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Preface

The present report is a master thesis, which serves as a graduation project of the master program
in mathematics at Aalborg University (AAU). Basic theory from probability theory, statistics
and random fields as well as basic statistical programming in R is assumed knowledge. The
proofs written in the report are independent work unless a source is explicitly cited.

In Chapter 1 the concept of generalised functions is introduced. In Section 2.1-2.2 stochastic
processes with arbitrary index-sets are introduced and Kolmogorov’s Theorem is proven. Then,
in Section 2.3 and 3.1, stochastic processes indexed by test functions, Borel sets, and measures
are introduced, in Section 3.2 the model known as the De Wijs process is introduced, and in
Section 3.3 it is described how to estimate the relevant parameters of De Wijs Plus White Noise
(WWN) process using restricted maximum likelihood estimation. Then, in Section 4.1, the
Barro Colorado Island Dataset is introduced, and in the rest of Chapter 4 and in Section 5.1-5.2
it is analysed using a WWN process, and in Section 5.3 these results are compared to two other
models, namely the power model and the exponential model. Finally, in Chapter 6 the results
are discussed and the conclusions from the previous chapters are summarised.

Aalborg University, January 6, 2020

Ib Thorsgaard Jensen
<itje14@student.aau.dk>
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Chapter 0

Introduction

Traditionally, geostatistical data are modelled using random fields, which are collections of ran-
dom variables indexed on a Euclidean space (typically R2). However, there is a wide variety
of possible index-set that may be utilised, and the Euclidean spaces may not always be the
most suitable. In this project we consider an index set of test functions (functions in C∞(Rd,R)
with bounded support), an index set of Borel sets and an index-set of signed measures. The
relationships between these index-sets is discussed in Section 3.1. In Chapter 1 we introduce the
notion of generalised functions, which serves as a preliminary to generalised stochastic processes
introduced in Section 2.3. Generalised stochastic processes are collections of random variables
indexed by test functions, which has e.g been used for analysing stochastic differential equations
and stochastic integral equations (see Schäffler [2018, Section 4.4] and Dawson [1970, Section
5]).

In Section 3.1 we introduce set-indexed random fields and generalised random fields. The
former is a collection of random variables indexed by Borel sets, and the latter is a collection of
random variables indexed by signed measures that are zero on Rd. The idea behind set-indexed
random fields is that, in reality we cannot sample information on an infinitesimally sized area,
so we drop this abstraction, and instead of indexing by points in a Euclidean space, we index
on subsets of a Euclidean space representing the whole area where the data are collected. This
is indispensable for some datasets, such as crop yield data, where sampling on an infinitesimal
point is nonsensical. Generalised random fields are introduced to enable the analysis of contrasts
of set-indexed random fields.

In Section 3.2 we introduce the De Wijs process which is a specific model of generalised
random field. The De Wijs process has been studied extensively by Peter McCullagh and David
Clifford in the application to crop yield data (see Clifford and McCullagh [2006] and Clifford
et al. [2006]). Peter McCullagh goes so far as to call the De Wijs Plus White Noise (WWN)
process a loi du terroir [McCullagh, 2003], or law of the soil, since it was found that although
the WWN process is the simplest model in its class, it fits as well as the full model on all crops in
all climates (see McCullagh [2003] and Clifford and McCullagh [2006, Section 9]). The De Wijs
process has also been studied in more theoretical settings. For example, the De Wijs process has
been found to be connected to a so-called Recurrent Brownian Motion (see Mondal [2015]), and
it has been used to study the relation between geostatistics and Markov Random Fields using
First Order Intrinsic Autoregressions (see Besag and Mondal [2005]).

In Section 3.3 we introduce restricted maximum likelihood estimation in order to estimate
the parameters of the WWN Process. This is then applied in Chapter 4 and 5, where we use the
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2 Chapter 0. Introduction

WWN process for analysing a soil sample dataset from a rain-forest on Barro Colorado Island
in Panama (see Harms et al. [2004]). Here we introduce the variogram and use it as a summary
statistic in Section 5.1 and in Section 5.2 we introduce kriging for a set-indexed random field, and
use it to evaluate the WWN Process using a 10-fold cross-validation. In Section 5.3 we briefly
analyse the data with two other geostatistical models, the power model and the exponential
model, in order to compare them to the WWN Process. Finally, in Chapter 6, we compare the
results found using the WWN process to the results found by using a so-called intrinsic random
field of order 0 with a polynomial generalised covariance function, as described in Jensen and
Fitzhugh [2018].



Chapter 1

Generalised Functions

In this chapter we introduce so-called Generalised Functions. Before these can be defined we
must first define the so-called test functions. The chapter is based on Schäffler [2018, Chapter 1].

1.1 Test Functions

In the following, let C∞d denote all infinitely differentiable continuous functions from Rd to R.
We define the support of such a function, f , by

supp(f) = cl
(
{x ∈ Rd : f(x) 6= 0}

)
,

where cl(·) denotes the closure of a set.
We may now define test functions in the following way.

Definition 1.1 (Test Functions). A function ϕ ∈ C∞d is called a test function, if supp(ϕ)
is bounded. The set of test functions from Rd to R is denoted Td.

Let ϕ ∈ Td, and consider the support when scaling. For a ∈ R we get

supp(aϕ) =

supp(ϕ), a 6= 0
∅, a = 0.

Thus aϕ ∈ Td. Now let ϕ1, ϕ2 ∈ Td, and consider the support of ϕ1 + ϕ2. We have that

supp(ϕ1 + ϕ2) ⊆ supp(ϕ1) ∪ supp(ϕ2),

so since both supp(ϕ1) and supp(ϕ2) are bounded, it follows that supp(ϕ1 +ϕ2) is also bounded,
and thus ϕ1 +ϕ2 is a test function. This, along with other properties which hold trivially, shows
that Td is a vector space.

We now introduce an important definition regarding the meaning of convergence of a sequence
of test functions.

3



4 Chapter 1. Generalised Functions

Definition 1.2 (Convergence of Test Functions). Let {ϕi}i∈N be a sequence of test func-
tions. The sequence is said to be convergent to a function ϕ ∈ Td, if

• The set
∞⋃
i=1

Supp(ϕi) is bounded.

• The sequence {ϕi − ϕ} converges uniformly to the zero function in Rd.

• The sequence ∂α(ϕi − ϕ) converges uniformly to the zero function in Rd for any multi-
index, α.

It turns out that it is possible to approximate any continuous function, with compact support,
with a sequence of test functions. To prove this, we first introduce the function ψ : Rd → R
defined by,

ψ(x) =

0, when 1 ≤ ‖x‖2,
exp(− 1

1−‖x‖2 ), when 1 > ‖x‖2,

where ‖ · ‖ is the Euclidean norm. Note that ψ is symmetric, has bounded support and is
infinitely differentiable. Let Iψ =

∫
Rd ψ(x)dx <∞. Furthermore, define

ψ1(x) = ψ(x)
Iψ

for x ∈ Rd.

We use these functions to define an important function for approximation of continuous functions
using test functions,

ψR(x) = ψ1(x/R)
Rd

(1.1)

with R > 0. The support of ψR is the d-dimensional ball B̄(0, R), thus it is also a test function.
Considering the integral of ψR(x), using integration by substitution and setting y = x

R , we have∫
Rd
ψR(x)dx =

∫
Rd

ψ1( xR)
Rd

dx =
∫
Rd

ψ1(y)
Rd

det
(
J(y)

)
dy = 1, (1.2)

since J(y) is the Jacobian matrix of the function x = yR, which is just an identity matrix scaled
by R.

We can now formulate a theorem about the approximation of continuous functions, with
compact support, using test functions.

Theorem 1.3 (The approximation theorem). Let f : Rd → R be a continuous function
with compact support. For each ε > 0, there exists a function ϕ ∈ Td, such that,

|f(x)− ϕ(x)| < ε, for all x ∈ Rd.

Specifically, when defining for any R > 0 that

ϕR(x) =
∫
Rd
f(u)ψR(u− x)du,

it holds that ϕR → f uniformly for R→ 0.

Proof. This proof originates in [Schäffler, 2018, proof of Theorem 1.2].



1.1. Test Functions 5

Since f is continuous with compact support, it is also uniformly continuous, meaning that for
each ε > 0 there exists a δ > 0 such that

|f(x)− f(y)| < ε, for all x, y ∈ Rd with ‖x− y‖ < δ.

Additionally we have that

ϕR(x) =
∫
Rd
f(u)ψR(u− x)du =

∫
B̄(x,R)

f(u)ψR(u− x)du

= f(y)
∫
B̄(x,R)

ψR(u− x)du = f(y) for some y ∈ B̄(x,R).

where the second equality is due to the fact that the support of ψR(u− x) is B̄(x,R), and the
third equality is from the mean value theorem of integrals (see e.g Amann and Escher [2008,
Ch. 6.4]). The last equality is due to (1.2). With R < δ, we have

|f(x)− ϕR(x)| = |f(x)− f(y)| < ε, because ‖x− y‖ ≤ R < δ.

Thus as R→ 0 the function ϕR → f uniformly, proving the result.

For an example of this, consider the function

f(x) =

1− 1
2 |x|, when |x| < 2,

0, when |x| ≥ 2.
(1.3)

Since f(x) is continuous with compact support, we may approximate it using ϕR as defined in
Theorem 1.3. A plot of f(x) can be seen in Figure 1.1. In the plots in Figure 1.2 and Figure 1.3,
we can see that ϕR approximates f(x) better for the lower value of R. Note that the integral that
defines ϕR has been approximated numerically, resulting in the rather jagged shape in Figure
1.2. For large values of R the function ϕR is a smoothed version of f(x).
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Figure 1.1: Plot of the function f(x) as defined in
(1.3)
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Figure 1.2: Plot of the function ϕ1.5(x).
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Figure 1.3: Plot of the function ϕ0.1(x).

Test functions are of central importance in the next section, where so-called functionals are
introduced.

1.2 Functionals

In this section we introduce the notion of functionals. We define the term in a very general
setting. Before defining functionals, we note that A being a vector space over a field B, means
that, among other things, A is closed under multiplication with elements of B.

Definition 1.4 (Functional). For a given vector space A over a field, B, a mapping

F : A → B,

is called a functional.
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Furthermore, a functional F is said to be linear if for all a ∈ B, and x, y ∈ A,

F (ax) = aF (x)
F (x+ y) = F (x) + F (y).

With functionals defined in a general setting, we turn our attention to a specific functional. For
this purpose, let f : Rd → R be a locally integrable function, meaning that

∫
A |f(x)|dx <∞ for

any bounded set A. For each such f , we may define the mapping Ff : Td → R, by

Ff (ϕ) =
∫
Rd
f(x)ϕ(x)dx. (1.4)

Since Td is a vector space over R, as shown in Section 1.1, the mapping Ff defines a functional.
Furthermore, Ff is a linear functional, since for a ∈ R and ϕ1, ϕ2 ∈ Td we have

Ff (aϕ) =
∫
Rd
af(x)ϕ(x)dx = aFf (ϕ)

Ff (ϕ1 + ϕ2) =
∫
Rd
f(x)

(
ϕ1(x) + ϕ2(x)

)
dx = Ff (ϕ1) + Ff (ϕ2).

In the following, we describe how a functional defined as in (1.4) can be used to give meaning to
the derivative of a function that are not differentiable. Suppose f : R→ R is locally integrable
and differentiable. Suppose furthermore that the derivative f ′ is locally integrable, then for any
ϕ ∈ T1 we get, using integration by parts, that∫

R
f ′(x)ϕ(x)dx = [f(x)ϕ(x)]∞−∞ −

∫
R
f(x)ϕ′(x)dx. (1.5)

Since ϕ ∈ T1, the set supp(ϕ) is bounded, and thus the first term in (1.5) is zero, and∫
R
f ′(x)ϕ(x)dx = −

∫
R
f(x)ϕ′(x)dx, (1.6)

meaning Ff ′(ϕ) = −Ff (ϕ′). In the above, the left hand side is defined for differentiable functions
f , but the right hand side is defined for any locally integrable functions f .

Now let ϕ(u) = ψR,x(u), where ψR,x(u) is defined as

ψR,x(u) = ψR(u− x), (1.7)

where ψR is defined as in (1.1). For any differentiable function g : Rd → R we have

Fg(ψR,x) =
∫
Rd
g(u)ψR,x(u)du =

∫
B̄(x,R)

g(u)ψR,x(u)du

= g(y)
∫
B̄(x,R)

ψR,x(u)du = g(y)

for some y ∈ B̄(x,R), where the second to last equality is a result of the mean value theorem
for integrals. Taking the limit as R→ 0, we have that,

lim
R→0

Fg(ψR,x) = g(x), for x ∈ Rd, (1.8)

which can be used to give meaning to the derivative of non-differentiable locally integrable
functions in the following way. Once again let f : R → R be a differentiable, locally integrable
function. Then by (1.6) and (1.8) we get that

lim
R→0
−Ff (ψ′R,x) = lim

R→0
Ff ′(ψR,x) = f ′(x), (1.9)
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where we see that limR→0−Ff (ψ′R,x) is well defined as long as f is locally integrable, even if it
is not differentiable.

We now introduce the notion of continuity of functionals from the set of test functions to
the real numbers.

Definition 1.5 (Continuity of Functionals). A functional F : Td → R is said to be con-
tinuous if

lim
i→∞

F (ϕi) = F (ϕ),

for all sequences {ϕi} which converge to the function ϕ ∈ Td (see Definition 1.2).

