
Energy Efficient Code Updates in
Wireless Sensor Networks

Validation and enhancement of the GCP protocol

Peter Finderup
Robertas Backys

Thomas Birk Abildgaard

Department of Computer Science

Aalborg University

Selma Lagerløfs Vej 300

9220 Aalborg

Phone 96 35 80 80

Fax 96 35 97 98

http://www.cs.aau.dk

Title:
Energy Efficient Code Updates in
Wireless Sensor Networks
- Validation and enhancement of the
GCP protocol

Project Period:
DAT6, spring semester 2010

Project Group:
d617a

Participants:
Peter Finderup
Robertas Backys
Thomas Birk Abildgaard

Supervisor:
Brian Nielsen

Circulation: 5

Number of pages: 98

Number of appendixes: 6 and 1 CD.

Finished on: 31th of May, 2010

Abstract:

Wireless Sensor Networks (WSNs) are typically
deployed in scenarios where sensor measurements
from several distinct locations are needed. WSNs
usually consist of many nodes scattered around
an environment, often one humans tend to avoid.
Example of hard to reach or hostile environments
could be inside a glacier or upon a battlefield. A
problem occurs once a WSN has been deployed
and the running application needs a software up-
date, either because errors has been found, para-
meters are tweaked or application improvements
are needed. Collecting each sensor node by hand
would be a tedious task, impractical if not im-
possible. Therefore, when such sensors need to
be updated another approach is required.
The lifetime of a WSN highly depends of the
utilisation of the energy resource available. The
energy supply of the individual sensor node is a
very scarce resource, and the source of energy can
seldom be replaced after deployment of the WSN.
In this report we focus on energy efficient code
updates in a WSN through wireless communica-
tion. We systematic describe the Gossip-based
Code Propagation protocol and implement it.
Through the specification of the GCP protocol we
discover ambiguous protocol description, as well
as limitations to the protocol.

We present an extension which incorporates a re-

liability mechanism which ensures updates can

happen though communication is faulty. We also

improve the utilisation of tokens which ensures a

better overall load balancing in dense networks.

As a conclusion, we compare our results from the

GCP and our extension to reason about their

performance while distributing code updates in

a WSN.

The contents of this report is freely available, however, publication (with source of reference) is only al-

lowed in agreement with the authors.

Preface

This report is written by group d617a as a DAT6 (master) project from February 1st

2010 to May 31th 2010 at the Department of Computer Science at Aalborg University.
This report is addressed to other students, supervisors and anyone else who might be
interested in the subject. To read and understand the report correctly, it is necessary to
have knowledge about the most basic computer related terms.
The entire report is written in English and no translation will be accessible, it is therefore
required to understand English. Abbreviations and acronyms will at first appearance be
written in parenthesis, to avoid breaking the reading stream. Specification of gender in
this report is not to be understood as suppression or any other form of political/religious
position. The gender is only specified to simplify the process of writing for the authors.
References to sources are marked by [#], where # refers to the related literature in the
bibliography at the end of the report.
The Appendixes to this report is found in the last chapter of the report.
The report is written in LATEX and are accessible as a PDF-document, which can be read
with Adobe Acrobat Reader.
Finally, the group will like to thank our supervisor Brian Nielsen who has supported us
throughout this project.

Content of the CD

• Graph folder with all graphs.

• Source folder with our source files.

• Simulation date.

Thomas Abildgaard Robertas Backys

Peter Finderup

iii

Contents

1 Introduction 1

1.1 Challenges . 1

1.2 Motivation . 2

1.3 Problem Statement . 3

1.4 Report structure . 3

2 Background on wireless sensor networks 4

2.1 Typical hardware platforms . 5

2.2 Update management model . 8

2.3 Summary . 10

3 GCP protocol specification 11

3.1 GCP Protocol . 11

4 Verification of the GCP protocol 16

4.1 Initial GCP model . 17

4.2 Timing analysis . 20

4.3 Energy analysis . 26

4.4 Summary . 29

5 Simulation of GCP 30

5.1 Introduction to NS2 . 31

5.2 Implementation of GCP . 34

5.3 Basic GCP tests . 38

5.4 Simulation scenarios . 39

5.5 GCP test results . 44

5.6 Explanation for deviation . 48

5.7 Replicate results of GCP . 50

5.8 Summary . 52

6 Extension of the GCP protocol 53

6.1 Problems with the GCP protocol . 53

6.2 Specification of extension . 58

6.3 Implementation of eGCP . 62

6.4 Test of the extension . 68

6.5 eGCP test results . 70

6.6 Summary . 73

7 Conclusion 74

7.1 Future work . 77

A Calculating average density 80

B UPPAAL models 82

B.1 UPPAAL model of the original GCP protocol 83

B.2 UPPAAL model of the original GCP protocol with a half duplex radio . . 84

B.3 UPPAAL model of the original GCP protocol with time and node connec-
tivity . 85

B.4 UPPAAL model of the original GCP protocol with energy, time and node
connectivity . 86

B.5 Maple Time and Energy calculations . 87

C GCP results 88
C.1 GCP simulation results - Scenario 1 . 89

D GCP Replication results 93

E eGCP results 95

F Report summary 97

vi

Chapter 1

Introduction

Today modern technology improves faster than ever before. The numbers of transistors
that can fit a square inch increases each year and thus electronic devices get smaller and
smaller. This development is of great importance for sensor nodes since their actual size
can determine if they can be applied in a specific area or not. An example could be a
nature habitat, where the miniaturisation of the sensor nodes allow us to collect data in
a non intrusive manner. In this scenario tiny, almost invisible sensors become essential
in terms of getting accurate data without interfering with the normal life of the animals
or polluting the area.

Wireless sensor networks (WSNs) are typically deployed in scenarios where sensor
measurements from several distinct locations are needed. They usually consist of many
nodes scattered around an environment, often one humans tend to avoid; either because
its costly or too dangerous. Examples of such areas are at the bottom of the ocean, in
space, on a battlefield[8] or deep inside a glacier[15].

A problem occurs once a WSN has been deployed and the running application needs
an software update, either because errors has been found, parameters are tweaked or
application improvements are needed. Collecting each sensor node by hand would be
a tedious task, impractical if not impossible. Therefore, when such sensors need to be
updated another approach is required.

In this report the focus will be on energy efficient code updates in a WSN through
wireless communication. However, several challenges arises when updating a sensor
network wirelessly.

1.1 Challenges

There are many challenges when updating a wireless sensor network. Physical reachabi-
lity can post a problem. Transmitting the update over an unstable media such as a radio
is troublesome. The main problem with wireless sensor networks is power consumption.
When a WSN is deployed the sensor nodes only energy source is the battery. Although
methods for energy harvesting has being examined through solar panels, minimizing
power consumption is highly prioritized.

An effective way to minimise power consumption during a wireless transmission of
an update is to use binary differential patching. Differential patching produces a patch
(delta patch) that is smaller than the original code update. The delta patch contains
the differences between the old- and the new software image. Differential patching
is particular effective when distributing smaller incremental code updates. The power
consumed by applying the patch at the target will increase as the delta patch complexity
increases and will ultimately outweigh the benefit of conserving power while transmitting
the smaller delta patch.

Another area of interest is dissemination. It is possible to minimize the power
consumption at the expense of latency in the network. This is done by decreasing
the use of flooding protocols in order to reduce the chance for duplicated messages and
collision. The trade-off here is increased inconsistency because some of the nodes are up-
dated while others are not for a period of time due to the slow diffusion of code updates.
For some applications latency is not important and can be sacrificed, for others it is
crucial. It all depends on the WSN and the running application. Common challenges in
a wireless sensor network are message implosion and overlapping of interest as described

Validation and enhancement of the GCP protocol 1

CHAPTER 1. INTRODUCTION

in [11].

Another challenge updating a WSN is the topology of the network. Within every
ad hoc network a set of nodes will typically become hot spots due to their physical
placement. A general problem is that those hot spot nodes tend to use their battery
power faster than the other nodes in the network. An example could be an ad hoc
network which was grouped into clusters with only a few nodes to connect them. Every
time information has to be spread to the other clusters those nodes will have to relay the
data, which will increase their power consumption and will eventually lead to a disjoint
network.

A way to diminish the workload of those centralized nodes is to incorporate the ideas
of evenly load balance as described in [9]. The purpose of this protocol is to propagate
code updates throughout an ad hoc wireless sensor network in an energy efficient manner.
The protocol Gossip-based Code Propagation (GCP) in [9], uses tokens to balance the
workload, when updates are disseminated throughout the network. This is a simple
mechanism where each node gets a number of tokens which denotes the number of times
a given node can transmit an update. For every transmitted software update the number
of tokens decreases until it reaches zero. When the number of tokens reaches zero, the
node will conserve its energy by refusing to transmit more code updates of this particular
version. The forwarding control mechanism will balance the workload of updating the
entire network. Whenever a node receives a new update, the number of tokens are reset
to the initial number of tokens, regardless of the numbers of tokens prior to the update.

1.2 Motivation

We want to improve the energy consumption while diffusion updates in a wireless sensor
network. When distributing an update, the load balance of the nodes will vary. If the
balance is too uneven the network becomes fragmented which in worst case can prevent
the running application to fulfil its purpose. A way to solve this problem is to use the
ideas of even load balance as described in [9]. The results presented by the authors in
[9] look very promising. Going into greater detail of the GCP protocol reveals some
flaws though. The specification of the GCP protocol in [9] is insufficient as important
details are omitted. For instance, the movement pattern of the nodes is not clearly
specified. Another example is the description of the periodically transmission of the
beacon message. According to the authors this message should be transmitted after
a given time out throughout the lifetime of the sensor node. But a radio can only
either transmit or receive at one time. This means that if the radio was in a middle
of receiving an update message and the time out happens, the radio apparently has to
switch and send the beacon before it continues to receive the update, unless it postpone
the message till after the reception has been completed. Whatever happens is unclear
since the precedent rules have not been clearly specified. The authors assume that no
collision / packet loss happens in their wireless setting, thus they do not need to specify
recovery management, a vague assumption in our opinion since we operate with wireless
communication. Also, the way tokens are used when sending update messages has not
been specified properly. This means that under certain circumstances multiple tokens
can be consumed whereas one was enough.

Lastly, the authors have developed their own network simulator called SeNSim, ins-
tead of using a widely accepted and proven tool like the Network Simulator 2 (NS2). We
find it interesting to see, if the GCP protocol provided the same results in a ”neutral”
simulator.

2 Validation and enhancement of the GCP protocol

1.3. PROBLEM STATEMENT

1.3 Problem Statement

In this report we look into the work in [9]. We give a systematic specification of the
protocol using the protocol specification methodology of [12]. With this specification
we create a formal model of the protocol in UPPAAL[23] and verify sanity checks while
performing time- and energy analysis on selected topologies. We implement the GCP
protocol, verify it and run the same test scenarios as in [9]. This is done with the NS2
tool. If our results does not match those of the authors of the GCP protocol replications
of their results will be made to determine the possible reasons for the mismatch.

As the specification of the GCP protocol was made several limitations of the protocol
became clear. We therefore present an extension to the GCP protocol called enhanced
GCP (eGCP). A systematic specification of our protocol will be specified. In eGCP
protocol we add a reliability mechanism, so the network can be subject to failures.
We also change the way tokens are used in order to improve the load balancing. An
implementation of the eGCP protocol will be made and tested to see if the behaviour
matches our expectations. Finally, the GCP and eGCP protocol will be compared in
the selected test scenarios.

1.4 Report structure

In chapter 2 we give a characterisation of typically hardware used to create a wireless
sensor network. In this chapter We also present an update management model which
describes the different important parts used when diffusing an update in a wireless sensor
network.

In Chapter 3 we introduce the GCP protocol. We use the methodology of [12] to
create a thorough specification of the GCP protocol. We finish the chapter with a
discussion regarding our view of the protocol.

The next chapter (Chapter 4) contains a validation of the GCP protocol. The tool
UPPAAL is used to verify that the GCP protocol is free of deadlock, and that the
intended update behavior is correct. We further extend the GCP UPPAAL model in
order to conduct time and energy analysis.

Chapter 5 starts by introducing the simulation tool we used to conduct our tests.
Then a description of our GCP implementation will be given followed by verification of
it. Then a test of the GCP protocol will be conducted and the results will be matched
with the original obtained. In Chapter 6 we define the problems with the GCP protocol
and give ideas to how they can be corrected. This leads to a systematic specification of
our extension to the GCP protocol. Afterwards we implement and test our extension
which ends in a presentation of the results found when comparing GCP with eGCP.
Finally, a conclusion is given. In this, we summarise the different results found in the
previous chapters. Lastly, different thoughts on future work will be described.

Validation and enhancement of the GCP protocol 3

Chapter 2

Background on wireless sensor
networks

This chapter describes background knowledge regarding updating a wireless sensor net-
work. As briefly described in the Introduction chapter, wireless sensor networks may
be applied in environments which humans tend to avoid. An example is at the bottom
of a glacier where the network monitors the movement [15]. Nodes are placed in layers
through the ice and relay information back to the surface. From the surface the base
station has the resources to transmit the information back to the research centre.

Due to the increasing fault-tolerance, robustness and the ad hoc nature, WSNs be-
comes attractive for military application and other risk-associated applications. For
instance, in [8] aerial deployment is used to create a WSN for detection and tracking of
vehicles.

In this chapter we give a characteristic of the hardware in a wireless sensor network.
This is done to emphasize the resource constraints in these networks and the impor-
tance of optimising the energy usage of the running application to prolong the networks
lifetime. To conserve energy, a number of possible fields can be addressed. One of
these fields is the physical hardware of the network, another is to minimise the use of
communication.

In the following, we look into the physical hardware of wireless sensor network.
Firstly, we look into two possible hardware platforms and describe their available re-
sources to emphasise the need for awareness. Afterwards we describe an available radio
for a wireless sensor network together with the different memory available. Then we in-
troduce an update management model which describes the various parts included when
an update is created and diffused. Choosing the right configuration in each of these
parts have an influence on whether a WSN application will become a success or not.

2.1 Typical hardware platforms

A large range of hardware platforms exist depending on the purpose of the WSN. The-
refore, in order to chose the right platform, a resources prioritisation is needed. Some
applications require a lot of memory, others needs a special radio, while some is more
concerned with the physical size of the platform. In this section we look into different
hardware and the apertaining memory types.

Development boards

Examples of typical hardware platforms for a wireless sensor network are the AT90CAN128
or the CRUMB168-USB. Both of these platforms have restrained resources and the main
difference between them are their interface and memory. The AT90CAN128 uses JTAG
(Joint Test Action Group) and CRUMB168-USB uses SPI (Serial Peripheral Interface).
A comparison between the two development platforms are illustrated in Table 2.1. Loo-
king at the data it becomes obvious that the AT90CAN128 is the most powerful of the
two, which makes sense since its almost twice the size. But node resources and power
consumption are linked together, and with the same battery power the life time of the
CRUMB168-USB far surpass that of the AT90CAN128. This emphasize the need of a

Validation and enhancement of the GCP protocol 5

CHAPTER 2. BACKGROUND ON WIRELESS SENSOR NETWORKS

thorough analysis in order to select a board which has just enough resources available
for the needed task.

(a) (b)

Figure 2.1: (a) The AT90CAN128. (b) The CRUMB168-USB.

AT90CAN128 CRUMB168-USB

FLASH 128kB 16kB

RAM 4kB SRAM 1kB SRAM

EEPROM 4kB 512B

PIN connection JTAG SPI

IO PINs 53 23

CPU 0-16 MHz 0-20 MHz

Supply @ 25 ◦C, 4.5Vcc, (active) (16MHz) 27 mA (1Mhz) 0,75 mA

Supply @ 25 ◦C, 4.5Vcc, (idle) (16MHz) 16,5 mA (1Mhz) 0,125 mA

Table 2.1: Comparison between the AT90CAN128 and CRUMB168-USB. The data from
is from [2][1].

Radio

Another important element is the radio since communication is one of the most power
consuming parts of the WSN. As stated in [20], sending one byte over the radio re-
quires the same amount of energy as 1000 CPU instructions, which illustrates just how
expensive radio communication is. Some radios provides the developer with the oppor-
tunity for customising several parameter. Examples of parameters could be the length
of the cyclic redundancy check (CRC), the number of hardware retransmissions, which
interrupt should trigger which event and so on.

Each of these parameters gives the developer an opportunity for customising his
implementation and although it induce complexity it also produce the most energy pre-
serving approach since it can be optimised to fit the needs of the WSN application. A
potential radio could be the radio nRF24L01 (depict in Figure 2.3). The specfic range
of the radio is left out since it varies depending on the weather and landscape. Typically
range would be 10 - 20 meters inside with a throughput on 1 Mbps. Tests with the
radio shows that transmission rates of 256 kbit/sec at a distances of 100 meter is pos-
sible given optimal conditions[5]. The radiation pattern around the antenna resembles
two overlapping circles circling in 360ˆ◦, the actual transmission pattern resembles a
doughnut without a whole in the middle as illustrated in Figure 2.2

6 Validation and enhancement of the GCP protocol

2.1. TYPICAL HARDWARE PLATFORMS

Figure 2.2: The radiation pattern around an antenna.

This radio includes an embedded packet handler called ShockBurst, which makes bi-
directional communication protocols easier to implement. The radio has six data pipes
with a data rate of either 1 or 2 Mbps which makes it possible to run as both half-duplex
or full-duplex. Assuming only one pipe is used, the data rate is set to 1 Mbps and output
power to 0 dBM (highest) the radio uses 22 µA in standby, 11,3 mA in transmit mode
and 12,3 mA in receive mode [5]. Using all six pipes (”MultiCeiver”) will allow the radio
to communicate with six different sources, but because only one data pipe can receive a
packet at a time, the throughput is not linear with the number is used pipes.

Figure 2.3: MOD-NRF24Lx RF 2.4GHz transceiver module with NRF24L01 chip.

Memory

As memory is one of the areas in which wireless sensor networks are severely constrained,
efficient utilisation of the memory is critical. Typically, sensor nodes have two types of
memory - flash and EEPROM1. Sensor nodes also contains some amount of SRAM2 but
since they are not used related to updates we omit them.

Flash is non-volatile memory, which means no power is needed to maintain the
information stored in the chip. Additionally, flash is very robust and can withstand high
pressure, extremes of temperature and immersion in water - all weather phenomenons
which a WSN has to endure. When a sensor node receives packets for a new update it
needs a place to store the packets until all packages have been received. Usually packets
are stored in a part of the internal flash memory or by utilizing external flash memory.
Lastly, the packets are assembled and moved to the internal flash application area. The
task of writing to flash is very time and energy consuming. Writing one 1kB to flash
consumes approximately 2.2mJ , compared to 62µJ for reading a 1kB from flash. More
on flash charaterstics in Section 4.2 and 4.3.

1Electronically Erasable Programmable Read-Only Memory
2Static Random Access Memory

Validation and enhancement of the GCP protocol 7

CHAPTER 2. BACKGROUND ON WIRELESS SENSOR NETWORKS

The EEPROM is also non-volatile memory and was original designed to store confi-
gurations information when the device was turned off. The EEPROM can only write /
erase 1 byte at the time. Both EEPROM and flash have a finite number of erase/write
cycles. The advantage of the EEPROM over the flash is that it can withstand 100.000
erase/write cycles compared the the flash that can do only 10.000 writes/erase cycles.

2.2 Update management model

Different approaches can be taken in order to influence the efficiency of a software update
within a WSN. One way to get an overview is by using the WSN update management
model described in [10].

This model divide a WSN into different components, namely a non resource constrai-
ned environment called the base station, and the very resource constrained sensor net-
work. An illustration of the two environments and their appertaining parts can be seen
in Figure 2.4.

Figure 2.4: The update management model showing the two different environments -
the base station and the sensor network.

User interface

The user interface can be used to schedule updates to a wireless sensor network. Through
a browser, system administrators can log into the database and tweak the needed pa-
rameters or correct errors to create the update. Afterwards, remote monitoring of the
progress of the update is (typically) possible.

Database

The database is the backbone of a WSN. Through it, system administrators can create,
schedule and store updates. A database is used when the purpose of the WSN is to
gather data compared to other applications which purpose is to detect events such as
a fire alarm. Finally, The database also enables administrators access to the collected
data which comes in hand if the WSN is deployed in a hostile or harsh environment.

Execution environment

The execution environment (EE) represent the way code is executed on the sensor nodes.
The EE can be subdivided into Monolithic, Modular and Virtual machine environments.
Each of them with their own characteristics regarding execution efficiency and energy
consumption. In the following, we briefly summarize the pros and cons of the three
sub-environments.

8 Validation and enhancement of the GCP protocol

2.2. UPDATE MANAGEMENT MODEL

Monolithic

In a monolithic EE, the applications and kernel are closely intertwined. This means that
compile time optimisation provides very efficient execution and memory utilization [10].
Because the core and applications are strongly tied together the typical way to update
a monolithic EE is to update the entire software image all together.

This update approach is quite expensive energy wise, since it both requires a lot of
radio communication to transmit / receive the software image, and then often requires
external flash memory to temporarily store it. While updating a sensor node, it may be
desirable to preserve the data and states associated with the program. Unfortunately,
memory allocation for a monolithic EE is resolved at compile time and memory is ac-
cessed directly. This means that a ”fresh” software image will have no knowledge of the
memory layout of previously installed software. Therefore, preserving data and states in
this environment can pose a problem. In general, the monolithic execution environment
is expensive to update while having excellent utilization of the sensor node’s resources.

Modular

A modular execution environment consists of two parts - a static part being the core /
kernel and loadable modules. Memory is allocated during the loading of the modules
(instead of compile time) and therefore, the modular EE must use indirect addressing
e.g. through lookup tables. The use of indirect addressing gives the Modular EE, an
execution overhead compared to the Monolithic EE. On the other hand, its possible to
update a single module compared to updating the entire software image. For frequent
small software updates the modular EE performs better energy wise compared with the
monolithic EE.

Virtual machine

The virtual machine EE provides a virtual instruction set through its own high-level
hardware abstraction. Compact scripts can be executed through an interpreter, thus
perform complex tasks with very few instructions. When updating a sensor node, the
running script on the virtual machine is replaced by another. As the scripts are relatively
small, updating a node consumes very little power. Interpretation of the scripts are done
within a sandbox environment with no direct hardware access. This gives the virtual
machine EE the beneficial property of code safety [10]. The penalty of of using the
virtual machine EE is execution overhead caused by the interpretation of the scripts.
Despite this overhead, the virtual machine EE becomes a better alternative to both
modular and monolithic EE as the frequency of system updates increases [10].

