

SafeHouse
Wireless platform for controlling sensors and actuators in

multiple rooms.

Sérgio Pedro

MSc Eng. Vision, Graphics and Interactive Systems

Master Thesis Project - 10
th

 Semester 2009/2010

Department of Electronic Systems

Niels Jernes Vej 12, 9220 Aalborg

Aalborg University

3
rd

 June 2010

3 June 2010 VGIS 1027

2 | P a g e

DEPARTMENT OF ELECTRONIC SYSTEMS

VISION, GRAPHICS AND INTERACTIVE SYSTEMS

TITLE: SafeHouse

THEME: Control and Monitor of sensors/actuators in multiple rooms

PROJECT PERIOD: February 1
st
 2010 to June 3

rd
 2010

PROJECT GROUP: 10grp1027

GROUP MEMBERS:

Sérgio Pedro

SUPERVISOR: Lars Bo Larsen

NUMBER OF COPIES: 2

REPORT PAGES: 109

APPENDIX PAGES: 12

TOTAL PAGES: 136

ABSTRACT:

This report documents the development of a system to control and monitor sensors and actuators in

a house or other indoor environment. The system developed allows a user to get and change status of

components quickly and wherever he is through his cell phone. Moreover, the user can have more

detailed information at home through a desktop application. The system was developed using Service

Oriented architecture:

- A desktop application providing the services for the user and serving as mean of

communication between the cell phone (user) and the micro controllers (sensors and

actuators).

- A mobile application where the user can in a glance, get the status or change the status of

some sensor/actuator.

- A micro controller application, responsible to receive requests from the desktop application,

to act according to those requests and to send an answer back.

The desktop and mobile phone applications have been developed in Java programming language,

with J2SE and J2ME, respectively. The micro controller application has been developed using C

language.

Moreover, the desktop application allows the user to manage and configure the system as he wants.

The user is able to create new users, to automate the house and to configure notifications, as well as

to check system logs and visualize charts.

This report presents the system development life cycle, from the analysis to the tests.

3 June 2010 VGIS 1027

3 | P a g e

Preface

This report and all of its contents are part of the 10
th

 semester in Vision, Graphics and

Interactive Systems at Aalborg University. It has been written by the project group VGIS 1027

during the spring semester of 2010.

The purpose of this master thesis is to develop a system to control and monitor sensors and

actuators, either in houses or in other indoor environment (hotel, office). The theme of this

project is: Wireless platform for controlling sensors and actuators in multiple rooms.

Each chapter and the corresponded sub chapters are marked by one or more consecutives

numbers. As more consecutives numbers has the index, more deeply is the information

presented in there. Regarding the figures, they are simply order in sequence of appearance in

the report.

1. Report outline

The structure of this report is divided into 8 parts:

1. Introduction: it is introduced the target of this system and explained the scenarios

idealized for the realization of this project.

2. Analyses: here it is analyzed all the different technologies and techniques that it

was thought useful for this project. For instance, it was analyzed SOA, existing

systems of smart homes, sensors and actuators, communication protocols and

mobile phones.

3. Design: here it is explained how it was designed all of the components of this

project, either in a global view or in a more specific view.

4. Implementation: here it is explained which problems were faced during the

implementation and deploying of the system. It is also explained the choices made

to avoid those problems and which problems remained without a possible

solution.

5. Testing: here it is shown the final tests made to the final program and which

results were obtained.

6. Conclusion: in this part is given a brief conclusion of the entire project, comparing

the early ideas of the project and the final solution.

7. Appendixes: in this section it is included some tables, graphics and example files

that are not so relevant to include in the previous parts of the report.

8. Bibliography: this section integrates a list of references used to develop this

project and to write this report.

3 June 2010 VGIS 1027

4 | P a g e

2. Authors

The master thesis project SafeHouse was developed by the group members Sérgio Pedro and

Luben Ivanchev of the group VGIS 1020 till the date of 14
th

 of May of 2010. From that date, the

group became two different groups: VGIS 1020 and VGIS 1027.

Thus, the following sections of this report are common to both members, even though there

were further minor changes to them:

- Introduction.

- Analysis.

- Appendix A.

- Bibliography.

Moreover, the embedded application of the SafeHouse system was designed and implemented

by both members of the group VGIS 1020.

Therefore, the remaining parts were designed and implemented individually by Sérgio Pedro,

member of the group VGIS 1027.

3 June 2010 VGIS 1027

5 | P a g e

Acknowledgments

I would like to thank all the people who helped me during the accomplishment of our project,

and particularly:

• My supervisor Lars Bo Larsen, semester coordinator and project supervisor for his help,

management and advice.

• My family and friends, particularly Emese Timár for her patience and personal support all

over this semester.

• Mr. Ben Krøyer, from the E-lab, for his help and supporting regarding the micro controllers

and external sensory.

• Ms. Mette Billeskov, semester secretary, for her support regarding the administrative

issues.

• Mr. Per Mejdal Rasmussen, from the IT workshop, for his help and support concerning the

desktop application of this project.

• Mr. Jørgen Schiønning, CEO of PDM Technology, for his advice and support for the master

thesis regarding Service Oriented Architectures. Also, for this permission of using software

libraries of PDM Technology in this project.

• Professor Frank Fizek and Mr. Morten Pedersen, from the mobile devices lab, for lending

the necessary phones for this project.

3 June 2010 VGIS 1027

6 | P a g e

Table of Contents

Preface .. 3

1. Report outline ... 3

2. Authors .. 4

Acknowledgments ... 5

Table of Contents .. 6

List of Figures .. 10

I. Introduction .. 13

1. Scenarios ... 14

II. Analysis .. 16

1. Overall System Architecture ... 17

2. Service Oriented Architecture ... 19

2.1. Key elements for a Service Oriented Architecture .. 19

3. Existing Household Systems .. 22

2.1. Conclusion ... 26

3. Embedded Devices .. 27

3.1. Distance Sensor ... 28

3.2. Temperature Sensor .. 30

3.3. Other Sensors .. 31

4. Mobile Devices .. 32

4.1. Conclusion ... 34

5. Communication protocols ... 35

5.1. X10 Industry Standard (Wired communication) ... 35

5.2. Radio Frequency Identification – RFID Standard (Wireless communication) 36

5.3. Wireless Personal Area Networks (WPANs) .. 36

5.4. 3G Mobile Communications (Wireless Communication) .. 38

5.5. Conclusion ... 39

6. Problem formulation ... 40

III. Design .. 41

1. Architectural Choice .. 42

3 June 2010 VGIS 1027

7 | P a g e

1.1. Remote-Server Architecture ... 42

1.2. Home-Server Architecture .. 45

1.2.1. Embedded Layer .. 47

1.2.2. Application Layer ... 48

1.2.3. Presentation Layer .. 50

2. Communication Protocol .. 51

2.1. XML as the base of communication .. 51

2.1.1. XML Structure .. 51

2.1.2. Layer Structure .. 53

2.2. Application and Embedded Layers Communication ... 54

2.3. Application and Presentation Layers Communication .. 57

3. Structures of the system ... 59

3.1. Room/Component... 60

3.1.1. Room ... 60

3.1.2. Component .. 60

3.1.3. Types of Data ... 61

3.2. Users .. 62

3.2.1. Definition of user and super-user ... 62

3.2.2. Creation and Deletion of an user .. 63

3.3. Rules .. 64

3.3.1. Definition of Rule .. 64

3.3.2. Creation of a rule ... 65

3.4. Notifications .. 67

3.4.1. Definition of Notification ... 67

3.5. Statistics .. 69

3.5.1. Average of results in the Last Day ... 69

3.5.2. Average of results in the Last Month .. 70

3.6. Conclusion ... 70

4. Home Server .. 71

4.1. Discovery of Embedded Devices ... 72

4.2. Mobile Server .. 73

4.3. Embedded Server .. 76

4.3.1. Embedded Looping Block .. 76

4.3.2. Rules Trigger Block .. 76

3 June 2010 VGIS 1027

8 | P a g e

4.3.3. Notifications Trigger Block .. 77

4.4. Statistics Thread .. 79

5. Desktop Application .. 80

5.1. Loading Screen .. 81

5.2. Login Screen .. 82

5.3. Main Menu .. 84

5.3.1. Overview Screen .. 84

5.3.2. Notification Screen .. 85

5.3.3. Rule Screen .. 88

5.3.4. User Screen ... 90

5.3.5. Charts Screen... 92

6. Mobile Application .. 93

6.1. Elements of the Presentation Layer .. 93

6.1.1. Title and Ticker .. 94

6.1.2. Choice Group ... 94

6.1.3. String Item ... 95

6.1.4. Text Field ... 95

6.1.5. Button .. 96

6.2. Screens Sequence .. 96

6.2.1. Login Screen .. 97

6.2.2. House Screen ... 98

6.2.3. Room Screen ... 99

7. Conclusion ... 100

IV. Implementation ... 101

1. Problems Faced ... 102

1.1. Limitations on the Embedded Devices .. 102

1.2. File Structure of the Home Server ... 104

1.3. SMS notifications ... 107

2. Deployment of the System .. 108

3. Integrated Development Environments (IDEs) ... 109

3.1. Netbeans IDE ... 109

3.2. MPLAB IDE ... 110

4. Conclusion ... 111

V. Testing ... 112

3 June 2010 VGIS 1027

9 | P a g e

1. Software Performance/Loading Testing ... 113

1.1. Desktop Application Loading Testing .. 113

1.2. Desktop Application Performance Testing .. 116

1.3. Mobile Application Loading Testing .. 117

2. Stability Testing ... 118

VI. Conclusion ... 119

1. Personal achievement ... 120

2. Main issues and perspectives .. 121

VII. Appendixes .. 122

Appendix A .. 122

Appendix B .. 124

1. XML Library.. 124

2. BSCOM Library... 124

Appendix C .. 126

Appendix D .. 127

1. Room/Component Structure ... 127

2. Users Structure .. 128

3. Notifications Structure .. 129

4. Rules Structure .. 130

Appendix E... 131

1. Message Class.. 131

2. GUIInterface Class ... 131

VIII. Bibliography .. 134

3 June 2010 VGIS 1027

10 | P a g e

List of Figures

Figure 1 - Energy saving in a smart house. If the window is opened, the radiator turns off. 13

Figure 2 - The general idea of our system. .. 17

Figure 3 - Three point communication of the system ... 17

Figure 4 - Basic scheme of SOA architecture (Service provider and Service requesters) 20

Figure 5 - XML scheme of a simple request (left) and a composite request (right).................... 21

Figure 6 - User motivations for installing smart home products (Meyer & Schulze, 2006). 22

Figure 7 - User acceptance of smart home systems (Meyer & Schulze, 2006). 23

Figure 8 – System architecture based on a SMS protocol to interact with a remote user (Khiyal,

2009). .. 24

Figure 9 - System architecture proposed by (Alkar & Buhur, 2005). .. 25

Figure 10 - Open sensor board with pic30f3013 and Bluetooth UART. 27

Figure 11 - Sharp GP2D12 Voltage vs Distance (in cm) graph. .. 28

Figure 12 - Linearization of the GP2D12 signal (volts vs cm). ... 29

Figure 13 - The temperature sensor LM35DZ. .. 30

Figure 14 - Relationship between voltage and temperature (ºC) in the LM35DZ. 30

Figure 15 - Other components. From the left to the right: a buzzer, a green led and a magnet

sensor. ... 31

Figure 16 - The evolving smartphone market from 2007 till 2009 (McLean, 2009). 32

Figure 17 - Job trends for different mobile development platforms (Indeed, 2010). 34

Figure 18 - Job trends for Bluetooth and Zigbee (Indeed, 2010). ... 37

Figure 19 - Power breakdown for a connected mobile device in idle mode (Pering, 2006). 38

Figure 20 - Remote-Server Architecture: All the interactions between the user and the house

pass through a webserver. .. 42

Figure 21 - The Remote Server concept in more detail. ... 43

Figure 22 - Home-Server Architecture: the user interacts directly with his/her own server

(placed at home) wherever he/she is. .. 45

Figure 23 - Detailed scheme of the Home-Server Architecture. ... 46

Figure 24 - Three layers architecture of the SafeHouse system: the lamp on the left represents

the embedded layer; the server in the middle represents the application layer; and the user on

the right represents the presentation layer. ... 47

Figure 25 - The cycle of operation in the embedded layer. .. 48

Figure 26 - Both sides of the application layer share the same resources. This is made through a

binary file. .. 49

Figure 27 - XML communication between layers. If the XML is not correctly interpreted by the

Receiver Layer, a NAK is send back and the Sender Layer cancels the update of information. . 52

Figure 28- Simple Requests and Answers. Figure 29 – Composite requests and

answers. 52

Figure 30 - The general structure of each layer. ... 54

Figure 31 - First XML exchanged between embedded and application layers. 55

3 June 2010 VGIS 1027

11 | P a g e

Figure 32 - The first XML sent by the Application Layer to the Presentation Layer. All the

definition of the screen is described there and also the method render form is performed in

the end. ... 58

Figure 33 - The Super User is the only one that can create or delete users from the system. This

gives an extra security to the system. ... 63

Figure 34 - Same target value conflict: different values on the source component trigger the

same even on the triggered component. .. 66

Figure 35 - Interval interception conflict: when for some values of the source component two

actions would be trigger in the triggered component. ... 66

Figure 36 - Basic Workflow of the Home Server: After the embedded devices being discovered,

it launches the mobile server and the embedded process to update status and trigger rules and

notifications... 71

Figure 37 - Workflow of the Discovery process. ... 72

Figure 38 - Bluetooth/Internet server workflow. .. 74

Figure 39 - Workflow of the Embedded Looping block. .. 77

Figure 40 - Workflow of the Rules block. .. 77

Figure 41 - Screens Scheme of the Desktop Application. ... 80

Figure 42 - Loading Screen of the Desktop Application. ... 81

Figure 43 - Login Screen of the Desktop Application. ... 82

Figure 44 - Loading Screen with empty fields generates an error message. 83

Figure 45 - Loading Screen with a not existing user generates an error message...................... 83

Figure 46 - Loading Screen with an incorrect password generates an error message. 83

Figure 47 - Main menu of the Desktop Application. ... 84

Figure 48 - Customization Screen of the Desktop Application. .. 85

Figure 49 - Notification Screen of the Desktop Application. ... 86

Figure 50 - Creation of a notification in the Desktop Application... 87

Figure 51 - Notification screen after creating a notification. .. 87

Figure 52 - Creation of a rule in the Desktop Application. .. 88

Figure 53 - Conflict in the creation of a rule in the desktop application. 89

Figure 54 - Rules Screen of the Desktop Application. ... 89

Figure 55 - Creation of an user in the Desktop Application. ... 90

Figure 56 - Error message in deleting the super user of the system. ... 91

Figure 57 - Charts Screen of the Desktop Application. ... 92

Figure 58 - Screens sequence on the mobile application. .. 97

Figure 59 - Login Screen of the Mobile Application. ... 97

Figure 60 - House Screen of the Mobile Application. ... 98

Figure 61 - Room Screen of the Mobile Application. .. 99

Figure 62 - Bad synchronization when two threads are accessing the same object. 105

Figure 63 - Good synchronization between threads: The Thread B waits for Thread A to finish

the transaction. ... 106

Figure 64 - SMS notifications via an intermediary cell phone. ... 107

Figure 65 - Netbeans IDE 6.8. .. 109

Figure 66 - MPLAB IDE v8.20 ... 110

3 June 2010 VGIS 1027

12 | P a g e

Figure 67 - Loading Testing for the Home Server when this one is two meters far from the

embedded devices. ... 114

Figure 68 - Loading Testing for the Home Server when this one is 10 meters far from the

embedded devices. ... 114

Figure 69 - Average Results for the Loading Testing for the Home Server. 115

Figure 70 - Performance Testing in the Home Server. .. 116

Figure 71 - Sharp GP2D12 non-linear and linear graph. ... 122

Figure 72 - Comparison between different output data in the Sharp GP2D12. The green cell is

the average of the absolute error. .. 123

Figure 73 - Class Diagram for the Rooms/Components Structure. ... 127

Figure 74 - Class Diagram for the Users structure. ... 128

Figure 75 - Class Diagram for the Notifications Structure. ... 129

Figure 76 - Class Diagram for the Rules Structure. ... 130

Figure 77 - Message class. The attribute rightMessage indicates if the operation was succesful

or not; the attribute message is used to display some error information or new information to

be put on the GUI. ... 131

3 June 2010 VGIS 1027

13 | P a g e

I. Introduction

Sensors and actuators are a vital part of our life. In the nature, they are present in all the life

forms we know. Without them we would not survive even a second. Our eyes, our tact, our

taste, our muscles, are intrinsically part of the human body. The big agent of this control is our

brain, who responds to electrical signals sent from our body sensors, sending electrical

stimulus to our actuators (e.g. muscles).

Nevertheless, humans are also dependent from other kind of sensors and actuators, the

electronic or mechanical ones. For instance, when we put a dish cooking in the oven, there is a

sensor to detect when the temperature overpasses the temperature that we established.

After, this sensor sends a signal to the electrical plate (the brain of the oven) and this one

sends a signal to the thermal plate (actuator) in order to shut down for a while, till the

temperature drops down a bit.

In the last decades we have seen a progressive development of Smart Houses. The idea is

quite simple: instead of having small brains in each machine, the house has a unique brain to

control and monitor all the sensory and actuators built in. Many companies have developed

systems for this purpose and increasingly more prototypes are coming to expositions and fairs.

There are many goals with these systems: some simply give the user a more centralized

control of his house; others are more concerned with power saving; and many are concerned

with security.

Figure 1 - Energy saving in a smart house. If the window is opened, the radiator turns off.

Some of these systems are intended to be controlled just at home with a built in panel in the

wall where the user can control everything. Other systems are intended to be controlled

wherever you are through your cell phone. The idea of this project is to have a plug-n-play

system for controlling sensors and actuators in a house or office, through wireless

communication, to let the user control his house or office wherever he is at any moment of the

day.

The idea of giving the control to the user wherever he/she is, it is only possible with portable

devices. The most common and popular ones are the cell phones. Moreover, cell phones are

getting increasingly important in our society. Nowadays, we can use our cell phone for almost

3 June 2010 VGIS 1027

14 | P a g e

everything and there are uncountable mobile applications. Indeed, in the last years we have

seen a transformation in this market. The concept of cell phone turned to the concept of smart

phone, a device capable of higher processing and which allows the user to make all the actions

that he makes on a computer system.

The entire system is idealized to achieve a Service Oriented Architecture. In this way, the

format of inter communication between applications should be XML. With this, not only we

have an easy-to-install system, but also we have an easy-to-modify system.

The system is made in such a way that the development of one of the components does not

interact with the development of another, i.e. each component is completely independent of

any other, meaning that the only part that all the components have to have in common is the

format of communication between them (input/output). Therefore, the only requirement for a

team is to assure that the format is readable and interpreted by each component.

1. Scenarios

At this point, it has been introduced the fundamentals of this project. Nevertheless, all of this

does not make sense without a real user scenario. For instance, let us consider a common

citizen, called Peter, who decided to implement in his house the SafeHouse system with the

following equipment:

- For his bedroom: a temperature sensor, a magnet sensor (to detect if the windows is

open or not), a light bulb and a heating system.

- For his living room: a heating system and a distance sensor (to detect if somebody is in

that room).

After setting up the system, Peter goes to work, already with the SafeHouse mobile application

installed on his cell phone:

1. During the morning, Peter realized that he left the light of his bedroom turned on.

Quickly, he opens the SafeHouse app and in few seconds, he turns off the light.

Peter just has made his good action for the environment.

2. After an intensive day at work, Peter decides to establish some notifications for

the case that he forgets to turn off some light or the heating. For that, he accesses

the desktop application and in some quick steps, he creates an email notification

to be sent to his email address in case that some light or heating are on. Moreover,

he creates a SMS notification to be sent to his mobile phone every time the

window is open at home. In this way, he feels more relieved about the security at

home.

3. Peter also creates a rule to run any time presence is detected in the living room.

This rule would turn on the lights immediately. Peter feels now also his house

3 June 2010 VGIS 1027

15 | P a g e

more automated. He goes to the living room immediately and checks effectively

that the rule is making effect on the system.

4. Some days after the system is running and during the day when Peter is at work, a

robber attempts to enter in Peter’s house through the window. The robber

destroys completely the window and this event triggers a notification to Peter’s

cell phone. Immediately, Peter calls the police and quickly they arrest the robber.

Peter feels that the system is not only automated, but also protects from

intrusions.

After introducing briefly this topic and explaining a possible scenario, we are going through the

analyzing of existing systems, SOA, mobile phones and communication protocols in the next

section.

3 June 2010 VGIS 1027

16 | P a g e

II. Analysis

In this section all theory behind this project is going to be described. This section will begin

with a presentation of a general diagram for the system: which system components are

involved in it and how is the general interaction between them.

Hereafter, we will introduce the service oriented architecture: how the system is able to work

based on services in each application, rather than based on a fixed point-to-point application.

In order to achieve the concretization of the project, it is going to be made a brief introduction

about existing household systems: which products are in the market and their potential for

the future.

In the next section it is going to be introduced the embedded devices used in the system and

which sensory they have incorporated, as well as the data extracted from each sensor or

actuator. After that, we are going through the topic of mobile phones: how is the market of

cell phones and which platforms are available for developers. Finally, the last part will refer to

different communication protocols, especially within the wireless communications.

The analysis section is concluded with the problem formulation for this master thesis work,

considering all the previous sub sections.

3 June 2010 VGIS 1027

17 | P a g e

1. Overall System Architecture

As it has been introduced above, the key idea of this system is to let the user control his house

or office in a glance through his cell phone. Each user action has to be made through an entry

point in the house, possibly a simple server running in a home computer. This means that the

user can interact with his house anywhere in the world through his mobile device.

Figure 2 - The general idea of our system.

The most important idea of this system is to allow a user to, at anytime from anywhere in the

world, request status information from his automated home. Upon a user request, the system

responds with the desired data almost instantaneously. Of course, an entry point has to be

considered to the system, i.e. a place where the user connects to this house. The system has to

be, in this way, based on 3 point communication: The user (blue square); the house entry point

(green square); and the sensors/actuators (red circles).