Using Definition 1.5 it can be shown that functionals on the form in (1.4) are continuous.

Proposition 1.6. Let f : Rd → R be a locally integrable function. A linear functional
Ff : Td → R on the form,

Ff (ϕ) =
∫
Rd
f(x)ϕ(x)dx,

is continuous.

Proof. This proof follows the arguments presented in [Schäffler, 2018, p. 13-14].

The zero function, ϕ(x) = 0 for all x ∈ Rd is a test function, as

supp(ϕ) = ∅,

which is closed and bounded. Thus the functional F is continuous if,

lim
i→∞

F (ϕi) = 0,

for all sequences of test functions which converge to the zero function (see Definition 1.2).
Now let {ϕi}i∈N be sequence of test functions that converges to the zero function. Then for

some ε > 0
supp(ϕi) ⊆ B(0, ε), for all i ∈ N.

Using this fact, we have that

lim
i→∞
|Ff (ϕi)| = lim

i→∞

∣∣∣∣∫
Rd
f(x)ϕi(x)dx

∣∣∣∣ = lim
i→∞

∣∣∣∣∣
∫
B(0,ε)

f(x)ϕi(x)dx
∣∣∣∣∣

≤ lim
i→∞

∫
B(0,ε)

|f(x)||ϕi(x)|dx ≤ lim
i→∞

(
supx∈B(0,ε)|ϕi(x)|

∫
B(0,ε)

|f(x)|dx
)
,

=
(∫

B(0,ε)
|f(x)|dx

)
lim
i→∞

(
supx∈B(0,ε)|ϕi(x)|

)
= 0,

where the last inequality results from test functions being bounded, and the last equality from
|ϕi| → 0 as i→∞, proving the result.

Next we see how functionals lead to the definition of so-called generalised functions.
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1.3 Generalised Functions

As discussed in the previous section we can define a continuous and linear functional for a locally
integrable function f , from the space of test functions to the real numbers. This particular
functional is a so-called generalised function, which we now formally define on the space of test
functions.

Definition 1.7 (Generalised Functions from Td). A linear and continuous functional
F : Td → R is called a generalised function. Furthermore, if there exists a locally integrable
function, f , such that F = Ff , then F is called a regular generalised function.

The set of generalised function from Td is denoted Gd. Defining the scalar multiple, and addition
of generalised function as

aF (ϕ) = F (aϕ), for a ∈ R, ϕ ∈ Td, F ∈ Gd
(F +G)(ϕ) = F (ϕ) +G(ϕ), for ϕ ∈ Td, F,G ∈ Gd

the space Gd is a vector space over R, as all the other requirements are trivially satisfied. The
derivative of a generalised function may be defined analogously with (1.6) as follows.

Definition 1.8 (Derivative of Generalised Functions). Let F : T1 → R be a generalised
function. Then F ′ is said to be a the derivative of F if

F ′(ϕ) = −F (ϕ′).

We note that the above definition implies that regular generalised functions satisfy (Ff )′(ϕ) =
Ff ′(ϕ) when f is differentiable.

The so-called Dirac distribution1, δx0 , is an example of a generalised function. The Dirac
distribution is defined as

δx0(ϕ) = ϕ(x0), for ϕ ∈ Td and x0 ∈ Rd.

This is an example of a generalised function, which is not a regular generalised function. We
formulate this minor result as a proposition.

Proposition 1.9. The Dirac distribution, δx0(ϕ) = ϕ(x0), is not a regular generalised func-
tion.

Proof. This proof follows the arguments presented in [Schäffler, 2018, p. 16-17].

We prove this by contradiction, so suppose that there exists a locally integrable function, f ,
such that ∫

Rd
f(x)ϕ(x)dx = ϕ(x0), for all ϕ ∈ Td, (1.10)

1Some authors prefer to refer to generalised functions as ’distributions’, however there is no relation to cumu-
lative distribution functions.
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that is, we assume that the Dirac distribution is a regular generalised function. Since f is locally
integrable, then for all x ∈ Rd and all ε > 0∫

B̄(x,ε)
|f(u)|du = dx <∞.

Thus, for all x ∈ Rd, there exists an εx sufficiently small that dx < 1. Consider now the function
ψε,x0 defined as in (1.7), which is a test function for all ε > 0. Thus by the assumption in (1.10),
we must have, ∫

Rd
f(x)ψε,x0(x)dx = ψε,x0(x0).

However, ∫
Rd
f(x)ψεx0 ,x0(x)dx ≤

∣∣∣∣∫
Rd
f(x)ψεx0 ,x0(x)dx

∣∣∣∣ ≤ ∫
Rd
|f(x)ψεx0 ,x0(x)|dx

≤ supB̄(x0,εx0 )|ψεx0 ,x0(x)|
∫
B̄(x0,εx0 )

|f(x)|dx

= ψεx0 ,x0(x0)dx0 < ψεx0 ,x0(x0),

where third inequality comes from the fact that |f(x)ψε,x0(x)| ≤ |f(x)|supB̄(x0,ε)|ψε,x0(x)| for
all x ∈ Rd, and the final inequality comes from the fact that dx0 < 1 by the choice of εx0 . This
proves the result.



Chapter 2

Stochastic Processes

2.1 Preliminaries

This section is based on Schäffler [2018, Section 2.1] and Billingsley [1995, Section 36].

In this section we define a stochastic process in a very general setting.

Definition 2.1 (Stochastic Processes). Let (Ω,F , P ) be a probability space, let (Γ,G) be a
measurable space and let I be some non-empty set. Then

Z : Ω× I → Γ

is called a stochastic process with index-set I, if Z(·, i) is an F − G measurable function for
any fixed i ∈ I.

For a fixed ω ∈ Ω we call the mapping i 7→ Z(ω, i) the path of Z, and if this function is continuous
for all ω ∈ Ω we say that Z has continuous paths (or almost surely continuous paths if it only
holds for almost all ω ∈ Ω). We usually suppress the dependence on ω and denote Z(ω, i) simply
as Z(i). Furthermore, in this report we only consider the case where (Γ,G) = (R,B), where B
is the Borel σ-algebra.

Note that the notion of stochastic processes in Definition 2.1 is a very general one. Often
the term stochastic process is used to refer only to the case where the index-set is a subset of
R. A stochastic process where the index-set is some D ⊆ Rd is called a random field. Thus a
stochastic process is usually thought of as a special case of a random field, where d = 1, but
with Definition 2.1 a random field is a special case of a stochastic process.

In order to discuss the distributional behaviour of stochastic processes, the notion of finite
dimensional distributions is defined. Note that we denote the d-dimensional Borel σ-algebra as
Bd.

Definition 2.2 (Finite-dimensional Distribution). Let Z be a stochastic process with
index-set I and let i1, . . . , in ∈ I. Then the measure, µi1,...,in, satisfying

µi1,...,in(A) = P

((
Z(i1), . . . , Z(in)

)
∈ A

)
,

where A ∈ Bn, is said to be a finite-dimensional distribution of Z.

11



12 Chapter 2. Stochastic Processes

From the above definition, two consistency properties arise. First suppose we have a Borel set
on the form A = A1 × · · · × An and a permutation π. Then we have the symmetry property,
that is µi1,...,in is invariant under permutation, since

µi1,...,in(A1 × · · · ×An) = P
(
Z(i1) ∈ A1, . . . , Z(in) ∈ An

)
= P

(
Z(iπ(1)) ∈ Aπ(1), . . . , Z(iπ(n)) ∈ Aπ(n)

)
= µiπ(1),...,iπ(n)(Aπ(1) × · · · ×Aπ(n)). (2.1)

Secondly we have the compatibility property. That is, since, by definition, Z(ω, in) ∈ R for all
ω ∈ Ω, we have

µi1,...,in(A1 × · · · ×An−1 × R) = P
(
Z(i1) ∈ A1, . . . , Z(in−1) ∈ An−1, Z(in) ∈ R

)
= P

(
Z(i1) ∈ A1, . . . , Z(in−1) ∈ An−1

)
= µi1,...,in−1(A1 × · · · ×An−1). (2.2)

As we see above all finite dimensional distributions of a stochastic Process, Z, satisfy (2.1)
and (2.2). The question is, if the converse is also the case. That is, for a class of probability
measures {µi1,...,in}i1,...,in∈I , is there a stochastic process, Z, with index-set I over a probability
space (Ω,F , P ), such that

µi1,...,in(A) = P
((
Z(i1), . . . , Z(in)

)
∈ A

)
for any {i1, . . . , in} ⊆ I and any A ∈ F? It turns out that the answer is yes. This is a result
known as Kolmogorov’s Theorem, but before we can give the proof, a considerable amount of
preparation is necessary. Firstly we note that, in fact, the symmetry and compatibility conditions
can be consolidated into one requirement, as we see in the following.

Let π be a permutation and define a mapping ξπ : Rn → Rn such that

ξπ(x1, . . . , xn) =
(
xπ−1(1), . . . , xπ−1(n)

)
.

Note that since the inverse of a permutation is also a permutation, ξπ is simply a function that
permutes the coordinates. Since ξ−1

π (A1×· · ·×An) = Aπ(1)×· · ·×Aπ(n), it follows that (2.1) can
be expresses as µi1,...,in(A) = µiπ(1),...,iπ(n)

(
ξ−1
π (A)

)
. Now define ρp : Rn → Rn−p as projection,

that is
ρp(x1, . . . , xn) =

(
x1, . . . , xn−p

)
.

Since it follows that ρ−1
p (A1 × · · · × An−p) = A1 × · · · × An−p × Rp, we get that for A =

A1 × · · · ×An−1, (2.2) can be expressed as µi1,...,in−1(A) = µi1,...,in

(
ρ−1

1 (A)
)
.

Now suppose we have i1, . . . , in ∈ I and t1, . . . , tm ∈ I such that m ≥ n and {i1, . . . , in} ⊂
{t1, . . . , tm}. Then (i1, . . . , in) must be the first n components of some permutation of (t1, . . . , tm),
and thus there exists a permutation, π, such that tπ−1(1) = i1, . . . , tπ−1(n) = in. Now define
ψπ,p : Rm → Rm−p such that

ψπ,p(x1, . . . , xm) = ρp
(
ξπ(x1, . . . , xm)

)
=
(
xπ−1(1), . . . , xπ−1(m−p)

)
Thus we have that ψ−1

π,p(A) = ξ−1
π

(
ρ−1
p (A)

)
. Thus the condition

µi1,...,in(A) = µt1,...,tm

(
ψ−1
π,m−n(A)

)
, (2.3)

implies both (2.1) and (2.2).
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2.2 Kolmogorov’s Theorem

This section is based on Billingsley [1995, Section].

In this section we seek to prove Kolmogorov’s Theorem. In Billingsley [1995] two proofs are
given. The one we present here is a proof by construction, so before we can give it, a probability
space must be constructed. To this end we introduce the concept of product spaces.

Definition 2.3 (Product Space). Let I be a non-empty set. Then the set of all functions
on the form f : I → R is called the product space of I and is denoted RI .

We note that if I = {1, . . . , n}, then there is a one-to-one correspondence between RI and Rn.
As such all Euclidean spaces are, in some sense, a special case of this general setting, and thus
when I is infinite, RI can be seen as an infinite-dimensional Euclidean space.

Now let ζ : RI × I → R be defined as

ζ(x, i) = x(i) (2.4)

and denote ζi(·) := ζ(·, i). Such functions are referred to as coordinate functions and are impor-
tant in the proof of Kolmogorov’s Theorem. Let BI be the σ-algebra generated by all coordinate
functions, that is BI is the smallest σ-algebra such that all coordinate functions are measurable.
In other words, BI is generated by the sets on the form

ζ−1
i (A) = {x ∈ RI : ζ(x, i) ∈ A} = {x ∈ RI : x(i) ∈ A}, (2.5)

where i ∈ I and A ∈ B.
The sets included in BI can be quite irregular, and in practice it is not always necessary to

consider all of BI . In fact, throughout most of this section, we only need to examine so-called
finite dimensional sets.

Definition 2.4 (Finite-dimensional Sets). Let I be a non-empty set, and let A be a set on
the form

A =
{
x ∈ RI :

(
ζ(x, i1), . . . , ζ(x, in)

)
∈ B

}
=
{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ B

}
. (2.6)

where i1, . . . , in ∈ I are distinct and B ∈ Bn. Then A is called a finite-dimensional set.

The class of all finite-dimensional sets is denoted B0
I . Clearly a set on the form in (2.5) is a

finite-dimensional set, so it would be tempting to conclude that BI is a subset of B0
I . However

this is not, in general, the case, since BI is generated by sets on the form in (2.5), whereas B0
I

merely contain the finite-dimensional sets. In fact, when I is infinite, B0
I is not a σ-algebra. To

see this, let {ik}k∈N be a sequence of elements in I without repetitions and let {Ck}k∈N be a
sequence of non-empty one-dimensional Borel sets, where Ck 6= R for all k ∈ N and

⋂∞
k=1Ck = ∅.

Then let
Ak =

{
x ∈ RI : x(ik) ∈ Ck

}
.

