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ABSTRACT 

Social networks become an 

important way to provide 

information to recommender 

systems that use collaborative 

filtering. 

In this work, we propose and 

analyze the results of many 

methods to calculate the similarity 

between users, in different 

scenarios. 

In other way, we describe some 

techniques that allow the users to 

give feedback to the system in 

order to have influence in the 

recommendations they receive. 
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Nowadays, we are witnessing in the expansion of the information on the Internet. All the 

information we need about a specific topic is available in the network, but in many cases the 

problem is the difficulty to find the information useful for us, among big amounts of useless one. 

The origin of this problem is that the information is unstructured. As a result it can be very hard 

to find relevant elements of a specific category of item, such as movies, music, thematic web 

pages, ... 

One possibility is to use recommender systems that clarify the search of relevant items between 

all the available information, using the opinion of other people to know which of the items are 

really relevant [AT05].  

The research in this scope has discovered many methods to get, through the opinion of other 

people, the relevant items for a specific person. The most of these methods work around the 

idea of finding similarities in the taste of the people, using historical information of them about 

preferences. Then, the prediction for a specific person is based in the opinion of the most similar 

user to the person. This procedure is known as Collaborative Filtering. 

It is important that these systems can improve their results in the recommendation task with the 

feedback their users can give. For this reason, it is necessary the users understand how the 

recommendations network works. Then, the users can make changes over the recommendations 

they receive. 

In the last years, the importance of the social networks is growing and they become relevant for 

research studies.  The information provided by users in social networks is a powerful source of 

information for the recommender systems in the user’s profiles and also in the links that exist in 

the structure of the network [A09]. 

The idea of this project is to analyze different measures of similarity between users and which 

are used in the recommendations in the collaborative filtering systems and to study some 

techniques which get feedback from the users of a recommender system. 

 

 

Chapter 1. Introduction. 
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PART I 
 
 

ANALYSIS 





 

 

 

Some applications are designed under a set of requirements which create the necessity to 

develop the system in a specific way. 

In this case, the developed application does not follow the requirements of a customer. The 

target of this application is to aid the study of different procedures in the scope of the 

recommender system that uses collaborative filtering. These procedures can be integrated in the 

future in social networks and make recommendations to the users that match their personal 

taste. 

The developed application loads data from users, movies and the values of ratings that the users 

give to some of the movies. With this information, the application calculates the similarities 

between users with different procedures, recommends films to the users and can modify the 

recommendations using the feedback the user gives. 

All the processed data is saved in files in order to analyze later which of the similarity calculation 

procedures works better or how the feedback of the user changes the recommendations. 

Chapter 2. Application Context. 
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The social networks sites (SNS) are web-based services where the user can define a profile 

[BE97]. These sites let users start a relationship between strangers, but mostly  the SNS are for 

the users a way to show other people their offline social network. In this case, the main target of 

the users is to communicate with others SNS users, with whom they have a connection [BE97].  

The users can decide the privacy of each one of the items of this profile. To manage the privacy, 

each user sets a connection with other SNS users, and the items of his or her profile the user 

wants to share.  

When a user has joined a SNS, he or she can find other people in the system, to have an online 

relationship. The tag used for these relationships is different for each SNS: “Friends”, “Contacts”, 

“Follow/Followers”, “Fans”.  

The public display of these relationships is important for the users, because it lets the SNS user 

navigate through the friend’s profile by clicking in the friends list. 

The user can navigate through his or her contact list and view the profile of contact. Most of the 

SNS allow users to send messages to the profiles of the contact list in two ways [BE97]:  

 Private message that only the recipient can see. 

 Public message that appear in the recipient’s profile and all his or her contacts can read.  

One of the most popular things in the major SNS nowadays is the multimedia content. In 

particular, the image and video sharing [BE97]. 

Another utility provided by SNS is the possibility to manage events. Users can create a profile for 

an event, with a description, a place, a day and a time. The people can invite the contacts to the 

event, and the people invited can decide if they accept, deny or maybe assist. 

Users are interested in growing their own networks of relationships [A09]. It is common that one 

user has hundreds of online relationships, some of them that come from offline relations, maybe 

some of them come from online relations because they share common interests. It is possible to 

let user organize the friends/contacts in groups. With groups is possible to send a message to 

the entire group, share multimedia content with them. 

One of the most important aspects of the SNS is the care taken in the privacy policy. Some users 

are reluctant to share private information online [A09].  

Most of the SNS provide many options to manage the privacy of each item (photo, comment, 

video, …) shared by the user in his or her profile. Usually, users can choose to share the 

information with all the people in the SNS, only with his or her contacts or with specific groups 

of contacts. 

Chapter 3. Social Networks Sites. 





 

 

 

Recommender Systems are a technology that automates the process of suggesting items (such 

as films, music, news, pictures, web pages, etc) that can be interesting for a specific user of the 

system. For this prediction, the system uses historical information from this user and the other 

users of the system. If the system doesn’t have historical information about the user, it can try to 

get an initial prediction with the user preferences as source.  

The system has to be independent from the content it is recommending. This means that it is not 

necessary that the system knows which kind of items it is recommending. The same system 

should be able to recommend music, films or books if it has past ratings of these kinds of items. 

There is a common functionality for the recommender systems. The basic tasks that these 

systems have to offer to users are [SFHS97]: 

 First of all the system has to recommend a list of items, that the system considers the 
most useful for the specific user. 

 In other cases when a user asks for an item, the system has to calculate the predicted 
rating of the item for this specific user. 

 And finally if the user sets many restrictions that generate a particular set of items, the 
system has to be able to recommend from within that set. 

To get this functionality, most of the recommender systems work in three steps [BM05]: 

 The user provides to the system information about his or her preferences, likes/dislikes. 
It can be in two ways. 

o Explicit information if, for example, the user gives a rating for a specific item. 
o Implicit information, if the system saves how many times a user listens a song. 

 All the information collected in the first step is used to create a profile of user 
preferences.  

 The system computes the profiles of the users to get recommendations for them. 

There are three paradigms for collecting and computing the information:  

 Content-based: The system recommends to the user, using historical information of the 
user preferences and using an evaluation of the content of the items to recommend. 

 Collaborative filtering: The system recommends to the user, using the preferences of 
user with similar preferences. 

 The third paradigm that consists in a hybrid method of them. 

The task of obtaining the information about the preferences of the users is usually done using 

data mining techniques. Data mining is a technique that consists of extracting  implicit 

information from the data using data analysis and discovery algorithms [EKSWX 98]. 

Chapter 4. Recommender Systems. 
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In the context of recommended systems in social networks, the purpose is to get information 

from the profiles of the users with data mining techniques to have information about their 

preferences and to recommend items based in this information. 

 

4.1. Content-based systems.  

The user will receive information similar to that which has shown interest before. The system 

creates a profile of user preferences based in historical information and recommends to him/her 

items similar to the items that the user likes in the past. 

The content-base systems have to use techniques to qualify the content of the items. It depends 

of the kind of content we want that the system recommends. Nowadays, many of the content-

based systems works with text content (documents and web pages) because they are easier to 

analyze and qualify the content [AT05].  

For example, if the system recommends web sites, it can use the most representative words of 

the web pages to evaluate the content [BS97].  

If the system works with films, maybe it is possible to use information from some cinema 

organization to classify films. Or it can use objective criteria as the percentage of minutes of the 

film that there are of each kind of situation (adventure, comedy, drama, crime horror, love). The 

problem in this case is the qualify task automation of classifying the content. 

When the system has the profile of the user and the qualification of the content of the items, 

compute the utility that the user can get from the items. The items that create the greatest 

utility for a specific user, they will be the items recommended to him or her. 

There are many ways to get a profile of the user: 

 For example, with data mining techniques it is possible to analyze the previous ratings 
given by the users and estimate the importance that they give to each attribute.  

 Another possibility is to ask the users for this information directly, when they sign up in 
the system. 

Each one has advantages and disadvantages. With the first one the system has problems with 

new users because it does not have any information about them. The second has the problems 

that the preferences of the user can change along the time and the information that the system 

stores about the user does not match with the real taste. The best solution is a mix of both 

techniques, using explicit information given by the users when they sign up, and updating this 

information along the time with the implicit information inside the ratings, using data mining 

techniques. 
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We can represent the same idea in a more formal way, following the pattern presented in 

[AT05]: 

 Content (i) let be the characterization of a item i. It represents a set of attributes of the 
item. 

 ContentBasedProfile (u) let be the profile of a user. It will be based in the historical 
information of the system and in the information given by the user about his or her 
preferences. 

 U (u, i) is the utility function that usually represents some heuristic score. 
 

U(u, i) = score (ContentBasedProfile (u), Content (i)) 

 

For the utility function we can use as example the cosine similarity measure: 

U(u, i) = cos(𝑤𝑢      ,𝑤𝑖     ) =
𝑤𝑢      · 𝑤𝑖     

 𝑤𝑢       2 ×  𝑤𝑖      2
=

 𝑤𝑗 ,𝑢𝑤𝑗 ,𝑖
𝐾
𝑗=1

  𝑤𝑗 ,𝑢
2𝐾

𝑗=1    𝑤𝑗 ,𝑖
2𝐾

𝑗=1

 

Formula 1. Utility function based in cosine similarity measure.  

Where: 

 Wj,u is the weight of each attribute for each user. 

 Wj,i is the weight of each attribute for each item. 

 

Example 1. Content based methods 

Assume a Films Recommender System. The system has stored the preferences of the users about films 
(importance of each attribute), from the information they give when they sign up in the system.  
 

USER ADVENTURE COMEDY DRAMA CRIME HORROR LOVE 

Elena (E) 0,20 0,20 0,10 0,10 0,05 0,25 
Olalla (O) 0,10 0,10 0,30 0,25 0,10 0,15 
Bruno (B) 0,20 0,30 0,10 0,15 0,20 0,05 
Michael (M) 0,25 0,20 0,15 0,25 0,10 0,05 

 
 
For each new film in the system is qualified using the following characteristics. Now we do not study how 
this information is obtained. 
 

FILM ADVENTURE COMEDY DRAMA CRIME HORROR LOVE 

Avatar (A) 0,35 0,10 0,05 0,20 0,05 0,25 
Cars (C) 0,35 0,5 0,05 0 0 0,1 
Scream (S) 0,25 0,05 0,10 0,30 0,30 0,00 
Gladiator (G) 0,30 0,05 0,20 0,15 0,10 0,20 
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If the system uses the cosine similarity measure as utility function, below is shown how the system 
calculates the utility of Avatar (A) for the user Elena (E).  
 

U(E, A) =
 0,2 · 0,35 +  0,2 · 0,1 +  0,1 · 0,05 +  0,1 · 0,2 +  0,05 · 0,05 +  0,25 · 0,25 

 0,22 + 0,22 + 0,12 + 0,12 + 0,052 + 0,252 ·  0,352 + 0,102 + 0,052 + 0,22 + 0,052 + 0,252
= 0,902 

 
All the values of the utility function for each user/item are: 
 

  Elena (E) Olalla (O) Bruno (B) Michael (M) 

Avatar (A) 0,902 0,882 0,515 0,810 
Cars (C) 0,413 0,223 0,485 0,640 

Scream (S) 0,659 0,961 0,692 0,587 
Gladiator (G) 0,880 0,787 0,826 0,852 

 

 

The system needs a threshold value to determine if one item can be useful for a user. This value 

can be defined directly in the system or it can be a parameter that the user can modify. For 

example in this case we suppose that the system defines 0,8 as the minimum value of the utility 

function to recommend the item to a specific user: only the items with bold values will be the 

recommend to the users. 