Figure 3 - Three point communication of the system

3 June 2010 VGIS 1027

18 | P a g e

To reach the completion of such system, a research is going to be conducted through the

different topics that are going to compose it. Moreover, before going through the physical

components, it has to be introduced the architectures for such systems. Specifically, in the

next chapter we are going through Service Oriented Architecture and how it can influence the

development of software.

3 June 2010 VGIS 1027

19 | P a g e

2. Service Oriented Architecture

In the traditional systems, the focus always stands in the development of the application for a

specific propose, without taking in account other possible platforms or other kinds of

communication. Moreover, the software model is most of the times separated from the

business model. Thus, the concerning is to design and develop the software components

independently of the business components. Due to this splitting, most likely the developers

design the system in an enclosed way, i.e. they implement a standalone application. In another

words, even with a good result in the final product, any change in a block of the program will

cause changes in the blocks depending on that one. This is really expensive for a company,

which afterwards is going to have several costs in the system support.

With this comes the key idea of a Service-Oriented Architecture (SOA): combine the software

model with the business model (Bieberstein, 2008) (Josuttis, 2007). In this way, each required

business service it will become a software service. All the blocks of an application are no longer

enclosed together and inflexible for changes. Each service is independent and it can run

wherever we want with any kind of communication protocol. Moreover, each service can be

reused in another business model or changed without compromising other services. For sure,

it is harder to achieve this when a team is doing its first project. But afterwards, a small

modification in one of the services or the construction of a new one makes a brand new

application ready to be used by other customer. This is really important in terms of costs: the

flexibility to separate the services by their functionality. In the middle of this picture, a well-

known format comes naturally as the format for service interconnection: the XML format. This

format fully enters in the SOA logic. With a small change in a service, we just have to add to

the XML a couple of new fields to be understandable by that service, without compromising

other services. This is really powerful and it can make a significant difference in the time spent

in the development and in terms of costs.

2.1. Key elements for a Service Oriented Architecture

In order to realize a Service Oriented Architecture, several rules have to be followed (Huhns &

Singh, 2005):

- Loose coupling: A class or a structure in a software application has to have the less

possible knowledge of other components in the system. This means that if a

requirement change occurs, the cost of that change will be minimal.

- Implementation neutrality: Good software architecture should not be dependent

on programming language details.

- Flexible configuration: One of the strongest principles of SOA. With this, different

components can be bound together later in the project.

- Persistence: Services should endure long enough and have a correct way of

handling exceptions.

3 June 2010 VGIS 1027

20 | P a g e

- Granularity: This is strong related with the combination of the software model

with the business model. The services should not be seen in detailed interaction

among them, but instead as a high-level view more related to the business model.

Respecting these few rules may contribute for a better software development. This does not

mean that the software development will be faster in an initial stage, but for sure, it will

become easier to correct or to add/change features.

So far, we have seen SOA and its rules, but in order to see a better picture of SOA architecture,

it has to be introduced two main concepts: the service provider and the service requester

(Schmidt, 2005). Obviously, the service provider is the one that provides all the services

available to one or more service requesters. The crucial thing here is that the service provider

can provide different kind of services for different purposes without changing the structure

inside of it. In this way, different service requesters (green triangles) will retrieve different data

(orange arrows) from the service provider (blue hexagon) as we can see in the Figure 4 below.

Figure 4 - Basic scheme of SOA architecture (Service provider and Service requesters)

In other hand, we have two kinds of services: simple and composite (Papazoglou, 2003).

Simple services are the ones that take care of one particular action within the service provider.

These simple services can be used independently or reused to make a composite service. Thus,

a service requester can either make a simple request or a composite request. This also follows

the idea how structured the XML is: an XML has always a root element. If it is a simple request,

the root of this element is simply the name of the service. If it is a composite request, the root

of the element has to be different and incorporate the different simple (or composite) sub-

requests. We can see how the XML is structured in a simple and composite request in the

Figure 5 below.

There is another component intrinsic to SOA: the service registry. The service registry is where

the service providers are going to store the services information for the service requesters.

Before a service requester “connects” to a service provider, it should first find the service it is

looking for. This service registry does not need to be stored in the same place where the

service provider is running. This allows even more flexibility to the service providers to

distribute the different services across different machines. In the end, when the service

requester asks for a service, he retrieves the address where that service is running.

3 June 2010 VGIS 1027

21 | P a g e

Alternatively to this service registry, it can be made a service tunneling. In this way, the service

requester sends a request directly to a main entry point of the service provider, but afterwards

this one redirects the call to the location of the service. This is similar to a communication via

proxy.

Figure 5 - XML scheme of a simple request (left) and a composite request (right).

Hereafter, SOA architecture is suitable to be implemented in any kind of solution. It provides a

well-structured and flexible way of doing software and it allows the software to be constructed

based on services. Thus, it has all the sense to use SOA in the SafeHouse system. But before

progressing into details of the components of the system, it is crucial to introduce the existing

system within the household market and research field.

3 June 2010 VGIS 1027

22 | P a g e

3. Existing Household Systems

The concept of Home Automation has existed for many years. In different conferences

research projects have been presented and in expositions many prototypes have been shown

to people in general. The trend is for these systems to become simpler. Associated with this

trend was the expansion of wireless systems and mobile phones. Nevertheless, the market is

predominantly targeted at upper class people (Meyer & Schulze, 2006). A cheap alternative

will be able to tap into a much larger customer group.

Also, there are different motivations for a household system as the reader can see in the figure

6 below. Among all the motivations, certainly the most important for users is the security. This

is explained by the fact that the urban threats in different countries are becoming higher.

There are many standards for home automation devices. Yet most devices and systems cannot

communicate between themselves (Warmer, 2009). This requires skilled professionals to

configure this communication between these devices. Then again this configuration of such a

system will require further configuration if the user wishes to modify his/her system. A

possible solution to tap this fact would be to develop a SOA system for controlling smart

homes. This kind of architecture has the flexibility of quick changes and to be “plug-n-play”, as

referred in the previous chapter.

Figure 6 - User motivations for installing smart home products (Meyer & Schulze, 2006).

3 June 2010 VGIS 1027

23 | P a g e

Figure 7 - User acceptance of smart home systems (Meyer & Schulze, 2006).

Below, a list some negative arguments and problems with smart homes according to (Meyer &

Schulze, 2006) is shown:

 Smart homes are too expensive.

 Installation problems, no plug-and-play.

 Programming is too complicated.

 High repair costs.

 Privacy issues.

 Dominance of technology.

 Access rights, security issues.

Contrary to these problems there are some guidelines of what a smart home should be

according to (Meyer & Schulze, 2006):

� Easy to use

� Understandable

� Affordable

� Easy to install, plug-and-play

� Easily expandable

� Time saving

� Ensure privacy and security

� Energy Saving

Problems still exist with smart home systems. This project aims to develop a solution that

solves as many of these problems and, at the same time, adheres to the general guidelines of

what a smart home should be.

One of the most known standards is the X10 standard. It is very popular and most (older)

systems use it (Burroughs, 2010). We will look at X10 in more detail later in Section 5. There

are many others such as Echelon Lonworks, and National Instruments LabVIEW modules, all of

3 June 2010 VGIS 1027

24 | P a g e

which offer the possibility to add internet servers for remote web monitoring and control of a

home. However, a trend is seen in newer systems which are in favoring more to use the newer

wireless technologies. In industry many companies exist that provide home automation

solutions. The problem is, not only the platforms are different from company to company, but

also the hardware many times is proprietary and so, incompatible for other kind of products.

A study published by (Adão, Antunes, & Grilo, 2008) is of relevance to this thesis. Their project

aims at developing an online system that connects to a user’s currently existing alarm system

and allows the user to view the current status of the security system via TCP/IP. The user

would also be able to arm and disarm his/her security system remotely from any computer or

mobile device with an internet connection. Their problem formulation was that despite the

existing companies there was a need to re-use current fully functional home systems instead

of replacing them. In their study they created a “micro web-server” from a Modtronix SBC45EC

board. The board contained a PIC18F452 microcontroller. Although their system is specifically

designed to incorporate older security system it still has relevance to the proposed system

because their general architecture can be used as an idea to the architecture of this project.

(Khiyal, 2009) proposes a solution for controlling home appliances and providing home

security using the Short Message Service (SMS) protocol and wireless technology. The Home

Application Control System is divided into 2 sub-sections all controlled from a local computer.

One sub-section is for appliance control and the other is security control. A GSM modem acts

as a mobile server and communicates with the remote user via the SMS protocol. The

following picture shows their systems architecture.

Figure 8 – System architecture based on a SMS protocol to interact with a remote user (Khiyal, 2009).

The paper however does not mention how communication is achieved between the PC and the

appliances or the security system. However it is interesting to note they chose to use the SMS

protocol to allow remote access.

3 June 2010 VGIS 1027

25 | P a g e

Another solution is proposed by (Alkar & Buhur, 2005). Their system requires a local computer

to act as user interface, database and webserver. The system requires the use of a master

node that communicates between the computer and the other nodes. The master node

communicates with the local PC via cable (RS 232) and uses Radio Frequency 433MHz to

communicate with the slave nodes; this is shown in Figure 9 below. As we are going to see,

similar architecture was thought in this project. However, a disadvantage to this set up is that

all reliance is placed on the master node; if it fails all other nodes will cease to function. In

(Alkar & Buhur, 2005) a SSL algorithm is used in order to ensure security on the webserver in

addition to a user login and site certificate. This project used a PIC16F877 microcontroller.

Figure 9 - System architecture proposed by (Alkar & Buhur, 2005).

A limitation of this system is in the addition of new devices to the home network. Currently

devices are manually added by the user through the user interface. A simple handshaking

protocol is used to do this. Here there is room for improvement. Value can be added to the

existing product by automating this process. This will alleviate the user’s responsibilities and

make the system more plug-and-play. This author reported a penetration range of 100 meters

of the RF medium in a concrete building and 200 meters in open ground. Another problem

presented in this project is the failure of the system when power to the wall socket is

terminated. This problem exists in all systems that require electricity, including the SafeHouse

system. Therefore, it can be used a back-up battery or an emergency generator, but these

3 June 2010 VGIS 1027

26 | P a g e

solutions do not give instantaneous power supply when the main source shuts down. The best

approach for this inconvenient would be an UPS (uninterruptable power supply) where there is

one or more attached batteries to the main energy source and giving time to reestablish the

main power line.

In (Burroughs, 2010) the X10 wired approach is used in conjunction with the PIC16F877

microcontroller. Although it is not intend to use this wired approach it is still useful to note

that the PIC series of microcontrollers are well suited and popular for home automation

applications. This means support and maintenance should be widely distributed and available.

According to (Warmer, 2009) a service oriented approach which is event driven with web

services is the best solution for a smart home system. The advantage of using web services is

that different systems may vary in design and can function independently on different

platforms, while still interacting with each other on a high level standard. Using a SOA

approach allows services to support many various applications. Most importantly SOA

approach allows autonomy, for the customer and even the device. Autonomy by definition

means self-governance. It is used here in the sense that the smart house system can regulate

itself and is independent of external forces. That is to say the home owner has full control of

the system. This eases legal issues as well.

2.1. Conclusion

In the previous sub sections we have seen different companies and products in the market.

Either through built in panels in the house or through remote applications over IP or GSM, all

of them are intended for the same goal: give the user the power of controlling his house,

either indoors or/and outdoors. Probably the tendency will be to turn the houses more

automated, independent of user actions, but that control can be mistrusted from the user

point of view. In the design part, we are going to consider these different solutions presented

for the development of this master thesis work.

Now that it has been presented briefly the SOA architecture and some existing systems, we are

going through in more details to each component involved in the system, starting with the

embedded devices.

3 June 2010 VGIS 1027

27 | P a g e

3. Embedded Devices

As referred in the beginning of this report, sensors and actuators are everywhere. In fact, they

are incorporated on the so called embedded devices. This kind of devices is everywhere: in our

washing machine, in our refrigerator, in our television, in our internet modem and what so

ever. We do not even realize the importance that they have in our daily life and without them,

most of our daily tasks would be hard to concretize. Let us just imagine what would be an oven

without an embedded device to control the temperature inside: the oven would be so hot that

would put our life in dangerous just in a matter of minutes. This is just simple example, but

reflects how dependent we are from these useful devices.

Embedded devices have typically a microcontroller or a digital signal processor in their core.

Moreover, they are ideal to perform a specific task with low power consumption. An

interesting solution is the open sensor board (OSB) from Aalborg University and Technical

University of Berlin (Department of Electronic Systems, 2009), which provides an open source

sensor hardware platform for development and integration with different kind of

sensors/actuators. Hereafter, it is introduced the platform that is going to be used in this

project:

Figure 10 - Open sensor board with pic30f3013 and Bluetooth UART.

Furthermore, it has been provided from the E-Lab at Aalborg University two different OSB with

different sensors and actuators. In the following sections it is introduced each kind of

component used in the OSBs.

3 June 2010 VGIS 1027

28 | P a g e

3.1. Distance Sensor

A distance sensor is very useful in many situations. A concrete example of a distance sensor in

our daily life is the parking sensor in recent automobiles. This dispositive gives an alarm each

time that the driver approaches a car with reverse gear. The alarm gets louder and more

repetitive as closer as the cars are from each other. In a smart house, a distance sensor can be

used in many situations: when someone gets close to a safe lock where we have valuable

things; when someone enters in a room or in the house; etc. For the effect it is going to be

used a Sharp GD2D12 (Acroname, 2010). This device gives as output a non-linear analog signal

for distances between 10 and 80 cm. Since the PIC micro-controller has an analog-to-digital

converter (ADC), the problem addresses the fact that distance sensor gives a non-linear signal.

To better understand this, let us take a look in the following graph:

Figure 11 - Sharp GP2D12 Voltage vs Distance (in cm) graph.

As the reader can see, the graph is not easy to understand in terms of output (voltage). Instead

of making a case-by-case interpretation of the signal, i.e. if we get 3V means one thing or 1V

means a different thing; it was made a linearization of the signal using 1
st
 grade Linear

Regression. However, if we simply apply a linear regression to the entire graph, we obtain

huge deviations from the real output. For more detailed information, the reader can see in

more detail the Appendix A.

Instead of applying a linear regression over the entire graph, the graph is divided into three

sections: voltage between 0.9 and 1.4 Volts; voltage between 1.4 and 2.4 Volts; and voltage

between 2.4 and 5.0 Volts. Finally, a linear regression is applied to each section and we obtain

the graph represented in the Figure 12 below.

3 June 2010 VGIS 1027

29 | P a g e

Figure 12 - Linearization of the GP2D12 signal (volts vs cm).

If we apply the formulas above, we can have a comparison between the real distance values

and the linear ones.

Comparing the real values and this approximation, we can see that the error margin is low

enough to be considered in this project. Let us remember that the primary goal with the

distance sensor is to detect “someone nearby something” and even a maximum difference of

5cm (instead of 60cm it will give 65cm) will not make a big difference in a smart house

implementation. In other hand, we cannot use this linearization in a parking mechanism for

the obvious reasons mentioned above. In general distance sensors are always giving different

results depending on the room temperature and supply voltage. However, in most of the cases

it is useful, since the operating temperature of this component is between -10 and 60 degrees

Celsius.

Another idea could be to make a 2
nd

 grade linearization. With this, we would obtain an

accurate approximation of the results with the real values. Nevertheless, this solution is not

sustainable for a micro controller, which does not have a powerful processor and will take time

to make that calculation. Finally, the values can be stored in a table, which will be quick but

very sensible to changes, i.e. if the distance sensor is changed by other with different

characteristics, it has to be stored the new values again.

A last approach would be to simply set the distance sensor to true or false, meaning that the

value is true if someone is nearby (in the range of the sensor) and false otherwise.

In the next part of this chapter we are going through about another important component in

our system: the temperature sensor.

y = -0.6532x + 134.27

y = -0.2027x + 72.297

y = -0.0544x + 36.278

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

Voltage

3 June 2010 VGIS 1027

30 | P a g e

3.2. Temperature Sensor

A temperature sensor is perhaps one of the most useful that we can have anywhere. It is used

everywhere without realizing its presence there. Indeed, it is one of the sensors most spread

all over the world. In the project SafeHouse, it is going to be used the LM35DZ (Corporation,

2010).

Figure 13 - The temperature sensor LM35DZ.

Unlike the distance sensor, this temperature sensor gives a linear response, more precisely

10mV per degree Celsius, working in temperatures between 0ºC and 50ºC. In the following

graphic is represented the relationship between temperature and voltage. As the reader can

see it is fairly straight forward to obtain the temperature.

In the next chapter we are going through other sensory implemented on the open sensor

board, concretely a green led, a buzzer and a magnet sensor.

Figure 14 - Relationship between voltage and temperature (ºC) in the LM35DZ.

3 June 2010 VGIS 1027

31 | P a g e

3.3. Other Sensors

Besides the temperature and distance sensors, it was provided other components. One of

them is the magnet sensor. This component gives a high-low output signal, meaning that the

signal is in low output when a metal is in contact with it and in high output otherwise. This

magnet sensor can be used near entrances, such as doors or windows, to detect if that

entrance is open or close.

In order to simulate a normal light bulb and an alarm, it has been used a small green led and a

small buzzer. The reason is simple: the intention of this project is to give a proof of concept of

a smart home system.

Figure 15 - Other components. From the left to the right: a buzzer, a green led and a magnet sensor.

In the next chapter, we take a step further and it is introduced mobile devices, where it is

intended to implement a user-friendly and quick application to access the house.

3 June 2010 VGIS 1027

32 | P a g e

4. Mobile Devices

It is well known that mobile devices are becoming increasingly powerful. In the last years, the

barrier between mobile phones and computers had become really narrow. It is possible to

develop applications for mobile devices as we do for computers and the operating systems for

mobile phones have increased in number and robustness. In this way, it makes sense to think

about a collaborative platform between cell phones and other devices around them,

particularly to access our house and control it. Nevertheless, one of the main limitations of the

mobile devices is exactly the different platforms that we can find for them.

Figure 16 - The evolving smartphone market from 2007 till 2009 (McLean, 2009).

In one hand, we have the worldwide spread platform to most of the Nokia devices – Symbian™

- in its most popular versions: S40 and S60. In other hand, we have one operating system per

manufacturer, what does not help to choose the platform to work with. Besides, a developing

team has to concentrate effort in learning each platform instead of focusing in the

development itself. Soon, the need for a hardware-independent framework was needed. In

this matter, Sun© has integrated a Java virtual machine into mobile devices, the so called

MIDP (Mobile Information Device Profile) or JSR 118 (Group, 2002). This virtual machine was

one of the first attempts to unify the development for mobile devices. Because of this, Java

comes naturally as a good choice for mobile development.

In other hand, the world-wide corporation Google© has launched recently its first operating

systems for smart phones, the Android OS. Following-up the launching of the operating

systems, Google also has launched the Android SDK, a Java-based framework for Android OS

development (Xuguang, 2009). With this comes another advantage for programming in Java.

3 June 2010 VGIS 1027

33 | P a g e

Nevertheless, the SDK is still in development and thus, it was decided to put this option apart.

Besides, the android devices available were limited to few numbers at the time of this thesis.

Thus, the choice tended for the development in Nokia.

For Nokia devices with Symbian S60 operating system (Nokia Corporation, 2008), there are

different options for the development: the native Symbian C++ (Pérez, 2007), the brand new

Qt framework (Forum Nokia, 2010), the J2ME (Java 2 Micro Edition) and Python for S60 (Nokia

Corporation, 2008).

If a developer wants to go deep in the capabilities of his mobile device, he should for sure user

Symbian C++. With this language, it is sure that the developer can do anything with his mobile

device, respecting the device’s limitations, obviously. Nevertheless, with the use of a more

powerful language we lose portability of code, meaning that if we develop an application for

Symbian S60 5
th

 edition, perhaps problems would arise porting to a S60 3
rd

 edition. Another

disadvantage is the time to develop an application for Symbian C++. Generally speaking, we

have to be more aware of device details, instead of concentrating in the core components of

the application. For instance, in the case of this thesis, this would become unsustainable in

terms of time.

Another option could have been the brand new Qt platform. This platform is a way of Nokia

giving a simpler access to the device functionalities. With this platform, the time of

programming is reduced, comparing to the native Symbian C++, since it avoids a lot of

complicated details regarding the GUI rendering. At the time of this project, Nokia was still

launching platform components and documentation. Because of that, it has been decided to

not explore a completely new platform.

In another hand, we have Python. Python is one of the easiest languages to use in

programming. There are uncountable frameworks and development kits based on Python and

no exception goes for mobile devices. There is the so called pyS60 in different flavors

depending on the edition of the Symbian. With python we can have an application in a really

quick time and with not so much effort. In other hand, as referred above, python comes in

different flavors, meaning that for each edition of Symbian we have to use a different

development kit. This is a big disadvantage when considering porting your application for a

wide-range of devices.

Finally, we have J2ME. This platform uses Java as programming language and it has the

advantages and disadvantages of a high-level programming language. In one hand, the

development of code for a high-level language has proven to be faster. A prove of this fact is

the job trends comparing the four different platforms introduced (Figure 17 below). An

obvious disadvantage is that with Java you do not have access to low-level resources, but

normally this situation can be over turned in some way. Nevertheless, the main advantage of

Java goes exactly for the range of Java enabled devices (Regnier). An extra argument goes for

the fact that Java as already known by the development team of this project.

3 June 2010 VGIS 1027

34 | P a g e

Figure 17 - Job trends for different mobile development platforms (Indeed, 2010).

4.1. Conclusion

Considering what it has been discussed before, the decision was to use J2ME. First of all, the

development team felt more comfortable in using Java as programming language and with the

framework itself. Secondly, it presents a good balance between GUI control and performance,

meaning that it is quite simple to make a user interface and at the same the application runs

fast. Last but not the least, it has been chosen this platform because there were already useful

libraries developed for J2ME during the internship of Sérgio Pedro in PDM Technology with the

permission of Jørgen Schiønning, CEO of PDM Technology. The reader can check which

libraries are being used in Appendix B.