Now note that for any n ∈ N we have
n⋂
k=1

Ak =
{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C1 × · · · × Cn

}
. (2.7)
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Thus we see that x ∈
⋂n
k=1Ak implies that x(ik) ∈ Ck for k = 1, . . . , n. Thus x ∈

⋂∞
k=1Ak must

imply that x(ik) ∈ Ck for all k ∈ N. Now suppose there exists a Borel set, D, and j1, . . . , jn ∈ I
such that ∞⋂

k=1
Ak =

{
x ∈ RI :

(
x(j1), . . . , x(jn)

)
∈ D

}
=: B. (2.8)

But then there must exist some m ∈ N such that im /∈ {j1, . . . , jn} (in fact there must be an
infinite number of such m). Now note, that the only requirement for a function, x : I → R, to
be in B concerns is its behaviour on j1, . . . , jn and there are no requirements about which values
x may attain on I\{j1, . . . , jn}. Thus for any non-empty one-dimensional Borel set, E, there
exists an x ∈ B such that x(i) ∈ E for some i ∈ I where i /∈ {j1, . . . , jn}. Then, specifically,
there exists an x ∈ B such that x(im) ∈ R\Cm. That is x(im) /∈ Cm, which means that

x ∈ B, but x /∈
∞⋂
k=1

Ak,

which is a contradiction, and thus B0
I is not closed under countable intersections, and thus it is

not a σ-algebra.
While BI is not, in general, a subset of B0

I , it turns out that the reverse is the case.

Lemma 2.5. Let I be a non-empty set. Then B0
I ⊆ BI .

Proof. Let
A =

{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C

}
,

where C ∈ Bn and i1, . . . , in ∈ I. To show the result, we must show that all finite-dimensional
sets can be generated by sets on the form seen in (2.5). We already saw that this holds when
C = C1 × · · · × Cn, where Ck ∈ B for k = 1, . . . , n (see (2.7)). Then it must also hold when Ck,
k = 1, . . . , n are all intervals. Now note that all n-dimensional Borel sets can be constructed
from n-dimensional intervals using countable unions, countable intersections or complements.
So now let {Ak}k∈N be a sequence of finite-dimensional sets such that

Ak =
{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ Ck

}
,

where {Ck}k∈N is a sequence of Borel sets. Then

∞⋂
k=1

Ak =

x ∈ RI :
(
x(i1), . . . , x(in)

)
∈
∞⋂
k=1

Ck

 , (2.9)

and
∞⋃
k=1

Ak =

x ∈ RI :
(
x(i1), . . . , x(in)

)
∈
∞⋃
k=1

Ck

 . (2.10)

Furthermore if
A =

{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C

}
,

then
RI\A =

{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ Rn\C

}
. (2.11)
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From (2.9), (2.10) and (2.11) we see that countable unions, countable intersections or comple-
ments on finite-dimensional sets amounts to performing said operations to the underlying Borel
sets. Thus all finite-dimensional sets can be generated by sets on the form

A =
{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C1 × · · · × Cn

}
=

n⋂
k=1
{x ∈ RI : x(ik) ∈ Ck},

where C1, . . . , Cn are intervals, and therefore B0
I ⊆ BI .

The above lemma allows us to derive a more useful relationship between between B0
I and BI .

Lemma 2.6. Let I be a non-empty set. If I is infinite, then B0
I is an algebra and σ(B0

I) = BI .
If I = {i1, . . . , in} for some n ∈ N then B0

I = BI .

Proof. This proof is a more detailed version of the arguments in Billingsley [1995, p. 485-486].

Due to Lemma 2.5 it is obvious that σ(B0
I) = BI .

First we show that B0
I is an algebra. In order to do this, we need to show that

(i) RI ∈ B0
I

(ii) A ∈ B0
I implies that RI\A ∈ B0

I

(iii) A,B ∈ B0
I implies that A ∪B ∈ B0

I .

For any i ∈ I we have that
RI = {x ∈ RI : x(i) ∈ R},

and since R ∈ B, RI is a finite-dimensional set, proving (i).
Now let A = {x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C} be a finite-dimensional set. Then

RI\A = {x ∈ RI :
(
x(i1), . . . , x(in)

)
∈ Rn\C},

proving (ii).
To prove (iii), suppose that

A =
{
x ∈ RI :

(
x(i1), . . . , x(in) ∈ C

)}
,

and
B =

{
x ∈ RI :

(
x(j1), . . . , x(jm) ∈ D

)}
.

Then choose t1, . . . , tr ∈ I such that {t1, . . . , tr} = {i1, . . . , in} ∪ {j1, . . . , jm}. Then there exists
permutations π1 and π2 such that

tπ−1
1 (1) = i1, . . . , tπ−1

1 (n) = in, tπ−1
2 (1) = j1, . . . , tπ−1

2 (m) = im.

Then we have that
(
x(i1), . . . , x(in)

)
∈ C if and only if

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π1,r−m(C), where
ψπ1,r−m is defined as in Section 2.1, and

(
x(j1), . . . , x(jm)

)
∈ D if and only if

(
x(t1), . . . , x(tr)

)
∈

ψ−1
π2,r−n(D). Thus

A ∪B =
{
x ∈ RI :

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π1,r−m(C)
}
∪
{
x ∈ RI :

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π2,r−n(D)
}

=
{
x ∈ RI :

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π1,r−m(C) ∪ ψ−1
π2,r−n(D)

}
,
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which is a finite dimensional set, which proves (iii).
Now let I = {i1, . . . , in} for some n ∈ N, and let {ik}k∈N be a sequence of elements in I

and let {Ak}k∈N be a sequence of Borel sets. Obviously {ik}k∈N must have repetitions, so let
Nl = {k ∈ N : ik = il}. Then

∞⋂
k=1
{x ∈ RI : x(ik) ∈ Ak} =

n⋂
l=1

 ⋂
k∈Nl

{x ∈ RI : x(il) ∈ Ak}


=

n⋂
l=1

x ∈ RI : x(il) ∈
⋂
k∈Nl

Ak


=

x ∈ RI :
(
x(i1), . . . , x(in)

)
∈
⋂
k∈N1

Ak × · · · ×
⋂
k∈Nn

Ak

 ,
and since

⋂
k∈N1 Ak×· · ·×

⋂
k∈Nn Ak ∈ Bn, this is a finite-dimensional set. Since B0

I is an algebra,
which is closed under countable intersections, it is also a σ-algebra, and since σ(B0

I) = BI it
follows that B0

I = BI .

In the proof of Kolmogorov’s Theorem, we construct a stochastic process on a probability space
with BI as a σ-algebra. To construct the probability measure, we use the above lemma and the
following theorem.

Theorem 2.7. Let G be an algebra, let P be probability measure on G and let F be the σ-algebra
generated by G. Then there exists a unique probability measure, P̃ , on F which satisfies

P̃ (A) = P (A),

for all A ∈ G.

The theorem above is a major result, the proof of which is rather involved. It can be found
in Billingsley [1995, Section 3], but it is beyond the scope of this project. Now we have nearly
laid all the necessary groundwork to prove Kolmogorov’s Theorem. The last thing we need is a
technical result, here stated as a lemma.

Lemma 2.8. Let µ be a measure on Bn where µ(A) < ∞ for all bounded A ∈ Bn. Then the
following statements hold

(i) For any A ∈ Bn and ε > 0, there exists a closed set C ∈ Bn and an open set G ∈ Bn
such that C ⊂ A ⊂ G and µ(G\C) < ε.

(ii) For any A ∈ Bn with µ(A) <∞ it holds that µ(A) = sup
{
µ(K) : K ⊆ A,K is compact

}
.

The proof Lemma 2.8 involves semirings and outer measures. This would be a significant
departure from the focus of the report, and thus we do not show it here, but it can be found in
Billingsley [1995, Section 12]. We now have everything we need to state and prove Kolmogorov’s
Theorem.
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Theorem 2.9 (Kolmogorov’s Theorem). Let I be a non-empty set and let {µi1,...,in}i1,...,in∈I
be a class of probability measures, which satisfy the symmetry (see (2.1)) and compatibility (see
(2.2)) properties. Then, on some probability space (Ω,F , P ), there exists a stochastic process
with index-set I with {µi1,...,in}i1,...,in∈I as its finite-dimensional distributions.

Before we show the proof, we show why the set RI and σ-algebra BI are quite natural to use in
the proof. First let ζ be defined as in (2.4). Then it is clearly a stochastic process on (RI ,BI),
since for any i ∈ I and any A ∈ B we have

ζ−1
i (A) = {x ∈ RI : ζ(x, i) ∈ A} = {x ∈ RI : x(i) ∈ A} ∈ BI ,

so ζi is BI -B-measurable for any i ∈ I. Now suppose we have some stochastic process, Z, on an
index-set I and a probability space (Ω,F , P ) with finite-dimensional distributions {µi1,...,in}i1,...,in∈I .
Now let η : Ω→ RI be a function such that

ζ
(
η(ω), i

)
= Z(ω, i).

Then for i1, . . . , in and an A ∈ Bn we have that

η−1
({

x ∈ RI :
(
ζ(x, i1), . . . , ζ(x, in)

)
∈ A

})
=
{
ω ∈ Ω :

(
ζ(η(ω), i1), . . . , ζ(η(ω), in)

)
∈ A

}
(2.12)

=
{
ω ∈ Ω :

(
Z(ω, i1), . . . , Z(ω, in)

)
∈ A

}
.

Since Z is a stochastic process, it holds that for any i ∈ I, Zi(ω) = Z(ω, i) is an F-B-measurable
function. Thus the set on the left-hand-side of (2.12) is in F . Therefore η is F-B0

I -measurable
and it follows from Billingsley [1995, Theorem 13.1] that η is also a F-BI -measurable function.
This means that the measure Pη, which satisfies that for B ∈ BI , Pη(B) = P

(
η−1(B)

)
, is

well-defined and

Pη

({
x ∈ RI :

(
ζ(x, i1), . . . , ζ(x, in)

)
∈ A

})
= P

({
ω ∈ Ω :

(
Z(ω, i1), . . . , Z(ω, in)

)
∈ A

})
= µi1,...,in(A).

This shows that if there exists a stochastic process, Z, on any probability space, then there also
exists a stochastic process on (RI ,BI , Pη) for a suitably chosen η. So in the case where η is the
identity we get that Ω = RI , F = BI and Pη = P . For this reason, ζ is called the canonical
process for an index set I. In the following we do not construct η, but we use Theorem 2.7
to construct a probability measure, such that the canonical process is a stochastic process on
(RI ,BI) with said probability measure.

Proof of Theorem 2.9. This proof is a more detailed version of the proof given in [Billingsley,
1995, p. 489-490].

We prove the theorem by construction. So let I be an index-set and let {µi1,...,in}i1,...,in∈I be a
class of probability measures. We show that there exists a probability measure, P , such that the
the canonical process is a stochastic process on (RI ,BI , P ) with {µi1,...,in}i1,...,in∈I as its finite
dimensional distributions. First we construct such a probability measure.

Let
A =

{
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C

}
, (2.13)
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be a finite-dimensional set. Then we define a mapping, P : B0
I → [0, 1], such that

P (A) = µi1,...,in(C). (2.14)

Firstly we note that, by definition,

P

({
x ∈ RI :

(
ζ(i1, x), . . . , ζ(in, x)

)
∈ C

})
= P

({
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ C

})
= µi1,...,in(C),

so if P is a probability measure, we can use Theorem 2.7 and extends P to a probability measure,
P̃ , on all of BI . Then (RI ,BI , P̃ ) is a probability space and ζ is a stochastic process with index-
set I and with {µi1,...,in}i1,...,in∈I as finite dimensional distributions on said probability space.
Thus it is now sufficient to show that P is a probability measure on B0

I .
First we must show that the formulation in (2.14) is consistent. More specifically, we may

have that a finite-dimensional set has more than one representation (as an example, note that
{x ∈ RI : x(i1) ∈ C} = {x ∈ RI : (x(i1), x(i2)) ∈ C × R}), and in such a case, P must attain
the same value for both representations. So now let A be defined as in (2.13) and let

B =
{
x ∈ RI :

(
x(ji), . . . , x(jm)

)
∈ D

}
, (2.15)

where D ∈ Bn and j1, . . . , jm are distinct elements in I. We now show that if A and B are two
representations of the same set, that is, if A = B, then P (A) = P (B). Now let {t1, . . . , tr} ⊆ I

be a set such that {i1, . . . , in} ⊂ {t1, . . . , tr} and {j1, . . . , jm} ⊂ {t1, . . . , tr}. Then there exists
permutations π1 and π2 such that tπ−1

1 (1) = i1, . . . , tπ−1
1 (n) = in and tπ−1

2 (1) = j1, . . . , tπ−1
2 (m) =

jm. Then we have that

A =
{
x ∈ RI :

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π1,r−m(C)
}
, (2.16)

and
B =

{
x ∈ RI :

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π2,r−n(D)
}
, (2.17)

where ψπ1,r−m and ψπ2,r−n are defined as in Section 2.1. Now we show that ψ−1
π1,r−m(C) and

ψ−1
π2,r−n(D) coincide when A = B. Suppose there is some point z = (z1, . . . , zr) such that
z ∈ ψ−1

π1,r−m(C) but z /∈ ψ−1
π2,r−n(D). But since t1, . . . , tr are distinct, there is an x ∈ RI such

that (
x(t1), . . . , x(tr)

)
= (z1, . . . , zr) ,

and then x ∈ A but x /∈ B, which is a contradiction, and thus ψ−1
π1,r−m(C) = ψ−1

π2,r−n(D). Finally,
note that (2.1) and (2.2) implies (2.3). Thus we get

P (A) = µi1,...,in(C) = µt1,...,tr

(
ψ−1
π1,r−m(C)

)
= µt1,...,tr

(
ψ−1
π2,r−n(D)

)
= µj1,...,jm(D) = P (B),

which proves the consistency of P .
Clearly, for any n ∈ N and i1, . . . , in ∈ I, we have

P
(
RI
)

= P

({
x ∈ RI :

(
x(i1), . . . , x(in)

)
∈ Rn

})
= µi1,...,in(Rn) = 1,

so all we need to prove now is that P is countably additive for pairwise disjoint sets. By
Billingsley [1995, Example 2.10] we have countable additivity, if we have finite additivity and
any sequence A1 ⊇ A2 ⊇ · · · in B0

I where Ak → ∅ for k →∞ satisfies P (Ak)→ 0 for k →∞.



