
Distributed Stereo on Mobile Devices

Synchronized audio streaming on Symbian Platform

Mobile Communication/
P9-P10 project, spring semester 2010

Faculty of engineering, health care and natural sciences
Institute for Electronic Systems

Nicandro SCARABEO

Aalborg University
Departement of Electronic Systems

Frederik Bajers Vej 7
9220 Aalborg O

Telephone 99 40 86 00
http://es.aau.dk

Title: Distributed Stereo on Mobile Devices - Synchronized audio streaming
on Symbian Platform

Semester Theme : Master Thesis

Project term : P9, fall semester 2009 - P10, spring semester 2010

Author: Nicandro SCARABEO

Supervisors : Frank Fitzek
Morten V. Pedersen
Janus Heide

Number of copies : 5

Number of pages: 95

Completed : June 2010

Synopsis:

The purpose of this project was to realize a distributed and synchronized stereo
reproduction between more mobile devices: the possibility for a mobile phone
to share and stream an audio �le with other phones, by starting a synchronized
reproduction.

For this purpose an application was built from scratch in order to solve the sev-
eral problems characterizing this kind of application. It was written a PYTHON
code for the management of the Application Layer of ISO/OSI protocols. It al-
lows to stream in real time a PCM �le playing on one device by building an
ad hoc network. The reliability of the network is discussed and analyzed: the
interleaving technique and a coding scheme is suggested to achieve that.

Preface

This report is separated into these two items :

Item 1: The main report on the analysis, simulation and explanation of a
proposed antenna structure that includes metamaterials.

Item 2: Appendices in the end of the report

Reading directions

Sources are given by [number], e.g. [10], referring to an index number in the
sources list.

Acknowledgements

In connection with this report the author would like to express his thankfulness
to Frank Fitzek, Professor at Aalborg University, Morten V. Pedersen and Janus
Heide, PhD students at Aalborg University, for the availability, explanations
and the invaluable support during all these months. The author would also like
to express his appreciation to Peter Vingelmann, for the collaboration, and to
Damiano Ciarla and Samantha Caporal Del Barrio who helped during important
moments.

Nicandro SCARABEO

...

Contents

1 INTRODUCTION 4

1.1 Motivation . 4
1.2 Goal of the project . 5
1.3 Problem de�nition . 6
1.4 Approach . 7
1.5 Problem analysis: summary of the report 7
1.6 A multimedia world: the future has arrived 9

2 CHOICE OF THE PROTOCOLS 10

2.1 Nokia N95 and its available protocols 10
2.2 ISO/OSI . 11

2.2.1 Physical Layer . 12
2.2.2 The Data Link Layer . 12
2.2.3 The Network Layer . 13
2.2.4 The Transport Layer . 13
2.2.5 The Session Layer . 14
2.2.6 The Presentation Layer 14
2.2.7 The Application Layer 14

2.3 Problem analysis: Data Link Control Layer 14
2.3.1 The Bluetooth technology 15
2.3.2 The IEEE 802.11 technology 18
2.3.3 Bluetooth versus IEEE 802.11: what should our applica-

tion use? . 20
2.4 Problem analysis: Transport layer 22

2.4.1 TCP protocol . 22
2.4.2 UDP protocol . 23
2.4.3 TCP versus UDP: what should our application use? . . . 24

2.5 Problem analysis: Application layer 25
2.5.1 Multimedia streaming: RTSP 26
2.5.2 A new algorithm based on the RTSP 27

2.6 Conclusion . 27

1

CONTENTS 2

3 UDP PERFORMANCES IN AD HOC WIRELESS 28

3.1 Preface . 28
3.2 Symbian Smartphone . 28
3.3 The programming language Python 29
3.4 User Datagram Protocol: the code 30
3.5 Packet loss . 32

3.5.1 Experimental results . 33
3.6 Testing the performance of the phones 34

3.6.1 Testing the packet loss . 35
3.6.2 Performance as function of the distance 36
3.6.3 Performance as function of the size of the packet 38

3.7 Conclusion . 39

4 AUDIO ENGINE 40

4.1 Preface . 40
4.2 Problem analysis: Audio codec 40
4.3 Setting aside the MP3 format . 41
4.4 Digital audio compression: PCM 41
4.5 The frame of a PCM audio �le 42
4.6 The module Audio Stream . 44
4.7 Disquisition about time of reproduction and time of implementation 45
4.8 How to manage missed packets in the player 46
4.9 Strategies to bu�er data . 47
4.10 Interleaving as prevention against interference 48
4.11 Conclusion . 50

5 SYNCHRONIZATION 51

5.1 Preface . 51
5.2 Haas E�ect . 52

5.2.1 Test . 52
5.3 Scenarios . 53

5.3.1 Double side - scenario . 53
5.3.2 Personal speaker - scenario 54
5.3.3 Concert - scenario . 55

5.4 Algorithm for synchronization . 56
5.5 Latency of the channel . 58
5.6 Conclusion . 59

6 RELIABLE MULTICAST IN AD HOC NETWORKS 61

6.1 Preface . 61
6.2 Network Coding and Erasure Coding 62
6.3 Analysis . 66
6.4 Conclusion . 69

CONTENTS 3

7 CONCLUSION 70

7.1 Future improvements . 71
7.2 New Future Applications . 72

A ENERGY CONSUMPTION IN WIFI APPLICATIONS 73

A.1 Preface . 73
A.2 Evolution and future prediction 73
A.3 Strategy to save power . 74
A.4 Wi� networks performance . 74
A.5 Testing the code . 75

A.5.1 Client side . 75
A.5.2 Server side . 77

B CODE TO IMPLEMENT THE APPLICATION 79

B.1 Testing UDP connection: Server side 79
B.2 Testing UDP connection: Client side 81
B.3 Streaming prototype: Server Side 84
B.4 Streaming prototype: Client Side 86

Chapter 1

INTRODUCTION

1.1 Motivation

Since the invention of the radio at the beginning of the twentieth century, con-
tinuing 40 years later with the invention of the television, an enormous �ux of
information started to reach a lot of people in new di�erent ways. Next to news-
papers, these new means of communication brought to the people information
in the form of voice, images and video. Then, in the end of the century, with
the coming of the computer, and the introduction of internet, the streaming of
data increased more and more, determining a new virtual world that nowadays
is part of our life. The phenomena, that represents the trend, is becoming un-
doubtedly the peer to peer (P2P), subsequently to a period in which the client
� server architecture were bringing these services to the end � users.

Nowadays, entire young generations, and not only, exchange any kind of data
by making a portion of their resources (such as processing power, disk storage
or network bandwidth) directly available in a distributed network architecture
composed by peer nodes. A model in which each component of the network
can be a server or a client, by depending on its needs in each moment. Such
a phenomena is widely spread between �xed devices, as personal computers or
laptops, and overall on �xed and reliable networks. On this big wide architecture
many users exchange the last hits of the music parade or the last episodes of
their favorite tv-shows, to transfer them after on the mobile devices of last
generations. Actually, the quick spreading of MP3 players, IPod or IPad, suggest
how the trend of downloading and listening music is involving mobile devices.

Despite that, P2P is not yet widely used on portable/mobile devices. Actu-
ally people are using it on laptops, but the mobile phone is a di�erent kind of
device which plays a di�erent role in our daily life: it is always on, it is carriable
everywhere, etc. Then downloading a song or sharing a video with friends is still
a concept related to computers rather than mobile phones. The main obstacle
is represented by the lack of a standard in such world and the lack of resources
necessary to implement it. This project wants to show how this obstacle can be

4

CHAPTER 1. INTRODUCTION 5

broken.

Figure 1.1: By implementing P2P between mobile phones, sharing audio, video
and �les will become easier, faster and cheaper.

1.2 Goal of the project

The same kind of architecture, created to allow terminal to exchange data, can
be build between mobile phones. In this way, new services will be available on
them: the possibility to listen the same music on more mobiles without need to
have a big loud speaker or sharing a video between more devices without need
of a big screen. All of this is possible by using the large potential of a group
of phones working together, withouth the help of any kind of architecture but
WLAN or Bluetooth. The project wants to follow the principles expressed by
the current research that involves the new types of resource-sharing networks
called wireless grid [10]. It consists in increasing the potential of the devices by
sharing network connected resources via ad hoc wireless networks. A philosophy
that allows the vision of a new kind of architecture: not anymore a single mobile
device, but a network of those able to interact. In such systems, a wide variety
of possible applications can grow up. Actually, they can reach geographic loca-
tions and social settings that computers have not traditionally penetrated. In
addition to the typical computational resources present on the computers, such
as processor power or disk space, new interactive and multimedia applications
such as cameras, microphones, GPS receivers, are available on the mobile de-
vices. Those represents the basis on which the fantasy of any programmer can
break out. Our prototype wireless grid application demonstrates the practically
of this theoretical approach.

The purpose of this project is then to realize a distributed and synchronized
stereo reproduction between more mobile devices. A phone, owner of a song �le,
can decide to share and stream it to other devices by building a reliable network

CHAPTER 1. INTRODUCTION 6

architecture (Figure 1.2 shows how it should look like). Once the stream will
have been started, the music will be played on each device in synchronization.
This application wants to eliminate disadvantages such as the impossibility to
have a higher-quality stereo sound in a speci�c background and wants to be the
�rst step of new applications that can follow the same algorithm and logic.

Figure 1.2: The purpose of the project is to manage such a scenario

1.3 Problem de�nition

In order to build a mobile application, three main requirements are requested:

� the application must be suitable for the platform where it has to run;

� the algorithm must have a low complexity;

� the communication between the node must be reliable enough in order to
assure a good quality of the service.

To achieve the �rst request, it is necessary an investigation about technologies
more suitable for such mobile application: from physical layer over network layer
to application layer. Several examples about previous mobile implementations
must be checked.

To achieve the second request, it is necessary to look for a programming
language able to build an audio streaming connection, and at the same time,
able to keep low the complexity of the instructions necessary in performing it.

To achieve the third request, an audio format, able to be streamed, has to
be found. Besides, to achieve reliability the use of a coding scheme is necessary.
Because of that, some existing coding schemes must be analyzed in order to �nd
the best for such implementation.

CHAPTER 1. INTRODUCTION 7

1.4 Approach

This report introduces a mobile application that is running on the Symbian/S60
platform used on most Nokia smartphones. The application allows audio stream-
ing through an Ad hoc Network established between mobile devices.

After analyzing several existing applications, like Picture Viewer ([19]), a
similar architecture has been implemented. Even though it is necessary an
investigation about all the ISO/OSI layers, this work will focus mainly on the
Transport Layer and Application Layer. In regard to the forth layer, from the
bottom, some tests has been performed in order to reduce the packet loss; in
regard to the �fth, an algorithm from scratch has been implemented in order to
follow the main principles of an RTP application.

The low complexity has been achieved by using a high level programming
language and by using an already existing module able to reproduce chunks of
sound. In this �rst implementation, PCM �les are streamed. This choice has
been done to better knock down possible errors incoming in the connection.

In the end, in order to have a communication as much as possible reliable,
some techniques as interleaving and an algorithm using coding schemes, as Era-
sure Coding and Network Coding, is suggested.

1.5 Problem analysis: summary of the report

The problem analysis of such problem is de�nitely hard to de�ne and solve in
few lines. Because of that, in this �rst chapter, it is reported just a summary
of the topic treated and the problems solved. Actually, each speci�c problem is
deeper treated subsequently in the report.

Chapter 2: Choice of the protocols

One of the �rst problems necessary to solve is the choice of the protocol to use
in the ISO/OSI protocol between the ones available on the phone chosen to test
it: Nokia N95.

Which is the Data Link Control layer more valid to implement a multicast

connection between many devices? A disquisition about the main character-
istics of Bluetooth and Wi-Fi 802.11 b/g is presented in Chapter 2.

Afterwards a similar analysis is presented for the choice of the transport
layer. Which transport layer is more suitable for a real-time application

between UDP and TCP?

Having de�ned the �rst four layers of the protocol, the �fth will be proposed
and built from scratch in order to achieve useful functions typical of real-time

transport layer by avoiding the complexity of already existing protocols.

Chapter 3: UDP performances in Ad Hoc wireless

Before implementing an application is necessary to describe the platform where
is supposed to run, and the programming code suitable for it and easy to use.

CHAPTER 1. INTRODUCTION 8

Several tests have been performed to �gure out the real capacities of the

mobile devices chosen for testing the application.
It has been proved the good e�ciency of such devices by choosing a right

size for the unit packet, to avoid fragmentation in the network, and in a range
demanded by the application.

Chapter 4: Audio engine

In this chapter it will be presented an investigation on the way to reproduce
sound from the mobile phone. A �rst step will involve the choice of the suitable
codec and it will be explained why in this �rst implementation it is necessary
to exclude some audio formats.

Aftewards it is presented the module chosen to reproduce sound and why
it has been preferred to others. It will be pointed out the use of the player in
relation to the fragmented arrival of the packet from the network.

How it is solved the problem of missing packet in the reproduction?

Which is the best strategy to bu�er packet to avoid sudden break in the

playing time?

How to avoid problems deriving from bursty losses?

Chapter 5: Synchronization

In this chapter the synchronization is discussed and analyzed in details. First
theoretically three scenarios are analyzed to �gure out whether the application
can work in such background.

A �rst scenario is represented by an only person between two speakers.
The second scenario is represented by a couple of person, each one with a

mobile phones. Can we achieve a synchronization in such scenario?

The third one is representing an evolution of the second: many people owners
of their devices in a background characterized by the presence of a big loud
speaker.

After discussing those, an algorithm to assure a synchronization between
an hypothetical in�nite number of phone is presented to work in a range of
10 meters, as requested from Hass's studies about the capacity of the human
hears. The algorithm based on the equality between sending rate and playing
rate needs a low latency of the channel to work well.

Because of that, a test about the latency has been performed.

Chapter 6: Reliable multicast in ad hoc networks.

In this chapter a method to achieve a better performance is �gured out.
Previously in the report, it was discussed how the music could sound good

by using some linear audio formats even though the presence of losses in the
communication. In this chapter coding schemes are analyzed to preserve the
audio streaming in case of other audio formats.

ARQ, Erasure Coding and Network Coding are analyzed.

CHAPTER 1. INTRODUCTION 9

By keeping count of the previous analysis a new protocol is proposed with

the possibility to switch between more coding schemes depending on the
topology of the network.

1.6 A multimedia world: the future has arrived

Only when a �technology� arrives to the masses, it has the duty and the right to
be de�ned like that. The developing of studies and researches about the radio
wave transmissions are on since years already, since Guglielmo Marconi started
his study in the middle of the nineteenth century . Despite that, many people,
nowadays, still consider those something abstract limited to some circumscribed
sector. This application wants to prove how that tool, as medium of sharing
multimedia contents, can enter strongly in the daily life.

�The progress is real only if the advantages of a technology are available to

everybody�

Henry Ford(1863 - 1947)

To achieve that, this application wants to allow people to use their smart-
phones as tool of new resources without spending other money. Its success is
assured by giving a look to the world of today: there is no child that does not
ask to his parents to buy the last platform game or the last mobile phone. Many
teenagers spend a lot of money to buy IPOD to be able to listen their favorite
music everywhere. Besides, the same success of the site Youtube on Internet
proves how the way traced from this project is the way to follow in the next ten
years by the new technologies. This project represents what the trend suggests
to the market.

Chapter 2

CHOICE OF THE

PROTOCOLS

Before analyzing in details the project, by considering the ISO/OSI architecture,
it is necessary to analyze and describe which protocol should be used on the
mobile device on which the application will be tested. Afterwards, each choise
in the next sections will be discussed and the protocol stack will be completed.

