sound source-bidirectional
for different values of D

λ
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For D
λ < 1

4 , the polar directivity is a cosine pattern as shown on subfigures G.8(g) and A.12(a).
When D

λ = 1
2 the polar directivity is broader than a cosine (see subfigure A.15(a) ) and if the ratio

D
λ is higher than 1

2 more lobes start to appear. With D
λ = 1 the polar directivity has four lobes and

with D
λ = 2 the polar directivity has eight lobes.

2.6.3 First-Order Gradient sound source-unidirectional

The frequency response of the sound pressure produced on-axis (for θ = 0 ◦) by an unidirectional
First-Order gradient sound source is shown on figure 2.14.
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Figure 2.14: The frequency response of the sound pressure produced on-axis by a First-
Order gradient source-unidirectional for d=D

The polar directional pattern expressed as a function of the ratio D
λ and d

λ is given by equation
2.45:

Rθ = sin (π
d

2λ
+ π

D

2λ
cos θ) (2.45)

If d = D, then equation 2.45 becomes:

Rθ = sin (π
D

2λ
(1 + cos θ)) (2.46)

Equation 2.46 is the polar equation of a cardioid. Figure 2.15 shows the polar directional pattern
modeled by equation 2.46 for different values of Dλ .
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Figure 2.15: Polar directivity pattern for a First-Order gradient sound source-
Unidirectional for different values of D

λ
and with D=d
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The polar directivity for D
λ < 1

4 is a cardioid (see figures 2.15(a), 2.15(b) and 2.15(c)). Then, the
polar directivity is broader than a cardioid for D

λ = 1
2 (see figures 2.15(f)). When D

λ continues to
increase until 1, the pressure on the front tends to diminish while on the sides it tends to increase,
leading to two lateral lobes for Dλ = 1. For Dλ = 2 four lobes are obtained.

Figures 2.16 and 2.17 show more polar directional patterns based on equation 2.45.
Starting from the case of a perfect cardioid model with D

λ = d
λ = 1

4 , subfigures of 2.16 are
obtained by keeping D

λ constant equal to 0.25 and d
λ varying from 0.1 to 1.
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Figure 2.16: Polar directivity pattern for a First-Order gradient sound source-
Unidirectional for different values of d

λ
with D

λ
= 0.25
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Figure 2.16: Polar directivity pattern for a First-Order gradient sound source-
Unidirectional for different values of d

λ
with D

λ
= 0.25

On figure 2.17 the delay d is kept constant so that dλ = 1
4 while D

λ varies from 0.1 to 1.
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Figure 2.17: Polar directivity pattern for a First-Order gradient sound source-
Unidirectional for different values of D

λ
with d

λ
= 0.25
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Figure 2.17: Polar directivity pattern for a First-Order gradient sound source-
Unidirectional for different values of D

λ
with d

λ
= 0.25

2.6.4 Second-Order Gradient sound source-unidirectional

The frequency response of the sound pressure produced on-axis (for θ = 0 ◦) by an unidirectional
Second-Order gradient sound source is shown on figure 2.18.
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Figure 2.18: Schematic diagram of a First-Order gradient sound source-bidirectional

The polar directional pattern of a Second-Order gradient source is described by equation 2.43.
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Assuming that d = D and ∆ = D
4 equation 2.43 becomes:

Rθ = sin (
π

4
D

λ
cos θ) sin (

π

2
D

λ
cos θ +

π

2
D

λ
) (2.47)

Figure 2.19 shows the polar directivity of a Second-Order gradient source modeled by equation
2.47 for different values of Dλ .
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Figure 2.19: Polar directivity pattern for a Second-Order gradient sound source-
Unidirectional for different values of D

λ

The polar directivity pattern is a cosine multiply by a cardioid in the frequency region below
D
λ < 1

4 . It is broader at Dλ = 1
2 . For D

λ = 1 and D
λ = 2, the directivity pattern has four lobes. For

1 < D
λ < 2 the polar directivity has successively five, three and four lobes.
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Figure 2.19: Polar directivity pattern for a Second-Order gradient sound source-
Unidirectional for different values of D

λ
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2.6.5 Analysis

Magnitude on-axis

Figures 2.12, 2.14 and 2.18 shows that the magnitude depends of the ratio D
λ . In a concrete case,

the distance D between two loudspeakers stays constant. So the ratio D
λ changes when λ changes

and so when the frequency changes.

For a First-Order gradient source-bidirectional and a First-Order gradient source-unidirectional
(with D=d), the magnitude presents two deeps for D

λ = 1 and D
λ = 2 and two peaks for D

λ = 0.5
and D

λ = 1.5. For a Second-Order gradient source (with ∆ = D
4 and D = d), the magnitude

is minimum for D
λ = 1 and D

λ = 2 and presents a relative maximum for 0.1 < D
λ < 1 and an

absolute maximum for 1 < D
λ < 2.

So when choosing the distance D between both loudspeakers and the delay d, it must be aware that
the deeps are not within the frequency range of interest.

Polar directional pattern

Figures 2.13, 2.15, 2.16, 2.17 and 2.19 shows the polar directivity for different orders of gradient
and different values of the ratio D

λ and d
λ .

The first observation concerning these figures is that when using two or more loudspeakers as-
sociated with pure delay and polarity shift, it is possible to get several kinds of polar directional
pattern. So depending on the applications and the conditions where the loudspeakers have to be
used lot of possibilities exist to adapt and control the polar directivity.

The second observation is that the polar directional patterns are very sensitive to the ratio D
λ , and

so of the frequency. For a real setup with D constant, the polar pattern changes a lot with the fre-
quency. Therefore when positioning loudspeakers in some way to get a desired pattern, this target
pattern will be effectively obtained of a limited frequency range. For the other frequencies, the
directional pattern will be more or less close to the desired pattern. So the expressions First-Order
gradient source-unidirectional and Second-Order gradient source-unidirectional are only valid in
a limited frequency range, for certain values of D and d, and seems to be inappropriate nouns
for other frequencies. The main reason of these problems of frequency-dependence is that the
delays and polarity shifts applied in this analytical part and then in the simulations are frequency-
independent.

Thus, from these different observations it seems interesting to develops algorithms working in
real-time and allowing to have delays or polarity shifts depend on the frequency.
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Part III

Advanced program for acoustical wave
field simulation
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3
Review of the existing methods for sound field

modelisation

In the previous chapter 2 analytical models of different orders of gradient loudspeakers have been
studied. These models are ideal and purely theoretical. Therefore, a new method of sound field
simulation closer to the reality should be considered. This simulation tool must be able to model
the sound field generated by real loudspeakers working in free field conditions as well as in real
room. This chapter aims to make a review of the different existing methods used for sound field
modeling in architectural acoustics.

3.1 Geometrical method: Ray tracing and mirror image

Ray tracing and mirror image are two well established techniques for studying the acoustical qual-
ity of large closed space. Among the different advantages of these two techniques, the absorption
coefficient of the walls can be taken into account and accurate loudspeaker models can be used.
Nevertheless these both methods are limited to high frequencies. When the wavelength is compa-
rable to the dimensions of the room their results are not accurate. Therefore ray tracing and mirror
image are not appropriate for the low frequency simulations and so for this project.

3.2 Numerical methods

3.2.1 Finite Element Method

The finite element method is a numerical analysis method that gives an approximated solution
to the partial differential equation (page 149 [6]). This method is very useful in case of non-
linear problems, high sound pressure or when the acoustic domain is non-homogeneous. Allowing
the use of accurate loudspeaker models this method helps to determine the acoustic field - and
more particularly the complex sound pressure level - in spaces with complex geometry. It is
a particularly adapted method to study the low frequency range. Unfortunately each frequency
has to be calculated separately. Therefore it is time and memory consuming. Translation to a
time domain formulation is possible but also computationally expensive. At last it is a time-
independent method, which can be a problem for this project as time delay needs to be used. So
the finite element method do not fulfill all the conditions required for this project.
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3.2.2 Boundary Element Method

The boundary element method is also a numerical method that calculates the sound radiating by
a vibrating body and lets to predict the sound field inside a cavity (car, room, etc...) or the sound
scattered by an object. As output the BEM simulation gives the sound pressure distribution, the
sound intensity and the sound power. The main advantage of this method is that only the boundary
surface (e.g exterior of a vibrating body) needs to be modeled with a mesh (page 157 [6]). Accu-
rate loudspeaker model can thus be used and reflecting surfaces can easily be described by their
reflection coefficients and their acoustic impedance. Like the FEM it is a well adapted method
for low frequency range. As disadvantage, this method has to calculate each discrete frequencies
separately that is time consuming. Moreover it is restricted to linear and homogeneous problems
(page 165 [6]). In the same way than for FEM, translation to a time domain formulation is possi-
ble but computationally consuming. Therefore, this simulation method is not fully adapted for this
project.

3.2.3 Finite-Difference Time-Domain

The Finite-Difference Time-Domain is an other numerical method for solving the acoustic wave
equation based on the finite difference approximation for both time and space derivative. The main
advantage of this method is that all calculations are done directly in time domain. Therefore, it
is possible to know the acoustic pressure and the particle velocity at any time during the simu-
lation for analysis and simulation ([1]). At each position of the space post processing (e.g FFT
analysis) are possible. Working in the time domain has also the advantage that the sound source
and the signals used during the simulations can also be time dependent. Thus it is easy to model
real loudspeaker using their impulse response and directivity pattern. It is a method adapted for
low frequency analysis. Its main disadvantage is its problem for describing frequency-dependent
material characteristics. This problem can be solved by studying narrow frequency range. At last
the computational speed is higher than for the FEM and BEM methods. So regarding the ad-
vantages and disadvantages of the different methods presented in this chapter the finite-difference
time-domain method will be chosen for the next simulations of this project.
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4
Finite-Difference Time-Domain: theory

The finite-difference time-domain method (FDTD) for wave propagation problems is based on a
finite-difference approximation for both time and space derivatives in the wave equation. This is a
numerical method that lets to simulate the sound field produced by loudspeakers at low-frequency
as already discussed in chapter 3. This chapter aims to present the theory supporting this method.

4.1 Equations

The FDTD method utilizes two coupled first-order differential equations [1]. The first equation is
the linear continuity equation 2.1 already presented in section 2.2 and valid for acoustic processes
of small amplitude:

∇.~u = − 1
ρ0c2

∂~p
∂t

The second equation is the Euler equation 2.2 also presented in section 2.2:

∇p = −ρ0
∂~u
∂t

Since the FDTD method works in the time-domain it calculates the derivative and linearized forms
of these two equations in the time domain.

The typical formulation of the FDTD approximation uses a Cartesian staggered grid in which
pressure and particle velocity are the unknown quantities. To solve these equations numerically
the space and the time are discretized [5]. If the spacial discretization steps are δx, δy and δz and
the time step is δt then the acoustical pressure is determined at the grid points (iδx,jδy,kδz) and
at time t = lδt. The indices i, j, k mark the spacial points and index l marks the discrete time as
shown on figure 4.1.

The three components of the particle velocity are determined at positions (i ± 1
2)δx, (j ± 1

2)δy,
(k ± 1

2)δz and at intermediate time t = (l ± 1
2)δt:

~u =


ux[(i± 1

2)δx, jδy, kδz]
uy[iδx, (j ± 1

2)δy, kδz]
uz[iδx, jδy, (k ± 1

2)δz]
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Figure 4.1: Example of a calculation grid in a 2D plan ([3])

Figure 4.1 shows an example of grid in an enclosure for calculating the components of the acoustic
pressure and the particle velocity points.

Developping equations 2.1 and 2.2 gives:{
− 1
ρ0c2

∂p
∂t = ∂ux

∂x + ∂uy
∂y + ∂uz

∂z
∂p
∂x~x+ ∂p

∂y~y + ∂p
∂z~z = −ρ0

∂~u
∂t

(4.1)

The first linearized equation of system 4.1 is:

p(i,j,k)(t+δt)−p(i,j,k)(t)

δt = −ρ0c
2
(ux

(i+ 1
2 ,j,k)

(t+ δt
2

)−ux
(i− 1

2 ,j,k)
(t+ δt

2
)

δx

+
uy

(i,j+ 1
2 ,k)

(t+ δt
2

)−uy
(i,j− 1

2 ,k)
(t+ δt

2
)

δy

+
uz

(i,j,k+ 1
2 )

(t+ δt
2

)−uz
(i,j,k− 1

2 )
(t+ δt

2
)

δz

)
So the evolution of acoustical pressure in the time and space is given by equation 4.2:

p(i,j,k)(t+ δt) = p(i,j,k)(t)− ρ0c
2δt
(ux

(i+ 1
2 ,j,k)

(t+ δt
2

)−ux
(i− 1

2 ,j,k)
(t+ δt

2
)

δx

)
−ρ0c

2δt
(uy

(i,j+ 1
2 ,k)

(t+ δt
2

)−uy
(i,j− 1

2 ,k)
(t+ δt

2
)

δy

)
−ρ0c

2δt
(uz

(i,j,k+ 1
2 )

(t+ δt
2

)−uz
(i,j,k− 1

2 )
(t+ δt

2
)

δz

) (4.2)
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The second equation of system 4.1 gives the following system:
∂p
∂x = −ρ0

∂ux
∂t

∂p
∂y = −ρ0

∂uy
∂t

∂p
∂z = −ρ0

∂uz
∂t

(4.3)

Then the three linearized equations of system 4.3 are:

p(i+1,j,k)(t)−p(i,j,k)(t)

δx = −ρ0

(ux
(i+ 1

2 ,j,k)
(t+ δt

2
)−ux

(i+ 1
2 ,j,k)

(t− δt
2

)

δt

)
p(i,j+1,k)(t)−p(i,j,k)(t)

δy = −ρ0

(uy
(i,j+ 1

2 ,k)
(t+ δt

2
)−uy

(i,j+ 1
2 ,k)

(t− δt
2

)

δt

)
p(i,j,k+1)(t)−p(i,j,k)(t)

δz = −ρ0

(uz
(i,j,k+ 1

2 )
(t+ δt

2
)−uz

(i,j,k+ 1
2 )

(t− δt
2

)

δt

)
Finally the equations describing the evolution in time and space of the three components of the
particle velocity are given by 4.4:

ux
(i+ 1

2
,j,k)

(t+ δt
2 ) = ux

(i+ 1
2
,j,k)

(t− δt
2 )− δt

ρ0δx

(
p(i+1,j,k)(t)− p(i,j,k)(t)

)
uy

(i+ 1
2
,j,k)

(t+ δt
2 ) = uy

(i+ 1
2
,j,k)

(t− δt
2 )− δt

ρ0δy

(
p(i,j+1,k)(t)− p(i,j,k)(t)

)
uz

(i,j,k+ 1
2

)
(t+ δt

2 ) = uz
(i,j,k+ 1

2
)
(t− δt

2 )− δt
ρ0δz

(
p(i,j,k+1)(t)− p(i,j,k)(t)

) (4.4)

For the simulations made with Matlab and discussed in the next chapter equations 4.2 and 4.4
will be used. Now that equations describing the FDTD method have been determined the stability
conditions of these equations have to be discussed. This is the purpose of the next section 4.2.

4.2 Stability conditions

The reliability of the results obtained with the FDTD method is conditioned by the respect of
some rules that have to be followed in order to guaranty the stability. These stability conditions
are directly linked with the choice of the cell size defined by δx, δy, δz and the time step δt.

4.2.1 Cell size

A fundamental constraint in the FDTD method is the choice of the cell size δx, δy, δz. The cell
size must be much less than the smallest wavelength for which accurate results are desired. The
question is how much less.

The Nyquist sampling theorem is: 2fmax ≤ fsampling., with fmax the maximum frequency of
interest and fsampling the sampling frequency for the FDTD simulation.