Diffusion protocol

When an update is pending it needs to be distributed efficiently. There exist a lot of
different dissemination protocols, each targeted for a specific wireless sensor network
topology. Some wireless sensor networks consists solely of sensor nodes. This simplifies
the choice of diffusion protocol since extensive use of multicast will be discarded, thus
ruling out classic flooding alike protocols. Another option could be classic gossiping.
With this approach the energy consumption will be kept on a minimum and if the running
application is not relying heavily on consistency the latency induced by gossiping could
be acceptable.

Validation and enhancement of the GCP protocol 9

CHAPTER 2. BACKGROUND ON WIRELESS SENSOR NETWORKS

A subscription based approached [20][11] is often preferred since this gives the fastest
distribution while still preserving energy efficiently. A comparison between ACK- and
NACK-based acknowledge could be interesting in determine the amount of overhead.

Another aspect which has a lot of impact on the performance of the diffusion protocol
is the topology of the wireless sensor network. If the average density is high, the speed
boost gained from flooding’s multicast approach will diminish significantly because of
the occurring implosion.

Data optimization

The role of data optimizatino is to minimize the size of updates before it is distributed
in the network. One way of data optimizing an update is by data compression. Data
compression of the software update is performed on the basestation and later uncompres-
sed on the sensor node. The compression algorithm that produce the best compression
ratio, is not necessarily the best choice. The energy used by the EE while decompression
the software update on the sensor node may outweight the benefit of transmitting the
smaller update. Another approach is to utilize delta patching. Instead of transmitting a
completely new image, or compressed image containing the update, a differential script
can be used instead. This script contains the changes between the old and new image
(thus the name differential).

2.3 Summary

In this chapter we have described the hardware setup for a typical wireless sensor network
with focus on their resources. This was done to emphasise the need for resource awareness
when working with these networks. We also present an update management model which
in detail describe the different parts needed to diffuse an update in a wireless sensor
network. Each part has a huge influence on the efficiency of spreading an update within
a wireless sensor network.

10 Validation and enhancement of the GCP protocol

Chapter 3

GCP protocol specification

In this section we give our own detailed and systematic specification of the work presented
in [9] and outline their protocol Gossip-based Code Propagation (GCP).

3.1 GCP Protocol

To specify the GCP protocol we follow the methodology of describing protocol structure
given in [12]. Five distinct parts are described in order to complete the specification
of a protocol. The first part is the service provided by the protocol. The second part
contains the assumptions about the environment in which the protocol is executed. The
third part contains the vocabulary of messages used to implement the protocol. The
forth part describes the encoding of each messages within the vocabulary. The final part
contains the procedure rules regarding the consistency of message exchanges. The fore
mentioned parts are discussed separately in the following subsections.

Service

The protocol provides code updates between sensor nodes while incorporating Piggy-
Backing and Forwarding Control, two control mechanisms both inspired by the flooding
paradigm. The code updating is achieved through neighbourhood awareness in form
of Hello messages called beacons. The beacons are transmitted at predefined intervals
continuously throughout the lifetime of the sensor network in order to continuously
alert/discover new software versions.

The workload of performing updates in the network is distributed between the nodes.
Each node starts with a predefined number of tokens. Whenever a node has transmitted
an update, its token count is decremented, and when it reaches zero, further updates
cannot be transmitted until the token count has been reset.

Environment assumptions

The environment of the GCP protocol is a distributed system with a large finite number
of wireless sensor nodes which are unaware of their geographical position. No explicit
assumptions are clear from [9], but test scenarios ranges from 1900 (plus 100 transmit-
ters)1 to 2250 nodes distributed according to different test scenarios. The sizes of the
deployment areas goes from 0, 625km2 to 4, 0km2 which gives an average density of 1660
nodes per km2 2.

The original description in [9] assumes 1-hop broadcast between nodes in transmis-
sion range (no collision). Two ranges of transmission is considered r and R. The range
r, is the range where target nodes will receive transmissions with 100 % certainty hence
probability P=1. The range ≥ r and ≤ R represents the range where the transmis-
sion probability is not uniform. No nodes with a distance greater than R can receive
transmissions 3. It is illustrated in Figure 3.1.

1A transmitter is a node which movement is not restricted to the specific cluster and thus is used to
assure connectivity between the clusters in the deployment area.

2The calculation is included in Appendix A.
3 All nodes are considered to have the same communication range.

Validation and enhancement of the GCP protocol 11

CHAPTER 3. GCP PROTOCOL SPECIFICATION

R

r

A

(a) Transmission ranges

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

T
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y

Distance from sensornode (meters)

P(x)

(b) Transmission probability

Figure 3.1: Transmission ranges and probability

Target nodes within the transmission distance r < d < R, may or may not receive a
transmission. The probability of a node receiving a transmission is calculated according
to Equation 3.1 below. The authors indicates r = 3 and R = 5

[9]P (d) =

1 if d < r

Pmin −
√

R−d
R−r ×

(
R−d
R−r − 5

)
× 1−Pmin

4 if r ≤ d ≤ R
0 if d > R

(3.1)

where P(d) is a function that describes the probability for packet transmission bet-
ween two nodes separated with a distance of d meters. Pmin is the minimum reception
probability for two nodes separated by distance R. In [9] Pmin is equal to 0,3.

The network is dynamic. By introducing the Random Waypoint model [13] nodes
will change a movement direction as soon as the reach a way point, thus every node will
eventually be in range of another node to receive the update. It should be noted that
depending on the test scenario, different restrictions are enforced on the nodes movement
(detailed description of the different test scenarios will be given in Chapter 5.)

Message vocabulary

The vocabulary of the GCP protocol can be expressed with two distinct types of mes-
sages: beacon messages with the purpose of broadcasting the nodes current version
number and the update messages which contains the update. Another way to describe
the vocabulary is with a set:

V = {beacon, update}

It should be noted that the GCP protocol assumes no collision or data loss would occur.
Therefore, the ”acknowledgement” and ”not acknowledgement” messages are not needed.

Message encoding

Each message consists of a control field identifying the message type succeeded by a
version number and lastly a data field.

As in [12] the general form of each message can be expressed in more details as a
structure of three fields: { control tag, version, data }. Using this structure a C-like
description could be written as:

12 Validation and enhancement of the GCP protocol

3.1. GCP PROTOCOL

1 enum c o n t r o l { beacon , update } ;

struct message {
enum c o n t r o l tag ;

5 unsigned int ve r s i on ;
unsigned char data [3 0] ;

} ;

It should be noted that the beacon message does not contain any update data and
thus the data field is omitted. The detailed specification of each message is omitted in
the work of [9], thus a likely representation is given in Figure 3.2. Each field has the most
significant bit (msb) as its outer left bit, and the outer right bit is the least significant
bit (lsb).

versioncontrol data

GCP packet

8 bit 8 bit 0-30 bytes

32 bytes

Figure 3.2: Presumably the GCP packet layout.

Procedure rules

The procedure rules of the GCP protocol is informally described trough pseudo code
in [9]. We use a flow chart diagram to describe the protocol. To distinguish between
an nodes own variable and one it receives with a message we adopt the notation of r.
An example is version > version r, which means that a nodes version is greater than
the transmitting node. Also, states are marked with bold, message types in verbatim

and variables with italic. It should also be noted that in every state the radio is able
to receive any kind of messages. To simplify our flow chart, for every state we have
omitted those message types which will be discarded upon reception. In the flow chart
the following labels are used:

• version represents the local version number of the software.

• software represents the local software binary.

• tokens represents the current amount of tokens available on the sensor node.

• initNrOfTokens is the predefined number of tokens that initially are available on
the sensor node.

• timeout is the amount of milliseconds before a beacon has to be transmitted.

Figure 3.3 shows the flow chart of the GCP protocol. The GCP protocol starts
with an initialization of the local variables version, initNrOfTokens, token and timeout.
With the local variables initialized the protocol continues to the Idle state. This is
the main state of the protocol where the node listens for incoming beacons and update

Validation and enhancement of the GCP protocol 13

CHAPTER 3. GCP PROTOCOL SPECIFICATION

Start

version = 1
initNrOfTokens = 3

tokens = 3
timeout = 100

Idle

timeout

Receive
update

(version_r,
software_r)

Transmit
beacon
(version)

Receive
beacon

(version_r)

version_r <
version

True False

version_r >
version

tokens > 0

True

Transmit
beacon
(version)

True

Transmit
update
(version,
software)

False

False

True

tokens = initNrOfTokens

version = version_r

update code
(software_r)

version_r >
version

False

Figure 3.3: The flow chart of the GCP protocol.

messages while periodically transmitting a beacon (this is illustrates with a time-out
period on the arrow from Idle to Transmit beacon). While the node is in the Idle
state and periodically sending beacons, the protocol listens for two kinds of messages -
Receive beacon and Receive update. Starting with Receive beacon the protocol
first compares the received version with the one running on the node. If the received
version is of a newer edition, the node will do a Transmit beacon before going back
the the Idle state. The transmission of the beacon ensures that update messages will be
sent to the node. On the other hand, if the software version on the node is newer than
the received, the node will look at its tokens count. If that value is greater than zero, it
will do a Transmit update, decrement the tokens variable with one and return to the
Idle state. On the other hand, if the tokens variable is zero, the node is not able to start
an update and thus return to the Idle state. The second message type the node could
receive in the Idle state was an Receive update message. When the node receives this
message it will compare the version with its own. If the received version is older , the
node will send an update message, otherwise it will return to the Idle state.

14 Validation and enhancement of the GCP protocol

3.1. GCP PROTOCOL

Reflection on the GCP protocol

From the construction of the flowchart different constraints of the GCP protocol becomes
more clear. Regarding the features of the radio no explicit assumptions are given in
[9]. But unless the radio is full duplex situations will occur where the radio is busy
receiving/transmitting updates and thus cannot transmit the periodical beacon. Which
action the authors takes in this situation is unclear. Another unclear situation is what
happens if a node crashes in the middle of a transmission/reception or while updating
the running software. No explicit assumptions are found within [9]. The same applies
if the node should recover after a crash. Lastly, assuming no packet loss / collisions
in a wireless network is very limited and does not reflect the reality which makes this
protocol less suitable for real implementation.

Summary

In this chapter we give a systematic specification of the GCP protocol. We start by defi-
ning the service the protocol delivers. We then describe the different assumptions upon
which the protocol is built. After this a vocabulary was specified and the message enco-
ding was presented. Lastly, the procedure rules were created with help from flow charts.
The last section contains a short discussion about different ambiguous specifications and
certain limitations in the protocol.

Validation and enhancement of the GCP protocol 15

Chapter 4

Verification of the GCP protocol

In this chapter we model the GCP protocol shown in Figure 3.3 as a timed automaton
in UPPAAL. UPPAAL is a tool for modeling, validation and verification of real-time
systems modeled as networks of timed automata [23]. Using UPPAAL we verify that our
GCP model satisfy selected correctness properties. We ensure that the GCP protocol
is free of deadlocks. We also verify the general update behavior of the GCP model,
including correct tokens usage e.g the possibility of updating multiple nodes using only
one token as specified in [9] We further extend the UPPAAL model with time, and
energy, allowing us to reason about best- and worst case code update propagation speed
as well as energy consumption for selected topologies.

4.1 Initial GCP model

The initial model of a UPPAAL node process implementing the GCP protocol is illus-
trated in Figure 4.1. The model reflects the mechanics of the GCP protocol modeled as
a timed automaton, with no assumptions about the underlying hardware.

myRemoteVersion > version

myRemoteVersion < version

myRemoteVersion <= version

x >= timeout

tokens > 0

myRemoteVersion > version

tokens == 0

myRemoteVersion == version

beacon!

UPDATE_OWN

CHK_BEACON_V

CHK_UPD_V

x<100

x <= timeout

CHK_TOKENS

INIT

REQUEST_UPD

IDLE

update!

tokens := tokens − 1

remoteVersion := version

x:=0

x := 0,
remoteVersion := version

myRemoteVersion := remoteVersion

myRemoteVersion := remoteVersion

version := remoteVersion,
tokens := initNrOfTokens

update?

beacon?

beacon!

Figure 4.1: Initial GCP UPPAAL model

To explain the behavior of the initial GCP UPPAAL model we describe the individual
states of the model.

INIT - The node process starts in INIT state, here it will remain between 0 to 100
time units, before it enters the IDLE state. We use the local clock x to keep track
of time. Having the invariant x < 100 in the initial state forces the process to
leave the initial state after 100 time units. By delaying 0 to 100 time units from
the initial state to the IDLE state, we model that nodes have randomly starting
beacon intervals.

Validation and enhancement of the GCP protocol 17

CHAPTER 4. VERIFICATION OF THE GCP PROTOCOL

IDLE In the IDLE state beacons will be broadcast periodically every 100 time units.
We enforce this by having the invariant x ≤ timeout in the IDLE state, and by
placing the guard x ≥ timeout on the beacon! transition, where timeout = 100.
We reset clock x when a beacon is broadcast from IDLE state. When broadcasting
the beacon! the node perform a one-way value passing of the update version that
this node is currently holding. The version is passed to trough the shared variable
remoteVersion

In the IDLE state it is possible to receive beacons and updates. The node can re-
ceive a beacon by synchronizing upon the beacon? broadcast channel and receive
an update by synchronizing upon the update? broadcast channel. The update
version for both a beacon and an update is passed trough the shared variable
remoteVersion and stored in the local variable myRemoteVersion upon synchroni-
zation. When receiving a beacon the node will enter the CHK BEACON V state.
When receiving an update the node will enter the CHK UPD V state.

CHK BEACON V The node check if the remote update is newer, older or the same
version as the update the node is currently holding. If the remote version is newer
than the current version, the node proceeds to the REQUEST UPD state. If the
remote version is the same as the current version the node returns to IDLE state.
If the remote version is older than the current version the node will enter the
CHK TOKENS state.

CHK TOKENS The node checks if it has enough tokens to broadcast an update. If
the node has more than zero tokens it will transmit the update update!, decrease
its number of tokens and enter IDLE state.

REQUEST UPD The node request a new update by broadcasting a beacon with the
local update version.

CHK UPD V The node checks the version of the received update. If the version is
older or same as the current version we ignore it and enter the IDLE state. If the up-
date version is newer than the current version the node enter the UPDATE OWN
state

UPD OWN The node stores the received update by assigning the remoteVersion to
the local variable version. The number of tokens are assigned to the initial token
value.

The initial model introduced in 4.1 does not reflect the underlying hardware we
there for proceed to extend the model with some assumptions about the radio used for
communication.

model assumptions

We assume that we use a half-duplex radio to send and receive messages, and assume
that the radio is always listening unless it is transmitting.

modeling

To model that we use a half-duplex radio, and that the radio is always listening unless
its transmitting we need to ensure that after the node process performs a transmits

18 Validation and enhancement of the GCP protocol

4.1. INITIAL GCP MODEL

operation, beacon! or update! the node process is able to receive incoming packets,
beacons? or updates?.

The intermediate states CHK TOKENS and REQUEST UP are removed. Transi-
tions originating from these two state are accessible from the CHK BEACON state. The
check of update version of the beacon is enforced by placing guards on the transitions
exiting the CHK BEACON state. To enable update reception after a transmitted bea-
con, we add a transition from the CHK BEACON to the CHECK UPD V state that
syncronize upon update?. The changes made to the initial model is illustrated in Figure
4.2

version := myRemoteVersion,
tokens := initNrOfTokens

x := 0,
remoteVersion := version

myRemoteVersion := remoteVersion

myRemoteVersion := remoteVersion
beacon?

update!

update?

x < 100

beacon!

x <= timeout

update?

beacon!

myRemoteVersion > version

myRemoteVersion == version

myRemoteVersion <= version

x >= timeout

myRemoteVersion > version

tokens == 0 &&
myRemoteVersion < version

myRemoteVersion > version

tokens > 0 &&
myRemoteVersion < version

x:=0

CHECK_UPD_V

IDLE

UPDATE_OWN

CHK_BEACON_V

remoteVersion := version,
tokens := tokens −1

myRemoteVersion := remoteVersion

remoteVersion := version,
x := 0

INIT

Figure 4.2: Basic GCP UPPAAL model

Verification results

The first property of the initial GCP model we verify is a safety property ensuring that
the GCP protocol is free of deadlocks. We setup a system of system of three nodes
with three tokens each. One of the nodes contain a new version of a code update. We
ask the the UPPAAL verifier if a node will ever enter a state with no outgoing action
transitions from the state itself, or any delayed successor states [23]. In UPPAAL the
query i formulated as the Query in 4.1 Will it hold invariantly that we will not reach a
state that is deadlocked.

A[] not deadlock (4.1)

Another property we want to verify is that when ever we use a token, we are able to
update at least one other node. Will it always hold that when N0 use a token, at least
one other node is updated.

A <> (N0.tokens == 2) imply (N1.version == 2 or N2.version == 2) (4.2)

Validation and enhancement of the GCP protocol 19

CHAPTER 4. VERIFICATION OF THE GCP PROTOCOL

Another property of the GCP protocol that we wish to verify is that we are able to
perform updates of multiple nodes using only one token. We query the UPPAAL verifier
if it there exist a trace where node N0 use only one token to update the two nodes N1
and N2. As part of the query we ensure that N1 and N2 both got their update from N0
by requiring that the token number of both N1 and N3 is at the initial token value 3.

E <> (N0.tokens == 2) imply (N1.version == 2 and N1.tokens == 3) and
(N2.version == 2 and N2.tokens == 3)

(4.3)

The Query 4.1, 4.2 and 4.3 all pass verification, and we ensured that our system is
deadlock free, and performs updates according to specification.

4.2 Timing analysis

model assumptions

In our previous work [16] we treated three different components of a WSN software up-
date scenario, that influence the code update propagation time and energy consumption,
namely data optimization (DO), distribution protocol(DP) and execution environment
(EE). We wish to examine the time and energy properties of the GCP protocol as a code
update distribution protocol. Before defining a time and energy model we first make
assumptions about both data optimization and the execution environment, as well as
the underlying hardware.

Data optimization

For the time and energy models we use no data optimization. This means that the
total software update is sent as a binary, as performed by the Deluge update mechanism
[16][7] It can be argued that using differential patching (delta patching) [16][19] for data
optimization will minimize the code footprint for simple updates, hereby conserving
energy. As seen in [14] [19] the total amount of energy used applying a delta patch may
vary greatly. The amount of energy used to apply a delta patch is not linear to the size of
the delta patch, but also highly depends on the binary layout of the executable update as
well as the memory type and structure on the target node [14]. The full binary update is
chosen as it provides a more transparent code update footprint, to energy consumption
ratio, when applying the patch at the target node.

Execution environment

For the models we assume that the EE is monolithic. Having a monolithic EE gives us
efficient code execution that provides a strong correlation between the tasks involved
in the update and the actual MCU time spend while updating. This ratio is otherwise
distorted by the execution overhead of modular environments caused by the levels of
indirection, or hardware abstraction in the virtual machine EE.

Code update size

As a basis for the UPPAAL model we use the platform previously explored in [16], com-
prising of the AT90CAN128 MCU [1] and the nRF24L01 radio [5]. In the AT90CAN128
there is 128 kB of programmable flash memory available, structured in 512 pages of

20 Validation and enhancement of the GCP protocol

4.2. TIMING ANALYSIS

each 256 bytes. The flash memory space is divided into two sections, the boot loader
section and application program section. The size of the bootloader section can be de-
fined to either 4, 8, 16 or 32 pages, trough the BOOTZS1 and BOOTZS2 register of
the AT90CAN128 MCU [1]. We reserve 16 pages of flash memory for the boot loader
application, hereby leaving 496 pages of unused flash program memory. As we perform
total binary updates, using no external ram source, we need to reserve half of the flash
program memory as a buffer for the update before it can be written to the application
area. The size of the buffer- and application area are both 248 pages allowing code
updates of a maximum of 248 × 256 bytes = 62 kB. For the time and energy model we
make the worst case assumption that the size of all code updates are 62 kB [2]. The
flash memory layout is illustrated in Figure 4.3

Bootloader

Buffer

Application

0x0000

0xFFFF

0x7C00

0xF7FF

248 pages

248 pages

16 pages

16 bit

Figure 4.3: Flash memory layout
has

Update TX/RX time

We first calculate the time a node spends when transmitting or receiving an update.
The radio is capable of transmitting 2 × 106bps. We assume that we have no collisions
and no lost packages as in [9]. To send a 62 kB update, we also assume that the MCU
time reading data from memory is insignificant compared to the throughput of the
radio, hence this will not influence the overall transmit time of the update. With the
assumption that we have no collisions and no lost packages we calculate the time to send
a 62 kB update in Equation 4.4.

TX Time =
62 kB× 8 bit× 1024

2× 106 bits/s
= 0.253952 ≈ 0.254 seconds (4.4)

With the aforementioned assumptions we can transfer a 62 kB update wirelessly in
0.254 seconds.

The time spend sending and receiving an update is not the same. The receiving
node has additional processing to do by storing the update in buffer, and subsequently
moving the update from buffer to the application area. In the follow we calculate the
time it takes to store an update in buffer. The flash memory of the AT90CAN128 is
structure in units of 256 byte pages [1]

Writing a single page in flash memory takes 4.5ms [1], to store a 62 kB update in
buffer we need to write 248 pages. We calculate the time it takes to store the update in
the buffer in Equation 4.5.

hasBufferWriteTime = 248 pages× 0.0045 seconds = 1.1160 seconds (4.5)

Validation and enhancement of the GCP protocol 21

CHAPTER 4. VERIFICATION OF THE GCP PROTOCOL

The receiving node use 1.116 seconds to store the update in buffer. As the receiver is
not able to store the data as fast as the transmitter can send it, the transmitting node is
also involved in the update for this period of time. Even though the transmitting node
is involved in this period of time, the radio is not always fully active during the update.
We use the 1.116 seconds as the time a transmitting node use to send an update. As
a basis for energy consumption we later use the 0.254 seconds as a rough estimate for
the active period the sending node is actually transmitting. We assume that the MCU
is active during the entire update for both the sending and the receiving node.

When the receiving node has stored the update in the buffer, it needs to copy the
update from the buffer to the application area. This write operation will consume an
additional 1.116 seconds and in addition to this we must add the time it takes to read
the 248 pages from the buffer.
The read time of a full 256 byte page is not explicit in the AT90CAN128 data sheet, we
therefor derive an estimate on the total buffer read time, based on the AT90CAN128
MCU architecture, the MCU frequency and a pseudo code example found in the AT90CAN128
data sheet, dictating a ’byte by byte’ flash read operation.

The flash memory is read one byte at a time [3]. The pseudo code in Listings 4.1
describes how to read first the low byte, then the high byte of a specific 16 bit flash
address. This read operation consist of six instructions. As both high- and low bytes
are stored in DATA register we add two move instructions, for at total of 8 instructions
as an estimate for the operations performed reading two bytes from the buffer.