2.1 Nokia N95 and its available protocols

The application projected in this report will be tested on several NOKIA N95,
a mobile phone released by Nokia in March 2007. In the next table the main
speci�cations are shown in order to justify some decisions taken in the imple-
mentation of the application.

Figure 2.1: Nokia N95

10

CHAPTER 2. CHOICE OF THE PROTOCOLS 11

GENERAL 2G Network GSM 850 / 900 / 1800 / 1900
3G Network HSDPA 2100, HSDPA 850 / 1900

SIZE Dimensions 99 x 53 x 21 mm, 90 cc
Weight 120 g

FEATURES OS Symbian OS 9.2, S60 rel. 3.1
Messaging SMS, MMS, Email, Instant Messaging
Sound Yes, with stereo speakers

Music Player MP3/WMA/WAV/RA/AAC/M4A

MEMORY GPRS Class 10 (4+1/3+2 slots), 32 - 48 kbps
EDGE Class 32, 296 kbps; DTM Class 11, 177 kbps
3G HSDPA

WLAN Wi-Fi 802.11 b/g, UPnP technology
Bluetooth Yes, v2.0 with A2DP

Infrared port Yes
USB Yes, v2.0 miniUSB

BATTERY Standard battery, Li-Ion 950 mAh (BL-5F)
Stand-by Up to 220 h (2G) / 192 h (3G)
Talk time Up to 6 h 30 min (2G) / 2 h 42 min (3G)

Table 2.1: Speci�cation of NOKIA N95.

2.2 ISO/OSI

In this section the Open System Interconnection Reference Model is described.
It is divided in seven di�erent layers, following a precise structure and strict
rules. The layers are listed in the next image.

Figure 2.2: The OSI Model

Before describing in details the layers, it is necessary to talk about the prin-
ciples applied to realize this schema. There is one layer for every di�erent

CHAPTER 2. CHOICE OF THE PROTOCOLS 12

abstraction or function that is part of the communication. A layer must pro-
vide services to the layer above it and receives service from the layer below it.
Each level has to be big enough to avoid the presence of sub levels in it, but it
has to be not so small, because, anyway, it is necessary a sort of architecture
to realize it. The main purpose of this kind of architecture is to have such as
�entities�, able to communicate, through protocol, with �peer entities� situated
in other end-points.

Shortly the main issues for the layers are:

� Addressing

� Error Control

� Flow Control

� Multiplexing

� Routing

After this overview of the ISO/OSI protocol, each layer will be analyzed in detail
to explain its role. To do that, it has been refered the [3]

2.2.1 Physical Layer

The main task of the physical layer is to transmit raw bits over a communication
channel. Typical questions here are:

� how many volts should be used to represent 1 and 0

� how many microseconds a bit lasts

� whether the transmission may proceed simultaneously in both directions

� how the initial connection is established and how it is turn down

� how many pins the network connector has and what each pin is used for.

The design issues deal with mechanical, electrical, and procedural interfaces,
and the physical transmission medium, which lies below the physical layer.

2.2.2 The Data Link Layer

The main task of the data link layer is to take a raw transmission facility and
transform it into a line that appears free of undetected transmission errors to
the network layer. To accomplish this, the sender breaks the input data into
data frames (typically a few hundred or a few thousand bytes), transmits the
frames sequentially, and processes the acknowledgment frames sent back by the
receiver. The issues that the layer has to solve:

CHAPTER 2. CHOICE OF THE PROTOCOLS 13

� to create and to recognize frame boundaries - typically by attaching special
bit patterns to the beginning and end of the frame

� to solve the problem caused by damaged, lost or duplicate frames (the
data link layer may o�er several di�erent service classes to the network
layer, each with di�erent quality and price)

� to keep a fast transmitter from drowning a slow receiver in data

� if the line is bi-directional, the acknowledgment frames compete for the
use of the line with data frames

Broadcast networks have an additional issue in the data link layer: how to
control access to the shared channel. A special sub layer of the data link layer
(medium access sub layer) deals with the problem.

2.2.3 The Network Layer

The main task of the network layer is to determine how data can be deliv-
ered from source to destination. That is, the network layer is concerned with
controlling the operation of the subnet. The issues that the layer has to solve:

� To implement the routing mechanism

� To control congestions

� To do accounting

� To allow interconnection of heterogeneous networks

� In broadcast networks, the routing problem is simple, so the network layer
is often thin or even nonexistent

2.2.4 The Transport Layer

The basic function of the transport layer is to accept data from the session layer,
split it up into smaller units if need be, pass them to the network layer, and
ensure that the pieces all arrive correctly at the other end. All this must be
done in a way that isolates the upper layers from the inevitable changes in the
hardware technology. The issues that the transport layer has to solve:

� To realize a transport connection by several network connections if the
session layer requires a high throughput or multiplex several transport
connections onto the same network connection if network connections are
expensive

� To provide di�erent type of services for the session layer

� To implement a kind of �ow control.

CHAPTER 2. CHOICE OF THE PROTOCOLS 14

The transport layer is a true end-to-end layer, from source to destination. In
other words, a program on the source machine carries on a conversation with a
similar program on the destination machine. In lower layers, the protocols are
between each machine and its immediate neighbors.

2.2.5 The Session Layer

The session layer allows users on di�erent machines to establish sessions between
them. A session allows ordinary data transport, as does the transport layer, but
it also provides enhanced services useful in some applications.

2.2.6 The Presentation Layer

The presentation layer performs certain functions that are requested su�ciently
often to warrant �nding a general solution for them, rather than letting each
user solve the problem. This layer is, unlike all the lower layers, concerned with
the syntax and semantics of the information transmitted. A typical exam-
ple of a presentation service is encoding data in a standard agreed upon way.
Di�erent computers may use di�erent ways of internal coding of characters or
numbers. In order to make it possible for computers with di�erent representa-
tions to communicate, the data structures to be exchanged can be de�ned in an
abstract way, along with a standard encoding to be used "on the wire". The
presentation layer manages these abstract data structures and converts from the
representation used inside the computer to the network standard representation
and back.

2.2.7 The Application Layer

The application layer contains a variety of protocols that are commonly needed.
For example, there are hundreds of incompatible terminal types in the world.

If they have to be used for a work with a full screen editor, many problems arise
from their incompatibility. One way to solve this problem is to de�ne network
virtual terminal and write editor for this terminal. To handle each terminal
type, a piece of software must be written to map the functions of the network
virtual terminal onto the real terminal. All the virtual terminal software is in
the application layer. Another application layer function is �le transfer. It must
handle di�erent incompatibilities between �le systems on di�erent computers.
Further facilities of the application layer are electronic mail, remote job entry,
directory lookup ant others.

2.3 Problem analysis: Data Link Control Layer

In order to build our application and to write a protocol to reach the goal of the
project, it is necessary to start from the bottom of the ISO/OSI architecture
and analyze layer by layer which technology we are going to use. By following

CHAPTER 2. CHOICE OF THE PROTOCOLS 15

the purpose of the project, to transmit data between phone it is necessary a
wireless network. The IEEE 802.11 and the Bluetooth technology are the most
common technologies in this �eld. They de�ne a physical and a MAC (Media
Access Control) layer for communications with short distances (0-100m) and
low transmitting power (1mW � 800 mW). Usually Bluetooth is oriented to
connections between close devices, as a way to substitute cables to transport
data, while IEEE 802.11 is oriented to connections between computers (termi-
nals) as a way to substitute older wired LAN. Before making a comparison and
an analysis of these, it is necessary to give a look to their main characteristics.

2.3.1 The Bluetooth technology

Bluetooth is 802.15 technology in order with the standard of the IEEE. It works
at 2.4 GHz of frequency. By using Bluetooth technology it is possible to realize
such a small net. Usually these contain not more than eight elements and are
called PICONET. Typical rate for such a net is about 1 Mbps with a maximum
output power of 2.5mW for devices like notebook or phones. Considering the
GSM's, the power used by this technology is quite low.

Figure 2.3: The Bluetooth technology is spread in several application

The Bluetooth technology is not just a standard for the �rst two layers of
the ISO/OSI architecture, but it is a protocol stack with all the layers described
before.

Bluetooth is an important means to realize WPAN (Wireless personal area
network). Such a net is bigger not more than few meters and it make link
between several kind of devices like notebook, phones, laptop, printer, etc.

Of course, a printer cannot deal with an audio streaming problem, so a pro-
tocol is requested to deal with all the di�erent services that a generic device can

CHAPTER 2. CHOICE OF THE PROTOCOLS 16

o�er in a piconet. This kind of protocol is called SDP (Service Discovery Proto-
col). This protocol uses packets (PDU) to send requests and receive responses.
This protocol can ask for all the services of a speci�c device ("Browsing" mode)
or it can look for a speci�c service in a group of several devices ("Searching"
mode). A device can ask and answer, assuming in di�erent time the position of
server or client.

Figure 2.4: Interaction between a server and client in a PICONET

As already mentioned, Bluetooth works in the spectrum 2.402 - 2.480 GHz,
subdivided in 79 sub channels of 1 MHz. This technology uses the FHSS tech-
nique (Frequency Hopping Spread Spectrum). It consists of a change of the sub
channel in regular time space. So, for example, in a communication, a trans-
mitter can change carrier even 1600 times in a second. Next it is explained
why Bluetooth uses this technique: working in a free license frequency, a lot
of interference can infect the information-signal, so, changing frequency, it is
possible to solve this problem. This process, then, gives a kind of stability to
all the system.

By using the "Frequency Hopping", it is necessary a device which can syn-
chronize these hopes and manage the whole transmission, choosing the sequence
of the use of the frequency. This "special" device is called "Master". Then, a
piconet is composed by a master and not more than seven "slaves". An example
of that is shown in the next �gure. Thinking about the time of communication
as divided in several time slots, the master communicates in the even time slot,
the slaves in the odd one. In a piconet just eight devices can be activated but it
is possible the physically presence of others devices, called "park", that simply
do not share the channel, not participating in the communication.

CHAPTER 2. CHOICE OF THE PROTOCOLS 17

Figure 2.5: A possible example of a PICONET

How to realize a net with more than 8 devices? Is it impossible? No, it
is not. "Scatternet" is the name of bigger net, composed by more than one
piconet. In this case, every "master" of a piconet, is a "slave" in a higher level
net. It is easy to understand that the maximum number of devices which can
use the same channel cannot be bigger than 79, because of the dimension of the
channel.

As already mentioned, the communication in a Bluetooth technology is di-
vided in time slots, in which the devices exchange information by using packets
not bigger than 2871 bits. In order to have a good communication every packet
is composed by 3 speci�c parts: AC (Access Code) of 72 bits, an H (Header)
of 54 bits and a Payload (data) that can reach the dimension of 2745 bits. In
a higher ISO/OSI level, these packets are managed by the protocol L2CAP
(logical link control adaption protocol).

Figure 2.6: The structure of a Bluetooth packet

By looking in details at the stack protocol of Bluetooth, two blocks manage
the MAC layer: the Link Manager and the Link Controller. The �rst one installs
the connection and sends commands to the Link Controller, whereas the second
one manages the sending of the packets and holds on the connection. Instead,
the physical layer is composed by the Baseband and the Radio Channel.

CHAPTER 2. CHOICE OF THE PROTOCOLS 18

Figure 2.7: The structure of the MAC layer in the Bluetooth packet

Each device, in which Bluetooth technology is installed, has a di�erent MAC
address. In this case, we can talk about a BD_ADDR (Bluetooth device ad-
dress) of 48 bits. It is divided in three parts:

� LAP: 24 bits needed for the sync word and for the frequency hopping

� UAP: 8 bits needed for the error detection and the CRC (cyclic redundancy
check)

� NAP: 16 bits needed for giving information about the cryptography.

2.3.2 The IEEE 802.11 technology

The IEEE 802.11 de�nes the functions and services for devices (often are ter-
minals) that want to use such a wireless network to transmit data. It de�nes
a MAC layer and technique of transmission of signals in a Physical layer by IR
(infrared) or RF (Radio Frequency). This technology is �packet oriented�. It is
important to underline that, above the MAC layer, IEEE 802.11 and a normal
IEEE wired LAN are indiscernible. So the mobility of this standard is managed
by the MAC layer.

IEEE 802.11 works in the ISM band. It is necessary to specify that several
kind of this technology exist. IEEE 802.11b/g is the one available on the phone.
802.11g is the newest and, where available, can o�er the best performances:
54Mbps at 2.4Ghz. 802.11b nowadays is a restriction of the �g� one: it can
reach nominally at 22Mbps, but usually its real rate is bounded at 11Mbps.
This protocol has been known as �Wi-Fi�. As much as famous, overall in North
America, is the IEEE 802.11a. This standard works at 5 GHz (another unli-
censed frequency) and it can reach 54 Mbps. In this report such a protocol
cannot be take in consideration because on the phone is not available.

CHAPTER 2. CHOICE OF THE PROTOCOLS 19

IEEE 802.11 is organized with a cellular architecture. Two or more devices,
called STA, can compose a network called BSS (Basic Service Set). They are
coordinated by the MAC layer with a CF (Coordination Function). More BSS
(called Independent BSS if they are networks ad hoc), can make a bigger net-
work, called ESS (extended service set). An example of that is shown in the
next �gure. These di�erent BSS are linked by distribution system (DS) and for
each BSS, a STA have to be linked with this DS to hold on the communication.
This coordinated station is called Access Point (AC).

Figure 2.8: A possible example of a Extended Service Set

How can di�erent STAs communicate? Talking about the physical layer,
di�erent techniques are known:

� IR (Infrared)

� FHSS (Frequency Hopping Spread Spectrum)

� DSSS (Direct Sequence Spread Spectrum)

The third one is the most used, instead of the �rst one that it is very useful just
for not so long distances (about 10 m without obstacles). DSSS is a wideband
transmission technique and it consists of spreading information on bigger part
of spectrum to contrast interference. Actually, every single bit is modulated by
a particular sequence (Barker's) composed by 11 bits, called chips. Because of
this, the modulation is called chipping code.

As already done with the Bluetooth Technology, it is useful to describe how
the MAC layer of IEEE 802.11 is organized. The MAC manages and holds the
connection between STAs, coordinating the net. The mechanism of access in
the medium is called Distributed Coordination Function (DCF), and it is based
on the technique of CSMA/CD (Carrier Sense Multiple Access with Collision
Detection). Every station, before transmitting, has to check if someone else is
doing that. If the medium is free, it can transmit to a di�erent station. This

CHAPTER 2. CHOICE OF THE PROTOCOLS 20

one, after receiving the packet, will send an ACK (acknowledgment) to inform
about the right reception. The PCF (Point Coordination Function) works just
in such a net not ad hoc. It establishes a di�erent method to access to the net.

Figure 2.9: The structure of the MAC layer in the IEEE 802.11

An important ability of the MAC IEEE 802.11 is the possibility to fragment
a packet if it is too long. That is done to make low the tra�c in the net. Every
packet will be anyway composed by three parts:

� MAC Header: control information, addresses of the sender and recipient

� Frame Body: if it is a data packet, it is just a payload

� CRC : 32 bits for errors detection.

Figure 2.10: The structure of a IEEE 802.11 packet

Every packet is known through a MAC address of 48 bits. It can be:

� Single address: to refer about one single STA

� Group address: to refer about a multi destination.

2.3.3 Bluetooth versus IEEE 802.11: what should our ap-

plication use?

After describing the main characteristics of these protocols, in this section a
full comparison between these has done. In the end, it will be explained which
technology has been chosen and why.