The frequency can be expressed in function of the wave celerity c and the wavelength λ so the
Nyquist sampling theorem can also be written: 2 c

λfmax
≤ c

λfsampling
, where λfmax is the wave-

length of the maximum frequency of interest and λfsampling is the wavelength of the sampling
frequency.
Therefore, in term of spacial period the Nyquist theorem is: 2λfsampling ≤ λfmax .
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λfsampling is the length of the spacial period of the FDTD method and so in 3D is equal to δx, δy,
δz. Thus the size of the cells must respect the following system:

2δx ≤ λfmax
2δy ≤ λfmax
2δz ≤ λfmax

(4.5)

As the smallest wavelength is not precisely determined more than two spacial samples per wave-
length are required to ensure the stability of the FDTD method. This leads to more restricted
conditions for the maximum cell size allowed. A minimum of 5 cells per wavelength for the
smallest wavelength is an acceptable boundary condition giving equations 4.6:

δx ≤ λfmax
5

δy ≤ λfmax
5

δz ≤ λfmax
5

(4.6)

It has to be aware that if some portion of the computational space is filled with permeable material
the wavelength in the material has to be used to determined the maximum cell size.

The respect of equation 4.6 is necessary but other considerations should be taken into account for
choosing the cell size. It is admitted that reasonable results can be obtained using from five to ten
cells per wavelength (page 30-31 [10]). Moreover, the important characteristics of the problem
geometry must be accurately modeled. This is normally met for δx ≤ λfmax

10 (page 31 [10]). In
some specific cases a thiner cell size can be used.

4.2.2 Time step size

When the cell size is determined the maximum size of the time step can be determined.
If a plane wave propagates through a FDTD grid, in one time step any point on this wave must
not pass through more than one cell. During one time step the wave can propagate only from one
cell to its nearest neighbors (page 32 [10]). So the time step δt can be expressed in function of the
wave celerity c and of δx, δy, δz. For a 3D rectangular grid the relation is:

cδt ≤ 1√
1
δx2 + 1

δy2 + 1
δz2

(4.7)

In case the equality is hold for 4.7 the discretized wave approximates most closely the actual wave
propagation and grid dispersion errors are minimized. In most of the situations more accurate
results will not be obtained by using a smaller value of δt.

4.3 Boundary conditions

In this section the boundary conditions when a sound wave hits a surface are discussed and intro-
duced to the FDTD method.

Boundary conditions are mostly frequency dependent. Nevertheless it will be time consuming to
do the calculation at all the frequencies. Thus some approximations are necessary.
In a room, at low frequencies, two typical absorbing boundary constructions are common:
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• Thin boundary compared to the wavelength

• Light non-stiff walls

In the first case, the materials can be approximated by a complex frequency-dependent impedance
(pages 177-183, [11]):

Z = Z0 +
Z−1

jω
(4.8)

In the second case the behavior of the materials is quite accurately described by (page 164-165,
[11]):

Z = Z0 + jωZ1 (4.9)

Therefore in [5] it is proposed to approximate a general boundary impedance by :

Z = Z0 + jωZ1 +
Z−1

jω
(4.10)

with Z0, Z1, Z−1 real number that can be determined experimentally and ω is the pulsation.

In time domain the impedance defined by equation 4.10 leads to the boundary condition:

p(t) = Z0un(t) + Z1
dun(t)
dt

+ Z−1

∫ t

−∞
un(τ)dτ (4.11)

with p(t) the acoustic pressure and un(t) the component of the particle velocity orthogonal to the
boundary plane. As an example, let consider the boundary at plane z = (k0 + 1

2)δt. The third
equation of the equation system 4.4 can not be used to determine the particle velocity uz at the
boundary since p(i, j, k0 + 1) is not known. So an asymmetric finite-difference approximation is
used instead:

∂p

∂z

∣∣∣t(i, j, k0 +
1
2

) =
p(i, j, k0 + 1

2)− p(i, j, k0)
δz
2

(4.12)

Thus, the particle velocity at the boundary can be written:

uz
(i,j,k0+ 1

2
)
(t+

δt

2
) = uz

(i,j,k0+ 1
2

)
(t− δt

2
)− 2δt

ρ0δz

(
p(i,j,k0+ 1

2
)(t)− p(i,j,k0)(t)

)
(4.13)

The value of p(i,j,k0+ 1
2

) is not known but it can be found using equation 4.11 and uz
(i,j,k0+ 1

2
)
.

Therefore equation 4.13 becomes:

uz
(i,j,k0+ 1

2
)
(t+ δt

2 ) = uz
(i,j,k0+ 1

2
)
(t− δt

2 )− 2δt
ρ0δz

(
− p(i,j,k0)(t) + Z0u

z
(i,j,k0+ 1

2
)
(t)

+Z1

∂uz
(i,j,k0+ 1

2 )
(t)

∂t + Z−1

∫ t
−∞ u

z
(i,j,k0+ 1

2
)
(τ)dτ

) (4.14)

Introducing the finite-difference approximation for the derivative of uz
(i,j,k0+ 1

2
)
(t) and the summa-

tion to replace the integration, the results in a boundary cell FDTD equation is:

uz
(i,j,k0+ 1

2
)
(t+ δt

2 ) = uz
(i,j,k0+ 1

2
)
(t− δt

2 )− 2δt
ρ0δz

(
− p(i,j,k0)(t) + Z0u

z
(i,j,k0+ 1

2
)
(t)

+Z1

uz
(i,j,k0+ 1

2 )
(t+ δt

2
)−uz

(i,j,k0+ 1
2 )

(t− δt
2

)

δt + Z−1δt
t∑

m=−∞
uz

(i,j,k0+ 1
2

)
(m− 0.5)

)
(4.15)
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A linear interpolation is used to express uz
(i,j,k0+ 1

2
)
(t) in function of t− δt

2 and t+ δt
2 .

Finally the equation expressing the evolution of the particle velocity at the boundary k0 + 1
2 is:

uz
(i,j,k0+ 1

2
)
(t+ δt

2 ) = αuz
(i,j,k0+ 1

2
)
(t− δt

2 ) + β 2δt
ρ0δz

(
p(i,j,k0)(t)− Z−1δt

t∑
m=−∞

uz
(i,j,k0+ 1

2
)
(m− 0.5)

)
(4.16)

with

• α = 1−Z0/ZFDTD+2Z1/ZFDTDδt
1+Z0/ZFDTD+2Z1/ZFDTDδt

• β = 1
1+Z0/ZFDTD+2Z1/ZFDTDδt

• ZFDTD = ρ0δz
δt

Equation 4.16 is a general result which models and solves the problem of the boundary condi-
tions in FDTD method. In the reality the knowledge of the complex impedance 4.10 is rare.
Nevertheless in most of the cases the real part of the material impedance is the predominant part
and it is therefore possible to make the assumption that the impedance is assumed to be real
(Z1 = Z−1 = 0) [15]. The relation 4.16 is simplified to:

uz
(i,j,k0+ 1

2
)
(t+ δt

2 ) =
ρ0δz
δt
−Z0

ρ0δz
δt

+Z0

uz
(i,j,k0+ 1

2
)
(t− δt

2 ) + 2 1
ρ0δz
δt

+Z0

p(i,j,k0)(t) (4.17)

This last equation 4.17 is very interesting because the real part of a material impedance can be
approximated by its real absorption coefficient as depicted in the equation 4.18.

Z0 = ρ0c
1 +
√

1− α
1−
√

1− α
(4.18)

The knowledge of the absorption coefficient is in general easier to obtained (by measurement or
as a manufacturer data) than the material impedance.

Two specific cases of absorption coefficient can be studied in details.

Case 1: α = 0

If α = 0 meaning that at the boundary there is a full reflection, then 4.18 gives an impedance Z0

that tends to infinity. Therefore:

• lim
Z0→∞

ρ0δz
δt
−Z0

ρ0δz
δt

+Z0

= −1

• lim
Z0→∞

1
ρ0δz
δt

+Z0

= 0

These two results lead to:

uz
(i,j,k0+ 1

2
)
(t+

δt

2
) = −uz

(i,j,k0+ 1
2

)
(t− δt

2
) (4.19)

4.19 is verified only if uz
(i,j,k0+ 1

2
)

is null all the time. So it demonstrates that when α = 0 the

particle velocity at the boundary is always null.
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Case 2: α = 1

If α = 1 meaning that at the boundary there is a full absorption, then 4.18 gives Z0 = ρ0c. Thus,
the equation describing the evolution of uz

(i,j,k0+ 1
2

)
over the time is 4.20:

uz
(i,j,k0+ 1

2
)
(t+ δt

2 ) =
δz
δt
−c

δz
δt

+c
uz

(i,j,k0+ 1
2

)
(t− δt

2 ) + 2 1
ρ0δz
δt
−ρ0c

p(i,j,k0)(t) (4.20)

4.4 Sound source model

One of the main advantage of the FDTD method is that it is a time-dependent algorithm. Therefore,
an infinity of sound signals can be used during FDTD simulations. It is possible to cite the sinusoid,
the gaussian pulse or the Maximum Length Sequence as example of signals commonly used for
FDTD simulations. Moreover, it is possible to use the impulse response of real loudspeakers in
order to get results as close as possible to the reality.

The sound source is usually defined as a pressure source. Thus it is positioned on a pressure-point
of the FDTD-grid and excites this pressure point. Then, the acoustical wave propagates through
the FDTD model by exciting successively the points of the particle velocity grids and those of the
pressure grid. A such definition gives an omnidirectional behavior for the sound source.

When several pressure sources are used in the same simulation, the points of the FDTD-grid where
the sound sources are located are forced by the signal feeding the sound sources. Therefore the
sound sources are not transparent to the waves produced by the other sources.

Also, it has to be noticed that in some specific cases it is possible to model sound sources as
particle velocity sources.
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5
Finite-Difference Time-Domain: simulation

In the previous chapter 4 the theory describing all the aspects of the FDTD method has been
presented. In this chapter 5 the FDTD method is simulated with Matlab. After introducing some
practical considerations relative to the cell size, the time step size, the boundary limit, the sound
source and the general algorithm, several simulations are conducted in order to re-find the different
analytical results obtained in chapter 2 for the different orders of gradient sound source.

5.1 Cell size

As discussed in section 4.2.1 the choice of the cell size is directly linked to the maximum frequency
of interest desired for the simulation of the FDTD method but not only.
All the simulations of this project are run in free field or in rectangular rooms. Therefore, the shape
of the space where simulations are run is kept simple. So it is possible to take δx = δy = δz = h
to simplify the algorithm. To determine the value of h the maximum frequency of interest for the
simulation has to be chosen.
This project aims to simulate, with a FDTD method, the behavior of subwoofers working in low
frequency range. Depending on subwoofers and their utilizations (concert, studio, home-cinema)
the maximum frequency of interest can change from 80 Hz for professional subwoofer used in
concert until 200 Hz for home-cinema subwoofer. So for the first simulations, which only aims to
re-find the results of chapter 2, the maximum frequency is chosen equal to 300 Hz. The wavelength
for a frequency of 300 Hz is 1.1433 m (for a sound celerity c = 343m.s−1).

Then, given this maximum frequency, h has to fit the condition defined by equation 4.6 as well as
the other recommendations discussed in subsection 4.2.1

Therefore it is decided to choose h = λmax
10 in this project, which gives h = 0.1m for the maximum

frequency chosen earlier: fmax = 300Hz.

5.2 Time step size

When the cell size is determined the time step size can then be calculated. According to equa-
tion 4.7 and for the value of h chosen in the previous section5.1, δt must be inferior or equal to
1, 9245.10−4s. This value is equivalent to a sampling frequency of 5196.2 Hz. As some real loud-
speaker impulse response will be used later with a sampling frequency of 8000 Hz, it is decided

41



to take also a sampling frequency of 8000 Hz for the FDTD simulation. A such sampling fre-
quency gives a time step size of δt = 1.2500e − 04second which respects the stability condition
of equation 4.7.

5.3 General algorithm

The main part of the algorithm simulating the FDTD method, excluding the case of the boundary
cells, is modeled by equations 4.2 and 4.4. In 2D-simulations it is simple to related the spacial
coordinates i, j used in equations 4.2 and 4.4 with the number of the line and the row of a matrix
as shown on figure 5.1.
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Figure 5.1: Example of coordinate-matrix correspondance in a 2D-simulation

Therefore, the corresponding matrixes for figure 5.1 are:

• P=


p(1, 1) p(1, 2) p(1, 3) p(1, 4) p(1, 5)
p(2, 1) p(2, 2) p(2, 3) p(2, 4) p(2, 5)
p(3, 1) p(3, 2) p(3, 3) p(3, 4) p(3, 5)
p(4, 1) p(4, 2) p(4, 3) p(4, 4) p(4, 5)
p(5, 1) p(5, 2) p(5, 3) p(5, 4) p(5, 5)


42



• Ux=


ux(1, 1) ux(1, 2) ux(1, 3) ux(1, 4) ux(1, 5) ux(1, 6)
ux(2, 1) ux(2, 2) ux(2, 3) ux(2, 4) ux(2, 5) ux(2, 6)
ux(3, 1) ux(3, 2) ux(3, 3) ux(3, 4) ux(3, 5) ux(3, 6)
ux(4, 1) ux(4, 2) ux(4, 3) ux(4, 4) ux(4, 5) ux(4, 6)
ux(5, 1) ux(5, 2) ux(5, 3) ux(5, 4) ux(5, 5) ux(5, 6)



• Uy=



uy(1, 1) uy(1, 2) uy(1, 3) uy(1, 4) uy(1, 5)
uy(2, 1) uy(2, 2) uy(2, 3) uy(2, 4) uy(2, 5)
uy(3, 1) uy(3, 2) uy(3, 3) uy(3, 4) uy(3, 5)
uy(4, 1) uy(4, 2) uy(4, 3) uy(4, 4) uy(4, 5)
uy(5, 1) uy(5, 2) uy(5, 3) uy(5, 4) uy(5, 5)
uy(6, 1) uy(6, 2) uy(6, 3) uy(6, 4) uy(6, 5)


Then, it can be seen that equations 4.2 and 4.4 are directly solved for most of the points by adding
or subtracting these three matrixes weighted by some coefficients. The only exception is to calcu-
late the different particle velocities at the boundaries. This point is discussed in section 5.4.

In 3D-simulations, the third spacial coordinate k can be integrated using 3D-matrix for the pres-
sure. The z-component of the particle velocity is added using extra layers creating therefore the
third dimension as shown on figure 5.2.
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Figure 5.2: Grid for 3D simulation

5.4 Boundary limit

The boundary conditions are defined by equation 4.17. If this equation is limited to a 2D-simulation
then four equations can be written for the left, right, top and bottom wall. For the wall on the left
the equation (with a Matlab syntax) at the boundary is:

ux(:,1)(t+ δt
2 ) =

ρ0δz
δt
−Z0

ρ0δz
δt

+Z0

ux(:,1)(t−
δt
2 ) + 2 1

ρ0δz
δt

+Z0

p(:,1)(t) (5.1)

The corresponding plan is given on figure 5.3.

For the wall on the right the equation at the boundary is:

ux(:,6)(t+ δt
2 ) =

ρ0δz
δt
−Z0

ρ0δz
δt

+Z0

ux(:,5)(t−
δt
2 ) + 2 1

ρ0δz
δt

+Z0

p(:,5)(t) (5.2)
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Figure 5.3: Example of a calculation grid in a 2D plane
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Figure 5.4: Example of a calculation grid in a 2D plane

The corresponding plan is given on figure 5.4.

For the wall on the top the equation at the boundary is:

uy(1,:)(t+ δt
2 ) =

ρ0δz
δt
−Z0

ρ0δz
δt

+Z0

uy(1,:)(t−
δt
2 ) + 2 1

ρ0δz
δt

+Z0

p(1,:)(t) (5.3)

The corresponding plan is given on figure 5.5.