1 Load Command 0x02 . // ReadFlash command
Load Address High Byte (0 x00 0xFF) .
Load Address Low Byte (0 x00 0xFF) .
// Output Enable =0, B y t e S e l e c t 1 =0 (Addr . word low b y t e now in DATA.)

5 Set !OE to 0 , and BS1 to 0
// B y t e S e l e c t 1 = 1 (Addr . word h igh b y t e now in DATA.)
Set BS1 to 1
Set !OE to 1 . // Output Enable = 1

Listing 4.1: Buffer read operation

The AT90CAN128 MCU is of Harvard architecture, this means, that the MCU uti-
lizes a separate instruction- and data bus, allowing it fetch instruction, while executing.
The AT90CAN128 MCU can hereby achieve speeds of up to 1 MIPS per MHz on opera-
tions on the registers R0 - R31. Loads and store operations to and from memory use 1-2
clock-cycles and branch operations use 1-4 clock cycles [1]. The AT90CAN128 is running
at 16MHz. All eight instructions use 2 clock cycles each [1][3], and we can calculate the
time to read a 248 pages of 256 bytes in Equation 4.6

BufferReadT ime =
8× 2 cycles

16× 106 cycles/sec
× 248 pages× 256 bytes

2 bytes
= 0.031744 seconds

(4.6)

The total update time for the receiving node is calculated in Equation 4.7.

UpdateT imeReceiver = 2× 1.116 sec. + 0.031744 sec. = 2.2637 seconds (4.7)

22 Validation and enhancement of the GCP protocol

4.2. TIMING ANALYSIS

Modeling

For time analysis we extend the basis GCP UPPAAL model in Appendix B.2 with the
notion of transmission time, and connectivity. Using the extended GCP time analysis
model Appendix B.2 we wish to show the best- and worst case code propagation speed
for the synthetic topologies illustrated in Figure 4.4

(a) Straight line. (b) Center node. (c) Corner node.

Figure 4.4: Synthetic topologies

The synthetic topologies in 4.4 each reflect a specific placement of an updated node
in relational to a multiple number of non-updated nodes. Each topology will influence
the code update propagation speed as well as the use of tokens in its own way. Using
UPPAAL we reason about the best- and worst case code update propagations speed.

Connectivity

To do time analysis using the synthetic topologies in Figure 4.4 , we introduce the notion
of connectivity to the GCP UPPAAL model.

We use a simple Beacon process illustrated in Figure 4.5 to explain how connectivity
is modeled. The simple Beacon process can send and receive beacons. The Beacon
process counts the number of sent and received beacons using the variables beaconsSent
and beaconsRecv. The Beacon process will send a beacon every 100 time units.

link[id][remote_id]

!link[id][remote_id]

x<=100
x >= 100

beacon?

beacon!

beaconsRecv++

var:=id,
x:=0,
beaconsSent++

remote_id:=var

Figure 4.5: Beacon process

When synchronizing on the beacon channel we perform a one-way value passing of the
sending node id. The sending node passes its id to the receiving node trough the shared
variable var. Synchronization at the receiving node will lead to a new intermediate
committed state, from where we will decide if there is connectivity between the sending
an receiving node. The topology of the network is modeled as the adjacency matrix Link
in Table 4.1. To determine if the sending- and receiving nodes can communicate, the
receiving node perform a lookup in the Link matrix using its own id, and the id of the
sending node, remote id. If Link[id][remoteId] = 1, the node identified by id receives
messages sent by the node with remote id. The Link evaluation is placed as a guard
upon the transition indicating that the nodes are connected, in this case incrementing
the number of beacons received, beaconCount. The negated Link evaluation is placed

Validation and enhancement of the GCP protocol 23

CHAPTER 4. VERIFICATION OF THE GCP PROTOCOL

as a guard on the transition leading back to the initial state hereby ignoring the effects
of the beacon synchronization as is if the two nodes were not connected. We test the
connectivity by verifying a UPPAAL system of two Beacon processes P0id=0 and P1id=1,
using the connectivity array Link in Table 4.1 first in connected configuration, and next
in a non-connected configuration.

Connected Non-Connected

Link =

[
0 1
1 0

]
Link =

[
0 0
0 0

]
Table 4.1: Connected vs non-connected Link configuration

To verify that process P0 and P1 can communicate in the connected Link configu-
ration we first query the UPPAAL verifier if it holds that when P0 sends a beacon, it
will imply that this beacon is received by P1.

E <> (P0.beaconsSent > 0) imply (P0.beaconsSent == P1.beaconsRecv) (4.8)

To ensure two way communication it must also hold that if P1 sends beacons, the number
beacons sent by P1 must be equal to the number of beacons received by P0.

E <> (P1.beaconsSent > 0) imply (P1.beaconsSent == P0.beaconsRecv) (4.9)

To verify that process P0 and P1 can not communicate in the non-connected Link
configuration, we ask the UPPAAL verifier if it holds invariantly that the beaconsRecvt
variable of both P0 an P1 always will be zero, meaning that communication never occurs.

A[](P0.beaconRecv == 0) and (P1.beaconRecv == 0) (4.10)

All 3 queries pass verification, and we can apply connectivity as illustrated in Figure
4.5 to the GCP model in Figure 4.6. (A large scale Figure can be found in Appendix
B.3)

Time

To reflect the passing of time in the model we introduce two new states SEND UPD and
RECV UDP.

SEND UPD In this state the node will delay for the period of time it takes to send an
update. The time it takes to send an update is stored in the constant SEND TIME.
The invariant x ≤ SEND TIME in the SEND UPD state enforces the process
to leave the state after SEND TIME time units. The guard x ≥ SEND TIME
placed on the transition leading to the IDLE state enforces that the node cannot
take this transition sooner than SEND TIME time units. The node process
remains in the SEND UPD state exactly SEND TIME time units, and proceeds
to the IDLE state.

RECV UDP In this state the node will delay for the period of time it takes to re-
ceive an update. The time it takes to receive an update is stored in the constant
RECV TIME. Using a combination of an invariant and a guard we ensure that
the node remains in the RECV UPD state for the duration of RECV TIME time
units, and then proceeds to the IDLE state.

24 Validation and enhancement of the GCP protocol

4.2. TIMING ANALYSIS

!link[remoteID][id]

IDLE

CHECK_UPD_V

link[remoteID][id]

link[remoteID][id]

!link[remoteID][id]

!link[remoteID][id]

x < 100

x <= timeout

x <= SEND_TIME

CHK_BEACON_V

INIT

RECV_UPD

SEND_UPD

x<=RECV_TIME

update?

beacon!

x >= timeout

myRemoteVersion <= version

update?

update!

beacon?

link[remoteID][id]

x >= SEND_TIME

myRemoteVersion > version

x >= RECV_TIME

myRemoteVersion > version

myRemoteVersion == version

tokens > 0 &&
myRemoteVersion < version

tokens == 0 &&
myRemoteVersion < version

beacon!

remoteID:=remoteNode,
myRemoteVersion := remoteVersion

remoteVersion := version,
remoteNode:= id,
x := 0

x:=0

x:=0,
version := myRemoteVersion,
tokens := initNrOfTokens

x:=0

remoteVersion := version,
remoteNode:= id,
x := 0

remoteVersion := version,
remoteNode:= id,
tokens := tokens −1,
x:=0

remoteID:=remoteNode,
myRemoteVersion := remoteVersion

x:=0

remoteID:=remoteNode,
myRemoteVersion := remoteVersion

x:=0

Figure 4.6: GCP UPPAAL time model

Verification results

Best-case code propagation speed

With connectivity and time as a part of the GCP UPPAAL model we can start to reason
about the time characteristics of the GCP code propagation speed in the synthetic
topologies in Figure 4.4 To retrieve the best-case code update propagation speed, we
query UPPAAL to generate the fastest trace where all nodes in the system are in an
updated state. We add the global clock g to the system as time keeper. When the
fastest trace is found, clock g will yield the time duration for the best-case code update
propagation speed.

E <> N0.version == 2 and N1.version == 2 and N2.version == 2 and
N3.version == 2 and N4.version == 2 and N5.version == 5

(4.11)

Worst-case code propagation speed

Determining the worst case code propagation time in UPPAAL and in general is not
straight forward task. We cannot ask UPPAAL for the for exact time for the worst case
code propagation speed, instead we manually narrow down this number by doing a binary
search asking ”is it possible to have a non-updated system after a period timeBound
time units”. Where we initially set timeBound to relatively high number and half this
number if the query fails. The binary search is illustrated in Figure 4.7

Final precision Start

TIME

Figure 4.7: Binary search for worst case code propagation speed

Validation and enhancement of the GCP protocol 25

CHAPTER 4. VERIFICATION OF THE GCP PROTOCOL

We formulate the initial query to obtain wost cast propagation speed in Query 4.12.

E <> not (N0.version == 2 and N1.version == 2 and N2.version == 2 and
N3.version == 2and N4.version == 2) and g >timeBound

(4.12)
If a query pass on a specific timebound it means that there are still non-updated

nodes within the timeBound, and we increase the time bound an query the UPPAAL
verifier again.

The time analysis result for best- and worst case code propagation speed is summa-
rized in Table 4.2

Topology Best-case CPS Worst-case CPS

AStraigh Line 9.164 sec. ≈ 14.07 sec.

BCenter Node 2.416 sec. ≈ 10.26 sec.

CCorner Node 4.662 sec. ≈ 15.63 sec

Table 4.2: Best- and Worst case time analysis

As expected we see that best case code propagation is achieved in the center node
scenario, where all node can be updated using only one token. The slowest best-case
propagation is not surprisingly when all nodes are aligned, and each node must pass on
the update. The fastest worst-case propagation is the center node scenario, while the
slowest being the corner node scenario.

4.3 Energy analysis

model assumptions

We calculate the energy consumed while sending and receiving updates, this includes
energy consumption by the transmitter/receiver as well as the MCU. We assume that the
MCU is active while sending and receiving, and that the MCU is in idle state between
the periodical beacons.

We use the following typical power consumption characteristics for the nRF24L01
and the AT90CAN128 in Table 4.3 and 4.3

Operational mode Supply current

RX (Low current mode) @ 3.3V 11.5 mA

TX @ 3.3V, -18 dBm 2000kpbs 7 mA

IDLE 22 µA

Table 4.3: nRF24L01 supply current

Operational mode Supply current

Active mode @ 25 ◦C, 4.5Vcc, 16MHz 27 mA

IDLE mode @ 25 ◦C, 4.5Vcc, 16MHz 16.5 mA

Table 4.4: AT90CAN128 supply current

We first use Equation 4.13 to calculate the energy consumption J . J is the quantity
of energy in joules used for a given operation transmit,/receive of an update, and moving

26 Validation and enhancement of the GCP protocol

4.3. ENERGY ANALYSIS

update code from buffer. V is the supply voltage, I is the supply current. s is the time
in seconds.

J = V ∗ I ∗ s (4.13)

The energy consumption of the nRF24L01 transmitting and receiving an update is
described in Equation 4.14 and 4.15 using the typical power characteristics in Table 4.3
and the transmit time from Equation 4.4.

JnRF24L01 TX = 3.3V × 0.007A× 0.254s = 5.866× 10−3 ≈ 5.87mJ (4.14)

JnRF24L01 RX = 3.3V × 0.0115A× 0.254s = 9.637× 10−3 ≈ 9.64mJ (4.15)

The energy consumption of the AT90CAN128 while reading the buffer using the
typical power characteristics in Table 4.4 and the buffer read time as calculated in
Equation 4.6

JReadBuffer = 4.5V × 0.027A× 0.031744 = 3.86mJ (4.16)

The energy consumption of the AT90CAN128 while writing an update to buffer using
the typical power characteristics in Table 4.4 and the buffer write time as calculated in
Equation 4.5.

JWriteBuffer = 4.5V ×0.027A×(248pages×0.0045s) = 0.13559400 = 135.59mJ (4.17)

Sender/Receiver Operations Energy

Energy SEND JnRF24L01 TX + JWriteBuffer 141.5 mJ

Energy RECV JnRF24L01 RX + 2× JWriteBuffer + JReadBuffer 284.8 mJ

Battery supply

We assume that a node is powered by three serially connected AA batteries. A single
AA battery characteristic is 1.5 volts, and 1100 maH. We assume that the voltage of the
battery is 1.5 volts during the entire discharge of the battery. We calculate the energy
in three AA batteries in Equation 4.18

BatteryEnergy =
1100 maH ∗ 3600 sec. ∗ 1.5 volts

1000
× 3 batteries = 17820Joules

(4.18)
Assuming that a node is continuously receiving updates performing no other actions, a
is theoretically possible to receive 17820J×1000

248.8 mJ ≈ 62596 updates. This is highly optimistic

and will exceed the maximum of flash write/erase cycles. It should also be noted that
the battery voltage eventually will drop below the operational voltage threshold for the
AT90CAN128 during the discharge of the battery.

Validation and enhancement of the GCP protocol 27

CHAPTER 4. VERIFICATION OF THE GCP PROTOCOL

Modeling

To model energy consumption we introduce the meta variables energy and totalEnergy .
In energy we accumulated the energy consumption of the individual node, in totalEnergy
we accumulated the energy consumption of they entire system. When synchronizing
upon the update! broadcast channel we add the energy consumption for a transmitted
update to both the energy and totalEnergy variable. When receiving an update the
energy consumption for a received update is added to energy and totalEnergy.

To capture the time spend by a node in the IDLE state, we introduce a new process
Ticker, and add a looping transition in the IDLE state that synchronize on the tick
broadcast channel. The role of the Ticker process is to ”active” the node process in
IDLE state. Ticker will broadcast a tick! each time unit, and allow we can hereby
accumulate the energy consumed in IDLE state When the node process synchronize
upon tick? we add the power consumed in one time unit (milisecond) to energy and
totalEnergy. The Ticker process is illustrated in Figure 4.8

t:=0t>=1

t <= 1

tick!

Figure 4.8: Ticker process

The energy extended GCP UPPAAL model is illustrated in Figure 4.9

remoteID:=remoteNode,
myRemoteVersion := remoteVersion

remoteVersion := version,
remoteNode:= id,
x := 0

x:=0

x:=0,
version := myRemoteVersion,
tokens := initNrOfTokens,
energy += RECV_ENERGY,
totalEnergy += RECV_ENERGY

remoteID:=remoteNode,
myRemoteVersion := remoteVersion

remoteVersion := version,
remoteNode:= id,
tokens := tokens −1, energy+=SEND_ENERGY,
totalEnergy+=SEND_ENERGY, x:=0

remoteID:=remoteNode,
myRemoteVersion := remoteVersion

x:=0

remoteVersion := version,
remoteNode:= id,
x := 0

INIT

CHK_BEACON_V

SEND_UPD

x:=0

x:=0

CHECK_UPD_V

idleTime++,
energy+=IDLE_ENERGY,
totalEnergy+=IDLE_ENERGY

IDLE

RECV_UPD

myRemoteVersion > version

myRemoteVersion <= version

myRemoteVersion == version

tokens == 0 &&
myRemoteVersion < version

x < 100

x >= timeout

x <= SEND_TIME

x<=RECV_TIME

!link[remoteID][id]

link[remoteID][id]

!link[remoteID][id]

!link[remoteID][id]

link[remoteID][id]

tokens > 0 &&
myRemoteVersion < version

myRemoteVersion > version

link[remoteID][id]

x >= SEND_TIME

x >= RECV_TIME

x <= timeout
beacon?

update!

update?

beacon!

tick?

beacon!

update?

Figure 4.9: GCP UPPAAL energy model

Verification results

Having the energy consumption reflected in the model we want to explore the worst case
energy consumption within a given time bound.

28 Validation and enhancement of the GCP protocol

4.4. SUMMARY

We ask the UPPAAL verifier if there exist at trace where we have used more than
a specified energy threshold, we denote EnergyLevel within a certain time bound that
we denote TimeBound. We use clock g as a timer keeper for the global time, and
totalEnergy as the amount of energy consumed by entire system.

E <> (g < TimeBound) and (totalEnergy > EnergyLevel) (4.19)

If the Query in 4.19 is passed, we know that the system is able spend more energy
within the time bound, otherwise the system will always have energy within the time
frame. We want to find the highest value of EnergyLevel for which it holds that Query
4.19 is satisfied. We perform a binary search to find the worst case energy consumption
bounded by the best- and worst-case code update propagation speed.

The task of searching the state space for the worst case energy consumption be-
came extensively time consuming and we did not manage to produce comparable worst
case energy results for the chosen synthetic topologies, bounded by the best- and worst
case propagation speed. We acknowledge that UPPAAL CORA performs Cost Opti-
mal Reachability Analysis and is the proper tool to use in search of worst case energy
consumption but we will have to leave this task for future work.

4.4 Summary

Through the verification chapter we presented simple mode to illustrate the mechanics
of the GCP model. We extend the initial UPPAAL GCP model in three stages, first
incorporating the assumption about the radio, and then time and energy use. We made
assumptions about the underlying hardware of the model, and calculated the time and
energy used during an update for both the sending and receiving node. We verified that
the GCP protocol is free of deadlocks, and that the intended token uses is reflected in
the model. On the time extended GCP model we performed time analysis and find best-
and worst case code propagation speed for three synthetic topologies. On the energy
extended GCP model we performed energy analysis but were not able to generate results.

Validation and enhancement of the GCP protocol 29

Chapter 5

Simulation of GCP

This chapter introduces a discrete event simulator named Network Simulator 2 (NS2)[6]
[22]. In this tool we implement the GCP protocol and verify it behaves as we expect.
Then the simulation scenarios are described so various tests can be conducted. The
results will be compared with the original results presented in [9]. Finally, explanations
are given for the deviation and replications of the original results are created.

5.1 Introduction to NS2

The NS2 tool is a packet-level network simulator developed at DARPA VINT 1 as a
project collaboration between researchers at UC Berkeley, LBL, USC/ISI and Xerox
PARC. It is a free open source tool which helps to simulate existing network protocols:
TCP, UDP, routing, and multicast over both wired and wireless networks. The tool is
written using to languages:

• C++ defines the internal mechanism, and is responsible for running the entire
simulation. Using this language we define the functionality of the protocol.

• Object-oriented Tool Command Line(OTCL) is used to set up the parameters
for the simulation. Such parameters could be defining the topology, configuring
network objects, and scheduling discrete events.

This separation makes the tool flexible, because in order to change the system para-
meters, it is enough to change the simulation file. Hence it removes the necessity to
recompile the entire code. Since the body of NS2 is fairly large, the compilation time is
not to be negligible.

Figure 5.1 shows how the NS2 tool works. Firstly, the OTCL interpreter processes a
script. Secondly, it creates objects that are linked to a shadowing objects in a compiled
code, adds events to the EventQueue, and runs the simulation. Thirdly, when the
simulation finishes, the results can be accessed using an OTCL interpreter and visualized
graphically using the tool Network AniMator (NAM).

OTCL

script(simulation

case)
ResultsOTCL Interpreter

NS library:

Event Scheduler

Network Component Objects

Agent/GCP

Figure 5.1: NS2 working principles

Event scheduler

The NS2 performs centric discrete event simulations. Discrete event simulation organizes
events in chronological order in a fitting data structure referred to as the EventQueue.

1Defense Advanced Research Projects Agency Virtual InterNet Testbed

Validation and enhancement of the GCP protocol 31

CHAPTER 5. SIMULATION OF GCP

Each event is described by the event time (when the event is handled), an unique id,
a pointer to the next event, and the associated event handler object. Each event is
processed one by one, and the associated ”handler” object deals with this particular type
of event, updating the state space of the simulation scenario accordingly to the queue
and potentially spawns one or more events. These events are subsequently inserted into
the EventQueue ordered by the event time before the next event is processed. When an
event has been processed, the global clock ”jumps” to the time stamp of the next event
in the EventQueue, and the next event is processed.

An example is illustrated in Figure 5.2 with two nodes A and B. We assume the
nodes are within communication range, and with no packet loss will not occur.

1. The earliest event from the EventQueue is node A sending a beacon packet to its
neighbourhood. The event is handled by a network object, in this case sensor node
A.

2. The handler for node A, will in turn call other networks objects affected by this
particular event, in this case Node B.

3. When Node B has been made aware that it has received a beacon, it will generate
a new event. The event generated will broadcast an update packet, assuming that
the beacon version sent from Node A, is older that the version of Node B.

4. This new event is inserted into the EventQueue, and the next element of the
EventQueue is processed.

EventQueue

time nextid handler

time next handlerid

handler()

handler()

insert

Network
Object

Network
Object

Node A

Node B

Figure 5.2: NS2 scheduling a beacon transmission from node A, and a replying update
message from node B.

Network component classes

Basically, NS2 has two class hierarchies for both languages: a compiled hierarchy and
interpreted hierarchy. These classes can be either standalone or linked together using
a TCLCL interface. In Figure 5.3 we see a simplified C++ class hierarchy in NS2. All
information and graphically presented documentation for NS2 can be found at [4]. To
understand the class diagram of the NS2 tool in Figure 5.3 we first describe the labels
used:

• TCLObject. All classes deriving from this class forms a compiled hierarchy.

• Handler. Each event contains a handler which specifies the action and the dispat-
ching event.

32 Validation and enhancement of the GCP protocol

5.1. INTRODUCTION TO NS2

• NSObject is a parent class for a network objects that are responsible for sending,
receiving, creating, and destroying packet related objects.

• Classifier is responsible for forwarding the packet to several NSObjects. If, for
instance, a mobile node broadcasts a packet, then a classifier object forwards this
packet according to the headers to all nodes within range.

• Connector immediately forwards the received packet from one NSObject to another
one.

• Application is a parent class of applications such as FTP, Telnet, Traffic Generator
and others.

• Agent is an endpoint where packets are constructed or consumed. It is used in
implementation of protocols, i.e, UDP, TCP, GCP, and others.

• Queue This class derives from the Connector class. The object of this class pro-
cesses outgoing packets. It gives a representation of locations where packets may be
kept or dropped. The process responsible for packets scheduling makes a decision
which packet should be serviced or dropped. There is also a buffer management
process that regulates the occupancy of a particular queue type. For instance,
drop-tail(known as FIFO) or fair-queueing(FQ).

• The Packet class defines the type for all packets in the simulation and provides
member functions to handle any object by its type.

• Node itself is a stand-alone class. It can either act as a router to forward a packet,
or as host to hand a packet to the agent attached to the specified port.

Connector

Application

Node

Agent Queue Packet

FTP Telnet ... TCP UDP GCP …
Drop

Tail
FQ ...

Mobile

Node
...

Packet

Headers

NSObject

Classifier

TCLObject Handler

«interface»

OTCL

«interface»

Default Action

Figure 5.3: A simplified C++ class diagram of NS2

Mobile networking in NS2

The Wireless model is an extension to the NS2 tool and was included by the CMU
Monarch Project [17]. The extension provides new additional elements at the physical,
link, and routing layers of the simulation environment. With this extension we can create
an accurate simulation of either a wireless- or multihop ad hoc networks.