CHAPTER 2. CHOICE OF THE PROTOCOLS 21

Capacity

With reference to the typical basic net of these two technologies, the Piconet
for Bluetooth can be composed by not more than 8 devices whereas the BSS
(Basic Service Set) for IEEE 802.11 virtually has an unlimited capacity. It is
however possible to link more basic net to have a bigger kind of net: ESS for
IEEE 802.11 and Scatternet for Bluetooth.

Arrangement of a network

A parameter quite important is how fast a link between two or more devices is
established. In regard to the Bluetooth technology, two procedures are expected:
Inquiry and Page. In the �Inquiry� phase, the master scans the environment,
looking for MAC address of new potential slaves, whereas in the �Page� phase
the master inserts a new slave in the piconet. With reference to the IEEE 802.11
three procedures are planned: Scan, Authentication and Association. The �rst
phase is necessary to know the MAC address of any device, interested to enter
in the BSS. This can happen in two di�erent modes: passive or active. In the
passive one, it is request a time of 50ms per each channel investigated, whereas
in the active one, a new device has to earn the access to the net by following
the rules of the CSMA/CD. The phase of authentication and association to the
BSS are necessary only if the net is a net of hoc.

Topology

The Piconet and the BSS have a lot of analogies: both are managed by a central
entity (master for Bluetooth and access point (AC) for the IEEE 802.11); they
make the routing of the packets into the net. The coverage of a piconet is 10m
whereas BSS's can reach 150m. Considering the mobility of devices during the
transmission, for our project is more indicated the second one. Another point
in favor of the IEEE technology is the impossibility of communications between
two slaves in the Bluetooth one: actually they cannot communicate directly,
but they need the master as a bridge of the communication.

Communication into the net

Bluetooth uses the FHSS, IEEE 802.11 uses the DSSS technique. Certainly,
using a frequency diversity, the Bluetooth technology is less weak against the
interference in comparison with the time diversity technique of IEEE 802.11.
Both technologies can change the data rate, regarding the congestion of the
channel. IEEE 802.11 manages this problem in the Physical Layer, instead
of Bluetooth that solves this problem in the MAC layer. In regarding to the
throughput, IEEE's performance are better, considering the rate of the trans-
mission of 22 Mbps, against 1Mbps of Bluetooth.

CHAPTER 2. CHOICE OF THE PROTOCOLS 22

Bluetooth IEEE 802.11b

Physical layer FHSS FHSS, DSSS, IR
Hop Frequency 1600 hops per sec 2.5 hops per sec

Max transmitting Power 100mW 800mW
Data Rates 1Mbps 22Mbps
Range 30 ft. 1000 ft. LOS
Cost Least expensive Most Expensive

Table 2.2: A comparison of the Bluetooth and Wi-Fi protocols.

Conclusion

After analyzing the main di�erences between these two protocols, IEEE 802.11
has been prefered because of its theorical unlimited capacity, its possibility to
reach further distances and higher rates.

2.4 Problem analysis: Transport layer

Considering that our choice for the lowest layers is gone towards IEEE 802.11b
technology, the protocol stack TCP/UDP represents the solution for the trans-
port layer. Transfer Control Protocol (TCP) and User Datagram Protocol
(UDP) are typical transport layers of a TCP/IP network. A device, such as
phone, can provide and request several services from and to the net. Every ser-
vice, in such a net, is associated to a �port� of the transport layer that should
be speci�ed in every kind of communication between devices. From two ports of
di�erent devices, a socket is created to make the streaming on. Before deciding
which technique is better, it is necessary to show how they work.

2.4.1 TCP protocol

TCP sockets provide to establish a data pipe between two endpoints, both
of which can send and receive streams of bytes. The main characteristic of
this protocol is to make on a permanent connection called �session�. Such a
connection can be compared with a typical client/server model. Actually, a
client, creating a socket, connects to the server, and then begins sending and
receiving data. On the other side the server has to create a socket as well and
listens for incoming connection. The next picture shows up the main functions
of the process established between endpoints.

CHAPTER 2. CHOICE OF THE PROTOCOLS 23

Figure 2.11: The TCP protocol

This protocol makes a bidirectional �ux of bits and usually, it cuts the main
�ux in di�erent parts. Establishing a connection, TCP makes us sure the right
reception of data that reach the destination in order and at most once. It
assures this using acknowledgments and, in case, retransmission. TCP uses to
control the network in every moment, regulating the �ux of data, considering
the congestions of the bu�ers.

2.4.2 UDP protocol

Connectionless sockets are the other option for transferring data between two
networked devices. By using the same client/server model, actually UDP does
not install any permanent connection. It represents a perfect solution for all
the applications that do not need a big overhead. The term �overhead� is
indicated to any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to attain a particular goal in
a generic communication. UDP, in order to transfer information, uses to send
datagrams (message packets). Besides there is no guarantee that the packets
will arrive to the destination, neither any guarantee about the order. It is sure
anyway that if the packet arrives to the destination, it will arrive entiger. The
next picture shows up the main functions of the UDP process.

CHAPTER 2. CHOICE OF THE PROTOCOLS 24

Figure 2.12: The UDP protocol

One of the advantages of this protocol is that it is capable of transmitting
data to multiple endpoints, keeping a high data rate. Besides, it can assure a
sort of protection of data against errors, with checksum.

2.4.3 TCP versus UDP: what should our application use?

Before deciding which one is the best for our application, it is useful to specify
which characteristics are needed. Actually, as mentioned above, the sharing of
a multimedia data on more devices in real time is the goal of our project. To
reach it, a fast streaming is needed and besides the possibility to send data,
at the same time, to more destinations. The protocol that can assure us these
characteristics is UDP. Actually, by using TCP, the throughput would quickly
decrease as a function of receiving users in order to realize a broadcasting.

Prevention against the fading

The checksum used by UDP are not enough to protect the code transmitted by
devices. It is necessary to think about a probably loss of data that should be
during the communication. Obviously, it is important to consider the condition
of the channel in which the devices are. By using the Wi-Fi standard, the devices
can exchange data even for quite long distance (more than 20-30 meters). In
order to have a direct and optimum transmission about some receivers and some
transmitters, the line of sight should be without any obstacles. This situation
is very improbable. It is more common the presence of re�ected and scattered
waves that arrive to the receiver with di�erent delay, provoking a signi�cant
drop of the quality of the signal. It is the phenomena of the fading that actually
depends on the channel and must be consider for characterizing the quality of
the received signal.

Then, some prevention is necessary to avoid a bad reception of data. Two
ways are possible: introducing some algorithm of prevention , or choosing a
right audio and video codec.

CHAPTER 2. CHOICE OF THE PROTOCOLS 25

2.5 Problem analysis: Application layer

By choosing UDP as transport layer, it is necessary to have an application able
to manage the multiplexing and the checksum services of it. The most common
application used over UDP is RTP (Real-time Transport Protocol). As the
standard RFC 3550 3551 says,

�RTP provides end-to-end delivery services for data with real-time character-

istics, such as interactive audio and video. Those services include payload type

identi�cation, sequence numbering, timestamping and delivery monitoring�.

Therefore, RTP can give us the control mechanisms of a multimedia trans-
mission. It is easy to get why it can be very functional just thinking about an
example. Actually, as it was already mentioned, UDP/IP cannot assure for the
packets the same path and the same order of transmission. So very often some
packets can be lost. RTP solve this problem encapsulating the UDP packets in
a new numbered payload and knocking down the problem of jitter.

Figure 2.13: The RTP encapsulation of the UDP packets with a new numbered
paylod can solve the problem of a bad reception

Jitter and PDV

It is necessary to specify what is jitter for and its main di�erences with another
important parameter: packet delay variation (PDV). Jitter is de�ned as a vari-
ation in the delay of received packets. At the sending side, packets are sent
in a continuous stream with the packets spaced evenly apart. Due to network
congestion, improper queuing, or con�guration errors, this steady stream can
become lumpy, or the delay between each packet can vary instead of remaining
constant. [4] Usually this problem can be repaired with a playout delay bu�er
built in the receiver to compensate those delays. Actually RTP does that.

Figure 2.14: A representation of the jitter[4]

CHAPTER 2. CHOICE OF THE PROTOCOLS 26

In the context of computer networks, the term jitter is often used as a mea-
sure of the variability over time of the packet latency across a network. A
network with constant latency has no variation (or jitter). Packet jitter is then
expressed as an average of the deviation from the network mean latency. This
de�nition can cause confusion with the de�nition of IP Packet Delay Variation
that is, as the RFC 3393 cites, the di�erence between the one-way-delay of
the selected packets. The Instantaneous packet delay variation is the di�erence
between successive packets and this is usually what is loosely termed "jitter",
although jitter is also sometimes the term used for the variance of the packet
delay. As an example, say packets are transmitted every 5 ms. If the 2nd packet
is received 6 ms after the 1st packet, IPDV= −1 ms.

In the next chapter, the latency of the channel will be discussed.

2.5.1 Multimedia streaming: RTSP

By reminding the purpose of the project, a description in general of the stream-
ing is needed. One �le (audio or video), safe in the memory of the source
(represented from a server), is transmitted to a client. From the de�nition of
streaming, the reproduction of the media�le in the client starts before the con-
clusion of the transfer. So, all data should arrive in the receiver (Rx) before the
reproduction needs some data to complete itself.

Figure 2.15: Functioning of a multimedia streaming with regard to the time

An easy way to think about streaming is to encapsulate the media �le and
send it to the client. After his arrival, the �le can be move to the player and start
the reproduction. Actually that is not streaming, not having in the transfer any
pipeline and thinking about the big delay of the transmission.

A di�erent way to think about the streaming is suggested by RTSP (Real
Time Streaming Protocol) that actually is the protocol more appropriated for
such a problem. The Client receives �rst a meta�le with the description of the
�le that are going to arrive. Then it passes the �le to the player that contact
the server to start the streaming. This protocol is very useful because it can

CHAPTER 2. CHOICE OF THE PROTOCOLS 27

manage the reproduction with commands such �stop�, �play�, �rewind�, typical
of a common cassette player.

2.5.2 A new algorithm based on the RTSP

After describing the most spread protocols able to manage the problem of the
project, it is necessary to justify why on this report a new protocol will be
implemented. First of all, the complexity of the protocols just mentioned is
excessive for the one requested by our project. Many functions need to be
checked and run and our implementation can easily avoid such a job. Another
reason to implement from scratch is the di�culty (sometimes, the impossibility)
to �nd a working protocol available on the OS of the phone. For all these reasons,
in the next chapter, a survey of a new protocol will be done.

2.6 Conclusion

After de�ning the technologies available on the phone, in this chapter an analysis
of the main ones has been made. By taking in consideration the ISO/OSI
architecture, the IEEE 802.11 has been chosen as physical layer and data link
control layer. Over the IP, that manage the Network layer, it has been discussed
why the UDP should be use instead of TCP, in the Transport Layer. In the
end, analyzing the last layer, after discussing about the main spread protocol for
such a problem, RTP and RTSP, it has been explained why for this application
a new protocol will be implemented.

Chapter 3

UDP PERFORMANCES IN

AD HOC WIRELESS

3.1 Preface

In this section we will discuss which performances we can expect from a network
able to make a reliable end-to-end communications. As we mentioned in the
previous chapter, we are particularly interested in fast data exchange between
multiple mobile devices for real-time interaction situations such as interactive
music, in our case, or also exchanges in games. Examples quite important and
spread are IP-telephony and VoIP.

By using architecture as IEEE 802.11, the Mobile Ad-hoc NETwork (MANET)
represents a natural candidate for ad-hoc device-device wireless interaction. Ac-
tually, it does not require coordination by a master node and it has not restric-
tion on the number of nodes which can participate in the exchanging. Because
of low control overhead, the transport layer UDP is, as we have already seen,
ideal for real-time communication. But it is important to know how to con-
trol the possible delays and the packet losses, when the number of nodes, the
communications rates and the power increase.

Then, the main purpose of this chapter is to analyze the performance of
an UDP MANET in order to �nd some parameters that can assure a desired
Quality of Service (QoS).

3.2 Symbian Smartphone

First of all, it is important to describe the platform that will host the application
described previously. As we have already mentioned, such an application is
born to run on mobile devices, than can be easily represented by smartphones.

28

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 29

Whereas a simple phone enables voice calls and short messaging (SMS), a feature
phone contains some signi�cant additional functionality:

� multimedia messaging support (MMS)

� a colour display

� a digital camera

� support for additional memory through the use of memory cards

� a web or WAP (Wireless Application Protocol) browser

� etc

Smartphones is more advanced than the previously ones, by using high-level
operating system with support of multitasking, expandibility, multimedia or
convergence features, application interaction and so on. The S60 Platform is the
world´s leading smartphone software platform, o�ering a feature rich software
base for phones with advanced data capabilities. It includes the Symbian OS
and the Nokia S60 UI (user interface).

Figure 3.1: Logo of S60

S60 consists of numerous architectural units, for example the Symbian OS,
the Domestic OS and UICon. The Symbian OS provides several services to
the platform and to platform-based devices. Such services are, for example,
the User Interface (UI), applications and middleware. The Domestic Operating
System (DOS) is the proprietary operating system and no interfaces in it are
open to third-party developers. UICon is a graphical user interface library for
reference-design (DFRD) independent functions based on EIKON, which is the
original graphical user interface library for the Symbian OS. Use of such com-
ponents guarantees the implementation of the application of the user interface
by developers. [1]

Nokia N95, used to test this application, is based on this platform.

3.3 The programming language Python

Di�erent programming languages can run on a Nokia's S60 platform, namely
Python, Java, Symbian/C++, etc. The �rst one was chosen because of its great
capabilities and �exibility. Several applications in Python have been written in

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 30

the last years because it is easy to learn and, for that, it is pretty simple to �nd
examples and useful modules to make our code.

Figure 3.2: Logo of Python

Python for S60 provides a scripting solution making use of Symbian C++
APIs; it is a dynamic object-oriented open source computer programming lan-
guage that was created by Guido van Rossum ([7, 8, 9]). Python can be used
for many kinds of software development and run on most common platforms.
It is pretty spread on smartphones because of its many Python Standard Li-
brary modules built-in and the additional mobile device speci�c modules, e.g.,
for SMS, telephone features, camera, and system info. The advanced process-
ing power and memory capacity of smartphones allows running an interpreted
language like Python on such devices, simply by installing a Python execution
environment. On that environment, with few lines of code, it is possible to
install an Udp Connection between two or more phones. [2]

3.4 User Datagram Protocol: the code

Having described the code used for this application, it is time to get into the
code and realize a simple UDP connection between phones. The main purpose
of the script is to establish a connection between two entities: server and client.
The server has the duty to broadcast data into a network whereas the clients
should receive all data incoming from the server and store it in a bu�er.

UDP, that is used for sending very short messages, provides at most one
guarantee: that the data received is intact. It does not guarantee that data
will actually be received, or that it will be received just once or that di�erent
messages will be received in the order that they were sent. So, by creating an
object able to establish an UDP connection is not enough to control all those
problems: in the �nal code other instructions are needed to check them out.

In order to make it work, it is necessary that the server phone has de�ned
on it an access point able to establish a public Ad-hoc network. Any kind of
protection of the network, such as protocol for security, has been avoided, in
order to have a faster application.

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 31

Without getting too much in details, the main essential instructions will be
described. It is important to underline that Python provides to the programmer
a big amount of �exibility and power for operating in system's socket interface.
It is easy to notice all the similarities between C and Python that in the network
programming o�er the same socket services. Having said this, it is time to give
a look at the basic client and server written in Python.