2.2. Kolmogorov’s Theorem 19

We first prove finite additivity. Let A and B be defined as in (2.13) and (2.15), and let
A∩B = ∅. Then, as before, there exists a set {t1, . . . , tr} ⊆ I and permutations π1 and π2 such
that A and B can be expressed as in (2.16) and (2.17). Then suppose there is some z ∈ Rr

such that z ∈ ψ−1
π1,r−m(C) and z ∈ ψ−1

π2,r−n(D). But since there exists an x ∈ RI such that(
x(t1), . . . , x(tr)

)
= z, we have that x ∈ A and x ∈ B, but then A ∩B is non-empty, which is a

contradiction, so ψ−1
π1,r−m(C) ∩ ψ−1

π2,r−n(D) = ∅. Thus we get

P (A ∪B) = P

({
x ∈ RI :

(
x(t1), . . . , x(tr)

)
∈ ψ−1

π1,r−m(C) ∪ ψ−1
π2,r−n(D)

})
= µt1,...,tr

(
ψ−1
π1,r−m(C) ∪ ψ−1

π2,r−n(D)
)

= µt1,...,tr

(
ψ−1
π1,r−m(C)

)
+ µt1,...,tr

(
ψ−1
π2,r−n(D)

)
= µi1,...,in(C) + µj1,...,jm(D) = P (A) + P (B),

which proves finite additivity.
Now let A1 ⊇ A2 ⊇ · · · be a sequence of sets in B0

I where Ak → ∅ for k → ∞. We now
show that this implies that P (Ak)→ 0 for k →∞. To do so we show the contra-positive, that
is, we show that if for some ε > 0, P (Ak) > ε for all k ∈ N, we have that

⋂∞
k=1Ak 6= ∅. Since

Ak is a finite-dimensional set for all k ∈ N, there must also exist a sequence of Borel sets (not
necessarily of the same dimension), {Ck}k∈N such that

Ak =
{
x ∈ RI :

(
x(i1), . . . , x(iak)

)
∈ Ck

}
,

where ak+1 ≤ ak for all k ∈ N. Now note that for an arbitrary k ∈ N we have that µi1,...,iak (Ck) ≤
1 < ∞, so by Lemma 2.8 (ii) it follows that there exists a compact set Dk such that Dk ⊆ Ck
and µi1,...,iak (Ck\Dk) < ε/2k+1. Let Bk = {x ∈ RI :

(
x(i1), . . . , x(iak)

)
∈ Dk}. Then

P (Ak\Bk) = µi1,...,iak (Ck\Dk) < ε/2k+1.

Therefore we get

P

Ak\ k⋂
l=1

Bl

 = P

 k⋃
l=1

Ak\Bl

 ≤ P
 k⋃
l=1

Al\Bl

 ≤ k∑
l=1

P
(
Al\Bl

)
<

k∑
l=1

ε

2l+1 <
ε

2 ,

where the second and third relations are properties possessed by measures, which follow from
finite additivity. This means that P (Ak) − P

(⋂k
l=1Bl

)
< ε/2, and since P (Ak) > ε for all

k ∈ N, it follows that P
(⋂k

l=1Bl
)
> ε/2. This means that

⋂k
l=1Bl is non-empty for any k ∈ N.

Using the result shown above, we now prove that
⋂∞
k=1Ak is non-empty. Let k ∈ N and let

xk ∈
⋂k
l=1Bl. Now for p ≤ k we have that

xk ∈
k⋂
l=1

Bl ⊆
p⋂
l=1

Bl ⊆ Bp,

and thus
(
xk(i1), . . . , xk(iap)

)
∈ Dp. Since x1(iap), . . . , xp−1(iap) are all finite, and the sequence

{xl(iap)}l≥p is in Dp, which is bounded, we get that the sequence {xl(iap)}l∈N is bounded for
any p (the same argument can used to show that the sequence {xl(ir)}l∈N for any r such that
ap−1 < r < ap). By Billingsley [1995, A14, p. 539] there exists an increasing sequence {nl}l∈N
of positive integers such that the limit of the sequence {xnl(ir)}l∈N exists for any r ∈ N.

Now let x : I → R be a function such that x(ir) = liml→∞ xnl(ir) for all r. But then(
xnl(i1), . . . , xnl(iap)

)
∈ Dp for all l ∈ N such that nl ≥ p, so the sequence

{(
xnl(i1), . . . , xnl(iap)

)}
l:nl≥p
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is in Dp, and since Dp is compact

lim
l→∞

(
xnl(i1), . . . , xnl(iap)

)
=
(
x(i1), . . . , x(iap)

)
∈ Dp,

which implies that x ∈ Bp and thus x ∈ Ap. Since these arguments were carried out for an
arbitrary p, we get that

x ∈
∞⋂
p=1

Ap,

which proves the Theorem.

2.3 Generalised Stochastic Processes

This section is based on [Schäffler, 2018, Chapter 2.1-2.3].

As we see in Definition 2.1 we can choose the index set of a stochastic process to be any non-
empty set. Specifically we may choose I = Td, to obtain random variables indexed over test
functions. This is used to define the notion of generalised stochastic processes, but first we need
to define the notion of continuity for test-function-indexed stochastic process.

Definition 2.10 (Continuity for Test-function-indexed Stochastic Process). Let Z be
a stochastic process with index set Td. Then Z is said to be continuous if

lim
k→∞

E
[
g
(
Z(ϕ1k), . . . , Z(ϕmk)

)]
= E

[
g
(
Z(ϕ1), . . . , Z(ϕm)

)]
,

for any bounded function g : Rm → R and for any m sequences of test-functions such that
ϕik → ϕi for k → ∞ and i = 1, . . . ,m (here ϕik → ϕi refers to convergence in the sense of
Definition 1.2).

This makes it possible to define generalised stochastic processes

Definition 2.11 (Generalised Stochastic Processes). Let Z be a stochastic process with
index-set Td. If Z is continuous and

Z(aϕ+ bψ) = aZ(ϕ) + bZ(ψ),

almost surely for all a, b ∈ R and ϕ,ψ ∈ Td, then Z is said to be a generalised stochastic
process.

It is clear from Definition 2.1 that generalised stochastic process are not generalisations of
stochastic processes. Their name arise for different reasons. For a fixed ω ∈ Ω we have that a
generalised stochastic process Z(ω, ·) is a functional, and thus if Z has continuous paths, Z(ω, ·)
is a generalised function for any ω ∈ Ω. In fact it turns out, that for any generalised stochastic
process, Z, there exists another generalised stochastic process, Z∗, with has continuous paths
(in the sense of Definition 1.5) and Z(·, ϕ) = Z∗(·, ϕ) almost surely for all ϕ ∈ Td [Dawson, 1970,
Theorem 2.1].

We define the mean- and covariance-functional for a generalised stochastic process as we
would have for a random field,

m(ϕ) = E
[
Z(ϕ)

]
, C(ϕ,ψ) = Cov

[
Z(ϕ), Z(ψ)

]
.
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Furthermore we note that, as usual, the covariance-functional is symmetric, bi-linear and positive
semi-definite, meaning that

m∑
i=1

m∑
j=1

aiajC(ϕi, ϕj) ≥ 0,

for all a1, . . . , am ∈ R and ϕ1, . . . , ϕm ∈ Td.
If all finite dimensional distributions of Z are Gaussian, then Z is said to be a Gaussian

generalised stochastic process. With this we can show the following theorem.

Theorem 2.12. Let m : Td → R be a continuous linear functional, and let C : T 2
d → R be

a continuous, symmetric, bi-linear and positive semi-definite functional. Then there exists a
Gaussian generalised stochastic process, Z, which satisfies

E
[
Z(ϕ)

]
= m(ϕ)

and
Cov

[
Z(ϕ), Z(ψ)

]
= C(ϕ,ψ).

Proof. In order to prove the results, we need to show the following:

(i) The functionals m(·) and C(·, ·) induces a class of finite-dimensional distribution func-
tions. That is for any ϕ1, . . . , ϕn, the normal-distribution with mean-vector and covariance-
matrix given by

µϕ1,...,ϕn =


m(ϕ1)

...
m(ϕn)

 , Σϕ1,...,ϕn =


C(ϕ1, ϕ1) · · · C(ϕ1, ϕn)

... . . . ...
C(ϕn, ϕ1) · · · C(ϕn, ϕn)

 ,
is a valid distribution. In other words it must be shown that Σϕ1,...,ϕn is positive semidef-
inite for any choice of ϕ1, . . . , ϕn.

(ii) There exists a stochastic process, Z, with index-set Td such that(
Z(ϕ1), . . . , Z(ϕn)

)>
∼ N

(
µϕ1,...,ϕn ,Σϕ1,...,ϕn

)
, (2.18)

for any ϕ1, . . . , ϕn ∈ Td.

(iii) Z(aϕ+ bψ) = aZ(ϕ) + bZ(ψ) almost surely for all ϕ,ψ ∈ Td and a, b ∈ R.

(iv) Z is continuous.

Choose arbitrary test-functions ϕ1, . . . , ϕn ∈ Td and define a random vector Zϕ1,...,ϕn : Ω→ Rn

such that
Zϕ1,...,ϕn ∼ N

(
µϕ1,...,ϕn ,Σϕ1,...,ϕn

)
,

where µϕ1,...,ϕn and Σϕ1,...,ϕn are defined as in (2.18).
We get that for any a ∈ Rn

a>Σϕ1,...,ϕna =
n∑
i=1

n∑
j=1

aiajC(ϕi, ϕj) ≥ 0,
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and thus Σϕ1, . . . , ϕn is a positive semi-definite matrix, which proves (i). Furthermore we get
that (ii) holds by Theorem 2.9.

To prove (iii) choose arbitrary ϕ,ψ ∈ Td and a, b ∈ R. To prove that Z(aϕ + bψ) =
aZ(ϕ) + bZ(ψ) almost surely we consider the random variable Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)
.

First we note that

Var
[
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)]
= Var

[
Z(aϕ+ bψ)

]
+ Var

[
aZ(ϕ) + bZ(ψ)

]
− 2Cov

[
Z(aϕ+ bψ), aZ(ϕ) + bZ(ψ)

]
. (2.19)

We now express each term in (2.19) in terms of the covariance function of Z. By construction
we get

Var
[
Z(aϕ+ bψ)

]
= C(aϕ+ bψ, aϕ+ bψ). (2.20)

The second term in(2.20) can be expanded as follows

Var
[
aZ(ϕ) + bZ(ψ)

]
= a2Var

[
Z(ϕ)

]
+ b2Var

[
Z(ψ)

]
+ 2abCov

[
Z(ϕ), Z(ψ)

]
= a2C(ϕ,ϕ) + b2C(ψ,ψ) + 2abC(ϕ,ψ)
= C(aϕ+ bψ, aϕ+ bψ). (2.21)

Finally, for the third in (2.20) term we get

Cov
[
Z(aϕ+ bψ), aZ(ϕ) + bZ(ψ)

]
= aCov

[
Z(aϕ+ bψ), Z(ϕ)

]
+ bCov

[
Z(aϕ+ bψ), Z(ψ)

]
= aC(aϕ+ bψ, ϕ) + bC(aϕ+ bψ, ψ)
= C(aϕ+ bψ, aϕ+ bψ). (2.22)

Now by inserting (2.20), (2.21) and (2.22) into (2.19) we get that

Var
[
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)]
= 0,

which means that Z(aϕ+ bψ)−
(
aZ(ϕ) + bZ(ψ)

)
is constant almost surely. By examining the

mean we get

E
[
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)]
= m(aϕ+ bψ)−m(aϕ)−m(bψ) = 0,

by linearity of m, and thus Z(aϕ+ bψ)−
(
aZ(ϕ) + bZ(ψ)

)
= 0 almost surely, proving (iii).

To show (iv) we note that if we have sequences of test-functions {ϕik}k∈N, i = 1, . . . , n, such
that ϕik → ϕi for i = 1, . . . , n, then(

m(ϕnk), . . . ,m(ϕnk)
)> → (

m(ϕ1), . . . ,m(ϕn)
)>
, for k →∞,

and 
C(ϕ1k, ϕ1k) · · · C(ϕ1k, ϕnk)

... . . . ...
C(ϕnk, ϕ1k) · · · C(ϕnk, ϕnk)

→

C(ϕ1, ϕ1) · · · C(ϕ1, ϕn)

... . . . ...
C(ϕn, ϕ1) · · · C(ϕn, ϕn)

 , for k →∞,

due to the continuity of m and C. This means that

(Z(ϕik), . . . , Z(ϕnk))>
d→ (Z(ϕ1), . . . , Z(ϕn))>, for k →∞,

and thus by Portmanteau’s Lemma [Rongfeng, Theorem 1.3] it follows that

E
[
g(Z(ϕik), . . . , Z(ϕnk))

]
→ E

[
g(Z(ϕ1), . . . , Z(ϕn))

]
, for k →∞,

for any continuous bounded function g : Rn → R. This shows that Z is continuous by Definition
2.10, and thus it is a generalised stochastic process.
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Derivative of a Brownian Motion

We now show an application of generalised stochastic processes, by differentiating a Brownian
Motion. First we introduce Brownian Motion as a stochastic process on R+.