The mobile node may have one or more network interfaces attached to a channel.
These channel carries packets between the mobile nodes. When a packet is put onto the

Validation and enhancement of the GCP protocol 33

CHAPTER 5. SIMULATION OF GCP

channel, it distributes a copy of the packet to all the network interfaces of that channel.
The interfaces then use the radio propagation model [18] to make a decision of accepting
or dropping the packet. A basic schematic of a mobile node is shown in Figure 5.4. In
the following we explain outgoing and incoming packets:

Outgoing Packets. When a packet arrives at the mobile node’s entry, it is passed
and processed by a demultiplexer. If the destination IP address matches the mobile
node’s IP address then the packet is passed to the port demultiplexer, which hands
the packet to the respective destination agents. However, most packets will match the
default target and be handed down to the routing protocol. It adds an IP address of the
next mobile node, which has to process the packet. The ARP table is used to resolve
the logical IP address with second layer physical address. For simplicity, IP addresses
are reused at the MAC layer. The next step is to insert the packet into the interface
queue(IFq). After this, the MAC object takes the packet from the top of IFq and sends
it to the networking interface(NetIF). Lastly, NetIF stamps the packet with attributes
such as the power and position of the transmitting interface and puts the copy of the
packet to the channel. The channel makes a copy to all other interfaces connected to
that channel.

Incoming Packets. A copy of each packet sent onto a channel is delivered to all
network interfaces at the time at which the first bit would be delivered at the real system.
Each NetIF puts a mark on the packet with the receiving network interface attributes
and invokes Radio Propagation Model(RPM) object. This object uses the transmitted
and received stamps of network interface to calculate the power with which the packet
is received. The NetIF uses the result to determine if it actually successfully received
the packet and hands the packet to MAC object. If the packet is error and collision free,
it is passed to the mobile node’s entry point. At this point a decision is made whether
the packet has to be routed to the next mobile node, or it has reached its destination.

5.2 Implementation of GCP

The core elements like protocols, packet level content and agent behaviour are imple-
mented in C++. To test the GCP in NS2 we must implement GCP packet content
and a GCP Agent in C++ which defines the behaviour of the sensor node. We are
using the current release of NS 2.34. To begin we create a new directory ’gcp’ in the
NS base directory in which we create the following two files that will make up GCP
implementation:

• gcp.cc which describes the behaviour of the entire protocol.

• gcp.h is a header file for gcp.cc file.

A class diagram of GCP protocol

In Figure 5.5 the class diagram of GCP is shown. It presents the objects that are used
by a GCP protocol. If the fields (methods or parameters) of the classes are empty, it
means that we did not modify this class.

The following explains the the most interesting methods in the GCPAgent class
that are used directly for implementation of the GCP protocol. This class defines the
behaviour of GCP protocol. A description of the methods is given in the following:

• recv. It is used for getting, processing, and sending a packet out.

34 Validation and enhancement of the GCP protocol

5.2. IMPLEMENTATION OF GCP

LL

IFq

MAC

NetIF

Radio
Propagation
Model

Channel

Src/Sink

ARP

arptable_

uptarget_

uptarget_channel_

propagation_

uptarget_downtarget_

downtarget_

downtarget_

uptarget_

demux
port

entry_

demux
addr

defaulttarget_
RTagent

(DSDV)

255
IP address

mac_

target_

Figure 5.4: Schematic layout of a mobile node [6]

Agent

+offset() : int

+access(in p : Packet) : hdr_gcp

+offset_ : int

+tag : control

+version : unsigned int

+data : char

«struct»hdr_gcp

+command(in argc : int, in **argv : char) : int

+recv(in * : Packet, in * : Handler) : void

-isInRange(in dist : double) : bool

-getProbability(in r : float, in R : float, in dist : float) : float

-DecideIsInRange(in prob : float) : bool

-PMRand() : double

-paintGreen(in i : int) : void

-showResults(in i : int) : void

-OutputToFile() : void

+GCPAgent()

-token_ : unsigned int

-initNrOfToken_ : unsigned int

-version_ : unsigned int

-data_ : char

-tid_ : double

-noOfMessages_ : unsigned int

GCPAgent

+beacon = 0

+update = 1

«enumeration»

control

Packet

Handler

+getDistance(in i : int, in k : int) : float

God Schedular TCL

«struct»

hdr_ip

Figure 5.5: Class diagram of GCP protocol

• isInRange. Make a decision whether the packet will be forwarded for processing
or discarded

• getProbability. Count the probability of getting the packet, when it is between
3m and 5m

Validation and enhancement of the GCP protocol 35

CHAPTER 5. SIMULATION OF GCP

• DecideIsInRange. Check if the received packet is in a specified range.

• PMRand. Return a random number from 0 to 1.

• paintGreen. The method invokes TCL object and binds it with C++ in order to
change node colour at the time when node gets an update.

One of the most used methods is our receive method recv. This method describes
the main loop of the protocol.

The recv method

When a node receives a packet it unfolds it and takes the necessary data. In our case, we
need to access the headers of the ip and gcp protocols. After this, we count the distance
between the sending and receiving nodes.

Every time a packet is received, the header is accessed, the distance is calculated and
passed on to the isitReachable method. If the node is within range we accept it, else its
dropped. If a packet is accepted, we check whether its a beacon or an update message.
These two checks are described with code in the listing 5.1 and 5.2:

• A beacon received. The node compares the received version and its own. If the
node has an older version, it constructs a new packet of a beacon type and include
the version number where after the packet is transmitted.

recv (Packet ∗pkt , Handler ∗)
. . .

i f (hdr > v e r s i on > v e r s i o n)
4 {

Packet : : f r e e (pkt) ; // f r e e memory
Packet∗ pkt re t = a l l o c p k t () ; // a l l o c space f o r next packe t

8 hdr gcp ∗ hdrre t = hdr gcp : : a c c e s s (pkt re t) ;
hdr ip ∗ i p r e t = hdr ip : : a c c e s s (pkt re t) ;

i p r e t > daddr () = IP BROADCAST; //add broa dca s t add
12 i p r e t > dport () = ip r e t > spor t () ; //add source por t

hdrret > tag = beacon ;
hdrret > v e r s i on = v e r s i o n ;

16

send (pktret , 0) ;
}

. . .

Listing 5.1: Code example of receiving a newer version.

The code for receiving a lower version differs with few lines: the node adds an
update tag instead of the beacon to the message together with the version number.
After transmission, the token count is decremented.

• An update received. The node compares the received version and its own. If the
version is older than its own, it simply discards it. Otherwise, the node saves the
time stamp when it received the update, saves the update version, re-initializes its
number of tokens, invokes a paint function which adds the event to the EventQueue.
Thus a node paints itself with a green colour(we use this for visualization), and
outputs the time and id to a file.

36 Validation and enhancement of the GCP protocol

5.2. IMPLEMENTATION OF GCP

1 i f (hdr > tag == update)
{

i f (hdr > ve r s i on > v e r s i o n)
{

5 t i d = CURRENT TIME;

v e r s i o n = hdr > v e r s i on ;
// r e s e t tokens when we g e t update

9 token = initNrOfToken ;

paintGreen (he r e . addr) ;
OutputToFile () ;

13 }
Packet : : f r e e (pkt) ;

}

Listing 5.2: Code example of receiving a new update.

A description of the simulation file

The code listed in listing 5.3 demonstrates the part of the protocol, where the nodes
send a beacon message every 100ms. Firstly, we chose a node randomly which will get
the initial update. This node starts to send beacons after 1.000 seconds. After the
transmission the node saves the time so it knows when to transmit the next beacon.
The other nodes start transmitting their beacons between 1.0 and 1.1 seconds and also
store their sending time.

1 s e t randStart [new RandomVariable/Uniform]
$randStart s e t min 1 .0
$randStart s e t max 1 .1
s e t l a s t v a l u e 0

5

s e t randNum [expr { int (($va l (nn) 1) ∗ rand ()) }] ;# choose random node
$ns at 0 .0 "$p($randNum) set version_ 5" ;# a s s i g n newer v e r s i o n
$ns at 0 .0 "$node_($randNum) color green" ;# i t becomes green

9 for { s e t i i 0} { $ i i < $va l (nn) } { i n c r i i } {

s e t startTime [$randStart va lue] ;# s t a r t i n g time between 1 .0 s
;#and 1 .1 s for a l l nodes

13 for { s e t i 0} { $ i < [expr $va l (stop)∗1 0] } { i n c r i } {
i f { $ i i == $randNum} {

i f { $ i == 0} {
s e t startTime 1 .000 ;# s t a r t i n g time for f i r s t node

17 $ns at $startTime "$p($randNum) broadcast -beacon"

s e t l a s t v a l u e $startTime ;#save the l a s t time value
} else {

s e t startTime [expr $ l a s t v a l u e + 0 . 1]
21 $ns at $startTime "$p($randNum) broadcast -beacon"

s e t l a s t v a l u e $startTime
}

} else {
25 i f { $ i == 0} {

$ns at $startTime "$p($ii) broadcast -beacon"

s e t l a s t v a l u e $startTime
} else {

Validation and enhancement of the GCP protocol 37

CHAPTER 5. SIMULATION OF GCP

29 s e t startTime [expr $ l a s t v a l u e + 0 . 1]
$ns at $startTime "$p($ii) broadcast -beacon"

s e t l a s t v a l u e $startTime
}

33 }
}

}

Listing 5.3: Code example of the periodic transmission of beacons.

5.3 Basic GCP tests

To test that the GCP implementation works as expected, two simple test scenarios has
been devised.

The first test will demonstrate that the GCP implementation follows the procedure
rules as described in Section 3.1. To avoid unpredicted behaviour caused by the non-
uniform transmission probability described in 3.1, we set the transmission probability
P = 1 for the purpose of this demonstration. In the demonstration illustrated in Figure
5.6, six nodes are used A,B,C,D,E and F. Five nodes B,C,D,E and F have a fixed position.
Node A will move from left to right along the x-axis, passing nodes B,C,D,E and F. There
is no communication between any of the nodes B,C,D,E and F. With one exception, node
A will not enter an area simultaneous covered by the transmission range of two or more
nodes. The exception is when node A simultaneously passes node C and F. In the initial
state node B will have a new version of a code update. Nodes with the new code update
are indicated with the blue colour. The maximum number of update tokens is 2. For
the experiment we initially set n = 0. The initial number of update tokens for node B,
is assumed to be greater than zero, tokensB > 0. The initial number of tokens for the
nodes C,D,E and F can be arbitrary in the interval 0 ≤ tokensC,D,E,F ≤ 2 as it will not
influence the experiment, hence omitted in the illustration Figure 5.6.

A

B C D E

n = 0

x axis

y axis

F

(a) Test initial state

A

B C D E

n = 0

x axis

F
(free)

n = 2 n = 1 n = 0

y axis

(b) Expected test behavior

Figure 5.6: GCP implementation test scenario, where node B contains a newer version.

Node A will move past node B, hereby receiving an update, and setting the number
of tokens n = 2. Node A moves past node C and F, updating both these nodes, spending
only one token n = 1, this shows that one of the nodes C or F is receiving a ”free” update.
As node A moves further right node D is updated, again using one token, n = 0. As
node A reaches node E, node A is unable to perform further updates as n = 0, and node
E will not be updated.

The second test will show that the transmission probability described in Section 3.1
is reflected in the simulation. Five nodes B,C,D,E and F are placed with increasing
distance to node A, illustrated in Figure 5.7. Node A will transmit 10000 packets.

38 Validation and enhancement of the GCP protocol

5.4. SIMULATION SCENARIOS

We will count the number of packets received at node B,C,D,E and F respectively and
examine how the number of received packets corresponds to the transmission probability
described in Section 3.1, test results are shown below in Table 5.1.

A B C D E F

Figure 5.7: GCP range test setup

Node Distance d Received packets Sim. P (d) Calc. P (d) Deviation

B 3.0m 100000 1 1 0

C 4.0m 85836 0.85836 0.856847 0.0015134

D 4.5m 71581 0.71581 0.715625 0.0001850

E 5.0m 30151 0.30151 0.3 0.0015100

F 5.5m 0 0 0 0

Table 5.1: GCP range test result

Test results show that the simulated transmission probability Sim.P (d) and the
calculated transmission probability Calc.P (d) are closely matched, and P (d) only differs
with a maximum of 0.001534 with 10000 packets send.

With the implementation behaving as expected we continue with a description of the
different test scenarios.

5.4 Simulation scenarios

In [9] the test scenarios are divided into two groups, synthetic and realistic. The sections
describing the movement of synthetic- and realistic nodes in gives rise to confusion.
Parameters for random movement is given in the realistic simulation section along with
a dataset of realistic movement of 100 individuals, captured at MIT campus in the
academic year 2004-2005. This makes no sense because the movement of the people
involved with the realistic test is recorded in the dataset. Also, no explicit assumptions
regarding movement is given in the synthetic simulation. Therefore we assume, that the
random movement parameters is misplaced within [9] as the realistic simulation scenario
draws upon the movement patterns captured in the fore mentioned dataset. This means
that we use the parameters for random movement given in the realistic section in [9] to
define the movement of nodes for the synthetic simulation scenarios.

The movement parameters of the nodes given in [9] are somewhat ambiguous. We
present both our interpretations and compare the result with the results in [9] to select
the most fitting.

One interpretation is, that every duration d, where 100ms < d < 500ms the node
chooses a random way point and moves towards it until a pause p comes and a new
duration is commenced. The pause p is between 0ms < p < 100ms. If a new way

Validation and enhancement of the GCP protocol 39

CHAPTER 5. SIMULATION OF GCP

random way point is selected within each of these new durations, the overall result is a
node moving around in a relatively small confined area. This setup will often result in a
network that will remain fragmented throughout the entire simulation, as the movement
of the nodes are insufficient to successfully spread the update. A fast analysis supports
the simulation, because during 50 seconds of simulation and a maximum movement
speed of 2.0m/sec the maximum travel distance of a node is 2m/sec × 50sec = 100m
assumed the node always move in a straight line.

Having test scenarios in [9] that include deployment areas of sizes up to 2000m ×
2000m the ”wandering” distance of the node is only a small fraction of this area, and
with frequent (100ms − 500ms) change of direction chosen by random, this movement
approach seams inadequate to distribute code updates to the sensor network in its en-
tirety. An example of an early test simulation of 500 nodes in a 250m × 250m area
illustrating this problem (shown in Figure 5.8a). The graph shows that after 6 seconds
of simulation approximately 440 nodes have received the update and the number does
not grow in the following seconds. It should be noted that the updating process starts
1 second after the initialisation, hence the number of nodes will first start to receive
updates from the first second of simulation.

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
N

o
d
e
s

Time in seconds

Code propagation Speed - 1 cluster scenario

GCP - 3 tokens

(a) First interpretation.

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
N

o
d
e
s

Time in seconds

Code propagation Speed - 1 cluster scenario

GCP - 3 tokens

(b) Second interpretation.

Figure 5.8: Test results of two different interpretations of the random movement. The
x-axis shows the seconds of simulation and the y-axis shows the amount of nodes, which
have received the update.

Another interpretation is to assign a new random way point only when the node
arrives at its current target way point. The duration is the same as described above, but
instead of having a movement pattern as a ”cloud” around the initial start point, the
movement pattern changes to straight lines allowing the nodes to reach further around.
A test simulation of 500 nodes in a 250m×250m using this movement model is shown in
Figure 5.8b. The graph shows a continual growth in updated nodes and after 9 seconds
of simulation, approximately 495 nodes have received the new update. It should be
noted, that the same topology is used in both tests. If we solely look at the time frame
the second interpretation is best since the overall number of updated nodes is higher,
but also the characteristics of the graph is better. Comparing the two graphs, the first
(a) shows an immediately updating process, but after a few seconds stops because the
rest of the nodes are too far away from the ”cloud” to receive an update. The other
graph (b) in Figure 5.8 shows a better curve. Within the first 3 seconds every node close

40 Validation and enhancement of the GCP protocol

5.4. SIMULATION SCENARIOS

to the source node gets updated. From there, the nodes move around and suddenly
after the 4th second, one node reaches a new cluster thus the steep curve. From the 6th
second, every node except nodes close to the borders has received the update. Finally,
the progress slows down because the remaining nodes are scattered around the edge of
the deployment area.

To conclude we choose the second interpretation because of the overall better achie-
vements. Some of the additional information given regarding the different tests are
contrary if not ambiguous. In some of the cases the cluster sizes are not fully listed.
In others, the amount of clusters and nodes are not specified. In order to clarify our
interpretation of the different scenarios, we list them in the following two subsections.

Random waypoint movement

Each node is initially placed at a random location within the deployment area. At the
start of a simulation a node picks a random destination within the deployment area and
moves towards this destination with a speed randomly chosen between a predefined upper
and lower bound, minSpeed , and maxSpeed. When a node reaches its destination it
pauses for a period of time between a predefined upper and lower bound minPause, and
maxPause. The node alternately pause and then move to a new destination throughout
the the entire simulation [13].

In the initial generation of movement patterns for the nodes we used the ’setdest’
tool. Setdest is an independent tool for random movement generation bundled with
the NS2 distribution. The time to create random movement with ’setdest’ increased
exponentially with the number of nodes, and became very time consuming for clusters
with 2000 nodes or more. We found ’setdest’ to be slow, but also impractical to our
purpose as the output from ’setdest’ required additional post-processing to reflect the
cluster configuration of the individual simulation scenarios. We therefore wrote a small
python application PyMove, that will generate random movement much faster(seconds
compared to hours) while also reflecting the cluster configuration of a simulation scenario.
PyMove generates a movement file that can be imported directly in NS2. An example
of defining simulation scenario 3 through PyMove is listed in Listing 5.4.

1 from move import ∗

scene3 = Scene (50) // New scenery wi th 50 sec . s i m u l a t i o n time .
scene3 . setSpeed (1 . 2 , 8 . 0) // min and max speed o f the nodes (meter / s)

5 scene3 . setPause (0 , 100) // min and max pause o f the nodes (ms)
// new C l u s t e r x , y , width , he i gh t , numberOfNodes
scene3 . addCluster (C lus te r (0 , 0 , 800 , 800 , 1000))
scene3 . addCluster (C lus te r (700 , 700 , 800 , 800 , 1000))

9 scene3 . generateMovement ()

Listing 5.4: Defining simulation scene 3 through PyMove.

The cluster configuration generated by PyMove is visualized in Figure 5.9

It should be noted that the authors of [9] describe quote: ”Every movement is boun-
ded by the defined area. The border rules are defined as each node bounce back according
to the bisector of incidence angle”2. But there will never be any kind of bouncing, be-
cause the random way point model will always chose a coordinate within the deployment
area3. This means that a node can move to the border, but once it arrives it will choose

2[9] page 14 - middle of the page.
3[13] page 11 - middle of the page.

Validation and enhancement of the GCP protocol 41

CHAPTER 5. SIMULATION OF GCP

Figure 5.9: Scenerio 3 visualized trough NAM.

a new random coordinate within the deployment area instead of bouncing as described
in [9].

Synthetic simulation scenarios

Each of the different synthetic scenarios will be run with the following random movement
settings:

(a) Scenario 4, two clusters (b) Scenario 5, four clusters (c) Scenario 6, four sociali-
zing clusters

Figure 5.10: Examples of different cluster layouts.

• Nodes move according to a Random Way Point strategy for synthetic workload.

• Pause time: 0 - 100ms.

• Movement speed: 0.8 m/sec - 2 m/sec.

• Time is discretised by milliseconds.

• Beacon interval: 100ms

• Transmission range: r = 3 and R = 5, with a minimum transmission probability
Pmin = 0.3 inside range R.

• Simulation time: approx 50,000 ms.

42 Validation and enhancement of the GCP protocol

5.4. SIMULATION SCENARIOS

Synthetic scenarios:

• 1 cluster scenario. One large cluster composed of 2000 sensor nodes, in a 250m ×
250m area.

• 1 sparse cluster scenario. One large cluster composed of 2000 sensor nodes, in a
1100m × 1100m area.

• 2 cluster scenario. Two clusters of 1000 nodes, in two 800m × 800m areas, with a
single 100m × 100m intersection.

• 2 socializing cluster scenario. Two clusters of 950 nodes, in two 800m × 800m
areas. The two clusters are put in a 2000m × 2000m area. The two clusters are
not within communication range. 100 additional nodes are inserted, and can move
in the whole 2000m × 2000m area to ensure connectivity.

• 4 cluster scenario. Four separate 500 node clusters, in four 550m × 550m areas.
Connectivity is ensured through a shared borders.

• 4 socializing cluster scenario. Four separated 475 node clusters in four 550m ×
550m areas. The four clusters cannot communicate with each other. 100 additional
nodes are inserted, these nodes can move in the whole 1300m × 1300m area to
ensure connectivity.

• 9 cluster scenario. Nine separated 250 node clusters, in nine 400m × 400m areas.
Connectivity ensured by a common borders.

• 9 socializing cluster scenario. Nine separated 240 node clusters, in nine 400m ×
400m areas. The nine clusters are not within communication range of each other.
90 additional nodes are inserted which move in the whole 1500m × 1500 area.

Realistic simulation scenario

For the purpose of testing GCP in a scenario with realistic movement behaviour the
authors of [9] use data sets that captures the location, communication, proximity and
activity information of 100 subjects at the Massachusetts Institute of Technology (MIT)
over the course of the 2004-2005 academic year [9].

The simulation parameters presented below is identical to the parameters presented
in [9] with the except that we have moved information regarding the random movement
to the synthetic test in Subsection 5.4.

• Time is discretised by milliseconds.

• Beacon interval: 100ms

• Transmission range: r = 3 and R = 5, with a minimum transmission probability
Pmin = 0.3 inside range R.

• Simulation time: approx 50,000 ms.

Validation and enhancement of the GCP protocol 43

CHAPTER 5. SIMULATION OF GCP

5.5 GCP test results

In this section we present the results of the GCP simulation. In each of the eight
synthetic test scenarios (described in Chapter 5.4) ten random topologies have been
generated according to the parameters for the given test case. It should be noted that
in each simulation the node containing the update was randomly deployed.

Each of the ten generated topologies are used to run a test with 2,3 and 5 tokens
respectively. For all eight scenarios this gives the total amount of 240 data sets which
have been used to generate two types of graphs (code propagation speed and load ba-
lancing). All graphs are included on the appertaining CD. We emphasize the source
node is deployed randomly. This mean that even though the same topology is used to
conduct a test with 2,3 and 5 tokens, the source node differs each time. Because of this,
the code propagation speed between the different runs within the same topology cannot
be compared.