By using the module btsocket, both clients and server have to de�ne on which
network are ready to operate.

apid = btsocket.select_access_point()

apo = btsocket.access_point(apid)

btsocket.set_default_access_point(apo)

apo.start()

After looking at a list of all the possible network usable by the phones, an
user (or it is possible automatically) should choose the same network on both
sides. On that one, a UDP connection will established by using the object
socket.

client = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_DGRAM)

The socket represents an extension to the operating system's I/O system
that enable communication between processes and machines. In the de�nition
of the socket, as we can see, it is necessary to de�ne the communication type and
the protocol family. The communication type speci�es the underlying protocol
used to transmit data. Example of protocols are IPv4(the most common), IPv6
(latest Internet standard), etc. The protocol family de�nes how data is trans-
mitted: it is necessary to specify then which transport protocol is used. For our
application the communication type is AF_INET (corresponding to IPv4) as
de�ned in the parameters of the Access Point previously installed whereas the
protocol family is SOCK_DGRAM, typically used for UDP communications.
(SOCK_STREAM is the one for TCP). To use well the socket, it is necessary
to provide a tuple containing the remote hostname or the IP adress and the
remote port. By reminding the purpose of this script the server transmits on
broadcast (255.255.255.255) whereas the clients receive each messages incoming
from the network (0.0.0.0). The port, de�ned on both phones, to make the two
transport layers communicating, should be of course the same.

Once de�ned these parameters, the most is done. No needs to establish a
connection means that the server can already start to broadcast data.

server.sendto(data, ("255.255.255.255", port))

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 32

Of course data should be sent with forethought: it should not have a dimen-
sion too bigger and in case it is divided in more packets, it should be sent with
a rate sustainable from the channel. Next paragraphs will argue that. Anyway
for best match with hardware and network realities, the value of data should be
a relatively small power of 2, for example, 1024.

A similar script is realized in the client where a loop is establish to check
though the net, looking for some incoming packet.

client.bind((host, port))

(data, address)=client.recvfrom(buf)

After binding a speci�c host, or all the network, as in our case, the receiver
with a simple instruction can manage the connection. Actually this function re-
turns just two pieces of information: the received data and the address and port
number of the application that sent the data. Because UDP is connectionless,
this is all it is needed to be able to send back a reply.

3.5 Packet loss

By sending packets between devices in order to make a reliable audio streaming,
it is important to focus to the spatial correlation of packet losses between nodes
in a single hop network, how the performances change increasing the transmit
power and which are the di�erences between a communication in Line of Sight
(LOS) and Non Line of Sight (NLOS).

Figure 3.3: An example of the network discussed in the text

Before talking about the problems just described, it is important to see how
the correlation packet losses engrave on an application like ours. As done in

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 33

[1], we can consider a scenario in which one sending node denoted s, multicasts
data to two nodes (n1 and n2) that, after receiving, send each one those packets
to other di�erent node (n1 to n3 and n2 to n4). Let us call p1 and p2 the
probabilities than n1 and n2 do not receive data in a perfect way. If the
individual loss probabilities are reasonably low, as we hope, we have a very
small joint probability that both receivers loose the same packet given by p1p2.
Let assume that there is no correlation between the losses of n1 and n2. Then,
one protocol possible to make the net e�cient is to make n1, if the packet does
not arrive in it, waiting the time that n2 spends to transmit the packet to n4. Of
course, this protocol is completely useless in case there is correlation between
the losses of n1 and n2. In this last case, the probability of common loss is
greater than p1p2.

In past researches, a certain degree of packet loss correlation between devices
was proved. But all the papers do not take account of the data lost due to
over�ow in the sending node bu�er.

3.5.1 Experimental results

By building a grid of nine receiver devices, NOKIA N95s, running Symbian OS
9.2 (the same we are going to do use in our application), [18]with the Table 3.1
describes how the data rate and the loss probability change increasing the power
of the multicast transmitter (an Access Point that transmits 10000 packets of
1400 B) in a LOS and NLOS scenario. In the last row the parameters are shown,
after removing the break time between the transmitting of the packets.

P Time Space Line of Sight Non Line of Sight

[mW] [ms] D L D L

[Mbps] [%] [Mbps] [%]

1 4 1.82 33.0 1.82 33.0
5 4 1.63 40.0 1.90 30.2
20 4 1.80 33.7 1.95 28.1
30 4 1.71 36.9 2.08 23.4
50 4 1.51 44.4 1.87 31.1
50 0 2.29 88.9 2.29 89.0

Table 3.1: Data rates and packet losses for the receivers in the cluster at di�erent
test conditions.

What can we notice from this table? The Data rate in the LOS scenario
is less than the NLOS' one whereas the losses in the LOS scenarios are big-
ger than in NLOS' one. From the last row, we can point out that, by sending
packets continuously, the nodes losses approximately three times the number of
packets compared to the measurement where the server pauses (4 ms spacing)
between each packet. By using the Kullback-Leibler distance, [18]makes a com-
parison between the Probability density function (pdf) under the assumption

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 34

of independent loss probability and the estimated pdf found from the collected
data.

Figure 3.4: The theoretical and measured probability of di�erent number of
erasures for a packet transmitted to the cluster. The punctured line is the
theoretical probabilities under the assumption of independent erasure processes,
the solid line is the estimated probabilities found from the collected data.

As we can see, if the transmit power is not smaller than 5mW, the correlation
packet losses is negligible, in the case in which the nodes are not more than 5.
There is no big di�erence whether there is LOS or not. That is a good result
because our kind of application cannot be compulsory to a speci�c topology.
It is completely random. Then, it is possible to notice that by increasing the
number of nodes, the correlation increases as well, as we can see from the �gure:
the curves are actually further. [18]tries afterward to �nd some con�rmation of
the previous results going to change the position of the devices in the grid, but
it founds out that some devices have considerably worse characteristics than
others.

3.6 Testing the performance of the phones

After having looked at a general analysis about the performance of the phones,
in this section it will be shown results of some tests made in order to �nd the
best con�guration of the network. That one will be used afterward for the
implementation of the algorithm able to realize synchronization. Each test will
be introduced by a table able to resume all parameters necessary to de�ne the
background in which the test has been done.

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 35

3.6.1 Testing the packet loss

In this �rst test, the performances of the phones are shown in a situation of
not stressing mode. It has been known that such devices can achieve a good
transmission characterized by a rate of 100 kb/s. In this test, the requested rate
is just 2 kb/s. Therefore optimum performances are expected.

Number of packets 900
Dimension of packet 2233 bytes
Number of server 1
Number of clients 9

Distance server-clients 4 m
Characteristics channel LOS

Rate 2168 Bytes/s
Duration test 15'27�

Table 3.2: Description of the parameters necessary to describe the �rst test

Results

Figure 3.5: Number of packets received by each phone in the �rst test.

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 36

Figure 3.6: The matrix shows how many phones received each single packet in
the �rst test.

As it is shown in the previous graphs, generally all the phones reach very
good results by receiving more than 95% of the transmitted packets. Anyway,
it has been veri�ed that some phones can have bad performance even in such an
easy trial. Some phones in other tests, not shown, did not receive at all. In that
case the reset of the phone was necessary to make the phone receiving again.
As proved already in the previous section of chapter, the performances of the
phones in the network depends on the phone themselves. By giving a look to
the second graph, there are packets lost by the most of the phones: the reason
can be found in some external interference. It has not been veri�ed any multiple
reception of the same packet. As the protocol establishes, no fragmented packets
has been received.

3.6.2 Performance as function of the distance

In the second test, the parameters of the previous one are kept by changing the
distance between the server and the clients. Actually it has been increased from
4 meters to 20 meters by using a linear shifting.

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 37

Number of packets 900
Dimension of packet 2233 bytes
Number of server 1
Number of clients 9

Distance server-clients 4 m - 20 m in linear scale
Characteristics channel LOS

Rate 2168 Bytes/s
Duration test 15'27�

Table 3.3: Description of the parameters necessary to describe the second test

Results

Figure 3.7: The matrix shows how many phones received each single packet
in the second test. The x-axis can be associated to the single packet and the
distance. For example the packet n.1 has been sent by server far 4 meters from
the clients, the packet n.900 at 20 meters.

In this second test, as expected, it is shown the worsening of the performances
of the phones by increasing the distance. Anyway, this weights upon just when
the distance is already greater than 15 meters. In the next chapters, it will
be clari�ed that the request of a synchronization for this kind of application is
requested for a range smaller than 15 meters. It needs to be speci�ed that such
results should be referred to very low rate. By increasing the rate, the results
gets worse.

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 38

3.6.3 Performance as function of the size of the packet

In this subsection, a very delicate problem is brought up: the dependance of
the performance of the phone on the size of the packets when a certain rate
is requested. This problem is analyzing a crucial situation needed to improve
de�nitely the functionality of the application, goal of this report. As already
mentioned, it has been proved that a rate of 100 kb/s is achievable by the phones
on which the application is tested. It this context, the following problem is
proposed: the research of the best size of the single packet in order to minimize
the packet lost by the phones, in order to establish a rate of 44,1 kb/s. To send
44100 bytes each second, three possibilities are proposed:

� 20 packets of 2233 bytes

� 30 packets of 1470 bytes

� 35 packets of 1260 bytes

These sizes have been chosen because they are exactly divisors of the amount
of bytes needed to send in one second.

First case Second case Third case
Number of packets 5000 5000 5000
Dimension of packet 2233 bytes 1490 bytes 1280 bytes
Number of server 1 1 1
Number of clients 4 4 4

Distance server-clients 4 m 4 m 4 m
Characteristics channel LOS LOS LOS

Rate 44100 Bytes/s 44100 Bytes/s 44100 Bytes/s
Duration test 2'24� 2'24� 2'24�

Table 3.4: Description of the parameters necessary to describe the third test

Results

Next table shows the results.

First case Second case Third case
Phone #1 58% 30% 98%
Phone #2 78% 43% 99%
Phone #3 39% 42% 97%
Phone #4 35% 26% 96%

Table 3.5: Description of the result of the third test

CHAPTER 3. UDP PERFORMANCES IN AD HOC WIRELESS 39

The test shows ambiguous results that are not easily interpreted. Two factors
should be taken in account: the dimension of the packets and the number of
loops requested by each phone per minute. It can be �gured out that when
a phone is increasing the operations, while receiving, generally it drops some
incoming packets. However, at the same time, when it is managing less data,
it have less problems to receive packets. Having said that, the second case is
probably representing the worst case because the packets per second are pretty
a lot and, overall, the size of each packet is close to 1500. This critical size
creates fragmentation. That is why there is a big di�erence between the second
and third case.

The Maximum transmission unit (MTU) represents the maximum dimen-
sion in bytes of the protocol data unit. Each layer of the ISO/OSI stack seen
previously can impose a di�erent MTU. These limitations are due to several
reasons, dependent on the layer [3]:

� Hardware (e.g., the width of a TDM transmission slot).

� Operating system (e.g., all bu�ers are 512 bytes).

� Protocols (e.g., the number of bits in the packet length �eld).

� Compliance with some (inter)national standards.

� Desire to reduce error induced retransmissions to some level.

� Desire to prevent one packet from occupying the channel too long

In our case, the transport layer is needed to be taken up. The server tries
to transmit per each fraction of second some data (1490 bytes in the second
case, 1280 in the third one, by considering the header added to characterize the
UDP packet). The transport layer takes data streams and breaks them up into
datagrams. In theory, datagrams can be up to 64kb each but in practise they
are usually not more than 1500 bytes. Because the �rst value is very close to
this limit, the probability of some fragmentation is very high. Therefore, each
client, to perform a good reception, has to work twice.

3.7 Conclusion

In this chapter an approach to an UDP connection working in MANET has
been made. After showing how such a network can be implemented by Python,
the code chosen to work out on Symbian smartphones, its performance has been
analyzed. The performances of the phones in the network depends on the phone
themselves. Some phones can stop to receive suddenly without precise reason,
so the reliability is not always guaranteed. Anyway, in the short distances
requested by this application (less than 10 meters) and by choosing the right size
of the packets for the rate requested, the phones can o�er very good performance.

Chapter 4

AUDIO ENGINE

4.1 Preface

In the previous chapters an analysis of the project and the composition of the
stack were made. The �rst chapter does not talk about a speci�c data and,
because of that, it can be associated to several problem of streaming. In this
chapter, instead, the report wants to investigate more about the audio streaming
and how to use practically all the protocol described before. The choice of the
audio codec will be analyzed and how it stores data into a �le. Afterward it will
be shown a way to stream audio on Python application.

Figure 4.1: The ISO/OSI stack of our application

4.2 Problem analysis: Audio codec

By using network devices such as phones, just the most common audio codec are
analyzed in this paragraph. Before going in the description of the standards, it
is necessary to specify why we must talk about audio compression. Every audio
�le is composed by a number of bits that represent the information and these

40

CHAPTER 4. AUDIO ENGINE 41

bits take up space in the memory of such a net device. The compression is then
necessary to save space in those memories and save time during a transmission.
The composition of the strings of bits that describe a media �le are closely
related with time. Actually every subsequence of bits, long one second, is able
to reproduce a sound. The bitrate is de�ned as the number of bit transmitted
necessary to reproduce a sound for one second. During the reproduction of
an audio �le the bitrate is not necessarily constant. The purpose of the audio
compression is to reduce the bitrate, leaving unchanged, or almost unchanged,
the quality of the �le. How is this possible? Let's make an example just to make
clear that these algorithms are achievable. Every audio �le is characterized by a
certain band in frequency. By considering the interval of perceptible frequencies
from a human being (16 Hz � 20 kHz), it is useless to take account of all the
component of frequencies out of this band.

4.3 Setting aside the MP3 format

MP3 format is the most spread audio format because of its low data rate and
because of the small dimension of the audio �le. Although not a streaming
format (it is for download then play), most popular codecs can be used to wrap
MP3 �les for streaming. The main reason is the architecture on which this kind
of format is based. By dividing the sound �le in several packet it can happen
that an useful information to play a speci�c istant of time is contained in more
than one packet. By using UDP, the right reception of all the packets is not
assured. So, in the case of lack of one packet in the receiver, the sound spread
by the phone can be a�ected by noise.

4.4 Digital audio compression: PCM

One of the compressed audio we are going to consider is the PCM, the pulse-code
modulation that represents the basis of digital audio. The main characteristic of
this format is the possibility of reproducing sounds of any raw chunks even if they
are a�ected by some errors. That is possible because of the linear compression
of the sounds.

To obtain a PCM audio �le a simple analog to digital conversion is done.
The voltage generated by a microphone is sampled at regular intervals, after
a processing in a low-pass �lter. Then, the sample values with a quantization
are turned into a digital code word. This kind of audio format, as already
mentioned, uses a �xed step value for the quantization levels.

Sampling

The sampling rate is set by the desired frequency response. The Nyquist criteria
dictated that the sampling frequency should be greater than twice the highest
frequency captured by the microphone. Telephony has an upper limit of 3.2

CHAPTER 4. AUDIO ENGINE 42

kHz; a sampling frequency of 8kHz is used. Broadcast audio is usually limited
to 15 kHz; this requires a sampling rate of 32 kHz. By increasing the sampling
rates, the reproduction is more similar to the original.

Resolution

The number of the levels used by the process of the quantization determines the
resolution. The minimum step value sets the noise �oor of the converted signal.
Using 8 bits to represents a level of quantization, it is possible to represents just
256 levels. By increasing the number of bits, the resolution will increase. Pro-
fessional users usually demand resolution of 24 bits, equal to almost 17millions
of levels.