For the wall on the bottom the equation at the boundary is:

uy(6,:)(t+ δt
2 ) =

ρ0δz
δt
−Z0

ρ0δz
δt

+Z0

uy(5,:)(t−
δt
2 ) + 2 1

ρ0δz
δt

+Z0

p(5,:)(t) (5.4)
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Figure 5.5: Example of a calculation grid in a 2D plane

The corresponding plan is given on figure 5.6.
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Figure 5.6: Example of a calculation grid in a 2D plane

When the particle velocities at the boundaries are known their values can be added as extra rows
and lines in matrixes ux and uy defined in the previous section 5.3. Therefore, calculating the
pressure next to the boundary

(
p(1,1), p(1,2), ..., p(2,1), p(3,1)...

)
becomes possible. For the

simulations run in this chapter, the boundary are such that all the energy is absorbed by the walls
simulating then a free field behavior in the space of interest.
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5.5 Sound source

In the previous chapter 4 several kind of sound sources and signals have been mentioned. As the
simulations here aim principally to study the acoustic field for specific values of the ratio D/λ
(D the distance between the sound sources) and so for different frequencies, all the sound sources
will be modeled by a point source fed with a sinusoidal signal of single frequency. Therefore the
pressure at the input point varies according to the sinusoidal signal between -1 and +1 Pa.

5.6 Simulations

5.6.1 Characteristics of the plotting

When all the different practical aspects relative to the simulation of the FDTD method have been
discussed and that choices for the cell size, time step size and the sound source have been made
(sections 5.1, 5.2, 5.5 respectively), simulations can be run. This section presents the results of the
different orders of gradient-loudspeakers presented in chapter 2 simulated with the FDTD method
in free field.

The simulation is run over a time of t = 1
fmin

so that for the lowest frequency fmin the period of
the sinusoid signal is completed. It is chosen fmin = 20 Hz as most of the subwoofer have a such
cut-off frequency. So it gives a simulation of 0.05 seconds.

Then for each time step the pressure is saved at each discrete position of the room. The RMS
pressure at all the discrete positions is calculated according to formula 5.5:

Prms(i, j) =

√
(p2
t=δt(i, j) + p2

t=2δt(i, j) + p2
t=3δt(i, j) + ...+ p2

t=nδt(i, j)
n

(5.5)

In equation 5.5 n is the total number of time step, i and j are the indexes in the FDTD grid on the
x and y-axis respectively .

For all the simulations three types of figures are presented. On the first one, the RMS pressure
expressed in pascal is plotted in a linear scale. On the second figure the RMS pressure in dB
SPL is plotted in logarithmic scale. On the third figure, the polar pattern extracted from the FDTD
simulation is compared to the analytical polar pattern obtained in chapter 2. The polar pattern from
the FDTD simulation is obtained by extracting the RMS pressures (in pascal) at discrete-positions
situated on a circle of radius 10 meters and centered on the acoustical center of each gradient-
loudspeaker as shown on figure 5.7. Despite a distance of 1 meter is usually used to measure the
directivity pattern of loudspeakers it has been arbitrary decided to take 10 meters. The reasons for
that are to limit the effects of the direct radiations induced by the source when being close to it
and also to be in a situation that could resemble to a far-field measurement condition. It has to be
reminded that the analytical part is made with far-field approximations which could then justify a
directivity measurement in far-field.
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10m

Figure 5.7: Example of polar directivity extraction. The figure on the left shows the pres-
sure field in pascal. The figure on the right shows the polar directivity obtained
analytically (purple line) and the one extracted from the pressure field (blue
crosses) at 10 meters (on the red circle)

Before starting the analysis of the results it is important to remind that in the polar directivity figure,
the analytical curve (in purple) obtained with the results of chapter 2 is independent of the distance.
At the opposite the results extracted from the FDTD simulations (blue crosses) are measured at a
specific distance distance (10 meters). Therefore the results of the FDTD simulations have to be
compensated in gain to perfectly match the analytical results.

5.6.2 First Order Gradient sound source: Bidirectional

Figures 5.8, 5.9 and 5.10 show three examples of simulation results for ratios D
λ equal to 0.2, 0.5

and 1 respectively. The whole results are visible in appendix A.1.

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations, the distance between the sources is kept constant D = 1.14m, which corre-
sponds to the wavelength of 300 Hz (see figure 2.6). Then the frequency of the sinusoidal signal
is changed in order to obtain the different values D

λ .

For this type of gradient-source, the FDTD simulation gives results comparable to the analytical
model described in section 2.3. The main deviation appears for D

λ = 1 where the notches of
the FDTD model are not as sharp as the ones of the analytical model. This discrepancy will be
discussed later in subsection 5.6.3 as it appears often in other setups of gradient sources.
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 5.8: FDTD simulation for D
λ

=0.2, f=60Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 5.9: FDTD simulation for D
λ

=0.5, f=150 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 5.10: FDTD simulation for D
λ

=1, f=300 Hz

48



5.6.3 First Order Gradient sound source: Unidirectional

Case 1: D = d

Figures 5.11, 5.12 and 5.13 show three examples of simulation results for a first order gradient
sound source with D

λ = d
λ equal to 0.2, 0.5 and 1 respectively. The whole results are visible in

appendix A.2.1.

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations D = d = 1.14m which corresponds to the wavelength of 300 Hz. In order
to respect the analytical study of chapter 2 and the works of Olson [16] the distance between the
sources as well as the numerical delay applied on the back-source are kept constant and equal
to d

2 = D
2 = 0.57m in accordance to figure 2.8. Then the frequency of the sinusoidal signal is

changed in order to obtain the different values D
λ and d

λ .

Regarding the results of the simulations some observations can be made.
First, on the front side, the FDTD model suits the analytical model and from 270 ◦(-90 ◦) to 90 ◦

the directional patterns are similar.
Then on the rear side two discrepancies appear. When D

λ is lower than 0.5, a rejection at θ = 180 ◦

is observed with the FDTD model while the analytical model has a dip. Different hypothesis can
explain this difference. The polar pattern of the analytical model is only dependent on the angle
θ. The distance from the source is not included. Moreover, the analytical model is realized in
far-field. With the FDTD model, errors could come from the approximations due to the space
and time discretization. The polar pattern of the FDTD is computed at 10 meters so the far field
conditions are not totally respected and the influence of the direct radiations of the source can still
exist. When D

λ becomes higher than 0.6 some notches present in the analytical models are not as
much pronounced in the FDTD simulation. Here again, the influence of the direct radiation of the
source could be an explanation.

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 5.11: FDTD simulation for D
λ

= d
λ

=0.2, f=60 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 5.12: FDTD simulation for D
λ

= d
λ

=0.5, f=150 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 5.13: FDTD simulation for D
λ

= d
λ

=1, f=300

The same observations and conclusion can be made for the other setups of first-order gradient
source-unidirectional whose figures are displayed in annex A.2.2 (for D

λ = 0.25 and d
λ ∈ [0.1, 1])

and A.2.3 (for d
λ = 0.25 and D

λ ∈ [0.1, 1])

5.6.4 Second-Order gradient sound source-Unidirectional

This subsection displays some of the results obtained for a Second-order gradient sound source-
unidirectional. The whole results are presented in annex A.3. In these simulations, very high
differences exist between the analytical and the FDTD models for some of the values of D

λ . The
closeness of the sound sources could lead to a combination of their radiations that is not fully
described in the analytical model.

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations D = d = 1.14m which corresponds to the wavelength of 300 Hz. The
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distances between the sources and the delays are kept constant in accordance to figure 2.10. Then
the frequency of the sinusoidal signal is changed in order to obtain the different values D

λ and d
λ .

(a) RMS pressure field (b) RMS pressure field in dB SPL
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Figure 5.14: FDTD simulation for d
λ

=D
λ

=0.2, f=60 Hz

(a) RMS pressure field (b) RMS pressure field in dB SPL
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Figure 5.15: FDTD simulation for d
λ

=D
λ

=1, f=300 Hz

5.6.5 Conclusion

In this section different orders of gradient sound sources have been simulated with a FDTD al-
gorithm. The results obtained have been compared with the ones of the analytical models from
chapter 2. These results are satisfying and allow to validate the FDTD method. In the next section
a more accurate model of subwoofer using real impulse responses will be implemented.
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6
Finite-Difference Time-Domain: simulation using

real subwoofer impulse response

6.1 Introduction

In the previous chapter 5 different orders of gradient sound sources have been simulated with
a FDTD method. These simulations have been done with sinusoidal sources creating mono-
frequency waves. The results obtained with the FDTD method appeared to be consistent with
the analytic results of chapter 2.

It has been showed that when positioning omnidirectional sound sources in a certain way and
applying specific delays and phase shifts to them different directivity patterns could be obtained.
Nevertheless these directivity patterns are frequency dependent.

This chapter aims to present the results of simulations using the impulse response of a real sub-
woofer whose frequency response spreads on around 100 Hz. First-order gradient sound source
setup with unidirectional directivity is privileged in these simulations as it is the most commonly
used setup when a control of the low-frequency directivity is desired. Different distances between
the sources as well as different values of delay are used in order to reveal the advantages and dis-
advantages of such setup when using real subwoofers. The analysis of the results will be focused
on the directivity obtained at different frequencies.

6.2 Simulation parameters

6.2.1 Sound source

In the simulations realized in this chapter the impulse response of a real subwoofer is used.

The subwoofer used is a DALI SWA8. It is a closed-box type with a 8” woofer driver. This
subwoofer is a direct-radiation type (to be distinguished from the manifold type or the bass reflex
type). It has an integrated amplifier and an embedded active low pass filter whose cut-off frequency
can vary from 50 Hz to 150 Hz.
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Figure 6.1: Subwoofer DALI SWA 8

The impulse response used for the simulations is an average of impulse responses measured around
the subwoofer. The procedure to obtain this averaged impulse response is detailed in appendix B.
The cut-off frequency of the low pass filter of the subwoofer is chosen to be 150 Hz in order to
have the wider frequency response allowed.

The impulse response of the subwoofer contains originally 65535 samples and has a sampling
frequency of 8000 Hz. This number of samples is too high for the memory capacities allowed
by Matlab in these FDTD simulations and would also be too much time consuming. Therefore
the impulse response is truncated and only the first 8000 samples are conserved. Indeed after the
first 8000 samples the impulse response is similar to noise. Moreover the magnitude obtained via
the fft of the truncated impulse response is similar to the one obtained with the complete impulse
response.

In the following simulations the sound source is assimilated to a pressure source so the impulse
response excites a pressure point of the FDTD grid.

6.2.2 Cell size

The cell size is determined by the maximum frequency of interest desired in the FDTD simulation.
The cut-off frequency (-3 dB) of the subwoofer is 150 Hz. Therefore to have a safety-margin the
cell size is calculated for a maximum frequency of 250 Hz. With the respect of equation 4.6 the
cell size is chosen equal to 0.2 meter.

6.2.3 Time step size

When the cell size is determined on can calculate the time step size according to equation 4.7. A
cell size of 0.2 meter gives a maximum time step of 4.1×10−4 s which is equivalent to a minimum
sampling frequency of 2425 Hz. The sampling frequency of the impulse response used in these
simulations is 8000 Hz. Because 8000 Hz fulfills the conditions of stability described before it is
decided to choose 8000 Hz as sampling frequency for the FDTD simulation. This choice will also
avoid any resampling process.

With a sampling frequency of 8000 Hz and an impulse response of 8000 points the simulation lasts
1 second.
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6.3 Simulation results

In the simulations made in this chapter one wants to reach a unidirectional behavior with a cardioid
pattern. Therefore the only setup simulated is the first order gradient sound source-unidirectional.

For each simulation some pressure-maps are plotted at different discrete frequencies. To obtain
such maps the pressure at each pressure-point of the FDTD grid is saved at each time step in order
to be able to have the impulse response received by each pressure-point of the grid. Then the fft
can be calculated at each pressure-point of the grid and the magnitude is obtained as the absolute
value of the fft. Finally at each point of the grid one extracts the value of the magnitude at different
discrete frequencies. The frequencies extracted are 40 Hz, 50 Hz, 60 Hz, 80 Hz, 100 Hz, 120 Hz
and 150 Hz which correspond approximately to the usual center frequencies of a 1

3 octave band
analysis.

In the previous chapter 5 one has seen that the perfect cardioid behavior is only obtained at one
specific value of D

λ and approximated at the others frequencies around. In the simulations pre-
sented in this chapter one try to reason in a more practical way to be closer to real setups. Thus, in
the next simulations one tests different frequencies giving a perfect cardioid directivity pattern and
put the appropriate distance between the sources as well as the appropriate delay for the chosen
frequency in order to see how it affects the directivity pattern of the others frequencies around.

Four different cases are tested.

Case 1:fcardioid = 150Hz

In the first case, the frequency giving the ideal cardioid directivity is fcardioid=150 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 0.6m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 0.6m.

The results of a this setup simulated with the FDTD method are presented in C.1. For example,
three pressure-maps corresponding to the frequencies f = 50Hz, f = 100Hz and f = 150Hz
are presented bellow in figure 6.2. The scales on the x-axis and y-axis represent the indexes in the
FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).

(a) f = 50Hz (b) f = 100Hz (c) f = 150Hz

Figure 6.2: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer

In this first case, one can see that the pressure generated by the system at 150 Hz is different to the
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one generated at 100 Hz or 50 Hz. It can be observed that as long as the frequency decreases the
rejection in the back of the subwoofer increases. The pressure in the front is also modified from
frequency to another but no notches are introduced.

Case 2:fcardioid = 100Hz

In the second case, the frequency giving the ideal cardioid directivity is fcardioid=100 Hz. For a
such frequency, the distance between the sources is D =

λfcardioid
4 = 0.85m and the delay applied

on the back subwoofer is d =
λfcardioid

4 = 0.85m.

The results of a this setup simulated with the FDTD method are presented in C.2. For example,
three pressure-maps corresponding to the frequencies f = 50Hz, f = 100Hz and f = 150Hz
are presented bellow in figure 6.3. The scales on the x-axis and y-axis represent the indexes in the
FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).

(a) f = 50Hz (b) f = 100Hz (c) f = 150Hz

Figure 6.3: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer

In this second case the differences between each frequencies are more obvious. Below 100 Hz
(the cardioid frequency) the rejection on the back of the system increases when the frequency
decreases. On the front the pressure is also modified. The directivity seems to become more and
more narrow when the frequency decreases. For frequencies up to 100 Hz on can see a notch
appearing on the front of the system. This notch is a non-desired effect. So in such setup one
should apply a low pass filter with a cutting frequency of 100 Hz to avoid this undesired effect at
frequencies upper to the cardioid frequency.

Case 3:fcardioid = 80Hz

In the third case, the frequency giving the ideal cardioid directivity is fcardioid=80 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 1.1m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 1.1m.

The results of a this setup simulated with the FDTD method are presented in C.3. For example,
three pressure-maps corresponding to the frequencies f = 50Hz, f = 100Hz and f = 150Hz
are presented bellow in figure 6.4. The scales on the x-axis and y-axis represent the indexes in the
FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size). the FDTD
grid and can be converted into meter by multiplying them by 0.2 (the grid size).
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(a) f = 50Hz (b) f = 100Hz (c) f = 150Hz

Figure 6.4: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer

In this setup the observations are the same than in case 2. Up to 80 Hz an undesired notch appears
in front of the system.

Case 4:fcardioid = 50Hz

In the fourth case, the frequency giving the ideal cardioid directivity is fcardioid=50 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 1.7m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 1.7m.

The results of a this setup simulated with the FDTD method are presented in C.4. For example,
three pressure-maps corresponding to the frequencies f = 50Hz, f = 100Hz and f = 150Hz
are presented bellow in figure 6.5. The scales on the x-axis and y-axis represent the indexes in the
FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).