Scenario 1

In this scenario the size of the deployment area was 250 × 250 meters with 2000 nodes
(dense). Looking at the graph for this test case with 2,3 and 5 tokens (displayed in Figure
5.11 and 5.12 (a) - for bigger graphs, see Appendix C) we see two general features:

1. After the 50 seconds of simulation neither of the runs, disregarding initial token
count, succeeds in updating all 2000 nodes.

2. After approximately 30 seconds of simulation the difference in code propagation
among the tests seems to be diminishing.

In the ten simulations with 2 tokens we managed to update between 1946 and 1974
nodes which gives an average of 1961,5. With 3 tokens we managed to update between
1955 and 1979 nodes with an average of 1972,1. In the simulation with 5 tokens we
updated between 1974 and 1987 nodes updated with an average of 1980,7. An illustration
of the averages can be seen in Figure 5.12b. Comparing the average amount of total
updates in Figure 5.12 (b) we see the difference of the initial token count. In the
beginning of the simulation all nodes act alike since they have tokens left. The difference
starts to become more clear after 20 seconds of simulation. From this point the difference
between having 2, 3 and 5 tokens is reflected in the update speed. Not surprisingly, the
scenario with 5 tokens surpass the one with 3, which in turn surpass the one with 2.
All graphs converge at the point where the problem changes from having tokens left to
reaching the last nodes around the edges and corners of the deployment area. In our
case the remaining nodes were never within range to receive the update.

For the same scenario the authors of [9] claim to update all 2000 nodes in 1,7 seconds4.
Our results do not support this claim. Within 2 seconds we achieve to update less than
100 nodes on average. It should be noted that the shape of our graph resembles that
of [9], so a possible error could be a wrong display of time in their figure. We also
note, that some of their graphs looks strange. An example is the graph from scenario
6, where the network consist of 4 separated clusters. In this scenario transmitters must
travel 200 meters to relay an update from one cluster to another. This should result
in a staircase shaped graph, but their graph is smooth. Because the source node was
deployed randomly, the possibility arises where the source node was placed in a corner

4Code Propagation Speed - 1 dense cluster scenario. 1 Figure in the appendix of [9]

44 Validation and enhancement of the GCP protocol

5.5. GCP TEST RESULTS

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 1 - Code Propagation Speed - 2 Tokens

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(a) 2 tokens.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario1 - Code Propagation Speed - 3 Tokens

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(b) 3 tokens.

Figure 5.11: The x-axis displays the time in seconds, and on the y-axis display the
amounts of updated nodes. (a) shows the result of ten runs of test scenario 1 with 2
tokens. (b) shows the result of ten runs of the same scenario but with 3 tokens instead.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 1 - Code Propagation Speed - 5 tokens

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(a) 5 tokens.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 1 - Average Code Propagation Speed - 2,3,5 Tokens

AVG 2 tokens
AVG 3 tokens
AVG 5 tokens

(b) Average.

Figure 5.12: The x-axis displays the time in seconds, and the y-axis display the amounts
of updated nodes. (a) shows the result of ten test scenario 1 with 5 tokens. (b) shows
the average graph of 2,3 and 5 token.

of the deployment area. This could influence our results, but after an inspection of the
visualisation of each test we have confirmed that no such placement has happened.

Load balancing scenario 1 In order to estimate the load balancing, the number
of sent messages have been collected from each simulation. The results of scenario 1
are illustrated in Figure 5.13. The graph shows the average token use throughout the
simulation. It should be noticed that our results resembles those from [9]. As expected
the majority of the nodes used either 0 or 1 token. This is explained by the fact that
a lot of the nodes reside close to the edge of the deployment area. When the update
reaches those nodes the rest of the deployment area has already been updated, thus no
tokens will be used.

It should be noted that the first updated nodes have a greater chance of using the
most tokens, since every node they get into range of will need the update. This becomes
more clear when the initial token count is increased. Another important factor is the

Validation and enhancement of the GCP protocol 45

CHAPTER 5. SIMULATION OF GCP

random movement speed of the individual nodes. Among the firstly update nodes, some
of them will choose a fast movement speed and a way point close to the edge of the area.
Because of this, they have a chance to move faster than the spreading cloud of updating
nodes and thus encounter nodes who will request the update. If such an event happens
the node will possibly use all available tokens. As the graph shows though, this is rarely
the case. For instance, the number of nodes using 5 tokens is only 11,4 in average.

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

GCP - Scenario 1 - Load Balance - 2,3,5 Tokens

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

Figure 5.13: On the x-axis the number of tokens is displayed and on the y-axis the
number of nodes are displayed. The graph shows the average amounts of used tokens in
scenario 1. It should be noted that nodes which did not receive any updates would not
have anything to transmit and thus would not use tokens. Therefore, the first pillar with
0 tokens contains the combined amount of nodes which did not transmit any update or
did not receive any.

Scenario 2 - 8

The reflection upon the simulation results from scenario 2 to 8 has been gathered into
the same subsection because the results are similar. Common for each of these scenarios
are the size of the deployment area is huge compared with scenario 1, but the number
of nodes stay the same. This gives a lower average density and thus a problem arises
because the distance between nodes become too large. This means that the source node
will have to spend a lot of simulation time moving into range on another node, thus only
a few notes will get updated.

We choose to show the results for scenario 2 because it has the lowest average distance
of the seven scenarios given uniform distribution and thus should provide the best results
(in theory, though in practice they are almost identical).

The results from scenario 2 is depicted in Figure 5.14 and 5.15(large pictures can be
found in Appendix C). Every run shows the same low performance and the characteristic
is apparent in the graphs for the rest of the scenarios. In 50 seconds of simulation the
number of nodes which get updated are between 0 and 11. It should be noted that some
of the runs did not succeed in updating any nodes and thus has been omitted from the
graph. This is extremely low, especially compared with the result of [9] which update
all 2000 nodes in less than 20 seconds of simulation time 5.

5Code Propagation Speed - 1 sparse cluster scenario. 2 Figure in the appendix of [9]

46 Validation and enhancement of the GCP protocol

5.5. GCP TEST RESULTS

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 2 - Code Propagation Speed - 2 Tokens

N1
N2
N3
N4
N5
N6

N10

(a) 2 tokens.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario2 - Code Propagation Speed - 3 Tokens

N2
N3
N4
N6
N7
N8
N9

N10

(b) 3 tokens.

Figure 5.14: The x-axis displays the time in seconds, and on the y-axis display the
amounts of updated nodes. (a) shows the amount of nodes in scenario 2 updated with
an initial token count of 2. It should be noted that the figure does not contain ten
graphs. This is because run N7,N8 and N9 did not succeeded in updating any nodes
and thus was omitted. (b) shows the same scenario but with a token count of 3. Again
2 runs - N1 and N5 - did not succeed in updating any nodes and was omitted. Common
for both Figures are their low performance.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 2 - Code Propagation Speed - 5 tokens

N2
N3
N4
N5
N6
N8

Figure 5.15: The x-axis displays the time in seconds, and on the y-axis display the
amounts of updated nodes. This figure shows the number of nodes updated with a
token count of 5. Like in the test with 2 and 5 tokens some of the ten runs did not
succeed in updating any nodes. Therefore, N1, N7, N9 and N10 has not been shown in
the graph.

Again, we find the result in [9] very doubtful. To update every node within the 50
seconds simulation time is impressive, but with these distances between each node and
the short radio range and the slow movement it becomes unlikely in our opinion.

Load balancing scenario 2 Because of the low performance in the scenario 2 graphs
for load balancing has not been made. The same applies for scenario 3 to 8. They all
look the same. None of the 2000 nodes have received the update and thus used zero
tokens except a few nodes who was very close to source node.

Validation and enhancement of the GCP protocol 47

CHAPTER 5. SIMULATION OF GCP

Realistic case with movement

As we have seen with the synthetic test regarding code propagation, our results does not
match those from [9]. In the SQL data sheet for the realistic case we see that though the
transmission range is longer, we only have 100 people (nodes), thus the average density
will still be small as in scenario 2 - 8. Because of this, we choose to not use time on
extracting the information of the realistic case from the data sheet, but instead focus on
the reason for the our big deviation.

5.6 Explanation for deviation

From a mathematical point of view the results from [9] does not match up. With a perfect
uniform distribution a grid of

√
2000 ≈ 45 × 45 nodes will cover the 250 × 250 meters

area. This means that the average distance between two nodes is 250meters/45nodes ≈
5, 7meter. An illustration of the uniform distributed deployment area can been seen in
Figure 5.16.

The network is dynamic so the distance between two nodes A and B changes from
the second the simulation starts. The distance between those two nodes can either grow
or shrink depending on the direction of their movement. On average this can be seen as
A moving towards B , where B is static thus does not move.

With this assumption and the information regarding the radio range and movement
speed of the nodes (from Section 3.1 and 5.4) we know:

• nodes move between 0,8 and 2,0 meters - on average 1,4 meters per second.

• updates are guaranteed on ranges less than 3 meters, from 3 - 5 meter the chance
for reception is decreasing. Above 5 meters the chance of reception is 0.

• updates are sent every 0,1 second and the nodes initialises with a small random
delay. This means they do not transmit their updates at the exact same time.
Additionally, the update is instant thus can be relayed in the first scheduled update
message following the reception.

5.7m

5.7m

Figure 5.16: A figure showing the a uniform distribution of nodes in a deployment area
with the same size of scenario 1.

48 Validation and enhancement of the GCP protocol

5.6. EXPLANATION FOR DEVIATION

Best case scenario 1

We now try to estimate the best case scenario for the results presented in [9]. In 1,7
seconds the nodes can move 2 meters at best since movement would take 1 second. This
means that every node has to be in range of at least another node and the entire network
is somehow connected after the first second when the update process starts. In the best
case every radio transmission will be received up to 5 meters away. Assuming that
the source node is dropped directly in the middle of the deployment area and instantly
updates as soon as possible, nodes within 5 meters will receive the update. Now, after
the first 1,0 second, initialisation has been made, the update get transmitted and the
first wave of nodes receive it. They all have their first update message scheduled for
1,01 and thus transmit the update. Now the next wave receives the update. Again -
the nodes in the second wave have scheduled their update for 1,02 and thus transmit
it. With an average count of 45 nodes per line in the node grid and the source node
placed in the middle, a total of 22 nodes has to be updated, thus 0,22 second is needed
to update the nodes closest to the edges. From there, additional 0,22 is needed to reach
the nodes in the corners, which in total gives an update time of 1,44 seconds. So if the
nodes are distributed so the range between is maximum 5 meters, the source node is
directly in the middle and the scheduling of the individual nodes are perfectly aligned
all 2000 nodes can receive the update in only 1,44 seconds.

A contradiction occurs since the gap between the nodes has to be 5,7 meter for a
uniform distribution. This could indicate that the authors of [9] either did not have a
uniform distributed topology or their radio had a longer range than described in their
work.

Best case scenario 2

In scenario 2, the deployment area is 1100 × 1100 meters with 2000 nodes. If they are
evenly distributed in that area the average range between two nodes will be:

1100√
2000

≈ 24, 5
meters

node

.

The distance between two nodes is 24,5 meters given an evenly distributed network.
Calculating the average distances for scenarios 3 to 8, we even get somewhat larger
distances ranging from 24,6 to 25,3 meters. As said in the beginning of this subsection
the results from scenario 2 to 8 are identical with small deviations.

To estimate the best case scenario, the assumptions about movement and radio
range mentioned above is used. This means that every message send can be received
at a distance of 5 meters. The source node is dropped perfectly in the middle of the
deployment area so there is 550 meters to the edges of the area and 777,8 meters to the
corners. After 1 second of initialisation, the source node needs to travel 19,5 meters to
a neighbouring node to get within radio distance. With 2 meters per second the source
node needs 10 seconds of simulation time to reach one neighbour and update it. From
here, the two source nodes can now within another 10 seconds update one other node
each, which gives a total of 3 updates in 20 seconds. This does not match the results
shown in [9]. Again we must conclude that either some explicit assumptions has been
left out, their time scale on their graphs are wrong, the topology is not uniform or their
radio settings does not match the assumptions given in their work.

Validation and enhancement of the GCP protocol 49

CHAPTER 5. SIMULATION OF GCP

5.7 Replicate results of GCP

In this section we change the settings of our movement and radio range in order to see
what it takes to replicate some of the results in [9]. We wish to replicate is the code
propagation speed of scenario 1, scenario 2, scenario 5 and scenario 6. These scenarios
has been picked out because:

• scenario 1 and 2 are described in detail in the previous section

• scenario 5 and 6 are more complex scenarios than the first pair but easier than
scenario 7 and 8 (which requires extreme settings to match the original results).

To replicate the results we adjust the settings regarding radio range and movement
speed. It should be noted that they somewhat compliment each other in the way, that
increasing the radio range could be seen as improving the movement speed as more
node will get visited and vice versa. It should also be noted that we only focus on code
propagation speed in the replication of the result of a given scenario.

Scenario 1

In less than two seconds the authors of [9] claim to update all 2000 nodes within a 250
× 250 meter area (dense cluster). With the original settings of movement speed and
radio range we managed to update in average 1961,5, 1971,2 and 1980,7 nodes(2,3 and
5 tokens respectively) in 50 seconds. This means that the goal is twofold:

• lower the update time to a maximum of 2 seconds.

• update close to 2000 nodes.

We incrementally increased the movement speed and radio radio range while com-
paring the new result with those in [9]. With a movement speed of 15 to 20 meters per
second and a radio range of 6 - 10 meters we managed to update 1999 nodes in 1,38
seconds. These settings are far higher than those given in the GCP report. To replicate
the results from scenario 1 we had to increase the movement speed with a factor ten,
and double the radio range. A picture of the graphs for the 10 runs with 3 tokens can
be seen in Figure 5.17a. A larger graph can be seen in Appendix D.

Scenario 2

Next we replicate the original results of scenario 2. This scenario is the sparse cluster
where the authors of [9] claims to update all 2000 nodes in a maximum of 20 second.
With the original settings we manage to update between 0 and 11 nodes in 50 seconds
of simulation.

A possibility was the author somehow used the settings found in Subsection 5.7
without knowing it. Therefore, we start by testing those settings in the replication of
scenario 2. These settings does not provide a result close to what the authors claim, so
an increase of the settings are needed again. With a radio range of 17 - 23 meters per
second and a movement speed of 15 - 20 meters we managed to update all 2000 nodes
within 20 seconds, which matches the results shown in [9]. Our results with 3 tokens
can be seen in Figure 5.17b. A larger graph can be seen in Appendix D.

As in the replication of scenario 1, the needed radio range and movement speed
to replicate the results provided in [9] is far higher than stated. In this scenario the
movement speed was a factor 10 higher and the radio was four and a half time longer.

50 Validation and enhancement of the GCP protocol

5.7. REPLICATE RESULTS OF GCP

 0

 500

 1000

 1500

 2000

 0 0.5 1 1.5 2

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 1 - Code Propagation Speed - 3 Tokens (REPLICATED)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(a) Scenario 1: Ten runs with 3 tokens.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 2 - Code Propagation Speed - 3 Tokens (REPLICATED)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(b) Scenario 2: Ten runs with 3 tokens.

Figure 5.17: The x-axis displays the time in seconds, and on the y-axis displays the
amounts of updated nodes. (a) shows the amount of nodes in scenario 1 updated with
a token count of 3, while (b) shows scenario 2. To create this replicated results the
movement speed has been increased multiple times and so has the radio range, compared
to the original assumptions given in [9].

Scenario 5

This scenario contains four clusters aligned in a square. In this scenario the original
results completes the update in less than 30 seconds. As before, we started with the
previous found settings but again had to increase the movement speed to increase the
likelihood that two nodes would go get close to a shared border, and the update could
be transmitted from one cluster to the next. With a movement speed of 20 - 25 meters
per second and a radio range of 17 - 23 meter we manage to update all four clusters in
2 of the ten runs. This can be seen in Figure 5.18a - for larger figures see Appendix D.
Each step on the graph is a new cluster which gets update. This means, that with these
settings and 10 simulations we managed to update 4 clusters 2 times, 3 clusters 7 times
and 2 clusters 1 time.

We also discovered that increasing the radio range yields a better result when an
update shall transmitted across a common border compared to increasing the movement
speed.

Scenario 6

The last scenario we are replicating contains four socializing clusters. This means that
transmitters will have to carry the update around and eventually enter the clusters which
will lead to an update of it. The authors finish this update in less than 25 seconds. With
the settings found in replication of scenario 5 we are not able to update more than 2
clusters in 25 seconds of simulation, thus we increase the settings again. Our result can
be seen in Figure 5.18b. A larger graph can be seen in Appendix D. With a movement
speed of 25 - 30 meters per second and a radio range of 25 - 30 meters we managed to
update all 4 clusters in four of the ten runs.

This indicates that with those settings an update of all 4 clusters is possible but still
we need to further increase it if we want to update all clusters in each simulation.

Summarising the replication of the 4 different scenarios we see that the assumptions
about the different settings provided in [9] does not produce the results presented in the

Validation and enhancement of the GCP protocol 51

CHAPTER 5. SIMULATION OF GCP

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 5 - Code Propagation Speed - 3 Tokens (Replicated)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(a) Scenario 5: 10 runs with 3 tokens.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 6 - Code Propagation Speed - 3 Tokens (REPLICATED)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

(b) Sceranio 6: 10 runs with 3 tokens.

Figure 5.18: The x-axis displayed the time in seconds, and on the y-axis display the
amounts of updated nodes. (a) shows the amount of nodes in scenario 5 updated with
an token count of 3, while (b) shows scenario 6, also 3 tokens. To create this replicated
results the movement speed has been increased by multiple times together with the radio
range, compared to the original assumptions given in [9].

same article. Different events could be the reason of this. Firstly, the description of the
scenarios were insufficient. Especially a change of topology or size of the deployment
area would make a huge different. Secondly, they could have made a mistake when
defining the different settings of the movement speed and radio range. This is doubtful
though, since no direct connection could be found in the increase of settings compared
to the scenarios.

5.8 Summary

In this chapter we have described the NS 2 tool in which we run our simulations. We
have then described our implementation of the GCP protocol and afterwards verify that
it behaviour as we expect. To test this we have devised a few test cases. Then we
introduced the synthetic and realistic test cases which, in total, gives 9 different test
scenarios. We run the 8 synthetic test cases and discovers the original results does
not match ours. Our results for scenario 2 to 8 resembles each other. In 50 seconds
of simulation we only manage to update between 0 and 11 nodes. To investigate this
we created best case scenarios and came to the conclusion, that the original results
presented in [9] is very optimistic. Finally, we changed the original settings of the radio
and movement speed to replicate the original results. We found out that the settings
should be increased with multiple factors in order to produce a result that was somewhat
similar with those presented in [9].

52 Validation and enhancement of the GCP protocol

Chapter 6

Extension of the GCP protocol

This chapter describes our extension of the GCP protocol. Firstly, we elaborate on the
main problems with the original GCP protocol with focus on the lack of recovery ma-
nagement. Hereafter, ideas to remove some of the problems within the original protocol
will be introduced and used to create the specification for our extension of the protocol.
We call it eGCP. With these specifications we create an implementation and verified that
it behaved as expected. Finally, we compare the our extension with the GCP protocol.

6.1 Problems with the GCP protocol

In Chapter 3 we described the GCP protocol and noticed several problems:

• Transmitting beacons 10 times per second is expensive energy wise. Especially
with a movement speed of 0,8 to 2 meters per second.

• One of the assumption mentioned in Section 3.1 was that collision and packet losses
was assumed not to occur.

• Another problem was the broadcast approach the GCP protocol used. Without
the assumption of nodes not crashing, broadcasting a beacon or update message
will give rise to possible implosion. However, it is a rare event.

• Finally, some scenarios trigger multiple use of tokens instead of the intended one.
If two sources are available to a node both will transmit their update and use
a token. This problem contradicts the authors idea with evenly balanced code
update.

The GCP protocol described in [9] will give rise to implosion under certain conditions.
An example could be a node enters the vicinity of a multiple number of nodes and
broadcasts a beacon with an outdated software version. Now, the entire neighbourhood
of that node will respond with update messages. The problem is illustrated in Figure
6.1a and 6.1b, while the configuration of the WSN is listed in Table 6.1

Node Version Tokens

A 1 3

B 2 1

C 2 2

D 2 3

E 1 2

F 1 3

Table 6.1: WSN configuration.

Node A starts by broadcasting its beacon containing id and software version to the
neighbouring nodes. The nodes B ,C ,D ,F receives the beacon broadcasted by node A.
Since node F has the same software version as A, version = version r, no action will
be taken. On the other hand, nodes B ,C and D all have a newer software version than
node A, versionB ,C ,D > version r. Given that update tokens are available on node
B ,C and D , tokensB ,C ,D > 0 these nodes will start to transmit their software version
to node A, hereby causing implosion while wasting tokens.

Validation and enhancement of the GCP protocol 53

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

A

B

C

D

E

F

(a) Node A sends beacon

A

B

C

D

E

F

(b) Node B,C,D sends update

Figure 6.1: Implosion problem in GCP

Specifying a recovery mechanism

In the GCP protocol a build-in recovery mechanism exists as long as the update can be
contained in a single message. This means that if a node misses an update a new beacon
will be transmitted shortly after. Our recovery mechanism supports updates spanning
over a multiple number of packets. To specify a recovery mechanism a lot of different
decisions have to be made. We start from the top with specifying how a transmission
starts and then proceeds to handling the different errors and packet losses.

In our protocol, the only communication that requires a recovery mechanism is our
update messages. When an update transmission is started, no handshake is used. The
nodes which need the update should be ready to receive it at all times so a handshake
should not be necessary. Also, by keeping the amount of protocol messages at a minimum
we ensure that battery power is not used unnecessarily.

When the update has begun acknowledgement messages will not be transmitted back
upon successful reception. Instead NACK-messages will be used in order to lower the
amount of protocol messages needed. Another reason for using NACK-messages is that
it minimizes the chance that the source node will implode, compared to ACK-approach
if the average number of neighbours is high.

The next part of the recovery/reliability mechanism is to ensure that in case of packet
drops or node crashes, the rest of the network can continue. We will start by defining the
rules of our recovery/reliability mechanism. It should be noted our recovery mechanism
somehow resembles the Go-Back-N instance of the Automatic Repeat-reQuest (APQ)
protocol [21]. The difference is our implementation uses NACKs instead of ACKs, and
thus the time-out responsibility is shifted from the original sender in Go-Back-N to the
receiver. Also, it should be noted that we cannot use the ”window” since it represents
a queue of consecutive sequence un-ACKed packets.

Rules of recovery

• A beacon transmission will trigger a best update candidate election if a message
with a higher version has come. number. The election picks the source node with
the highest version and token number (will be called the best candidate from now).
The best candidate transmits its update.

• The candidate will continue to transmit the updates in numbered sequence starting
with the first packet continuing until the last packet has been transmitted.