Another main advantage of using J2ME instead of pys60 or one of the C++ platforms was that

J2ME gives the portability of code across platforms. There are plenty of manufacturers

implementing the Java Virtual Machine on their devices and with this, not only Nokia devices

are being targeted, but yet a wide-range of manufacturers. The Figure 17 above proves also

that fact, even though the Qt platform is increasing in job postings, mainly because it is a new

platform and there are few professionals with experience on it.

At this point, we have introduced our initial idea for our system and presented some of the

existing systems. Hereafter, we have introduced a flexible and elegant architecture (SOA) and

introduced the most important devices in our system: embedded devices and mobile devices.

In the next section we are going through how the system would communicate within

components, i.e. which wireless protocols we have available and which ones are more suitable

for our thesis work.

3 June 2010 VGIS 1027

35 | P a g e

5. Communication protocols

Since the internet has given its first steps in beginning of the 70’ies many things have evolved

and how we connect between each other has also changed. Moreover, in the last decade we

have seen a great and expansive evolution of wireless communications. Indeed, the wireless

communications have made a revolution in our life and in the internet itself.

Since the development of the Internet, different models were using to describe it. The TCP/IP

model (Tanenbaum, 2003) describes the communication protocol as divided into different

layers, from the Application Layer to the Physical Layer. In the middle of these layers comes

the IP protocol (Network Layer). The IP, independently of the lower layers, is the basic carrier

for all the communication protocols. Thus, it is fundamental to say that any research made on

this field has as basis the Internet Protocol.

In this master thesis, the communication protocols are divided into different sections: by type

(wired or wireless) and by range (short and long range). In this section we are going to discuss

different types of protocols and in the end it is made a final conclusion about them and which

one(s) it has been decided to use.

5.1. X10 Industry Standard (Wired communication)

No project on home automation would be complete without mentioning X10 (Burroughs,

2010). The X10 standard was developed in 1975 in Scotland by Pico Electronics of Glenrothes,

in order to facilitate communication between electronic devices in home automation. It works

using the currently existing home wiring or through radio communications. This was the first

technology of its kind and over the years higher bandwidth technologies emerged; most of

which too use the homes existing wiring. Communication is achieved by modulating a pulse

over the wiring from one connected device to another. The presence of a pulse indicates a

binary 1 and absence a 0. Despite the newer faster technologies on the market today the X10

standard is still popular because it is wide spread, inexpensive and parts are available

worldwide. All of which, no doubt, are characteristics of a formula for success.

A huge advantage of using such a system is that no addition wiring is needed, except for new

hardware. However, there are certain significant drawbacks to this and similar but faster

standards. Among the disadvantages, there are:

 Takes approximately 1 sec to transmit command data.

 It has poor propagation in split-phase electrical distribution.

 Affected by line noise from other devices.

 Receives interference from other X10 signals in the building.

3 June 2010 VGIS 1027

36 | P a g e

Thus, X-10 has some lack of security in it, meaning that close neighbors using X-10 may

interfere or even control each other. This is a main disadvantage for a smart home system that

pretends to be safe for the user.

It is also an old technology and, if trends follow the way they have been, will soon be replaced

by wireless technology. Thus, a wireless protocol is more suitable for the goal of this thesis.

5.2. Radio Frequency Identification – RFID Standard (Wireless

communication)

Among the wireless communications, we have the RFID (Weis, 2003). This technology has

many different purposes, but one of the most known is to identify objects, i.e. replacing the

old fashion barcode. RFID systems are composed by three different components:

- The transponder, which carries the object identifying data, i.e. this component

carries all the information belonging to one specific product.

- The transceiver, which reads and writes tag data. It means that this component

can retrieve information from the transponder or even change that information.

- Records database, where information about the transponders is written. For

instance, before the transceiver approves a certain transponder, it has to check

first this database.

The RFID tag can transmit data up to 1000m, depending on its type. For instance, the most

typical and cheap type is the passive one, which has a range of 10m. This one is completely

“turned off” in absence of a transceiver. Also, this radio frequency has the advantage of

passing through walls, since it is a low frequency signal. However, the RFID require to be

designed for a specific application and they are sensible to environmental changes. Also, the

mobile devices and the computer provided for this project does not incorporate a RFID

module, which will limit the usage of RFID in this project. Mainly because of this reason it has

been decided to not use RFID and search other solution.

5.3. Wireless Personal Area Networks (WPANs)

The WPANs are intended for communication in short range. Among different standards, there

are three familiar standards: Bluetooth, Wi-Fi (IEEE 802.11) and Zigbee (IEEE 802.15.4).

Bluetooth (Klingsheim, 2004) is a wide-spread technology and present in the most of the

mobile devices. Indeed, it has made its own revolution within the short range radio

frequencies. First, it transmits at reasonable speed for short range, up to 721 Kb per second.

Secondly, it is reasonable cheap, allowing many manufacturers of computers and cell phones

to implement one Bluetooth chip on the device. Besides, the Bluetooth is organized into pico-

3 June 2010 VGIS 1027

37 | P a g e

cells. Each pico-cell can have 8 devices connected with a “master”, but obviously one of the

devices can be in other pico-cell and thus allowing a Bluetooth network to be implemented.

One of the main issues with Bluetooth in its first version (BT 1.0) was the range: 10m.

Currently, the most spread and used version of Bluetooth is the 2.0 that has up to 100m, even

though the versions 3.0 and 4.0 are already developed. The most promising characteristic of

the latest is the ultra-low power consumption.

One of the technologies promising to replace Bluetooth is Zigbee , which is affirmed to be

cheaper and simpler than Bluetooth. It is the same goal as Bluetooth, i.e. Zigbee is intended to

be a wireless personal area network, targeting radio-frequency applications. Thus, Zigbee has

different applications, from smart energy applications to telecom services. Unfortunately,

Zigbee could not be explored in more detail, since it is not equipped yet in most of the mobile

or computer devices, as we can see in the job trends in the Figure 18 below.

Figure 18 - Job trends for Bluetooth and Zigbee (Indeed, 2010).

In other hand, Wi-Fi has revolutionized the wireless networks. It allows a user to connect to a

LAN and consequently to the internet. Moreover, Wi-Fi has the advantage of being world-

spread, being common for a user to catch a signal almost everywhere. In other hand, Wi-Fi has

a short range of transmission, up to 30m indoors and 90m outdoors, operating in ranges

between 2.4GHz and 5.0GHz.

Finally, in terms of consumption (Pering, 2006) and referring only Bluetooth and Wi-Fi,

Bluetooth has a clear advantage over Wi-Fi, consuming almost 10 times less than Wi-Fi. Since

the sensor boards used are battery-driven, this is a fact we have to take into account if we do

not want to have a crying expensive bill in the end of the month. Hereafter, Bluetooth

becomes the natural choice to use in the sensor boards, since these ones have to plug-in into

the house electric grid.

3 June 2010 VGIS 1027

38 | P a g e

Figure 19 - Power breakdown for a connected mobile device in idle mode (Pering, 2006).

Either Wi-Fi or Bluetooth do not allow a user to access his house from anywhere in the world.

This only can be achieved using GSM or 3G communications, which is the standard for mobile

communications. Most of the smart homes systems that allow connection with the user are

based on GSM/3G standards, especially with the spreading of antennas and satellites all over

the planet.

5.4. 3G Mobile Communications (Wireless Communication)

As we have said before, 3G allows a device, mobile or computer, to connect to the internet

from anywhere in the world, as long as there is an antenna and network provider signal.

Because of being the standard in mobile communications, it has been decided to use for

outdoor communication with the user’s house. However, the use of 3G should be strictly

limited to outdoors, since it has extra costs to the user, unless the user has a 3G package with

his network provider.

Moreover, 3G is faster than the old generations of mobile communication such as GSM. The

data rate of transmission is up to 5 Mbit/s, what is quite fast if the user wants to access his

house remotely.

3 June 2010 VGIS 1027

39 | P a g e

5.5. Conclusion

Let us remember that in this master thesis work, there are 3 main components: embedded

devices, house entry point (a desktop server) and the mobile device. There are also three

different standards it has been decided to use: Bluetooth, 3G and Wi-Fi. Bluetooth will be the

choose standard for the communication between the entry point and sensor boards.

Bluetooth wins over Wi-Fi mainly because of the consumption. The Wi-Fi will be used indoors

whenever the user has a WLAN access point and he wants to use it. Finally, the 3G will be used

when the user is somewhere without other Internet access point.

During this analysis section we have been through all the topics of the SafeHouse project: it

has been introduced the system, SOA and existing systems. After, it has been referred

embedded and mobile devices and finally this last section about communication protocols.

Hence, the research is in place to make the problem formulation of this project.

3 June 2010 VGIS 1027

40 | P a g e

6. Problem formulation

In Section 2 (page 19), we went through an important architecture, the SOA architecture. This

architecture allows this project to be composed in a software system based on services. In the

case of controlling a house, we would say that each service will represent an action that can be

taken in the house, specifically on the micro controllers. The micro controller will, as well,

interpret that action and dispatch to the sensor/actuator requested. Thus, it is important to

define that all of this system is based on SOA architecture; it does not matter if we are talking

about an embedded device, a mobile phone or a desktop application.

Secondly, our system will be based on a three-point communication: the mobile application;

the house entry point access; and the embedded device.

With consideration with these facts, it has been made the following problem formulation: it

does not matter where and when the user is, he should access his house and make quick

actions in a mobile phone according to his will. Moreover, at home the user should have a

wider overview of his house through a desktop application, visualizing logs, creating or

deleting other users, rules or notifications to be sent. SafeHouse should give to the user the

power of control and change the system in his own way without requiring any expertise

knowledge.

Hereafter, there are some requirements that the SafeHouse should fulfill in order to achieve a

complete result:

- The system should be plug-n-play in a sense that every embedded device, after

being programmed by the development team, should be detected immediately

and no further configuration should be made in the characteristics of the

components.

- A desktop application providing to the user important functionalities in order to

give him/her the control of his/her house:

o automate the house by allowing the user to create rules;

o update the user by allowing the user to create notifications;

o give access to more users by allowing the user to create new users and

give them permissions;

o provide an easy way to customize names of the devices;

o give the option to check logs of the system;

- A mobile application with a simple interface where the user can change/check in a

glance the status of some component.

Therefore, we are now in conditions to go further and explain the design of this system in

order to achieve these requirements.

3 June 2010 VGIS 1027

41 | P a g e

III. Design

In the previous chapter different topics have been discussed, from Service Oriented

Architecture to Communication Protocols. It was analyzed different systems and technologies

important for this master thesis. Therefore, the problem formulation was constructed based

on the research made during the analysis.

Hence, this chapter will start to refer to the Architectural Choice used in this project: starting

with the initial idea and ending with the final choice and which advantages and disadvantages

come from each solution proposed. Following this idea, it will be introduced the

Communication protocol integrated in this solution for the interaction between each point in

the system.

Hereafter, we are going through the Structures of the system: which elements are used in this

system and for what they exist. At this point, we are going to explain into more detail the

following components of the system: Home Server, Desktop Application and Mobile

Application.

3 June 2010 VGIS 1027

42 | P a g e

1. Architectural Choice

From an architectural point of view, different approaches have been thought to concretize this

master thesis. A remark should be made that it was always intention to implement a SOA,

independently of the choice made in the end. Thus, two different concepts were thought

during this period: a Remote Server concept and a Home Server concept. Both solutions

would concretize the idea of a smart home and both solutions are being used either in

researches or in final products.

The main difference between them is the number of servers that such systems may have in the

different cases: in a remote server all smart homes would be connected to the same server

and would not require any public IP address in the user house; in a home server, each user

would have a server at home and might have a public IP address in order to be able to receive

external Internet connections. We are going through each of these solutions and in the end

explain why I have chosen the home server architecture.

1.1. Remote-Server Architecture

It is true that nowadays the Internet is structured in web-applications organized in central

servers, storing and sharing data from users and serving all the users in the world for different

purposes. This is the trend and it will continue to be. Following this already known concept,

the first idea was exactly based on Remote-Server architecture: a server running 24/7, able to

provide all the web-services different users would need.

In this way each home would be connected to this remote server as the Figure 20 shows.

Figure 20 - Remote-Server Architecture: All the interactions between the user and the house pass through a

webserver.

Hence, the user could access his/her home through the server and every event happening in

the house would be sent to the remote server. Thus, the server would register all the

information from both sides. It is important to say that this web server was thought to be a

HTTP server, serving houses/users upon HTTP requests. Thus, this server would offer a web

page where the user, through a browser in the mobile phone or computer, could see all the

information and interact with the house. Besides, this architecture would need a mobile server

as entry point in the house, to serve as interface between the remote server and the

components in the house.

3 June 2010 VGIS 1027

43 | P a g e

The idea behind this architecture is simple: as we have a physical door to enter in our house,

we would have a digital door, the 3G modem, to control and monitor our house remotely.

Besides, this modem would communicate with the user cell phone through SMS each time an

important event would occur. In other way, the configuration of the system would be simple,

since each house is commanded by one small device (the modem), which can be obtained by a

reasonable cheap price. In the Figure 21, this concept is shown in more detail.

HOME

Remote Server

User

Sensor Board

3G Modem

Sensor Board

Sensor Board

Sensor Board Sensor Board

3G

3G

3G

3G

SMS

Figure 21 - The Remote Server concept in more detail.

As we can see, this architecture is divided in three main points:

- Home: At home the system would be commanded by a 3G modem that would

interact with each sensor board through Bluetooth or other radio frequency. Also,

the sensor boards at home would serve as hops to other sensor boards. An event

occurred in a component attached to the sensor board would originate an action

in the modem. Hence, the action would be packed into a SMS to the user cell

phone and also packed into a HTTP POST to the remote server.

- Remote Server: The remote server would be divided into two different

components: services running to serve each house and a website. Obviously, these

two components would interact with each other: for instance, if the user would

decide to turn off the lights remotely, this action would be registered and in the

next HTTP request from the 3G modem (at home) the lights would be turn off.

- User: To the user would be provided a webpage where he/she could see updates

from his house and at the same time control and monitor some of the components

at home. Also, the user would receive a notification by SMS/email when an

important event happens at home (e.g. the window becomes open during the

day).

3 June 2010 VGIS 1027

44 | P a g e

There are advantages and disadvantages in such architecture. First of all, this architecture

would not require any application or installation in the user cell phone what is a big

advantage. The user would simply access the browser and see live status of his house. The

only thing required between 3G modem, remote server and the user would be an internet

access. Also, the system would be portable between different places. For instance, if the

user would change place in the meantime, it would be only required to move the

equipment to the new place. It would be plug-n-play in this sense.

Nevertheless, critical disadvantages exist, either in performance or in ethics. In terms of

performance, this system would not offer a fast way to access to the components when

the user is at home, i.e. every request from/to the user, either at home or outside, would

pass through the remote server. If, for instance, the remote server is located in United

States and the user is living in Denmark and in that precise moment the user is at home, it

does not make sense that to turn off the lights a HTTP request has to go from Denmark to

the US and comes back to the user house in Denmark and shuts down the lights in the end.

Another disadvantage belongs to the 3G modem. In general, devices integrated with 3G do

not have a public IP address, meaning that it would be always the modem to start a

connection with the server and this connection would have to be kept alive or the modem

would have to establish a new connection to retrieve or post information. This means that

there is a high dependency on the 3G modem. If this component fails, all the system fails

immediately.

In terms of ethics, it could be thought by many users that such a system would

compromise their privacy at home. It is true that social networks are increasingly getting

world wide-spread. For instance, Facebook already counts more than 400 million users in

all over the world. But one thing is to share pictures or information we want, other

different thing is to provide information to a remote server about our behavior at home.

As social researches prove, the user does not accept well the fact of sharing his/her

behavior at home and this raises an ethic problem. However, this issue could be tapped by

guaranteeing the privacy of this remote server, as it happens in net banking systems.

Hereafter, taking the advantages and tapping most of the disadvantages of such system,

another solution was thought and followed. This solution is based on a home-server with

public IP address. With this, the communication will be much shorter in distance to any

user and no user would share his/her information to any central server.

3 June 2010 VGIS 1027

45 | P a g e

1.2. Home-Server Architecture

This architecture taps some of the disadvantages pointed out of the remote server

architecture and keeps intact the main strength of the previous architecture: give the user the

power to control and to be notified whenever he is in the world. Moreover, it is possible to

create a Wireless Private Area Network at home without requiring any internet access. This

can be made running simultaneously a Bluetooth or other Radio Frequency server with the

Internet server. In other hand, this architecture requires each user to have a public IP at home.

This may have two disadvantages at the first sign: the ISPs (Internet Providers) control the

public IP addresses and the number of available public IPs are becoming really limited (in IPv4).

Regarding the first issue, there is always the possibility to get a server with public IP address

through dynamic DNS, i.e. each time the server would start a new IP address would be

attributed, keeping the same host name. In other hand, the IPv6 already exists and it is a

matter of time to be fully implemented everywhere, solving the problem of limited public IP

address, at least for the years to come.

Figure 22 - Home-Server Architecture: the user interacts directly with his/her own server (placed at home)

wherever he/she is.

As we can see in the Figure 22 above, the interaction between the user and his home is made

directly to a server located at home and this same server keeps track of the components

(sensors and actuators). The same goes for the case when the user is at home. The interaction

is made first with the local server and after, between the server and the components.

Therefore, this solution is much faster and more comfortable to any user. Of course, an

application is needed to be installed in order to retrieve information from the sensor boards,

but this application is intended to be plug-n-play, not requiring any step besides installing in

the computer. Also, the notifications for the user can still be made, either through a third-

party web service (e.g. Skype, VoipCheap) or through an auxiliary cell phone at home. Besides,

the user needs to have a small application installed in his cell phone in order to communicate

remotely to the house, but again, this application does not require any configuration from the

user point of view. How the system is configured will be topic of discussion in the

Implementation section.

In the Figure 23 below a more detailed infrastructure of the system is shown. For the case,

three users are shown to explain the different kind of interactions that the users (assuming

more than one person living per house) can have with their house. The home server is running

and retrieving data in a fixed schedule from the sensor boards. The user 1 is at home and he is

using exactly the desktop application provided by that home server. He has full control and

3 June 2010 VGIS 1027

46 | P a g e

overview of the status of the system in a wide screen. The user 2 is at home but he just wants

to perform a quick action in one of the components. For that he uses the mobile application

and in few seconds that action occurs in the component he selected. The user 3 is at work but

he wants to turn on the heating in his room to be warm when he arrives home. Instead of

calling one of the inhabitants of the house to make that action, he simply accesses his mobile

phone and in the same way as user 2 did, he performs an action in that component. The

difference between user 2 and user 3 is the medium of communication to the home server.

User 2 is using a local wireless network through Bluetooth or other radio frequency. User 3 is

using 3G or Wi-Fi.

Figure 23 - Detailed scheme of the Home-Server Architecture.

At this point, the overview of the system was shown. Nevertheless, till now the architecture

was more focused on a hardware point of view. For a full comprehension of the system is

necessary to go into a software point of view. Thus, the interaction is based on three different

layers in the system:

- Embedded Layer: running on each sensor board, it is responsible to listen for

incoming information from the home server and perform the actions described in

that information.

- Application Layer: running on the home server, it is responsible to communicate

with mobile applications running the presentation layer. It is considered part of

this layer the process responsible to retrieve and update components in the

system. Moreover, parallel to this layer, it is running a process responsible to

handle GUI events on the desktop computer.

- Presentation Layer: running on the cell phone, it is responsible to receive

information from/to the application layer. This layer does not only receive data

respecting to the embedded devices (sensor boards) but also receives the

3 June 2010 VGIS 1027

47 | P a g e

description of the screen to be displayed. This gives the modularity to change the

other parts of the system without affecting this one.

The most powerful argument of this type of architecture is that we do not need to configure

again application layer or presentation layer if the user wants to change components in the

embedded layer. This is achieved using XML as the format of interconnection between layers.

In each XML, all the services that should run are described with the required arguments to run

them. Moreover, if one the layers is updated it is straight forward to add that new information

to the XML and this information to be interpreted by the other layer. Thus, some change in

one of the layers does not affect the rest of the system. This concept of SOA is being adopted

by many enterprises in the Business Process Management with successful results.

Obviously, the embedded layer has to be configured again, but that is a small change that does

not affect the rest of the system. In other hand, each of these layers is running on a service-

based. For instance, the application layer has more than one service that can be run, each

responsible to handle an event from the presentation layer. The Figure 24 below represents

this three-layers scheme.

Figure 24 - Three layers architecture of the SafeHouse system: the lamp on the left represents the embedded

layer; the server in the middle represents the application layer; and the user on the right represents the

presentation layer.

In the next sub chapters we are going through each of these layers.

1.2.1. Embedded Layer

As it was explained before, the embedded layer is responsible to receive the information from

the home server, make the changes in the components or retrieve the status and send back an

answer. Thus, the cycle of operation in the embedded layer is as it follows in Figure 25. As

remark I would like to refer that the general structure of each layer is the same with small

nuances. This happens because the communication protocol developed allows it. The

communication protocol will be explained in more detail in the section 2 of this chapter.

It starts with a hardware interruption when the first byte is received from the home server.

After this, the application starts to receive the data till the end of the buffer. Hereafter, it is

constructed a string with the data received and it is sent to the xml parser. In the parser, the

string is transformed into a structure with the different xml nodes and with all the values put

into fields. It is now the time to dispatch the action contained in the XML. This is made by the

dispatcher, where finally the tags in the xml will be analyzed and it will perform an action

3 June 2010 VGIS 1027

48 | P a g e

according to those actions. Finally, in a reverse order, an answer is constructed and sent to

the home server.

Figure 25 - The cycle of operation in the embedded layer.

Regarding the actions that can be taken in the embedded layer, we are going in more detail in

the section 1.2.2. Thus, we will continue with the remaining layers of the system.

1.2.2. Application Layer

This layer is specific for each house and provides the services for the user, from his cell phone,

in order to change or check status from the system. As it was said before, parallel to the

application layer, it is running a process responsible for the management menu on the desktop

computer. This management menu is a more advanced way for the user to change the status

of the system. It allows the user to make rules in the system, create new users, visualize logs or

create notifications to be sent to a mobile phone. I am going through in detail to this

application in the section 5 of this chapter. For now, let us focus on the structure of this layer.