Definition 2.13 (Brownian Motion). Let B be a stochastic process with index-set R+. B
is said to be a Brownian Motion if the following criteria are satisfied

(i) For any t, s ∈ R+, B(t)−B(s) ∼ N(0, |t− s|).

(ii) B(0) = 0 almost surely.

(iii) For any t, s ∈ R+, Cov
[
B(t), B(s)

]
= min(t, s).

From (iii) if is easily verified that for any r, s, t, u ∈ R+ with r < s ≤ t < u, B(s) − B(r) and
B(u)−B(t) are independent. The most intuitively straightforward way to define the derivative
of a Brownian Motion is

B′(ω, t) = lim
ε→0

B(ω, t− ε)−B(ω, t+ ε)
2ε . (2.23)

This is known as path-wise differentiation. Since

E
[
B(ω, t− ε)−B(ω, t+ ε)

2ε

]
= 0,

and
Var

[
B(ω, t− ε)−B(ω, t+ ε)

2ε

]
= 1

2ε,

we would expect B′ to be a zero-mean process with infinite variance, and since Brownian Motions
have independent increments, we would also have that B′(t) and B′(s) are independent for any
t, s ∈ R+. Of course these considerations are heuristic, and unfortunately they do not hold
in practice. This is due to a well-known results, which states that all paths of a Brownian
Motion are continuous but non-differentiable at all points. This means that the limit in (2.23)
is undefined. However all is not lost, since, as we shall see, it is possible to express a Brownian
Motion as a generalised stochastic process. This makes it possible to give meaning to the notion
of a derivative of a Brownian Motion similarly to how we "defined" the derivatives of non-
differentiable locally integrable functions in Section 1.2. To achieve this we define the derivative
of a generalised stochastic process similarly to how we defined the derivative of a generalised
function.

Definition 2.14 (Derivative of a Generalised Stochastic Process). Let Z be a gener-
alised stochastic process with index-set T1. Then the generalised stochastic process, Z ′, defined

Z ′(ω, ϕ) = −Z(ω, ϕ′), for all ω ∈ Ω and ϕ ∈ Td, (2.24)

is called the derivative of Z.

Note that the right-hand-side of (2.24) is always well-defined, since Td ⊂ C∞d . Before proceeding
with Brownian Motions we first show some properties of the derivative of a generalised stochastic
process. First let Z be a generalised stochastic process. Then we have

E
[
Z ′(ϕ)

]
= −E

[
Z(ϕ′)

]
= −m(ϕ′) = m′(ϕ)
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for any ϕ ∈ T1 by Definition 1.8, since m is a generalised function. Now let C ′ be the covariance
function of Z ′. Then

C ′(ϕ,ψ) = Cov
[
Z ′(ϕ), Z ′(ψ)

]
= E

[(
Z ′(ϕ)−m′(ϕ)

) (
Z ′(ψ)−m′(ψ)

)]
= E

[(
−Z(ϕ′) +m(ϕ′)

) (
−Z(ψ′) +m(ψ′)

)]
= E

[(
Z(ϕ′)−m(ϕ′)

) (
Z(ψ′)−m(ψ′)

)]
= Cov

[
Z(ϕ′), Z(ψ′)

]
= C(ϕ′, ψ′).

As mentioned previously, Brownian Motions are path-wise non-differentiable at all points. So
the best we can do is to define a generalised stochastic process similar to how we defined a regular
generalised function, and differentiate that. Specifically we define (with abuse of notation)

B(ω, ϕ) =
∫ ∞

0
B(ω, t)ϕ(t)dt, for all ω ∈ Ω.

This is a Riemann integral, and is thus defined as the limit of a sum of increasingly narrow
increments. The terms of the sum can be written as B(ω, ti)ϕ(ti − ti−1), and are zero-mean
Gaussian, and thus B(·, ϕ) is also Gaussian with mean zero. Furthermore

Cov
[
B(ϕ), B(ψ)

]
= E

[(∫ ∞
0

B(t)ϕ(t)dt
)(∫ ∞

0
B(s)ψ(s)ds

)]

= E
[∫ ∞

0

∫ ∞
0

B(t)B(s)ϕ(t)ψ(s)dtds
]

=
∫ ∞

0

∫ ∞
0

E
[
B(t)B(s)

]
ϕ(t)ψ(s)dtds

=
∫ ∞

0

∫ ∞
0

min(t, s)ϕ(t)ψ(s)dtds.

With this we can state the following result.

Proposition 2.15. Let B be a generalised stochastic process on T1 such that

E
[
B(ϕ)

]
= 0 for all ϕ ∈ T1 (2.25)

and
Cov

[
B(ϕ), B(ψ)

]
=
∫ ∞

0

∫ ∞
0

min(t, s)ϕ(t)ψ(s)dtds.

Then B′(ϕ) satisfies
E
[
B′(ϕ)

]
= 0, (2.26)

and
Cov

[
B′(ϕ), B′(ψ)

]
=
∫ ∞

0

∫ ∞
0

ϕ(t)ψ(s)dtds. (2.27)

Proof. This proof follows the arguments of the proof of [Schäffler, 2018, Theorem 2.4].

Firstly (2.26) follows trivially from (2.25) since ϕ ∈ T1 implies that ϕ′ ∈ T1 and B′(ϕ) = −B(ϕ′).
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Now we show (2.27). We do this by deriving an expression for Cov
[
B(ϕ), B(ψ)

]
and then

use the fact that
Cov

[
B′(ϕ), B′(ψ)

]
= Cov

[
B(ϕ′), B(ψ′)

]
.

We note that

Cov
[
B(ϕ), B(ψ)

]
=
∫ ∞

0

∫ ∞
0

min(t, s)ϕ(t)ψ(s)dtds

=
∫ ∞

0

∫ s

0
tϕ(t)ψ(s)dtds+

∫ ∞
0

∫ t

0
sϕ(t)ψ(s)dsdt

=
∫ ∞

0
ϕ(t)

∫ t

0
sψ(s)dsdt+

∫ ∞
0

ψ(s)
∫ s

0
tϕ(t)dtds. (2.28)

Now we consider the first term, and perform integration by parts where u(t) =
∫ t

0 sψ(s)ds
and v′(t) = ϕ(t). First we note that defining u and v′ this way implies u′(t) = tψ(t) and
v(t) =

∫ t
0 φ(s)ds. Thus we get∫ ∞

0
ϕ(t)

∫ t

0
sψ(s)dsdt =

[∫ t

0
ϕ(s)ds

∫ t

0
sψ(s)ds

]∞
t=0
−
∫ ∞

0
tψ(t)

∫ t

0
ϕ(s)dsdt

=
∫ ∞

0
ϕ(t)dt

∫ ∞
0

tψ(t)dt−
∫ ∞

0
tψ(t)

∫ t

0
ϕ(s)dsdt.

Now define Φ(t) =
∫ t
0 ϕ(s)ds, then∫ ∞

0
ϕ(t)

∫ t

0
sψ(s)dsdt = (Φ(∞)− Φ(0))

∫ ∞
0

tψ(t)dt−
∫ ∞

0
tψ(t)(Φ(t)− Φ(0))dt

=
∫ ∞

0

(
Φ(∞)− Φ(t)

)
tψ(t)dt. (2.29)

Defining Ψ(t) =
∫ t

0 ψ(s)ds and performing similar computations on the second term of (2.28),
we get ∫ ∞

0
ψ(s)

∫ s

0
tϕ(t)dtds =

∫ ∞
0

(Ψ(∞)−Ψ(t))tϕ(t)dt. (2.30)

Now inserting (2.29) and (2.30) into (2.28) yields

Cov
[
B(ϕ), B(ψ)

]
=
∫ ∞

0
t

(
ψ(t)

(
Φ(∞)− Φ(t)

)
+ ϕ(t)

(
Ψ(∞)−Ψ(t)

))
dt.

Once again we perform integration by parts. Here u(t) = t and v′(t) = ψ(t)
(
Φ(∞) − Φ(t)

)
+

ϕ(t)
(
Ψ(∞)−Ψ(t)

)
and thus v(t) = −(Φ(∞)− Φ(t))(Ψ(∞)−Ψ(t)). Thus we obtain

Cov
[
B(ϕ), B(ψ)

]
=
[
−t(Φ(∞)− Φ(t))(Ψ(∞)−Ψ(t))

]∞
t=0 +

∫ ∞
0

(Φ(∞)− Φ(t))(Ψ(∞)−Ψ(t))dt

= lim
t→∞

(
− t
(
Φ(∞)− Φ(t)

)(
Ψ(∞)−Ψ(t)

))
+
∫ ∞

0
(Φ(∞)− Φ(t))(Ψ(∞)−Ψ(t))dt.

We now consider the limit in the above expression.

lim
t→∞
−t
(
Φ(∞)− Φ(t)

)(
Ψ(∞)−Ψ(t)

)
= lim

t→∞
−

(
Φ(∞)− Φ(t)

)(
Ψ(∞)−Ψ(t)

)
1/t

= lim
t→∞
−
ψ(t)

(
Φ(∞)− Φ(t)

)
+ ϕ(t)

(
Ψ(∞)−Ψ(t)

)
1/t2 ,
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where the second equality follows from L’Hospital’s rule. Since ϕ,ψ ∈ Td they have bounded
supports. This means that t∗ = max(Supp(ϕ) ∪ Supp(ψ)) is finite and well-defined, and that
the expression in the limit above is constantly equal to zero for t > t∗. Thus

lim
t→∞
−
ψ(t)

(
Φ(∞)− Φ(t)

)
+ ϕ(t)

(
Ψ(∞)−Ψ(t)

)
1/t2 = 0,

which in turn implies that

Cov
[
B(ϕ), B(ψ)

]
=
∫ ∞

0
(Φ(∞)− Φ(t))(Ψ(∞)−Ψ(t))dt.

Now the fact that Cov
[
B′(ϕ), B′(ψ)

]
= Cov

[
B(ϕ′), B(ψ′)

]
implies that

Cov
[
B′(ϕ), B′(ψ)

]
=
∫ ∞

0
ϕ(t)ψ(t)dt,

which proves the result.



Chapter 3

Set- and measure-indexed Stochastic
Processes

3.1 Generalised Random Fields

This section is based on Mondal [2015].

In this section we introduce the notion of generalised random fields. These objects are used to
model more complex structures than traditional random fields. When modelling a dataset with
random fields, it is assumed that the data is sampled at infinitesimally sized points. Of course
this is an abstraction, and in reality the area sampled has a non-zero area. In order to facilitate
a model that takes this into account, we introduce set-indexed random fields.

Definition 3.1 (Set-indexed Random Fields). Let (X,G, µ) be measure space and denote
Gµ = {A ∈ G : µ(A) < ∞}. Then a stochastic process, Z, with index-set Gµ, is called a
set-indexed random field over G and µ.

Suppose that YRF is an integrable random field on Rd. Then we can define a set-indexed random
field over the Borel σ-algebra and the Lebesgue measure as follows. For any bounded set A ⊂ Rd

we define
Y (ω,A) =

∫
A
YRF(ω, x)dx. (3.1)

Of course Definition 3.1 also allows other constructions, and in practice we do not use YRF,
but it is used here for illustrative purposes. Henceforth, unless otherwise specified, we only
consider set-indexed random fields over the Borel sigma-algebra and the Lebesgue measure. In
this chapter we seek to describe the so-called De Wijs process. This can only be defined on
contrasts of set-indexed random fields. In order to handle this theoretically we need a class of
stochastic processes indexed on measures. First denote M(X,G) as the set of all signed measures
on the measurable space (X,G). Then denoteM = {µ ∈ M(Rd,Bd) : µ(Rd) = 0}. It is easy to
check thatM is a vector space, which gives rise to the following definition.

27
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Definition 3.2 (Generalised Random Fields). Let Z be a stochastic process with index-set
S. Z is called a generalised random field if S is a subspace ofM, and if it satisfies that

Z(aµ+ bν) = aZ(µ) + bZ(ν), (3.2)

almost surely for all µ, ν ∈ S and a, b ∈ R.

We note that the requirement in the above definition, that the index-set, S, is a vector-space, is
a reasonable one, since otherwise the left-hand-side of (3.2) might be undefined for some choices
of µ, ν ∈ S.

A generalised random field can be used to model contrasts over set indexed random fields as
follows. Define a generalised random field as

Z(ω, µ) =
∫
YRF(ω, x)dµ(x).

When a generalised random field has this form, we call YRF the underlying random field. Now
let Y be defined as in (3.1) and let A,B ∈ Bd with |A| = |B|, where | · | is the Lebesgue measure.
Suppose µ is a signed measure on (Rd,Bd) with density 1A − 1B with respect to the Lebesgue
measure. Then we have

µ(Rd) =
∫

1A(x)dx−
∫

1B(x)dx = |A| − |B| = 0,

so µ ∈M. Now we get

Z(ω, µ) =
∫
YRF(ω, x)dµ(x) =

∫
YRF(ω, x)(1A(x)− 1B(x))dx

=
∫
A
YRF(ω, x)dx−

∫
B
YRF(ω, x)dx = Y (ω,A)− Y (ω,B).