Audio channels

Audio can be transmitted in a single channel or can carry spatial information in a
multi-channel format. For instance, stereo is very popular; it is enough to think
about the two loudspeakers that each PC audio system uses for reproduction.
In a compression, it is usually common to remove stereophonic irrelevance that
is redundant information in both left and right channels.

4.5 The frame of a PCM audio �le

In this paragraph it will be explained in details how is composed the frame of a
PCM �le that is a speci�cation of the WAVE format. [6]

The Microsoft Waveform Audio (WAVE) �le format is a subset of Microsoft's
RIFF speci�cation for the storage of multimedia �les. A RIFF �le starts out
with a �le header followed by a sequence of data chunks. To be read by CD
players directly the data of a wav �le should be encoded in PCM; this should
help even to reduce the size of the �les.

By opening and reading a WAVE �le with Python, it is possible to mark
all the sub chunks in which it is divided: a WAVE �le is often just a RIFF �le
with a single "WAVE" chunk which consists of two sub-chunks: a "fmt " chunk
specifying the data format and a "data" chunk containing the actual sample
data.

CHAPTER 4. AUDIO ENGINE 43

CODE in hexadecimal Bytes Field name

The �RIFF� chunk descriptor

RIFF 4 ChunkID

Contains the letters "RIFF" in ASCII form
(0x52494646 big-endian form)

\x1c\xb6\x1c\x00 4 ChunkSize

This is the size of the rest of the chunk following
this number. This is the size of the entire �le in
bytes minus 8 bytes for the two �elds not
included in this count: ChunkID and ChunkSize.

WAVE 4 Format

Contains the letters "WAVE" (0x57415645
big-endian form).

The �fmt� sub � chunk

Fmt 4 Subchunk1ID

Contains the letters "fmt " (0x666d7420
big-endian form).

\x12\x00\x00\x00 4 Subchunk1Size

16 for PCM. This is the size of the rest of the
Subchunk which follows this number.

\x01\x00 2 AudioFormat

PCM = 1 (i.e. Linear quantization) Values other
than 1 indicate some form of compression.

\x02\x00 2 NumChannels

Mono = 1, Stereo = 2, etc.
D\xac\x00\x00 4 SampleRate

8000, 44100, etc.
In this case it is 44132 Hz

\x10\xb1\x02\x00 4 ByteRate

SampleRate * NumChannels * BitsPerSample/8
In this case it is 176400 byte/s

\x04\x00 2 BlockAlign

NumChannels * BitsPerSample/8. The number
of bytes for one sample including all channels.
In this case it is 4

\x10\x00 2 BitsPerSample

8 bits = 8, 16 bits = 16, etc. In this case it is 16
\x00\x00Fact\x04\x00
\x00\x00g-\x07\x00

(..) Extra parameters

The �data� sub � chunk

Data 4 Subchunk2ID

Contains the letters "data" (0x64617461
big-endian form).

\x9c\xb5\x1c\x00 4 Subchunk2Size

NumSamples * NumChannels * BitsPerSample/8
This is the number of bytes in the data. You can
also think of this as the size of the read of the
subchunk following this number

\x00\x00\x00\x00\(..) (..) Data

The actual sound data.

Table 4.1: How is organized the frame of a WAVE �le

CHAPTER 4. AUDIO ENGINE 44

4.6 The module Audio Stream

After de�ning all the main parameters useful to de�ne a PCM �le, it is im-
portant to think a way to reproduce this sound incoming from the network.
By talking just about PCM and generally about WAVE �le, Python supports
the wave module. It provides a convenient interface to the WAV sound format
and even if it does not support compression/decompression, it is useful anyway
in our case by using PCM, lacking in any kind of compression.

The module just mentioned works by giving to it just the data chunk of the
WAVE �le before described. Actually it takes all the parameters necessary to
read such data by initialing a Wave_write object. In that object, it is necessary
to set:

� the number of channels

� the sample width

� the frame rate

� the number of frames

� the compression type and description. But at the moment, only compres-
sion type NONE is supported, meaning no compression. Probably in the
next future, it will be improved.

This kind of module is therefore able to read just frames of sound (even if they
are not correct through the function writeframesraw(data)).

Though this code was working quite well, in that project it has been used
another module located at this web address: http://mobdevtrac.es.aau.dk/..

..symbian-util/browser/trunk/util_audiostream_pyext .
It was made this choice for two main reasons: for the greater quality of the

output of this second option and because of its �exibilty about having in input
also other audio format.

The utility Audio stream, based on Symbian C++, is actually able to read:

� MP3

� AAC

� PCM

� AMR

without needed of any remotion of the headers. It can recognize whether the
bytes contain audio or just some informations about reproducing the �le. It is
able to read �le characterized by Mono or Stereo Channel and it can accept as
input several values for sample rates standard value from 8000 Hz to 96000Hz.

CHAPTER 4. AUDIO ENGINE 45

Another important option of that module is the possibility to set the volume
of the reproduction by interacting directly with the audio unit, located in the
CPU of the S60.

This module is composed by four functions that, interacting, are able to
sound. After de�ning an object by setting all the parameters described before

audio=utilaudiostream.AudioStream(...)

the audio will be launched by the function

audio.open()

This call-instruction will awake the other functions, opportunely de�ned
before in the code. The functions play_open and play_data will manage the
function write_chunk that is the one designed to send data into the player,
having inside the instruction:

audio.write(buffer_of_data)

It is discussed in the next section the quantity of data that should be put as
input of this instruction and how many times the functions should be called to
avoid waste of time. It is important to specify that the variable buffer_of_data ,
representing the chunk of sound next to be played, must be a string of chars.

When all the data has been spread as sound or some error is occurred, the
function play_stop is launched to close the object audio.

4.7 Disquisition about time of reproduction and
time of implementation

In according with the implementation of the player, it is important to analyze
how the time of recharge can make slow the reproduction of the sound. Before
testing the player for analyzing several situations, it is necessary to specify what
time of recharge means. The sound that the player is suppose to reproduce is
contained in a string of bytes. Because of the streaming, at the beginning of
the reproduction, the player has not got yet all the data that is supposed to
play in the next seconds. So, after de�ning an interval of bu�ering, the player
should get those bytes from a bu�er and spread them as sound. Afterwards
this operation must be repeated each time that the function write_chunk has
completed its role. So, in the end of the reproduction of each chunk, the player,
in a time called by us �time of recharge�, takes back other sound from the bu�er,
organize it in a string and starts to reproduce it again.

CHAPTER 4. AUDIO ENGINE 46

In according on the purpose of this project, it is extremely important that
the player located in one of the client works at the same way of the player
located in the server. Actually each kind of di�erence can determinate a delay
of some milliseconds, that accumulating, can be noticed by the human ears. In
the next sections, it will be analyzed how to prevent such problem by testing
some possibilities o�ered by Python structures.

As already described previously, a player, that has got all the data when is
launched, puts all the data in a variable by storing it as a string of char. This
situation is, for instance, the one of the server. By the function write_chunk,
after de�ning a constant value for the dimension in bytes of the chunk, the
player starts to reproduce the stored data, by taking chunk by chunk from the
string. So, each time that a chunk has been played, the player takes another one
from the string de�ned at the beginning. It is important to specify that each
time of recharge the player does not reproduce any sound. So it is necessary
that it is pretty short compared with the time used by the player to reproduce
a chunk of sound unless the sound will be characterized by bothered noise and
visibly slowed.

4.8 How to manage missed packets in the player

As already mentioned several times, UDP protocol is the one chosen at the
transport layer. This protocol does not give any assurance on the right reception
of all the packets sent by the server. It is necessary therefore to think about a
solution for a certain problem that will be showed up in the application: how to
manage the synchronization about more mobile devices if some packets are lost
just from few of them? The problem just described is one of the main of this
project. This paragraph will try to give a solution for such a problem in the
case of constant sample rate. The PCM audio format, described in this chapter,
is an example of that; the MP3 instead cannot be involved in this disquisition.

By using an audio format with a constant sample rate, it is sure that by
dividing the audio in many packets of the same dimension, each of them carries
the same amount of time of sound. Thinking about the possibility to have
some losses in the reception of the incoming packets, two strategies should be
taken in consideration. Because of the ID header, placed in each packet, it is
possible to check whether some of them is got lost. So, the �rst idea can be
to interrupt the reproduction of the sound until the arrival of the next right
packet. Of course, this interruption should be measured very carefully to keep
on the synchronization with the other audio devices. Another option can be to
replace these packets with others with the same dimension and characterized by
an array containing just zeros. By inserting such packets in the audio player, it
has been proved that no sounds is reproduced as long as the time of the sound
contained in the lost packets.

CHAPTER 4. AUDIO ENGINE 47

This last option in according with the tests done in the implementation of
this application is preferred. It has been proved that by replacing even the 33%
of the packets in the original �le with these �silence� ones, the music spread
by the phone seems to be undistorted. Of course that assumption is true by
considering a small dimension for each packet (less than 1.5 Kb) and by assuming
this replacing in packets spaced in time. The �rst option should be abandoned
because it depends strongly on the time used by the code to make the player
working again: these deviations can severely a�ect the synchronization. The
second option even though assures a good listening by losing a considerable
number of packets, cannot avoid a bad reproduction if the losses are too many.
But, anyway, it can assure that the synchronization is kept because the player
continues to manage chunks of the same kind of before. This strategy is unusable
by managing MP3 �les, as already told, because of the inconstant sample rate
and the organization of the �le into the bu�er. In according with what has been
said, the best idea would be to have a bu�er already prepared in the receiver, in
which all the silence � packets are placed. By thinking with a reverse philosophy,
when a right packet is come, it will replace the fake packet in the bu�er, by
taking the exact place it is supposed to have.

4.9 Strategies to bu�er data

After discussing about the utility of a pre-saved bu�er able to interact with the
player, it is necessary, to avoid delay, that the server and clients have the same
algorithm to manage the player.

Both players should have ready for interacting a pre-built bu�er:

� a bu�er containing all the �le audio into the server one

� a bu�er containing silence - packets, ready to be eventually replaced from
the incoming packet, in the client ones

Python o�ers several ways to store data in the memory.
A �rst option to solve this problem is proposed by taking a char variable as

bu�er of our application. It is easy to think about that because the function
audio.write(), as already said, accepts as input just char strings.

After de�ning this string, the player, by means of a shifting function of
Python, is able to take and read just the data chunk of a desired dimension.

audio.write(string[counter:counter+dimension_packet])

Previously of course, that variable should be updated while receiving new
packets from the network. In the next chapter it will be shown how to assure
that a packet arrives in a client before that its content is supposed to be sent in
the player.

While the player of the server is supposed to take chunks from the original
string by a shift, the client must modify the original string each time that a

CHAPTER 4. AUDIO ENGINE 48

right packet comes from the network. The problem of such implementation is
the weight of this operation in the CPU of the mobile devices.

The char variables in Python are de�ned as immutable. Because of that,
each time the receiver wants to replace a silence - packet previously stored with
a new one just arrived, it has to manage three variables of several Mb that are
extremely heavy for the execution of the code. Actually the memory of the
phone cannot manage such a code.

A second option o�ered by Python is the use of the list. In such structure,
Python allows to store any kind of data (strings, numbers, etc) in a certain
position, marked with an index. This kind of structure can be useful in such
situation by placing each chunk, carried by a packet, in the list at the index of
the same value of the ID indicated in the header of the packet.

It will be easy for the player by manage this situation by calling in the
function audio.write() an element of the list for time:

audio.write(list[i])

It has been already discussed in the previous chapter about the dimension of
the data that a packet can carry. By considering that assumption, this option
must be discarded: the sound contained in each chunk, carried by a packet, is
as long as the time of recharge of the player. Because of that, the sound spread
by the player is a�ected by noise.

Fortunately it is easy to solve this problem. It is enough to create a string
in the write_chunk function each time and put it as input of audio.write():

d=list[i]+list[i+1]

audio.write(d)

By doing that, the time of execution increases as much as the di�erence with
the time of recharge: the sound is perfect.

4.10 Interleaving as prevention against interfer-
ence

In previous sections, it has been discussed about the good e�ciency of using �si-
lence� packet, in order of a good listening even though lost packets in reception.
This assumption, as mentioned, is true if the lost packets are not adjacent. Ac-
tually, by replacing two or more packets in a row (bursty losses) with �silence�
ones, the quality of the sound gets worse quite quickly. A solution to solve this
problem should be found to avoid situations in which some strong interference
is able to decrease the instantaneous SNR of the channel.

A way to solve such a problem is suggested by a technique used in several
application of the mobile communication world: the interleaving. This tech-

CHAPTER 4. AUDIO ENGINE 49

nique, inserted for instance in the protocol of the ADSL, is a �cheap� way to
prevent situations described previously. An example can help to describe this
technique.

In a network, a transmitter has the duty to transmit the message:

A B C D E

As �rst prevention against possible errors of the network, a repetition code
is used:

AAAAA BBBBB CCCCC DDDDD EEEEE

The decoder in the receiver is able to get the sent message by using a majority
decision:

AAxxA BBxBB CCxxC xDxDD EExxE

The same decoder falls in trouble when an interference is concentrated:

AAAAA BBBxx xxxxx xDDDD EEEEE

The interleaving can avoid such situations. How? It shu�es the characters of
the message in a precise order that the receiver knows. Instead of transmitting
the normal sequence, it will be transmitted

ABCDE ABCDE ABCDE ABCDE ABCDE

This time the message is immune to the interference previously described

ABCDE ABCxx xxxxx xBCDE ABCDE

by replacing the letters in the right order

AAxxA BBxBB CCxCC DxxDD ExxEE

The previously message is decodable by the decoder.

By following the same approach, the problem of the adjacent lost packets can
be decreased. By taking sequence of N sound packets from the bu�er located in
the server, the block of interleaving will divide them in N subsequences. These
ones will constitute new packets that will be recomposed in the receiver.

Even in this case an example can help. A sequence of 10 packets of 1300
bytes each is taken from the data-bu�er. Each packets is fragmented in 10

CHAPTER 4. AUDIO ENGINE 50

subpackets of 130 bytes. These ones are collected to recompose 10 new packets
with this criteria:

� new packet #1 = [sub#1-packet#1]+[sub#1-packet#2]+...+[sub#1-packet#10]

� new packet #2 = [sub#2-packet#1]+[sub#2-packet#2]+...+[sub#2-packet#10]

� (...)

� new packet #10 = [sub#10-packet#1]+[sub#10-packet#2]+...+[sub#10-packet#10]

By assuming of losing the packets #5 and #6 for instance, the silence long 1300
x 2 bytes is avoided this time. Actually, by using interleaving, each packet will
have in the middle a silence long 130 x 2 bytes, not hearable from human ears.

In conclusion, it is possible to con�rm the utility of this technique. Inter-
leaving actually helps the communication against bursty losses, and it is �cheap�
because the extra bandwidth requested for this technique is equal to zero. The
only disadvantages is the increasing of the latency of the channel because of the
time of decoding into the clients.

4.11 Conclusion

In this chapter an Audio engine to broadcast music by the tested mobile phone
has been presented. After discussing the module �wave�, available on latest ver-
sions of Python, the utility Audio stream has been introduced. The possibility
of streaming a PCM �le has been analyzed by talking about each tricky as-
pect and managing all the problems presented. A �rst approach of the problem
of the synchronization has been done in regard to the correlation between the
player and the receiver of a possible client. This problem will be solved com-
pletely in the next chapter with a formulation of an algorithm able to manage
a synchronized audio on several mobile devices.