This paradigm has the advantage of being able to recommend previously unrated items to users 

with unique interests and to provide explanations for its recommendations. Nevertheless, the 

content-based methods cannot evaluate subjective features, such as the quality of a document 

or a movie. Also, this technique requires analyzing the content of the items and the 

categorization of them this  is not possible with all types of items. In other cases it is possible, 

but it is difficult or incurs a big computational cost. 
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4.2. Collaborative filtering.  

The collaborative filtering is a technique for recommender systems that generates 

recommendations using the preferences and tastes given by others users of the system. This 

technique tries to simulate the collaboration in the real world between users that share  

opinions about recommendations and reviews [BM05].  

In many cases, people have to choose between different alternatives without a complete 

knowledge of them. In these cases, the people believe in the recommendation of other familiar 

people or people whose opinion is valued by them.  

The collaborative filtering systems use this idea, trying to get the users of the system that have 

the best opinion about an item for a user (based in his or her taste) and calculate the utility of 

the items for the specific user, using the opinion of the other users. 

In [AT05] is explained more formally the definition of collaborative filtering. The utility U (u, i) 

that an item s gives to a user c can be calculated using the utility that the similar users uj ϵ C give 

to the same item. 

4.2.1. Appropriate scenarios to use Collaborative Filtering. 

The collaborative filtering can be applied in many domains, but to work properly it is better to 

apply it in scenarios with some characteristics [SFHS97]. 

The most important is that the evaluation of the items is based on subjective criteria (e.g. films) 

or when the items have a lot of objective criteria and they need a subjective weight to choose 

between them (e.g. computers). In these situations, the collaborative filtering is very powerful, 

but if the recommendations are only based on objective criteria, the collaborative filtering does 

not make sense. It does not mean that the items have no objectives criteria to be evaluated. It 

means that the objective criteria are very similar, and they differ only in subjective criteria. 

It is important too, that each user can find others users with similar tastes, because the rating of 

these similar users will be an important component of recommendations. The taste of the user 

cannot change a lot in short time, because then the previous ratings of this user do not 

represent his or her preferences and they become useless for predictions.  

And about the data that is necessary in one scenario to use a Collaborative Filtering system, it is 

important that there are many ratings per item, to ensure a good inference of recommendation 

and predictions and that each user rates multiple items. The system needs enough information 

to provide recommendations with high quality.   
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4.2.2. History. 

The first collaborative filtering systems were explicit recommendation routed from human to 

human [KNNDK08]. Later, Automated Collaborative Filtering systems started to use the rating of 

user, to make recommendations. The opinions of user with similar taste in the past had more 

importance than others opinions. 

This supposed an evolution of the systems, from explicit recommendations to a model of mining 

user preferences as the way to generate recommendations. Nowadays, many algorithms have 

been developed around this idea. 

4.2.3. Collaborative Filtering Algorithms. 

There are many possibilities to classify the collaborative filtering algorithms. In this paper, we 

use an organization based in [BHK98], commonly used. It distinguishes many types: 

 Memory-based algorithms, that use all the ratings stored in the database to make the 
predictions. 

 Model-based algorithms, that create a model used to calculate the predictions. 

 Hybrid recommenders, those mix collaborative filtering with content based methods. 

Here is a resume of the main characteristics of each one [SK09]. 

CF Categories 
Representative 

Techniques 
Advantages Disadvantages 

Memory-based 

 Neighbour-based CF (item-
based/user-based CF with 
Pearson/vector cosine 
relation) 

 Item-based/user-based top-
N recommendations 

 Easy implementation 

 New data can be added 
easily and incrementally 

 Need not consider the 
content of the items being 
recommended 

 Scale well with co-rated 
items 

 Are dependent on human 
ratings 

 Performance decreases 
when data are sparse 

 Cannot recommend for 
new users and items 

 Have limited scalability 
for large datasets 

Model-based 

 Bayesian belief nets CF 

 Clustering CF 

 Latent Semantics Models CF 

 Association Rule mining 

 Better address the sparsity, 
scalability and other 
problems. 

 Improve prediction 
performance 

 Give an intuitive rationale 
for recommendations 

 Expensive model-building 

 Have trade-off between 
prediction performance and 
scalability 

 Lose useful information 
for dimensionality reduction 
techniques 

Hybrid methods 

 Content-based CF 
recommender 

 Content-booted CF 

 Hybrid CF combining 
memory-based and model-
based CF  

 Overcome limitations of CF 
and content-based or other 
recommenders 

 Improve prediction 
performance 

 Overcome CF problems 
such as sparsity & gray shape 

 Have increased 
complexity and expense for 
implementation 

 Need external 
information that usually is 
not available 

Table1.  Types Collaborative Filtering: Techniques, advantages & disadvantages. 
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Before enter to explain the different collaborative filtering algorithms, we define some concepts 

for a good understanding: 

 Active user (U), as the user we try to predict the votes for. 

 Neighbour (N), as the users whose ratings have high correlation with the ratings of the 
active user. 

4.2.3.1 Memory-based Algorithms. 

In general, these methods use the votes of the users directly to predict the rating of the active 

user. One possibility is to use all the users, but usually these algorithms use only the 

neighbourhood of the active user (the set of user with taste most similar to the user). It is named 

“User-Based Nearest Neighbour Algorithm” and it is the most common used. 

It will be more important the votes of the neighbour with most similarity with the user, so it is 

necessary to give weights to the ratings of the neighbours. One first idea can be a formula like 

the following: 

𝑝𝑟𝑒𝑑 𝑢, 𝑖 =  𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 · 𝑟𝑛𝑖
𝑛⊂𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠

 

Formula 2. Basic rating estimation formula. 

 

The result is the predicted rating value for the active user (U) for the item (I). The value is 

obtained as an average of the ratings of each neighbour for the item I (rni).  To have a better 

estimation, each rating is weighted with the similarity between the user and the neighbour 

(userSim). Neighbours with similar taste to the user will have a higher value of userSim and his 

or her rating will be more considered than other neighbours that do not have anything in 

common with the user. 

This formula has many problems like: 

 If the similarities of the neighbours do not sum up to one, the prediction is incorrectly 
scaled. To calculate a weighted average of ratings, the sum of the coefficients that 
multiply the ratings has to be 1. If it is not the case, we obtain a wrong value:  

o If the sum of the similarities of the neighbours is higher than one, the predicted 
value will be higher than the real weighted average. 

o If the sum of the similarities of the neighbours is lower than one, the predicted 
value will be lower than the real weighted average. 

 Different users use different rating scales in their minds. Is necessary to normalize the 
different scales. A rating of 7 over 10 for one user can be a good rating, but maybe if the 
system recommends another user the film with an estimated rating of 7 over 10, the 
user can think is not a good item. Is necessary to find a way to resolve the differences 
between the different users’s rating scales. 
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The following formula represents the same idea, but it resolves the problems detected in the 

previous one: 

𝑝𝑟𝑒𝑑 𝑢, 𝑖 = 𝑟 𝑢 +
 𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 · (𝑟𝑛𝑖 − 𝑟 𝑛)𝑛⊂𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠 (𝑢)

 𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 𝑛⊂𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠 (𝑢)
 

Formula 3. Advanced rating estimation formula. 

Where: 

 u, is the user. 

 n, the neighbour to compare. 

 i, is a item. 

 rui is the rating of the neighbour n to the item i. 

 rni is the rating of the neighbour n to the item i. 

 𝑟𝑛  is the average of rating of the neighbour. 

 𝑟𝑢  is the average of rating of the user. 

In this formula the same concept is represented as in the previous one, but in this case, for each 

rating the average rating of the user is subtracted, to try to normalize the scale of the different 

users. Also, to resolve the problem of the wrong scale due to the sum of the userSim coefficients 

not being1, the result is divided by the sum of all coefficients, normalizing the scale. Finally, to 

get the correct estimation the average value of the ratings of the user is added, because it was 

subtracted during the calculation. 

To calculate the weight of each neighbour is used the similarity between the active user and the 

neighbour. In this case, the most common method to calculate the similarity between users is 

the (Pearson) correlation. It appears for first time on recommended systems in the published 

literature in the context of the Grouplens project [RISBR94]. 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =
  𝑟𝑢𝑖 − 𝑟𝑢  𝑟𝑛𝑖 − 𝑟𝑛 𝑖⊂𝐶𝑅𝑢 ,𝑛

  (𝑟𝑢𝑖 − 𝑟𝑢)2
𝑖⊂𝐶𝑅𝑢 ,𝑛

   (𝑟𝑛𝑖 − 𝑟𝑛)2
𝑖⊂𝐶𝑅𝑢 ,𝑛

 

Formula 4. User similarity formula using the Pearson Correlation. 

Where: 

 CRu,n denotes the set of co-rated items between u and n. 

In general, the Pearson Correlation is a measure of the correlation of two variables. In this case, 

these two variables are the ratings of the two users that are compared. As in the previous 

formula of rating estimation, all the ratings subtract the average rating of the user to prevent 

problems with the difference of scaling between users. 

Pearson correlation returns a value in the range -1 for perfect disagreement to 1 for perfect 

agreement between users. The use of negative correlations to increase the prediction accuracy 

will be one of the aspects to analyse. 
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Example 2. Memory-based Algorithm. Similarity with Pearson Correlation 

Assume a Film Recommender System that works with Collaborative Filtering. We have the information 
about different films rated by the users of the system. The rating is from 1 (if the user does not like at all) 
to 10 (if the user loves the film). 
 