This layer has two different sides: one that is constantly retrieving and updating the status of

the components integrated in the embedded device and other to allow communications

to/from the presentation layer running on the cell phone. In one side, the server has to have

Bluetooth integrated or a Bluetooth stick to be able to communicate to the different

embedded layers or to the presentation layer when this one is in a short range. In other side,

the server has to have a public IP address to be able to receive connections from the

presentation layer from distance.

In the middle of these two sides, there is a middle structure where each side stores the new

information. This middle structure can be a database or any kind of file. For simplicity, a binary

file had been chosen to store and retrieve information within the application layer. Let us see

better this scenario in the Figure 26 below.

3 June 2010 VGIS 1027

49 | P a g e

Figure 26 - Both sides of the application layer share the same resources. This is made through a binary file.

This copes with the different principles of SOA. In first place, the access to file is made in the

same way by the different processes. Secondly, even if it is required to construct a database,

the only thing changing is the methods to read and write from/to the database. There is no

another change required in the software. Once more, these little decisions can make a big

difference when a project needs to be modified. It can mean one day or one month of work in

some cases.

The structure of the application layer is in everything similar to the embedded layer. However,

differences exist in the structure, mainly because it is allowed a higher level language in the

application layer and also the multi-threading, what does not happen with the embedded

layer. Instead of explaining here in detail this structure that is in everything common to the

structure of the presentation layer as well, we are going into detail in section 2.1.2 of this

chapter.

For instance, two different processes are running at the same time on the application layer:

- Mobile Presentation Side: this service is listening for incoming connections from a

mobile phone, receiving the XML, parsing it and dispatching the action to be

performed. Finally it is sending an answer to the presentation layer confirming or

not the validity of the XML.

- Embedded Side: this service is running always, looping for retrieving status from

the embedded layers or/and updating their components status. Also, this service

applies possible rules that the user has configured.

Finally, I would refer the presentation layer in the next sub chapter.

3 June 2010 VGIS 1027

50 | P a g e

1.2.3. Presentation Layer

The main actor of this system is the user and to give an ease access to his house, the user has

an application installed in his cell phone, able to communicate with the home server through

different communication standards. Moreover, this application is not customized for any

specific house, meaning that the user can communicate with different houses and not change

anything in the application. The key for this to happen is exactly SOA: since the architecture is

based on services, it is the application layer running on his house that takes care of the

information displayed in the presentation layer. With this the user can have control of two or

more different houses without changing any detail on his device application. Moreover, the

user can change or check in a glance any status of a component in his house. In the section 6 of

this chapter we are going in more detail into the mobile application.

Let us now focus on the presentation layer itself. The structure of the presentation layer is in

everything similar to the application layer except for one small detail but that makes all the

difference: it has a renderer, meaning that the XML has the screen configuration of the

presentation layer. Thus, the presentation layer does not corporate any screen structure as a

normal application does. It simply has a renderer that converts a node of a XML into a known

structure. In the case that we want to update the presentation layer with a graphical element

not implemented yet, it is simple: we add a method to interpret that new node in the XML.

Moreover, if some elements are not being used anymore, the question is even simpler: no

change is required to the presentation layer.

In this way, the presentation layer works as a browser. The similarity is obvious: both receive a

type of format that they have to render. In the case of a web browser, the most typical is the

HTML format. In this case, it is the XML format. And indeed, the web browser does not need to

be configured again and again for each website. It is uniform and works with everything.

Obviously, new elements are always coming and that is why updates exist. The presentation

layer is in everything similar. If there is a standard of elements to use, it works with any kind of

application. If some new element is needed to add, it has to be updated to accept that new

element. This is elegant and efficient in applications development.

As a remark, this structure of the presentation layer was initially developed in PDM Technology

during my internship in the fall semester of 2009/2010. Moreover, it has been proved during

this master thesis that this platform is efficient and useful. The scheme of the XML and which

elements are being accepted will be topic of discussion in the sections 2.3 and 6 of this

chapter.

Hereafter, in the previous chapters we went through the different proposed architectures. We

have seen that the Remote Server does not cope with some of the requirements established

and then, the Home Server architecture was introduced. This works with SOA as strong

principle and based on a three layers scheme. I went through each of the layers in general, but

the concept of layer and the communication between them will make more sense to the

reader in the next section: Communication Protocol.

3 June 2010 VGIS 1027

51 | P a g e

2. Communication Protocol

In the previous chapter it was introduced the chosen architecture. It was explained the basic

structure of each layer and what is the main goal of each one of the layers. In this chapter we

are going through how the communication is made between each layer. It is true that was

already referred that XML is used as format of inter connection. However, it was not explained

yet how the XML is structured and how each layer works with that format.

In this chapter I am going through XML as the base of communication, i.e. the XML structure in

general and the layer structure to deal with the XML; and also the different interactions: from

one side between the application layer and embedded layers; and from other side, between

the application layer and presentation layers.

2.1. XML as the base of communication

The extensible (X) markup (M) language (L) was created for a main purpose: to uniform the

definition of a web application. It is the base language for web services and it defines the data

structures of web services, as well as they functionalities. It is also a file format, meaning that

any program can store the information in an xml file. The SafeHouse system is not an

exception; the XML used defines how the application works and how the different layers

communicate with each other.

2.1.1. XML Structure

An important concept is defined in this communication protocol: for each request, an

acknowledgment or non-acknowledgment is send back to the other layer. This means that the

information is only updated internally if an ACK is received from one of the layers. Let us

consider, for instance, the case that the XML is sent to one of the layers and that layer is not

available anymore. In that case, nothing is received by the sender layer and the update is

canceled. Therefore, that layer can chose between sending again or give up. This concept is

not new and it is based on the reliable communication in TCP protocol. What was created here

was simply an upper layer to treat when a wrong answer is received, as HTTP is an upper layer

working over the TCP protocol. Thus, let us have a look into the Figure 27 below. In that

following example, a XML was sent by the Sender Layer (SL) to the receiver layer (RL). The XML

was received by the RL but the information contained on it was invalid. The RL refuses that

XML and sends back a NAK (in XML format as well). The SL receives the NAK and cancels the

updating of the information. This is also important in terms of security. If a hacker interferes

and scrambles all the XML in the communication channel, the action simply does not happen

and it does not crash the application.

3 June 2010 VGIS 1027

53 | P a g e

Hence, the XML can be composed in simple or composite requests/answers. Either of way, the

XML is not more than bytes in the communication channel. An important thing to consider is

how each layer should recognize the end of the XML, the so called EOF (End Of File) in

Software Programming. There are two solutions for this issue: or by a termination character or

by attaching the number of bytes in the beginning of the data stream. Both solutions were

designed: in one side and since the embedded layer has limited resources to operate, i.e.

limited memory, a header containing the number of bytes to be read would be useless, since it

could only receive a limited amount of data (around 512bytes); in other side, the presentation

layer has good resources and in this case a number of bytes as header would make all the

sense. Thus, to/from the embedded layer a new line character has to be added to the stream

of data and to/from the presentation layer 4 bytes in the header indicate the number of bytes

of the XML to be read. As a remark, a character represents one byte in UTF-8.

Last but not least, it was consider the encryption of the XML, in order to protect the data. An

optimal system would use a public/private key system, such as RSA. By consideration of

development time, a simple Vigenère algorithm was implemented (Stinson, 2006). This is a

symmetric encryption algorithm, meaning that encryption and decryption are completely

symmetric to each other. It is based on a key selection from both sides and switches the data

characters using that key and the Table of Vigenère (Rijmenants, 2010). This algorithm is prone

to hacking and an application checking the frequency of some characters can decipher the key

and then, the message. Even though it does not solve entirely the problem, but instead of

Table of Vigenère using the 26 characters of the alphabet, it was used an expanded table of

that one using 96 ASCII characters (the first 32 characters of the ASCII table are special and not

included in the table). In Appendix C it is explained in more detail the encryption.

After this explanation of the XML structure, it is time to explain how each layer is structured to

deal with the XML.

2.1.2. Layer Structure

In the previous sub section was explained how the XML is structured for the communication

between layers. It is now the moment to explain how each layer is structured to deal with the

XML and which basic functional blocks compose a layer in the system. Let us have a look at the

Figure 30 below. The cycle of operation starts when the layer receives a new data stream. This

data stream is deciphered and is thrown out any useless bytes (bytes indicating the number of

characters in the XML or any termination character). A string is constructed and passed to the

next block. As a remark, the embedded device works with pointers to an array of characters.

However, the concept of string is going to be used in any layer. Hence, the XML parser receives

this string and in order to facilitate and structure the data used by the layer, it is converted

into an XML object (in the embedded device, into an XML structure). For a better

understanding of this XML object, it is recommended to view again the Appendix A where is

3 June 2010 VGIS 1027

54 | P a g e

described in detail the XML library. It is with this XML object that the next block is going to

work with: the Dispatcher block. This dispatcher is the block that differs from layer to layer. In

the embedded layer, it is responsible to execute actions concerning the sensors and actuators.

In the application layer, it is responsible to treat a request coming from the presentation layer

or to treat an answer from both layers. In the presentation layer, the main function is to

render the screen. After the execution of the proper action, the Dispatcher sends back an

answer to the sender layer. The process to construct this answer is the symmetric of when the

data was received. The xml object is transformed into a string, the string is encrypted and

finally a stream of characters is send back.

Figure 30 - The general structure of each layer.

About the data receiver and answer sender there is not too much to say. They are responsible

to pass from one type of data to another and to cypher/decipher data. The XML parser accepts

any kind of XML: the only requirement is that the XML has to be well-formed; otherwise sends

an invalid format answer back. The validity of the XML is going to be treated afterwards by the

dispatcher. This block performs different actions according to the information tied to the XML.

Since we have three different layers, it is preferable to go through each of interactions in the

next sub chapters and explain in more detail each dispatcher.

2.2. Application and Embedded Layers Communication

The embedded layer possesses different components integrated to the micro controller. Each

of those components has specific properties: for instance, a representation for a led should be

a boolean (on/off) but a representation for the temperature sensor should already be an float

(or integer). Both types are primitive data types. Other thing to take in consideration: there are

components which the user cannot change the status, he can only retrieve; for example, it is

possible to control the status of a led but not the temperature sensor (the user can change the

temperature only by turning on or off the heating or opening or closing the window). Following

3 June 2010 VGIS 1027

55 | P a g e

this logic, the application layer has to send in the beginning a query to retrieve which

components the embedded layer possesses and which methods can be used in each of those

components. Also, it retrieves the type of data: boolean or float. The Figure 31 below shows

the first information exchanged between the layers.

The reader can see some properties of each component:

- The attribute id of the component: an identification tag for that component in that

specific embedded layer. This can be used to identify the component in a more

conventional name, for example, Light or Heating.

- The attribute id of the type: this goes to identify which kind of data can be

retrieved from this component, either a Boolean (“bool”) or a Float (“float”).

- Inside the node METHODS there are two possible child-nodes: GET and/or SET. If

GET appears in that node means that the application layer can retrieve the status

of that component. If SET appears in the node means that the application layer can

change the status of that node according to the type retrieved previously.

Figure 31 - First XML exchanged between embedded and application layers.

The application layer, after storing this information, can send commands to the embedded

layer. These commands can be either GET or SET. Moreover, the commands can be sent

separately or together, meaning that the application can send a simple request (one

command) or a composite request (more than one command). Summing the simple requests,

they can be three different ones:

- Query: as explained previously, this is used each time the application layer needs

to know which components are integrated in the embedded device.

3 June 2010 VGIS 1027

56 | P a g e

- Get: a get is used each time the application layer wants to get the current status of

a particular sensor or actuator.

- Set: a set is used each time the application layer wants to set a new status to a

particular actuator.

Each time that the application layer receives a positive answer, it updates the internal status.

Otherwise, it throws out the updates. In the next sub section we are going through the other

side of this system: the communication between the application layer and the presentation

layer.

3 June 2010 VGIS 1027

57 | P a g e

2.3. Application and Presentation Layers Communication

The presentation layer allows the user to interact remotely with his house. This is made

communicating with the application layer at home. Since the presentation layer is integrated

in a faster processing device (cell phone) than the embedded device, it allows the exchanging

and storing of more information. As explained before, the application layer sends to the

presentation layer not only the status of the components at home, but also sends the full

configuration of the screen in the presentation layer.

Let us consider the initial situation that the user starts the mobile application. When this

happens, a connection is opened with the server that immediately provides a dedicated server

to interact with the presentation layer. From this moment all the screens appearing in the

mobile application are structured in the XML received by this one. In this way, it can be said

that the dispatcher in the presentation layer is responsible to render the information on the

screen. For this interaction to happen both layers have to be synchronized in the internal

status. Thus, the XML received is stored internally and it is only updated when an

acknowledgment is received.

The XML between these two layers is then, divided into two parts - one describing the internal

object to update and other describing each method should be performed: rendering the form

onto the screen, rendering an alert onto the screen or exiting the application gracefully. Both

of them are simple requests that can be composed in the same XML. In the Figure 32 below

the example of the login screen is shown. This XML is sent by the application layer after the

connection was established. As the reader can see, the first thing to be done is to create a new

object in the presentation layer. This object contains not only the information to be rendered

on the screen, but also the handlers within each button. These handlers are methods in the

application layer ready to take care of a user interaction in the presentation layer. For

instance, if the user fills in the fields username and password and presses Login, this will cause

the packing of the current screen information into an XML and send back to the application

layer. Also it is contained the handler to be called on the application layer. The application

layer then, treats that XML and reacts according to that: if the username and password are

correct sends a new screen definition containing the embedded devices at home. Otherwise,

sends a render alert method saying that the username or/and password inserted are incorrect.

Regarding the presentation layer there are different methods that can be executed in there:

- RENDER_FORM: takes the current status of the internal XML object and renders it

on the screen.

- RENDER_ALERT: takes the value contained inside this node and renders a custom

alert on the screen.

- EXIT_APP: closes the connection and exit the application gracefully.

3 June 2010 VGIS 1027

58 | P a g e

Figure 32 - The first XML sent by the Application Layer to the Presentation Layer. All the definition of the screen is

described there and also the method render form is performed in the end.

In the side of the application layer there are different handlers to treat the information and to

change the screen while the user is interacting with the screen. It could be explained here

those handlers, but for a better understanding they are going to be explained in the section

4.2.

Hereafter, I have been referring the communication protocol and how the XML is structured

between each layer. At this point, the reader has an understanding of the architecture in

general and the communication protocol particularly. In the next section, we are going further

and go into the structures of the system, i.e. what is a component or a user for the system and

how they can be manipulated.

3 June 2010 VGIS 1027

59 | P a g e

3. Structures of the system

It has been shown that the SafeHouse system is divided into three layers: embedded layer,

running on the embedded devices (sensor boards), application layer, running on the home

server, and presentation layer, running on the mobile application. Afterwards, we went

through the communication protocol and how each layer is structured to work with the XML.

Finally, it has been referred how is the interaction between each of the layers. At this point, we

can go into details of the system itself.

In the SafeHouse system there are four important packages or software structures in order to

achieve the established requirements: room/component, responsible to store information

about the rooms within the house with the components integrated in the SafeHouse system;

users, responsible to manage the users in the system and their permissions to access the

system; rules, responsible to automate the system itself, i.e. to trigger an action when a certain

condition happens; and the notification, responsible to send a sms or email to the user in case

of happening a certain event.

Besides these four structures, there is an extra one responsible to generate statistics about the

values of the different components. This structure is composed exactly in the same way as the

others, but for the purpose of this master thesis it is not considered as a main structure.

However, it is going to be referred in the end of this section.

Moreover, each structure of the system is represented exactly in the same way in terms of

accessing the structure within the system. Thus, each structure is composed by:

- Representative objects: these objects are the ones that define the structure itself,

i.e. it is the object-oriented way of representing known structures. For example, a

user in the system is represented by an object User. The representative objects will

become clear in the next sub-chapters.

- Object Manager: the manager is a composition of the representative objects

belonging to the same structure. Any interaction within the system has to be made

through the manager: adding a new object; editing an existing object; or deleting

an existing object.

- Object I/O: each structure contains a class with methods to write and read the

object manager to/from a file. The project was developed passing each object

manager to a binary file, but if another type of file is chosen or if a database is

implemented, only this class changes in the system.

In the next sub-chapter we are going through each of previous referred structures:

room/component, users, rules and notifications.

3 June 2010 VGIS 1027

60 | P a g e

3.1. Room/Component

In the SafeHouse system was considered that each embedded device represents a room and all

the components of that room are connected to the same embedded device. Thus, a room for

the user means an embedded layer for the SafeHouse system. Moreover, each room is an

aggregation of components in the object definition.

3.1.1. Room

In the SafeHouse, a room is defined as an embedded device located in a part of the house

with components integrated into it. Some considerations had to be made in order to

transpose a room to an object definition. Thus, a room has the following attributes:

- macAddress: this attribute identifies the mac address of the Bluetooth UART

integrated in the sensor board. It is used to identify the room internally and

externally. Since the mac address is unique for each Bluetooth dispositive, it is

assured that each room has a unique ID, the mac address.

- name: this attribute identifies the room from an user point of view. Typically, this

attribute will have the name of which room where the embedded device is: living

room, bedroom, attic, outdoors, etc. This attribute is set initially to the mac

address but it can be edited through the Desktop Application.

- components: this attribute is actually an array list, where in each position of the

list is a component belonging to this room. The definition of component will be

explained in the next sub chapter.

The room can also be updated in the case that one new component is added or removed

to/from that room. With this, it is kept the plug-n-play characteristic of the SafeHouse: no

steps are required from the user side to modify the components within it. Thus, let us now

define what a component for the SafeHouse system is.

3.1.2. Component

In the section 2.2 of this chapter (page 54) it was defined what represents a component

between the application and embedded layers. This is not much different of what represents a

component inside the system, except for some nuances. Thus, a component for the SafeHouse

system is defined by a sensor or actuator with particular characteristics and it is integrated in

an embedded device. Thus, the component has the following attributes:

- id: the unique identifier of the component within the embedded device. It was

already explained in section 2.2.

- type: this represents the type of the value that this component can have. It is a

representation of the primitive data type in an object-oriented way. This type can

3 June 2010 VGIS 1027

61 | P a g e

be one of two: TypeBoolean (representing a Boolean) and TypeInteger

(representing a numeric data type). We are going through the type in the next sub

chapter.

- hasGet: this attribute is a Boolean primitive type telling the application if this

component has a GET method or not.

- hasSet: similar to the previous one, except that indicates if the component has a

SET method or not.

- value: the current value of the component. This is a string representation of the

value of the component and needs to be interpreted together with the attribute

type of the component.

- location: this attribute is a reference to the room object which this component

belongs to.

When the room is updated, all the components belonging to it are updated as well. Once more

the characteristic plug-n-play is expanded to the components as well. If, for instance, instead

of a light that we can turn on and off we implement a new light that has 3 different levels of

illumination, the user simply restarts the system and the component is going to be updated

with those characteristics. Obviously, this requires a small change on the sensor board

programming, but that is all.

3.1.3. Types of Data

The type of data is the attribute type of the Component. There can be two possible types of

data: TypeBoolean and TypeInteger. A type is mainly an object to know which possible values

are on a certain component. For instance, if a component is a light probably would only have

“on” and “off” but if it is a temperature sensor would have values between a minimum

temperature and a maximum temperature. This will become clear in the creation of rules and

notifications in the chapter 3.3 and 3.4. Thus, both classes have two common methods:

- getPossibleValues: this method returns a list of strings representing the possible

values for this type. If the type is a TypeBoolean a list with [on, off] is returned. If

the type is a TypeInteger a list with [min, …, …, max] is returned.

- getPossibleRulers: this method returns a list of strings where in each position

there is a possible ruler for this type. By ruler I mean “ is “ or “ is more than “ or “ is

less than “. For example, for Booleans there is only the ruler “is”, but for integers

there are others.

Thus, we have introduced the room/component structure and at this point we are in

conditions to go through the other structures. We are going to continue with the Users

structure.

3 June 2010 VGIS 1027

62 | P a g e

3.2. Users

The structure that defines the users in the system is also important for the system. At a first

glance the reader could think for which reason there are users in the system if the system is

targeted to domestic use. Well, there are different explanations for that. First of all, with an

implementation of user structure, the system can be targeted to different purposes. For

instance, if a hotel company wants to implement the SafeHouse system in its hotel, perhaps it

would be interesting to restrict the use of the system to customers of the hotel. Even though

the manager would have full access to the all the rooms but each customer would only control

its own room. The same goes for a company with different offices. Secondly, even in a

domestic situation happens that in many cases different tenants are sharing the same house.

No user would like to give the control of his bedroom to other user living in the same house.

Thus, a system of user and super-user was implemented in the SafeHouse system with

permissions for different users. We are going through this in the next sub sections.

3.2.1. Definition of user and super-user

For the SafeHouse system, the user is the individual that is an inhabitant of a house that has

identification to access the system and permissions to access certain rooms. With base on

the permissions and similar to an operating system, the user structure is divided into two: the

super user with full access either in the desktop application or in the mobile application and

the other users with permissions given by the super user. Thus, it is only allowed for the

system to have one single super-user, but it is allowed to create as many users as the super

user wants. Obviously, in a domestic situation where lives a family the super user can decide

just to share his account between all the family members. As it was explained before, this

structure was only defined to expand the system to different situations in home automation.

Even with this separation of super user and user, the object representing both of them is the

same and it is called User. This object is characterized by the following attributes:

- username: this attribute represents the unique identifier of the user in the system

and it cannot happen that there are two different users with the same username,

as it happens in any kind of application.

- password: for security matter, each user has a password. This password is used to

access the system, either through the desktop application or through the mobile

application.

- superUser: this attribute is a Boolean indicating if this user is the super user or not.

This attribute could be omitted from the object since there is a manager object

dealing with the users, but it gives extra information about the user object.

- permissionAccess: this attribute is an array list containing in each position a

reference to a room which the user can access to.

3 June 2010 VGIS 1027

63 | P a g e

There is indeed an issue with this permission access system. If it happens a changing in the

number of the rooms in the system, the user could have an access that already does not exist

or the super user to not have the full access to the new rooms. For that, the user manager

object is equipped with an update method: this method deletes references to rooms that

already do not exist and add references to the super user of new rooms added to the system.