• Whenever the update process starts, the receiving node starts a timer when the
first packet is received. Each time the node receives the next packet in line or

54 Validation and enhancement of the GCP protocol

6.1. PROBLEMS WITH THE GCP PROTOCOL

one with a lower sequence number, the timer is reset. This will happen when the
receiving node looses and transmits a NACK-message. If the timer reach zero a
NACK-message will immediately be broadcasted back to the source node. The
NACK-message contains the highest-in-sequence packet number received by the
receiving node. In order to do so, an node id is required of the source. We therefor
add a node id in the packet (detailed in subsection 6.1).

• If the receiving node detects a packet has been dropped, due to a jump in the
sequence numbers, it will reply with a NACK-message containing the last packet
number it received. Then the timer is restarted on the node who detected the
packet loss. If this timer reach zero before the node has received the lost packet the
node retransmit the previous NACK-message. This can continue until a threshold
of nack counts is reached, where the node will abort the update.

To grasp the rules mentioned above we explain them in a few different scenarios using
sequence diagrams.

Explaining our NACK-approach if node A (candidate node) is transmitting an
update to node B , A will continue to transmit the packets until it either finish or receives
a NACK-message on a specific packet from B . When a NACK-message is received the
previous packet will be retransmitted and the candidate node continues from that packet
number. This procedure can be seen in the sequence diagram in Figure 6.2.

:Node A :Node B

Transmit Beacon (v 1.3)

Transmit Update (2/3)

Transmit request_update

Transmit Update (1/3)

Transmit Update (3/3)

NACK Update (2/3)

Transmit Update (3/3)

Time out

Figure 6.2: A sequence diagram of the NACK-approach. The message containing the 3rd
update package is lost. This leads to a time-out on the receiving node which generates a
NACK-message containing the last received message which was the part second update
package. The source node A receives the NACK-message, retransmits the next packet
indicated by nack and continues until all packages have been sent.

In the next sequence diagram in Figure 6.3 we see a case where an update packet
is lost (it should be noted that the beacon transmission has been omitted). Node B
detects the loss, transmit a NACK-message and starts the timer. Before the source node
A receives the NACK-message it has already transmitted the next packet. This means

Validation and enhancement of the GCP protocol 55

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

that B will receive the next packet which will be dropped thus prevent a restart of the
time-out clock. This leads to another time-out on B which retransmit the previously
send NACK-message and reset the timer. Before the third time-out, the second packet
is received and the rest of the update goes as planned.

It should be noted the a buffer on the nodes could improve the performance. It is
a waste to drop received packets just because they are not in sequence, but adding a
buffer would put addition requirements on the target node. Additionally, the protocol
would need a control mechanism for the buffer which induce complexity. For future work
a possibility could be to implement the ”sliding window” hinted in [20]. It should also
be noted that our managing of the NACK-messages could be improved. By listening
for packets from the source the node might receive a packet second in line and thus
transmit a NACK immediate instead of waiting for the time-out. This will provide a
higher throughput, since throughput is not (typically) a prioritised resource this change
was moved to future work.

:A :B

Update 1/5

Update 2/5

Update 3/5 NACK 1/5

NACK 1/5
Update 2/5

Update 2/5

Update 3/5

Update 4/5

Update 5/5

Timeout

Timeout

not Timeout

not Timeout

not Timeout

Figure 6.3: A sequence diagram of the NACK-approach where the initial election has
been omitted. The message containing the second update part is lost. This leads to a
time-out which generates a NACK-message containing the last received message which
was the first part of the update message. Before the source node A receives the NACK-
message it transmit the third update message. The receiving node B now receives the
third message from A indicating that the NACK message was lost. Therefore, the time-
out clock is not reset and shortly after, B retransmit the NACK-message and then
receives the second message it was waiting for. The time-out timer is started again
but resets when the second update message is received again. The rest of the update
continues as normal.

We have identified a problem with our NACK-approach and the dynamic WSN. The
mobile nodes will roam and if a node comes into range of a node while broadcasting an
update, it will respond with a NACK, saying it missed the first update packages. This
will result in a restart of the entire update since the source node will retransmit the first
package and continue in sequential order. With a high node density, the probability for
such an event is high. Just after deploying a node with a new update. The example is

56 Validation and enhancement of the GCP protocol

6.1. PROBLEMS WITH THE GCP PROTOCOL

illustrated in Figure 6.4.
How severe the problem is depends on the average density of the scenario. Tests

will have to show if the precedent rules should be changed. A possible way to solve the
problem is to introduce some kind of packet number awareness. An example could be if
the ratio between the packet number received divided with the total amount of packets
exceeds a predefined threshold the node should not transmit a NACK but instead drop
the update packets.

A

B

Figure 6.4: The node A is displayed broadcasting an update message together with
its transmission range to it neighbouring nodes. Because of the moving nodes, node B
moves through the area of A and thus might receive packets in the middle of the update.
B will think the first messages was lost and thus broadcast a NACK-message back to A
which will retransmit the entire update. Unfortunately, before the update is complete,
B moves out of range of A thus the reset is a waste of time and energy.

Time-out Period

To select the proper value for the time-out variable is difficult. Its important to keep it
as low as possible so NACK-messages can be transmitted as fast as possible. This way,
the source node will react faster to the packet loss, thus speeds up the overall update.
On the other hand, congestion can happen and sending more packets would be a bad
reaction compared to slowing down the transmission rate (induce longer time-outs). A
possible solution could be adding a randomly small delay to the time-out variable after
each usage.

Saving tokens

The original idea using the tokens was, that every time a node transmitted an up-
date, the token count decreases at the given node. This gives a better load balancing.
Unfortunately, with the original design, possible implosion could happen under certain
circumstances. As mentioned in Section 6.1, if node A crashes and later wake up, its
neighbourhood might have received an update in the meantime. When A then transmit
its beacon, ALL neighbours will start sending an update message back to it. This will
result in great collision but more importantly waste N−1 tokens, where N is the number
of nodes in the neighbourhood of A.

We propose to add additional information in the beacon and create a new message
type. A byte is added to the beacon which contain the number of tokens left on the node.

Validation and enhancement of the GCP protocol 57

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

This way, each node has a way to announce through its beacon how many tokens it has
left and thus indirect tell, how many times the node has transmitted update messages
of this version.

We create a new message type called request update. With this new message type
we change the way our nodes ask for updates. Previously requests for an update was
initiated by a beacon-handshake. Instead, nodes will now transmit a beacon with its
version number, node ID and available token count. When a node A receives a beacon
with a newer version than its own a election period of 100 milliseconds is started. Since
the interval of beacons are 100 milliseconds, A will receive a beacon from each node in
its neighbourhood within this election. The highest token count is stored together with
its appertaining node ID. With this information, A will know which node within its
neighbourhood that has transmitted the least amount of updates and thus elects that
node by sending a request update message (containing the ID of the node with the most
tokens left). This action will start the update process. If more nodes are tied with the
highest token count, the first one received within the election is chosen.

6.2 Specification of extension

In the previous section we presented some extensions to the GCP protocol to solve some
of the issues regarding to the implosion and recovery mechanism. In this section, we
review our previous description of the GCP protocol from Chapter 3.1 and add our own
extension to it (abbreviated eGCP from now).

To describe our extension, the approach of [12] is used again:

Service

The service remain the same as in the original GCP protocol. Additionally, reliability is
insured for larger updates which span over multiple packets.

Environment assumptions

The assumptions are the same as in the original GCP protocol, with exception of colli-
sions and data losses which are are possible now.

Message vocabulary

Two new message types, request update and NACK are added to the existing vocabulary
of the GCP protocol. We have also changed the layout of the beacon packet shown in
Figure 6.5 introducing nodes id and tokens fields. Moreover, we altered the update
packet layout by adding extra fields such as nodes ID, packet number, total packet
number. This is illustrated in Figure 6.6.

Message encoding

In order to implement our extension to the GCP protocol the original message encodings
are changed. Each node has an individual id, which is attached to the beacon message
together with its version number and token count. System now is susceptible to failures.
The update message is changed, so it now contains the id together with the four values
- the version number, the packet number, the total amounts of packets, and the data
in the update. The reason for adding the id to the update message is, that roaming

58 Validation and enhancement of the GCP protocol

6.2. SPECIFICATION OF EXTENSION

nodes can receive an update in the middle of the process and thus transmit a NACK to
the right node. The request update message contains the id of the node with the most
tokens available. Lastly, the message NACK includes the id of the receiver together with
the last received packet number.

The information is outlined in the following listing:

beacon (ID , vers ion , tokens)
2 update (ID , vers ion , pk nr , pk to ta l , data)

reques t update (ID r)
NACK(ID , l a s t r e c e i v e d)

The Figures 6.5, 6.6, 6.7, 6.8 illustrate the packet layout of the eGCP protocol.

versioncontrol

beacon packet

8 bit 8 bit

6 bytes

tokens

16 bit 16 bit

ID

Figure 6.5: eGCP beacon packet

versioncontrol data

update packet

8 bit 8 bit 0-25 bytes

32 bytes

pk_nr pk_total

16 bit 16 bit

ID

16 bit

Figure 6.6: eGCP update packet

control

 request_update packet

8 bit

3 bytes

16 bit

ID_r

Figure 6.7: eGCP request update packet

Procedure rules

With the eGCP changes formally described the procedure rules can be addressed. As
with the GCP protocol we use flow chart diagrams to describe the behaviour of the
protocol. First, we describe the different labels used in the flow charts. Thereafter
we address some special notation in the charts and finally present the diagrams with a
thorough explanation.

Validation and enhancement of the GCP protocol 59

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

control

 NACK packet

8 bit

5 bytes

16 bit

ID last_received

16 bit

Figure 6.8: eGCP nack packet

It should be noted that the labels in the diagram still have the extension r, which
represents a variable from a remote node. Additionally, the labels ID, tokens and version
can have the extension upd. These variables are containers for information regarding
the node with the newest version and highest amount of tokens - in other words the best
candidate for transmitting the update.

• version represents the local version number of the software.

• ID is the unique identification number of the node.

• pk nr is the current packet number.

• pk total denoted the total amount of packets in a current update.

• tokens represents the current amount of tokens available on a sensor node.

• initNrOfTokens is the predefined number of tokens that initially are available on
a sensor node.

• timeout is a function with take a parameter of time before an action is triggered
or must be taken.

• nack count is the amount of times a NACK message can be retransmitted.

• threshold is the maximum value for nack count.

• last received denotes the packed number a node last received successfully.

• software is the constructed image which is created after every packets in an update
has been received.

After introduction of labels we continue with the description of the diagrams. It
should be noted as in Section 3.1, states are marked with bold, message types in
verbatim and variables with italic. Additionally, to keep the number of transition
arrows at a minimum we introduce duplicate states which are marked with a dotted
line. For instance - every branch of the protocol returns to the main state Idle at some
point so to minimise the use of long arrows, the state has been moved closer and shown
with a dotted edge. Lastly, in order to create the flow charts as clear as possible we have
divided them into separate pictures. To see where the previous chart ended and the new
one begins we have used a double border to highlight this.

Starting with Figure 6.9 at the start, an initialization of the internal variables are
made and the protocol continues to the main state Idle. From here four different events
can happen. Either the node can receive a beacon, receive a NACK, receive an update,
receive an update request or transmit a beacon (if the token count is greater than zero).
The following paragraphs address them individually in detail.

60 Validation and enhancement of the GCP protocol

6.2. SPECIFICATION OF EXTENSION

Start

Idle

version = 1
initNrOfTokens = 3

tokens = 3
timeout = 0
ID_upd;

tokens_upd;
version_upd;
expected = 1
last_received;
pk_nr = 1
pk_total;

threshold = 5;
nack_count = 0;

Truetokens > 0timeout
Transmit beacon

(ID, version, tokens)
Receive beacon

(ID_r, version_r, tokens_r)

False

Receive request_update
(ID_r)

Receive update
(ID_r, version_r, pk_nr_r,

pk_total_r)

Figure 6.9: The main part of the eGCP protocol.

Transmit beacon From the Idle state a predefined time-out occur and the node
checks the token count. If the node has at least one token a beacon is transmitted and
the protocol returns to the Idle state.

Transmit update Figure 6.10 shows a detailed illustration of the ”Transmit update”
process. Initially, the packet number is reset to one. This is done to ensure, that
the updates are transmitted from the beginning. Now, the first update is transmitted
including the version number, packet number, total amounts of packets, and data. The
node waits for a short period for eventual NACK messages. If none was received it
compares the packet number with the total amounts of packets in the update. If the
packet number is less than the total, the packet number is incremented and the next
packet is transmitted. If the packet number is equal with the total amount of packets in
the update, the node will conclude the update is finish, decrement its amount of tokens
and return to the Idle state. If an NACK message is received, the node compares the
id to ensure that the message was intended for it. If the id matches, the node changes
the packet number to the needed packet and continues transmitting updates until it
reaches the total amount of packets in the update. If the id did not match the node just
continues with transmitting the next update.

Receive beacon In the Idle state, the node can receive beacons. When a beacon is
received, the node compares the versions. If the beacon contains a newer version, the
node will store the information in the local variables ID upd, tokens upd and version upd
as the best candidate. Now an election begins where the nodes listen for incoming
beacons. If it receives any, the node will compare the version number with the number
from its best candidate. If they are equal the node will look at their tokens. If the count
is higher than the best candidate, the recent received beacon is stored. If the version
received is not equal but greater and token count is larger than 1, it is immediately
stored as the best candidate and the node returns to the Electing candidate state.
From this state a node may receive a beacon or and update message. After a predefined

Validation and enhancement of the GCP protocol 61

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

Receive NACK
(ID_r, last received)

Transmitting
timeout(10)

Transmit update
(ID, version,

pk_nr, pk_total)

pk_nr <
pk_total

timeout

True

pk_nr ++

ID == ID_r

True

pk_nr =
last_received +1

Idle

False (pk_nr = pk_total)

tokens --

False

Figure 6.10: The transmission part of the eGCP protocol in detail.

period, a request_update is transmitted to the best candidate and the node returns to
the Idle state.

Receive update An illustration of the ”Receive update” process can be seen in Figure
6.12. From the start, the node receives an update message and verifies that the packet
number matches the expected value and the version is newer. If this is the case the
packet is stored, expected is incremented, the nack count is reset and the node return
to the Waiting for packet state. However, if the version is newer, but the packet
number is lower than the expected, the nack count is reset and the node returns to the
Waiting for packet state. If the version is lower or equal to the nodes own, it will just
return to the Waiting for packet state. In the Waiting for packet state a time-out
occurs if the expected packet is not received within a predefined period. The node then
checks its nack count and compare it with a threshold value. If the value is lower, a NACK

will be transmitted, the nack count incremented and the node returns to the Waiting
for packet state. If the nack count value reaches the threshold value and a time-out
happens, the update is discarded and the node returns to the Idle state. Finally, the
expected value will match the pk total r which indicate all packets has been received.
The node then create the software image from the packets, update itself and return to
the Idle state.

Receive request update From the Idle state a node can receive a receive_update

message. When such a message is received and ID and token check is preformed. If it
message was intended for the node and it has tokens left it will initialise its update and
transmit the update. However, if the receive_update message was not intended for the
node it returns to the Idle state.

6.3 Implementation of eGCP

As with the implementation of the GCP protocol we create a directory, which contains
our eGCP source file and the appertaining header file. We have decided not to draw

62 Validation and enhancement of the GCP protocol

6.3. IMPLEMENTATION OF EGCP

True

version <
version_r

ID_upd = ID_r;
tokens_upd = tokens_r;
version_upd = version_r;

Electing
candidate

Receive beacon
(ID_r, version_r, tokens_r)

Receive beacon
(ID_r, version_r, tokens_r

ID_upd = ID_r;
version_upd = version_r;
tokens_upd = tokens_r;

True

True

tokens_upd
< tokens_r

version_upd
==

version_r

timeout
Transmit

request_update
(ID_upd)

Idle

False

False Idle

False
version_upd
< version_r

False

Electing
candidate

True

True

Waiting for
packets

store packet;
expected ++;

nack_count = 0;

version < version_r
&&

expected ==
pk_nr_r

Receive update
(ID_r, version_r, pk_nr_r,

pk_total_r)
False

Figure 6.11: The reception of a beacon in the eGCP protocol.

a class diagram of eGCP because it is similar to the diagram of GCP protocol. The
following explains what we have added to the eGCP protocol.
eGCPAgent. We have introduced 5 different timers that inherits from the abstract
class TimerHandler. These timers are responsible for controlling execution of the func-
tions such as send update, send req, waiting nack timeout(), waiting req timeout(), and
send nack(). The name of the function explains its purpose. The following describes
timers. However the timers need to be detailed:

• eGCPTimerWaitCNDT controls the time given to choose the best candidate.
When the time expires the node sends a request message to the candidate node.

• eGCPTimerWaitNack represents the amount of time time for a nack message from
the destination node.

• eGCPTimerWaitREQ defines the time a node waits for request messages from
other nodes. In this way the node that has an update will avoid implosion from
nodes that have chosen it as an update source at the same.

• eGCPTimerTriggerNack controls the time given to send out a nack message if the
node did not receive the expected message in the period of time.

Validation and enhancement of the GCP protocol 63

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

Waiting for
packet

version < version_r
&&

expected ==
pk_nr_r

Receive update
(ID_r, version_r,

pk_nr_r,
pk_total_r)

FalseTrue

store packet;
expected ++;

nack_count = 0;
version < version_r

&&
expected > pk_nr_r

nack_count = 0; True

False
Waiting for
packet

timeout False
Transmit
NACK

(ID, pk_nr)

nack_count
==

threshold

nack_count ++;

True

Idle

False
expected ==
pk_total_r

True

update node
(software)

tokens = initNrOfTokens;

Figure 6.12: The reception of an update message in the eGCP protocol described in
detail.

• eGCPTimerSendBCN defines the time given to send the beacon.

The send beacon method

In the OTCL simulation file we schedule the first beacon event. When the time comes,
this event is dispatched and executed. This triggers the beacon send timer, which invokes
the sending procedure every 100ms if the node is not busy (for instance, sending an
update). If the node is busy and has tokens left, it is rescheduled to send a beacon after
the next 100ms. The following Listing 6.1 shows the implementation of the sending
procedure.

// we have tokens and we are not busy
i f (tokens > 0 && al low send beacon () == true)
{

4 Packet ∗pkt = a l l o c p k t () ; // c r e a t e packe t
hdr ip ∗ iph = hdr ip : : a c c e s s (pkt) ;
hdr egcp ∗ egcph = hdr egcp : : a c c e s s (pkt) ;

8 iph > daddr () = IP BROADCAST; // add i n f o to header

64 Validation and enhancement of the GCP protocol

6.3. IMPLEMENTATION OF EGCP

True

Transmit update
(ID, version,

pk_nr, pk_total)

pk_nr = 1;
pk_total = max_pk_nr;

ID == ID_r
&&

tokens > 0

Receive
request_update

(ID_r)
Idle

False

Figure 6.13: The reception of a request update message in the eGCP protocol described
in detail.

iph > dport () = iph > spor t () ;

12 egcph > tag = beacon ; // a d d i t i o n a l i n f o
egcph > v e r s i on = v e r s i o n ;
egcph > tokens = tokens ;

16 send (pkt , (Handler ∗) 0) ; // send packe t
tm send bcn . resched (0 . 1) ; // r e s c h e d u l e new beacon

}
else i f (tokens > 0)

20 tm send bcn . resched (0 . 1) ; // new sending time
// i f we are busy

Listing 6.1: Send beacon procedure

The recv method

When a packet is handed to eGCP agent it is processed inside the recv method. The
following describes what kind of actions have to be taken if the node receives a particular
type of a message
Beacon received. When the node receives a beacon, it checks if it is not busy. If
the timer is idle, the node saves the candidate and starts the timer for next possible
candidates. When the next beacon arrives the node checks if it is a better candidate.
When the time exceeds, the request message is sent to the best candidate. The following
piece of code in Listing 6.2 demonstrates the procedure of choosing the best candidate.

i f (accept beacon () == f a l s e) // busy
{Packet : : f r e e (pkt) ; return ;}

3

i f (tm wait cndt . s t a t u s () == TIMER IDLE) // f i r s t cand ida te
{

save cand idate (hdrip , hdr , pkt) ;
7 tm wait cndt . re sched (0 . 1 1) ;

Validation and enhancement of the GCP protocol 65

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

return ;
}

11 i f (tm wait cndt . s t a t u s () == TIMER PENDING) // o t her c a n d i d a t e s
{

i f (ver s ion upd == hdr > v e r s i on) // v e r s i o n i s the same
i f (tokens upd < hdr > tokens) // another has more tokens

15 save cand idate (hdrip , hdr , pkt) ;
else {Packet : : f r e e (pkt) ; return ;}

else i f (ver s ion upd < hdr > ve r s i on) // another has newer v e r s i o n
save cand idate (hdrip , hdr , pkt) ;

19 else {Packet : : f r e e (pkt) ; return ;}
}
return ;

Listing 6.2: Save candidate procedure

Request received. When the node is chosen as a candidate it will receive a request
message form another node. However, it is possible that when the node starts informing
other nodes that it has newer version, it will be the chosen by many nodes at the same
time, beacause the nodes will send request messages to that node. In order to avoid
broadcasting more update messages the node waits 40ms. Then it will start an update
process. The Listing 6.3 demonstrates how the request message is processed.

i f (a c c ep t r eq () == f a l s e) // busy
{Packet : : f r e e (pkt) ; return ;}

3 // message f o r me
i f (hdrip > daddr () == here . addr && tokens > 0)
{

Packet : : f r e e (pkt) ;
7 pkt nr = 1 ;

// wai t to r e c e i v e more messages
// and then launch the update pr oces s

11 tm wait req . resched (0 . 0 4) ;
}
else Packet : : f r e e (pkt) ;
return ;

Listing 6.3: A request received procedure

Nack received. When a nack message is received, the node checks if the address
matches its own. The next step checks whether the message arrived on time. If yes, the
nodes saves a last received packet number, that came within the nack message. Then
the node resends this packet.

i f (accept nack () == f a l s e) // busy
2 {Packet : : f r e e (pkt) ; return ;}

i f (hdrip > daddr () == here . addr) // packe t addressed f o r me
{ // nack r e c e i v e d on time

6 i f (tm wait nack . s t a t u s () == TIMER PENDING)
{

pkt nr = hdr > pkt nr + 1 ; // l a s t r e c e i v e d
Packet : : f r e e (pkt) ;

10 send update () ;
}

66 Validation and enhancement of the GCP protocol

6.3. IMPLEMENTATION OF EGCP

else {Packet : : f r e e (pkt) ; return ;}
}

14 else {Packet : : f r e e (pkt) ; return ;}

Listing 6.4: A nack received procedure

Update received. The following piece of code in Listing 6.5 demonstrates the
processing steps when a node receives an expected packet. When the update packet
with a right version is received , the node checks if it is necessary to stop the candidate
election timer that was started in the choosing candidate state. Next, the packet number
is compared with the expected. If yes, and it is the last packet, the node just resets
variable values to the initial states, saves the whole update(changes the version). If it is
not the last packet, the node saves the packet and waits for another one by rescheduling
the sending nack timer.

i f (hdr > pkt nr == 1)
2 c a n c e l c a n d i d a t e t i m e r () ;

i f (hdr > pkt nr == expected) // we got expec ted pk t
{

6 pkt nr = hdr > pkt nr ;
p k t t o t a l = hdr > p k t t o t a l ;

i f (pkt nr == p k t t o t a l) // l a s t pk t i s r e c e i v e d
{

10 expected = 1 ; // r e s e t
t imeout counte r = 0 ; // r e s e t

v e r s i o n = hdr > v e r s i on ; // save an update
14 Packet : : f r e e (pkt) ;

tm t r i gge r nack . f o r c e c a n c e l () ; // a l l p k t s are r e c e i v e d .
} // Cancel t imer
else

18 {
rm nodeID = hdrip > saddr () ; // save the source node

rm nodePort = hdrip > spor t () ; // id and por t in order
// to know where to send nack

22 expected++;
t imeout counte r = 0 ;
tm tr i gge r nack . re sched (0 . 0 8) ; // wai t f o r another packe t

}
26 Packet : : f r e e (pkt) ;

}

Listing 6.5: An update received procedure

The simulation file

In the process of implementing the eGCP protocol we found that our previous approach
of defining beacon timer events, and timers in general trough the OTCL script is unprac-
tical. Although we could capture the behavior of the GCP agent, problems arise when
multiple timers are introduced in the eGCP protocol. In GCP we use a single timer and
updates are instant using only one packet. In eGCP there are states where we wait for
a certain amount of time e.g. while electing the best candidate. A predefined beacon
timer event trough OTCL would conflict with the behavior of the eGCP protocol, and
possible send a beacon in a state where a node is dedicated to listening. We therefor

Validation and enhancement of the GCP protocol 67

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

moved the handling of timers away from OTCL into the C++ implementation. The
eGCP protocol is hereby captured within the C++ implementation of the eGCP Agent.