USER Elena Olalla Bruno Michael 

Avatar 8 - 5 8 

Cars - 2 5 - 

Scream 6 9 7 6 

Gladiator 8 7 - 9 

Invictus - - 8 9 

Casablanca 5 7 - 3 

The Pianist - 8 2 4 

The Godfather 8 8 6 - 

The Matrix 4 2 7 - 

AVERAGE 6,50 6,14 5,71 6,50 

 
First of all, we have to calculate the user similarity with the Pearson Correlation formula. The expression 
below shows how is calculated the value of similarity between the users Olalla (O) and Michael (M): 
 
 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑂, 𝑀 

=
 9 − 6,14  6 − 6,5 +  7 − 6,14  9 − 6,5 +  7 − 6,14  3 − 6,5 +  8 − 6,14  4 − 6,5 

  9 − 6,14 2 +  7 − 6,14 2 +  7 − 6,14 2 +  8 − 6,14 2  6 − 6,5 2 +  9 − 6,5 2 +  3 − 6,5 2 +  4 − 6,5 2
 

= −0,3831 

 
We have the following user similarities table: 
 

 
Elena Olalla Bruno Michael 

Elena 1,0000 0,5852 -0,6872 0,9485 

Olalla 0,5852 1,0000 -0,1712 -0,3831 

Bruno -0,6872 -0,1712 1,0000 0,7453 

Michael 0,9485 -0,3831 0,7453 1,0000 

 
Now we can calculate the predict the values of a item for a specific user with the formula 3 we showed 
before. Here is an example of the calculation for the user Elena (E) and the film Invictus (I). In this case we 
are going to consider the negative similarities as valid similarities to increasing the prediction accuracy: 

 

𝑝𝑟𝑒𝑑 𝐸, 𝐼 = 6,5 +
 8 − 5,71 ·  −0,6872 +  9 − 6,5 · (0,9485)

 −0,6872 + (0,9485)
= 6,93 
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The completely table of expected ratings values for all the users is the following: 

USER Elena Olalla Bruno Michael 

Avatar 8,00 6,72 5,00 8,00 

Cars 5,45 2,00 5,00 6,96 

Scream 6,00 9,00 7,00 6,00 

Gladiator 8,00 7,00 6,49 9,00 

Invictus 6,93 5,43 8,00 9,00 

Casablanca 5,00 7,00 3,77 3,00 

The Pianist 7,19 8,00 2,00 4,00 

The Godfather 8,00 8,00 6,00 6,90 

The Matrix 4,00 2,00 7,00 6,58 

 
The user can set a threshold that indicates the value of the expected rating value over that, it become in 
a recommendation. If the user Elena stabilised a threshold of 0,6 the system will recommends her the 
movie Invictus, but not the movie Cars.  

 

With this model, we can obtain good recommendations, but there are many problems that we 

can try to resolve to get better recommendations. These problems are [SFHS97]: 

1. Two users agreement about a universally loved item is much less important than 

agreement for a controversial movie. A user with few ratings who rates a universally 

loved item, will have a high similarity with a lot of users, because it is an item rated 

positively in general, but maybe the user does not have a high similarity with all their 

users. But if two users rate with similar values a controversial item usually it is because 

they have common taste. 

2. The similarities with other users in the past are less important than similarities with 

users now. The preferences change along the time and maybe two users were similar in 

the past, but with the years, both change the taste in opposite ways slowly and now 

they have totally different preferences so they have different similarity than they had in 

the past. 

3. With a lot of users (something essential to get good recommendations) to calculate the 

user’s perfect neighbourhood is expensive because it requires the comparison against all 

other users. When there are 5.000 users it is necessary to compare each one against the 

other 4999. Due to, the similarity between users are symmetric, it is necessary to 

calculate close to 12.500.000 similarities (the half of a matrix 5.000x5.000 less the main 

diagonal). And each time a user rates an item is necessary to recalculate the similarity of 

him or her against the other 4.999 users. 

4. We cannot study the similarity when there are a new users because the new users do 

not have ratings that let the system apply the previous similarity formulas. As we said 

before, the system needs enough information to provide recommendations with high 

quality.   
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Other kind of memory-based algorithms is the “Item-Based Nearest Neighbour Algorithm”. It 

uses the same idea of the Used-Based Nearest Neighbour Algorithm, but in this case to calculate 

the predicted value of an item for a user, the system uses the ratings for the users for similar 

items. To know if two items are similar, it is checked if the rating from a user is similar in both 

items. This process is repeated for all the users that rate both items. 

 

4.2.3.2 Model-Based Methods. 

In the case of model-based methods, the system does not directly use the ratings to generate 

recommendations. With the ratings it creates a model to make predictions [AT05]. The models 

allows the system, with a previous proper training data, the recognition of patterns.  

These models are developed under the formalism of different methods such as Bayesian 

Networks, Clustering, Association Rule Mining or Latent Semantic. All of them try to get a model 

that reduces the data to compute for each recommendation. There are methods that come from 

other fields such as machine learning and data mining. 

For example, a probabilistic model proposed by [BHK98] calculates the expected value of a vote 

with the information of the user. If we consider votes range from 0 to m: 

𝑝𝑢 ,𝑖 = 𝐸 𝑣𝑢 ,𝑖 =  Pr   𝑣𝑢 ,𝑖 = 𝑗|𝑣𝑢 ,𝑘 ,𝑘𝜖𝐼𝑢 · 𝑗

𝑚

𝑗=0

 

Formula 5. Expected value of vote. Probabilistic model. 

 

For each one of the possible values to rate (from 0 to m), is calculated the probability that the 

user U give the value j under the know condition of the rating that the user gives (vu,k) to others 

items (Iu). Each probability value is multiply by the rating value (j). The idea is a weighted average 

of the possible values of the rating, proportional to the probably of each value of the rating. 

Many methods have been studied to calculate this value [SK09].  

 Bayesian Networks Models: they have a node for each item and the states of each node 
are the possible vote values that they can give. There is another value to represent “no-
vote” for missing data. At the end, in the resulting network, each item will have a set of 
parent items that are the best predictors of its votes. Each conditional probability table 
is represented by a decision tree. 

 Cluster Models: Clustering technique partitions the objects in groups (named clusters) 
that are similar to one another within the same cluster and are dissimilar to the objects 
in other clusters. To measure the similarity between objects is used metrics such as 
Minkowski distance and Pearson correlation. Clustering methods can be classified in: 
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o Partitioning methods (e.g. k-means), that select one object as centroid of each 
cluster and they create the clusters using this measure of distance from the 
objects to the centroids. 

o Density-based methods (e.g. DBSCAN, OPTICS) search for dense clusters of 
objects separated by sparse regions (the noise). 

o Hierarchical methods (e.g. BIRCH), use some rules to create hierarchical 
decomposition of the set of data objects. 

 Latent Semantic Models: is a dimensionality reduction technique which is widely used in 
information retrieval. Each dimension in the reduced space is a latent variable (or factor) 
representing groups of highly correlated index terms. Reducing the dimensionality of the 
original matrix reduces the amount of noise in the data, improving retrieval based on the 
computation of similarities. 

 Association rule mining: is a technique to find correlations between the items in a 
dataset [CR06]. It tries to obtain rules from the dataset that derive new knowledge. The 
rules set conditions (about taste or profile of the user) that if matched with the active 
user, the system recommends a specific item to the user. It is a technique that generates 
an easy to understand representation for the users. The association mining analysis is a 
two part process:  

o The identification of frequents sets of items in the dataset.  
o The derivation of inferences from the set of items detected. 

 

4.2.3.3 Hybrid methods. 

The hybrid methods try to get the advantages of the collaborative filtering and the content-

based methods combining both. There are different ways to mix them: 

1. The system uses both methods separately and then it gets the recommendation as the 
result of combining them. 

2. The system implements a collaborative filtering approach but adds some content-based 
features to improve the quality of the recommendations. 

3. The system implements a content-based approach but add some collaborative filtering 
features to improve the quality of the recommendations. 

4. The system implements a model where both approach are completely unified. 



 

 

 

After an overview of the most of the possibilities, we decide to work around a recommender 

system which uses collaborative filtering to generate recommendations and uses the User-Based 

Nearest Neighbour Algorithm. 

The reason for choosing this algorithm is that gives facilities to test the influence of the different 

similarity formulas directly in the recommendations. We will study the quality of the similarity 

formulas evaluating the recommendation that the system predicts with them.  

One of the problems that the user similarity has using the Pearson correlation is to distinguish 

similarities when the common ratings are universally loved item from controversial movies. To 

try to resolve this problem, the variance in the item rating can be included to calculate the user 

similarity. The controversial items usually will have more variance than the universally loved 

items. We can know the average variance in the opinions of the users when they rate films, and 

we can know the variance of the rating of a specific item. 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =
  𝑟𝑢𝑖 − 𝑟𝑢  𝑟𝑛𝑖 − 𝑟𝑛 𝑖⊂𝐶𝑅𝑢 ,𝑛

(𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)

  (𝑟𝑢𝑖 − 𝑟𝑢)2
𝑖⊂𝐶𝑅𝑢 ,𝑛

(𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)   (𝑟𝑛𝑖 − 𝑟𝑛)2(𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)𝑖⊂𝐶𝑅𝑢 ,𝑛

 

Formula 6. User similarity formula adding variance. 

 

In this way, similarities in films with more variety of opinions are more valued than similarities in 

films very popular with a lot of similar opinions. 

In [BHK98] exposes another idea: under the initial algorithm there is no role for negative votes, 

and unobserved items receive a zero vote.  

They propose the following user similarity calculation: 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
𝑟𝑢𝑖 · 𝑟𝑛𝑖

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

𝑖⊂𝐶𝑅𝑢 ,𝑛

 

Formula 7. User similarity using all ratings. 

 

The squared terms in the denominator serve to normalize votes so users that vote on more 

items will not be a priori more similar to other users. 

Chapter 5. Improving the model. 
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The last formula proposed joins the two previous solutions. Over the idea of the formula 7 using 

all the ratings, it is added in each sum the influence of the variance of the ratings of each item, 

as in the solution proposed in the formula 6. 

 𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
𝑟𝑢𝑖 · 𝑟𝑛𝑖 · (𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)
𝑖⊂𝐶𝑅𝑢 ,𝑛

 

Formula 8. User similarity formula using all ratings and variance. 

 

Here is presented a simple example of how the previous formulas work. The quality of the 

similarity values a predicted recommendations is discussed in the chapter “Test of the 

similarities formulas”.  

 

Example 3. Collaborative Filtering. Improving Similarity formulas 

We have the information about different films rating by the users of the system. The rating is from 1 (if 
the user doesn’t like at all) to 10 (if the user love the film). 
 

USER Elena Olalla Bruno Michael 

Avatar 8 - 5 8 

Cars - 2 5 - 

Scream 6 9 7 6 

Gladiator 8 7 - 9 

Invictus - - 8 9 

Casablanca 5 7 - 3 

The Pianist - 8 2 4 

The Godfather 8 8 6 - 

The Matrix 4 2 7 - 

 
If we introduce the variance factor over the Pearson Correlation: 
 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
 𝑟𝑢𝑖 − 𝑟𝑢  𝑟𝑛𝑖 − 𝑟𝑛 (𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)
𝑖⊂𝐶𝑅𝑢 ,𝑛

 

 
The similarities table is: 
 

 
Elena Olalla Bruno Michael 

Elena 1,0000 0,7254 -0,8699 0,9409 

Olalla 0,7254 1,0000 -0,4417 -0,7169 

Bruno -0,8699 -0,4417 1,0000 0,8752 

Michael 0,9409 -0,7169 0,8752 1,0000 
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If we use the user similarity formula 6: 
 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
𝑟𝑢𝑖 · 𝑟𝑛𝑖

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

𝑖⊂𝐶𝑅𝑢 ,𝑛

 

 
 
We obtain the following user similarities table: 
 

 
Elena Olalla Bruno Michael 

Elena 1,0000 0,7455 0,6068 0,6730 

Olalla 0,7455 1,0000 0,5359 0,5654 

Bruno 0,6068 0,5359 1,0000 0,6024 

Michael 0,6730 0,5654 0,6024 1,0000 

 
And if we use the calculation of the user similarity formula 7: 
 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
𝑟𝑢𝑖 · 𝑟𝑛𝑖 · (𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)
𝑖⊂𝐶𝑅𝑢 ,𝑛

 

 
 
The table is the following: 
 

 

Elena Olalla Bruno Michael 

Elena 1,0000 0,5358 0,6952 0,6794 

Olalla 0,5358 1,0000 0,5366 0,7011 

Bruno 0,6952 0,5366 1,0000 0,5045 

Michael 0,6794 0,7011 0,5045 1,0000 
 

 

With the similarity tables is easy calculate the predicted value of recommendations. In the next 

example are used the similarity table of the previous one to recommend items to the users. As in 

the previous example, here only is explained how the system make the recommendation but 

ther is not discussion about the quality of the recommendations, because it is be analyze in the 

chapter “Test of the similarities formulas”.  