(a) f = 50Hz (b) f = 100Hz (c) f = 150Hz

Figure 6.5: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer

In this fourth case the unidirectional behavior is met for frequencies down to 50 Hz. Up to 50 Hz
notches appear on the front of the system. For 100 Hz, the frequency equal to twice the cardioid
frequency, the directional pattern is a 8-figure with dips in the front and the back of the system.
For 150 Hz, the frequency equal to three times the cardioid frequency, the system generates a main
lobe on the front and two lobes on the side.
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6.4 Conclusion

In this chapter the impulse response of a real subwoofer has been included in the FDTD simu-
lations of a first order gradient source-unidirectional. It has been observed that depending which
frequency was chosen for the ideal cardioid behavior, the pressure field obtained for other frequen-
cies of the bandwidth could be very different.
In all the simulations, one has seen that down to the cardioid frequency a rejection appeared on the
back of the system. This rejection is more and more important as long as the frequency decreases.
For frequencies up to the cardioid frequency one has seen in cases 2, 3 and 4 that notches appeared
on the front of the system. These notches are an undesired effect because they reduce considerably
the bandwidth of the subwoofer.
Therefore the choice of the cardioid frequency seems an important parameter. Taking the cardioid
frequency equal to the upper cutoff frequency of the subwoofer could be a judicious choice in
order to avoid the presence of notches in the front of the system. This point will be demonstrated
in the next chapter 7.
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Part IV

Enhanced Low-frequency directivity
control
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7
Frequency dependent delay

7.1 Introduction

In the previous chapter 6 the impulse response of a real loudspeaker has been included in a first-
order gradient setup and simulations with a FDTD method have been conducted. Results of this
simulations showed that the directivity pattern could change sensibly at different frequencies. Par-
ticularly the perfect cardioid pattern is only achieved at one frequency.

It has been shown in chapter 5 that to achieve a desired polar pattern at a specific frequency,
the distance between the sound sources and the delay applied on the back subwoofer were the
parameters one can play with. If changing the distance between the sources in live is impossible,
playing with the delay applied on the back subwoofer seems more realistic.

In order to keep the directivity pattern of a first order gradient sound source as constant as possible
on a large frequency range one want to establish a mathematical relation between the delay applied
on the back subwoofer and the frequency.

In this chapter a frequency dependent delay function is determined empirically to achieve a pre-
determined polar pattern on a wide frequency range. FDTD simulations are done with this new
delay function to demonstrate its advantages and disadvantages when a mono-frequency sinusoidal
signal is used.

7.2 Analysis

The starting point of this study is the expression of the polar directivity for a first order gradient
sound source-unidirectional determined analytically in section 2.4.

For recall if the distance between the sources is D and the delay applied on the back source is d (in
meter) then the polar directivity of a first order gradient source-unidirectional is :

Rθ = sin (π
d

λ
+ π

D

λ
cos θ) (7.1)

where λ is the wavelength.
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Frequency range of interest

From the results of subsection 2.6.3 it is known that the perfect cardioid pattern is obtained when
d
λ = D

λ = 0.25 as shown on figure 7.1 and approximated when d
λ = D

λ < 0.25
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Figure 7.1: Cardioid pattern corresponding to equation 7.1 with D = d = 0.25λ with
λ = c/f , c = 343m.s−1 and f = 150Hz

When D
λ is higher than 0.25 one can observe a decrease of the pressure at θ = 0◦ as shown on

figure 7.2.
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Figure 7.2: Cardioid pattern corresponding to equation 7.1 with D = d = 0.25λc with
λc = c/fcardioid, c = 343m.s−1, fcardioid = 150Hz and λ = c/f , f =
200Hz

Taking a constant distance D = D0 between two subwoofers, if two frequencies of wavelength
λ1 and λ2 are chosen such that D0

λ1
= 0.25 and D0

λ2
> 0.25, then the inequality becomes D0

λ2
> D0

λ1

giving λ2 < λ1. This shows that when the conditions to obtain a cardioid pattern are met for
the frequency of wavelength λ1 they are not met at higher frequencies (squeezing of the front
pressure).

Therefore it demonstrates that when choosing the frequency for which the perfect cardioid pattern
is desired one should take the maximum frequency produced by the subwoofer.
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Empirical study

When the maximum frequency of interest fmax is known, one can calculate the distance D and the
delay d that will give the perfect cardioid pattern for it with equation 7.2:

D = d = 0.25λfmax (7.2)

Then the empirical study can start for frequencies lower than fmax. The aim of this study is to
determine the best delay d for the lower frequencies using equation 7.1 and for D = 0.25λfmax
kept constant.

To evaluate if a delay d(f0) can be considered as the ideal one for a frequency f0 different from
fmax, the pressures at θ = 0◦, θ = 90◦ and θ = 180◦ given by equation 7.1 are compared with
the ones obtained in the case of a constant delay d = 0.25λfMax

. For θ = 0◦ one want to keep
the pressure as high as possible. At θ = 180◦ one want the pressure to be as low as possible and
nearly constant for all the frequencies. At last, the pressure at θ = 90◦ should change in the same
proportion than the one at θ = 0◦ meaning that the SPL(90◦)-SPL(0◦) should be nearly constant
at all the frequencies. This would guaranty that the directivity pattern in the front of the system
has the same shape for all the frequencies.

Practically equation 7.1 is simulated in Matlab at several different discrete frequencies. For each
discrete frequencies different values of delay d are tested. The next figures 7.3 and 7.4 show some
examples.

In these examples it is assumed that the frequency giving the ideal cardioid behavior is fMax =
150Hz. Thus, in equation 7.1, D = 0.25λfMax

= 0.57m. If the ideal delay d wants to be found
for the frequency 100 Hz one must take λ = c/f with f = 100 Hz in equation 7.1. Then different
values of d are tested as shown on figure 7.3. It is important to say that only few numbers of d are
plotted there and do not represent the total number of tries made for each frequency.
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d=1,9 df
max

d=1,7 df
max

d=1,5 df
max

d=1,3 df
max

d=1,1 df
max

directivity for d=df
max

=0.25  max

Figure 7.3: Cardioid pattern corresponding to equation 7.1 with D = d = 0.25λc with
λc = c/fcardioid, c = 343m.s−1, fcardioid = 150Hz, λ = c/f , f = 100Hz
and d varying from 1 to 1.9

On figure 7.4 the same procedure is done for f = 75Hz
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Figure 7.4: Cardioid pattern corresponding to equation 7.1 with D = d = 0.25λc with
λc = c/fcardioid, c = 343m.s−1, fcardioid = 150Hz, λ = c/f , f = 75Hz
and d varying from 1 t0 1.9

What can be observed on these figures is that when the delay is kept constant equal to d =
0.25λfMax

the pressure on the front decrease rapidly with the frequency decrease. Moreover the
shape of the cardioid changes also. On the side (θ = 90◦) the pressure decrease quicker than on
the front.

At the opposite with a frequency-dependent delay it is possible to find some values of d which
give almost a constant pressure at θ = 180◦, for example d = 1.3dfMax

when f = 100Hz
and d = 1.5dfMax

when f = 75Hz (see figures 7.3 and 7.4). These delays d = 1.3dfMax
,

d = 1.5dfMax
produce higher pressure level on the front of the system for f = 100Hz and

f = 75Hz respectively. They also keep the shape of the directivity pattern identical to the one
obtained for the perfect cardioid behavior with f = fmax.

Mathematical relation and performances

With the empirical approach described above, the following mathematical relation 7.3 is estab-
lished. This relation appears appears to be the one which gives the best results over a wide fre-
quency range.

d =
c

4fmax
+ (1− f

fmax
)× c

4fmax
(7.3)

with

• d: delay in meter

• c: celerity of the sound in m.s−1

• fmax: the maximum frequency of interest produced by the subwoofer. The frequency that
gives the ideal cardioid behavior.

• f: the frequrency in Hz
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In appendix D.1 one compares the directivities obtained with and without the frequency-dependent
delay at different discrete frequencies. To help understanding the advantages of this delay function,
the results of appendix D.1 are summarized in figures 7.5, 7.6, 7.7 and 7.8.

On figures 7.5 and 7.6 one can see that when the frequency decreases and becomes farer from
the frequency of the perfect cardioid behavior, the pressure difference between the setup with a
frequency-dependent delay and the setup with a fixed delay tends to increase in the front (θ = 0◦)
and in the side (θ = 90◦) of the system. Between 2 and 3 dB of difference can be observed at 30
Hz in the front of the system and up to 4 dB of difference at 30 Hz on the side of the system.

Figure 7.8 shows one of the main advantage of the frequency-dependent delay. One can observe
on this figure that along the frequency range considered here, the difference of pressure between
the front and the side of the system varies only of 0.5 dB in the case of the frequency-dependent
delay, whereas it changes of more than 3 dB in the case of a fixed-delay. This means that with the
delay function proposed in this chapter the shape of the directivity is kept nearly constant on the
front of the system and along the studied bandwidth.
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Figure 7.5: Pressure in dB SPL in function of the frequency at θ = 0◦ for a first-order
gradient speaker-unidirectional, with a fixed delay (red curve) and with a
frequency-dependent delay (blue curve)
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Figure 7.6: Pressure in dB SPL in function of the frequency at θ = 90◦ for a first-order
gradient speaker-unidirectional, with a fixed delay (red curve) and with a
frequency-dependent delay (blue curve)
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Figure 7.7: Pressure in dB SPL in function of the frequency at θ = 180◦ for a first-order
gradient speaker-unidirectional with a frequency-dependent delay
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Figure 7.8: Difference of pressure between the front θ = 0◦ and the side θ = 90◦ of a
first-order gradient speaker-unidirectional, with a fixed delay (red curve) and
with a frequency-dependent delay (blue curve). The results are dB SPL in
function of the frequency.
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7.3 FDTD simulations

Earlier in this project, it has been remarked that some differences could exist between the directiv-
ity pattern obtained analytically and the one obtained for real and simulated more accurately with
the FDTD method. Therefore, the effects of the floating delay described by equation 7.3 are tested
with the FDTD method. The details concerning the parameters of the simulations as well as the
complete results are shown in appendix D.2.

On these simulations the differences between the setup with a fixed delay and the setup with the
floating delay appears quickly. At 30 Hz from the frequency of the perfect cardioid behavior a
small rejection starts to appear on the back of the setup with the fixed delay whereas the setup
with the floating delay is almost unchanged. At 50 Hz from the frequency of the ideal behavior the
differences between both setups are obvious. A higher rejection appears on the back of the system
with the fixed delay. On the front of the system with the floating delay the pressure keeps a shape
comparable to the one of the ideal behavior whereas it becomes narrower with the fixed delay.
These differences are going to increase as long as the frequency decrease. At the low frequencies
of the bandwidth, the setup with a frequency-dependent delay seems better for projecting the sound
forward and keeping the back rejection lower.

7.4 Conclusions

In this chapter the work has been focused on improving the control of the directivity of a first-order
gradient sound source-unidirectional and more specifically, on trying to keep the directivity pattern
constant over a wide frequency range.

This has led to find a relation between the frequency and the delay applied on the back subwoofer
of a first-order gradient setup.

This frequency-dependent delay has been tested both analytically and with the FDTD simulation.
The results appeared to be encouraging. So this floating delay should then be tested on a setup
using real subwoofers.
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8
Design of an all-pass filter with specified

group-delay

8.1 Introduction

Spectral delay filtering is an audio processing method in which different frequencies of a signal
are delayed by different amounts. Different methods can be implemented to achieve such results.
One of the recently introduced method consists in utilizing a cascade of first order all-pass filters.

Usually, filtering an audio signal with a time-invariant all-pass filter does not have a major effect
on the timbre because it does not change the magnitude of the signal. Moreover the group delay
of a first order all-pass filter is almost constant for all the frequencies. So no noticeable change
would be heard if an audio signal was processed with a first order all-pass filter.

At the contrary if a high-order all-pass filter is constructed by cascading several low-order all-pass
filters, each introducing a mild phase shift, the overall filter has a phase shift that is the sum of
the phase shifts of the individual low-order filters. In that case, impressive audible changes maybe
obtained if an audio signal is processed by a such filter. The reason is that the low and the high
frequencies become separated in the output signal and a chirp like effect can be heard.

Therefore, all-pass filters are commonly used in audio and music processing. Their applications go
from effect processing (simulation of reverberation, digital phase, shelving filter, distortion effect)
to fractional delay or inharmonic synthesis of piano tones. More generally in lot of different fields
all pass filters are used to compensate for phase non-linearity of linear systems or for group-delay
equalization.

In this project an all-pass filter is used to obtain a frequency dependent delay on the back subwoofer
of a first-order gradient setup.

This chapter aims to design an all-pass filter whose group-delay closely approximates the ideal
group-delay function previously defined in chapter 7 by equation 7.3.

8.2 Properties of all-pass filters

As its name indicates an all-pass filter has an unity magnitude response in the whole frequency
band. Thus, when designing an all-pass filter one can concentrate on the approximation of a
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desired phase or on the group-delay.

The z-transfer function of a N th-order all-pass filter is:

A(z) = aN+aN−1z
−1+aN−2z

−2+...+a1z−(N−1)+z−N

1+a1z−1+...+aN−1z−(N−1)+aNz−N

The numerator polynomial is a mirrored version of the denominator. One of the main disadvantage
of this filter is the possible instability. So it has to be aware that the poles remain within the unit
circle when designing such filter. In this project the coefficients are assumed to be real values to
allowed an eventual implementation.

According to [17] The phase response of the all pass filter can be expressed as:

θA(ω) = arg(A(ejω)) = −Nω + arctan

N∑
k=0

aksin(kω)

N∑
k=0

akcos(kω)

where N is the order of the all-pass filter, ω is the radial frequency and ak are the coefficients of
the filter.

The group delay is defined as:

τA = −dθA(ω)
dω

= N − 2
aTGΛa
aTGa

(8.1)

with

• a = [a0 a1 a2 ... aN ]T

• G = ccT + ssT

• c = [1 cos (ω) cos (2ω)... cos (Nω)]T

• s = [1 sin (ω) sin (2ω)... sin (Nω)]T

• Λ = diag(0 1 2 ... N)

• T is the matrix operator transpose

It can be noticed that the group delay is related to the filter coefficients in a nonlinear manner.
Therefore it is not possible to have simple design formulas for the all-pass filter coefficients. In-
stead an iterative optimization techniques that minimize the traditional error criteria can be used.
The next section describes a method to find the coefficients of an all-pass filter having a desired
group delay based on the minimization of the error criteria.
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8.3 Filter coefficient determination

8.3.1 Error minimization

Whatever the algorithm used for the determination of the filter coefficients a they are all based on
the minimization of the error function ε(ω) over the band of interest [ω1 ω2].

ε(ω) = τid(ω)− [τ(ω) + τA(ω)] (8.2)

with

• τid(ω): the ideal or desired group delay

• τ(ω): the initial group delay of the system

• τA(ω): the group delay of the all pass filter one wants to design

• ω ∈ [ω1 ω2]

In this project the ideal group delay τid is defined by equation 7.3. The group delay of the filter
one wants to design is defined by equation 8.1. The initial group delay of the system τ(ω) is set to
zero.

A way to find out a is to minimize the mean squared value of the error function ε(ω) over the band
of interest. This is equivalent to solve the non-linear equation 8.3.

ζ =

ω2∫
ω1

ε2(ω)dω =

ω2∫
ω1

(τid(ω)− τA(ω))2dω (8.3)

ω1 and ω2 define the frequency interval where one wants to design the desired filter. The best
realizable filter τA(ω) is the one that minimizes the integral ζ of equation 8.3. Different methods
can be used to solve this nonlinear minimization problem. An overview of them is made in the
next subsection.

8.3.2 Overview of the algorithms

Several different algorithms that minimize the integral of equation 8.3 and help to determine the
coefficients a have been developed in the past decades. It is not possible to study the advantages
and disadvantages of all of them in this report. Only a brief overview of the most famous and the
most relevant algorithms is made. This will end by the choice of one of them for this project.

In the sixties and the seventies the minimization of equation 8.3 has been studied by Fletcher and
Powell and by Deczky. They have left famous algorithms still considered as references today but
whose applications are mainly focused on group delay equalization. In [2] the design of the IIR
filter uses a constrained gradient algorithm for group delay equalization.