This concept will become clear when we will go through the home server in section 4.

3.2.2. Creation and Deletion of an user

As it has been already talked about, there are some constraints to create an user in the

SafeHouse system. First of all, either the username or the password has to contain at least 4

characters. Any number of characters could be used here, but 4 seemed a reasonable number

of characters. Also, the user introduced cannot be the super user, i.e. it can only happen one

super user in the system and that user is created in the first system start up or every time the

system is reinstalled. The last constraint goes for the fact that cannot be introduced an user

with the same username as an existing user in the system.

About the deletion of a user, there are only two constraints. Trivially, it can only be deleted a

user that exists in the system. The second constraint goes for the fact that the super user

cannot be deleted from the system. The reason for this is that only the super user has full

access to both applications in the SafeHouse system and after losing this user, it would not be

possible to control the system à posteriori.

As a remark, only the super user can create or delete a user in the system, meaning that both

of the operations referred previously are only targeted to the super user. In the next sub

section we are going through one of the most important structures of the system: the rules as

automation of the house.

Figure 33 - The Super User is the only one that can create or delete users from the system. This gives an extra

security to the system.

3 June 2010 VGIS 1027

64 | P a g e

3.3. Rules

The rules are the structure that allows the system to be automated. It answers to the need of

any user to automate tasks at home. The simpler example happens with the temperature at

home. For instance, if the temperature in a certain room goes too high the heating should be

turn off at that moment. Or even considering energy saving, if a window is open the heating

should be turn off, cause it is consuming energy uselessly. More situations can be topic of the

explanation to exist rules and each user would have his/her idea of which actions to perform.

Thus, it is allowed to the user to create the rules or to delete them. There are no rules defined

in the first system start up and then, it is the user who should define them afterwards.

3.3.1. Definition of Rule

In the SafeHouse system, a rule is defined as an automated action defined by the user

composed by a source component and a triggered component – a certain value reached in

the source component will cause an action in the triggered component to change its status

to a certain value. In a simple logic point of view, a rule can be defined by the following

formula:

�� �� �� [�	
� �ℎ��, ���� �ℎ��] �� �ℎ�� � �� �

Where x is the source component that triggers the action, α is the value in the source

component that triggers the action, y is the triggered component where the action is going to

be triggered and β is the value of the target component after the action is triggered. Obviously,

in the case that the source component is from the type Integer, the ruler in the condition can

be is more than or is less than. One important aspect of the rules is the fact that they can be

scheduled, meaning that will be triggered an event only if the current time is in an interval

comprehended between an initial time and a final time. Thus, the rule is defined by the

following attributes:

- component: this is the source component of the condition and it is a reference to

a component in the structure of rooms/components.

- triggerComponent: this is the triggered component of the condition and it is a

reference to a component in the structure of rooms/components.

- ruler: this can be one of three: “is”, “is more than” or “is less than” and it depends

on the type of the source component.

- value: this is the selected value for the source component in the rule and it will

trigger an action when reached that value.

- triggerValue: this is the value that the triggered component will have if the

condition is fulfilled.

- InitialTime: this indicates the time from when the rule is active.

- FinalTime: this indicates the time from when the rule becomes inactive.

3 June 2010 VGIS 1027

65 | P a g e

Once again and as it happens with the users, when there are updates of rooms and/or

components, the rules are updated as well. For instance, if a component is not in the system

anymore, the rule is deleted from the system if it contains as source or target a reference to

that component.

Nevertheless, the rules are topic of more study in the SafeHouse and constraints for the

creation of rules had to be created. For instance, let us say, that the user creates two different

rules: in one the fact that the temperature goes high triggers that the heating turns off; in

other, the fact that the temperature goes low triggers the same event on the same

component. This would be a contradiction and it would cause unexpected events to the user.

3.3.2. Creation of a rule

In first place, the creation of a rule is only allowed to the super user for the same reasons

already presented before. Thus, for the super user to create a rule he has to know the concept

of a conflict with other rule. There are different situations when a conflict can happen and we

are going through each of them:

- Same component in both sides of the condition: the source component and the

triggered component cannot be the same. This could cause an unnecessary or

unexpected action in the system. For instance, if the rule would have as source and

triggered component the light of the living room, and the condition would be that

when the light is turn on then turn on, this would be an unnecessary processing in

the system or in the other hand, if the condition would be that when the light is on

then turn off, this would cause that the light will be always off even when the user

would turn on.

- Same triggered value conflict: this conflict happens only when there is already an

existing rule with the same source component, triggered component and ruler. Let

us consider the Figure 34 below. As the reader can see, different actions in the

same source component would cause the same exact action in the triggered

component. This would mean that for every state on the source component, the

triggered component would have always the same value and the control of this

component would become useless, since it will be 100% affected by that source

component.

- Interval interception conflict: this conflict is a bit more complex and can only

happen when the selected source rulers are “is more than” or “is less than”, i.e.

when the type of the source component is an integer. Once more, for a better

explaining is recommended to see the Figure 35 below. As we can see, for the

values between 20 and 25 of the temperature, the heating will be turn on and

after off. Even though the source values are not the same value, but the condition

can intercept other existing condition. The same goes for components with

Boolean values, but in this case is simpler to explain: the source value has to be

exactly the same. Only for integers special attention had to be taken.

3 June 2010 VGIS 1027

66 | P a g e

Figure 34 - Same target value conflict: different values on the source component trigger the same even on the

triggered component.

Figure 35 - Interval interception conflict: when for some values of the source component two actions would be

trigger in the triggered component.

Obviously, more constraints can be considered for this case of study and the rules as

automation would be an extensive topic. Let us notice that no multiple conditions for the same

action were considered. This could be an extension for this system and such extension would

make the user benefit increasingly in terms of interaction and control. Also, no looping

conflicts were considered, i.e. an event triggered in one of the rules can cause a chain of

events in the subsequent rules. This can be seen as good, but if no care is taken, it can happen

that an event that the user is expecting to happen in the end is not happening because of the

referred chain of events.

Finally, and about structures of the system we are going through the structure containing the

notifications. This structure is responsible to organize a notification and what should be sent to

the user when a certain event happens.

3 June 2010 VGIS 1027

67 | P a g e

3.4. Notifications

The SafeHouse system would not be complete without a system to notify automatically the

user whenever he is not checking any application. Thus, the notifications have been designed

to ensure that the user has the freedom to go wherever he wants without worrying if some

event is happening without being notified. Moreover, the user can receive notifications in two

different formats: e-mail and SMS. How the notifications are sent will be topic of discussion in

the section – Home Server. In this section will be explained how they are structured.

3.4.1. Definition of Notification

For the SafeHouse system a notification is a safe way of notifying the user if some event

(configured by the user) happens at home. As explained before the notifications can be in two

forms, e-mail and SMS. Thus, it was designed a division of the notifications into each type of

notification: EmailNotification and SMSNotification. Both classes descend from a super class

Notification and they share the same properties, except for the method send. Moreover, the

notification can be formulated in the following way:

�� �� �� [�	
� �ℎ��, ���� �ℎ��] ∝� �ℎ�� �����	��������	�

As we can see, the notification is really similar to a rule in the left side. The most significant

difference is that instead of triggering an action in other component, it simply sends a

notification to some recipient. It is exactly this recipient that makes the notification different

from a rule in terms of attributes. Moreover, a notification has another important aspect to be

considered: the frequency of the notification. For instance, there is no use for the notification

to be sent every time the system checks the condition. Finally, a notification, as well as it

happens with the rules, it can be scheduled. Therefore, an attribute frequency was created.

Thus, a notification has the following attributes characterizing it:

- component: this is the component that will trigger the notification.

- ruler: it has the same meaning as in the rules.

- value: the same as in the rules.

- initialTime: this indicates the time from when the notification can start to be sent.

- finalTime: this indicates the time from when the notification has to stop to be

sent.

- recipient: the recipient of the e-mail or SMS.

- frequency: the frequency at which the notification should be sent. There were

considered two options: Hourly and Daily, but obviously more options can be

added.

Also, the notification is updated each time that a room/component in the house is changed.

Nothing new about this: the users and rules work exactly in the same way. A drawback of this

3 June 2010 VGIS 1027

68 | P a g e

structure of notification is exactly to not be aggregated with rules, meaning that the user has

to create the rule and if he wants to get notified about that, he needs to create the notification

as well. Finally, in order to conclude the Structures of the system we are going through the

final one of the SafeHouse system: the Statistics structure.

3 June 2010 VGIS 1027

69 | P a g e

3.5. Statistics

During the development of the SafeHouse system was thought to design and implement a

statistics structure capable of providing averages of the values for each component. This

structure is the responsible to give a concept of awareness to the user, i.e. collecting date over

the time it allows the user to see how is the behavior of the inhabitants of his/her house. Due

to the complexity of such block of the program, the statistics are absent of correlations or

variations between components. It only allows the calculation of the average during a certain

period of time.

Therefore, in the core of the statistics structure there is the object Record that contains

information about each component of the system. Thus, this object contains three attributes:

- component: this attribute is a reference to a component belonging to the system.

It is set when the object is created or every time the Record is updated.

- dates: this attribute is a list of dates represented in Unix time, i.e. the time in

milliseconds since 1
st

 January of 1970.

- values: this attribute is a list of values belonging to this component. This list of

values has the same size as the attribute dates in order to relate a value with a

date. For components with Boolean data type, this value can be one of two: 0.0 or

1.0 to represent “off” and “on”, respectively.

It was designed two different sets of data: the average in each hour during the last day; and

the average in each day during the last month. The way of calculating each of them is really

similar. Then, let us see the calculation for the last day.

3.5.1. Average of results in the Last Day

In first place, we have to consider at which frequency the values of each component are

checked in the system. Thus, let us say that F represents the frequency in seconds at each

component is checked. Moreover, let us say that N represents the number of samples taken

per hour at the given frequency. Thus, N is calculated by the following formula:

� = � ∗ �
�

�
�

Where m and s are constants and represent the number of minutes in an hour (60) and the

number of seconds in a minute (60), respectively. For instance, for an F=2, N would be 1800.

After this step, the method finally calculates the average of each hour, checking always if a

certain value belongs to the hour being checked at that moment. For the average for each day

in the last month, the proceeding is similar as we are going to see.

3 June 2010 VGIS 1027

70 | P a g e

3.5.2. Average of results in the Last Month

This method is in everything similar to the previous one, so let us see the differences. In first

place, the value N is different and this time calculated by the following equation:

� = ℎ ∗ � ∗ �
�

�
�

Where h is a constant and represents the number of hours in one day (24). Afterwards, it is

made the average for each day.

As a last remark and as it is happening with the other structures, this structure is updated each

time an update happens in some room or component.

3.6. Conclusion

We have seen different structures of this system. We went through in first place to the rooms

and components as main component of this SafeHouse system. Hence, it was introduced

users, rules and notifications. The most interesting characteristic is the plug-n-play of each of

these structures: if one change occurs in the central structure of rooms and components, they

have option to be updated concerning those changes. The different structures are shown in

more detail in the Appendix D, where a class diagram is shown for each structure.

In the next chapter we are going through the central and vital part of this system: the Home

Server. As we are going to see, this component is responsible to launch the different

processes, to launch the desktop application and to send notifications when an event happens.

3 June 2010 VGIS 1027

71 | P a g e

4. Home Server

In the previous section we went through the basis of the SafeHouse system. We have seen

which architecture was chosen in first place: the Home Server architecture structured in three

different layers. Hence, we have been discussing the communication protocol and how the

different layers communicate with each other. And finally, we have seen which structures exist

within the SafeHouse system. Thus, we are already in conditions to go further and present the

complete structure and work flow of the home server, i.e. the component that deals with all

the information coming from external devices and that triggers rules and notifications.

The Home Server can be divided into different components: discovery of embedded devices

using the Bluetooth discovery protocol; looping embedded devices to set and retrieve status;

trigger of rules to be followed; trigger of notifications to be sent; server for external

applications (mobile); and check periodically the status of each component for the statistics

structure. To understand better this process let us have a look at the following workflow in the

Figure 36 below.

Figure 36 - Basic Workflow of the Home Server: After the embedded devices being discovered, it launches the

mobile server and the embedded process to update status and trigger rules and notifications.

Thus, when the home server is launched the first thing to be done is to discover the embedded

devices at home. This is made using Bluetooth discovery protocol. After the devices are

discovered, it is launched two different processes: one to handle mobile connections – the

mobile server – and one to loop the embedded devices and trigger rules and notifications.

Moreover, there is the statistics thread running and collecting data over time. We are going

through each of these components in the following sections.

3 June 2010 VGIS 1027

72 | P a g e

4.1. Discovery of Embedded Devices

The discovery of embedded devices is, by all the means, one of the most important parts of

this architecture and it is the one that allows SOA for the embedded devices. With this process,

the system gets to know which devices and/or components are in the house and is able to

update all the existing structures. The process of discovery runs in the beginning of each

session launched by the user. During this process, there is a sequence of steps to be followed:

1. The Bluetooth discover service is launched. This service searches first all the devices in

the range and after collecting all the devices, it searches for the Bluetooth services

running within each device. A Bluetooth service is identified by the port and service

name where it is running. Therefore, knowing which service name each of the

embedded devices possesses, it is straight forward to get the information we need:

the mac address, the port and the service name. These three identifiers are essential

to connect to the embedded device and retrieve information from it at any time.

2. At this point, we already know which embedded devices are present in our house and

we can query each of them. For that a XML with the query tag in the root node is sent

to each of them. The answer from this query is a XML with the components that are

present in each of them and the methods to access them. All of this information is

transposed to the structure of rooms and components.

3. Since this process of discovery is repeated in the beginning of each session, it is

necessary to load the existing devices from the previous session and update them with

the new devices. This is important in case that a new component or a new device was

installed in the house. The same happens if a device disappears from the system. In

this way, no setting is necessary from the user side. After updating the rooms and

components in the system, it is updated as well the notifications, rules and users. The

updating of the structures was already explained in the section 3 of this chapter (page

59). Finally, the system is ready to launch the main processes.

In the Figure 37 below is shown a diagram representing the steps explained above. After the

discovery is completed, the mobile server and the looping process will run. We are going

through each of them in the following sections.

Figure 37 - Workflow of the Discovery process.

3 June 2010 VGIS 1027

73 | P a g e

4.2. Mobile Server

As it was said before, the mobile server is responsible to handle and treat each connection

coming from the mobile application. For each connection received from a mobile application it

is launched a dedicated server for that application, independent of the physical medium used

for that connection. Nevertheless, the mobile server comes in two flavors: an Internet Server

and a Bluetooth Server, both ready to receive an internet or Bluetooth connection,

respectively. The reason for existing two different means of connection is simple: it allows the

user to have a cost-free connection at home through Bluetooth and a distance-independent

connection through Internet. As remark, the Internet server is the same for any kind of

connection: Wi-Fi or 3G, meaning that the user can have also a free-cost connection when

he/she is not at home.

Therefore, there are some constraints that have to be followed in both connections:

- Internet Server: this server has to have a public IP attributed to it and an open TCP

port for it as well. The port can be any, except for some special ports reserved to

HTTP, SMTP, FTP, etc. Also, the mobile application has to know the IP and port of

this server. The URL to connect to such server is as it follows:

socket://house_ip:server_port

- Bluetooth Server: this server has to have a unique identifier (UUID) when it is

created and a service name to identify it to other Bluetooth devices. Moreover,

this server is a RFCOMM server. The port where the server is running is not chosen

by the application, but it is discovered afterwards by the Bluetooth discovery

service in the mobile side. The URL to connect to such server is as it follows:

btspp://bt_mac_address:server_port;name=server_name

Thus, both servers are running simultaneously waiting for client connections (from the mobile

application). For each connection received is launched a dedicated server to treat each

presentation layer. In the Figure 38 below this scenario is represented. Both servers are

running and waiting for incoming connections. When a connection is accepted, it is launched

the dedicated server thread to treat the incoming presentation layer and the server goes again

for the waiting state. This is the way how any TCP server works, independently of the

application protocol running on it.

Thus, the dedicated server is launched, receiving as argument the connection established.

Some attributes are initialized in the dedicated server when this one is launched. It is

important to refer two important attributes of the dedicated server:

- Form Object: this is a replica of the configuration screen in the presentation layer

(PL) and it allows the dedicated server (DS) to be synchronized with the PL at any

time. Thus, it is this object that describes which screen the PL should render and it

is this object that allows a full separation between layers.

3 June 2010 VGIS 1027

74 | P a g e

Figure 38 - Bluetooth/Internet server workflow.

- Command Builder: when some new information is being processed in the DS, it

puts that information into a queue – the command builder. If the DS is ready to

send a new XML, it takes all the commands in the queue and sends to the PL.

When an acknowledgement is received afterwards, the local object is updated and

the command builder cleans the queue.

Therefore, when the DL starts is sent to the PL the first configuration screen. This configuration

screen is the login screen and it is going to be rendered in the PL. When the DS receives the

acknowledgement, it updates the form object with this information and the command builder

becomes empty. From this moment the DS is passive in the sense that only reacts upon a PL

request. It is important to say that in each XML sent to the PL, particularly in the buttons to be

rendered, a handler name is attached to those buttons, i.e. when the user presses one of these

buttons in the screen it is going to be called this handler in the DS side. Then, in the DS a

method is going to treat the form object and send an updated form definition to the PL.

To understand this process better, let us see step by step this process:

1. The DS is launched and it is created the first form object. This form object is

transformed into XML and sent to the PL. When the PL acknowledges the DS, the DS

stores this form object locally and waits for new information.

2. The DS receives new XML. This XML contains the form definition and the handler

name. Thus, the DS updates its form object and sends an acknowledgment to the PL.

After this step, the DS launches the handler (method) to treat the current form object.

3 June 2010 VGIS 1027

75 | P a g e

3. After the handler has treated the form object, a new XML is sent and the process

repeated.

The same process is repeated in the PL side, we are going through that in section 6 though. For

now, it is important to know which handlers are available in the DS:

- onLoginHandler: this handler is responsible to treat the form object when the user

pressed the button “Login”. It is going to check if the user exists in the system and

if the password is correct. Moreover, it checks which permissions the user has. If

the user exists and the password is correct, sends a new form definition with the

rooms that the user can access.

- onExitHandler: this handler is responsible to terminate the application gracefully.

When this method is called, it sends a XML telling the PL to terminate and it

terminates the connection and therefore, the thread.

- onRoomSelectedHandler: this handler is launched when the user already selected

a room where he wants to see the status of the components. This handler is going

to retrieve which components are in that room and send to the user in a new form

definition.

- onComponentChangedHandler: this handler is going to change the status of a

specific component selected by the user and send an updated form definition with

the next status.

- onBackHandler: this handler is called when the user goes back to the rooms

screen. It performs basically the same thing as onLoginHandler except that does

not verify the user again.

The most important thing to retain from the dedicated server is the following: if we decide to

make a completely new system targeting other market, it is only this dedicated server that

changes, since the presentation layer works as a browser. Nevertheless there are limited

elements in the presentation layer that can be rendered, but we are going through them in the

section 6 about the mobile application.

Thus, in this section we have presented how the server works in general and how the

dedicated server works, in particular. In the next sections we are going to present another

important responsible to deal with the embedded layer and also trigger events in respect with

the existing rules and notifications of the system.

3 June 2010 VGIS 1027

76 | P a g e

4.3. Embedded Server

In the previous section we went through the mobile server and how it deals with connections

from mobile applications, i.e. from presentation layers. In this section we are going through

the other side of the home server (application layer), i.e. to retrieve and set up new

information from/to embedded layers, as well as trigger rules and notifications. Thus, let us

remember the Figure 36 in the section 4 (page 71). We have seen that the embedded server

starts with looping all the embedded devices in order to update the status of all the

components. Hence, it loops all the rules, and if the condition is happening and if the rule is

respecting the established schedule then, it updates the status of the target component

internally. Finally, it does the same for the notifications: if the condition is happening and it is

respecting the schedule and frequency, it sends a sms or an email to the number/address

described in the notification with the event information.

Therefore, we are going through each of these blocks in the following sub sections.

4.3.1. Embedded Looping Block

This block is responsible to connect to each embedded layer and retrieve each component

status, at the same that sets the new status if the component has a set method. Thus, the first

thing is to load the binary file with rooms and components. Once the file is loaded into an

object, it goes for each for room and connects to the device representing that room. In each

connection with an embedded layer, it goes through all the components integrated in the

embedded device, and:

- If the component has a set method, it updates the component in the device with

the new status.

- If the component has a get method, it simply retrieves the current status of the

component and it updates the object internally.

In the Figure 39 below is represented the work flow of this block. After running through all the

devices and components, it finally stores the object as a binary file and it continues for the

next two blocks: rules block and notifications block.

4.3.2. Rules Trigger Block

After the components are updated internally, it is the moment to go through every rule stored

in the system to check if the conditions are true. Thus, the first step of this block is to load the

rules and the rooms/components from binary files into objects. In one hand, the rules contain

the conditions that will trigger an action in the target component. In other hand, the

rooms/components have the current status of every component. Thus, the next thing to do is

3 June 2010 VGIS 1027

77 | P a g e

to check each rule. In each rule, it gets the current value of the source component and the

value described in the rule. Thus, the following algorithm is performed with respect with the

selected ruler for the condition:

Figure 39 - Workflow of the Embedded Looping block.

Obviously this algorithm only runs in a schedule fixed by the user.

After running all the rules and updating the status when necessary, finally it stores the objects

into a binary file. In the Figure 40 below the reader can see the workflow of this block.

Therefore, the embedded server continues for the notifications block.

Figure 40 - Workflow of the Rules block.

4.3.3. Notifications Trigger Block

The notifications block work in the same way as the rules block. This means that also the

rooms are loaded and the comparison is made in the same way. The only thing changing is the

action triggered. In the notifications an email or SMS is sent to an email address or phone

number, respectively. These two blocks could have been joined together, since they share

similar characteristics. The reason why they were not shared is trivial: in one side we have

house automation (the rules) and in the other side we have house safety (the notifications).