 

Example 4. Collaborative Filtering. Predicted values. 

Now we can calculate the predict the values of a item for a specific user with the formula: 
 

𝑝𝑟𝑒𝑑 𝑢, 𝑖 = 𝑟 𝑢 +
 𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 · (𝑟𝑛𝑖 − 𝑟 𝑛)𝑛⊂𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠 (𝑢)

 𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 𝑛⊂𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠 (𝑢)
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With user similarities formula 6: 
 

USER Elena Olalla Bruno Michael 

Avatar 8,00 6,72 5,00 8,00 

Cars 5,17 2,00 5,00 7,62 

Scream 6,00 9,00 7,00 6,00 

Gladiator 8,00 7,00 6,61 9,00 

Invictus 6,70 1,20 8,00 9,00 

Casablanca 5,00 7,00 1,92 3,00 

The Pianist 7,74 8,00 2,00 4,00 

The Godfather 8,00 8,00 6,00 6,66 

The Matrix 4,00 2,00 7,00 7,33 

 
 
With user similarities formula 7: 
 

USER Elena Olalla Bruno Michael 

Avatar 8,00 10,77 5,00 8,00 

Cars 8,00 2,00 5,00 7,96 

Scream 6,00 9,00 7,00 6,00 

Gladiator 8,00 7,00 10,82 9,00 

Invictus 10,11 9,44 8,00 9,00 

Casablanca 5,00 7,00 8,84 3,00 

The Pianist 9,76 8,00 2,00 4,00 

The Godfather 8,00 8,00 6,00 11,26 

The Matrix 4,00 2,00 7,00 9,33 

 
 
With user similarities formula 8: 
 

USER Elena Olalla Bruno Michael 

Avatar 8,00 10,68 5,00 8,00 

Cars 8,06 2,00 5,00 7,86 

Scream 6,00 9,00 7,00 6,00 

Gladiator 8,00 7,00 10,78 9,00 

Invictus 10,51 9,97 8,00 9,00 

Casablanca 5,00 7,00 8,91 3,00 

The Pianist 9,38 8,00 2,00 4,00 

The Godfather 8,00 8,00 6,00 11,38 

The Matrix 4,00 2,00 7,00 9,15 
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We can fix a threshold for the estimated rating over it we can recommend the item to the user. If we set 
a threshold of 0.7, we can recommend: 

 To Elena watch “The Pianist”. 

 To Michael watch “Cars” and “The Matrix”. 
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When the system generates recommendations for a user, they have to be presented in a easily 

understandable way that non expert users can understand the model. 

This presentation has to show a list of similar (anonymous) users and a list of recommended 

items for the active user. 

In the moment the recommendation model is shown to the user, he or she can decide to change 

the rules that the model is using to calculate the recommendations. The system has to learn 

from the feedback the user gives. 

The most common situations can be: 

1. The active user decides that his taste is more similar to another specific user, than the 
similarity calculated by system.  

2. The active user decides that his taste is less similar to another specific user, than the 
similarity calculated by system. 

3. The active user does not want that a specific item be used by the system to make 
predictions and to calculate similarities between the active user and other users. 

4. The active user does not want that a specific user be used by the system to make 
predictions for him or her. 

 

6.1. The active user sets similarity manually. 

The system calculates the similarities of the active user with his or her neighbours and it shows a 

list of the users similar to the active user. 

However, the active user may decide that his or her taste really is more (or less) similar to the 

taste of other users, than the similarity calculated by the system between them. 

One solution to give this feedback to the system is offering the user to set another rating for the 

similarity with each user. It is a similarity enhancer with a range of values positives and negatives 

and with a default value of 0.  When the system calculates the similarity between two users 

(active user and neighbour), it will multiply the similarity value estimated by the following 

coefficient: 

𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1 +
𝐸𝑛𝑎𝑛𝑐𝑒𝑟𝑉𝑎𝑙𝑢𝑒

10
 

Formula 9. Similarity enhancer coefficient 

Chapter 6. Giving feedback. 
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Using this coefficient: 

 If the similarity enhancer is 0, the coefficient is 1 and the similarity does not change. 

 If the similarity enhancer takes positive values, the coefficient will have a value higher 
than one, so the similarity will increase. 

 If the similarity enhancer takes negative values, the coefficient will have a value lower 
than one, so the similarity will decrease. 

Here is a practical example that shows how the similarity enhancer works. 

 

Example 5. Collaborative Filtering. Similarity enhancer. 

We are going to use the similarities formula 4, that it gave the following similarity table: 
 

 

Elena 
Olalla 

(User1) 
Bruno 

(User2) 
Michael 
(User3) 

Elena 1,0000 0,5358 0,6952 0,6794 

Olalla 0,5358 1,0000 0,5366 0,7011 

Bruno 0,6952 0,5366 1,0000 0,5045 

Michael 0,6794 0,7011 0,5045 1,0000 

 
With this information the system shows to the user Elena that she has similarity with 3 users. The scale is 
transforming from [0 .. 1] to [0% .. 100%]. 
 

Top 3 similarity Elena 

User 2 69,52% 

User 3 67,94% 

User 1 53,58% 

 
 
But the user Elena often uses the system and explores the profiles of other people. She thinks her 
similarity with these 3 users does not correspond with the similarity estimated by the system. She 
considers her similarity with user 3 is much less than the one given by the system and the similarity with 
user 1 is a bit higher than what the table shows.  
 

Elena similarity enhancer 

User3 -5  

User1 +2  

User2 0  

 
 
In this case, the system will adapt the similarity calculation: 

 For User2, the calculation will be the same. 

 For User3, the system will use a factor to correct the similarity. The similarity calculated by the 
system is multiplied by a factor of 0,5 (the similarity enhancer absolute value divided 10). 

 For User1, the system has to increase the similarity. The similarity calculated by the system is 
multiplied by a factor of 1,2 (one more than the similarity enhancer absolute value divided 10). 
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So, the new similarities that the system will use to calculate the recommendations is: 
 

Top 3 similarity Elena 

User 2 69,52% 

User 1 64,30% 

User 3 33,97% 

 
In this case the new similarity between users is: 
 

 
Elena 

Olalla 
(User1) 

Bruno 
(User2) 

Michael 
(User3) 

Elena 1,0000 0,6430 0,6952 0,3397 

Olalla 0,5358 1,0000 0,5366 0,7011 

Bruno 0,6952 0,5366 1,0000 0,5045 

Michael 0,6794 0,7011 0,5045 1,0000 

 
We can see that now is not a symmetric matrix. Although, Elena decided to change the similarity with 
Michael, Michael does not make any change. Is the same for Olalla. Now, to make recommendation to 
Elena, Olalla is so much important than Michael, while before Michael was more important. 
 

USER Elena (Before) Elena (After) 
Olalla 

(User1) 
Michael 
(User3) 

Avatar 8,00 8,00 7,33 8,00 

Cars 5,57 5,32 2,00 5,37 

Scream 6,00 6,00 9,00 6,00 

Gladiator 8,00 8,00 7,00 9,00 

Invictus 7,63 7,41 8,55 9,00 

Casablanca 5,00 5,00 7,00 3,00 

The Pianist 5,37 5,66 8,00 4,00 

The Godfather 8,00 8,00 8,00 6,44 

The Matrix 4,00 4,00 2,00 7,74 

 
As we can see, the recommendations for Elena after the recommendation enhancer are closer to the 
taste of Olalla than before. It is the opposite for Michael. The recommendations for Olalla and Michael do 
not change. 

 

6.2. Skip neighbours in recommendations.   

Maybe a user does not like the taste from a specific neighbour and does not want to receive 

recommendations influences by this neighbour. 

In cases like this, the system has to provide a mechanism that allows the active user to hide a 

specific neighbour for the calculations. It will be necessary to have a list of the users that the 

active user does not want to use in his or her calculations. 
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Example 6. Collaborative Filtering. Skip neighbours in recommendations. 

If we continue with the similarities of the formula 4: 
 

 

Elena 
Olalla  

(User 1) 
Bruno 

(User 2) 
Michael 
(User 3) 

Elena 1,0000 0,5358 0,6952 0,6794 

Olalla 0,5358 1,0000 0,5366 0,7011 

Bruno 0,6952 0,5366 1,0000 0,5045 

Michael 0,6794 0,7011 0,5045 1,0000 

 
When the system shows the Top of similarities, the user Elena can choose 
to delete some users. They will not be used to make the calculation of the 
recommendations. In the following example, the user chooses User3 will 
not be used for the calculation 
 
 
In this case, the new similarity table will be: 
 

 

Elena 
Olalla  

(User 1) 
Bruno 

(User 2) 
Michael 
(User 3) 

Elena 1,0000 0,5358 0,0000 0,6794 

Olalla 0,5358 1,0000 0,5366 0,7011 

Bruno 0,6952 0,5366 1,0000 0,5045 

Michael 0,6794 0,7011 0,5045 1,0000 

 
 
With a correlation between users of “0”, the opinion of User2 does not have any value for the user Elena. 
We can see how changes the recommendations table. 
 

USER 
Elena 

(Before) 
Elena 

(After) 
Olalla Bruno Michael 

Avatar 8,00 8,00 7,33 5,00 8,00 

Cars 5,51 5,43 2,00 5,00 5,30 

Scream 6,00 6,00 9,00 7,00 6,00 

Gladiator 8,00 8,00 7,00 6,72 9,00 

Invictus 7,61 7,25 8,55 8,00 9,00 

Casablanca 5,00 5,00 7,00 4,89 3,00 

The Pianist 5,42 6,23 8,00 2,00 4,00 

The Godfather 8,00 8,00 8,00 6,00 7,38 

The Matrix 4,00 4,00 2,00 7,00 5,07 

 
The new values of recommendation for Elena are now further from User2. 

Top 3 similarity Elena 

User 2 69,5%   

User 3 67,9% 

User 1 53,6% 
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6.3. Skip items in similarity calculation. 

As shown in the previous case, it may happen a user does not want  a specific item to be used to 

make the calculation of similarity between users. Maybe, the user likes a item from a category 

lot, but he or she only does  because that item has a special meaning for the user. He or she 

does not want to receive recommendations about this category of items. Thus one solution is to 

work without the ratings of this special item. 

It will be necessary to have a list for each user with all the items that he or she does not want to 

be used in the calculation. There will be two cases depending the similarity formula that uses the 

system: 

 With the formulas 1 and 2, an item is used to calculate the similarity only in the case that 
the user rates the item. In these cases: 

o If it is an item unrated by the user, the system keeps the item in the “skipped 
items list” because maybe in the future the user rates the item and is necessary 
to know that the system does not have to use to make calculations. 

o If it is an item rated by the user, the system adds the item to the “skipped items 
list” and recalculates the similarity for the user and the recommendations. 