Agent initialization. The following piece of code shows the eGCP agent initiali-
zation. We set a number of tokens, packets, and attach the agent to the node.

1 for { s e t i 0} { $ i < $va l (nn)} { i n c r i } {
s e t p($ i) [new Agent/eGCP] # c r e a t e agent
$p ($ i) s e t tokens $ in itToken # i n i t tokens
$p ($ i) s e t p k t t o t a l 5 # s e t pkt no

5 $p ($ i) output name $ c p f i l e # s e t output f i l e
$ns attach agent $node ($ i) $p ($ i) # attach agent
}

Listing 6.6: Agent initialisation

Broadcast event scheduling. In the eGCP, as we see in Listing 6.7 we schedule
only the first broadcast event in order to trigger the node to start sending the beacons.
The following piece of code shows the scheduling process of the broadcast event.

1 for { s e t i i 0} { $ i i < $va l (nn) } { i n c r i i } { # a l l nodes
s e t startTime [$randStart va lue] # time 1 . 0 1 . 1
i f { $ i i == $randNum} { # random node

s e t startTime 1 .000 # s t a r t s 1 . 0
5 $ns at $startTime "$p($randNum) broadcast -beacon" # add event

} else { $ns at $startTime "$p($ii) broadcast -beacon"}
}

Listing 6.7: Start broadcasting process

6.4 Test of the extension

In order to test the eGCP protocol we devise different test scenarios. We conduct two
different tests in order to validate the implementation of eGCP.

eGCP test 1

The first test is designed to verify the selection of the correct candidate, and to check if
only 1 token is used in the update process. To test this, we place 10 nodes within the
transmission range. Each of them has a unique token counts ranging from 1 to 10. The
ten nodes are within reliable communication range. Then we place a node with a lower
version in the same deployment area, which transmit a beacon. In the election period
each of the candidates will send a beacon. Node A should choose the best candidate
and request the update. The setup can be seen in Figure 6.14a.

GCP We expect node A to transmit the beacon. This will trigger an update from
every node inside the deployment area and in total use 10 tokens.

eGCP We expect node A to initiate an election and choose the node with the highest
amount of tokens. Each node deployed has a unique token number ranging from 1 to
10. This means that A should request the update from the node who has the 10 tokens
available. After the simulation we expect to have node A updated with only 1 token
used.

68 Validation and enhancement of the GCP protocol

6.4. TEST OF THE EXTENSION

Results

The results matched the expectations. The GCP protocol used 10 tokens because each
node reacted the the beacon and commenced an update. The eGCP protocol elected
the node with the highest token count and after the update every node had their initial
token values expect the candidate.

A

F

D

t=1

J

H

t=9

t=5

t=8

request

t=4

E

t=2

t=10

I G

C

K

B

t=6

t=3

t=7

(a) The setup of the first eGCP
test. In this test node A wakes
up after a crash and discovers
the entire neighbourhood has
been updated in the mean time.
Node A initiate an election and
chose the best candidate.

A

E

B

C

D

A2.0

3.0
0.1

request

t=1

t=1

t=2

t=3

(b) This is the setup of the second test. In
this scenario, node A will start an election and
chose a candidate from which the update pro-
cess starts. In the middle of update, node A is
instantly moved out of range of the candidate
for later to be brought back. When node A gets
back into range, the update process should go
back and continue from the first missing packet.
back.

Figure 6.14: An illustration of the the test scenarios for the eGCP protocol.

eGCP test 2

The second test is designed to check the reliability mechanism. In this test we have
5 static nodes, 4 of the nodes has a newer version than the fifth node A. The update
process starts but after receiving the first few packets of the update we instantly move
node A away form the other nodes. This will trigger NACK-messages from A but no
one can receive them. Then, before we reach the nack count threshold on the receiving
node A and before the candidate finishes the update process, we instantly move node
A back into range. Now, the NACK-message should be received thus A would receive
the missing packets and complete the update. The setup can be seen in Figure 6.14b.

eGCP When the test is started we expect A to start an election and choose the best
candidate. That candidate starts sending packages to A. After we move A we expect
to see it transmitting NACK-messages, while the candidate node continues to transmit
the update. After a few NACK-messages A should return in range and transmit a
NACK-message which the candidate node receives. The candidate node reacts on the
NACK-message and sets the next packet number to the expected packet of the receiving
node before continuing transmitting packets.

Validation and enhancement of the GCP protocol 69

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

Results

The test results fits the expectations. With a transmission interval on 0,5 second per
packet and 0,6 second timeout for NACK-message the candidate node transmitted 3
out of 8 packets before our receiving node gets removed. The receiving node transmit 2
NACK-messages before it was put into range of the candidate node which then received
the 3 NACK-message. This reversed the update process which continued from packet 4
and the receiving node completes the update.

6.5 eGCP test results

The purpose with eGCP was to ensure update capabilities when the network was error-
prone and improve the usefulness of tokens by choosing the best candidate. To test for
these properties different scenarios are used with specific settings.

eGCP reliability mechanism

To test the reliability mechanism we increase the number of packets in the update from
1 to 10 and run the simulation in scenario 1. This scenario has been chosen because the
density is sufficient to provide a reliable result compared with scenario 2 through 8. It
should be noted that since the GCP protocol does not support updates spanning over
multiple packets, thus no comparison between the protocols will be made.

Load balancing

To see a difference in load balance between the GCP and eGCP protocol a fairly high
density is needed. If the density is low the purpose of election the best candidate
diminishes since only one node will be available for the majority of the time. Therefore,
we chose scenario 1 which has the highest density. To get comparable results, the
settings for the test are identical. By this we mean that instead of randomly deploying
the source node, it is now placed so the only difference between the test runs are the
protocol. Ten test runs with each protocol was created and the average load balance for
both protocols can be seen in Figure 6.15(For larger pictures see Appendix E. It should
be noted that both protocols updated equally many nodes, thought the eGCP has a
slower code propagation speed. This means that the simulation time was extended until
both protocols had updated more that 95% of the nodes. An example is our 300×300
scenario which took 100 seconds of simulation to update the entire network with the
eGCP protocol. The GCP protocol did it in 35 seconds.

The results matches our expectations. Because of a rather high average density,
nodes will have multiple nodes to choose between when electing a candidate. The total
number of tokens used to update all nodes is smallest for the eGCP protocol. Also, the
number of nodes who uses more than 1 token is halved compared to the GCP protocol.
The results look very promising for the eGCP protocol. Unfortunately, with results from
only one scenario a general opinion cannot be made thus we create two new scenarios
alike that of scenario 1. The first is even more dense with a size of 200 × 200 meters
and 2000 nodes. The second is more sparse with a deployment area of 300 × 300 meters
and 2000 nodes. In the following, we will refer to them as scenario 1d (dense) and 1s
(sparse). With identical settings as in the previous test case we conduct the test 10
times in both scenario 1d and 1s. The average results are depicted in Figure 6.16 and
6.17.

70 Validation and enhancement of the GCP protocol

6.5. EGCP TEST RESULTS

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

GCP - Load Balance - 250x250, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

(a) The GCP protocol.

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

eGCP - Average Load Balance - 250x250, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

(b) The eGCP protocol.

Figure 6.15: An illustration of the average load balancing for the two protocols in scenario
1 (250×250).

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

GCP - Load Balance - 200x200, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

(a) The GCP protocol.

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

eGCP - Load Balance - 200x200, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

(b) The eGCP protocol.

Figure 6.16: An illustration of the average load balancing for the two protocols in scenario
1d (200×200).

In scenario 1d(Figure 6.16), we see the best overall result of the eGCP protocol.
Compared to the GCP protocol, our extension rarely uses more than 1 token in average
to perform the same amount of updates. This results matches our expectations because
this scenario is very dense, thus our election should have multiple nodes to chose between.
This support our claim that in dense networks our extension provides a better load
balancing compared to the GCP protocol.

Looking at scenario 1s(Figure 6.17) we see the eGCP protocol still provides better
average load balance because the number of nodes which uses more than 1 token is less
than in the GCP protocol. However, our results are beginning to converge towards those
of GCP. This converging also matching our expectations. With a more sparse cluster,
the load balancing between the GCP and eGCP protocol will become more equal. At
some point, the average density becomes so low, that they will be equal in terms of load
balancing. It should be noted though, that the code propagation speed will be higher.
At which average density they have an equally load balancing we have not determined.
For practice use a hybrid solution could be interesting. Before initiating an update the
average density could be calculated and the best approach could be used. If the average

Validation and enhancement of the GCP protocol 71

CHAPTER 6. EXTENSION OF THE GCP PROTOCOL

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

GCP - Load Balance - 300x300, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

(a) The GCP protocol.

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

eGCP - Average Load Balance - 300x300, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

(b) The eGCP protocol.

Figure 6.17: An illustration of the average load balancing for the two protocols in scenario
1s (300×300).

density was lower than a threshold, election would be omitted and updates would occur
as in the GCP protocol. Opposite, if the average density is higher than the threshold,
the eGCP could be used if the slower code propagation is acceptable.

The results from scenarios Figure 6.15, Figure 6.16 and Figure 6.17 has been sum-
marised in Table 6.2.

GCP 2 tokens eGCP 2 tokens

200×200 250×250 300×300 200×200 250×250 300×300

0 618.1 673.4 959.3 0 935.3 890.3 866.6
1 1037.9 922.3 699 1 995.7 934.9 812.2
2 344 404.3 341.7 2 69 174.8 321.2

GCP 3 tokens eGCP 3 tokens

200×200 250×250 300×300 200×200 250×250 300×300

0 623.5 676.2 910.1 0 932.7 902.2 875.2
1 1035.5 941.1 762.9 1 1005 935.9 860.2
2 235.1 269.8 224.4 2 54.7 124.3 161.1
3 105.9 112.9 102.6 3 7.6 37.6 103.5

GCP 5 tokens eGCP 5 tokens

200×200 250×250 300×300 200×200 250×250 300×300

0 624.2 682.1 905.8 0 936 908.7 883
1 1026.4 946.6 776.3 1 1001.6 930.1 876.9
2 243.5 262.6 224.9 2 54.4 124.9 154.8
3 70 76.5 60.3 3 6.7 26 43.1
4 22.9 21.9 21.2 4 1.2 7.7 21.2
5 13 10.3 11.5 5 0.1 2.6 21

Table 6.2: The average numbers for the GCP and eGCP protocol doing 10 runs with
2,3 and 5 tokens in scenario 1, 1d and 1s.

72 Validation and enhancement of the GCP protocol

6.6. SUMMARY

6.6 Summary

In this chapter we have discussed the problems in the GCP protocol, especially the
assumption with reliable communication within wireless networks. This assumption is
not realistic, so we propose an extension to the GCP protocol which removes this li-
mitation by specifying a reliability mechanism. We also improve the utilisation of the
token which improves the load balancing in dense networks. This is done by introducing
elections and choosing the best candidate for transmitting the update. We give a sys-
tematic specification of our extension (called eGCP) with the same methodology that
we used to define the GCP protocol. Then we implement the extension and verifies it
behaves as expected. To do this we devise two small tests. Finally, we compare our
eGCP protocol with the GCP. As expected our protocol performs better as the network
becomes more dense. This can be seen in the way the load balancing is distributed. The
eGCP protocol uses less tokens to update all nodes compared with the GCP protocol.
However, the trade-off is a slower code propagation due to all the elections. It should
also be noted that if the density of the network is low, the difference between the GCP
and eGCP protocol vanishes, since the election process needs more than 1 node in the
neighbourhood to become effective.

Validation and enhancement of the GCP protocol 73

Chapter 7

Conclusion

Being able to update the software of WSNs is becoming a necessity as WSN applications
are often deployed in hard to reach locations, or harsh environments. The energy resource
of a sensor node is a scarce resource and the efforts in minimizing the power consumption
is critical to the lifetime of a WSN application. Updating a WSN is an energy consuming
task and devising energy efficient update mechanisms is not a trivial task. One way of
minimizing power consumption is by ensuring even load balance among the sensor nodes
distributing the update, this way the overall lifetime of the network is prolonged.

In this project we gave a systematic presentation of the GCP protocol using the
protocol specification methodology of [12]. We also implemented the GCP protocol in
the simulation tool NS2 to reproduce and verify the very promising test results in [9] in
terms of code update propagation speed and load balancing. Furthermore, we modelled
the GCP protocol in UPPAAL for formal verification of the protocol, and performed
time- and energy analysis on selected synthetic topologies. As a supplementary tool
to the NS2 simulator we implemented the python application PyMove that generates
random node movement for user defined cluster scenarios.

While analysing and implementing the GCP protocol according to [9] we encountered
inadequate and ambiguous protocol descriptions. We also discovered that the protocol
did not support realistic wireless communication since it assumes communication always
occur without collision and any kind or data loss. Finally, we encountered different
scenarios where multiple tokens were used instead of the needed one. This contradicts
the purpose of the tokens.

We proposed and implemented an extension to the GCP protocol called eGCP. Our
protocol includes a reliability mechanism, which ensures that nodes receive updates
despite faulty communication. The mechanism is designed with resource constraints
in mind and thus uses NACK instead of ACK-messages. This will lower the amount
of protocol messages and therefore save battery power. It also includes an election
mechanism which further improves the load balancing by choosing the best candidate
based upon version number and remaining tokens. This provide an even better utilization
of the tokens, while minimise the possibility of implosion. A simple form of resource
awareness is added to the node. Before broadcasting a beacon, nodes will verify they
have tokens left to perform an eventual update. If they do not have any tokens left, they
will not transmit a beacon, until they eventually receive a new update and reset their
token count.

The results: GCP

Our test results using the NS2 tool under the same assumptions given in [9], did not
correspond to the results presented. Our test results showed that the code propagation
speed in scenario 1 was off by factor of more than 40. In the test results for scenario
2 trough 8 we updated a maximum of 11 nodes in the individual scenarios, rendering
these result unsuitable for further comparison to the results in [9]. In the search of a
plausible explanation of the variation in test data, we tried to replicate the results in [9]
trough changing simulation parameters. We succeeded in replicated some of the result
in [9] by modifying the range and speed parameters. To achieve similar results as in
[9] scenario 1, we had to increase the movement speed of the nodes to a maximum of
20 meters per second (or 72 km/hour) and increased the radio range to a maximum of
10 meters. For replication of scenario 2, 5 and 6 even higher settings were needed to

Validation and enhancement of the GCP protocol 75

CHAPTER 7. CONCLUSION

duplicate the original results. These settings do not resemble those presented [9], which
indicate that the results in [9] are incorrect under the given simulation parameters.

We have identified best case scenarios which also indicates that unless the radio and
movement settings are changing or the topology is not uniformly distributed their results
are very optimistic.

Another strong indication that the results provided in [9] are not accurate, is based
on the shape of their graphs. For instance, scenario 6 is 4 socializing cluster scenario in
which a staircase shaped graph would be expected. After one cluster has been updated,
a transmitter will need to travel 200 meters to reach the next cluster hereby leaving the
number of updated nodes stagnant for this period of time. The original test results in
[9] show is a smooth graph.

Although it may be theoretically possible to update the network given a highly non-
uniform node deployment, it is very unlikely. Therefore, we conclude that the result in
[9] does not reflect the average behaviour of the GCP protocol under the assumptions
given in [9].

The results: eGCP

We designed the eGCP protocol to improve the load balancing and minimising the
chance for implosion by choosing the best candidate for transmitting the update. In
scenario 2 through 8 the average density is low compared to the radio range thus the
chance for having more that 1 node to select as candidate is very small. This degrades the
performance of the eGCP protocol compared to GCP because though the load balancing
will be very similar in these cases, but the code propagation speed will be slower since
an election has to be made before each update.

The density is much higher in scenario 1, and in this test case, the load balancing is
clearly improved. The amount of nodes who uses the maximum of tokens is very small
compared with the GCP protocol. In every test the result is the same. Especially, in the
tests with 5 initially tokens we see that the eGCP protocol does not have a single node
who uses all tokens and almost none which uses 4. Overall the results show the load
balancing is more evenly distributed. Also the total number of tokens used to perform
the update is lower compared to the GCP protocol.

In our own test scenario we created a very dense cluster. This further improved
the results of the eGCP protocol compared with the GCP protocol. From our results
in Table 6.2 we see that our eGCP protocol outperforms the GCP protocol in dense
scenarios. In scenario 1 (2 tokens) we see that the GCP protocol has 404,3 nodes which
uses 2 tokens compared with the eGCP which only has 174,8. The GCP protocol has
over twice the amount of nodes which uses all tokens. The eGCP protocol performs even
better when the density increases. In scenario 1d (dense - 200x200) the GCP protocol
has 344 nodes which uses both their tokens. eGCP has only 69 nodes which uses both
tokens. The same characteristic applies for 3 and 5 tokens. In scenario 1d with 3 tokens,
the eGCP protocol has 7,6 nodes which uses all 3 tokens. The GCP protocol has 105,9
nodes. The difference is a factor of more than 12.

To conclude the eGCP protocol provides better load balancing than the GCP proto-
col, if the density is high enough. If the density is low the load balancing would be very
similar between the two protocols, but the code propagation speed of eGCP would be
slowest.

We have concluded that our extension to the GCP protocol will improve the load
balancing when distributing an update in dense WSN. We also concluded that knowledge

76 Validation and enhancement of the GCP protocol

7.1. FUTURE WORK

of the density of the network provides valuable information when choosing the code
update dissemination protocol.

7.1 Future work

While designing and implementing the eGCP protocol various ideas emerged which was
left for future work. In this section we describe different approaches which could improve
our eGCP protocol.

Buffer management

As of now, packets out of order are discarded and a NACK message is replied back.
An improvement could be to include a mechanism to control the buffer, and thus make
sure that the missing packets would be retransmitted. The ”sliding window” mechanism
hinted in [20] could be a possibility. The window has a frame from where it can store
successfully received packets up to the size of a given offset. Applying the sliding window
would require some changes to the usage of NACK message. Instead of transmitting a
NACK message as soon as a packet loss is detected the mechanism would have to wait
until the packet becomes the first in the frame. This solution would also be useful if a
node was receiving an update but moved out of range of the source node.

Interrupted updates

As a consequence of the moving nodes, situations will occur when a node will move into
the vicinity of an ongoing update. The node will transmit a NACK message to indicate
they missed all previous packages and then continue on its path and perhaps move
out of range. If the source node received this NACK message the update process will
be unnecessarily restarted. This will result in slower propagation speed and increased
battery usage. The chance for this scenario to occur is low though, since it will only
happen in the vicinity of the transmission range thus chance of reception is only around
30 %. This means that the ”trespassing” node might not get the update messages,
and if it does, the source node might not receive the NACK message. The chance for
this scenario to occur increases with the size of the update, since the total update time
will increases as well. A way to contain this problem could be to define a threshold on
the packet number. The trespassing node that received the update will evaluate if the
number of transmitted packages compared to the total number is too high to interrupt
the ongoing update. For instance, if a node evaluates that the update process is already
more than 20% completed it will not NACK and hereby reset the update process.

Timing

In the eGCP protocol timers has been used to control when the best candidate should be
elected, wait for requests messages and when a NACK message should be transmitted.
We have made no tests or analysis to discover which numbers give the optimal per-
formance. Future work could include such investigation which could lead to achieving
higher propagation speed.

Token drops

A problem occurs if a node crashes in the middle of receiving an update. The source
node cannot know this since no NACK-messages will be send and thus after transmitting

Validation and enhancement of the GCP protocol 77

CHAPTER 7. CONCLUSION

the update decrement its token count. The same problem arise if a node is receiving
an update but moves out of range of the source node. Again, the source node will act
like the update was successfully received and decrement its token count. This could be
a problem when the source node (only node containing the new version) is deployed.
If the node uses all tokens without updating any other node, the update will never be
distributed.

Avoiding update request implosion

Whenever a multiple number of nodes receives a beacon from one node with a newer
version, the election timers will start on all the surrounding nodes almost simultaneous.
When the candidate election timer expires the nodes will request an update from the
same candidate, at the same time causing implosion on the candidate node. Implosion
will can cause the update request to be lost, and an additional beacon period will pass
before a new election start.. the same thing can happen continuously until the topology
of the moving nodes resolves the problem. To resolve the problem we propose that
each node append small random delay to the election period, this minimize the changes
that two or more nodes request the update from the candidate at the same time hereby
causing implosion.

78 Validation and enhancement of the GCP protocol

Bibliography

[1] 8-bit Microcontroller with 128k Bytes In-System Programmable Flash. www.atmel.com/dyn/

resources/prod_documents/doc7679.pdf.