If we were to restrict Z to the set of measures µ ∈M with a test-function as density with respect
to the Lebesgue measure, we would have a generalised stochastic process where Z(µ) = Z(ϕ)
with an abuse of notation, when ϕ is the density for µ. That is

Z(ω, ϕ) =
∫
YRF(ω, x)ϕ(x)dx, (3.3)

for all ϕ ∈ Td. It is easily seen that the space of measures inM with a test-function as density
with respect to the Lebesgue measure is vector space. Thus it is possible to construct a process
that is both a generalised stochastic process and a generalised random field.

Some generalised random fields have certain useful properties given by the finite-dimensional
distributions. A generalised random field where all finite dimensional distributions are Gaussian
is called a Gaussian generalised random field. Now let Z be a generalised random field with
index-set S and let µ be an arbitrary measure in S. Then for h ∈ Rd define

µh(A) = µ(A+ h),

where A + h = {a + h ∈ Rd : a ∈ A}. Then, if for any h ∈ Rd and n ∈ N it holds for any
µ1, . . . , µn ∈ S that

(
Z(µ1), . . . , Z(µn)

)
has the same distribution as

(
Z(µh1), . . . , Z(µhn)

)
, Z is

said to be stationary. Similarly we may define

µR(A) = µ(RA),
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where R is a rotation matrix and RA = {Ra ∈ Rd : a ∈ A}. Then if
(
Z(µ1), . . . , Z(µn)

)
has the same distribution as

(
Z(µR1 ), . . . , Z(µRn )

)
for any rotation matrix, any n ∈ N and any

µ1, . . . , µn ∈ S, Z is said to be isotropic. Finally define

µb(A) = µ(bA),

where b ∈ R and bA = {ba ∈ Rd : a ∈ A}. Then if
(
Z(µ1), . . . , Z(µn)

)
has the same distribution

as
(
Z(µb1), . . . , Z(µbn)

)
for any b ∈ R, any n ∈ N and any µ1, . . . , µn ∈ S, Z is said to be

self-similar.
The usual covariance function may not be sufficient to model the covariance-structure of

generalised random fields. Instead a different but related object is used.

Definition 3.3 (Generalised Covariance Function). Let Z be a generalised random field
with index-set S, where E

[
Z(µ)

]
= 0 for all µ ∈ S. Then a symmetric function K(·, ·) which

satisfies
Cov

[
Z(µ), Z(ν)

]
=
∫ ∫

K(x, y)dµ(x)ν(y),

for µ, ν ∈ S is called a generalised covariance function for Z.

It turns out that the notion of generalised covariance functions for intrinsic random fields of
order k, which are examined in Jensen and Fitzhugh [2018], is a special case of Definition 3.3.
We can define Λk as the space of allowable discrete measures of order k, i.e signed measures on
the form

λ(A) =
m∑
i=1

λiδxi(A),

where x1, . . . , xm ∈ Rd are distinct points, δxi is the Dirac-measure centred at xi and λ1, . . . , λm ∈
R are chosen such that

m∑
i=1

λiP (xi) = 0,

for any polynomial P with deg(P ) ≤ k. We now define a stochastic process with index-set Λk
as

Z(λ) =
m∑
i=1

λiYRF(xi),

where YRF is a random field over Rd. Since Λk is a subspace ofM, Z is a generalised random
field. It is worth noting that the notion of intrinsic random fields of order k defined using
random fields over Rd (see Jensen and Fitzhugh [2018, Definition 1.12]), is equivalent to requiring
that the covariance of Z is invariant under translations. In other words, for λ, µ ∈ Λk with
λ(A) =

∑m
i=1 λiδxi(A) and µ(A) =

∑m
i=1 µiδyi(A) we get that

Cov
[
Z(λ), Z(µ)

]
=
∫ ∫

K(y − x)dλ(y)dµ(x) =
m∑
i=1

m∑
j=1

λiµjK(yj − xi).

This is equivalent to Jensen and Fitzhugh [2018, Definition 1.16].
In this project we do not prove that the generalised covariance function of a generalised

random field exists, but for a proof of the special case of a generalised random field with index-
set Λk and a k + 1 times mean square differentiable underlying random field over R, see Jensen
and Fitzhugh [2018, Theorem 1.18].
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Relation between index-sets

In this subsection we discuss the relationship between measure-indexed stochastic processes,
generalised stochastic processes, set-indexed random fields and generalised random fields. For
this purpose we define the notion of stochastic processes with multiple index-sets.

Definition 3.4 (Stochastic Processes with Multiple Index-sets). Let Z be a stochastic
process on the probability space (Ω,F , P ), where Z has index-set I and let J be a non-empty
set. Then Z is said to also be stochastic process with index-set J , if there is a one-to-one
correspondence between I and a subset of J .

(1) Generalised Stochastic Processes are Measure-indexed Stochastic Processes:

Let Z be a generalised stochastic process. Then for any ϕ ∈ Td we can define a measure, µ, with
density ϕ with respect to the Lebesgue measure. This amounts to a one-to-one correspondence
between Td and the set {µ ∈M(Rd,Bd) : µ(B) =

∫
B ϕ(x)dx, where ϕ ∈ Td}. Thus by Definition

3.4 Z is also a measure-indexed stochastic process.

(2) Set-indexed Random Fields are Measure-indexed Stochastic Processes:

Let (X,G, ν) be a measure-space and let Z be a set-indexed random field with index-set Gν =
{A ∈ G : ν(A) < ∞}. Then for any A ∈ Gν we can define a measure with density 1A with
respect to ν. Thus we have a one-to-one correspondence between Gν and{

µ ∈M(X,G) : µ(B) =
∫
B

1Adν, A ∈ Gν
}
.

Thus Z is also a measure-indexed stochastic process.

(3) Generalised Random Fields are Measure-indexed Stochastic Processes:

This is trivial.

(4) Set-indexed Random Fields are Generalised Stochastic Processes:

Let (X,G, ν) be a measure-space and let Z be a set-indexed random field with index-set Gν .
Now for each A ∈ Gν we can define a test-function, ϕ, with support A. Then we can construct
a set T ⊂ Td which, for each A ∈ Gν , contains exactly one test-function with support A. Then
we have a one-to-one correspondence between Gν and T . Thus Z is also a generalised stochastic
process.

(5) Generalised Stochastic Processes can be Generalised Random Fields:

Let Z be a generalised stochastic process with index-set T 0
d = {ϕ ∈ Td :

∫
Rd ϕ(x)dx =

0}. Then we have a one-to-one correspondence between T 0
d and the set {µ ∈ M : µ(B) =∫

B ϕ(x)dx, where ϕ ∈ Td}, and thus Z is also a generalised random field. That is, only gener-
alised stochastic processes where the index-set is restricted to T 0

d are generalised random fields.

(6) Set-indexed Random Fields can be Generalised Random Fields:
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Let (X,G, ν) be a measure-space and let Z be a set-indexed random field. For any A ∈ Gν we
can define a measure µ with 1A as density with respect to ν. But since

µ(X) =
∫

dµ =
∫

1Adν = ν(A),

we cannot construct a one-to-one correspondence between Gν and a subset of
{
µ ∈M(X,G) : µ(X) = 0

}
.

So instead we restrict the index-set of Z to Gν,0 = {A ∈ Gν : ν(A) = 0}. Then we have a one-
to-one correspondence between the sets Gν,0 and

M0(X,G, ν) =
{
µ ∈M(X,G) : µ(X) = 0, µ(B) =

∫
B

1Adν, A ∈ Gν,0
}

and Z is a generalised random field. However in some cases further restrictions may be necessary,
since there may be sets, A, Ã ∈ Gν,0, where

∫
B 1Adν =

∫
B 1Ãdν for all B ∈ G.

Note that the most common and practically useful setting for set-indexed random fields is
when X = Rd, G = Bd and ν is the Lebesgue measure. Then the set-indexed random field, Z,
discussed above, would be defined only on countable unions of points in Rd. This object is not
useful as we show here. For any A ∈ Gν,0 we would have Rd 3 x1, x2, . . . such that A =

⋃∞
i=1{xi}.

Then for any measure in M0(Rd,Bd, ν) we get

µ(B) =
∫
B

dµ =
∫
B

1A(x)dx =
∫
B∩
⋃∞
i=1{xi}

dx =
∫⋃∞

i=1 B∩{xi}
dx =

∞∑
i=1

∣∣B ∩ {xi}∣∣ ,
and since

B ∩ {xi} =

∅ when xi /∈ B
{xi} when xi ∈ B

,

we get that
∣∣B ∩ {xi}∣∣ = 0 for all i ∈ N. Thus the only way to construct a one-to-one corre-

spondence is to restrict the index-set of Z to {∅}, in which case Z is only a single random variable.

The relations described above are summarised in Figure 3.1.

Measure-indexed Stochastic Processes

Set-indexed Random Fields

Generalised
Stochastic Processes

Gen
er

al
ise

d

Ra
nd

om
 Fi

el
d

Figure 3.1: This Figure shows the relation between measure-indexed stochastic processes, generalised random
fields, generalised stochastic processes and set-indexed random fields.
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3.2 De Wijs Process

This section is based on Mondal [2015].

We can now define the central process of this project.

Definition 3.5 (De Wijs Process). Let Z be a zero-mean Gaussian generalised random
field with index-set W, which is the set of all measures µ ∈M that satisfy∫ ∫

| log‖x− y‖ |dµ+(x)dµ+(y) <∞,

where µ+(A) = |µ(A)| for all A ∈ Bd. Z is called the De Wijs process if it is stationary,
isotropic, self-similar and has generalised covariance function K(x, y) = − log‖x− y‖, that is

Cov
[
Z(µ), Z(ν)

]
= −

∫ ∫
log‖x− y‖dµ(x)dν(y),

for all µ, ν ∈ W.

We note that by Definition 3.2 the index set of a generalised random field must be a subspace of
M. This means that in order for the De Wijs process to be well defined, we must show that W
is a subspace ofM. Obviously W ⊂M, so we need to show that W is a vector-space. For this
purpose we state part of Mattner [1997, Corollary 2.5], here formulated as a lemma.

Lemma 3.6. Let f be an infinitely differentiable function such that (−1)nf (n) is non-constant
and non-negative everywhere for n ≥ k for some non-negative integer k. Then the set

Mf (Rd) =
{
µ ∈M(Rd) :

∫ ∫
|f(‖x− y‖2)|dµ+(x)dµ+(y) <∞, and

∫
xαdµ(x) = 0, for |α| ≤ k − 1

}

where M(Rd) is the set of all signed radon measures on Rd, is a vector space.

We do not prove this result in this project. Applying Lemma 3.6 gives the following proposi-
tion.

Proposition 3.7. The De Wijs process is well-defined or, equivalently, W is a vector space.

Proof. The idea for this proof originates in [Mondal, 2015, p. 5]

Let f(r) = − log
√
r. Thus we have that f(r) < 0 for r > 1, but since

f (n) = (−1)n 1
2(n− 1)!rn ,

we have that (−1)nf (n)(r) > 0 for all r ∈ (0,∞) when n ≥ 1 = k. Thus the requirement that µ
satisfies ∫

xαdµ(x) = 0, for |α| ≤ k − 1

can be restated as µ(Rd) = 0, and thus we get that W = Mf (Rd), which is a vector space by
Lemma 3.6.

We now state Mattner [1997, Corollary 2.4]
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Proposition 3.8. Let f be an infinitely differentiable function such that (−1)nf (n) is non-
constant and non-negative everywhere for n ≥ k for some non-negative integer k, and let µ be
a measure in M(Rd) that is not constantly zero, which satisfies∫

Rd
xαdµ(x) = 0 (3.4)

for |α| ≤ k − 1. Then we get that∫
Rd

∫
Rd
f(‖x− y‖2)dµ(x)dµ(y) > 0. (3.5)

We note that the function − log
√
r satisfies the conditions of Proposition 3.8 with k = 1. We

also note that when k = 1 the condition in (3.4) amounts to µ(Rd) = 0, thus the measures
satisfying this condition are all non-zero Radon measures in M. Applying the proposition to
− log

√
r then implies that the functional

C(µ, ν) =
∫
Rd

∫
Rd
− log(‖x− y‖)dµ(x)dν(y)

satisfies
C(µ, µ) ≥ 0 (3.6)

for all µ ∈ W, with C(µ, µ) = 0 if and only if µ(A) = 0 for all A ∈ Bd. In other words, C
is positive definite. This means that W is a normed inner product space, with inner product
〈µ, ν〉 = C(µ, ν) and norm

‖µ‖W = 〈µ, µ〉1/2.

It is now straight-forward to show the existence of the de Wijs process. First define

Cov
[
Z(µ), Z(ν)

]
= C(µ, ν), (3.7)

which is positive definite. Thus by using the same arguments as in (i), (ii) and (iii) in the proof
of Theorem 2.12 we can show that there exists a generalised random field, Z, such that for any
µ1, . . . , µn ∈ W we have

Z(µ1)
...