 With the formulas 3 and 4, an item is used to calculate the similarity in all the cases, so 
the system always has to add the item to the “skipped items list” and recalculates the 
similarity and recommendations for the user. 

The average of votes for each user and the average variance are values calculated for all the 

items before calculating the similarities. Their recalculation for all the users who have skipped 

items needs long time for computing . The system will estimate the average rating of the user 

and the average variance each time a skipped item in the calculations appears. The details of this 

estimation are discussed in the design section. 

 

 

Example 7. Collaborative Filtering. Skip items in similarity calculation. 

The system lets users explore all the items, for rating or only to get information about them. When a user 
explores an item, he or she can decide that the system does not use the specific item to make the 
calculations of similarity. We suppose the user Elena does not want to use the item “Casablanca” for 
calculations, because it is a movie very different from her personal taste and she is aware it is a negative 
influence in her recommendations. 
 
 

Casablanca 
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Director: Michael Curtiz 

Rated with: 5 

Number of ratings: 3 

Relevant users that votes: Me, User1, User3 

 
When the system receives this feedback it, has to recalculate the similarity for the user Elena. The new 
similarity table is the following: 
 

 
Elena Olalla Bruno Michael 

Elena 1,0000 0,4438 0,7587 0,6526 

Olalla 0,5358 1,0000 0,5366 0,7011 

Bruno 0,6952 0,5366 1,0000 0,5045 

Michael 0,6794 0,7011 0,5045 1,0000 

 

USER 
Elena 

(before) 
Elena 
(after) 

Olalla Bruno Michael 

Avatar 8,00 8,00 7,33 5,00 8,00 

Cars 5,51 5,67 2,00 5,00 5,30 

Scream 6,00 6,00 9,00 7,00 6,00 

Gladiator 8,00 8,00 7,00 6,72 9,00 

Invictus 7,61 7,68 8,55 8,00 9,00 

Casablanca 5,00 5,00 7,00 4,89 3,00 

The Pianist 5,42 5,23 8,00 2,00 4,00 

The Godfather 8,00 8,00 8,00 6,00 7,38 

The Matrix 4,00 4,00 2,00 7,00 5,07 

 
We can see that the item has influence in the similarities of the user with the neighbours and as 
consequence in the predicted values of the recommendations.  

 



 

 

 

The evaluation metrics let study how well the system is predicting the ratings. They give a 

measure of the difference between the predicted rating of a user for an item, and the real value 

that the user rates this item with [HKTR04]. 

In Collaborative Filtering exists two main ways to show e recommendations to the users 

[BHK98].  

 The first one shows recommendation to the user individually, with the predicted value 
of the rating for the specific user. In this case, each item recommended to each user will 
have associated a predicted value. This is the case of systems like MovieLens1. 

 The other kind of recommender systems show to the user a list of the recommended 
items ordered from the highest ranked to the lowest. It is supposed that the user will 
explore the items in the order than appear in the list, from the top. This is the base idea 
of many Internet Search Engines (like the recommended videos in YouTube2) 

 

7.1. Metrics to evaluate the recommendation of system. 

To evaluate the system we use one metric for each type of recommendations with propose of 

discover in which system type match better the techniques are discussed in this document. 

In both cases the procedure consists in split the user dataset in two. One named training set that 

is used as database to get the information to make predictions. The other one named test set 

that consider the content as active users using some of the ratings as observed and predicting 

the rest. Then, these predicted values are analyzed with the following techniques. 

 

7.1.1. Average absolute deviation for a user. 

As we explain before, using the metric, there are a dataset named test set with some items 

observed and other items that are predicted (even they are observed too and we have the real 

value assigned by the user, but is hidden for the moment). 

                                                           
1
 http://www.movielens.org 

2
 http://www.youtube.com 

Chapter 7. Evaluation metrics. 
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For each individual score of the predicted ratings in test set, is calculated the absolute deviation 

between the predicted value and the real vote of the user. Then, it is calculated the average of 

this values for each user and finally the average value for all the users of the test set. 

The formal idea is the following [BHK98]. There is an active user (A) that has a set of observed 

values (IA) and a set of predicted values (PA) that the system calculates with IA, but is known the 

real value that the user rates (VA). If the number of predicted values for the active user is mA the 

average absolute deviation for a user will be: 

𝑆𝐴 =
1

𝑚𝐴
  𝑝𝑎 ,𝑗 − 𝑣𝑎 ,𝑗  

𝑗 ∈𝑃𝐴

 

Formula 10. Average absolute desviation formula 

 

7.1.2. Precision and Recall and F1. 

First of all, this method distinguishes between relevant and not relevant items. In the case of 

binary recommendation this  is not a problem. Nevertheless,  when the system works with rating 

scales, the rating values have to be transformed in a binary scale. In order to transform them  

into binary scale, it is necessary to establish a threshold over which the rating is tagged as 

relevant and below which the rating is tagged as no relevant. The threshold value will be set 

depending on the scale of the ratings used in the recommender system.  

As in the other metric, the data set is split in test set and training set, and the result has to be 

split to into the set of items returned to the user (the recommended items) and the set did not. 

The metric defines precision as the number of (real) relevant items selected divides the total 

number of selected items. Represent the probability that a selected item can be relevant. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝐼𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∩ 𝐼𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑  

 𝐼𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑  
 

Formula 11. Precision metric 

 

On the other hand recall represents the ratio of relevant items selected from the whole set of 

relevant items. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝐼𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∩ 𝐼𝑆𝑒𝑙𝑒𝑐𝑡 𝑒𝑑  

 𝐼𝑅𝑒𝑙𝑒𝑣𝑎𝑛  
 

Formula 12. Recall metric 
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With this two measure is possible to make a complete analysis how well the recommendations 

of the system works. But it can be more complete if we use a measure that combines both. It is 

the case of the F1 measure. 

F1 is a measure that combines the others previous two with an equal weight. It ranges from 0 to 

1 where higher values indicate better recommendations.  

𝐹1 =
2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Formula 13. F1 metric 

 

7.2. Cases of study. 

Already we know how to study the quality of the recommendations, but now is time to define 

the situations to apply the metrics. The following cases make up the test plan that is followed in 

test chapter. 

 

7.2.1. General evaluation of time processing. 

It is necessary to know the time of processing of the data, because this kind of system work with 

large amounts of data and it suppose long time for load, process and keep the data. 

With this propose will be calculated the time that the system need to: 

 Load the basic information for the first run. It supposes to load the information about 
users, items and the ratings of the users for the ratings. 

 Calculate the similarity between all the users of the system (for each similarity formula). 

 Load the similarities from the file. 

 Calculate the recommended items for the users, when the similarities are in the system 
(calculated or loaded from a file). 

These cases have to be run with different database sizes. 

 

7.2.2. Evaluation of the different similarity formulas. 

For each one of the similarity formulas was exposed, it will be applied the metrics showed to 

measure the recommendations of the system. The next scenarios will be the cases of study: 

 The system has few users with few items rated by each one. 
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 The system has few users but with a lot of items rated by each one. 

 The system has a lot of user and each one rates a lot of items. 

 The system has few users all of them with similar ratings. 

 The system has few users. All of them except two are have very similar ratings. These 
two are very different from the others, but very similar between them. 

 The system has a lot of users and each one rate a lot of items, but in the 
recommendation are used the negative similarities. 

 

7.2.3. Evaluation of the feedback techniques. 

In the case of the feedback, it will be choose the similarity formula that best results gives and 

will be study the recommendations variation when it is applied feedback or when is not applied. 

The cases of feedback that will be test are: 

 Skip one, many and a lot of items when there are a lot of items. 

 Skip one, many and a lot of items when there are few of items. 

 Skip one, many and a lot of users when they are very similar to the user. 

 Skip one, many and a lot of users when they are not very similar to the user. 

 Apply the similarity enhancer in one, many and a lot of users increasing the similarity 
when they are very similar to the user. 

 Apply the similarity enhancer in one, many and a lot of users increasing the similarity 
when they are not similar to the user. 

 Apply the similarity enhancer in one, many and a lot of users decreasing the similarity 
when they are very similar to the user. 

 Apply the similarity enhancer in one, many and a lot of users decreasing the similarity 
when they are not similar to the user. 

The aim for use one, many and a lot of users/items in the cases previous mentioned, is to study 

how the feedback evolves in each one of the cases proposed. 

 



 

 

 
 

PART II 
 
 

DESIGN 





 

 

 

One of the most common structures to represent all the information in the system is a graph. 

Typically a graph is represented in memory as a list of nodes and edges in a matrix. The nodes 

represent the users and the edges represent the similarity between them.  

In each node, the system stores the information relative to the user, and in each edge it stores 

the similarity between users. It is not symmetric, due to the “enhanced mechanism”, the 

“skipped items” and the “skipped users”, so there are stored the values of similarity for each of 

the two ways. It is an undirected graph. 

Furthermore, the system stores the list of the items with all the information relative to them, 

even including the ratings that the users give to the items. 

In the followings sections is described with more detail the structure of each one of the 

components of the system, and the most relevant characteristics of them. 

8.1. Ratings. 

The ratings the users give to the items have to be stored in some place to use them for the 

calculation. The information needed for each rating is: the user that gives the rating, the item 

evaluated and the value of the rating. 

In many cases, the user objects and the item objects have to access to these values to make 

calculations. The user objects need to access to all the rates given by a specific user. For the 

items it is necessary to access to all the ratings the users gave for a specific item. 

There are many ways to store and manage this information. The two main possibilities studied 

were: 

 To create an independent data structure that stores all the ratings. The rest of classes of 
the system accesses to this structure when they need to make some calculation with the 
ratings. Due to that, it is only possible to order the ratings in memory by only one criteria 
(user or item). It is necessary to implement methods to access the data. As a result, an 
extra computing cost will be required.  

 To divide the data structure in two, storing in each user all the rating given by him or 
her, and storing in each item all the rating that it receives. This way needs the double of 
memory but it ensures faster access to the ratings given to a specific item or by a specific 
user.  

The solution the system uses is the second one.  Due to this, calculating the recommendations 

and the similarities with large datasets will require a lot of computational time. We decide to 

spend memory to save it. 

Chapter 8. Structure of the RS. 
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8.2. Users. 

The component user represents all the information relative to the user such as the profile 

information and the values of the rating given by the user. The operations are necessary to make 

the calculation with the stored data. The structure of the component user is the following: 

 

User 

 

Graph1. Attributes and methods of the class User. 

Each user component has to store the typical profile information of a user and  also these ones:  

 ratings. The list of all the rating given by the user. For each rating the item rated and the 
value given are stored. 

 recommendedItems. The list with the predicted values of the items recommended to the 
user. For each one the item and the predicted value are stored. 

 similarityEnhancer. The list that stores the enhancer values with the user that refers to. 

 skippedItems. The list that stores the items to skip in the calculations. 

 skippedUsers. The list that stores the users to skip in the calculations. 

Here are the relevant operations a user needs: 

 Add methods that insert the values in the proper list. 