A new approach based on matrix operation is introduced by Laakso and al in [17]. This study was
reused later by Tapia and al in [7] specifically for the design of allpass filter respecting a desired
group delay. According to the expressions of τid(ω) and τA(ω) defined by equations 7.3 and 8.1
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respectively, the error ε(ω) can be expressed as a multiplication of several matrix as shown in
equation 8.4.

ε(ω) =
aTG((τid(ω)−N)Id+ 2Λ)a

aTGa
(8.4)

In equation 8.4 Id designates the identity matrix. The integral 8.3 that needs to be minimized can
then be written as in equation

ζ =

ω2∫
ω1

[
aTGKa
aTGa

]2

dω (8.5)

with
K = (τid(ω)−N)Id+ 2Λ (8.6)

To minimize the error ζ Tapia constrains K to be positive in order to remove the squared function.
The error becomes

ζ = aTRa (8.7)

with

R =

ω2∫
ω1

GK

aTGa
dω (8.8)

The minimum error ζ is then obtained after few iteration steps by finding the eigen vector a cor-
responding to the smallest eigen value of R. This method has the advantage that it can be quickly
coded and simulated. It also gives good results with few iteration steps. But the constrain of K pos-
itive is a limiting factor of this method. In [8] Tapia proposes another method minimizing the error
with an iterative quadratic maximum likelihood algorithm. Facing the complexity of this method,
especially on a mathematical point of view, it has been decided to not simulate this method.

Different algorithms for the design of recursive filters using optimization methods have been pro-
posed by Antoniou in [4]. Starting with the Newton algorithms to minimizes the integral of equa-
tion 8.3, Antoniou proposes several improvements leading to new classes of algorithms called
quasi-Newton algorithm and Minimax algorithm. The detailed theory describing these algorithms
are presented pages 496-515 in [4]. The works of Antoniou are the basis of a Matlab function
called iirgrpdelay. This Matlab function allows to design all pass IIR filters that have group delay
characteristics defined by the user.

Thereby, this Matlab function will be used unchanged to find the coefficients of the all pass filter
that fits the best with the desired delay needed in this project and defined earlier by equation 7.3.
In the next subsection 8.3.3 the Matlab function iirgrpdelay is used to design the filter needed in
this project. The results obtained are presented.

8.3.3 Design of the desired group delay

This subsection 8.3.3 aims to design the all pass filter needed in this project using the Matlab
function iirgrpdelay. The inputs and outputs of this function are presented and the corresponding
values used in the case of this project are detailed.

72



The iirgrpdelay function can be used with different numbers of input and outputs depending on
the needs of the user (see Matlab help). In this project a version with 6 inputs and 3 outputs is
used.

Inputs

The six inputs of the iirgrpdelay are the order N, the frequency F, the band-edges, the vector
defining the desired group delay Gd, the vector to weight the error W and the maximum pole
radius.

• N: This first entry gives the order of the all pass filter. After several tries it appears that
increasing the order was not giving results significantly better. The only constrain imposed
by Matlab on this input is that it must be an even number. Thus, it is decided to take N = 8.

• F: This entry is a vector containing the frequencies used to defined the shape of the desired
group delay. Frequencies have to be normalized between 0 and 1. The frequency-dependent
delay function defined by equation 7.3 is a linear function. So it is graphically represented by
a straight. Therefore only two points are needed in the frequency vector and in the Gd vector.
One chooses arbitrarily both extreme frequencies of the bandwidth of interest. Regarding
the bandwidth of the subwoofer used before one takes f1 = 30Hz and f2 = 150Hz. So
expressed in normalized frequency F =

[
30
fs

150
fs

]
with fs the sampling frequency.

• Edges: This vector specifies the band-edge where one wants to design the desired group
delay. The values of this vector are also normalized. As the frequency vector defined just
before contains only two frequencies which are the lower and upper limits of the bandwidth
the edge vector is equal to vector F.

• Gd: This entry is the vector whose elements are the desired group delay at frequencies
specified in F. Its values are expressed in samples. An important remark is that the desired
group delay defined in this vector is relative. This point will be rediscussed later. From
a practical point of view, according to equation 7.3 which is the group delay one wants to
design, if the maximum frequency where the cardioid mode is desired is equal to 150 Hz
(see chapter 7 ) and the sampling frequency is equal to 8000 Hz (for the reasons previously
discussed in chapter 6), one obtains a desired group delay of 24 samples for f = 30Hz and
13 samples for f = 150Hz. So Gd = [24 13].

• W: This vector aims to weight the error. It must have the same size than F. Here one sets it
equal to [11].

• radius: This number limits the maximum pole radius. It is a number between 0 and 1
(excluded). Its default value is 0.9999. In the design of this project the default value is
conserved.

Outputs

The three outputs generated by the function iirgrpdelay are the coefficients of the numerator b,
the coefficients of the denominator a and the offset tau. If the meaning of vectors b and a are
obvious, the role of tau needs some explanations. Few lines before, one has said that the desired
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group delay defined in Gd was relative. The filters created by iirgrpdelay have a group delay that
approximates (Gd + tau). So the values of the group delay obtained through this design are not
the ones expected on an absolute point of view. But the shape of the desired group delay is the
same at a factor tau near.
Practically in this project, a delay equal to tau will be applied on the front subwoofer so that the
relative delay between the front and the back subwoofer is still corresponding to the desired delay
of equation 7.3.

Results

Respecting the specifications given for the inputs of the iirgrpdelay function, the group delay
represented by the blue curve on figure 8.1 is obtained. The green curve corresponds to the group
delay desired for this project and defined by the vector Gd. The red curve corresponds to the
desired delay shifted with the offset return buy the Matlab function. This offset is equal to 53
samples.
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Figure 8.1: Group delay of the filter designed by the Matlab function iirgrpdelay (blue
curve). Desired group delay (green curve). Desired group delay shifted by
the offset (red curve). The x-axis represents the normalized frequencies. The
y-axis represents the group delay expressed in samples

Regarding figure 8.1 the result obtained fulfill the conditions needed for this project. In the next
subsection 8.4 the iir filter one has designed is going to be tested in the FDTD simulation of a first
order gradient source-unidirectional using the impulse response of a real subwoofer.

8.4 FDTD simulations with an all pass filter of desired group delay

The frequency-dependent delay function defined in chapter 7 is now realized with the IIR all pass
filter designed in section 8.3.3. Its performances are going to be evaluated with a FDTD simulation.

The aim of this section 8.4 is to simulate the behavior of a first order gradient source-unidirectional
that uses the impulse response of a real subwoofer and whose back subwoofer is filtered by the all
pass filter designed in 8.3.3.
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The signal path of both subwoofers for a such setup is shown on figure 8.2. On this figure, the IIR
all pass filter block filters the signal going to the back subwoofer introducing a delay dependent of
the frequency with respect to equation 7.3. This IIR filter introducing also an offset as previously
discussed in 8.3.3 the front subwoofer needs to be delayed by a number of samples equal to the
offset introduced by the all pass filter. This explains the block Z−offset in the block diagram of
figure 8.2.

  

IIR 
All pass 

filter
Z-offset

Front 
subwoofer

Back 
subwoofer

signal

Figure 8.2: Signal path of a first order gradient setup with an IIR filter on the back sub-
woofer

In the simulations presented in this section, one uses the same subwoofer and simulation parame-
ters than in the simulations of chapter 6 so that a direct comparison between both can be made.

To avoid the formation of notches in the front of the system the cardioid frequency is chosen
equal to the maximum frequency produced by the subwoofer. So fmax = 150Hz. To justify this
choice one can refer to sections 6.3 and 7.2. For a cardioid frequency equal to 150 Hz the distance
between both subwoofers must be D = c

4fmax
= 0.57m (with c = 343m.s−1).

The results of the FDTD simulation can be seen in appendix E. Some examples are showed bellow
on figure 8.3. The pressure field obtained at different discrete frequencies is plotted with the same
method than in 6.3. To facilitate comparisons between a setup having the all pass filter and a setup
without this all pass filter, one shows in parallel the results obtained when the designed all pass
filter is applie on the back subwoofer and the results previously obtained in the case 1 simulated
in 6.3.

Observing the results one can see the influence of the all pass filter on the pressure field at different
discrete frequencies.
The differences between both setups (with and without the all pass filter) seems more obvious in
the front of the system than in the back. Indeed, on the front of the system the designed all pass
filter seems to help the sound pressure going forward and keeping the shape of the directivity con-
stant (with respect to the original variations of the magnitude of the measured subwoofer). Without
the filter the directivity of the system seems becoming more narrow as long as the frequency de-
creases.
On the back of the system the results obtained are not as good as expected. The back rejection has
not exactly the same shape in both setups but a detailed observation shows that the pressure in the
back-axis of the subwoofer is almost identical and this for all the frequencies.

Different hypothesis could explain these disappointing results in the back of the system, starting by
a possible wrong choice in the desired group delay found in chapter 7 and used in these simulations.
Nevertheless, through the experience acquired in the different FDTD simulations, one has already
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(a) f = 50Hz (b) f = 50Hz

(c) 100 (d) f = 100Hz

(e) f = 150Hz (f) f = 150Hz

Figure 8.3: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method fed by the impulse response of a sub-
woofer. In the left column the delay on the back subwoofer is fixed and equal
to c

4fmax
with fmax = 150Hz. In the right column the back subwoofer is

filtered with the IIR all pass filter designed in chapter 8.4
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evoked that the direct vibrations coming from the back subwoofer could explain this rejection
present on the back of the system. In all the simulations run till now, both subwoofers had the
same input gain. One makes now the hypothesis that using a different gain on the front subwoofer
and on the back subwoofer can help improving the control of the directivity of the system. This
hypothesis is studied in the next chapter.
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9
Influence of the gain on the directivity

9.1 Introduction

This chapter aims to study the possible influence of the gains of the front and back subwoofers on
the directivity of the system. Until now, the simulations were conducted with a same gain for both
subwoofers. But in [14], Mogale presents some simulation results where the number of subwoofers
destined to produce the sound for the audience is higher than the number of subwoofers used to
cancel the back-wave. This kind of setup is well known from the sound engineers. Changing the
gain on the front and the back subwoofer could help to increase the front to back rejection. After
an analytical description, FDTD simulations will be made to see which enhancement can bring a
gain variation between the front and the back subwoofer.

9.2 Analysis

9.2.1 Equations

Starting with the first order gradient sound source-unidirectional setup shown on figures 2.7 and
2.8, one adds a gain G in the expression of the pressure generated by the front subwoofer originally
defined by equation 2.34. This leads to a new equation for the pressure of the front subwoofer 9.1:

p1(r) = − jGρ0U0Skc

4π(r + ∆r1)
exp j(ωt− k(r −∆r1 −

d

4
)) (9.1)

Following the same procedure than in section 2.4 to find the pressure generated by the system in
far field one gets equation 9.2 as final result.

p(r) = −jρ0U0Skc

4πr
exp j(ωt− kr)

[
G exp jk(∆r +

d

4
)− exp−jk(∆r +

d

4
)
]

(9.2)

The expression of the directivity pattern generated by this system is contained in the last term of
the equation 9.2. Taking its absolute value gives

R(θ) =

√
1 +G2 − 2G cos (2k(∆r +

d

4
)) (9.3)
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Expressing the directivity pattern in function of the ratio D
λ as previously done in chapter 2 gives

a new expression 9.4 for the directivity pattern:

R(θ) =

√
1 +G2 − 2G cos (

πD

λ
cosθ +

πd

λ
) (9.4)

It is important to notice that if G is taken equal to 1, meaning equal to the gain of the back
subwoofer, equation 9.3 becomes equal to the expression of the directivity pattern 2.38 previously
found in section 2.4.

9.2.2 Simulations

In this subsection 9.2.2 equation 9.3 is simulated for different values of gain G and ratio D
λ .

One makes varying the gain G from 1 to 2 by step of 0.1. Two different values of D
λ are chosen.

D
λ = 0.25 corresponds to the ideal cardioid behavior, and D

λ = 0.125 chosen arbitrarily, corre-
sponds to the behavior at the frequency equal to half the cardioid frequency. Figures 9.1 and 9.2
show some of the results obtained. The whole results can be seen in appendix F.1.1 and F.1.2.
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Figure 9.1: Directivity pattern of a first order gradient sound source-unidirectional for dif-
ferent values of gain applied on the front subwoofer. The results are ex-
pressed in pascal. The ratio D

λ
and d

λ
in equation 9.4 are equal to 0.25.

80



  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(a) Gain=1

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0
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  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(c) Gain=1.7

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(d) Gain=2

Figure 9.2: Directivity pattern of a first order gradient sound source-unidirectional for dif-
ferent values of gain applied on the front subwoofer. The results are ex-
pressed in pascal. The ratio D

λ
and d

λ
in equation 9.4 are equal to 0.125.

From these results, different observations can be made. Whatever the value of D
λ , increasing the

gain of the front subwoofer produce a higher pressure in the front of the system. But at contrary
it also tends to increase the rejection in the back of the system. Therefore a trade-of should be
found to produce higher SPL in the front of the system without increasing it much in the back.
Nevertheless it has been shown in chapters 5 and 7 that some deviations were existing between the
analytical models and the FDTD methods. So FDTD simulations are needed to to complete the
observations.

It has already been noticed in chapters 2 and 7 that when the value of D
λ decreases the pressure

generated by the system decreases as well. So a frequency-dependent gain might helps to keep the
pressure produce by the system and its directivity pattern nearly constant along a given frequency
band. For a question of time this point will not be developed in this project.

9.3 FDTD simulations

In this section two different kinds of FDTD simulations are made. In the first one, a mono-
frequency sinusoidal signal is used and the distance D between the sources as well as the delay
d applied on the back source are kept constant. These first FDTD simulations aims to make
comparisons with the analytical results of subsection 9.2.2.

In the second kind of simulation one uses a real subwoofer impulse response and the back-
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subwoofer is filtered with the IIR filter designed in chapter 8.4.

9.3.1 FDTD simulation: Sinusoidal signals

This subsection aims to simulate with a FDTD method a first order gradient source-unidirectional
for two values of ratio D

λ equal to 0.125 and 0.25 and different values of gain for the front sub-
woofer as previously made in subsection 9.2.2. Details about the parameters of the FDTD simula-
tion as well as the whole results can be seen in appendix F.2. One presents only few examples in
this subsection. On figures 9.3, 9.4, 9.5, 9.6 one shows four examples of gain when D

λ = 0.25. On
figures 9.7, 9.8, 9.9, 9.10 one shows four examples of gain when D

λ = 0.125.

Case 1: D
λ = d

λ = 0.25

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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(c) Polar pattern at 10 m in
pascal.

Figure 9.3: FDTD simulation for a gain equal to 1

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.4: FDTD simulation for a gain equal to 1.4
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.5: FDTD simulation for a gain equal to 1.7

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.6: FDTD simulation for a gain equal to 2

Case 2: D
λ = d

λ = 0.125

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.7: FDTD simulation for a gain equal to 1
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.8: FDTD simulation for a gain equal to 1.4

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.9: FDTD simulation for a gain equal to 1.7

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure 9.10: FDTD simulation for a gain equal to 2

The analysis of the results from the FDTD simulations show that when increasing the gain of the
front subwoofer one tends to send more energy to the front of the system and creating a pressure
field that has a cardioid shape. The front to back rejection increases as described by Mogale in [].
Higher rejections seems nevertheless obtained on the side.
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When comparing the analytic polar pattern with the polar pattern extracted from the FDTD simula-
tions one can notice that when the gain of the front subwoofer is close to 1 the analytic simulations
predicts better results than the FDTD simulations. Especially the direct radiations coming from
the back subwoofer are inexistent in the analytic simulations. When the gain get closer to 2, the
FDTD simulations seems more optimistic than the analytical results in term of reduction of the
back rejection while keeping identical results in the front of the system.