Z(µn)

 ∼ N


m(µ1)

...
m(µn)

 ,

C(µ1, µ1) · · · C(µ1, µn)

... . . . ...
C(µn, µ1) · · · C(µn, µn)


 ,

where C is given as in (3.7), m(µ1) = · · · = m(µn) = 0 and where Z(aµ+ bν) = aZ(µ) + bZ(ν)
almost surely. In order to show that the de Wijs process exists, it suffices to show that C is
preserved under translation, rotation and scaling. Denoting µh(A) = µ(A+ h) for a h ∈ Rd we
get

C(µh, νh) = −
∫ ∫

log‖x− y‖ dµh(x)dνh(y)

= −
∫ ∫

log
∥∥(x̃− h)− (ỹ − h)

∥∥dµh(x̃− h)dνh(ỹ − h)

= −
∫ ∫

log‖x̃− ỹ‖ dµ(x̃)dν(ỹ) = C(µ, ν),
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where the second equality comes from performing the change of variable x̃ = x + h. Denoting
µR(A) = µ(RA) whereR is a rotation matrix, it follows from similar arguments that C(µR, νR) =
C(µ, ν). Finally we show that the covariance function is invariant under changes of scale.
Denoting µa(A) = µ(aA) for a ∈ R we get

C(µa, νa) = −
∫ ∫

log‖x− y‖dµa(x)dνa(y)

= −
∫ ∫

log
∥∥(x̃− ỹ)/a

∥∥dµa(x̃/a)dνa(ỹ/a)

= −
∫ ∫

log
∥∥(x̃− ỹ)

∥∥dµ(x̃)dν(ỹ) +
∫ ∫

log |a|dµ(x̃)dν(ỹ)

= −
∫ ∫

log
∥∥(x̃− ỹ)

∥∥dµ(x̃)dν(ỹ) = C(µ, ν),

where the second equality comes from performing the change of variable x̃ = ax and the second
to last equality comes from the fact that∫ ∫

log |a|dµ(x̃)dν(ỹ) = log |a|
∫ ∫

dµ(x̃)dν(ỹ) = 0,

since ∫
dµ(x̃) = µ(Rd) = 0.

This proves that the de Wijs Process exists.

3.3 Restricted Maximum Likelihood Estimate for the WWN
Process

In this section we consider the De Wijs Plus White Noise process, which is studied in Clifford
and McCullagh [2006].

Definition 3.9 (De Wijs Plus White Noise Process). Let Z be a generalised random
field with index-set W, such that when µ ∈ W has a density wrt. the Lebesgue measure on the
form

∑k
i=1 ai1Ai(x) where A1, . . . , Ak ∈ Bd, then

Z(µ) =
k∑
i=1

aiY (Ai),

where Y is a set-indexed random field. If Z furthermore has generalised covariance function
on the form

K(‖x− y‖) = σ2
0δx−y − σ2

1 log‖x− y‖ ,

where σ2
0, σ

2
1 > 0, then Z is said to be a De Wijs Plus White Noise (WWN) process.

In this section we seek to describe the estimation of the covariance parameters σ2
0 and σ2

1.
Suppose we have data on the form Y =

(
Y (A1), . . . , Y (An)

)> where A1, . . . , An ∈ Bd and
Ai ∩Aj = ∅ for i 6= j. Furthermore let Q be an n×N matrix. Then suppose

Z = Q>Y =


q11Y (A1) + · · ·+ qn1Y (An)

...
q1NY (A1) + · · ·+ qnNY (An)

 =


Z(µ1)

...
Z(µN )

 ,
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where Z(·) is a WWN process, and µi has density
∑n
j=1 qji1Aj wrt. the Lebesgue measure

for i = 1, . . . , n. Since the distribution of Z is known, we can perform maximum likelihood
estimation on Q>Y .

Now suppose that E [Y ] ∈ X . Then we may choose Q such that the columns form an
orthonormal basis of X> and thus E

[
Q>Y

]
= 0. Then for dim(X ) = p, we get N = n − p.

Performing likelihood estimation on Q>Y corresponds to using restricted maximum likelihood
estimation (REML) as described in [Waagepetersen, 2019, slide 17]. Usually REML is used in
order to eliminate the mean. In this case the main purpose is to ensure that the distribution is
well-defined, however since the mean is not of interest here, eliminating it is still useful.

As mentioned previously the covariance matrix of Y is not defined. However it is possible
to define a matrix, Φ, that mimics the behaviour of a covariance matrix of Y , in the sense that

Var [Z] = Var
[
Q>Y

]
= Q>ΦQ. (3.8)

As we shall see, this is satisfied by the matrix, which satisfies that Φij = B(Ai, Aj), where

B(Ai, Aj) =
∫
Ai

∫
Aj

σ2
0δx−y − σ2

1 log‖x− y‖dxdy, (3.9)

where δx is Dirac’s delta function, which satisfies
∫
A δxdx = 1[x ∈ A]. To write an expression of

Φ, we first compute the integral in (3.9). We first note that
∫
Ai
δx−ydx = 1[y ∈ Ai] and thus∫

Ai

∫
Aj

σ2
0δx−ydxdy = σ2

0

∫
Ai∩Aj

dy = σ2
0|Ai ∩Aj | = σ2

0|Ai|1[i = j],

where the last equality comes from the fact that the sets are disjoint. Then the second term in
(3.9) can be expressed as

σ2
1

∫
Ai

∫
Aj

− log‖x− y‖ dxdy = σ2
1|Ai||Aj |AveAi×Aj

(
− log‖x− y‖

)
,

where AveAi×Aj
(
− log‖x− y‖

)
refers to the average value of the negative log of the distance

between the points x and y, where x ∈ Ai and y ∈ Aj . Now define V as the matrix where
Vij = AveAi×Aj

(
− log‖x− y‖

)
, and suppose |A1| = · · · = |An| and denote this volume as |A|.

Then we get
Φ = σ2

0|A|I + σ2
1|A|2V. (3.10)

Suppose we have measures µ1, . . . , µn−p such that µi has density
∑n
k=1 qki1Ak(x) wrt. the

Lebesgue measure. Then we have

Cov
[
Z(µi), Z(µj)

]
=
∫ ∫

K(‖x− y‖)dµi(x)dµj(y)

=
∫ ∫

K(‖x− y‖)

 n∑
k=1

qki1Ak(x)

 n∑
l=1

qlj1Al(y)

 dxdy

=
n∑
k=1

n∑
l=1

qkiqlj

∫
Ak

∫
Al

K(‖x− y‖)dxdy

=
n∑
k=1

n∑
l=1

qkiqljB(Ak, Al) =
[
Q>ΦQ

]
ij
.

This shows that (3.8) holds when Φ is given as in (3.10). Before describing restricted maximum
likelihood estimation we must verify that the µ1, . . . , µn−p ∈ W and that Q>ΦQ is positive
definite. The former is a consequence of the following proposition.
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Proposition 3.10. Let A1, . . . , An be bounded sets in Bd satisfying Ai ∩ Aj = ∅ for i 6= j

and |A1| = · · · = |An|, and let the signed measure µ satisfy µ(B) =
∑n
i=1 qi|Ai ∩ B| for

q1, . . . , qn ∈ R, where
∑n
i=1 qi = 0, for any B ∈ Bd. Then µ ∈ W.

Proof. In order to prove the proposition, we must show that∫ ∫
| log‖x− y‖ |dµ+(x)dµ+(y) <∞,

where µ+(B) = |µ(B)| for all B ∈ Bd. Now define µ̃(B) =
∑n
i=1 |qi||B ∩ Ai| and note that

µ+(B) ≤ µ̃(B) for any B ∈ Bd, so since | log‖x− y‖ | > 0 for all x, y ∈ Rd we get∫ ∫
| log‖x− y‖ |dµ+(x)dµ+(y) ≤

∫ ∫
| log‖x− y‖ |dµ̃(x)dµ̃(y)

=
∫ ∫

| log‖x− y‖ |
n∑
i=1

n∑
j=1
|qiqj |1Ai(x)1Aj (y)dxdy

=
n∑
i=1

n∑
j=1
|qiqj |

∫
Ai

∫
Aj

| log‖x− y‖ |dxdy

=C +
n∑
i=1

q2
i

∫
Ai

∫
Ai

| log‖x− y‖ |dxdy,

where C is the sum of all the terms where i 6= j. Since Ai ∩ Aj = ∅ for i 6= j, | log‖x− y‖ | is
finite on Ai × Aj for i 6= j. Furthermore since A1, . . . , An are bounded it follows that C < ∞.
Since q1, . . . , qn are real numbers it is now sufficient to show that∫

Ai

∫
Ai

| log‖x− y‖ |dxdy <∞,

for any i ≤ n. Now let Di = {(x, y) ∈ Ai ×Ai :‖x− y‖ < 1}. Then∫
Ai

∫
Ai

| log‖x− y‖ |dxdy =
∫

(Ai×Ai)\Di
log‖x− y‖dxdy +

∫
Di

− log‖x− y‖ dxdy. (3.11)

Once again we note that log‖x− y‖ is finite on (Ai×Ai)\Di and thus
∫

(Ai×Ai)\Di log‖x− y‖ dxdy <
∞, so we only need to show that

∫
Di
− log‖x− y‖ dxdy is finite. Note that∫

Di

− log‖x− y‖ dxdy =
∫
Ai

∫
B(y,1)∩Ai

− log‖x− y‖dxdy ≤
∫
Ai

∫
B(y,1)

− log‖x− y‖dxdy,

where the inequality holds since − log‖x− y‖ > 0 when ‖x− y‖ < 1. Now we perform the
change of variable x̃ = x− y and get∫

Ai

∫
B(y,1)

− log‖x− y‖dxdy =
∫
Ai

∫
B(0,1)

− log‖x̃‖ dx̃dy = |Ai|
∫
B(0,1)

− log‖x̃‖ dx̃.

Expressing this integral in terms of polar coordinates yields

|Ai|
∫
B(0,1)

− log‖x̃‖dx̃ = |Ai|
∫

[0,2π]d−1

∫ 1

0
−rd−1 log rdrdθ = −|Ai|(2π)d−1

∫ 1

0
rd−1 log rdr.

The remaining integral may be solved by using integration by parts, where u(r) = log r and
v′(r) = rd−1. Thus we get∫ 1

0
rd−1 log rdr =

[
rd

d
log r

]1

0
−
∫ 1

0

rd−1

d
dr = − lim

r→0

(
rd

d
log r

)
− 1
d2 .
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Finally we note that

lim
r→0

(
rd

d
log r

)
= 1
d

lim
r→0

log r
r−d

= − 1
d2 lim 1/r

r−(d+1) = − 1
d2 lim

r→0
rd = 0,

where the second equality comes from L’hospital’s rule. Thus by (3.11) we have∫
Ai

∫
Ai

∣∣log‖x− y‖
∣∣ dxdy <∞,

which proves the proposition.

Now in order to perform maximum likelihood estimation of Q>Y , which is normally dis-
tributed with mean 0 and covariance matrix Q>ΦQ, we must check that Q>ΦQ is positive
definite. Let a ∈ Rn−p be a non-zero vector, and note that

Q>ΦQ = σ2
0|A|Q>Q+ σ2

1|A|2Q>V Q = σ2
0|A|I + σ2

1|A|2Q>V Q,

since Q>Q = I due to the fact that the columns of Q forms an orthonormal basis. Thus the first
term of a>Q>ΦQa is σ2

0|A|‖a‖
2 > 0, so if σ2

1|A|2a>Q>V Qa > 0 then Q>ΦQ is positive definite.
First we expand the expression

σ2
1|A|2a>Q>V Qa = σ2

1

n−p∑
i=1

n−p∑
j=1

aiaj |A|2[Q>V Q]ij = σ2
1

n−p∑
i=1

n−p∑
j=1

aiaj

n∑
k=1

n∑
l=1

qkiqlj |A|2Vkl. (3.12)

Now recall that

|A|2Vkl =
∫
Ak

∫
Al

− log‖x− y‖ dxdy =
∫ ∫

− log‖x− y‖ 1Ak(y)1Al(x)dxdy.

Thus by (3.12) we get

σ2
1|A|2a>Q>V Qa = σ2

1

n−p∑
i=1

n−p∑
j=1

aiaj

n∑
k=1

n∑
l=1

qkiqlj

∫ ∫
− log‖x− y‖ 1Ak(y)1Al(x)dxdy

= σ2
1

n−p∑
i=1

n−p∑
j=1

aiaj

∫ ∫
− log‖x− y‖

 n∑
k=1

qki1Ak(y)

 n∑
l=1

qlj1Al(x)

dxdy

= σ2
1

∫ ∫
− log‖x− y‖

n−p∑
i=1

n∑
k=1

aiqki1Ak(y)

n−p∑
j=1

n∑
l=1

ajqlj1Al(x)

dxdy.

Now define the measure ν(B) =
∑n−p
i=1

∑n
k=1 aiqki|B∩Ak|. Clearly this is a Radon measure, and

since |A| = |A1| = · · · = |An| we also get that

ν(Rd) =
n−p∑
i=1

n∑
k=1

aiqki|Ak| = |A|
n−p∑
i=1

ai

n∑
k=1

qki = 0,

since
∑n
k=1 qki = 0 due to the fact that µi ∈M. Thus ν is a signed Radon measure inM which

is not constantly zero. Thus by (3.6)

σ2
1|A|2a>Q>V Qa = σ2

1

∫ ∫
− log‖x− y‖

n−p∑
i=1

n∑
k=1

aiqki1Ak(y)

n−p∑
j=1

n∑
l=1

ajqlj1Al(x)

dxdy

= σ2
1

∫ ∫
− log‖x− y‖ dν(x)dν(y) > 0.
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Now the REML estimate is obtained, by computing the maximum likelihood of Q>Y . We
get the log-likelihood function

`(σ2
0, σ

2
1) = −1

2 log
∣∣∣σ2

0|A|I + σ2
1|A|2Q>V Q

∣∣∣− 1
2Z
>
(
Q>ΦQ

)−1
Z. (3.13)

In this case it is more useful to perform the following reparametrisation.