 CommonRatings (User) get the list of common ratings between the current user and the 
user given as parameter. 
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 RatingAverageWithSkippedItems(), return the average of the ratings of the user but does 
not use the skipped items in the calculation. 

 SimilarityEnhancer (double, User), calculate the similarity between the current user and 
another one, applying the value of stored similarity enhancer over the initial similarity 
(received as parameter). If there is no enhancer value for the user received as 
parameter, the method returns the initial similarity. 

 SkipUser (User), return Boolean indicating if the current user has to skip the rates of the 
user given as parameter. 

 

8.3. Items. 

The component item stores the information relative to an item such as the basic characteristics 

(in this case the id and title) and the values of the rating given to the item. The structure of the 

component item is the following: 

Item 

 

Graph2. Attributes and methods of the class Item. 

 

Each item component stores the information necessary for an item and the list of all the rating 

given to the item by the users. For each rating, the user who rates and the value given by the 

user are stored. 

The operation RatingVariance() gets the variance of the ratings of the item. 

 

8.4. Collaborative filtering system. 

The component CFSystem involves all the structure of the recommender system. It has the list of 

users and items. It means it has the ratings (inside the users and the items). In this way, it can 

make the calculation of the similarities between users and store them. 

The structure of the component CFSystem is the following: 
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CFSystem 

 

Graph3. Attributes and methods of the class CFSystem. 

 

Where: 

 items, is  a list with all the components item of the system. 

 users, is a list with all the components user of the system. 

 similatiries, stores all the relevant similarities to make recommendations of the users 
against all the users. What relevant similarity means, is explained in 8.5 Calculating the 
Similarities. 

 AddRating (int, int, int), includes a new rating value in the system. The rating has a user 
(that rates,) an item (that is rated) and the value. This informations has to be stored 
twice in the system: 

o the id of the item and the value of the rating have to be stored in the 
correspondent user component, in its ratings list. 

o list the id of the user and the value of the rating  have to be stored In the 
correspondent item component, in its ratings. 

 AverageVarianceWithSkippedItems (List<int>), returns the average of the variance of all 
the items but does not use the skipped items in the calculation. 

 CalculateSimilarities (userSimilarityFormulaDelegate), calculate the similarities of all the 
users against all the users applying one of the similarity formulas that receive as 
parameter. All the relevant similarities are stored in the similarities attribute. 

 Load...(), loads the respective information from a file to the system. 

 Save...(), saves the respective information to a file. 

 UserSimilarityFormula...(User, User), calculates the similarity between the two users 
given as parameter using each one of the formulas studied in the analysis section. In the 
next section each formula is detailed. 
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8.5. Calculating the Similarities. 

The four formulas used to calculate the similarity between users are the four formulas described 

in the analysis. 

UserSimilarityFormula1 represents: 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =
  𝑟𝑢𝑖 − 𝑟𝑢  𝑟𝑛𝑖 − 𝑟𝑛 𝑖⊂𝐶𝑅𝑢 ,𝑛

  (𝑟𝑢𝑖 − 𝑟𝑢)2
𝑖⊂𝐶𝑅𝑢 ,𝑛

    𝑟𝑛𝑖 − 𝑟𝑛 
2

𝑖⊂𝐶𝑅𝑢 ,𝑛

 

 

UserSimilarityFormula2 represents: 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =
  𝑟𝑢𝑖 − 𝑟𝑢  𝑟𝑛𝑖 − 𝑟𝑛 𝑖⊂𝐶𝑅𝑢 ,𝑛

(𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)

  (𝑟𝑢𝑖 − 𝑟𝑢)2
𝑖⊂𝐶𝑅𝑢 ,𝑛

(𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)   (𝑟𝑛𝑖 − 𝑟𝑛)2(𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)𝑖⊂𝐶𝑅𝑢 ,𝑛

 

 

UserSimilarityFormula3 represents: 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
𝑟𝑢𝑖 · 𝑟𝑛𝑖

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

𝑖⊂𝐶𝑅𝑢 ,𝑛

 

 

UserSimilarityFormula4 represents: 

𝑢𝑠𝑒𝑟𝑆𝑖𝑚 𝑢, 𝑛 =  
𝑟𝑢𝑖 · 𝑟𝑛𝑖 · (𝑉𝑎𝑟(𝑖)/𝑉𝑎𝑟)

  𝑟𝑢𝑖
2

𝑗⊂𝐶𝑅𝑢
(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)   𝑟𝑛𝑖

2
𝑗⊂𝐶𝑅𝑛

(𝑉𝑎𝑟(𝑗)/𝑉𝑎𝑟)
𝑖⊂𝐶𝑅𝑢 ,𝑛

 

The range of the values that these formulas return is from -1 to 1, but, as we said in the analysis 

chapter when the Pearson Correlation was explained, there are two ways to work with the 

negative similarities. 

The system has both possibilities, but it works differently in each case. When the similarities 

between all the users are calculated, only the relevant similarities are stored in the similarities 

structure. When the system has to consider the negative values, the relevant similarities are all 

of them, different from 0. But when the system has to consider only the positives values, only 

the values higher than 0 are stored in the system. The aim is to save as much memory as 

possible. 
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9.1. Test files used. 

In order to test the system correctly, it is necessary to have large datasets. It would be better if 

these datasets were built with real data. This task is very hard and takes a long time to recollect 

all the information. 

Because of that,  a large dataset  was taken from the Internet using  the research lab 

GroupLens3. More precisely, we downloaded a dataset of their recommender system of movies 

MovieLens. This data set has 1 million of ratings for 3952 movies by 6040 users. 

They allow to use the dataset for research purposes under some conditions which were 

respected. 

However, some of the tests are designed by our own way, because it is necessary to have  some 

scenarios that the real data does not recreate. 

 

9.2. Structure of the test files. 

For the test we saved the original structure of the files but for the users we put  the additional 

information for the feedback techniques. 

9.2.1. Ratings file description. 

All ratings are contained in the file "ratings.dat" and are in the following format: 

UserID::MovieID::Rating::Timestamp 

 UserIDs range between 1 and 6040  

 MovieIDs range between 0 and 3592 

 Ratings are made on a 5-star scale (whole-star ratings only) 

 Timestamp is represented in seconds since the epoch as returned by time(2) 

 SimilarityEnhancer is alist 

Each user has at least 20 ratings. 

                                                           
3
 http://www.grouplens.org/ 

Chapter 9. Test files. 

http://www.grouplens.org/
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9.2.2. Users file description 

User information is in the file "users.dat" and is in the following format: 

UserID::Gender::Age::Occupation::Zip-code::SimilarityEnhancer::SkippedItems::SkippedUsers 

 Gender is denoted by a "M" for male and "F" for female 

 Age is chosen from the following ranges: 
o 1:  "Under 18" 
o 18:  "18-24" 
o 25:  "25-34" 
o 35:  "35-44" 
o 45:  "45-49" 
o 50:  "50-55" 
o 56:  "56+" 

 Occupation is chosen from the following choices: 
o 0:  "other" or not specified 
o 1:  "academic/educator" 
o 2:  "artist" 
o 3:  "clerical/admin" 
o 4:  "college/grad student" 
o 5:  "customer service" 
o 6:  "doctor/health care" 
o 7:  "executive/managerial" 
o 8:  "farmer" 
o 9:  "homemaker" 
o 10:  "K-12 student" 
o 11:  "lawyer" 
o 12:  "programmer" 
o 13:  "retired" 
o 14:  "sales/marketing" 
o 15:  "scientist" 
o 16:  "self-employed" 
o 17:  "technician/engineer" 
o 18:  "tradesman/craftsman" 
o 19:  "unemployed" 
o 20:  "writer" 

 SimilarityEnhancer is a collection of pairs of UserId and Value, like the following: 

UserId=Value%UserId=Value%UserId=Value%UserId=Value%... 

 SkippedItems is a collection of id of items separated by the symbol “%”. 

 SkippedUsers is a collection of id of users separated by the symbol “%”. 
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9.2.3. Movies file description. 

Movie information is in the file "movies.dat" and is in the following format: 

MovieID::Title::Genres 

 Titles are identical to titles provided by the IMDB (including year of release) 

 Genders are pipe-separated and are selected from the following genres: 
o Action 
o Adventure 
o Animation 
o Children's 
o Comedy 
o Crime 
o Documentary 
o Drama 
o Fantasy 
o Film-Noir 
o Horror 
o Musical 
o Mystery 
o Romance 
o Sci-Fi 
o Thriller 
o War 
o Western 





 

 

 

The evaluation metrics we want to use to evaluate the system need some data structures to get 

the results. In this chapter, the structures and the motivations to use them are explained. 

 

10.1.  Training dataset, Test dataset and Estimated dataset. 

These components are the basic structures of the similarity evaluation metrics: 

 The Training dataset stores the ratings to calculate the similarity between users and to 
generate the recommendations that are used in the metrics. This data is obtained from 
the dataset that the system is working with. 

 The Test dataset stores some ratings from the system source dataset that are selected 
randomly. These ratings are not used in the Training dataset to help to generate 
recommendations. They will appear as unrated items (by the user that give the rate). 

 The Estimated dataset stores the predicted recommendation values for the ratings 
stored in the Test dataset. 

 

10.2. Relevant items and selected items. 

We see the definition of these concepts in the analysis of evaluation metrics. As said before, 

when the scale is not binary it is necessary to transform the rating values in a binary scale 

establishing a threshold. 

As shown in the chapter before, the scale of the ratings used in the test files is from 1 to 5. The 

MovieLens dataset is commonly transformed into a binary scale by converting every rating of 4 

or 5 to “relevant” and all ratings of 1–3 to “not relevant” [DKHGBR98]. 

Now, we can say that there is a relevant item for each rating stored in the Test dataset which has 

a value equal or higher to 4. In the other hand, we can define a selected item as each predicted 

recommendation value that overcame the threshold to be consider as relevant.  

Chapter 10.   Design of the Metrics. 
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In this chapter the principal characteristics of the implementation of the system are explained. 

One of the most important aspects of the implementation of the system is the kind of structure 

to store the large amounts of data (users, items, ratings and similarities). 

The main criterion for the choice was to save the largest possible computation time. Because of 

this, the main data structures are implemented with the class of the .NET framework 

Dictionary(TKey, TValue). 

The Dictionary (TKey, TValue) generic class provides a mapping from a set of keys to a set of 

values. Each addition to the dictionary consists of a value and its associated key. Retrieving a 

value by using its key is very fast, close to O(1), because the Dictionary (TKey, TValue) class is 

implemented as a hash table4. 

Another advantage of the class Dictionary (TKey, TValue) is its enumeration properties. It is 

possible to access to all the stored pairs of key-value with the instruction foreach. 

 

11.1. Users. 

For the implementation of the class User, the most of attributes were commented in the design. 

class User 

{ 

    public int id; 

     

    // Profile information 

    private string gender; 

    private int age; 

    private int occupation; 

    private string zipCode; 

 

    public double ratingAverage; 

    public Dictionary<int,int> ratings; //<item.id,rating> 

    public Dictionary<int,int> similarityEnhanced; //<user.id,value> 

    public Dictionary<int,double> recommendedItems; //<item.id,value> 

    public List<int> skippedItems; //<item.id,item.id,...> 

    public List<int> skippedUsers; //<user.id,user.id,...> 

. . . 