Chapter 5

SYNCHRONIZATION

5.1 Preface

By using wireless devices, it is pretty hard to make an application able to syn-
chrony them, in regard to their possible movements and their several starting
positions. As already done in several application, it is easier to manage the prob-
lem, by handling with some default scenarios. In these ones, the propagation of
the sound is considered and the possible �hearable� echoes.

� The �rst scenario can be represented by the position of one people in an
environment in which two speakers are present. The investigation is done
in regard to the distance between the person and the speakers.

� The second scenario is described with couple of people, far each other, but
owning each one a speaker, represented for instance, by a Nokia phone. It
is examined the delay that one reproduction should have, if it would reach
a sync with a di�erent speaker already playing.

� In the third scenario, a complication of the second one is done. Actually
at the second scenario a big stronger speaker is added. The investigation
is done considering the e�ect of this new loud speaker on the previous
considerations.

In these possible scenarios some assumptions are done. The position of the
devices, for example, is found with GPS applications. By transmitting data in
streaming, two possible causes of the delays are considered: the delay of the
incoming stream to the receiver due to the channel propagation, the adding
delay to make the sync when devices are pretty far. In this chapter these
situations will be discussed and will be proposed an algorithm in which each
delay previously mentioned is supposed to be approximately zero, not hearable
by human ears. The �rst problem is now, how it is possible to de�ne two devices
far and when a delay is not hearables from human ears..

51

CHAPTER 5. SYNCHRONIZATION 52

5.2 Haas E�ect

In the 1946 a German doctor, Helmut Hass, analyzed how the human brain
and ears can percept incoming sounds from di�erent sources and the cases in
which these sources are heard as only one. He realized several studies on the
phenomenon and pointed out how the magnitude and the delay between di�erent
incoming sources are related to feel echo.

By thinking about this e�ect of fusing sounds, we should not be surprised.
Actually from the beginning of the 20th century a similar e�ect is the fortune of
the success of the cinema: our eyes fuse a series of sliding pictures, giving us the
impression of continuous movement. To avoid to see the �icker 16 pictures per
second should be placed (62 ms interval). Haas gave us similar considerations
about sounds. Feeling echo is just a perception of independent incoming sounds.

Haas, as resumed in the next graph, found that in the 5 to 35 msec delay
range the sound for a delayed loudspeaker has to be increased more than 10dB
over the main one before it sounded like an echo [21]. Of course, by increasing
the delay, the over-magnitude of the second source can decrease.

Figure 5.1: Haas curve: allowed level increase for secondary source as a function
of delay

5.2.1 Test

In order to analyze the scenarios previously described, from [22] an interesting
test is excerpted to prove the Haas e�ect. The test consists on playing at the
same time a music �le on two di�erent devices looking for the distances in which
the human perception feels two di�erent sounds. To evaluate the perception
�ve di�erent intervals have been de�ned, far 4 m each. By following the same
structure of the previous graph, 20 m are necessary. Actually 4m correspond to
11,63 ms of delay and so, 20m to 58.15ms.

CHAPTER 5. SYNCHRONIZATION 53

Figure 5.2: Graph of results with regard to the test described in [1]

The previous graph shows the results obtained in the text after experiment-
ing with several individuals. For a distance of 4m, all the group perceives only
one device. In 8 meters, some individuals start to perceive some echos that
becomes clear at 12 meters. Even though, at this distance the perception of the
sound is still satisfactory. By increasing the distance, the asynchronisms gets
more perceivable.

5.3 Scenarios

After explaining which acoustic phenomena we can have by talking about syn-
chronization, we can handle with the scenarios previously described.

5.3.1 Double side - scenario

As already mentioned, this scenario is represented by one person and two speak-
ers in an environment.

Figure 5.3: A representation of the �rst scenario

One parameter very important in a such scenario is the distance between
the two speaker and the position of the person between them. As the previous
test suggests us, in the hypothesis that the speakers play at the same volume,
starting the song at the same time, the position of the person is not relevant if

CHAPTER 5. SYNCHRONIZATION 54

the distance d is not greater than 8 meters. Actually, even if the person is very
close with one device, the echo is just perceivable. So, in the case one device
has been already playing, it can send audio streaming make the second device
play as if somebody would have pressed the button �play� on the devices at the
same time.

An example can make the concept easier. To have synchronization, it should
be known the delay τ that data spent to arrive from one device to the other
one by crossing the network. Besides, it is important to de�ne a delay τe that
represents the time of elaboration that a device spends to make the incoming
data play, since when it is received. In the end of this chapter it will be analyzed
the amount of such parameters. After de�ning those, it is easy to solve the
problem. If, after playing t0 seconds, a device wants to join on �y another
already playing, it should start to play data with a delay of (τ +τe). (Solution
1)

What happens if the distance between the speakers increases? Or to be more
precise, when τ increases. If the position of the person is exactly in the middle
between the devices, nothing change! But if this doensn't happen, what we
have said is not right anymore: the reasons are pretty easy to get. By repeating
the same instructions, we will make the same situation has been in the Haas
test, previous described. So, if the person is close to one device, even though
the devices are exactly playing at the same time, the echo will be evident. How
to solve this situation? Hard to answer because, this time, the position of the
person is fundamental. One solution can be to increase the volume of the device
further from the person, by following the Haas graph; a di�erent way can be to
consider even the propagation of the sound until the ears of the person. How?

τ1represents the time elapsed between the starting of the reproduction of the
�rst device and the beginning of listening that sound from the person.

τ2represents the time elapsed between the starting of the reproduction of the
second device and the beginning of listening that sound from the person.

4τ is the di�erence between these delays: of course 4τ can be greater or
not than 0, depending on the distance between the devices and the person.

If there is a way to calculate this parameter, our problem is solved. Actually,
as discussed previously, to have a precise solution, it is necessary to apply the
same system before established, by adding τ +τe to the value . (Solution 2)

5.3.2 Personal speaker - scenario

As already mentioned, the second scenario is described with couple of people,
far each other a distance d, owning each one a speaker.

CHAPTER 5. SYNCHRONIZATION 55

Figure 5.4: A representation of the second scenario

By following the same path done in the scenario n.1, it is easy to point
out that if the distance d between the people is in a range not greater than 8
meters, the solution 1, described previously is working, whatever the volume of
the speakers. Instead, if d increases, the situation gets worse. Why? As the
image shows, �A� and �B� represents the two people, placed near the speakers
�a� and �b�. If �a� is already playing and wants to install a sync with �b�,
we can use the solution 2 already used previously: in this way �B� won't have
any problem to listen just one sound. What about �A�? He doesn't get any
sync, because the delay, established to shift the reproduction of �b� in sync, has
seen instead from �A� as a burdened delay between the two sound. Unluckily
anything is possible to do to solve the situation, because, by decreasing the
delay of the solution 2, we are going to improve the sound listened by �A�, but
we get worse the one listened by �B�. The synchronization looks like impossible.

It can be useful, to hear less the di�erence between the two sounds, trying
to decrease the volume of the two devices: but in this case, each person will
just hear his own speaker. Because of that, by following this suggestion, the
problem described is solved if the distance d between the two speakers is much
greater than 8 meters: the attenuation of the wave of sound will hide the bad
sync between the devices.

5.3.3 Concert - scenario

As already said at the beginning of this chapter, the third scenario is just a
complication of the second one. Actually, by adding a loud speaker in the
second scenario, it appears like a complication but instead, it can represent the
solution to our previous problems. It is like that, because the loud speaker, with
a stronger volume of the other ones, can hide the problem seen before.

CHAPTER 5. SYNCHRONIZATION 56

Figure 5.5: A representation of the third scenario

In this new situation each �normal� speaker must try to have sync with the
loud one and it is possible by applying the solution 1 and 2, in depending on
the distance di that separates the �i� speakers from the big one. By considering
the scenario n.2, i = 1, 2 , but the concept can be extended to other situation
with more devices.

After installing this sync, for sure possible, between each speaker and the
loud one, it doesn't matter that between the speakers �a� and �b�, as seen before,
cannot be sync: each person should hear just the loud speaker and the one close
to them.

The only problem we can consider is this: the device connected to the loud
speaker can make a broadcast streaming to install the sync with all the devices,
or it should reserve a �private� streaming for each device? Of course, the broad-
cast is possible if the range that describes the distance between all the devices
is less than 8 meters. In the other case, the broadcast is not possible.

5.4 Algorithm for synchronization

As already mentioned in the preface of this chapter, an algorithm of synchro-
nization of an audio streaming is here presented. This algorithm does not take
in account any delay caused by the latency of the channel. It results to work
with mobile devices closed in a circle of ten meters of diameter. Because of the
unidirectional �ux of information from the server to the clients, the number of

CHAPTER 5. SYNCHRONIZATION 57

phones able to sound at the same time is limited just by the dimension of the
ad-hoc network.

The main criteria on which is based this algorithm is the equality between
the sending rate and the playback rate. Actually by sending packets at the same
rate in which they are supposed to be written into the player, the synchroniza-
tion is achieved just with the help of a pre-bu�ering at the beginning of the
transmission.

It is easier to explain how this algorithm works by taking in consideration
an example.

A PCM audio �le of 6.3 Mb is handled by the server. Its constant sample
rate is equal to 11.025 Bytes/s, so utilizing a stereo channel a second of sound
is described by 45.100 bytes. Having said that, the sending rate should be 45,1
Kb/s: a value easily manageable by the mobile devices described in the second
chapter. By looking for a right dimension of the single packet and following the
consideration stood out in the tests previously described, it has been chosen to
�x that at 1280 bytes. In this way the server should send 35 packets per second
(the reason of such choice are explained in the Section 3.6.3)

The server's job is therefore very easy. As seen in the server created for
managing transmission of messages, it must send data with a loop managed by
a timer that assures the sending rate. Each packet is constituted by three parts:

� The ID, used by the clients to check eventually missed packets

� The Total Number of packets, used by the clients to pre-install a bu�er of
silence � packets in the initialization of the client-player. -

� The 1280 bytes of the �le audio.

One of the main di�erences with the o�cial RTP implementation of an audio
streaming is the lack of the clock. Actually the synchronization is assured just
by the rate and by the �trick� of the silence-packet, pre-emptively stored in
the client. The power of this kind of implementation is even the unidirectional
�ux of information: actually because of the broadcasting and of the algorithm
used, it is not necessary by the clients to inform the server about their status
of receiving.

Therefore each client, binding the network, can start to receive packets from
the server and store this data into the bu�er. As already mentioned, the clients
must replace the pre-created silence � packets into the list with the right packets
incoming from the network. After receiving one hundred packets, equal to 3
seconds of sound, the player starts to acquire strings from the list as seen in the
previous chapter. While the player is on, the receiver will continue to update
the same list handled by the player. The information of the 100th packets is

CHAPTER 5. SYNCHRONIZATION 58

taken by storing the ID of the �rst arrived packet. When the ID of an incoming
packet is shifted one hundred positions from the �rst one, the player will be
called. It is not important if clients start the player in di�erent moment: the
synchronization is assured by the timer placed in the server.

5.5 Latency of the channel

As reported in the previous section, the timer plays an important role in the
dynamic of the algorithm able to manage the synchronization. It is necessary
the right interaction between the server and the client in relation with time.

The timer, manager of the server, assures the launch of an instruction in
the code able to send a message. The timer assures the constant repetition of
this action each N seconds, where N represents the amount of sound, in time,
carried by a packet. At the same time, this timer cannot assure the arrival of
the packet to the receiver with the same previous rhythm. It is necessary to
check out how often packets arrive to the receiver.

Because of that, it has been made a test in which is measured the time that
a packet spend from the launch of the instruction of the server phone to the
moment in which the data, carried in the packet, is available in the client phone.
This time T can be seen as the sum of three components, T = Ts+Tp+Tr, and
they represent:

� Ts: time of elaboration of the server phone from the launch of the in-
struction to the arrival of this data to the physic layer that release it as
electromagnetic wave into the air.

� Tp: time of propagation of the electromagnetic waves from the antenna of
the server phone to the antenna of the client phone. Considering the char-
acteristics of the background not so di�erent of the vacuum, the velocity
of these waves is c, �speed of light�, 3x108m/s. In a range in which the
synchronization is requested, distances can arrive to a dozen of meters.
This means that Tp is about 10−7, so negligible.

� Tr: time of elaboration of the client phone from the moment in which the
antenna receives data to the arrival of the packet in the application layer.

T has been characterized with a distribution of probability shown in the next
�gure.

CHAPTER 5. SYNCHRONIZATION 59

Figure 5.6: Approximation of the probability density function of the parameter
T, described in this section

Mean 58.44 ms
Variance 20.52 ms

Standard deviation 4.53 ms

Table 5.1: Main statistical parameters of the Probability density function rep-
resented in the previous graph.

The previous results are well accepted since they are proving the right be-
haviour of the server and the clients in exchanging packets in the proposed
algorithm. The variance, associable even to the jitter, is less than the 35 ms,
limit found by Haas, in which the human ears start to feel delay. This results
can also give us an indication about how big should be the pre-bu�ering in the
clients, before starting the song. A bu�er of 100 ms is much bigger than the
delay recorded in this test.

5.6 Conclusion

In this chapter, the goal of the whole project has been achieved: an algorithm
able to manage a streaming for a synchronized audio between several mobile
devices. This chapter wanted to trace a path about all the main problems of
such implementation. Besides the proposed algorithm is just an approach of a
possible implementation.

CHAPTER 5. SYNCHRONIZATION 60

Having explained the e�ect treated by Hass, three possible scenarios have
been shown. For each of them, it has been considered whether an implemen-
tation of a streaming in synchronization is possible or not. Afterwards the
algorithm presents a streaming between mobile phones of a PCM �le. In this
chapter the reliability of the network has not been analyzed but, however, the
proposed algorithm is the one that o�ers best performances without considering
any coding schemes.

Chapter 6

RELIABLE MULTICAST IN

AD HOC NETWORKS

6.1 Preface

In the report, an algorithm has been introduced to realize a synchronized audio
streaming. As some reader could have noticed, no chapter discusses about the
possibility to correct any errors present in the communication, neither a possible
interaction between the clients. In the second chapter, it has been proved that
UDP performances, in a MANET composed by our speci�c mobile phones, show
low amount of losses, under speci�c conditions. In the third chapter, some ways
to prevent interferences in the audio streaming have been proposed and it was
discussed how some losses can be tolerated in streaming PCM �les. Then it is
necessary to specify how important can be to receive all the transmitted packets
when the streaming involves other audio formats: in those cases high reliability
in MANET is strongly requested. This chapter wants to investigate in some
existing coding schemes and proves the utility of some of them in our context.

As already mentioned, the UDP transport layer cannot avoid the possibility
of a signi�cant number of packets lost, even though it has been shown how the
e�ciency can increase by �nding out the right size of the single packet. By
thinking to an unicast communication, the automatic repeat request (ARQ) is
the way to improve reliability. Actually, in that case, by using acknowledg-
ments and timeout, the error control mechanism can assure the recovering of
packet losses. Instead, by thinking to a multicast communication, as proposed
in the report, the high number of requests can easily provoke a congestion of the
network. Overall because an only server cannot manage the retransmission of
di�erent packets to di�erent destinations. Because of that, some coding schemes
are needed to manage such a problem. In this chapter the Network Coding (NC)
and the Erasure Coding (EC) will be analyzed.