3 June 2010 VGIS 1027

78 | P a g e

Still true that associated to a rule could be a notification (optional), but it was decided to split

them into two different structures and follow that design.

Since there is such similarity, we are going through directly to the notification itself. When a

condition is true according to the current status, there are two types of notifications that can

be sent: SMS or email. For the SMS service it was chosen to concretize it through a HTTP Post

to a VoIP web application, for instance, the VoipCheap. Thus, in that HTTP Post the username,

password, recipient and message have to be inserted. For the email, it was chosen to use a

SMTP connection to Gmail and send the email through it. For that, the same values have to be

send. The message is constructed in the following template:

- “The component_name in the room_name is [more than/less than] value”, where

component_name is the name of the component where the condition is true, the

room_name is the location of that component in the house, the [more than/less

than] are optional and just when the component is from the type integer, and

finally, the value is the value in the condition that triggered the notification.

Moreover, the notification is only sent when is within the established schedule and when there

was no notification sent in the last T minutes, where T is the frequency set up by the user.

Finally, we are going through to the Statistics thread where the statistics are collected over

time.

3 June 2010 VGIS 1027

79 | P a g e

4.4. Statistics Thread

This service or thread is responsible to check the status of every component at a defined

frequency. The notion of frequency was already explained in the section 3.5 of this chapter

(page 69). The reason for separating the statistics from the main service (Embedded Server +

Rules Trigger + Notification Trigger) is simple: to not overload more the system during that

main loop. Moreover, the file containing the statistics can become too big to be opened and

saved every time the loop is made. Therefore, this simple thread was created in order to

retrieve the status of each component. The steps to follow are simple:

1. Loads the structure of the rooms and statistics.

2. For every component in every room it adds a new register to the statistics structure.

3. Saves the structure of statistics.

With this separated thread, the system does not get compromised and it allows the creation of

charts with this data as we are going to see in the next section.

Finally, we have concluded the notifications and therefore, the embedded server and the

home server itself. We went through all the processes running in the home server and then,

we are in conditions to introduce the desktop application, responsible to create or delete

different objects in the system.

3 June 2010 VGIS 1027

80 | P a g e

5. Desktop Application

The desktop application is launched when the server is launched and it allows the super user

of the system to manage all the structures in the system, such as creating a new user or

customize the name of the rooms, among other functionalities. Other users can also log in, but

they are not allowed to access any functionality of the system. They can only see the logs of

the system. This was explained already in the section 3.2 of this chapter (page 62).

In the Figure 41 below is shown the scheme of screens in the desktop application. It starts with

a loading screen while the home server is discovering the embedded devices and updating the

structures of the system. When this step is completed, it is launched a login screen where the

user can sign in to the system. Finally, it is launched the main menu where all the structures

are accessible through different buttons.

Loading Screen Login Screen
When discovery and

updates are completed

Main Menu

If username and

password are correct

Customization

Screen

Users Screen Rules Screen Notification Screen

Create User Create Rule Create Notification

Customize Button

Users Button

Create

Button

Rules Button

Create

Button

Notifications

Button

Create

Button

Charts Screen

Charts Button

Figure 41 - Screens Scheme of the Desktop Application.

Therefore, most of these screens need to communicate with the structures of the system.

Instead of loading the structures directly into the screen classes and handling them there, it is

3 June 2010 VGIS 1027

81 | P a g e

provided an interface for these operations. This interface is called GUIInterface and it provides

all the necessary methods to get or modify information from/to the structures. Also, in case of

confirmation of some actions, such as inserting a username and password, it is returned an

object Message. This object contains two attributes: a Boolean indicating if the operation was

successful or not and a string representing a message to insert in the screen. For a full

overview of this interface, it is recommended to consult the Appendix E where all the methods

described in detail, as well as the Message class. In the next sub sections, we are going through

each of these screens.

5.1. Loading Screen

As it was explained in the Home Server section, the first thing when the server is launched is

the discovery of devices and updating every structure of the system. Thus, during this period, it

is important to show a temporary screen informing that the system is loading, in order to

respect usability principles. This could have been achieved in two ways: through a splash

screen with an animated picture, or simply by showing a screen with a loading bar telling that

the system is loading.

Therefore, it was chosen the second option: show a screen with loading bar. This screen will

appear during the first moments of the start-up and the user cannot see other screen while

this one is on the foreground of the desktop. This screen is shown in the Figure 42 below. We

can already see some common elements for all the screens. For instance, the title of the

screen is always in the following format: SafeHouse™ - screen_name, where screen_name is

the name of the current screen. Also, the scheme of colors chosen was based on blue as

background and white as foreground. The reason for this is again usability principles on the

color schemes. Moreover, different smart home systems are using this scheme of colors. In

other hand, we can see the application icon on the top of the window and a logo inserted in

the bottom of the window.

Figure 42 - Loading Screen of the Desktop Application.

3 June 2010 VGIS 1027

82 | P a g e

When the discovery and updating are completed, this screen disappears and pop-ups a new

screen: the login screen. At this moment, the server is fully running and the user can manage

his/her SafeHouse system.

5.2. Login Screen

In most of the applications we always observe a login screen. This screen is a way of

authenticating the user into the system. Thus, it is only allowed correct pairs of

username/password. The login screen is represented in the Figure 43 below.

Figure 43 - Login Screen of the Desktop Application.

If the user inserts a correct pair of username and password, this screen disappears and it pop-

ups the main menu. But in case that the user inserts some incorrect information, the screen

has to inform the user about that error. There are three kinds of error:

- Empty fields: when the user did not fill in all the text fields. Thus, a message with

“You must fill all the fields.” is presented in the screen.

- Not existing user: when the user inserted a username that does not belong to any

user in the system. In this case, a message with “The user doesn’t exist in the

system.” is presented in the screen.

- Incorrect password: when the username belongs to some user but the password is

not correct for that user. In this case, a message with “The password inserted is

incorrect.” is shown in the screen.

3 June 2010 VGIS 1027

83 | P a g e

These three different situations are shown in the figures below. In the next section we are

going through the fundamental screen of the system: the Main Menu.

Figure 44 - Loading Screen with empty fields generates an error message.

Figure 45 - Loading Screen with a not existing user generates an error message.

Figure 46 - Loading Screen with an incorrect password generates an error message.

3 June 2010 VGIS 1027

84 | P a g e

5.3. Main Menu

After the system validates the pair username/password, the login screen disappears and finally

it is pop-up the main menu. In the main menu itself it is only possible to see logs of the

system, on the left side of the screen. These logs are inserted while the server is running and in

different circumstances. For instance, if a user has logged in into the system or if a value of a

component changes, a log is inserted into the system. Nevertheless, there are five buttons in

right side of the main menu that allows the user to access the different structures of the

system. Each of these buttons represents exactly one different structure and the names of

them are obvious if we remember the section 3 of this chapter (page 59) about structures.

Thus, each of these buttons opens a new screen. In the Figure 47 below the main menu is

presented. We are going through each of these screens in the next sub sections.

Figure 47 - Main menu of the Desktop Application.

5.3.1. Overview Screen

When the user presses the Overview button in the main menu, a new screen appears, to allow

the user to edit the name of the rooms in the system and also to see which components are in

each room. We have seen in the section 3.1.1 of this chapter (page 60) about the Room object

that the room name is initialized with the mac address of the embedded device representing

that room. Thus, there must be a way for the user to change this name, for usability sake. This

screen requires the user to know which mac address belongs to which room, what can be

3 June 2010 VGIS 1027

85 | P a g e

consulted in the Bluetooth UART of the embedded device. It is true that this situation is not

the easiest for the user, but it is a small requirement that has to be fulfilled from the user point

of view. Moreover, this can be seen as a positive point for the user: this one is able to change

the place of the embedded devices, being only required afterwards to change the name of the

rooms in this customization screen.

Therefore, this overview window shows a different screen for each room, where is presented

the current name of the room and a text field for the new name of the room. In the Figure 48

below is shown the last screen of the customization sequence. In each screen is shown in the

bottom two different buttons. The left button is used to go back to the previous screen or to

cancel the customization if it is the first screen. The right button is used to go for the next

screen or to finish if it is the last screen. This customization is recommended to be done when

the system is launched for the first time. Afterwards, customization only is required if the user

changes the embedded devices from place.

Figure 48 - Customization Screen of the Desktop Application.

5.3.2. Notification Screen

When the user presses the Notification button in the main menu it is launched the Notification

screen. In this screen the user can see the already existing notifications, create a new

notification or delete an existing notification. In order to accomplish this, it is presented the

screen represented in the Figure 49 below. We see that the list is initially empty. Obviously, no

notifications are set up in the first system start up and then, it is the user who has the control

of creating notifications to be sent.

3 June 2010 VGIS 1027

86 | P a g e

Figure 49 - Notification Screen of the Desktop Application.

Let us say that the user wants to create a notification by SMS every time the presence sensor

in his/her living room is on (there is someone in the living room). Moreover, the user wants

this notification to be sent only once per day and it should only be performed when the user is

not at home (e.g. between 9:00 and 17:00).

Thus, the user presses the button Create and it appears a new screen to create the

notification. In this window the user has to select the condition to trigger the notification. For

that he selects in the first combo box the component PRESENCE in Living Room. Since it is a

presence sensor and only can be used the word “is” as ruler, the user selects the value on in

the third combo box. After this step, the user selects SMS as type and he/she inserts a cell

phone number to where the SMS should be sent.

To complete the creation of the notification, the user just has to insert the initial time and end

time when the notification should be sent, and finally the frequency DAILY. This entire

scenario is shown in the Figure 50 below.

After filling in all the information, the user can finally press Save and this screen disappears

right after and the user can see the brand new notification on the Notification screen (Figure

51 below). As a remark: as soon as the user creates the notification, this one will run

immediately in the system if the condition, time interval and frequency are respected.

In the next section we are going through the Rules Screen. As we are going to see, both

notifications, rules and users screens have the same scheme: the list in the left side and the

options in the right side. Because of this fact, we are going directly to the creation of rules and

users.

3 June 2010 VGIS 1027

87 | P a g e

Figure 50 - Creation of a notification in the Desktop Application.

Figure 51 - Notification screen after creating a notification.

3 June 2010 VGIS 1027

88 | P a g e

5.3.3. Rule Screen

The same scheme is used for the rules screen. Thus, if the user wants to create a rule, a

window pop-ups and the user has to choose some information. Let us say that the user wants

to turn on the stereo in his bedroom if the light is also on. Moreover, the user only wants this

to happen when he/she is at home.

In this case, in the Condition he has to choose LIGHT in the Bedroom, is and on in the top

combo boxes. In the Trigger, he has to choose STEREO in the Bedroom and change to on.

Finally, the user selects 17:00 as initial time and 23:00 as end time, since it is when the user is

at home after a day of work.

This scenario is represented in the Figure 52 below. A special attention has to be taken for

conflicts with rules, as we have seen in the section 3.3.2 of this chapter (page 65). For instance,

if after saving this rule, the user would create a new rule that turns on the stereo in case that

the light is off in his/her bedroom, this would enter in conflict with the previous rule (different

conditions in the same component would trigger the same action in the triggered component).

Thus, an error message is presented in the screen saying that the rule is in conflict with an

existing rule and then, it does not allow the user to create this new rule. This situation is

represented in the Figure 53 below.

Figure 52 - Creation of a rule in the Desktop Application.

3 June 2010 VGIS 1027

89 | P a g e

Figure 53 - Conflict in the creation of a rule in the desktop application.

In this case, the user can change some of the parameters of the rule or press Cancel and go

back to the rules screen. The user can see the rules already crated in the rules screen (Figure

54 below).

Figure 54 - Rules Screen of the Desktop Application.

3 June 2010 VGIS 1027

90 | P a g e

5.3.4. User Screen

As said previously, the users screen keeps the consistency of the rules and notifications

screens and the scheme of the elements are the same. Thus, if the super user decides to

create a new user in the system he has to fill some parameters and also choose the

permissions for this new user. Let us say that the super user wants to create a new user called

sergio with password sergio as well. Moreover, the super user wants to give access to all the

rooms in the house to this new user. This scenario can be seen in the Figure 55 below.

Figure 55 - Creation of an user in the Desktop Application.

Some errors can appear in this screen, according to the constraints of creating a user (section

3.2.2). First of all, every field has to be filled in. Moreover, both passwords have to be the

same. Finally, it cannot be created a user with a username belonging to an existing user.

Different error messages would appear depending on the situation.

Let us see an important case. In the users screen, if the super user decides to delete

himself/herself from the list, the application does not allow that and then, it appears an error

message in the screen informing the user about this fact. This is shown in the Figure 56 below.

3 June 2010 VGIS 1027

91 | P a g e

Figure 56 - Error message in deleting the super user of the system.

Last but not the least we are going through the last screen, the Charts Screen. As we are going

to see this screen allows the user to visualize the status of the different components in his/her

house.

3 June 2010 VGIS 1027

92 | P a g e

5.3.5. Charts Screen

In previous sections we have seen that the system allows the computation of some simple

statistics. These statistics are based on the average of values during a period of time. But this

computation would not make sense if the system would not allow the user to visualize these

statistics in a more user-friendly way, i.e. through charts. In the Figure 57 below we can see

the charts screen in action.

Figure 57 - Charts Screen of the Desktop Application.

As we can see in the vertical axis we have the range of values for that component in the last

day. Obviously, for components with Boolean types, this can be seen as a percentage of time

that that component was “on”. In the horizontal axis we have the range of hours for the last

day, being the most eastern one the current hour of the day when the user is checking the

chart. In the bottom we have the component that can be selected by the user. Automatically a

new chart is generated and the user can see the chart for the new component selected. In the

bottom right combo box the user can select to see the average of the last day or last month.

With this, we have concluded all the functionalities of the desktop application. We have seen

the different screens that allow the super user to perform actions over the system and also

some screens showing the constraints already explained in section 3 of this chapter when we

went through the different structures of the system.

In the next section we are going through the mobile application that allows the user to interact

wherever he/she is with the SafeHouse system and subsequently with the components of the

house.

3 June 2010 VGIS 1027

93 | P a g e

6. Mobile Application

In the desktop application we have seen that we have a management interface for the system

viewing to a common user and to define the different structures to the super user. Therefore,

the SafeHouse system would not be complete with a mobile application where the user can set

and/or get in quick steps the status of some components. As we have seen before, the mobile

application integrates a presentation layer able to receive the screen definition from the

application layer. Nevertheless, it is still missing the elements that can be rendered in the

mobile application and how the XML is associated with each of them.

Thus, we are going to start with the elements of the presentation layer that can be displayed

on the screen and afterwards in the screens sequence of the mobile application.

6.1. Elements of the Presentation Layer

As we have seen in the section 4.2 of this chapter (page 73) there are certain elements that

can displayed on the screen and some elements that cannot be interpreted. Thus, only the

most basic GUI elements were considered in the mobile application. As a remark, each screen

in J2ME is represented by a Form object. The list of the elements is composed by the following

elements:

- Title: the title of the form. This element is displayed in the top of the display.

- Ticker: it is an animated sub-title of the form. It is displayed right below of the title.

- Choice Group: or selection list, it is an element where the user can select one

option (or multiple) among different options. Each choice group is composed by

one label (the title of the choice group), the type (multiple or exclusive), and the

different options, represent by a label and a field indicating if the option is selected

or not.

- String Item: it simply displays a string in the form when information is needed to

appear. It is represented by a label and a text.

- Text Field: when it is necessary that the user inserts some information for the

application, a text field can be displayed in the screen. The text field is represented

by the label, the text (where the user can edit it), the type (any kind of character or

just numeric) and the size of the text.

- Button: the button is one the vital elements of the presentation layer. Clicking on a

button will call the remote handler on the application layer. Thus, the button is

defined by a label, a type (OK, Back or Exit) and a handler.

Moreover, except for the title, ticker and alert, the elements have an attribute id in order to

identify each element and be able to update an existing element without deleting the existing

one and creating a new one. Let us see now, in terms of XML, how each of these elements will

look.

3 June 2010 VGIS 1027

94 | P a g e

6.1.1. Title and Ticker

Both title and ticker have the same XML structure and they are represented by the following

template:

<TITLE>title_text</TITLE>

<TICKER>ticker_text</TICKER>

Therefore, the only field that has to fulfill in order to render is the field between the

identification tags (TITLE and TICKER). In case that the fields are empty, a standard title and

ticker are rendered.

6.1.2. Choice Group

The choice group is perhaps, the most complex element in a form. The reason why is simple: it

is a composition of options and these options are by themselves other elements. Let us take a

look in the XML format of the choice group:

<CHOICE_GROUP id=”cg_id”>

<LABEL>cg_label</LABEL>

<TYPE>exclusive</TYPE>

<OPTION id=”1”>

 <LABEL>option1_label</LABEL>

 <SELECTED>True</SELECTED>

</OPTION>

...

<OPTION id=”N”>

 <LABEL>optionN_label</LABEL>

 <SELECTED>False</SELECTED>

</OPTION>

</CHOICE_GROUP>

In first place and as we have seen before, the choice group is identified by an id in order to be

updated afterwards. Also the options are identified by an id for the application layer being able

to update certain options in the same choice group. The type of the choice group can be one

3 June 2010 VGIS 1027

95 | P a g e

among two: exclusive and multiple. The exclusive type means that only one option can be

selected at any moment. The multiple type means, trivially that any possible number of

selections is allowed. This number can be 0 or N, being N the number options in the choice

group.

6.1.3. String Item

The string item is a simpler element in the presentation layer. It has also an id to identify it, but

besides that, it is only identified by the label and text as it is shown in the following XML:

<STRING_ITEM id=”stringItem_id”>

<LABEL>label_of_the_string_item</LABEL>

<TEXT>text_of_the_string_item</TEXT>

</STRING_ITEM>

Thus, as we can see, the application layer has to set these three fields in order for a string item

to appear on the screen.

6.1.4. Text Field

The text field is a bit more complex than the previous element. It is represented by the id, the

label, text, size and type. Let us take a look in the following XML:

<TEXT_FIELD id=”textField_id”>

 <LABEL>label_of_the_text_field</LABEL>

 <TYPE>any</TYPE>

 <SIZE>N</SIZE>

 <TEXT>text_inserted_in_the_text_field</TEXT>

</TEXT_FIELD>

Where the type can have one of two values: any or numeric. Any other value inserted will not

be interpreted by presentation layer and thus, the text field is not rendered. The size has to be

a natural number and there is no constraint for the value of this number. Finally, the text is the

text field itself, i.e. the text inserted by the user at any moment.

3 June 2010 VGIS 1027

96 | P a g e

6.1.5. Button

As we have seen before, the button is the most important characteristic of the presentation

and it is the one that allows the calling for remote methods in the application layer. For that,

the name of the method has to be integrated in the button XML node. The format for the

button is represented in the following XML:

<BUTTON id=”button_id”>

 <LABEL>button_label</LABEL>

 <TYPE>OK</TYPE>

 <HANDLER>onOkBtnHandler</HANDLER>

</BUTTON>

The value of the handler node is the name of the method to be called in the application layer

when the user presses this button. There is also the type of the button that can be one of

three: OK, Back or Exit. The reason for this is how J2ME places the different kind of buttons in

the screen, depending on each mobile platform the virtual is running.

We have seen the different elements that can be rendered in the screen, but we still did not

see how these elements are used in the mobile application. This will become clear in the next

section about the screens sequence.

6.2. Screens Sequence

In first place, it had to be defined the logic of the screens for the mobile application. It is

important to say that this one was required to be simple and quick to access. Therefore, it

would not be reasonable to have the same number of screens as we have in the desktop

application. Since the target of the mobile application is to control the components in a glance,

three screens were considered: a login screen where the user inserts his/her username and

password, the house screen, where the user selects one of the rooms to accede, and finally,

the room screen, where the user sees the different components of the previous selected room

and can toggle the status of some of the components. The scheme of the screens is presented

in the Figure 58 below.

3 June 2010 VGIS 1027

97 | P a g e

Figure 58 - Screens sequence on the mobile application.

As we can see, the sequence of screens is simple and no management options are available

here. The user can simply see the components in the rooms that he/she has permission to

access and change the status in the components with a set method. Let us start with the login

screen.

6.2.1. Login Screen

In the login screen the user can see two different text fields: one to insert the username and

other for the password. In case that one of these fields is incorrect an alert with an error

message is presented on the screen. The user can also simply exit the application in this

screen. This screen is presented in the Figure 59 below.

Figure 59 - Login Screen of the Mobile Application.

3 June 2010 VGIS 1027

98 | P a g e

The error messages that can appear in this screen are the same as in the login screen of the

desktop application. Thus, after the user inserts all the fields correctly he goes to the next

screen: the House screen, where he can select one of the rooms in his/her house.

6.2.2. House Screen

Depending on the user that has logged in, it is shown the rooms of the house that accessible to

hat user. The allowed rooms are set up when a new user is created, as we have seen in section

5.3.4 of this chapter (page 90). The exception goes for the super user that has access to all the

rooms. In this screen the user can select one of the rooms click Go or simply click Exit to

terminate the application (gracefully). In the Figure 60 we see an example where the user can

select between Living Room or Bedroom. After this step, the user goes for the third and final

screen where he can see the status of components and toggle some of those statuses.

Figure 60 - House Screen of the Mobile Application.

3 June 2010 VGIS 1027

99 | P a g e

6.2.3. Room Screen

Finally, we arrive to the final screen. This screen has a list of the components in that room and

in the key Menu, we can select to toggle the status of components with the method set.

Otherwise, we can simply check the status. After performing the actions the user wants, he

can simply click Back to go again to the house screen. Obviously, the elements presented here

are really simple and without any icon associated with them. The reason for this is to keep the

flexibility of this platform. At this point, the presentation layer can be used with any system

using this architecture. Other screen elements could have been considered, such as 2D or 3D

Graphics. As we are going to discuss in the Conclusion chapter, this can be considered as future

development.

Figure 61 - Room Screen of the Mobile Application.

Therefore, we finalized the Mobile Application in both aspects: which elements are rendered

in the screen and what is the sequence of the screens. All the logic behind the mobile

application and particularly, the presentation layer was already discussed in previous sections

(2.3 and 4.2).