                                                           
4
 http://msdn.microsoft.com 

Chapter 11.   RS implementation. 
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The only one attribute added in implementation time is the ratingAverage. This attribute stores 

the average of the ratings of the user. It is possible to calculate this value in any moment from 

the list of ratings. As a consequence, an extra computational time is required. The value only 

changes when the user rates a new film. According to that, the final decision has been to store 

this value in an attribute and to recalculate it each time the user modifies his or her ratings. 

The attribute ratings is implemented with a Dictionary<int,int> where the Key is the id of the 

item and the Value is the value of the rating. It gives instant access to the rating of the user for a 

specific item. 

Here are commented the most relevant details of implementation about the methods of the 

class User. 

public void RecalculateRatingParameters() 

{ 

    ratingAverage = 0; 

    foreach (KeyValuePair<int, int> r in ratings) 

        ratingAverage += r.Value; 

    ratingAverage = ratingAverage / ratings.Count; 

} 

 

Other interesting methods of the class user are the followings: 

public double RatingAverageWithSkippedItems() 

{ 

    double totalValue = 0; 

    int itemValue; 

    foreach (int itemId in skippedItems) 

    { 

        if (ratings.TryGetValue(itemId, out itemValue)) 

            totalValue += (ratingAverage - itemValue) / 

(ratings.Count - skippedItems.Count); 

    } 

    return ratingAverage + totalValue; 

} 

 

 

public double RatingAverageWithSkippedItems(List<int> skippedItems) 

{ 

    double totalValue = 0; 

    int itemValue; 

    foreach (int itemId in skippedItems) 

    { 

        if (ratings.TryGetValue(itemId, out itemValue)) 

            totalValue += (ratingAverage - itemValue) / 

(ratings.Count - skippedItems.Count); 

    } 

    return ratingAverage + totalValue; 

} 
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The method RatingAverageWithSkippedItems is overloaded. The method obtains the rating 

average using the value calculated (ratingAverage) as base. Then, it modifies this value using the 

values of the ratings of the skipped items. 

The first method uses  the list of skippedItems of the own user that executes the method. It is to  

calculate the own ratingAverage of the user with his or her skippedItems. 

But, as said before, the similarities formulas compare two users: the active user (u) and a 

neighbour (n). For the calculation of the similarity, it is necessary the rating average of the user 

(n) who is comparing to, but excluding for the calculation the skipped values of the user (u). The 

second method calculates the average rating of the owner but skips the items it receives as 

parameter from another user.  

public Dictionary<int, int> CommonRatings(User otherUser) 

{ 

    Dictionary<int, int> cr = new Dictionary <int,int>(); 

    foreach (KeyValuePair<int, int> r in ratings) 

        if (otherUser.ratings.ContainsKey(r.Key)&& 

           (!skippedItems.Contains(r.Key))) 

            cr.Add(r.Key, r.Value); 

    return cr; 

} 

 

The method CommonRatings returns a list with the rating  two users (the owner and another 

received as parameter) has in common. The method does not add the ratings of the skipped 

items list of the owner even if it is a common item with the other user. 

 

11.2. Items. 

The class Item mostly keeps the structure from the design with small changes. 

class Item 

{ 

    public int id; 

    public string title; 

    public Dictionary<int, int> ratings = new Dictionary<int, int>();                      

                                                  //<user.id, rating> 

    private double ratingsVariance; 

... 

 

The only one attribute added in implementation is the ratingVariance. The motivation of added 

is the same that the ratingAverage of the class user. This attribute stores the variance of the 

ratings of the item. This value is possible to calculate in any moment from the list of ratings, but 

it supposes an extra computational time. 



62 Collaborative Filtering in Social Networks: Similarity analysis and feedback techniques 

The attribute ratings is implemented with a Dictionary<int,int> where the Key is the id of the 

user and the Value is the value of the rating. It lets instant access to the rating of the user for a 

specific item. 

 

11.3. Collaborative filtering system. 

This class is the most complex of the system. Its structure is the following: 

class CFSystem 

{ 

    public double averageVariance; 

    public Dictionary<int, User> users; //<user.id, user> 

    public Dictionary<int, Item> items;//<item.id, item> 

    public Dictionary<int, Dictionary<int, double>> similarities; 

    public Dictionary<int, Dictionary<int, double>> metricTestSet, 

metricEstimatedSet; 

    private Random r; 

... 

 

It contains a list for the users and another one for the items, both of them implemented with the 

type Dictionary. It has even a two-dimensional dictionary for the similarities and two more to 

execute the metrics designed (metricTestSet and metricEstimatedSet). The function of the last 

two list is explained before in the design of the metrics. 

 

11.3.1.  Similarity formulas and recommendation value. 

Here is the implementation of the different similarities formulas: 

public double UserSimilarityFormula1(User u1, User u2) 

{ 

    int u1Value, u2Value; 

    double num = 0, denom1 = 0, denom2 = 0; 

    Dictionary<int, int> cr = u1.CommonRatings(u2); 

    if (cr.Count == 0) 

        return 0; 

    double u1RatingAverage = u1.RatingAverageWithSkippedItems(); 

    double u2RatingAverage =  

              u2.RatingAverageWithSkippedItems(u1.skippedItems); 

    foreach (KeyValuePair<int, int> itemRating in cr) 

    { 

        u1Value = cr [itemRating.Key]; 

        u2Value = u2[itemRating.Key]; 

        num += (u1Value - u1RatingAverage) *  
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               (u2Value - u2RatingAverage); 

        denom1 += (u1Value - u1RatingAverage) *  

                  (u1Value - u1RatingAverage); 

        denom2 += (u2Value - u2RatingAverage) *  

                  (u2Value - u2RatingAverage); 

    } 

    if ((denom1 == 0) || (denom2 == 0)) 

        return 0; 

    return num / Math.Sqrt(denom1 * denom2); 

} 

 

In the first formula the common ratings are obtained, then the average of the items are 

calculated without the skipped items and finally the 3 sums of the formula are given. At the end 

the method returns the quotient of one of the sums divided the square root of the other two. 

The second formula has the same implementation with the difference that when the sum is 

calculatied, the values are multiplied by the variance. 

public double UserSimilarityFormula2(User u1, User u2) 

{ 

    Item item; 

    int u1Value, u2Value; 

    double num = 0, denom1 = 0, denom2 = 0; 

    Dictionary<int, int> cr = u1.CommonRatings(u2); 

    if (cr.Count == 0) 

        return 0; 

    double u1RatingAverage = u1.RatingAverageWithSkippedItems(); 

    double u2RatingAverage = 

u2.RatingAverageWithSkippedItems(u1.skippedItems); 

    double averageVariance = 

AverageVarianceWithSkippedItems(u1.skippedItems); 

    foreach (KeyValuePair<int, int> itemRating in cr) 

    { 

        u1Value = cr [itemRating.Key]; 

        u2Value = u2[itemRating.Key]; 

        items.TryGetValue(itemRating.Key, out item); 

        num += (u1Value - u1RatingAverage) *  

               (u2Value - u2RatingAverage) *  

               item.RatingsVariance() / averageVariance; 

        denom1 += (u1Value - u1RatingAverage) *  

                  (u1Value - u1RatingAverage) *  

                  item.RatingsVariance() / averageVariance; 

        denom2 += (u2Value - u2RatingAverage) *  

                  (u2Value - u2RatingAverage) * 

                  item.RatingsVariance() / averageVariance; 

    } 

    if ((denom1 == 0) || (denom2 == 0)) 

        return 0; 

    return num / Math.Sqrt(denom1 * denom2); 

} 
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The user similarities formula 3 works differently from the previous one. The sum of the 

denominator is calculated before the calculation of the sum of the numerator, because each 

element of the sum of the numerator is divided by the sum of the denominator calculated. 

public double UserSimilarityFormula3(User u1, User u2) 

{ 

    int u1Value, u2Value; 

    double num = 0, denom1 = 0, denom2 = 0; 

    Dictionary<int, int> cr = u1.CommonRatings(u2); 

    if (cr.Count == 0) 

        return 0; 

    foreach (KeyValuePair<int, int> itemRating in u1.ratings) 

        if (!u1.skippedItems.Contains(itemRating.Key)) 

            denom1 += itemRating.Value * itemRating.Value; 

    foreach (KeyValuePair<int, int> itemRating in u2.ratings) 

        if (!u2.skippedItems.Contains(itemRating.Key)) 

            denom2 += itemRating.Value * itemRating.Value; 

    if ((denom1 == 0) || (denom2 == 0)) 

        return 0; 

    foreach (KeyValuePair<int, int> itemRating in cr) 

    { 

        u1Value = cr [itemRating.Key]; 

        u2Value = u2[itemRating.Key]; 

        num += u1Value * u2Value / Math.Sqrt(denom1 * denom2); 

    } 

    return num; 

} 

 

The last formula works in a similar way  to the formula before. The difference is that in this case 

the values of the sum are multiplied by the variance of each item. 

public double UserSimilarityFormula4(User u1, User u2) 

{ 

    Item item; 

    int u1Value, u2Value; 

    double num = 0, denom1 = 0, denom2 = 0; 

    Dictionary<int, int> cr = u1.CommonRatings(u2); 

    if (cr.Count == 0) 

        return 0; 

    double averageVariance = 

AverageVarianceWithSkippedItems(u1.skippedItems); 

    foreach (KeyValuePair<int, int> itemRating in u1.ratings) 

    { 

        if (!u1.skippedItems.Contains(itemRating.Key)) 

        { 

            items.TryGetValue(itemRating.Key, out item); 

            denom1 += itemRating.Value * itemRating.Value * 

item.RatingsVariance() / averageVariance; 

        } 

    } 

    foreach (KeyValuePair<int, int> itemRating in u2.ratings) 

    { 

        if (!u1.skippedItems.Contains(itemRating.Key)) 

        { 
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            items.TryGetValue(itemRating.Key, out item); 

            denom2 += itemRating.Value * itemRating.Value * 

item.RatingsVariance() / averageVariance; 

        } 

    } 

    if ((denom1 == 0) || (denom2 == 0)) 

        return 0; 

    foreach (KeyValuePair<int, int> itemRating in cr) 

    { 

        u1Value = cr [itemRating.Key]; 

        u2Value = u2[itemRating.Key]; 

        item = items[itemRating.Key]; 

        num += u1Value * u2Value * item.RatingsVariance() / 

               (Math.Sqrt(denom1 * denom2) * averageVariance); 

    } 

    return num; 

} 

 

Compared to the implementation of the recommendations generation, the following method 

visits all the items of the system. For each one that is not rated by the user, the recommendation 

value is calculated and is stored in the list of recommended items of the user. 

public void CalculateRecommendations(User u) 

{ 

    u.recommendedItems.Clear (); 

    foreach (KeyValuePair<int, Item> pair in items) 

        if (!u.ratings.ContainsKey(pair.Key)) 

            u.recommendedItems.Add(pair.Key, RecommendationValue(u, 

pair.Value)); 

} 
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The recommender systems are characterized by managing large dataset. One of the most 

important challenges for them after giving good recommendations, is to work with this  amount 

of data in a reasonable computing time. 