61

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 62

6.2 Network Coding and Erasure Coding

NC and EC are coding schemes able to increase reliability in multicast commu-
nication. They allow the server to inject redundant packets into the network so
that clients can generally recover original packets without asking for retransmis-
sion. By encoding a big amount of original packets in a data stream (potentially
in�nite), the schemes allow the clients to reconstruct the original data after col-
lecting those and exploding their redundancy. The main di�erence between
these two technologies is the topology of the network they are able to build.
The EC uses a �star� topology, with the only server, owner of the source, able
to add redudancy to the data before of trasmitting it to the clients. Clients
have the only role to broadcast again what they receive. Besides, the NC al-
lows intermediate nodes to broadcast what they receive after pushing data in a
new indipendent encoder. The topology in this case seems to look like a �tree�
network, sometimes able to assume a fully connected composition.

Figure 6.1: Examples of network topologies.

Simulation

To characterize and describe those coding schemes, it has been referred to the
simulations made in []. It is assumed that an application generates equal size
packets p0, p1, p2. The stream of original packets is slit into �generation� of k
packets. Thus, it is possible to de�ne a code rate as c = k/n, when k packets in
the same generation are encoded into n packets (n > k) at the source. In this
argumentation, the code rate is considered just for EC, since the NC source does
not generate any redundancy, so its code rate is always 1. The server of a NC
in this example just encode the data as much as all the clients in the network.
Thus each nodes in EC forward packets at most n times while NC at most k
times for generation.

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 63

Figure 6.2: Some of the parameters useful to describe the coding schemes.

Each node of the network, except the �rst hop nodes that receive packets
directly from the source, has r redundant paths. The number of hops from a
source to receivers is de�ned by h. Each connection between two nodes can
be characterized by the packet drop probability d (1 > d > 0), and each node
forward packets with a certain probability f , forwarding probability (0 < f < 1).
It is necessary to include the event of �not forwarding� because it is important
to prevent excessive transmission overhead in the network.

Having said that, let denote NNC and NEC the number of non-duplicated
packets each node can potentially receive.

NNC(1) = (1− d) · k

NEC(1) = (1− d) · n = (1− d) · kc

After de�ning the number of packets received by the nodes directly connected
with the source, it possible to extend to all the cases.

NNC(h) =

{
f · r · (1− d) ·NNC(h− 1) if NNC(h) ≤ k

f · r · (1− d) · k if NNC(h) ≥ k

NEC(h) = NEC(h− 1) · (1− d) · (1− (1− f)r)

It is necessary to spend some words about these formulas. As seen, theNNC

shows how it is important the number of r, since it a�ects directly the number
of packets. The distinction between the two cases keeps count of the possibility

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 64

of some losses before the arrival in that speci�c node. That same important role
in the NEC is interpreted by the code rate.

Results

In this subsection, a comparison between these two coding schemes is introduced
in order to de�ne which is the most useful for our application. The metrics
utilized to compare them are:

� Packet Delivery Ratio (PDR) is fraction of recovered packets averaged
over all receivers.

� Normalized Packet Overhead is the total number of packet transmissions
by the network divided by the total number of data packets actually re-
covered.

In the end, to describe a random topology, utilized by [], is necessary to specify
the node density as the average number of nodes within the transmission range:

node density =
π · (transmission range)2

(field size)/(number of nodes)
− 1

For each graph, a special attention is given to the case more close to our
application.

Delivery ratio as function of the code rate

Figure 6.3: Delivery ratio of NC and EC in a random topology with node
density = 12, no packet drop probability, and no node mobility. As shown, the
EC performances are much better than the NC ones when the code rate is less
then 1/4.

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 65

Normalized overhead as function of the code rate

Figure 6.4: Delivery ratio of NC and EC in a random topology with node density
= 12, no packet drop probability, and no node mobility. As shown, the overhead
of EC is much bigger than the NC as code rate becomes smaller. Unless the
EC 's performances are quite better, the increasing of the overhead can be a
problem.

Delivery ratio as function of the node density

Figure 6.5: Delivery ratio of NC and EC in a random topology varying node
density with no packet drop and no mobility. In our application the Node
density is equal to the number of clients, so by considering a number of clients
quite big (at least 8), the performances of these schemes are similar.

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 66

Delivery ratio as function of the packet drop probability

Figure 6.6: Delivery ratio of NC and EC in a random topology varying packet
drop probability with node density = 12 and no mobility. In our application
the drop probability is greater than zero: the EC, with a code rate = 1/3 has
better performances, than NC.

6.3 Analysis

After describing how these coding schemes work and how some parameters can
better analyze their performances, in this section it will be done an analysis of
our application with regard to those coding schemes. The �rst consideration
that should be done is the di�culty to de�ne right or wrong one of the protocol
described. Usually, the Erasure Coding is excluded because of its high overhead, as
seen in the previous graph, caused by the high redundancy introduced by the
server in the network. Our application cannot really hit this problem. By �xing
the sending rate equal to the playback rate, the overhead will never reach tricky
values. Actually, it has been proved the necessity of a reliable network once it
is changed the audio format of the source �le. A PCM �le, with its quite big
dimension due to its linear quantization, has a size for sure bigger than other
possible audio format. So, by replacing PCM with MP3 or AAC, the amount
of bit to send each second is less.

At the same time, the previous graphs showed how the Network Coding o�ers
the same performances of the Erasure coding even though the �rst one does not
put any redundancy into the network. Then, why do not use Network Coding as
default coding schemes of the network? It has been seen how the performances
of receiving of each client is stressed when they are multitasking. It is allowed
then to think how a mobile phone can be stressed while it receives, decodes
packets, encodes packets, sends again and at the same time it is supposed to
play music.

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 67

A last consideration is needed before to explain how our protocol works.
By assuming the only use of the erasure coding, it can also create problems
when one of the clients has very bad connection with the server. Actually if
a body is in-between a sender and receiver the data - rate drops signi�cantly.
Then, without any �help� of the neighbor, this unlucky client cannot achieve
any good audio streaming. Because of all these reasons, a mixed scheme is
proposed: a scheme that can assume EC or NC, by depending on the topology
of the clients. Before describing how this protocol can work is necessary to
make an assumption. The hops in the NC will never be greater than 2 and it
is not assumed the presence of devices that a priori cannot receive anything by
the server because of the distance. Then two con�gurations are proposed, in
relation to the formula previously proposed in the text:

� ERASURE CODING with 1 hop (server-clients)

� NETWORK CODING with 2 hops (server � clients + �best receivers�
clients � clients)

Figure 6.7: Examples of network topologies.

By taking back the formulas used previously, each node can potentially re-
ceives:

NNC = (1 − d) · f · r ·NNC(1) +NNC(1) = ((1 − d) · r · f + 1) ·NNC(1) =
((1− d) · r · f + 1) · (1− d) · k

NEC(1) = (1− d) · n

By having a ratio of this two values, it is possible to see when the number
of received packets is the same:

NEC(1)
NNC

= (1−d)·n
((1−d)·r·f+1)·(1−d)·k = n

((1−d)·r·f+1)·k = 1
((1−d)·r·f+1)·c = 1

((1− d) · r · f + 1) · c = 1

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 68

That means that by having a number of 8 clients, with the half candidates
to forward packets in Network Coding con�guration and by supposing dropped
40 packets over 100 sent by server, the code rate of the Erasure Coding should
be 1/2.5.

1
((1−0.4)·5·0.5+1) = c = 1

2.5

How to allow the mobile devices to switch between these two schemes? In
the normal �ux of information spread by the server, some generations of packets,
known by the clients, are sent with regular interval. For instance, the �rst can
be sent once the UDP connection is de�ned. By receiving this generation, each
client can know how much the amount of packet losses is. This percentage can
be recorded in an internal table and the broadcast this value to all the nodes of
the network.

The �rst node to be interested in these information is the server that, from
those, must decide which schemes is more appropriated. The presence of only
one client, not able to receive a percentage of data greater than an established
threshold, will oblige the server to impose NC as code schemes for the network.
Otherwise it starts to broadcast data with a redundancy de�ned by the code
rate c, just calculated by using the received percentages.

If the Network coding has been established in the network, it is necessary
to de�ne which are the clients supposed to spread again the information. As
done by the server, each client can build a rank of the percentage received by
the other clients. If the j-client is in the �rst m position of the rank, it have to
forward packets as soon as it receives them.

Figure 6.8: Explicanting diagramm of the proposed protocol

CHAPTER 6. RELIABLE MULTICAST IN AD HOC NETWORKS 69

The last thing to de�ne in such protocol is how to manage the synchroniza-
tion even though the increasing of the tra�c jam into the network. Previously
it has been shown how the synchronization was on by �xing the sending rate
equal to the play back rate.

In the EC the server will send all the generation of n packet in a time
necessary to play that generation. The client, this time, cannot start to play as
soon as it receive all the generation, because it is suppose to encode that data.
For sure the time of encoding has to be less than the time of sound contained
in one generation. So, each client starts to play the generation n.1 as soon as it
receive the �rst packet of the generation n.3 from the server.

The synchronization is assured for the same reason it works the one imple-
mented in the previous chapter with PCM �le.

The arrival of a packet of a new generation from the server is the same
principles which assures synchronization even in the case of NC. In this second
case it is probably necessary to expand the time of bu�ering before playing the
song.

6.4 Conclusion

In this chapter, the goal was to �nd a way to give reliability to the working
solution found in the previous chapter. Because of that, two common coding
schemes have been analyzed to verify which could be the best to solve our
problem. By analyzing some tests, it has been proved how Erasure Coding and
Network Coding are similar performances in background proposed by us.

Because of that, an algorithm has been proposed to make the ad hoc network
more reliable, an algorithm able to switch between the two mentioned coding
schemes.

It has been proved actually how the network coding is essential in such
background because it is possible a worse reception by one or more clients.
However, the application considers also the use of the erasure coding for avoiding
to the mobile an excessive e�ort.

Chapter 7

CONCLUSION

In the �rst chapter of this report the goal of the project has been de�ned:
Implementation of a stereo distributed between mobile devices.

In order to achieve an audio streaming characterized by a synchronized re-
production three requirements were requested:

� An application suitable for the platform where it has to run;

� An algorithm with a low complexity;

� A communication as much as possible reliable between the nodes of the
network.

To achieve the �rst requirement, an investigation through the ISO/OSI standard
has been done in order to �gure out which protocols were the most suitable for
such implementation. By building a mobile application that is running on the
Symbian/S60 platform and tested on NokiaN95, it has been necessary to tighten
the choice of the protocol to the ones available on the phone.

The Wi-Fi 802.11 b/g protocol has been preferred at Bluetooth because it
can perform broadcast connections and can reach longest distances.

The UDP has been preferred at TCP because it can perform easily and
quickly connections with many users.

As Application Layer, instead of using the already existing protocol RTP, a
new algorithm from scratch has been implemented in order to avoid complexity.
Another important reason is that already existing RTP modules able to run on
Symbian Platform are hardly available.

The complexity has been kept low by using a programming language like
Python. Actually, even though it is characterized by a pretty high level, it is
very useful to implement UDP connection and perform streaming application.

70

CHAPTER 7. CONCLUSION 71

The module UtilityAudioStream has been used in the implementation because
of its �exibility in switching audio formats and its easy control functions. In the
report, an analysis of the module is presented with a particular attention of its
interaction with Python's variable:

� The best way to bu�er data in Python

� Which variable is the most suitable to contain the audio �le

To achieve the third requirement of the report, it has been decided to stream a
PCM �le. Its linear quantization and constant sampling allow the reproduction
of sound even though some chunks of �le are a�ected by errors. Actually it has
been proved how a PCM �le can look like undistorted even though the 33% of
the chunks in the �le are missing. That is possible if these chunks are spaced
in time: the Interleaving technique showed how is always possible to have such
situation.

In order to stream other audio format a coding scheme has to be implemented
in the network. The supremacy of the Network Coding on the Erasure Coding is
questioning by a high complexity and the background in which the application
is supposed to run. Actually, by avoiding several hops between the sinks of the
network, the two schemes have similar performances. The high overhead of the
Erasure Coding is balanced by the complexity of the second one. Because of that
an algorithm has been performed able to switch between the two ones. When
one client has very bad performances in receiving data from the source-server,
the Network Coding is used; in the other case, the Erasure Coding is enough (by
considering the range of 10 meters where the application is supposed to run).

Having reached those requirements, it is possible to assert that the proto-

type built successfully enables users to create a distribute stereo on mobile

devices. Further the reproduction of the sound is synchronized between all

the devices whether they are starting the application at the same time or

one of those is joining on �y the network.

7.1 Future improvements

Several suggestions are available to make this application able to be on the
market.

First of all, it should be implemented an algorithm able to stream MP3
�les because they are the most spread on the network. If this proposal is not
possible, the MP3 �le should be encoded in other audio formats more suitable
for such implementation.

The reliability of the network is strictly requested in case of changing au-
dio format. Because of that, the suggestion present in this report should be
implemented. Probably its implementation should be done with a lower level
programming language.

CHAPTER 7. CONCLUSION 72

In order to achieve a good listening for each client it is suggested the use of
an audio codec able to repair some eventual errors income in the network. Some
of them are already available on the market.

7.2 New Future Applications

Several applications can be derived from this one to import new services on the
phones. First of all, it is necessary to remind in which cases or activities this
application is already useful like that.

Unless there is no big loud speaker, this application is very useful to make
the sound louder.

In a trip made on the bus, young teenagers can decide to listen all together
the same song.

In a studying afternoon, students can listen again the conference recorded
the previous morning.

All the member of a family can talk with a relative that is calling from
another continent.

Those were just example of ways to use this application in funny and smart
ways. Of course other ideas can give rise to the creation of new applications
based on wireless grid:

� Sharing the screens of the mobile phone to watch a video of a past expe-
rience;

� Streaming in real time a concert on the phone because the position is too
far from the stage;

� Creating an internal entry videophone for a house.

Appendix A

ENERGY CONSUMPTION

IN WIFI APPLICATIONS

A.1 Preface

The purpose of this appendix is to describe the energy consumption character-
istics of various aspects and components of WiFi phones. By testing phones to
verify the performances of ad hoc networks, the fast loss of power was pointed
out. It is important to consider this aspect because phones with low battery
life defeat the mobility functionality. Therefore it will be treated which are the
main causes of this consumption and how to minimize the consumption while
still maintaining the required quality of service. Then it will be shown the
energy pro�le of a WiFi phone, while our application is running on it.

A.2 Evolution and future prediction

In the last years, mobile phones are becoming increasingly popular, but the
battery technology has not been improving at the same pace as the power re-
quirements of the devices. Some number can help to describe how the new
technology has needed more and more power from the battery. The �rst gen-
eration of the phones in the nineties had a energy consumption relatively low
in the range 1-2 W,. It has been increasing by reaching almost the twice value,
with the developments of new multimedia devices incorporated in the phone:
Camera, multicolor Display, Apps Engine, etc. And this requirement of energy
is doomed to increase more. The perspective of transforming a phone in a mod-
ern notebook will bring the necessity to have a constant connection activated.
The advanced video capabilities will need a powerful display and the spread of
audio application (like the one described in this report) will probably need an
incorporating stereo loudspeakers on the devices. [13]

73

APPENDIX A. ENERGY CONSUMPTION IN WIFI APPLICATIONS 74

A.3 Strategy to save power

As mentioned in the �rst chapter of this report, our application has been devel-
oping in �ve layers, by setting the ISO/OSI protocol stack. In this paragraph,
in each of those layers, a possible solution to decrease the spending of energy
will be researched.

A �rst way, as suggested in [11] is to control the transmission power parame-
ters. By assuming the use of the same phone used in the previous testes (Nokia
N95), some forethought can be applied.