3 June 2010 VGIS 1027

100 | P a g e

7. Conclusion

With the Mobile Application we conclude the Design chapter. Let us remember that we have

seen in first place the choices made in the architecture of the system. We have seen the

concept of the remote server and its advantages and disadvantages. In order to tap some of

the disadvantages, it was chosen the concept of Home Server as final solution.

Furthermore, we went through the communication protocol in different points: the structure

of the XML, the structure of the layer and the interaction between layers. After this section,

we went through the Home Server and the different processes running on it. Finally, and to

conclude, we have seen the Desktop Application that allows the super user to manage the

SafeHouse system and the Mobile Application that allows any user to access to the

components in the house, wherever he/she is.

Thus, in the next chapter we are going to discuss the Implementation of the SafeHouse system.

3 June 2010 VGIS 1027

101 | P a g e

IV. Implementation

All the development process was made following the SOA programming principles, from

section 2.1 of Analysis (page 19), and therefore, all the software blocks in the SafeHouse were

developed in that way. During the Design section we went through each view of the system, in

a general view with the architecture and in detailed views with the structures, processes

running and the different GUIs by last.

Nevertheless, there were problems faced during the development process and it is going to be

discussed what was done to solve them in the first sub section and which problems remain

without solution. Hereafter, we are going through the deploying process of the system: what

the user needs to do in order to install the SafeHouse system. Finally, to conclude this section,

we are going through the IDEs used during the development process.

3 June 2010 VGIS 1027

102 | P a g e

1. Problems Faced

As in any development process, there are always problems that the development team has to

adapt to and overturn on them. This happens in Engineering as it happens in any field of

science. There are always unpredictable variables coming into the implementation process.

During this master thesis issues were faced and for some of them a solution was not found,

mainly due to time constraints. We are going through the problems occurred in this section.

Let us start with one of fundamental components in the system: the embedded device.

1.1. Limitations on the Embedded Devices

There are some limitations on the embedded devices that in a real system would compromise

the overall robustness. In first place, the RAM of the PIC used in this project is small: 2048

bytes. For instance, let us consider an embedded device with 5 components attached to it. Let

us assume that each component is just a light. Thus, each of them would have the follow XML

format:

<COMPONENT id=”LIGHT 1”>

<TYPE id=”bool”/>

<METHODS>

<GET/>

<SET/>

</METHODS>

</COMPONENT>

The number of characters in the XML from each component would be 84 characters.

Multiplied by 5 would cause the data stream to have 420 characters. If we add the root node

and the header, the stream will have 483 characters. And this XML has to be stored in a buffer

at some moment before being send, what can cause a segmentation fault or overlapping in

some cases. The reason for that is that the application running on the embedded device is at

the same time storing other structures or buffers. Moreover, the heap or dynamic memory can

only have a percentage of the RAM.

This problem would compromise the robustness of the embedded application. To avoid this

kind of situations from the embedded layer, the application layer only sends a get/set to one

component at each time. Obviously, it is not the fastest solution, but it avoids overlapping or

segmentation fault in the majority of the cases.

3 June 2010 VGIS 1027

103 | P a g e

Another solution from the application layer side and integrated in the BSCOM library, it is the

fact that in case of failure in reading an answer from the embedded layer, the application layer

tries a certain number of times to obtain an answer from the embedded layer. This is part of

the communication protocol established for the SafeHouse system. If no answer is received,

the application layer continues for other components and eventually for other devices. It was

important to develop in robustness the communication protocol, exactly to prevent these

cases.

Another limitation on the embedded devices is that they are battery-driven, i.e. if the main

energy source is interrupted in some case, they stop immediately working. Due to schedule

and since this master thesis does not focus on the energy consumption, but yet in a robust

wireless platform for communication between devices and the home server, this problem was

put aside and not solved. Nevertheless, this is going to be discussed in the Conclusion section

as a future improvement.

Finally, using the Bluetooth communication inside the house raises another limitation in the

system: the range. Both Bluetooth modems used in this project (in the desktop station or in

the sensor boards) are already 2.0, capable of reaching other device in a range of 100m.

Unfortunately, it has been proved that Bluetooth has a weak penetration when it reaches

walls, being difficult or impossible to communicate with other devices. A possible solution for

this would be the use of Bluetooth hubs: Bluetooth modems in strategic points, such as doors,

to redirect traffic from a source modem to a target modem. Another solution could be

considered: the use of RFID in the project. This would avoid better the problem of wall

penetration and even the range could be up to 1000m. Once more, it is important to say that

this master thesis was focus on a proof of concept, i.e. to develop the neck bone of this

wireless platform for houses. Undoubtedly, in a further development, it would be considered

this solution.

As conclusion, it was faced the memory problem as main problem on the embedded devices.

Even though there is not a completely stable solution from the embedded layer, but the

communication protocol established prevents crashing in case an answer is not received.

In the next section we are going in more detail to the file structure of the SafeHouse system,

concretely in the Home Server.

3 June 2010 VGIS 1027

104 | P a g e

1.2. File Structure of the Home Server

As we have seen in the section 3 of Design chapter (page 59), there are different structures

manipulated constantly during each session of the Home Server. Obviously, those structures

have to be stored and loaded from some place in the file system in order to keep the

structures from session to session and also to allow less dependency between each service.

Thus, two possible solutions to store the structures were thought during the implementation

process:

- Database: A database containing different tables, where each table would

represent a different Java class in the program. For this reason, the structures

were constructed in such a way that the transposition to a database would be

easy. Moreover, the database would provide mechanisms of query and most of

them have synchronization of access between different threads, i.e. the database

server does not allow two threads to access simultaneously to the same table at

the same moment.

- File: A file is the most common way in an operating system or any application to

store information. In general, a file is used to store less important information for

the application, such as application logs. The reason for this is simple: to store

information in a file it has to be defined a file format, such as XML, and each access

to that file would require a parsing of the information contained on it. If the

application accesses many times the file, this can become slower than a database.

Also, storing in a file would not provide mechanisms like search information by a

certain index, as in a database happens.

At a first glance, the database is the best solution and by all the means it would be the best

solution for a final product. Nevertheless, an alternative solution was found: Java serialization.

This mechanism allows that all the classes that implement the interface Serializable (included

in the J2SE framework) are possible to be stored directly into a binary file, storing all the fields,

references to other objects and methods in a binary file with any extension we want.

Nevertheless, a problem arises with this: synchronization between threads. Since the

SafeHouse system has multiple threads running at each time, it can happen that at some

moment two or more threads are accessing the same object. This may cause inconsistent

information being written to the file. Let us see the example represented in the Figure 62

below when two different threads access the same object. Thread A starts to read the object.

In the meantime Thread B reads the object and it performs a quick action over that object,

storing right after that object. In the meantime Thread A is still using the object and just stores

it afterwards. This would cause inconsistent information in the stored object. Whatever Thread

B has done, it is overlapped by what Thread A has done.

3 June 2010 VGIS 1027

105 | P a g e

Thread A Thread B

Read Object

Read Object

Write Object

Write Object

Figure 62 - Bad synchronization when two threads are accessing the same object.

Hence, a synchronization mechanism had to be created. As we have seen in the section 3 of

Design chapter, all the structures contain an IO object with two methods: writeToFile and

readFromFile. Thus, the first step was to create a lock system. When a thread is accessing the

file either to read or write, it takes that lock and all the other threads wait till the initial thread

frees the lock. The question was exactly when the thread should free the lock. For instance,

there are two different cases in this I/O system:

1. A thread simply reads the object to extract some information;

2. A thread reads the object, changes that object and after it writes the object into the

file.

Therefore, in the first situation the thread should free the lock immediately after it reads the

object. There is no use to keep the lock for itself. In the second situation, in other hand, the

thread should only free the lock when it finishes writing to the file. Some modifications were

required then in the readFromFile method: it had to receive as an argument a Boolean to

indicate if the thread is going to write afterwards or not.

With this solution, the problem was solved and the Figure 63 below represents the

synchronization created.

3 June 2010 VGIS 1027

106 | P a g e

Figure 63 - Good synchronization between threads: The Thread B waits for Thread A to finish the transaction.

A problem may come if a thread possesses the lock for a long time: the other threads have to

wait till that thread is finished for unlimited period. Another disadvantage may come with

multiple concurrencies for the lock. Since a semaphore system is not implemented, there is not

order in the queue to access the object. This will be topic of discussion in the Conclusion

section. In the next sub section we are going through to one of the other issues faced during

the development stage: the SMS notification. As we are going to see, this was not a true issue,

but decisions had to be made in order to concretize it.

3 June 2010 VGIS 1027

107 | P a g e

1.3. SMS notifications

As we have seen in section 4.3.3 of Design chapter (page 77), the Home Server triggers

notifications either via e-mail or via SMS. Since e-mail is a free service and Gmail is the main e-

mail service worldwide, it was chosen to use the Gmail SMTP as the e-mail bridge to trigger

notifications. But SMS does not work in the same way and the network providers charge for

each SMS sent. Obviously, there are some special packages in the network providers that allow

a customer to send a SMS for free or for a really cheap price. Either of way, an issue arises with

this: it is necessary to integrate a mobile phone in the system to send SMS to the user. This

option is represented in the Figure 64 below. As we can see, it would be necessary to use a cell

phone exclusively for sending SMS. This can be considered as a waste of resources and

probably not so many users would accept a system like this.

Figure 64 - SMS notifications via an intermediary cell phone.

Therefore, other solution was thought and conceived. If the home server has internet access,

why not use this internet access to send a SMS through a web service? There are different

companies providing this kind of services. For example, Skype is the most known one. It is

possible to send a SMS through Skype using for that a HTTPS Post. For the case of the

SafeHouse system, the company VoipCheap was chosen. The reason for this is simple: it is

practiced reasonable prices per SMS – in Denmark it costs 3 Euro cents (0.22 Kr) per SMS. In

this way and as proof of concept for the SafeHouse system, this web service was used. Thus, in

each notification triggered by the Home Server, it is sent an HTTPS post with the following

data:

- Username: the username of the account in the VoipCheap service.

- Password: the password of the account in the VoipCheap service.

- Sender number: the number which will appear in the recipient cell phone.

- Recipient number: the number to where the message is sent.

- Message: the message itself of the SMS.

In a real product, other alternatives can be thought. For instance, this SMS service would be

included in the subscription of the SafeHouse system. Nevertheless, for this master thesis the

topic of subscription is not relevant. Thus, we have seen the main problems faced during the

implementation stage. In the next section, we are going through the deployment of the

system.

3 June 2010 VGIS 1027

108 | P a g e

2. Deployment of the System

In first place and remembering the whole report, the SafeHouse system is intended to be plug-

n-play. This was one of the requirements and it was successfully achieved. Nevertheless, few

steps have to be taken into account when deploying the system.

In first place, the user has to possess a Gmail account with the SMTP open for external

applications. Moreover, the user has to possess a VoipCheap account with credit on it. In other

hand, the Home Server has to possess a public IP address. An alternative to this would be to

put the Mobile Server running on a remote server and communicate with the rest of the Home

Server through SSH.

Therefore, the Home Server (HS) works with TCP to serve the mobile applications. Obviously, it

cannot be used the port 80 or other more common ports, since these ones are reserved to

HTTP and other web protocols. Thus, an extra port has to be open in order for the HS to work.

This has to be set from the SafeHouse providers in the code of the application before

deploying in both HS and mobile applications.

A last thing has to be done from the SafeHouse providers: the integration of the components

on the embedded devices and further integration of these ones in the user’s house. This step

concludes the deploying process and then, it is ready to be installed and used.

Nevertheless, there two system requirements for the user’s desktop computer:

- Java Runtime Environment installed.

- Bluetooth integrated or a Bluetooth USB stick attached to it.

For the mobile phones, there are few requirements as well:

- 3G and Bluetooth integrated. Bluetooth is optional, but 3G is strictly necessary,

otherwise the mobile application runs incredibly slow.

- Mobile Information Device Profile (MIDP) 2.0 with CLDC 1.1.

If these requirements are fulfilled, the system is ready to be installed and used. The only advice

goes for the fact that the super user should customize the name of the rooms and set up all

the necessary users at the first time he starts up the desktop application. No more steps are

necessary to follow to install the application.

Finally, in the next section we are going briefly through the IDEs used for the development of

the SafeHouse system.

3 June 2010 VGIS 1027

109 | P a g e

3. Integrated Development Environments (IDEs)

Nowadays, developing code without using any existing framework or IDE would be impossible.

Frameworks provide easy access to functionalities to the developers that otherwise they

would have to program from scratch. IDEs helps developers to keep the code organized in a

project, to have code completion, to compile the code and to run the application.

3.1. Netbeans IDE

Netbeans is an IDE developed by Sun very similar to the so known Eclipse IDE. Netbeans had

allowed the development of the SafeHouse system both for the desktop application and

mobile application. Java Standard Edition (J2SE) and Java Micro Edition (J2ME) were installed

together with the Netbeans IDE and they allowed the development of the desktop application

and mobile application, respectively. Moreover, for the Java Micro Edition was installed as well

the Java Wireless Platform, allowing the development of wireless functionalities, such as

Bluetooh or Internet connections. For J2SE had to be installed a third-party library called

bluecove (Intel Research, 2006). This library allowed the development of a Bluetooth server

integrated in the Home Server, what otherwise would be impossible to develop.

In the Figure 65 below we have a perspective of the Netbeans IDE 6.8.

Figure 65 - Netbeans IDE 6.8.

Obviously, this IDE cannot be used for development on the PIC microcontroller. This is

achieved using other IDE: MPLAB.

3 June 2010 VGIS 1027

110 | P a g e

3.2. MPLAB IDE

MPLAB IDE allows the development for PIC microcontrollers. Moreover, it is possible to even

control memory parameters, such as the heap size. This IDE also allows the developer to

program or debug the PIC using for that the PicKit2, connecting the computer with the

microcontroller. This IDE is also very important when we want to see how much memory is

being used by the application and how much memory is left. It is also possible to check

memory positions while the application is running on the PIC. In the Figure 66 below we can

see a screen shot of the MPLAB IDE.

Figure 66 - MPLAB IDE v8.20

Nevertheless, this IDE does not include some important features such as code completion or

auto-indentation. The lack of these two features is a huge drawback when a developer is

developing an extensive code. Therefore, during the development process an initial version

was always developed on a Linux system with a standard GNU C compiler. This allowed also

using programs to check memory leaks, such as Valgrind. Just after this step, the code was

exported to the MPLAB IDE and made the necessary modifications to work with real sensors

and actuators. With this, it is concluded the IDEs used in this project.

3 June 2010 VGIS 1027

111 | P a g e

4. Conclusion

Therefore, during the Implementation some problems were faced and then, solutions for

those problems were presented in the section 1. In the section 2 was explained the

deployment process from the SafeHouse providers side and also from the user side. Finally, the

Implementation was concluded with the IDEs used during this master thesis.

In the next section we are going through the testing made to the SafeHouse system and which

results were obtained from that testing.

3 June 2010 VGIS 1027

112 | P a g e

V. Testing

Any development product would be completed without a testing stage of it. It is important in

different ways and there are different types of testing. First of all, testing is important to check

if the product meets the requirements before the design and implementation processes. This

is even more important in a commercial product and can predict the success or the failure of a

project. Testing is also important to know if all the functionalities are doing what they are

supposed to, i.e. if they were implemented according to what was established during the

design process.

Thus, there are different kinds of testing that can be performed on a software product:

- Software performance/load testing: this test is important to know exactly how long

it takes for the product to load all the necessary components and to know the

general performance of it during its life cycle.

- Stability testing: this test checks how the software reacts after being continuously

working for a certain time.

- Usability testing: this test is made with a group of users to test their acceptance

and adaptability to the GUI and the functionalities of the system.

- Security testing: this test is made to check if a program prevents attacks from

hackers to the system.

- Internationalization testing: this test serves uniquely to check if the program

adapts to different cultures and languages.

In the context of this master thesis, there are two important testing units to be made:

Software performance/load testing and Stability testing. Let us not confuse Security testing

with safety of the house. Security testing is focus on encryption of user data, not to prevent

possible intruders in the house. Usability testing could have been made, but due to schedule, it

was decided to leave aside. Internationalization testing would be also useful in a situation

where a development team wants to commercialize a product in different countries, what is

not the case of this master thesis.

Therefore, we are going through the two different testing units in the next two sections. It is

going to be tested software performance and loading on both desktop and mobile

applications, but obviously, the stability testing will only focus on the Home Server, i.e.

desktop application.

3 June 2010 VGIS 1027

113 | P a g e

1. Software Performance/Loading Testing

This section will be divided into three sub sections: Loading Testing for the Desktop

Application; Loading Testing for the Mobile Application; Performance Testing for the Desktop

Application. In each of them, the tests are going to be shown and then, the results from each

test. Finally, each test is concluded by a brief conclusion.

1.1. Desktop Application Loading Testing

As we saw in the section 4 of Design chapter, the first step of the Home Server is the discovery

of embedded devices and further update of the structures of the system. This takes a

considerable time and there are different situations that affect this time. Therefore, and since

there were only available two embedded devices, it was tested three different situations:

when there were no embedded devices available; when there was one embedded device

available; and when there were two embedded devices available. These three situations were

tested in two different ranges: 2 meters far and 10 meters far. Thus, there were six different

combinations for this testing and each of these combinations was tested 10 times.

In the Figure 67 below we can see the different results for the situation when the server is two

meters far from the embedded devices. We can see already a curious detail: the server takes

less time to load when all the devices are available. This happens because in the Bluetooth

protocol stack the devices have to be paired between each other before a communication

takes place. Moreover, in each discovery for devices, the server searches in the range available

the devices already paired. Obviously, if these devices are available, it takes less time.

Otherwise, the server will take a few moments more because it would be still searching for

them.

3 June 2010 VGIS 1027

114 | P a g e

Figure 67 - Loading Testing for the Home Server when this one is two meters far from the embedded devices.

In the Figure 68 below we can see the same situation happening. More interesting is the fact

that the time taken when the server is 10 meters away is basically the same as when it is 2

meters away. With this, it is concluded that the distance does not affect the discovery or the

connection, at least in a short range.

Figure 68 - Loading Testing for the Home Server when this one is 10 meters far from the embedded devices.

We can see the average of the results for each of the situations in the Figure 69 below.

Comparing different distances, we see that only takes few milliseconds more when is more far

away. About the number of devices, as more as available devices we have from the pre-paired

devices on the home server as less time it takes.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

S

e

c

o

n

d

s

Repetitions

Server 2 meters far

0 Devices

1 Device

2 Devices

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

S

e

c

o

n

d

s

Repetitions

Server 10 meters away

0 Devices

1 Device

2 Devices

3 June 2010 VGIS 1027

115 | P a g e

DISTANCE 0 Devices 1 Device 2 Devices

2 meters away 24.7 sec 20.7 sec 17.4 sec

10 meters away 25.1 sec 21.2 sec 18 sec

Figure 69 - Average Results for the Loading Testing for the Home Server.

Moreover, the time taken to load the system can be considered reasonable if we take into

account that with this time the server allows the plug-n-play characteristic of the SafeHouse

system. The next testing unit will focus on the performance of the Home Server.

3 June 2010 VGIS 1027

116 | P a g e

1.2. Desktop Application Performance Testing

We have seen in the previous unit testing that the Desktop Application loads and it updates all

the structures in reasonable time duration. Nevertheless, it is important also to test how long

the Home Server takes to perform a loop in the program. Let us remember from 4.3 that the

Home Server performs three actions in each loop: checks the status of every component in the

system; it checks the rules and performs the triggers; it checks the notifications and sends a

SMS or e-mail. Thus, what is going to be tested in this unit testing is the duration of each loop I

a total of N loops, making an average of those N loops. Moreover, it is going to be tested nine

different situations:

1. System without any rules and notifications.

2. System with one rule and no notifications.

3. System with two rules and no notifications.

4. System with three rules and no notifications.

5. System with four rules and no notifications.

6. System with four rules and one notification.

7. System with four rules and two notifications.

8. System with four rules and three notifications.

9. System with four rules and four notifications.

The number of loops (N) chosen was 100. This value was selected empirically to allow a correct

measurement. Thus, in the Figure 70 below we have the average results (in milliseconds) for

each of the nine situations.

Situation Average

1 806

2 867

3 883

4 910

5 915

6 1020

7 998

8 1201

9 1196
Figure 70 - Performance Testing in the Home Server.

As we can see, the system stands well a situation with a good amount of rules and

notifications. The variations in the results are not significant. The reason for this is that the

most slow operation in this “looping” is the loading and storage of files, and this loading and

storage is done a constant number of times. It can be concluded one important thing with this

performance test: if the user performs a change of status in his mobile application it will take

at most 1.2 seconds for the operation to concretize from the server side.

In the next section we are going through the Loading Testing in the Mobile Application in

different situations.

3 June 2010 VGIS 1027

117 | P a g e

1.3. Mobile Application Loading Testing

A Software performance/load testing would not be complete on the SafeHouse system

without a loading test on the mobile application. This is important to know how long it takes

for the user to access his/her house from different places. There were tested four different

situations: Bluetooth in a short range (10 meters), 3G in a short range (10 meters), 3G in a

medium range (200 meters) and 3G in a long range (5000 meters). Unfortunately, the Wi-Fi

network at AAU did not allow the connection to the server, most probably because the

installed proxy at AAU does not allow that.

To concretize this series of tests the server was running in the group A6-311 at Aalborg

University and for the short range situations the mobile phone was near the entrance of the

room. In other hand, for the medium and long ranges the mobile phone was near the entrance

of building and in the center of the city of Aalborg, respectively. The chosen mobile phone was

a Nokia N95.

First of all, when using Bluetooth the mobile application takes a long time to start to receive

information from the Home Server. This happens because each time the Mobile Application

starts, it makes the discovery for Bluetooth devices and this step takes a long time to finish

(around 60 seconds). A possible solution for this is to store the Bluetooth address of the Home

Server after the first session of the Mobile Application. Nevertheless, after the discovery is

made, the connection is quite fast, taking around 2 seconds to load each screen.