In order to test how the built system  works from the computational time point of view, we run 

some tests as explained in the previous sections. 

Some datasets with the following characteristics were run: 

 FILE  1 FILE 2 FILE 3 FILE 4 FILE 5 FILE 6 FILE 7 FILE 8 

Users 100 500 1000 2000 3000 4000 5000 6000 

Items 100 500 1000 1500 2000 2500 3000 3900 

Ratings 457 10186 37604 131478 263516 405294 477727 637776 

Ratings / user 4,57 20,37 37,60 65,73 87,83 101,32 95,54 106,29 

 

The similarities between the users and the recommended ratings were calculated with each 

dataset for each user. Then the calculated similarities were saved in a file and loaded again to 

calculate the time to read this information from it. 

It is useful because the system does not have to calculate the similarities all the times they are 

executed. Reading information from a file is faster than calculating the similarities.  

12.1. Time to calculate the similarities. 

The time to calculate the similarities for each file appears in the following table: 

 FILE  1 FILE 2 FILE 3 FILE 4 FILE 5 FILE 6 FILE 7 FILE 8 

SimFormula1 0,024 1,116 7,60 53,2 163,1 325,7 417,6 597,7 

SimFormula2 0,013 1,112 7,69 53,3 163,3 324,4 416,8 597,4 

SimFormula3 0,020 1,107 7,59 53,3 163,5 324,6 417,0 598,8 

SimFormula4 0,013 1,125 7,58 53,2 163,4 324,7 417,1 602,3 

 

As it can be supposed, the time to compute the similarities will be O(n^2) if we consider n as the 

number of users, because each user has to be compared with the rest of them. The final number 

of similarities will be numberUsers^2. The half of the similarities can be considered only  in other 

recommender systems where they are symmetric. In this case rather, as explained before, the 

feedback techniques can give asymmetric similarities between two users. 

Chapter 12.  Test: time calculations.  
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Comparing the similarities formulas, the difference between them in the calculations is 

minimum. The following graph shows how the four formulas are joined in one. 

 

 

Graph4. Time to calculate the similarity against the number of users in the database. 

 

In the graph it is possible to see how “strange” the  behaviour of the function in the file 7 is. If 

we check the ¡Error! No se encuentra el origen de la referencia. in file 7,  we can find out what 

is “strange”:  the rating for each user does not follow the ascendant grow as in the previous files. 

It can mean that the time of computing the similarities is also related  with the total number of 

votes that the users rates. In the next graph we can see the relation between the time and the 

number of ratings. It is a mostly linear relation.  
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Graph5. Time to calculate the similarity against the number of ratings in the database. 

In the previous case, all the files are more or less proportional in number of users, films, ratings. 

We add a strange case that breaks absolutely with the previous proportion of user/rating. We 

run a case with 50 users and 3952 users. It supposes 16207 ratings. The time to compute each 

similarity formula is: 0,205 - 0,187 - 0,187 - 0,193. If we zoom in the part of the graph of the new 

file, we can see how it generates a “strange” behaviour in the function. 
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The “strange” behaviour of the function with both variables (number of users and number of 

ratings) means that the time does not depend only on one of them but both are significant. 

A similar situation appears to calculate the recommendations. For each recommendation for 

each user, it is necessary to read the similarities of the user with the rest of users, which 

supposes a computational time O(n2) where n is number of users. 

 

Graph7. Time to calculate the recommendations for users against the number of users in the database. 

 

But we can see in the following graph that the relation between the time to calculate the 

recommendations and the number of ratings is mostly linear. 

 

Graph8. Time to calculate the recommendations for users against the number of ratings in the database. 
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In the test over the similarities formulas the designed evaluation metrics were run 100 times for 

each file. In order to determine whether there are differences between the different formulas, 

we calculate the average value and the standard deviation of each metric for each file. These 

values are used to hypothesis contrast over the difference of averages of all the pairs of 

similarities formulas. 

The values calculated by the system were studied with different datasets that can are created 

with the original data of the MovieLens files.  

13.1. Different sizes of dataset.  

This group of datasets contains the original data from the MovieLens files. To generate each one 

of the files n_users_ m_movies , we selected the first n users of the files, the first m items and 

the rating of these users for the selected items. 

The aim of this test is to study how the quality of the recommendation evolves when the 

number of users, items and ratings increase.  

Then, the different evaluation metrics were run with each one of the files, obtaining the 

following results: 

    

13.1.1. Deviation. 

For the Deviation the results values appear in the table.  

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1 0,618 0,636 0,628 0,632 0,642 0,640 0,646 0,657 

SimFor2 0,563 0,639 0,628 0,632 0,641 0,639 0,646 0,656 

SimFor3 0,603 0,637 0,629 0,631 0,640 0,640 0,646 0,657 

SimFor4 0,602 0,636 0,626 0,632 0,642 0,640 0,646 0,657 

 

Over this result,  we do a hypothesis contrast means difference for each pair of values. The 

absolutes values higher of 1.96 indicates that the differences between formulas are relevant.  

Chapter 13.  Test: Similarities. 
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File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1-SimForm2 3,07 -0,79 0,28 -0,62 0,75 1,65 -0,09 0,81 
SimFor1-SimForm3 0,85 -0,21 -0,74 0,77 2,07 0,84 0,66 -0,47 
SimFor1-SimForm4 0,98 0,02 1,11 -0,07 -0,09 0,99 0,10 -0,98 
SimFor2-SimForm3 -2,06 0,52 -1,02 1,41 1,28 -0,78 0,72 -1,31 
SimFor2-SimForm4 -2,14 0,75 0,81 0,54 -0,83 -0,53 0,19 -1,91 
SimFor3-SimForm4 0,06 0,22 1,85 -0,82 -2,15 0,20 -0,58 -0,50 

 

As it is shown in the table, the similarity formula 2 give recommendation with significant less 

deviation than the others. In the graphic representation we can see the difference between 

formulas in the first file. 

 

Graph9. Deviation for each formula 
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13.1.2. Precision. 

The results obtained are: 

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1 0,884 0,893 0,896 0,895 0,894 0,894 0,891 0,885 
SimFor2 0,896 0,887 0,897 0,895 0,893 0,894 0,891 0,885 
SimFor3 0,886 0,892 0,895 0,896 0,895 0,894 0,891 0,884 
SimFor4 0,901 0,890 0,899 0,895 0,893 0,895 0,891 0,885 

 

After these results we calculate the values for the hypothesis contrast: 

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1-SimForm2 -0,66 1,69 -0,24 0,46 0,41 0,73 -0,97 -0,48 
SimFor1-SimForm3 -0,09 0,35 1,13 -0,64 -1,73 -0,16 -0,39 1,48 
SimFor1-SimForm4 -0,95 0,90 -1,67 1,04 1,29 -1,45 -0,23 -0,57 
SimFor2-SimForm3 0,56 -1,48 1,31 -1,08 -2,04 -0,95 0,55 2,17 
SimFor2-SimForm4 -0,29 -0,84 -1,39 0,54 0,83 -2,30 0,70 -0,09 
SimFor3-SimForm4 -0,85 0,62 -2,59 1,69 2,95 -1,36 0,15 -2,25 

 

As we can see, there are many significant values, but it is very difficult to get a conclusion from 

them. There are differences between the similarity formulas 2, 3 and 4 but in some cases the 

precision is significant better in one formula and with other files it is the opposite. 

 

Graph10. Precision of each formula 
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13.1.3. Recall. 

The results obtained for the recall metric are: 

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1 0,470 0,517 0,584 0,599 0,567 0,543 0,539 0,536 
SimFor2 0,497 0,516 0,586 0,597 0,566 0,543 0,540 0,536 
SimFor3 0,489 0,518 0,586 0,600 0,566 0,543 0,539 0,536 
SimFor4 0,491 0,525 0,585 0,598 0,567 0,543 0,539 0,536 

 

After these results we calculate the values for the hypothesis contrast: 

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1-SimForm2 -1,30 0,22 -0,80 1,55 1,57 -0,43 -0,87 0,28 
SimFor1-SimForm3 -0,92 -0,17 -1,23 -1,16 1,22 0,69 0,21 1,34 
SimFor1-SimForm4 -1,00 -1,82 -0,53 0,57 0,81 -0,64 0,64 0,27 
SimFor2-SimForm3 0,43 -0,40 -0,44 -2,66 -0,28 1,16 1,09 0,97 
SimFor2-SimForm4 0,28 -2,02 0,26 -0,92 -0,84 -0,23 1,48 -0,01 
SimFor3-SimForm4 -0,13 -1,74 0,70 1,66 -0,50 -1,35 0,45 -0,97 

 

 

Graph11. Recall of each formula 
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13.1.4. F1 metric. 

The results obtained are: 

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1 0,599 0,655 0,707 0,718 0,694 0,676 0,672 0,668 
SimFor2 0,629 0,652 0,708 0,716 0,693 0,676 0,672 0,668 
SimFor3 0,622 0,655 0,708 0,719 0,693 0,675 0,672 0,667 
SimFor4 0,623 0,660 0,709 0,717 0,693 0,676 0,672 0,668 

 

 

After these results we calculate the value for the hypothesis contrast: 

File 100u 
100m 

500u 
500m 

1000u 
1000m 

2000u 
1500m 

3000u 
2000m 

4000u 
2500m 

5000u 
3000m 

6000u 
3900m 

SimFor1-SimForm2 -1,56 0,62 -0,79 1,62 1,58 -0,22 -1,07 0,14 
SimFor1-SimForm3 -1,18 -0,10 -0,84 -1,25 0,72 0,59 0,09 1,66 
SimFor1-SimForm4 -1,20 -1,48 -0,93 0,88 1,10 -0,99 0,54 0,11 
SimFor2-SimForm3 0,41 -0,75 -0,07 -2,80 -0,86 0,84 1,23 1,45 
SimFor2-SimForm4 0,37 -2,08 -0,15 -0,71 -0,51 -0,83 1,62 -0,03 
SimFor3-SimForm4 -0,04 -1,47 -0,08 2,08 0,37 -1,61 0,48 -1,50 

 

There are some significant differences but without any pattern that lets say that one similarity 

formula is better than other one. Here we can see the graphical representation: 

 

Graph12. F1 for each formula 
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After the analysis of the entire test running in the system with different datasets, we can get 

some conclusions that are describe in the following paragraphs. 

 The time to compute the similarities between all the users is O (n^2) for the numbers of 
users and mostly lineal for the number of ratings that are in the system. The solution 
acquired is to store the calculated similarities in files, that lets recover the information 
later. Future improvements of the application could work in this way, exploring some 
techniques like clustering or some alternatives to don’t have to recalculate all the 
similarities when a user rates a new item. 
 

 The different similarities formulas get very similar results with enough number of 
ratings. The differences between use one formula or other is minimum. Only in specific 
scenarios with few ratings, they can give differents result. 
 

 One alternative to influence in the results of the recommendations is to use feedback 
from the user. Deleting items or items from the calculation or enhancing in a positive or 
negative way the similarity with others users, the user can modify  

 

 

 

 

 

 

Chapter 14.  Conclusions. 
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