Therefore these simulations shows that increasing the gain of the front subwoofer can be benefit
for a higher control of the low frequency directivity.

9.3.2 FDTD simulation: Real subwoofer impulse response

Now that some observations have been made with pure sinusoid, one realizes different FDTD
simulations using the impulse response of a real subwoofer. This impulse response is the same
than described in subsection 6.2.1 and already used during previous simulations.

As the gain difference method studied in this chapter 9.3.2 is used as a complement of the IIR filter
designed in chapter 8.4 to improve the control of the directivity of the subwoofers, the simulations
will be made with the back subwoofer filtered by the all-pass filter of frequency-dependent delay
designed previously.

Testing the influence of the gain would take lot of time if one would like to make as many simula-
tions as in subsection 9.3.1 and check the results at several frequencies. Therefore one limits the
simulations to two different values of gain. Many loudspeaker manufacturers of the professional
audio industry recommends a ratio of two subwoofers in the front and one in the back or three in
the front and one in the back to obtain the cardioid behavior. Starting from these recommendations
one will do one FDTD simulation with a difference of +3 dB between the front-subwoofer and the
back-subwoofer and another simulation with a difference of +4.7 dB. The first case is equivalent
to have two sources in the front and one in the back (when doubling the number of sources in the
front one earns 3 dB) and the second case is equivalent to three sources in the front and one in the
back.

The parameters of the FDTD simulations and the whole results are visible in appendix F.3. One
only presents few examples on figures 9.11, 9.12 and 9.13in this subsection. To facilitate the
comparisons one plots in parallel the pressure field obtained at different frequencies when:

• The front subwoofer and the back subwoofer have the same gain.

• The front subwoofer produce 3 dB more than the back subwoofer

• The front subwoofer produces 4.7 dB more than the back subwoofer

Regarding the results presented on figures 9.11, 9.12 and 9.13 one can see that for all the fre-
quencies an improvement could be noticed when the gain of the front subwoofer becomes higher
than the gain of the back subwoofer. The cardioid pattern is more pronounced as the back re-
jection decreases significantly. It seems also that one loses some pressure in the front when the
gain increases compared to the case of identical gain but the shape stays nearly constant at all the
frequencies.

Therefore a combination of both frequency-dependent delay and gain-difference between the front
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(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure 9.11: Pressure field at 40 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure 9.12: Pressure field at 100 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure 9.13: Pressure field at 150 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

and the back subwoofer could give a good directivity control of low frequencies. The measure-
ments of next chapter 10 will help to validate this hypothesis.
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10
Measurements of real setups

10.1 Introduction

In the previous chapters, the subwoofer directivity has been studied on an analytical point of view
and through simulations modeling the pressure field produced by different setups of subwoofers.
Analytical studies and simulations introduce always approximations simplifying the models and
thus giving results different from the reality. Therefore this chapter aims to present the results of
measurements conducted on a real subwoofer setup with the different working conditions simu-
lated in chapters 6, 8 and 9.3.2. The working conditions are:

• Subwoofer alone: omnidirectional behavior

• First order gradient source-unidirectional: Initial setup with the distance between the source
and the delay kept constant for all the frequencies.

• First order gradient source-unidirectional: Setup with the back subwoofer filtered with the
IIR filter designed in chapter 8.

• First order gradient source-unidirectional: Setup with the back subwoofer filtered with the
IIR filter and different values of gains.

The results of these measurements are compared with the results of the simulations in order to
validate the conclusions made in the previous chapters.

10.2 Measurement conditions

10.2.1 Choice of the method

All the simulations previously made in this project were under the assumption of a free-field be-
havior. Thus, to compare the simulations and the measurements one should also make these last
ones in free field environment. The problem is that measuring low-frequencies in free field condi-
tions has always presented some limitations.

Measuring loudspeakers in free field conditions is very often associated with measurements is
anechoic chambers. But when dealing with low-frequencies the free field connections are not mer
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anymore in anechoic chambers. The reason is that the wavelength at low-frequencies is higher
than the size of the chamber. Therefore researchers have tried to find other methods to evaluate
the response of loudspeakers at low-frequencies.

In [13], Melon and al compare four different techniques of measurements of subwoofers:

• In anechoic chamber

• Outside in pseudo free field

• In small non-symmetrical room (2m2)

• With a field separation techniques

Regarding the conclusions of [13] and for practical reasons the measurements done in this project
will be realized outside. Indeed, measurements in anechoic room are not appropriated if a ref-
erence source is not available. Moreover it would require more processing to split the impulse
response of the sound system from those of the anechoic room. In small non symmetrical room
one can not measure the directivity which is a problem here as one wants to measure the pressure
field around the source at different distances. At last the field separation, despite she gives reli-
able results, seems difficult to perform practically. At the opposite outdoor measurements, despite
some constraints that will be described later in 10.2.2, is simple to realize and does not need much
post-processing.

[13] presents two different setups for outdoor measurements.

• Subwoofer stacked on the ground

• Subwoofer lifts up far from the ground

Lifting up the subwoofer and the microphone from the ground presents the problem of measuring
also the reflections coming from the ground. These reflections can affect a lot the measures. Thus
the measurements will be performed with the subwoofers and microphone on the floor. With a
such setup the effects introduced by the floor are limited. Nevertheless the floor has still a role in
this kind of setup. As it can be considered as a perfect rigid boundary it reflects the sound almost
perfectly creating an image-source as shown on figure 10.1.

  

Ground
Free field

Figure 10.1: Equivalence between a loudspeaker staked on a rigid boundary and its be-
havior in free-field

So a ground stacked setup is equivalent to use two sources in free field conditions. The same
remark could be done for the microphone.
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10.2.2 Setup recommendations

According to [13] some parameters need to be carefully controlled or at least considered when
doing measurements outside.

• Weather forecast: For outside measurements very kind weather is needed. Especially it must
be windless because wind generates mostly low frequencies.

• Background Noise: The background noise should be as low as possible. Indeed if an ane-
choic room is used its background noise is inaudible and do not affect the measures. At the
opposite, outside, the background noise can be high and come from different kind of sources:
wind, road traffic or other transportation facilities (train, plane), people, etc... Therefore, the
place where the measurements will be conducted should have a limited background noise
especially a low-frequencies.

• Distances from the walls: In the case of a place surrounded by walls, a minimum distance
between the subwoofer and the wall should be respected. This distance should be higher
than the biggest wavelength in order to limit the effect of the reflections and the creation
of interference between the direct wave and the reflected wave. On a practical point of
view, a long distance between the subwoofer and the walls delay the arrival time of the
first reflections in the measured impulse response as shown on figure 10.2. So it does not
affect much the direct impulse response measured leaving enough samples to have a good
accuracy in the FFT at the lower frequencies of the bandwidth. In [13] a minimum distance
of 10 meters between the subwoofer and the wall is considered as acceptable.
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(c) Subwoofer positioned at 15 m from a wall
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Figure 10.2: Theoretical impulse response measured for two different distances between
the subwoofer and the wall
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10.3 Measurement Setup

To facilitate the comparison between the simulation results from the FDTD method and the mea-
surements it is decided to measure the pressure field around the subwoofer in many points posi-
tioned on a pre-determined grid that looks like the grid used for the FDTD simulation. This choice
will allow to obtain the pressure-map generated by the different subwoofer setups at different dis-
crete frequencies similarly than in the previous simulations. But choosing a such measurement
setup can be time consuming as the number of point to measure can increase quickly. Therefore,
the distance between the measured points will be higher than the grid size of the FDTD simula-
tions and the size of the space one wants to measure will be smaller. In the FDTD simulations the
grid size was varying between 0.1 m and 0.3 m depending on the simulations and the space where
simulations were conducted spread between around 600 m2 (square of 25 m by 25m) and 1200
m2 (square of 35 m by 35 m). For the real measurements the grid size is arbitrarily chosen equal
to 1 m and the space to measure has a surface of 200 m2 (rectangle of 10 m by 20 m). In regard
to the directivity pattern of the subwoofer previously measured in appendix (see figure) one can
also consider that the radiation of the subwoofer is symmetric and so reduce the number of points
to measure. Thus the measurements are only performed on one side of the subwoofer setup and
deduced by symmetry on the other side. Figure 10.3 shows the position of the subwoofers in the
grid of measurement and the microphones positions.

  

1m

1m

Figure 10.3: Grid for the measurements. Each blue point represents a microphone posi-
tion. The dashed line represents the symmetry axis.

The journal of measurements with the information relative to the equipment, the signal, the po-
sitions of the subwoofers and the microphone as well as the weather conditions is presented in
appendix G.3.5.

10.4 Measurement results

The results of the measurements are displayed in appendix G.3.

Different observations can be made. For the measurements with only one subwoofer playing
alone, one can see that the omnidirectional behavior is met at all the frequencies from 50 to 150
Hz. This observation confirms the assumption that a subwoofer can be modeled as a point source
with omnidirectional directivity pattern.

In the case of a cardioid setup with a fixed distance between the subwoofers and a fixed delay
applied on the back subwoofer the results are similar to those of the FDTD simulations. One can
especially observe the small rejection generated by the back subwoofer on the back of the system
and a reduction of the pressure produced in the front when the frequency decreases.
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The configuration with the back subwoofer filtered by the designed all pass filter do not give the
expected results. If a cardioid behavior seems to exist from 40 to 80 Hz, the measurements show
a quasi omnidirectional radiation at higher frequencies. Different hypothesis could explain these
results. It can be a problem with the filtering function used within Matlab that would affect a lot the
results. It can also be a behavior that has not been modeled properly during the FDTD simulations.
One remark that can be done is that a clear difference could be heard at the back of the system
when playing the cardioid configuration without extra processing and the cardioid configuration
with the IIR filter. The first of both seemed working better.

For the two last configurations one can observe that the back rejection produced by the back sub-
woofer has disappeared as expected after the FDTD simulations. The pressure in the front seems
a bit lower than in the case of a cardioid setup with fixed delay, but the shape of the directivity
seems more constant especially in width. In the case of a gain difference of 4.7 dB between the
subwoofers and unexpected high pressure peak is visible on each side of the source at 5 m distance.
That might be due to reflections measured at this point that affect the results.
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Part V

Conclusion and future studies
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11
Conclusion

The purpose of the project documented in this report was to study different methods that could
provide a control of the directivity pattern of loudspeakers at low frequency and to propose new
solutions to improve the existing methods.

After an analytical study of basic subwoofer setups, helped by FDTD simulations, one has seen
that the traditional methods used in the audio industry for controlling the directivity of subwoofers
was frequency dependent.

Two solutions have been proposed to counter this frequency dependence. The first one is based on
a IIR all pass filter that delays the signal by different amounts depending on the frequency. The
second one studied the influence of the gain-difference between the front and the back subwoofer
on the directivity control at low frequency.

FDTD simulations showed that each method was providing improvements in term of directivity
control and frequency-dependence and that combining both solutions together was giving the best
results. These improvements were less significative in the measurement of a real setup. Different
explanations could explain these differences between the simulations and the measuremetns. The
simulations made with the FDTD method might not be a good representations of what is really
happening in the reality, despite some similarities appear in the simulations and in the real setup.
Another explanation is that one of the proposed solution, and more particularly the designed IIR
filter, do not give the expected results. Maybe that the model of the target filter is not the one
which improves the most the directivity control. At last one explanation could be that filtering the
signal in Matlab is not as good as implementing the designed filter on a real DSP card.

Therefore, one of the future study could be to implement the proposed solution on a DSP card
working in real time to redo the measurements. As some of the solutions developed in this project
have been done empirically, the development of advanced mathematical models may lead to a
better solution for the target filter to design. Finally using more sound sources like for the second
order gradient sound source proposed by Olson in [16] could help to generate more different
directivity pattern and help to earn in efficiency.
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A
FDTD method: Figures of the simulations

In all the following sections, the sound sources are defined as a pressure sources fed by a sinusoidal
signal varying between -1 and 1.

A.1 First Order Gradient sound source: Bidirectional

In these simulations, the distance between the sources is kept constant D = 1.14m, which cor-
responds to the wavelength of 300 Hz. Then the frequency of the sinusoidal signal is changed in
order to obtain the different values of ratio D

λ .

The graduations on the x and y axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter, it is possible to
switch directly from indexes to distance (expressed in meter) by multiplying the index by 0.1.

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.1: FDTD simulation for D
λ

=0.1, f=30 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.2: FDTD simulation for D
λ

=0.2, f=60 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.3: FDTD simulation for D
λ

=0.3, f=90 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

First order gradient source: Bidirectional, D/lambda =0.2

(c) Polar pattern at 10 m in
pascal

Figure A.4: FDTD simulation for D
λ

=0.4, f=120 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.5: FDTD simulation for D
λ

=0.5, f=150 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.6: FDTD simulation for D
λ

=0.6, f=180 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.7: FDTD simulation for D
λ

=0.7, f=210 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.8: FDTD simulation for D
λ

=0.8, f=240 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.9: FDTD simulation for D
λ

=0.9, f=270 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.10: FDTD simulation for D
λ

=1, f=300 Hz
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A.2 First Order Gradient sound source: Unidirectional

A.2.1 Case 1: D = d

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations D = d = 1.14m which corresponds to the wavelength of 300 Hz. In order
to respect the analytical study of chapter 2 and the works of Olson [16] the distance between the
sources as well as the numerical delay applied on the back-source are kept constant and equal
to d

2 = D
2 = 0.57m in accordance to figure 2.8. Then the frequency of the sinusoidal signal is

changed in order to obtain the different values D
λ and d

λ .

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.11: FDTD simulation for D
λ

= d
λ

=0.1, f=30 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.12: FDTD simulation for D
λ

= d
λ

=0.2, f=60 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.13: FDTD simulation for D
λ

= d
λ

=0.3, f=90 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.14: FDTD simulation for D
λ

= d
λ

=0.4, f=120 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.15: FDTD simulation for D
λ

= d
λ

=0.5, f=150 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.16: FDTD simulation for D
λ

= d
λ

=0.6, f=180 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.17: FDTD simulation for D
λ

= d
λ

=0.7, f=210 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.18: FDTD simulation for D
λ

= d
λ

=0.8, f=240 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.19: FDTD simulation for D
λ

= d
λ

=0.9, f=270 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  

(c) Polar pattern at 10 m in
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Figure A.20: FDTD simulation for D
λ

= d
λ

=1, f= 300 Hz
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A.2.2 Case 2: D
λ

=0.25 and d
λ

varies from 0.1 to 1

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations d = 1.14m which corresponds to the wavelength of 300 Hz. The numer-
ical delay d is constant during all these simulations such that when the frequency of the signal
changes the ratio d

λ changes as well. The distance between the sources D changes in function of
the frequency such that whatever the frequency of the signal, the ratio D

λ is always equal to 0.25.

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.21: FDTD simulation for D
λ

=0.25 and d
λ

=0.1, f=30 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.22: FDTD simulation for D
λ

=0.25 and d
λ

=0.2, f=60 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.23: FDTD simulation for D
λ

=0.25 and d
λ

=0.3, f=90 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.24: FDTD simulation for D
λ

=0.25 and d
λ

=0.4, f=120 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.25: FDTD simulation for D
λ

=0.25 and d
λ

=0.5, f=150 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.26: FDTD simulation for D
λ

=0.25 and d
λ

=0.6, f=180 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.27: FDTD simulation for D
λ

=0.25 and d
λ

=0.7, f=210 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.28: FDTD simulation for D
λ

=0.25 and d
λ

=0.8, f=240 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.29: FDTD simulation for D
λ

=0.25 and d
λ

=0.9, f=270 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.30: FDTD simulation for D
λ

=0.25 and d
λ

=1, f=300 Hz
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A.2.3 Case 3: d
λ

=0.25 and D
λ

varies from 0.1 to 1

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations D = 1.14m which corresponds to the wavelength of 300 Hz. The distance
between the sources D is constant during all these simulations such that when the frequency of
the signal changes the ratio d

λ changes as well. The numerical delay d changes in function of the
frequency such that whatever the frequency of the signal, the ratio d

λ is always equal to 0.25.