In the 3G communication, the mobile application takes few seconds to establish the

connection (around 5 seconds) in the different cases (short, medium and long ranges). After

that, it takes few seconds as well to load each screen. Actually, it took slightly more time when

the mobile phone was indoors, but nothing considerable for the case. Obviously, this scenario

was not tested in the limit, i.e. it was not tested with a considerable long distance, for

example, 1000km or more. It would be interesting to test in those situations how long it takes

to load each screen.

The conclusion of this testing unit is one: the use of Bluetooth between both applications is

not a main advantage if the discovery is made every time the mobile application loads. Thus,

this fact can be considered as a future improvement on the SafeHouse system.

Therefore, in the next section we are going through the stability testing on the Home Server

(Desktop Application).

3 June 2010 VGIS 1027

118 | P a g e

2. Stability Testing

Finally, to conclude the different unit testing, it had to be performed a test to check the

stability of the Home Server. Therefore, the server was running uninterrupted during a period

of 48 hours. During this period different situations were tested: creation of new rules and

notifications; deletion of rules and notifications; creation and deletion of users; and

customization of the rooms.

During those 48 hours the server performed 138019 loops with an average in each loop of

1252 milliseconds. Therefore, the system achieved the expected stability that had showed in

the loading and performance unit testing. This test was far the most important. Perhaps the

performance in some situations (many rules/notifications) can decrease a bit, but the system

keeps its stability during all the time, meaning that there are no “holes” in the software.

Moreover, this becomes more important when we are referring a system that deals with our

house and any user would expect the system to run constantly all over the time.

With this, this section is concluded. We have seen that the performance and loading are

acceptable in different situations, except when it is used Bluetooth as medium of connection

between the Desktop and Mobile Applications. Moreover, the stability testing proved that the

system is able to run for a long period of time without breaking up.

In the next section – Conclusion – we are going through the final conclusion of this master

thesis and which future improvements can be considered.

3 June 2010 VGIS 1027

119 | P a g e

VI. Conclusion

In this chapter we are going through about what it has been concretized and which blocks or

functionalities did not go as it was expected, comparing to the initial expectations for this

project. We are going through each of the requirements established on the Problem

Formulation in the end of the Analysis section (section 6).

The system achieved the plug-n-play characteristic, fundamental to make the life easier for the

user. Not only the components are updated in each start-up of the system, but also the

existing rules, notifications and users are updated with the new components and rooms. The

only thing required from the user point of view is the customization of the rooms. This small

step requires from the user some attention to see where the devices are at home, but even

though, this step can be made with the help of a member of a company selling such system.

The system allows the user to automate his/her house at any moment by creating new rules or

deleting existing ones. Even though the user should have the control of the rules that he/she

creates, but we cannot forget that there are situations that the system should not allow the

user in creating rules that enter in conflict with existing ones. We have seen the cases these

conflicts happen and more situations could be considered, e.g. the chain conflict.

Nevertheless, the user can also program the rules to be followed in a certain time schedule.

More situations in this schedule could have been though like allowing the user to select which

days he wants the rule to run on that schedule.

The system allows the user to be notified when a certain event happens in his/her house. The

notifications are working via SMS or via e-mail, with programmable schedule and frequency.

The frequency had the goal of not letting a notification being sent every time since this will

cause the user to receive several e-mails or SMS and in the case of SMS this would cost more

for the user.

The system allows the visualization of charts about status of components of the system. This

can be used for different purposes, being one of them the awareness to the user. Even though

this requirement was not initially planned, but it was designed and implemented later on the

project.

As we have seen during this project, only the super user of the system can control totally the

system. This user can also create new users and set the rooms this new user can control from

the mobile application.

Any user that logs in into the desktop application can also see live logs in the application. Thus,

even though a normal user does not have access to edit the system, but he/she can see how

the overall status of the system.

The mobile application was thought to give an easy and quick access to the user to change

interactively the status of some components or simply check their status. Problem was found

3 June 2010 VGIS 1027

120 | P a g e

in the communication through Bluetooth, taking this one several time to find the Bluetooth

server on the Desktop Application.

About the Desktop application, this one can be exported in a web application as future

improvement. This would be a critical advantage of such system, allowing the user to access

the management of his house in any computer with internet connection.

Therefore, even though there are issues that remained without a complete solution. Such

unsolved issues are inherits to a project of such complexity and with limited development

time. Nevertheless, in general the requirements of the system were achieved.

1. Personal achievement

Besides what I have achieved as group VGIS 1027 or during the time that I belonged to the

group VGIS 1020, I consider that I have achieved myself as well. It is always exciting and a good

experience to develop a project of this dimension and I can say that I have done my thesis in a

field that excites me particularly. Since the beginning there were methodologies of work and

schedule that had to be adopted. Such methodologies were not unfamiliar to me but it is

always a good point to improve them.

Moreover, even though the group initially created did not make till the end of the semester,

but such situations have to be faced in different occasions during the life and this experience

also contributed for my education as engineer and person.

In other hand, even though none of the technologies faced in this project were completely

new for me, but I had to explore more deeply certain aspects of software development,

comparing to the previous knowledge. The most challenging of this project was the

development of the platform itself, i.e. how the components are interacting with each other

and how they should react in different situations. For this, it had contributed my experience as

internee in PDM Technology in the fall semester of 2009 and the lessons taken from there.

Finally, this project was also a good way to practice the topics that I have learned in Vision,

Graphics and Interactive Systems during these two years of studies at Aalborg University,

never forgetting the background of my bachelor in Information Systems and Computer

Engineering at Instituto Superior Técnico, Lisbon. I am proud to have been successful in two

different places and to have concluded my academic studies with this interesting topic.

3 June 2010 VGIS 1027

121 | P a g e

2. Main issues and perspectives

The SafeHouse system has four main limitations that can be considered as future

development:

1. It has been used Bluetooth as medium of communication between the Home Server

and the embedded devices. This protocol stack has been proved to be enough fast, but

it has been proved to have problems of wall penetration. This is critical if a user wants

to implement the system in his/her house. A possible solution to tap this problem

would be to use Bluetooth hops: devices in strategic points (such as doors) that

redirect the traffic till the end point. Other possible solution would be to use RFID as

medium of communication. This would allow a bigger range and it would tap the

problem of wall penetration.

2. The embedded devices used are limited in terms of memory. This would be critical in a

bigger system with dozens of components connected to the same device, where a

large XML structure needs to be stored at some point. Two solutions can be

considered for this fact: expand the memory of the device through adding a new RAM;

or shorting the XML that is being managed at each moment in the embedded device.

Definitely, the first solution would tap better this issue.

3. The GUI on the mobile application is limited to some screen components and absented

of 2D or 3D graphics. This would be a positive point to have an elegant GUI and

definitely would attract more users to use the SafeHouse system. Even though, the

main goal of the mobile application was achieved.

4. The embedded devices are battery driven, what means that if someone plugs them

out from the socket they stop working immediately. The best solution to tap this

problem would be to have power generators or an UPS. This would give extra credit to

such home automation system.

There is also the limitation of using Bluetooth as medium of communication with the Mobile

Application, but since the user can use 3G either indoors or outdoors, this is not considered as

a main limitation.

Regarding the four limitations exposed, let us remember that this system was made as a proof

of concept and a commercial implementation of such system with more available resources

than the ones that I had during this semester would tap or find other solutions with other

technologies. Besides, the system is consistent and stable, what is undoubtedly the strongest

point of the SafeHouse project.

3 June 2010 VGIS 1027

122 | P a g e

VII. Appendixes

Appendix A

As we have stated in section 3.1 of Analysis chapter(page 28), we have went through some

solutions to solve the problem of linearization with the distance sensor Sharp GP2D12. The

first approach we took in account is represented in the following picture. We have used a 1
st

grade linear regression in the output signal. With this the signal becomes linear, but pruned to

huge deviations as we can see. Only around 1V and 3,75V the distance respects the real value.

Figure 71 - Sharp GP2D12 non-linear and linear graph.

As referred in that section, we could have used a 2
nd

 grade regression and with this the

problem will become solved, or at least, the output would be really approximated to the real

distance value. However, for a microcontroller as the pic30f3013 this would have become a

heavy solution for a light CPU.

Thus, we had two options: either we store the values on the EPPROM of the microcontroller or

we make sub-linearization. The first solution lacks of completeness: it is almost impracticable

to make a table with every single input value. With this, we have divided our output into three

different intervals and applied a 1
st
 linear regression (as stated in that section). With this we

achieve quite approximate values, as we can see in the following table.

Without having the necessity of being 100% precise, we have decided to use this last option.

3 June 2010 VGIS 1027

123 | P a g e

Figure 72 - Comparison between different output data in the Sharp GP2D12. The green cell is the average of the

absolute error.

3 June 2010 VGIS 1027

124 | P a g e

Appendix B

In section 4 of Analysis (page 32) was referred that we have used libraries developed

previously during Sérgio Pedro’s internship at PDM Technology (Pedro, 2010). In this appendix

we are going through which libraries we are using: their intent and why we have used in this

project.

1. XML Library

The main propose of this library is to make the XML easy to be parsed and easy to transform

into an object (XMLObject). Then, the object can be acceded in a simple way and the

developer can perform different actions over it: create, update and delete. Let us say that we

receive a string representing the XML called received. Thus, we can parse that string by simply

doing:

Parser parser = new Parser(received);

XMLObject xmlObject = parser.getXMLObject();

Of course, the string has to respect the XML format, i.e. the XML has to be valid otherwise an

InvalidXMLException will be thrown. At this point, we have our XML object loaded. Let us say

that we receive another string, we parse it into a new XML object called xmlObjectUpdate and

now we want to update our XML object in memory. To do that we simply make:

XMLNode rootNode = xmlObject.getRoot(); //to get the root of the XML

XMLNode rootNodeUpdate = xmlObjectUpdate.getRoot();

rootNode.updateNode(rootNodeUpdate);

Other actions can be taken like creation or deletion of elements in the xml. Since the

SafeHouse system uses XML as format of inter connection between components, we have

decided to integrate this library into our project.

2. BSCOM Library

Different frameworks implement in different ways the communication methods. Some

frameworks, like J2ME make a quite standard way to use connectivity, but others not that

much, like Android SDK. Following-up the idea of unifying different communication standards,

the intent of this library was to make a flexible and easy way to create either a client or a

server. With this, the developer can use either Internet (3G/Wi-Fi) or Bluetooth without taking

care of implementation details. In the following code we explain how to open different kind of

3 June 2010 VGIS 1027

125 | P a g e

connections. For instance, for a client to open a connection and send/receive data the

procedure is really simple:

BSCom bsCom = new BSCom(); //object containing the main methods

BSConnection conn = bsCom.Connect(ip,port,name); //opens connection

conn.WriteData(“Hello”);

String received = conn.ReadData();

To use Internet or Bluetooth the procedure is simple:

- If the developer wants to use Internet, it has to give the ip and port of the server

and leave name null.

- If the developer wants to use Bluetooth, it has to give the mac address (ip), port

and the name of service.

For a server the procedure is similar, except that instead of using Connect, it has to use the

method Accept.

Since we have used during this project Bluetooth, 3G and Wi-Fi, it made all the sense to

incorporate this library into our application.

3 June 2010 VGIS 1027

126 | P a g e

Appendix C

In the chapter 3.2.1 it was referred the mechanism of encryption used in the SafeHouse

system. Indeed, there are two steps to be described: the encryption and the decryption. The

Vigenere algorithm is a symmetric cypher, meaning that the decryption is the symmetric

operation of the encryption.

The message can contain any ASCII character, except for the 32 first ones, that in general are

special and not used by means of information. Thus, there are 96 characters remaining of the

ASCII table to be encrypted. In first place, both sides of the communication channel have to

agree in a key to encrypt and decrypt the information. In order to be easily understandable,

each character is an integer from 0 to 95, both for the key or for the message. In the following

equations is the representation of message, key and encrypted message:

� ��������� = �0, �1, … . , ��%

& �'��� = '0, '1, … , '�%

(����
�)��� �������� = �0, �1, … . , ��%

The first step of the encryption and the decryption process is to assure that the key length is

the same as the message length. Thus, if N <= M, the key is going to be the first N characters of

the original key. If N > M, the key is going to be repeated till it reaches the length of the

message. In either of the cases the key is length N in the end. After this step, it is produced the

encrypted message:

(* = ��* + &*� �	� 96, ∀� ∈ �0, ��

Every character of the message is shifted according to the character of the key and applied

modulo 96, to ensure that every value of the cypher message is between 0 and 95. The

symmetric process is repeated in the decryption process:

�* = �(* − &*� �	� 96, ∀� ∈ �0, ��

As an example, let us consider that we want to encrypt the following the message “Hello I am

Sergio and I study in AAU!” with the key “safehouseSystem”. The message has 29 characters,

what means that the key will be expanded to “safehouseSystemsafehouseSyste”. Applying the

formula above, the encrypted message will be:

- “;FRQWo>sF@yFYWT\PfFVSu<eFmhX^m\Of&)Dv”

Using the same key the decryption is made in the symmetric way and in the other side finally

the message can be read and interpreted.

3 June 2010 VGIS 1027

127 | P a g e

Appendix D

1. Room/Component Structure

Figure 73 - Class Diagram for the Rooms/Components Structure.

3 June 2010 VGIS 1027

128 | P a g e

2. Users Structure

Figure 74 - Class Diagram for the Users structure.

3 June 2010 VGIS 1027

129 | P a g e

3. Notifications Structure

Figure 75 - Class Diagram for the Notifications Structure.

3 June 2010 VGIS 1027

130 | P a g e

4. Rules Structure

Figure 76 - Class Diagram for the Rules Structure.

3 June 2010 VGIS 1027

131 | P a g e

Appendix E

1. Message Class

Figure 77 - Message class. The attribute rightMessage indicates if the operation was succesful or not; the

attribute message is used to display some error information or new information to be put on the GUI.

2. GUIInterface Class

public static Message authenticateUser(String username, String password){ }

This method is used when the Desktop Application (DA) or the Mobile Application (MA) needs

to check if the username and password inserted are valid, i.e. if the user exists in the system or

not.

public static Message createRule(String id, String ruler, String value,

String triggerId, String triggerValue, String[] initialTime, String[]

finalTime){}

This method is used when the DA, after user input on the Create Rule screen, wants to create a

new rule in the system. For that, all the parameters are passed to the method in order to

create this rule. A Message object is returned indicating if the operation was successful and

containing a message to be used on the DA.

public static Message deleteRule(String rule){}

This method deletes a rule according to the rule passed as argument to this method. The rule

is going to be searched on the system and if it exists, it proceeds to the deletion of that rule.

public static Message createNotification(String componentId, String ruler,

String value, String type, String recipient, String[] initialTime, String[]

finalTime, String frequency){}

This method has the same logic as in the createRule method.

public static Message deleteNotification(String notification){}

This method has the same logic as in the deleteRule method.

3 June 2010 VGIS 1027

132 | P a g e

public static Message createUser(String username, String password, String

repeatPassword, String[] permissions){}

This method has the same logic as in the createRule and createNotification methods.

public static Message deleteUser(String username){}

This method has the same logic as in the deleteRule and deleteNotification methods.

public static Message setNewRoomNames(String[] roomNames){}

This method is used when the user has customized the names of the rooms. Thus, it goes

through all the rooms in the system and modifies the names of all of them. A Message object is

returned in the end.

public static String[] getLogs(){}

This method is used in the main menu to get the logs of the system.

public static String[] getUsernames(){}

This method is used in the User screen in order to display the usernames of all the users in the

system.

public static String[] getRules(){}

This method is used in the Rule screen in order to display all the rules in the system in a string

representation.

public static String[] getNotifications(){}

This method is used in the Notification screen in order to display all the notifications in the

system in a string representation.

public static String[] getComponents(){}

This method is used in the Create Rule and Create Notification screens in order to obtain the

possible components for the condition in the rule and in the notification, respectively.

public static String[] getTriggerComponents(){}

This method is used in the Create Rule screen to obtain the possible components where is

going to be triggered an action. Only components with the set method active can be returned

by this method.

public static String[] getRulers(String component){}

This method is used in the Create Rule and Create Notification screens in order to obtain the

possible rulers (is, is more than, is less than) for the condition in the rule and in the

notification, respectively.

3 June 2010 VGIS 1027

133 | P a g e

public static String[] getValues(String component){}

This method is used in the Create Rule and Create Notification screens in order to obtain the

possible values for the component given as argument in the rule and in the notification,

respectively.

public static String[] getPossibleTypesOfNotification(){}

This method is used in the Create Notification screen to get which types of notification can be

used to create the notification. In this master thesis were considered two: e-mail and SMS.

public static String[] getPossibleHours(){}

This method is used to get the possible hours to be used in the Create Rule and Create

Notification screens in order to set the initial or final hour of the interval. Typically, it returns a

list containing values between 01 and 24.

public static String[] getPossibleMinutes(){}

This method is used to get the possible minutes to be used in the Create Rule and Create

Notification screens in order to set the initial or final minute of the interval. Typically, it returns

a list containing values between 00 and 59.

public static String[] getRooms(){}

This method is used in the Customization screen to get the current names of the rooms. It is

also used in the Create User screen to set up the permissions for the new user.

3 June 2010 VGIS 1027

134 | P a g e

VIII. Bibliography
Acroname, I. (2010). Sharp IR Rangers Information. Retrieved February 2010, from Acroname

Robotics: http://www.acroname.com/robotics/info/articles/sharp/sharp.html

Adão, H., Antunes, R., & Grilo, F. (2008). Web-Based Control & Notification for Home

Automation Alarm Systems. World Academy of Science, Engineering and

Technology(37), 152-156.

Alkar, A. Z., & Buhur, U. (2005). An Internet Based Wireless Home Automation. IEEE Consumer

Electronics, 51(4), 1169-1175.

Bieberstein, N. (. (2008). Executing SOA: a practical guide for the service-oriented architecture.

Upper Saddle River, N.J.: IBM Press / Pearson.

Burroughs, J. (2010). X-10® Home Automation Using the PIC16F877A. Microchip Technology

Inc.

Corporation, N. S. (2010). LM35 - Precision Centigrade Temperature Sensor. Retrieved February

2010, from National Semiconductor:

http://www.national.com/mpf/LM/LM35.html#Overview

Department of Electronic Systems, A. U. (2009). Mobile Devices: opensensor. Retrieved

February 2010, from http://mobiledevices.kom.aau.dk/projects/00/

Forum Nokia. (2010). Getting Started with the Nokia Qt SDK. Nokia Corporation.

Group, J. E. (2002). Mobile Information Device Profile for Java 2 Micro Edition. Sun

Microsystems Inc. and Motorola Inc.

Huhns, M. P., & Singh, M. N. (2005, January). Service-oriented computing: key concepts and

principles. IEEE Internet Comput., 75-81.

Indeed. (2010, May). Bluetooth, Zigbee Job Trends. Retrieved May 2010, from Indeed - one

search. all jobs.: http://www.indeed.com/jobtrends?q=Bluetooth,+Zigbee&l=

Indeed. (2010). j2me, pys60, Symbian C++, Qt Job Trends | Indeed.com. Retrieved March 2010,

from Indeed.com: view-

source:http://www.indeed.com/jobtrends?q=j2me,+pys60,+Symbian+C%2B%2B,+Qt&l

=

Intel Research. (2006, December 18). Bluecove. Retrieved March 2010, from Soruceforge:

http://sourceforge.net/projects/bluecove/

Josuttis, N. M. (2007). SOA in practice. Beijing: O'Reilly.

Khiyal, M. (. (2009). SMS Based Wireless Home Appliance Control System. Issues in Informing

Science and Information Technology, 6, 887-894.

3 June 2010 VGIS 1027

135 | P a g e

Klingsheim, A. N. (2004). J2ME Bluetooth Programming. Bergen: University of Bergen.

McLean, P. (2009, November). AppleInsider | Canalys Q3 2009: iPhone, RIM taking over

smartphone market. Retrieved February 2010, from AppleInsider:

http://www.appleinsider.com/articles/09/11/03/canalys_q3_2009_iphone_rim_taking

_over_smartphone_market.html

Meyer, S., & Schulze, E. (2006). Smart Homes and the Aging User, Trends and Analysis of

Consumer Behavior. Symposium Domotics and Networking. Miami: Berlin Institute for

Social Research.

Nokia Corporation. (2008). PyS60 Library Reference. Nokia Corporation.

Nokia Corporation. (2008, October). S60 5th Edition: What’s New for Developers. Nokia.

Osipov, M. (2008). Home Automation with ZigBee. The 8th International Conference on Next

Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN) (pp. 263-

270). St. Petersburg: Springer-Verlag.

Papazoglou, M. P. (2003). Service-Oriented Computing: Concepts, Characteristics and

Directions. Fourth International Conference on Web Information Systems Engineering

(p. 3). Rome: IEEE Computer Society.

Pedro, S. (2010). Orion Mobile. Aalborg: Aalborg University/PDM Technology.

Pérez, F. (. (2007). Symbian C++ Application Programming Overview. ITACA Institute,

Polytechnic University of Valencia.

Pering, T. (. (2006). CoolSpots: Reducing the Power Consumption of Wireless Mobile Devices

with Multiple Radio Interfaces. 4th Int. Conf. Mobile Systems, Applications and Services

(MobiSys), (pp. 220-232).

Regnier, T. (n.d.). MIDP telephones benchmark. Retrieved March 2010, from Le Club des

utilisateurs Java: http://www.club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp

Rijmenants, D. (2010). Retrieved April 2010, from Cipher Machines and Cryptology:

http://users.telenet.be/d.rijmenants/pics/vigenere.JPG

Schmidt, M. -T. (2005). The Enterprise Service Bus: Making service-oriented architecture real.

IBM Systems Journal, 44(4), 781–798.

Stinson, D. R. (2006). Cryptography. Boca Raton: Chapman & Hall/CRC.

Tanenbaum, A. S. (2003). Computer Networks. New Jersey: Pearson Education, Inc.

Warmer, C. (. (2009). Web services for integration of smart houses in the smart grid. Grid-

Interop, (pp. 207-214). Denver.

Weis, S. A. (2003). Security and Privacy in Radio-Frequency Identification Devices.

Massachusetts: Massachusetts Institute of Technology.

3 June 2010 VGIS 1027

136 | P a g e

Xuguang, H. (2009, November). An Introduction to Android. Dababase Lab. Inha Univeristy.