[2] 8-bit Microcontroller with 16k Bytes In-System Programmable Flash. http://www.atmel.com/dyn/
resources/prod_documents/doc2545.pdf.

[3] Avr910: In-system programming. http://www.atmel.com/atmel/acrobat/doc0943.pdf.

[4] Network simulator 2 documentation. http://www.auto-nomos.de/ns2doku/.

[5] nrf24l01 single chip 2.4ghz transceiver product specification. http://www.nordicsemi.no/files/

Product/data_sheet/nRF24L01P_Product_Specification_1_0.pdf.

[6] The ns2 manual. http://www.isi.edu/nsnam/ns/ns-documentation.html.

[7] Tinyos. http://www.tinyos.net/.

[8] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demir-
bas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita. A line in the sand: a wireless sensor network for target detection, classification,
and tracking. Computer Networks, 46(5):605 – 634, 2004. Military Communications Systems and
Technologies.

[9] Yann Busnel, Marin Bertier, Eric Fleury, and Anne-Marie Kermarrec. Gcp: gossip-based code
propagation for large-scale mobile wireless sensor networks. In Autonomics ’07: Proceedings of
the 1st international conference on Autonomic computing and communication systems, pages 1–5,
ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[10] Chih-Chieh Han, Ram Kumar, Roy Shea, and Mani Srivastava. Sensor network software update
management: a survey. Int. J. Netw. Manag., 15(4):283–294, 2005.

[11] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive protocols for infor-
mation dissemination in wireless sensor networks. pages 174–185, 1999.

[12] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

[13] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless networks. In
Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.

[14] Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder, Olga Saukh, and Kurt
Rothermel. Flexcup: A flexible and efficient code update mechanism for sensor networks. In In
Proceedings of the Third European Workshop on Wireless Sensor Networks (EWSN 2006, pages
212–227, 2006.

[15] K. Martinez, J.K. Hart, and R. Ong. Environmental sensor networks. Computer, 37(8):50–56, Aug.
2004.

[16] Robertas Backys Peter Finderup, Thomas Birk Abildgaard. Energy efficiency in wireless sensor
networks and exploration of potential hardware. Technical report, Aalborg University, 2009.

[17] The CMU Monarch Project. The cmu monarch project’s wireless and mobility extensions to ns.
www.monarch.cs.cmu.edu, 1998.

[18] T.S. Rappaport et al. Wireless communications: principles and practice. Prentice Hall PTR New
Jersey, 2002.

[19] Niels Reijers and Koen Langendoen. Efficient code distribution in wireless sensor networks. In
WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor networks and
applications, pages 60–67, New York, NY, USA, 2003. ACM.

[20] Thanos Stathopoulos, John Heidemann, and Deborah Estrin. A remote code update mechanism
for wireless sensor networks. Technical report, 2003.

[21] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., Upper Saddle River, New Jersey,
USA, 2002.

[22] Ekram Hossain Teerawat Issariyakul. Introduction to network simulator NS2. Springer, SpringerS-
cience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA, 2009.

[23] Uppsala University and Aalborg Unicersity. Uppaal.

Validation and enhancement of the GCP protocol 79

www.atmel.com/dyn/resources/prod_documents/doc7679.pdf
www.atmel.com/dyn/resources/prod_documents/doc7679.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf
http://www.atmel.com/atmel/acrobat/doc0943.pdf
http://www.auto-nomos.de/ns2doku/
http://www.nordicsemi.no/files/Product/data_sheet/nRF24L01P_Product_Specification_1_0.pdf
http://www.nordicsemi.no/files/Product/data_sheet/nRF24L01P_Product_Specification_1_0.pdf
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.tinyos.net/
www.monarch.cs.cmu.edu

Appendix A

Calculating average density

Test scenario Size of area (m) Result (m2) Result (km2)

1 250 x 250 62.500 0,0625
2 1100 x 1100 1210.000 1,21
3 800 x 800 x 2 - 100 x 100 1270.000 1,27
4 2000 x 2000 4000.000 4,00
5 550 x 550 x 2 1210.000 1,21
6 1300 x 1300 1690.000 1,69
7 800 x 800 640.000 0,64
8 1500 x 1500 2250.000 2,25

Table A.1: A table with the different sizes of the deployment areas used in the test
scenarios.

Test scenario Area (km2) Number of nodes Result (nodes/km2)

1 0,0625 2000 32000
2 1,21 2000 1653
3 1,27 2000 1575
4 4,00 2000 500
5 1,21 2000 1653
6 1,69 2000 1183
7 0,64 2250 3516
8 2,25 2250 1000

Total for 2nd to 8th scenarios 11080

Table A.2: A table displaying the density of nodes pr. km2 in each test case.

It should be noted that the numbers of nodes stated in Table A.2 are the combined
number of nodes together with the number of transmitters from the different test cases.
It should also be noted that we omit the first test case from the scenario because the
deployment area is so confined and thus will give misleading numbers to the normal
average.

The average density for the seven test cases are: 11080nodes/km2

8 ≈ 1385 nodes pr.
km2.

Validation and enhancement of the GCP protocol 81

Appendix B

UPPAAL models

B.1 UPPAAL model of the original GCP protocol

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 <

=
 v

e
rs

io
n

x
 >

=
 t
im

e
o
u
t

to
k
e
n
s
 >

 0

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

to
k
e
n
s
 =

=
 0

m
y
R

e
m

o
te

V
e
rs

io
n
 =

=
 v

e
rs

io
n

b
e
a
c
o
n
!

U
P

D
A

T
E

_
O

W
N

C
H

K
_
B

E
A

C
O

N
_
V

C
H

K
_
U

P
D

_
V

x
<

1
0
0

x
 <

=
 t
im

e
o
u
t

C
H

K
_
T

O
K

E
N

S

IN
IT

R
E

Q
U

E
S

T
_
U

P
D

ID
L
E

u
p
d
a
te

!

to
k
e
n
s
 :
=

 t
o
k
e
n
s
 −

 1

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n

x
:=

0

x
 :
=

 0
,

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

v
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n
,

to
k
e
n
s
 :
=

 i
n
it
N

rO
fT

o
k
e
n
s

u
p
d
a
te

?

b
e
a
c
o
n
?

b
e
a
c
o
n
!

Figure B.1: Initial GCP UPPAAL model.

Validation and enhancement of the GCP protocol 83

APPENDIX B. UPPAAL MODELS

B.2 UPPAAL model of the original GCP protocol with a
half duplex radio

v
e
rs

io
n
 :
=

 m
y
R

e
m

o
te

V
e
rs

io
n
,

to
k
e
n
s
 :
=

 i
n
it
N

rO
fT

o
k
e
n
s

x
 :
=

 0
,

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

b
e
a
c
o
n
?

u
p
d
a
te

!

u
p
d
a
te

?

x
 <

 1
0
0

b
e
a
c
o
n
!

x
 <

=
 t
im

e
o
u
t

u
p
d
a
te

?

b
e
a
c
o
n
!

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 =

=
 v

e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 <

=
 v

e
rs

io
n

x
 >

=
 t
im

e
o
u
t

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

to
k
e
n
s
 =

=
 0

 &
&

m
y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

to
k
e
n
s
 >

 0
 &

&
m

y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

x
:=

0

C
H

E
C

K
_
U

P
D

_
V

ID
L
E

U
P

D
A

T
E

_
O

W
N

C
H

K
_
B

E
A

C
O

N
_
V

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

to
k
e
n
s
 :
=

 t
o
k
e
n
s
 −

1

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

x
 :
=

 0

IN
IT

Figure B.2: GCP UPPAAL model - half duplex.

84 Validation and enhancement of the GCP protocol

B.3. UPPAAL MODEL OF THE ORIGINAL GCP PROTOCOL WITH TIME AND
NODE CONNECTIVITY

B.3 UPPAAL model of the original GCP protocol with
time and node connectivity

!l
in

k
[r

e
m

o
te

ID
][
id

]

ID
L
E

C
H

E
C

K
_
U

P
D

_
V

lin
k
[r

e
m

o
te

ID
][
id

]

lin
k
[r

e
m

o
te

ID
][
id

]

!l
in

k
[r

e
m

o
te

ID
][
id

]

!l
in

k
[r

e
m

o
te

ID
][
id

]

x
 <

 1
0
0

x
 <

=
 t
im

e
o
u
t

x
 <

=
 S

E
N

D
_
T

IM
E

C
H

K
_
B

E
A

C
O

N
_
V

IN
IT

R
E

C
V

_
U

P
D

S
E

N
D

_
U

P
D

x
<

=
R

E
C

V
_
T

IM
E

u
p
d
a
te

?

b
e
a
c
o
n
!

x
 >

=
 t
im

e
o
u
t

m
y
R

e
m

o
te

V
e
rs

io
n
 <

=
 v

e
rs

io
n

u
p
d
a
te

?

u
p
d
a
te

!

b
e
a
c
o
n
?

lin
k
[r

e
m

o
te

ID
][
id

]

x
 >

=
 S

E
N

D
_
T

IM
E

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

x
 >

=
 R

E
C

V
_
T

IM
E

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 =

=
 v

e
rs

io
n

to
k
e
n
s
 >

 0
 &

&
m

y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

to
k
e
n
s
 =

=
 0

 &
&

m
y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

b
e
a
c
o
n
!

re
m

o
te

ID
:=

re
m

o
te

N
o
d
e
,

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

re
m

o
te

N
o
d
e
:=

 i
d
,

x
 :
=

 0

x
:=

0

x
:=

0
,

v
e
rs

io
n
 :
=

 m
y
R

e
m

o
te

V
e
rs

io
n
,

to
k
e
n
s
 :
=

 i
n
it
N

rO
fT

o
k
e
n
s

x
:=

0

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

re
m

o
te

N
o
d
e
:=

 i
d
,

x
 :
=

 0

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

re
m

o
te

N
o
d
e
:=

 i
d
,

to
k
e
n
s
 :
=

 t
o
k
e
n
s
 −

1
,

x
:=

0

re
m

o
te

ID
:=

re
m

o
te

N
o
d
e
,

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

x
:=

0

re
m

o
te

ID
:=

re
m

o
te

N
o
d
e
,

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

x
:=

0

Figure B.3: GCP UPPAAL model - Time and Node connectivity.

Validation and enhancement of the GCP protocol 85

APPENDIX B. UPPAAL MODELS

B.4 UPPAAL model of the original GCP protocol with
energy, time and node connectivity

re
m

o
te

ID
:=

re
m

o
te

N
o
d
e
,

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

re
m

o
te

N
o
d
e
:=

 i
d
,

x
 :
=

 0

x
:=

0

x
:=

0
,

v
e
rs

io
n
 :
=

 m
y
R

e
m

o
te

V
e
rs

io
n
,

to
k
e
n
s
 :
=

 i
n
it
N

rO
fT

o
k
e
n
s
,

e
n
e
rg

y
 +

=
 R

E
C

V
_
E

N
E

R
G

Y
,

to
ta

lE
n
e
rg

y
 +

=
 R

E
C

V
_
E

N
E

R
G

Y
re

m
o
te

ID
:=

re
m

o
te

N
o
d
e
,

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

re
m

o
te

N
o
d
e
:=

 i
d
,

to
k
e
n
s
 :
=

 t
o
k
e
n
s
 −

1
,
e
n
e
rg

y
+

=
S

E
N

D
_
E

N
E

R
G

Y
,

to
ta

lE
n
e
rg

y
+

=
S

E
N

D
_
E

N
E

R
G

Y
,
x
:=

0

re
m

o
te

ID
:=

re
m

o
te

N
o
d
e
,

m
y
R

e
m

o
te

V
e
rs

io
n
 :
=

 r
e
m

o
te

V
e
rs

io
n

x
:=

0

re
m

o
te

V
e
rs

io
n
 :
=

 v
e
rs

io
n
,

re
m

o
te

N
o
d
e
:=

 i
d
,

x
 :
=

 0

IN
IT

C
H

K
_
B

E
A

C
O

N
_
V

S
E

N
D

_
U

P
D

x
:=

0

x
:=

0 C
H

E
C

K
_
U

P
D

_
V

id
le

T
im

e
+

+
,

e
n
e
rg

y
+

=
ID

L
E

_
E

N
E

R
G

Y
,

to
ta

lE
n
e
rg

y
+

=
ID

L
E

_
E

N
E

R
G

Y

ID
L
E

R
E

C
V

_
U

P
D

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 <

=
 v

e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 =

=
 v

e
rs

io
n

to
k
e
n
s
 =

=
 0

 &
&

m
y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

x
 <

 1
0
0

x
 >

=
 t
im

e
o
u
t

x
 <

=
 S

E
N

D
_
T

IM
E

x
<

=
R

E
C

V
_
T

IM
E

!l
in

k
[r

e
m

o
te

ID
][
id

]

lin
k
[r

e
m

o
te

ID
][
id

]

!l
in

k
[r

e
m

o
te

ID
][
id

]

!l
in

k
[r

e
m

o
te

ID
][
id

]

lin
k
[r

e
m

o
te

ID
][
id

]

to
k
e
n
s
 >

 0
 &

&
m

y
R

e
m

o
te

V
e
rs

io
n
 <

 v
e
rs

io
n

m
y
R

e
m

o
te

V
e
rs

io
n
 >

 v
e
rs

io
n

lin
k
[r

e
m

o
te

ID
][
id

]

x
 >

=
 S

E
N

D
_
T

IM
E

x
 >

=
 R

E
C

V
_
T

IM
E

x
 <

=
 t
im

e
o
u
t

b
e
a
c
o
n
?

u
p
d
a
te

!

u
p
d
a
te

?

b
e
a
c
o
n
!

ti
c
k
?

b
e
a
c
o
n
!

u
p
d
a
te

?

Figure B.4: GCP UPPAAL Energy, Time and Node connectivity.

86 Validation and enhancement of the GCP protocol

B.5. MAPLE TIME AND ENERGY CALCULATIONS

B.5 Maple Time and Energy calculations

(9)(9)

(7)(7)

(13)(13)

(5)(5)

(4)(4)

(8)(8)

(6)(6)

(3)(3)

(11)(11)

(10)(10)

(2)(2)

(12)(12)

(1)(1)

0.0045

248

256

496
15625

1.1160

2.263744000

2000000

507904

 =
3968
15625

3.3

4.5

0.0115

0.007

0.000320

0.027

0.009637478400

0.005866291200

0.0009103226880

0.002122340352
MCU assumed to be active for the duration of the recievers bufferWriteTime.

0.13559400

0.2750448960

0.1423706139

Figure B.5: Maple worksheet

Validation and enhancement of the GCP protocol 87

Appendix C

GCP results

C.1 GCP simulation results - Scenario 1

Overview of scenario 1

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 1 - Average Code Propagation Speed - 2,3,5 Tokens

AVG 2 tokens
AVG 3 tokens
AVG 5 tokens

Figure C.1: Scenario 1: average code propagation speed.

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

GCP - Scenario 1 - Load Balance - 2,3,5 Tokens

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

Figure C.2: Scenario 1: average load balance.

Validation and enhancement of the GCP protocol 89

APPENDIX C. GCP RESULTS

Scenario 1, 10 runs with 2,3 and 5 tokens

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 1 - Code Propagation Speed - 2 Tokens

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure C.3: Scenario 1: 10 runs, 2 tokens.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario1 - Code Propagation Speed - 3 Tokens

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure C.4: Scenario 1: 10 runs, 3 tokens.

90 Validation and enhancement of the GCP protocol

C.1. GCP SIMULATION RESULTS - SCENARIO 1

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 1 - Code Propagation Speed - 5 tokens

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure C.5: Scenario 1: 10 runs, 5 tokens.

Scenario 2, 10 runs with 2,3 and 5 tokens

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 2 - Code Propagation Speed - 2 Tokens

N1
N2
N3
N4
N5
N6

N10

Figure C.6: Scenario 2: 10 runs, 2 tokens.

Validation and enhancement of the GCP protocol 91

APPENDIX C. GCP RESULTS

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario2 - Code Propagation Speed - 3 Tokens

N2
N3
N4
N6
N7
N8
N9

N10

Figure C.7: Scenario 2: 10 runs, 3 tokens.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

N
um

be
r

of
 N

od
es

Time in seconds

GCP - Scenario 2 - Code Propagation Speed - 5 tokens

N2
N3
N4
N5
N6
N8

Figure C.8: Scenario 2: 10 runs, 5 tokens.

92 Validation and enhancement of the GCP protocol

Appendix D

GCP Replication results

 0

 500

 1000

 1500

 2000

 0 0.5 1 1.5 2

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 1 - Code Propagation Speed - 3 Tokens (REPLICATED)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure D.1: Replication: scenario 1 - 10 runs - 3 tokens.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 2 - Code Propagation Speed - 3 Tokens (REPLICATED)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure D.2: Replication: scenario 2 - 10 runs - 3 tokens.

Validation and enhancement of the GCP protocol 93

APPENDIX D. GCP REPLICATION RESULTS

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 5 - Code Propagation Speed - 3 Tokens (Replicated)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure D.3: Replication: scenario 5 - 10 runs - 3 tokens.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25

N
u

m
b

e
r

o
f

N
o

d
e

s

Time in seconds

GCP - Scenario 6 - Code Propagation Speed - 3 Tokens (REPLICATED)

N1
N2
N3
N4
N5
N6
N7
N8
N9

N10

Figure D.4: Replication: scenario 6 - 10 runs - 3 tokens.

94 Validation and enhancement of the GCP protocol

Appendix E

eGCP results

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

eGCP - Load Balance - 200x200, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

Figure E.1: eGCP: scenario 1d - 10 runs.

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

eGCP - Average Load Balance - 250x250, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

Figure E.2: eGCP: scenario 1 - 10 runs.

Validation and enhancement of the GCP protocol 95

APPENDIX E. EGCP RESULTS

 0

 200

 400

 600

 800

 1000

 1200

2 Tokens 3 Tokens 5 Tokens

N
u

m
b

e
r

o
f

n
o

d
e

s

Number of used tokens

eGCP - Average Load Balance - 300x300, 2000 nodes

0 tokens
1 tokens
2 tokens
3 tokens
4 tokens
5 tokens

Figure E.3: eGCP: scenario 1s - 10 runs.

96 Validation and enhancement of the GCP protocol

Appendix F

Report summary

In wireless sensor network energy consumption is the main problem. When a node is
deployed in the field, its battery power denoted its life time thus resource awareness
is required. A problem occurs once the nodes are deployed if the system needs an
update. Collecting each sensor node by hand would be a tedious task, impractical if
not impossible. Therefore, when such sensors need to be updated another approach is
required. In this project we focus on Energy Efficient Code Updates. When the update
is disseminated throughout the network some nodes will use more power relaying the
update than others. This can cause key nodes to exhaust their power supplies faster
than the rest of the network, and the network will become fragmented.

We want to improve the energy consumption while diffusion updates in a wireless
sensor network. When distributing an update, the load balance of the nodes will vary.
If the balance is too uneven the network becomes fragmented which in worst case can
prevent the running application to fulfil its purpose. A way to solve this problem is
to use the ideas of even load balance as described in [9]. The results presented by
the authors in [9] look very promising. Going into greater detail of the GCP protocol
reveals some flaws though. The specification of the GCP protocol in [9] is insufficient as
important details are omitted. For instance, the movement pattern of the nodes is not
clearly specified. Another example is the description of the periodically transmission
of the beacon message. According to the authors this message should be transmitted
after a given time out throughout the lifetime of the sensor node. But a radio can only
either transmit or receive at one time. This means that if the radio was in a middle
of receiving an update message and the time out happens, the radio apparently has to
switch and send the beacon before it continues to receive the update, unless it postpone
the message till after the reception has been completed. Whatever happens is unclear
since the precedent rules have not been clearly specified. The authors assume that no
collision / packet loss happens in their wireless setting, thus they do not need to specify
recovery management, a vague assumption in our opinion since we operate with wireless
communication. Also, the way tokens are used when sending update messages has not
been specified properly. This means that under certain circumstances multiple tokens
can be consumed whereas one was enough.

In this report we present a short background regarding the hardware used in wireless
sensor networks. This is done to characterise the need for resource awareness. We give
an overview of typical hardware platforms such as AT90CAN128 and CRUMB168-USB
and present an update management model which can be divided into two parts: the
resource constrained sensor network, and a base station.

We describe the GCP protocol in a detail manner. We specify this protocol according
to the protocol specification methodology in [12]: we describe what service the protocol
provides, in which environment it can be applied, depict the message vocabulary and
define the encodings. Lastly we characterize procedure rules and visualize them using
flow charts.

We then verify the GCP protocol using the UPPAAL modelling tool in order to ensure
the correctness of the protocol. In addition, we examine time and energy properties of
the GCP protocol so that we have a knowledge how much time and energy we need
to update a node. Additionally, we extend the UPPAAL model with the notion of
transmission time, connectivity ,and energy in order to see the best and the worst case
code propagation speed and energy consumption with the given network topology.

APPENDIX F. REPORT SUMMARY

We implement the GCP protocol in Network Simulator 2. The results are compared
with those found in [9]. They did not match so we make estimations of the the best
cases for scenario 1 and 2. Lastly, we replicate selected scenarios.

We present an extension to the GCP protocol called enhanced GCP (eGCP). A
systematic specification of our protocol will be specified. In eGCP protocol we add a
reliability mechanism, so the network can be subject to failures. We also change the
way tokens are used in order to improve the load balancing. An implementation of the
eGCP protocol will be made and tested to see if the behaviour matches our expectations.
Finally, the GCP and eGCP protocol will be compared in the selected test scenarios.

To conclude we discovered that the use of tokens can improve the load balancing if
the network is dense.

98 Validation and enhancement of the GCP protocol

	Introduction
	Challenges
	Motivation
	Problem Statement
	Report structure

	Background on wireless sensor networks
	Typical hardware platforms
	Update management model
	Summary

	GCP protocol specification
	GCP Protocol

	Verification of the GCP protocol
	Initial GCP model
	Timing analysis
	Energy analysis
	Summary

	Simulation of GCP
	Introduction to NS2
	Implementation of GCP
	Basic GCP tests
	Simulation scenarios
	GCP test results
	Explanation for deviation
	Replicate results of GCP
	Summary

	Extension of the GCP protocol
	Problems with the GCP protocol
	Specification of extension
	Implementation of eGCP
	Test of the extension
	eGCP test results
	Summary

	Conclusion
	Future work

	Calculating average density
	UPPAAL models
	UPPAAL model of the original GCP protocol
	UPPAAL model of the original GCP protocol with a half duplex radio
	UPPAAL model of the original GCP protocol with time and node connectivity
	UPPAAL model of the original GCP protocol with energy, time and node connectivity
	Maple Time and Energy calculations

	GCP results
	GCP simulation results - Scenario 1

	GCP Replication results
	eGCP results
	Report summary