� At the mac layer it is possible to reduce the number of retransmission by
choosing a di�erent channel/link;

� At the network layer, it is possible to use a topology control, allowing each
wireless device to adjust its transmission range and select its appropriate
neighbor (the �network coding� already discussed in the previous chapter).

� At the application layer, it is possible to reduce the number and size of
transmission by using data compression.

A second way is to reduce the control overhead, that is the energy used to send
and receive control packets. By using a transport layer as UDP, this energy
saving is already guaranteed .

A.4 Wi� networks performance

For getting closer to the consumption of our application is necessary to describe
the performance of IEEE 802.11 b/g in which it is working. To do that we take
a look to some tests reported in [20]

Those measurements are performed on Nokia N95, the same phones used to
test our audio application. To measure energy consumption, it has been used
Nokia's energy pro�ling application, the Nokia Energy Pro�ler (NEP). NEP
is an application running on mobile device that allows to make measurements
without any additional hardware. It provides the values for power, current,
temperature, and CPU usage. It has been tested that the measurements done
on a common multimeter, as can be AGILENT 66319D, match almost perfectly
with the ones of the NEP.

In one of those tests it has been measured the power consumption of WLAN
802.11g/b in infrastructure mode for di�erent states when the distance between
the mobile and the AP is 3-5 meters. In such a mode it is possible to distinguish
four states:

� Connection: Turn on WLAN and connect to the AP

� Disconnection: Disconnecting from the AP and turning WLAN o�.

APPENDIX A. ENERGY CONSUMPTION IN WIFI APPLICATIONS 75

� Idle: Being connected to the AP and in idle mode.

� Idle in saving mode: Being connected to the AP in idle mode and in saving
mode.

Figure A.1: Power consumption for WLAN in di�erent states when used in
infrastructure mode.

As we can see an huge amount of energy is spent on the idle state. In many
applications, as for instance Voip, this state is required. When a smartphone
is waiting for an incoming call the network interface has to be on all the time.
Disconnecting the phone does not help: it will not be able anymore to catch
incoming calls. From [13] another strategy to save energy in such cases it has
been described. In that research it has been proposed the use of a secondary
air interface to wake up the WLAN and di�erent ways to implement it.

A.5 Testing the code

Having analyzed the main characteristics of such a problem, it is time to give a
look to the energy consumption of our application by starting from the simple
script client/server created in the second chapter in order to exchange messages
between two phones. The results will be shown by analyzing the graph of the
NEP on either sides: client side and server side.

A.5.1 Client side

In this subsection it will be explained how much the phone spends on the side
of the client.

APPENDIX A. ENERGY CONSUMPTION IN WIFI APPLICATIONS 76

Figure A.2: The NEP shows the power consumption on the Client side while
the transmission is starting.

In regard to the previous �gure we can distinguish di�erent phases:

� 00.00: on the phone, the NEP has just been activated (we can consider
this o�set like our hypothetical �zero�)

� a: the Python application starts

� b: the phone is trying is connecting to the Ad Hoc Network

� c: the phone starts to receive packets

Figure A.3: The NEP shows the power consumption on the Client side.

In this second picture we can observe the constant band of consumption
during all the receiving. The average is about 1.17W, one more than the initial
phase.

APPENDIX A. ENERGY CONSUMPTION IN WIFI APPLICATIONS 77

A.5.2 Server side

In this subsection it will be explained how much the phone spends on the side
of the server.

Figure A.4: The NEP shows the power consumption on the Server side while
the transmission is starting.

In regard to the previous �gure we can distinguish di�erent phases:

� 00.00: on the phone, the NEP has just been activated: we can notice the
instability of that phone if we compare it with the client side

� a: the Python application starts

� b: the phone is trying is connecting to the Ad Hoc Network and start to
transmit packets

Figure A.5: The NEP shows the power consumption on the Server side.

APPENDIX A. ENERGY CONSUMPTION IN WIFI APPLICATIONS 78

In this second picture we can observe the band of consumption during all
the receiving. The average is about 1.07W. As we can notice, this band is
characterized by some fast peak, maybe caused by some interferences occurs in
the transmission. As already mentioned, in both case, it is reasonable to think
that the average level raises if the size of the packets increase.

Appendix B

CODE TO IMPLEMENT

THE APPLICATION

B.1 Testing UDP connection: Server side

import btsocket

import e32

import appuifw

import time

f=open("C:\\Data\\python\\Nicola2.wav","rb")

data = f.read()

f.close()

while data[:4]!="data":

data=data[1:]

data=data[4:]

host = "255.255.255.255"

port = 0

stop = 0

timer = e32.Ao_timer()

counter=10000

time_delta=1/30.0 #30packets for sec --> rate= 44100bytes/s

size_packet=1470

pointer_data=0

size_data=len(data)

server=None

dead_line=15000

79

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 80

def sender():

global counter

global pointer_data

global server

#print counter

if counter%500==0:

print counter

msg=str(counter)+str(dead_line)+data[:1470]

server.sendto(msg, ("255.255.255.255", port))

pointer_data=pointer_data+size_packet

counter +=1

def start_server():

global port

global server

global timer

global counter

if stop == 1:

print "waiting for server to stop"

return

Select AP

apid = btsocket.select_access_point()

apo = btsocket.access_point(apid)

btsocket.set_default_access_point(apo)

apo.start()

print 'AP selected'

Create the socket

server = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_DGRAM)

port = appuifw.query(u"Port:", "number")

print "start"

time_checker=time.clock()

a=time_checker

while counter<=dead_line:

while time.clock()>time_checker:

time_checker=time_checker+time_delta

sender()

if counter > dead_line+1:

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 81

break

b=time.clock()

print b-a

print time_checker-a

appuifw.app.menu = [(u"Stop", stop_server)]

def stop_server():

global stop

global server

stop = 1

print 'stopping server'

server.close()

appuifw.app.menu = [(u"Start server", start_server)]

client = None

def quit():

print 'Closing'

app_lock.signal()

RUN

appuifw.app.menu = [(u"Start server", start_server)]

appuifw.app.exit_key_handler = quit

create an active object

app_lock = e32.Ao_lock()

print "Ready to start"

server = None

start a scheduler

app_lock.wait()

B.2 Testing UDP connection: Client side

import e32

import appuifw

import btsocket

from time import*

audio=None

fileSize = 0

musicfile = None

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 82

size_packet=1470

zero=pack('h',0) #2 bit of zeros

empty_packet=zero*(size_packet/2)

list_count=[]

list_double=[]

data=[]

count=0 total_number_packet=5000

while count<total_number_packet:

data.append(empty_packet)

count += 1

musicfile=data

Set the socket parameters

host = "0.0.0.0"

buf = 1700

def udp_callback(d):

global list_double

global list_count

string, addr = d

count = int(string[:5])-10000

musicfile[count]=string[10:]

#print count

if count%500==0:

print count

if count in list_count:

list_double.append(count)

else:

list_count.append(count)

client.recvfrom(buf, 0, udp_callback)

def start_client():

global client

global port

client = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_DGRAM)

Hack to avoid the permission denied on reusing sockets

port = appuifw.query(u"Port:", "number")

client.bind((host, port))

client.recvfrom(buf, 0, udp_callback)

appuifw.app.menu = [(u"Stop", stop_client)]

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 83

print 'Client receiving on port ', port

def stop_client():

global client

print 'stopping client'

client.close()

appuifw.app.menu = [(u"Start client", start_client)]

#Create the file for results

PATH = u"C:\\Data\\MyApp"

if not os.path.exists(PATH):

os.makedirs(PATH)

textfile = file('C:\\Data\\MyApp\\test_35pack.txt','wt')

print >�> textfile, list_count

print >�> textfile, "DOUBLE"

print >�> textfile, list_double

print >�> textfile, "PACKETS RECEIVED"

print >�> textfile, len(list_count)

textfile.close()

client = None

def quit():

print 'Closing'

app_lock.signal()

RUN

appuifw.app.menu = [(u"Start client", start_client)]

appuifw.app.exit_key_handler = quit

Create an active object

app_lock = e32.Ao_lock()

Select AP

apid = btsocket.select_access_point()

apo = btsocket.access_point(apid)

btsocket.set_default_access_point(apo)

apo.start()

client = None

Start a scheduler

app_lock.wait()

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 84

B.3 Streaming prototype: Server Side

import btsocket

import e32

import appuifw

import time

f=open("C:\\Data\\python\\Nicola2.wav","rb")

data = f.read(7135276)

f.close()

while data[:4]!="data":

data=data[1:]

data=data[4:]

host = "255.255.255.255"

port = 0

stop = 0

timer = e32.Ao_timer()

counter=10000

time_delta=1/35.0 #35packets for sec --> rate= 44100bytes/s

size_packet=1260

pointer_data=0

size_data=len(data)

server=None

dead_line=len(data)/size_packet+10000

def sender():

global counter

global pointer_data

global server

#print counter

msg=str(counter)+str(dead_line)+data[pointer_data:pointer_data+size_packet]

server.sendto(msg, ("255.255.255.255", port))

pointer_data=pointer_data+size_packet

counter +=1

def start_server():

global port

global server

global timer

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 85

global counter

if stop == 1:

print "waiting for server to stop"

return

Select AP

apid = btsocket.select_access_point()

apo = btsocket.access_point(apid)

btsocket.set_default_access_point(apo)

apo.start()

print 'AP selected'

Create the socket

server = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_DGRAM)

port = appuifw.query(u"Port:", "number")

print "start"

time_checker=time.clock()

a=time_checker

while counter<=dead_line:

while time.clock()>time_checker:

time_checker=time_checker+time_delta

sender()

if counter > dead_line+1:

break

b=time.clock()

print b-a

print time_checker-a

appuifw.app.menu = [(u"Stop", stop_server)]

def stop_server():

global stop

global server

stop = 1

print 'stopping server'

server.close()

appuifw.app.menu = [(u"Start server", start_server)]

client = None

def quit():

print 'Closing'

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 86

app_lock.signal()

RUN

appuifw.app.menu = [(u"Start server", start_server)]

appuifw.app.exit_key_handler = quit

create an active object

app_lock = e32.Ao_lock()

print "Ready to start"

server = None

start a scheduler

app_lock.wait()

B.4 Streaming prototype: Client Side

import utilaudiostream

import e32

import appuifw

import btsocket

import appuifw

import chunk

import wave

import audio

import os, os.path

import thread

import threading

from time import*

from threading import Thread

from threading import Lock

from threading import Condition

from struct import*

audio=None

fileSize = 0

musicfile = None

size_packet=1260

first_time=True

first_save=True

starter=0

zero=pack('h',0) #2 bit of zeros

empty_packet=zero*(size_packet/2)

d=None

data=[]

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 87

count=0

total_number_packet=6000 #6000*1260=7.56Mb

while count<total_number_packet:

data.append(empty_packet)

count += 1

musicfile=data

Set the socket parameters

host = "0.0.0.0"

buf = 1500

def write_chunk():

global audio

global fileSize

global d

if fileSize >= len(musicfile):

return

d = musicfile[fileSize]+musicfile[fileSize+1]

audio.write(d)

fileSize += 2

def play_open(error):

if error != 0:

print "Error in play open ", error

return

#print "Player open"

write_chunk()

def play_stop(error):

print "Play stop", error

def play_data(error):

if error != 0:

print "Error in play data ", error

return

#print "Data written to player, write next chunk"

write_chunk()

def play_file():

global audio

audio.open()

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 88

def udp_callback(d):

global first_save

global musicfile

global starter

global first_time

global total_number_packet

global fileSize

string, addr = d

count = int(string[:5])-10000

if first_save:

first_save=False

starter=count

total_number_packet=int(string[5:10])-10000

musicfile[count]=string[10:]

#print count

if count-starter>100 and first_time:

first_time=False

fileSize=(count-100)

play_file()

client.recvfrom(buf, 0, udp_callback)

def start_client():

global client

global port

client = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_DGRAM)

Hack to avoid the permission denied on reusing sockets

port = appuifw.query(u"Port:", "number")

client.bind((host, port))

client.recvfrom(buf, 0, udp_callback)

appuifw.app.menu = [(u"Stop", stop_client)]

print 'Client receiving on port ', port

def stop_client():

global client

print 'stopping client'

client.close()

appuifw.app.menu = [(u"Start client", start_client)]

client = None

def quit():

APPENDIX B. CODE TO IMPLEMENT THE APPLICATION 89

print 'Closing'

app_lock.signal()

RUN

appuifw.app.menu = [(u"Start client", start_client)]

appuifw.app.exit_key_handler = quit

Create an active object

app_lock = e32.Ao_lock()

Select AP

apid = btsocket.select_access_point()

apo = btsocket.access_point(apid)

btsocket.set_default_access_point(apo)

apo.start()

client = None

audio = utilaudiostream.AudioStream(utilaudiostream.DATATYPE_PCM16,

utilaudiostream.SAMPLERATE_11025Hz,utilaudiostream.CHANNELS_STEREO,

play_open, play_stop,play_data)

audio.setvolume(10)

Start a scheduler

app_lock.wait()

Bibliography

[1] : S60 Smartphone Quality Assurance; Laitinen; 2007

[2] : Mobile Phone Programming and its Application to Wireless Networking;
Fitzek, Reichert; 2007

[3] : Computer networks; Tanenbaum, A.S.; 2003

[4] : Understanding Jitter in Packet Voice Networks (Cisco IOS Platforms)

[5] : RTP, Audio and Video for Internet; Perkins; 2003

[6] : The technology of Video & Audio Streaming; Austerberry; 2002

[7] : Mobile Python; Scheible,Tuulos; Wiley; 2007

[8] : Foundation of Python Network Programming; Goerzen; Apress; 2004

[9] : Learning Python, Powerful Object-Oriented Programming; Lutz; 2008

[10] : Wireless Grids, Distributed Resource Sharing by Mobile, Nomadic, and
Fixed Devices; McKnight, Howison; Bradner; 2004

[11] : Energy Consumption and Conservation in WiFi Based Phones: A
Measurement-Based Study. Gupta A. / Mohapatra P. 2007

[12] : Energy Consumption in Mobile Phones: A Measurement Study and Impli-
cations for Network Applications. Balasubramanian/ Venkataramani /2009

[13] : Energy Saving Strategies for Mobile Devices using Wake-up Signals; Per-
rucci, Fitzek, Sasso, Katz; 2008

[14] : A Case for Network Musicl Performance; Lazzaro, Wawrzynek; 2001

[15] : Evaluation of packet latency and �uctuation during UDP packet exchange
in ad hoc wireless groups; Itaya, Kosuga, Davis; 2004

[16] : Network Coding vs. Erasure Coding: Reliable Multicast in Ad hoc Net-
works; Fujimura, Oh, Gerla; 2008

[17] CodeCast: Network Coding Based Multicast in MANETs; Gerla, Chen,
Lien; 2008

90

BIBLIOGRAPHY 91

[18] : Know Your Neighbour: Packet Loss Correlation in IEEE 802.11b/g Mul-
ticast; Heide, Pedersen; Fitzek; 2008

[19] : PictureViewer - A Mobile Application using Network Coding; Pedersen,
Heide, Fitzek, Larsen; 2009

[20] : Wi�: consumption for di�erent sates;
http://mobiledevices.kom.aau.dk/research/energy_measurements_on_mobile_phones..
../results/data_communication/wi_�_di�erent_status/

[21] : F. Alton Everest. The master handbook of acoustics, chapter Chapter
3. The ear and the perception of sound, pages 33�66. 3rd edition edition,
1994.

[22] : �Mobile distributed Wireless Stereo�, report written in 2009 by Elisabeth
Berbel Gonzales with the same supervisor of this report.