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

First order gradient source: Unidirectional, d/lambda = 0.25, D/lambda =0.1

(c) Polar pattern at 10 m in
pascal

Figure A.31: FDTD simulation for d
λ

=0.25 and D
λ

=0.1, f=30 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.32: FDTD simulation for d
λ

=0.25 and D
λ

=0.2, f=60 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.33: FDTD simulation for d
λ

=0.25 and D
λ

=0.3, f=90 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.34: FDTD simulation for d
λ

=0.25 and D
λ

=0.4, f=120 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.35: FDTD simulation for d
λ

=0.25 and D
λ

=0.5, f=150 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.36: FDTD simulation for d
λ

=0.25 and D
λ

=0.6, f=180 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.37: FDTD simulation for d
λ

=0.25 and D
λ

=0.7, f=210 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.38: FDTD simulation for d
λ

=0.25 and D
λ

=0.8, f=240 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.39: FDTD simulation for d
λ

=0.25 and D
λ

=0.9, f=270 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.40: FDTD simulation for d
λ

=0.25 and D
λ

=1, f=300 Hz
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A.3 Second-Order gradient sound source-Unidirectional

The graduations on the x-axis and y-axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter (see section
5.1), it is possible to switch directly from index to distance (expressed in meter) by multiplying
the index-scale of the figures by 0.1.

In these simulations D = d = 1.14m which corresponds to the wavelength of 300 Hz. The
distances between the sources and the delays are kept constant in accordance to figure 2.10. Then
the frequency of the sinusoidal signal is changed in order to obtain the different values D

λ and d
λ .

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.41: FDTD simulation for d
λ

=D
λ

=0.1, f=30 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.42: FDTD simulation for d
λ

=D
λ

=0.2, f=60 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.43: FDTD simulation for d
λ

=D
λ

=0.3, f= 90 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.44: FDTD simulation for d
λ

=D
λ

=0.4, f=120 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.45: FDTD simulation for d
λ

=D
λ

=0.5, f=150 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.46: FDTD simulation for d
λ

=D
λ

=0.6, f=180 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.47: FDTD simulation for d
λ

=D
λ

=0.7, f=210 Hz

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.48: FDTD simulation for d
λ

=D
λ

=0.8, f=240 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB
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Figure A.49: FDTD simulation for d
λ

=D
λ

=0.9, f=270 Hz
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure A.50: FDTD simulation for d
λ

=D
λ

=1, f=300 Hz
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B
Measurement of the impulse response of a

subwoofer

In this appendix the measurement of the impulse response of a subwoofer in the horizontal plane
is documented

B.1 Equipment used

Item Type AAU LBNR/SN
Loudspeaker DALI SWA-8 Active subwoofer 261413
Microphone BK 4133 06548
Preamplifier BK 2619 07797

Measuring amplifier BK 2636 08451
Analyzer MLSSA 26827

B.2 Purpose

The purpose of this appendix is to obtain an impulse response who is an average in the frequency
domain of measurements of the response of a subwoofer in the horizontal plane at 1.15 meter from
the membrane with a resolution of 30 ◦.

B.3 Setup

The setup used to measure the impulse response of a subwoofer is presented in figure B.1. The
measurements are conducted in the large anechoic room of the Acoustic department of Aalborg
University.
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Preamplifier

Measuring
AmplifierMLSSA inputoutput

Figure B.1: Setup for the measurement of the impulse response in the anechoic chamber

Loudspeaker

The subwoofer used for this project is a closed-box type with a 8” woofer driver and an integrated
amplifier. This subwoofer has an embedded active low-pass filter whose cutoff frequency can vary
from 50 to 150 Hz. For the measurements realized in this part the low pass filter is set to 150
Hz. Despite the anechoic chamber has a cut-off frequency of around 63 Hz the subwoofer is left
in a full-range configuration with a low cutoff frequency of 30 Hz according to the manufacturer
data-sheet. The gain potentiometer of the amplifier is set to the medium position. The subwoofer
is positioned on a stand so that its gravity center is on the rotation-axis used for the 30 ◦ rotations.
The subwoofer is symmetric so the impulse responses are only measured between θ = 0◦ and
θ = 180◦.

Microphone

The microphone used for the measurements is a B&K 4133 free-field microphone. It is positioned
at 1,15 m from the membrane of the subwoofer and at the same height than the center of the
woofer. The microphone stays at the same position for all the measurements, it is the loudspeaker
which turns on its stand.

MLSSA configuration

The MLSSA system was used with the following parameters:

• Stimulus: Burst MLS was chosen as stimulus signal with an amplitude of 0.3 volts. A MLS
sequence of 16th order was chosen leading to a period of 65535 samples.

• Acquisition: Cross-correlation mode was chosen to obtain the impulse response of the
subwoofer. The acquisition length was set to 65536 samples and sample rate set to 8kHz.
This clock was generated internally by MLSSA.

• Aniti-aliasing filter: The anti-aliasing filter is a Butterworth with a cutting frequency of 2
kHz.
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• Pre-average cycle: To increase the SNR 16 pre-average cycles are run.

B.4 Results

B.4.1 Results of the seven measurements

Figure B.2 shows the magnitude of the impulse responses of the subwoofer for θ varying from
0 to 180 degree with a resolution of 30 degree. These magnitudes have been obtained using the
first 3276 points of the impulse response and a FFT of 4096 points. From the results displayed
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Figure B.2: Magnitude of the impulse responses obtained for different positions around
the subwoofer

on figure B.2 it is possible to deduce the polar directivity for several discrete frequencies. These
discrete polar patterns are showed on figure B.3.
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Figure B.3: Polar directivity of the DALI subwoofer expressed in pascal

Regarding this polar plot the subwoofer seems almost perfectly omnidirectional for all the fre-
quencies. It can be seen that for all the frequencies there is few pascals of difference between
the front and the back of the subwoofer. When expressed in dB SPL this difference is by mean
of around 4 dB SPL. Nevertheless, it confirms that in a FDTD simulation a subwoofer could be
modeled with a good accuracy by an omnidirectional point source characterized by the subwoofer
impulse response.

B.5 Average impulse response

Instead of feeding the FDTD simulation with the subwoofer impulse response corresponding to
only one position of the microphone it is decided to use an average of all the impulse responses
obtained around the subwoofer. This section deals with the method to obtain this average impulse
response.

It is not possible to average directly the impulse responses in time domain. An average in the
frequency domain followed by an inverse FFT is more practical. But when proceeding to this kind
of average it has to be aware that the average impulse response should be minimum phase. Thus the
determination of the average impulse response is based on the Matlab function rceps. It calculates
the real cepstrum and a minimum phase reconstructed version of a real impulse response.

So after the impulse response has been measured at seven different positions around the subwoofer
their respecting magnitudes are calculated according to equation B.1.

Y = |fft(y)| (B.1)

The mathematical operator l . l defines the absolute value.

When the magnitude at the seven positions (y1, y2, ..., y7) are obtained they are averaged together
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B.2:

Ȳ =

7∑
i=1

|fft(yi)|

7
(B.2)

Then the cepstrum of this average magnitude is determined with equation B.3:

Ȳcepstrum = real(ifft(log(Ȳ ))) (B.3)

A rectangular window is then applied on this cepstrum to give the reconstructed minimum phase
signal. This window is defind in Matlab by the following equation B.4:

w = [1; 2 ∗ ones(n/2− 1, 1); ones(1− rem(n, 2), 1); zeros(n/2− 1, 1)] (B.4)

with n the number of points composing the impulse response of yi. Finally it has to go back from
the cepstrum domain to the time domain with equation B.5 (In Matlab language):

ȳ = real(ifft(exp(fft(w. ∗ Ȳcepstrum)))) (B.5)
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C
FDTD method: Simulation of a real subwoofer

In the following sections the simulation results of a first order gradient source-unidirectional fed
with the impulse response of a subwoofer are presented. Different distances and delays between
the sources are tested. Information relative to the input signal, the cell size and the step size are
discussed in subsections 6.2.1, 6.2.2 and 6.2.3 respectively. The method to obtain the pressure
fields at different discrete frequencies is explained in section 6.3.

C.1 Case 1: fcardioid = 150Hz

In this first case, the frequency giving the ideal cardioid directivity is fcardioid=150 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 0.6m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 0.6m.

The results are expressed in dB SPL. The scales on the x-axis and y-axis represent the indexes in
the FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).

(a) f = 40Hz (b) f = 50Hz
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(c) f = 60Hz (d) f = 80Hz

(e) 100 (f) f = 120Hz

(g) f = 150Hz

Figure C.1: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer
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C.2 Case 2: fcardioid = 100Hz

In case 2, the frequency giving the ideal cardioid directivity is fcardioid=100 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 0.85m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 0.85m.

The results are expressed in dB SPL. The scales on the x-axis and y-axis represent the indexes in
the FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).

(a) f = 40Hz (b) f = 50Hz

(c) f = 60Hz (d) f = 80Hz
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(e) 100 (f) f = 120Hz

(g) f = 150Hz

Figure C.2: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer

C.3 Case 3: fcardioid = 80Hz

In the third case, the frequency giving the ideal cardioid directivity is fcardioid=80 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 1.1m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 1.1m.

The results are expressed in dB SPL. The scales on the x-axis and y-axis represent the indexes in
the FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).
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(a) f = 40Hz (b) f = 50Hz

(c) f = 60Hz (d) f = 80Hz

(e) 100 (f) f = 120Hz
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(g) f = 150Hz

Figure C.3: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer
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C.4 Case 4: fcardioid = 50Hz

In the fourth case, the frequency giving the ideal cardioid directivity is fcardioid=50 Hz. For a such
frequency, the distance between the sources is D =

λfcardioid
4 = 1.7m and the delay applied on

the back subwoofer is d =
λfcardioid

4 = 1.7m.

The results are expressed in dB SPL. The scales on the x-axis and y-axis represent the indexes in
the FDTD grid and can be converted into meter by multiplying them by 0.2 (the grid size).

(a) f = 40Hz (b) f = 50Hz

(c) f = 60Hz (d) f = 80Hz
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(e) 100 (f) f = 120Hz

(g) f = 150Hz

Figure C.4: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method and the impulse response of a sub-
woofer
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D
Frequency-dependent delay

This appendix shows the analytical polar directivity and the FDTD simulations of a first order
gradient sound source-unidirectional with a frequency-dependent delay on the back subwoofer.

D.1 Analytical polar directivity of a first order gradient sound source-
unidirectional with a frequency dependent delay

On figure D.1 the polar patterns of a first-order gradient sound source-unidirectional with and
without a frequency-dependent delay are plotted at different discrete frequencies.

The red plots correspond to the case where the delay d is kept constant for all the frequencies,
D = d = λfmax

4 and the directivity pattern is defined by equation D.1.

Rθ = sin (π
dfmax
λ

+ π
Dfmax

λ
cos θ) (D.1)

The blue plots correspond to the case where D = λfmax
4 , d follow the relation D.3 and the direc-

tivity pattern is defined by equation D.2.

Rθ = sin (π
d

λ
+ π

Dfmax

λ
cos θ) (D.2)

d =
c

4fmax
+ (1− f

fmax
)× c

4fmax
(D.3)

The maximum frequency of interest fmax, which gives the perfect cardioid behavior, is chosen
arbitrarily equal to 150 Hz. The reasons of this choice are that it allows to see the performances of
the frequency-dependent delay on a wide frequency range (120 Hz), it is a good trade-off between
the cutting frequency of the subwoofer used in home-cinema (maximum fc ≈ 200 Hz) and the
ones used in the concert industry (fc ≈ 85 Hz) and finally because it corresponds to the cutting
frequency of the real subwoofer used in this project, which can be useful for future comparisons.
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(a) f = 150Hz
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(b) f = 140Hz
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(c) f = 130Hz
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(d) f = 120Hz
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(e) f = 110Hz
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(f) f = 100Hz
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(g) f = 90Hz
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(h) f = 80Hz
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(i) f = 70Hz
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(j) f = 60Hz
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(k) f = 50Hz
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(l) f = 40Hz
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Figure D.1
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D.2 FDTD simulations

In this section the FDTD method is used to simulate the behavior of a first order gradient sound
source-unidirectional with a fixed delay and with a frequency-dependent delay.

These simulation have been run over a time of 0.05 sec corresponding to the period of the lowest
frequency produced. The grid size is 0.1 m and the sampling frequency is 8000 Hz, so the stability
conditions in the space and time domains are fulfilled.

The signal used in these simulations is a sinusoid of mono-frequency f. The distance between the
sources is D = λfmax

4 with fmax = 150Hz and stays unchanged during all the simulations. In the
case of the setup with a fixed delay, the delay is chosen to be d = λfmax

4 (in meter). Therefore the
perfect cardioid behavior is expected for fmax = 150Hz. In the case of the frequency-dependent
delay, the delay d changes with the frequency according to equation D.3.

The results of the simulations are presented on figure D.2. The figures represents the pressure in
dB SPL at different discrete frequencies for both different setups. In the left column one displays
the results for the first order gradient source with a fixed delay. In the right column one display the
results obtained with the floating delay. The scales on the x-axis and y-axis represent the indexes
in the FDTD grid.

(a) f = 30Hz, d = dfmax (b) f = 30Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(c) f = 40Hz, d = dfmax (d) f = 40Hz, d = 2c
4fmax

− f
fmax

c
4fmax
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(e) f = 50Hz, d = dfmax (f) f = 50Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(g) f = 60Hz, d = dfmax (h) f = 60Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(i) f = 70Hz, d = dfmax (j) f = 70Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(k) f = 80Hz, d = dfmax (l) f = 80Hz, d = 2c
4fmax

− f
fmax

c
4fmax
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(m) f = 90Hz, d = dfmax (n) f = 90Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(o) f = 100Hz, d = dfmax (p) f = 100Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(q) f = 110Hz, d = dfmax (r) f = 110Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(s) f = 120Hz, d = dfmax (t) f = 120Hz, d = 2c
4fmax

− f
fmax

c
4fmax
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(u) f = 130Hz, d = dfmax (v) f = 130Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(w) f = 140Hz, d = dfmax (x) f = 140Hz, d = 2c
4fmax

− f
fmax

c
4fmax

(y) f = 150Hz, d = dfmax (z) f = 150Hz, d = 2c
4fmax

− f
fmax

c
4fmax

Figure D.2: FDTD simulations of a first order gradient sound source with a fixed delay
(left column) and with a frequency-dependent delay (right column) at different
discrete frequencies f. Results are in dB SPL
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E
FDTD method: Simulation of a real subwoofer

filtered by an all pass filter having a desired group
delay

In this appendix the FDTD method is used to simulate the behavior of a first order gradient sound
source-unidirectional using the impulse response of a real subwoofer and whose back subwoofer
is filtered by the IIR all pass filter designed in subsection 8.3.3. The results of these simulations
are showed in parallel with the ones obtained in appendix C.1.

The characteristics of the subwoofer and particularly its impulse response are the same than in the
subsection 6.2.1. The cell size and the time step size are also the same than for the simulations of
chapter 6 with respect to the discussions of subsections 6.2.2 and 6.2.3. The cardioid frequency is
equal to 150 Hz giving a distance between the subwoofers equal to D = c

4×150 = 0.57 m (with
c = 343m.s−1).

Figure E.1 shows in parallel the pressure field at different discrete frequencies for the setup without
the designed IIR filter (left column) and with the IIR filter (right column). These different pressure
field are obtained in the same manner than in section 6.3.

Each subfigure represents the pressure in dB SPL. The scale on the x-axis and y-axis represents
the indexes in the FDTD grid.
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(a) f = 40Hz (b) f = 40Hz

(c) f = 50Hz (d) f = 50Hz

(e) f = 60Hz (f) f = 60Hz
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(g) f = 80Hz (h) f = 80Hz

(i) 100 (j) f = 100Hz

(k) f = 120Hz (l) f = 120Hz
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(m) f = 150Hz (n) f = 150Hz

Figure E.1: Pressure in dB SPL for a first order gradient sound source-unidirectional
setup simulated with a FDTD method fed by the impulse response of a sub-
woofer. In the left column the delay on the back subwoofer is fixed and equal
to c

4fmax
with fmax = 150Hz. In the right column the back subwoofer is

filtered with the IIR all pass filter designed in chapter 8.4
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F
Simulation: Gain dependency

F.1 Simulation: Analytical part

Directivity pattern of a first order gradient source-unidirectional according to the analytical ex-
pression 9.4 for different values of gain G and two different ratio D

λ .

F.1.1 Simulations for D
λ

= 0.25

F.1.2 Simulations for D
λ

= 0.125
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(a) Gain=1
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(b) Gain=1.1
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(c) Gain=1.2
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(d) Gain=1.3
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(e) Gain=1.4
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(f) Gain=1.5
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(h) Gain=1.7
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Figure F.1: Directivity pattern of a first order gradient sound source-unidirectional for dif-
ferent values of gain applied on the front subwoofer. The results are ex-
pressed in pascal

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(a) Gain=1

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(b) Gain=1.1

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(c) Gain=1.2

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(d) Gain=1.3
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Figure F.2: Directivity pattern of a first order gradient sound source-unidirectional for dif-
ferent values of gain applied on the front subwoofer. The results are ex-
pressed in pascal
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F.2 FDTD simulation: Sinusoidal source

The graduations on the x and y axis of figures a and b represent the indexes in the FDTD grid
used to calculate the pressure. As the cell size has been chosen equal to 0.1 meter, it is possible to
switch directly from indexes to distance (expressed in meter) by multiplying the index by 0.1. The
sampling frequency used in these FDTD simulations is 8000 Hz.

F.2.1 Case 1: D
λ

= d
λ

= 0.25

In these simulations, the distance between the sources is kept constant D = 0.57m, which corre-
sponds to one fourth of the wavelength of 150 Hz. The delay applied on the back source is also
d = 0.57m. The sound sources are defined as a pressure sources fed by a sinusoidal signal of
frequency 150 Hz. The magnitude of the back subwoofer varies between -1 and 1. The magnitude
of the front subwoofer varies from -1 to 1 times the value of the gain. One runs the FDTD simula-
tions for different values of gain. For each simulation one plots three figures: the RMS pressure in
pascal, the RMS pressure in dB SPL and the the polar pattern extracted from the FDTD simulation
following to the explanations of subsection 5.6.1. On this last one the dashed line represents the
analytical result of subsection 9.2.2 and the blue cross the polar pattern extracted from the FDTD
simulation

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(c) Polar pattern at 10 m in
pascal.

Figure F.3: FDTD simulation for a gain equal to 1
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.4: FDTD simulation for a gain equal to 1.1

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(c) Polar pattern at 10 m in
pascal.

Figure F.5: FDTD simulation for a gain equal to 1.2

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.6: FDTD simulation for a gain equal to 1.3
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.7: FDTD simulation for a gain equal to 1.4

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.8: FDTD simulation for a gain equal to 1.5

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.9: FDTD simulation for a gain equal to 1.6
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.10: FDTD simulation for a gain equal to 1.7

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.11: FDTD simulation for a gain equal to 1.8

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.12: FDTD simulation for a gain equal to 1.9
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.13: FDTD simulation for a gain equal to 2
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F.2.2 Case 2: D
λ

= d
λ

= 0.125

In these simulations, the distance between the sources is kept constant D = 0.57m, which corre-
sponds to one fourth of the wavelength of 150 Hz. The delay applied on the back source is also
d = 0.57m. The sound sources are defined as a pressure sources fed by a sinusoidal signal of
frequency 75 Hz. The magnitude of the back subwoofer varies between -1 and 1. The magnitude
of the front subwoofer varies from -1 to 1 times the value of the gain. One runs the FDTD simula-
tions for different values of gain. For each simulation one plots three figures: the RMS pressure in
pascal, the RMS pressure in dB SPL and the the polar pattern extracted from the FDTD simulation
following to the explanations of subsection 5.6.1. On this last one the dashed line represents the
analytical result of subsection 9.2.2 and the blue cross the polar pattern extracted from the FDTD
simulation

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.14: FDTD simulation for a gain equal to 1

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.15: FDTD simulation for a gain equal to 1.1

170



(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.16: FDTD simulation for a gain equal to 1.2

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(c) Polar pattern at 10 m in
pascal.

Figure F.17: FDTD simulation for a gain equal to 1.3

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.18: FDTD simulation for a gain equal to 1.4
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.19: FDTD simulation for a gain equal to 1.5

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.20: FDTD simulation for a gain equal to 1.6

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.21: FDTD simulation for a gain equal to 1.7
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(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.22: FDTD simulation for a gain equal to 1.8

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

(c) Polar pattern at 10 m in
pascal.

Figure F.23: FDTD simulation for a gain equal to 1.9

(a) RMS pressure field in pascal (b) RMS pressure field in dB SPL
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Figure F.24: FDTD simulation for a gain equal to 2
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F.3 Simulation: FDTD simulations

In this section the FDTD method is used to simulate the behavior of a first order gradient sound
source-unidirectional using the impulse response of a real subwoofer with the frequency dependent
delay filter designed in chapter applied on the back subwoofer and three different values of gain-
difference applied between the front and back subwoofer.

The characteristics of the subwoofer and particularly its impulse response are the same than in the
subsection 6.2.1.

The cell size and the time step size are also the same than for the simulations of chapter 6 with
respect to the discussions of subsections 6.2.2 and 6.2.3. So it gives a cell size of 0.2 m and a
sampling frequency of 8000 Hz. The cardioid frequency is equal to 150 Hz giving a distance
between the subwoofers equal to D = c

4×150 = 0.57 m (with c = 343m.s−1).

Figures F.25 to F.25 show in parallel the pressure field at different discrete frequencies:

• For a setup where both subwoofer have the same gain (left column)

• For a setup where the front subwoofer is 3 dB louder than the back subwoofer (middle
column)

• For a setup where the front subwoofer is 4.7 dB louder than the back subwoofer (right
column)

Each subfigure represents the pressure in dB SPL. The scale on the x-axis and y-axis represents
the indexes in the FDTD grid.

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure F.25: Pressure field at 40 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL
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(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference.

Figure F.26: Pressure field at 50 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure F.27: Pressure field at 60 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure F.28: Pressure field at 80 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL
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(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure F.29: Pressure field at 100 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure F.30: Pressure field at 120 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL

(a) Same gain on both subwoofers (b) 3 dB gain difference (c) 4.7 dB gain difference

Figure F.31: Pressure field at 150 Hz for three different values of gain-difference between
the front and the back subwoofer. The results are expressed in dB SPL
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G
Pressure field measurement

In this appendix the procedure for measuring the impulse response generated by different setups
of subwoofers in a pseudo free field is described.

G.1 Equipment

Item Type AAU LBNR/SN
Loudspeaker 1 DALI SWA-8 Active subwoofer 61415
Loudspeaker 2 DALI SWA-8 Active subwoofer 61416

Microphone BK 4133 06548
Preamplifier BK 2619 07798

Measuring amplifier BK 2636 08415
Sound card M-Audio Fast Track Pro 257Z07300038D3

G.2 Setup

G.2.1 Block Diagram

The setup used to measure the impulse response of the different subwoofer configurations is pre-
sented in figure G.1.
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Back 
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Sound Card
M-Audio

Out 1

Out 2

In 1
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Amplifier

Microphone and 
preamplifier

Computer

Figure G.1: Block diagram of the setup used for measuring the impulse response of the
different subwoofer setups

G.2.2 Microphone positions

The microphone is positioned on the ground in order to limit the reflection effects of the floor.
126 microphone positions are defined to measure the impulse response of the subwoofer setups as
shown on figure G.2. These positions formed a grid whose cell size is 1 meter (with an approxi-
mation of ±3 cm). The grid has been drawn previously on the floor.

  

1m

1m

Figure G.2: Grid for the measurements. Each blue point represents a microphone posi-
tion.

Starting on the axis formed by both subwoofers, the first microphone position is at 20 cm from
the membrane of the front subwoofer. Then, from this first microphone position one defines 10
positions in the front of the subwoofers setup and 10 positions in the back with 1 meter difference
between each position. When these first 21 microphone positions are defined, one translates them
ten times by step of one meter on the side of the subwoofers to finally obtain the microphone grid
of figure G.2.
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G.2.3 Subwoofer position

According to the recommendations previously discussed in subsection 10.2.2 the subwoofers are
kept on the ground. To fit with the simulations made in chapters 6 8.4, 9.3.2 and the characteristics
of the filter designed in chapter 8.4, the frequency of 150 Hz is chosen as the cardioid frequency.
Therefore the distance between both subwoofer is D = λ150Hz

4 = 0.57m. Figure G.3 shows a
picture of the subwoofer setup.

Figure G.3: Subwoofer setup during the measurements with the microphone at the clos-
est position (20 cm).

G.2.4 Equipments parameters

Subwoofers

The DALI subwoofers have three buttons for changing the gain, the cutting frequency of the em-
bedded low pass filter and the phase (shift from 0◦ to 180◦ ).

The gain potentiometer is set to the maximum value on both subwoofers. The frequency poten-
tiometer that changes the cutting frequency of the embedded low pass filter is set to 150 Hz on
both subwoofers so that they play with the widest bandwidth allowed. The measured setup is based
on a first order gradient source-unidirectional. For such setup the back subwoofer has its polarity
inverted compared to the front subwoofer. Therefore the polarity switch on the front subwoofer is
set to 0◦ and the one of the back subwoofer is set to 180◦

Matlab signal

For the measurements Matlab is used to generate the signals that are played in the subwoofers and
to record the signal measured by the microphone for finally obtain the impulse response at the
different positions.

Signal: The signal for all the measurements of this project is a Maximum Length Sequence
(MLS) signal of order 16th giving 65535 samples. The sampling frequency is chosen equal to
48000 Hz so it produces a signal of 1.36 seconds. As the measurements are conducted outside they
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could be affected by different punctual noises that would modify the results from one position to
another. Indeed the techniques consisting of using MLS signal and cross-correlation to obtain the
impulse response of a system is very sensitive to non-stationary process. Therefore it is decided to
repeat this MLS signal 15 times for each of the five subwoofer configurations introduced in section
10.1. Repeating 15 times this MLS sequence gives measurements over a time of 20 seconds. So
the impulse response obtained is equal to the mean of the 15 impulse responses. This number of
15 repetitions has been chosen arbitrarily and is a trade-off between measuring the MLS response
of the system over a long period and having a computational time when calculating the cross-
correlation in Matlab which is reasonable.

The MLS signal is then used as a base to obtain the different filtered and delayed signals applied
on the front and back subwoofers.

Input signal: Two input signals are recorded with Matlab during the measurements.

As shown on figure G.1 the input 1 is directly linked with the output feeding the front subwoofer.
The purpose of this connection is to remove the nonlinearities of the AD and DA convertors of
the sound card. Indeed the signal feeding this input will be then considered as the reference
MLS signal for the cross-correlation with the signal measured by the microphone. A such loop is
allowed because the signal send to the front subwoofer corresponds to the original MLS signal.

The second input of the sound card receives the signal measured by the microphone.

Cross-correlation: To obtain the impulse response of the different subwoofer configurations
one computes the the cross-correlation between the reference MLS signal recorded on the first
input of the sound card and the MLS signal measured by the microphone. The cross-correlation is
performed with the 9830 25 samples recorded by both inputs. This number of samples corresponds
to the length of a MLS signal of 16th order multiplied by 15. The results obtained after the cross-
correlation contains the main impulse response of the system and all the reflections coming from
the walls around. Therefore one must extract the main impulse response before applying more
signal processing tools.

Measuring Amplifier

The measuring amplifier B&K 2636 has some embedded high pass and low pass filter that can be
commuted or bypassed depending on the application. In the case of the measurements conducted
in this project, it is decided to apply the high pass filter of 22.1 Hz is order to limit the amount of
low frequency background noise, especially wind, measured. The low pass filter (22.1 kHz) of the
measuring amplifier is also applied to avoid any aliasing. One reminds that the sampling frequency
of the signal is 48000 so applying this low pass filter let to respect the theorem of Nyquist.

The input gain and output gain of the measuring amplifier are set to 10 dB and 10 dB respectively.

G.2.5 Method

When the subwoofers have been positioned on the floor and all the microphone positions indicated
on the floor as well, one measures for each microphone position the pressure field generated when
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five different kind of signals feed the subwoofers. In the order these signals are:

• Front subwoofer fed with the original MLS signal and back subwoofer muted.

• Front subwoofer fed with the original MLS signal and back subwoofer fed by the original
MLS signal delayed and inverted in polarity. The delay applied is equal to 80 samples,
which corresponds to 0.0017 sec or 0.57 m (one fourth of the wavelength of 150 Hz) with a
sampling frequency of 48000 Hz.

• Front subwoofer fed with the original MLS signal and back subwoofer fed with the MLS
signal filtered by the filter designed in chapter 8.4 and with inverted polarity.

• Front subwoofer fed with the original MLS signal and back subwoofer fed with the MLS
signal filtered by the filter designed in chapter 8.4, inverted polarity and with a gain reduction
of 3 dB.

• Front subwoofer fed with the original MLS signal and back subwoofer fed with the MLS
signal filtered by the filter designed in chapter 8.4, inverted polarity and with a gain reduction
of 4.5 dB.

These 5 configurations are measured in row without moving the microphone. The microphone is
only moved to another position when the five measurements have been completed.

G.3 Results

In this section one displays the results obtained for the five different configurations previously
quoted. The impulse responses used to make the FFT and obtain figures G.4, G.5, G.6, G.7 and
G.8 have 16000 points and their sampling frequency is 48000 Hz. The results are expressed in
dB. The scales of the x and y axis are in meter. One will be aware in the comments that the plot
obtained with matlab are represented in a square whereas the measurement area is rectangular. So
the results are compressed along the x-axis.

G.3.1 Front subwoofer playing alone
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(b) f = 50Hz
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(c) f = 60Hz
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(d) f = 80Hz
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(e) f = 100Hz
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(f) f = 120Hz
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(g) f = 150Hz

Figure G.4: Measured pressure field at different discrete frequencies
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G.3.2 Cardioid subwoofer without extra processing
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(a) f = 40Hz
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(b) f = 50Hz
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(c) f = 60Hz
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(d) f = 80Hz
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(e) f = 100Hz
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(g) f = 150Hz

Figure G.5: Measured pressure field at different discrete frequencies

G.3.3 Cardioid subwoofer with IIR all pass filter on the back subwoofer
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(a) f = 40Hz
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(b) f = 50Hz
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(c) f = 60Hz
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(d) f = 80Hz
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(e) f = 100Hz
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(f) f = 120Hz
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(g) f = 150Hz

Figure G.6: Measured pressure field at different discrete frequencies
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G.3.4 Cardioid subwoofer with IIR all pass filter on the back subwoofer and a
difference of 3 dB between both subwoofers
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(a) f = 40Hz
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(b) f = 50Hz
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(c) f = 60Hz
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(d) f = 80Hz
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(e) f = 100Hz
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(f) f = 120Hz
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Figure G.7: Measured pressure field at different discrete frequencies

G.3.5 Cardioid subwoofer with IIR all pass filter on the back subwoofer and a
difference of 4.7 dB between both subwoofers
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(a) f = 40Hz
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(b) f = 50Hz
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(c) f = 60Hz
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(d) f = 80Hz
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(e) f = 100Hz
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(f) f = 120Hz
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Figure G.8: Measured pressure field at different discrete frequencies
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