Φ = σ2
0

(
|A|I + σ2

1
σ2

0
|A|2V

)
= σ2

0

(
|A|I + τ |A|2V

)
= σ2

0W (τ),

where τ = σ2
1/σ

2
0. Thus we obtain the log-likelihood

`(σ2
0, τ) = −n− p2 log σ2

0 −
1
2 log |Q>W (τ)Q| − 1

2σ2
0
Z>

(
Q>W (τ)Q

)−1
Z. (3.14)

Differentiating (3.14) wrt. σ2
0 yields

∂`(σ2
0, τ)

∂σ2
0

= −n− p
2σ2

0
+ 1

2σ4
0
Z>

(
Q>W (τ)Q

)−1
Z,

and thus the estimate

σ̂2
0(τ) =

Z>
(
Q>W (τ)Q

)−1
Z

n− p

is obtained. Finally inserting σ̂2
0(τ) into (3.14) yields

`(σ̂2
0(τ), τ) ∝ −n− p2 log

(
Z>

(
I + τ |A|Q>V Q

)−1
Z

)
− 1

2 log
∣∣∣I + τ |A|Q>V Q

∣∣∣ . (3.15)

We compute an estimate of τ by maximising the above numerically.



Chapter 4

Fitting the WWN Process

In this chapter we apply the theory described in Chapter 3 to a practical dataset.

4.1 Data Introduction

In this project we seek to apply the WWN process to a particular dataset. The dataset in
question contains measurements of various properties of the forest soil on Barro Colorado Is-
land (BCI) in Panama. Specifically, the properties are the concentration of aluminium, boron,
calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, sulphur, zinc,
ammonium, nitrate, nitrogen, mineralised ammonium, mineralised nitrate, mineralised nitrogen
as well as the pH-value of the soil. Throughout the report these soil properties are, somewhat
inaccurately, collectively referred to as mineral concentrations, even when pH is included.

The samples are obtained using a so called LaMotte soil sampling tube [Harms et al., 2004],
which is a round tube, extracting a cylinder shaped sample with a diameter of 2.5 cm and a
depth of 30.5 cm. The points are sampled on a 1000 by 500 metre area. the dataset contains 200
points located on a regularly spaced grid, with a spacing of 50 metres and offset by 25 metres in
both the x- and the y-direction. Furthermore 100 points are sampled off the grid, so the dataset
contains 300 points in total. The locations of the sample can be seen in the plot below.
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Figure 4.1: Locations of the measurements of soil data.

At each sampling point, three different samples are obtained using the sampling tube, all within
a radius of 1 meter of each other. Note that the exact location of the three samples are not
reported in the dataset. The size of the sampled areas are 3 · (1.25 cm)2 · π ≈ 14.7cm2 in total.

39
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For more detailed information about how the data has been obtained, the reader may see Harms
et al. [2004].

4.2 Computing the Covariance Matrix

In order to perform the estimations described in Section 3.3, we need to compute the entries of
the matrix V . In practice this needs to be approximated. Specifically, for every pair of integers
(i, j) where i, j ∈ {1, . . . , n} we need to approximate AveAi×Aj (− log(‖x− y‖)). How this should
be done varies depending on how large the areas sampled are. In the BCI dataset the sampled
areas are rather small. So let zi ∈ Rd be the centre of Ai. These are the locations that are
reported in the dataset. We may then define

Vij = − log(
∥∥zi − zj∥∥).

This presents a problem when i = j, and thus other methods must be used to define the diagonal.
The mineral concentrations in the dataset are sampled at three points, at most one metre

from the location reported in the dataset. More precisely a set Ai, centred at zi, is actually
the union of the areas A1

i , A
2
i , A

3
i centred at the points zi1, zi2, zi3, which satisfy

∥∥zi − zij∥∥ ≤ 1
for j = 1, 2, 3. These points are not reported in the dataset, but for the purposes of obtaining
well-defined values on the diagonal of V , we assume that

∥∥zi − zij∥∥ = 1 for j = 1, 2, 3 and that
‖zi1 − zi2‖ =‖zi1 − zi3‖ =‖zi2 − zi3‖. Now we note that

|A|2AveAi×Ai(− log‖x− y‖) =
∫
Ai

∫
Ai

− log‖x− y‖ dxdy =
3∑

k=1

3∑
l=1

∫
Aki

∫
Ali

− log‖x− y‖ dxdy

= |A|
2

9

3∑
k=1

3∑
l=1

AveAki×Ali(− log‖x− y‖) (4.1)

For the terms where k 6= l we may once again use the fact that the areas are small and use the
approximation

AveAki×Ali(− log‖x− y‖) ≈ − log‖zik − zil‖ .

By Figure 4.2 we get
AveAki×Ali(− log‖x− y‖) ≈ − log

(
2 sin π3

)
. (4.2)
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Figure 4.2: This plot shows the assumed locations of the actual sample-points in relation to the points
reported in the dataset.

This approach clearly cannot be used to approximate the terms where k = l. However it
turns out that AveB×B(− log‖x− y‖) can be computed exactly when B is a square. Specifically,
by Clifford [2005, p. 156 and p. 160], it holds that

AveB×B(− log‖x− y‖) = 25− 4(π + log 2)
12 − log b,

when B has side-length b. Thus if we assume that Aki is a square of side-length
√
|A|/3, we

obtain
AveAki×Aki (− log‖x− y‖) = 25− 4(π + log 2)

12 − 1
2 log |A|+ 1

2 log 3. (4.3)

Using (4.1), (4.2), (4.3), and the fact that |A| = 0.00147 we define

Vii = −2
3 log

(
2 sin π3

)
+ 1

3

(
25− 4(π + log 2)

12 − 1
2 log 0.00147 + 1

2 log 3
)
. (4.4)

Finally we note that due to the small size of |A|, it may be difficult to get a sense of the
relative sizes of the noise and the signal. To see this note that when |A| = 0.00147 the covariance
matrix is

|A|σ2
0I + |A|2σ2

1V = 0.00147σ2
0I + 0.00000216σ2

1V.

This means that, even when the two terms are of similar size, σ2
1 becomes much larger than σ2

0.
A way to remedy this is to scale the locations of all points by a factor of 1/

√
|A|. If |As| is the

size of the scaled areas, then

|As| =
∣∣∣∣A/√|A|∣∣∣∣ = |A|/|A| = 1.

Since V is determined by the distances between points, it is also effected by scaling, but the
approach described above still applies. Let V s the matrix obtained by performing the steps above
after scaling, and let zsi be the centre-point after scaling the locations. Then the off-diagonal
elements are

V s
ij = − log

∥∥∥zsi − zsj∥∥∥ = − log
∥∥∥(zi − zj)/√0.00147

∥∥∥ = − log
∥∥zi − zj∥∥+ 1

2 log 0.00147,
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and the diagonal elements are

V s
ii = −2

3 log
(

2 sin π3 /
√

0.00147
)

+ 1
3

(
25− 4(π + log 2)

12 + 1
2 log 3

)
. (4.5)

Now we have
Φ = σ2

0I + σ2
1V

s.

All data-analysis performed in the following sections is done using the scaled points, where V
refers to V s and σ2

0 and σ2
1 refers to parameters in the model where V s is used.

4.3 Fitting the WWN Process to the BCI Soil Data

In this section we fit a WWN process to the dataset described in Section 4.1. The measurements
of concentrations in the dataset corresponds to the vector Y =

(
Y (A1), . . . , Y (An)

)> in Section
3.3. We assume that Y has constant mean, and thus we must choose a matrix Q, whose columns
form a linearly independent basis of the orthogonal complement to the span of 1300. The function
Null() in the R-package MASS computes the left nullspace of a matrix. That is, the first two
lines in R-code 4.1

1 X <- matrix (1 ,300 ,1)
2 Q <- Null(X)
3 Q <- Q[c(2:300 ,1) ,]

Code 4.1: R-code for automatic constructing a contrast matrix

returns a matrix, Q, such that Q>X = 0 where X = 1300. The third line simply performs row
exchanges, which gives the contrasts a slightly more useful interpretation. The result of the
parameter estimation is invariant under the choice of Q, so any choice satisfying Q>X = 0 will
do, so the row-exchanges does not effect the estimations. But since the resulting matrix Q has
the form

Q =
[
I − 0.00315 · 12991>299
−0.0577 · 1>299

]
,

it follows that for Z(µi) = [Q>Y ]i·, Y (Ai) has a weight close to 1 (specifically 0.99685) and
Y (Aj) for j 6= i has a weight close to zero (specifically -0.00315 for Y (Aj) where 300 6= j 6= i

and −0.0577 for Y (A300)). Thus we can in some sense consider Z(µi) to be ’located’ at zi, the
centre of the set Ai. The profile-likelihood of τ is implemented below.

1 reml <- function (tau ,z,A,V,Q){
2 q <- length (z)
3 cov.mat <- eye(q)+tau*A*t(Q) %*% V %*% Q
4 d <- as. numeric ( determinant (cov.mat)$ modulus )
5 cov.mat.inv <- solve(cov.mat)
6 l <- -q/2*log(t(z) %*% cov.mat.inv %*% z) -0.5*d
7 return (l)
8 }

Code 4.2: Here the function to compute the profile-likelihood of τ is shown.
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Analysis of Aluminium Data

We now apply the above functions to the aluminium concentrations. We obtain the log-likelihood
shown in Figure 4.3.
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Figure 4.3: Plot of the profile-likelihood as a function of τ .

Here we encounter a problem, since the likelihood function does not have a unique maximum.
In fact the likelihood function increases asymptotically and thus it has no maximum at all. A
potential explanation is that σ2

0 = 0, which cannot be detected in this setup.
To remedy this, a reparametrisation may be performed.

Φ = σ2
0|A|I + σ2

1|A|2V = (σ2
0 + σ2

1)|A|I + σ2
1(|A|2V − |A|I)

= (σ2
0 + σ2

1)
(
|A|I + σ2

1
σ2

0 + σ2
1

(|A|2V − |A|I)
)

= γ0|A|
(
I + γ1(|A|V − I)

)
,

where γ0 = σ2
0 + σ2

1 and γ1 = σ2
1/(σ2

0 + σ2
1). Now proceeding as in Section 3.3 we obtain

γ̂0(γ1) =
Z>
(
I + γ1(|A|Q>V Q− I)

)−1
Z

|A|(n− p) ,

and

`(γ̂0(γ1), γ1) = −n− p2 log
(
Z>
(
I + γ1(|A|Q>V Q− I)

)−1
Z

)
− 1

2 log
∣∣∣I + γ1(|A|Q>V Q− I)

∣∣∣ .
Here we have γ1 ∈ [0, 1], where γ1 = 1 means that σ2

0 = 0 and γ1 = 0 means that σ2
1 = 0. Since

γ1 = σ2
1

σ2
1+σ2

0
⇔ γ1σ

2
0 + (γ1 − 1)σ2

1 = 0, we get the linear equation system

[
1 1
γ1 γ1 − 1

] [
σ2

0
σ2

1

]
=
[
γ0
0

]
. (4.6)

Solving (4.6) yields the unique solution (σ2
0, σ

2
1) =

(
γ0(1 − γ1), γ0γ1

)
, and thus estimating γ0

and γ1 is sufficient.
For the aluminium-concentration-data we obtain the profile likelihood of γ1 seen in Figure

4.4.
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Figure 4.4: Plot of the profile-likelihood as a function of γ1.

Performing REML-estimation yields γ̂1 = 1 as expected and γ̂0 = 15, 129, and thus we get
σ̂2

0 = 0 and σ̂2
1 = 15, 129. This suggests that this data is noise-free, which seems unlikely. This

behaviour and potential explanations are discussed in further detail in Section 4.4. For now we
analyse a more well-behaved dataset.

Analysis of the Mineralised Nitrate Data

We now consider the concentrations of mineralised nitrate. The profile-likelihood of γ1 for the
mineralised nitrate concentrations in the BCI dataset can be seen in Figure 4.5.
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Figure 4.5: Plot of the profile-likelihood as a function of γ1 for the mineralised nitrate concentrations .

Performing the estimations for the BCI dataset, we obtain the estimates

γ̂1 = 0.0373, γ̂0 = 299.8

and thus
σ̂2

0 = 299.8 · 0.9627 = 288.6, σ̂2
1 = 299.8 · 0.0373 = 11.19.

One way to get a rough idea about how good the fit is, is by simulating contrasts using the
estimated values, and comparing them to the contrasts found in the data. That is we simulate
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Zs ∼ N
(
0, σ̂2

0I + σ̂2
1Q
>V Q

)
, and compare this to the data Z = Q>Y . The results can be seen

in Figure 4.6.
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Figure 4.6: Black dots are the contrasts from the data, red dots are contrasts simulated from a WWN process
with the fitted values, σ̂2

0 = 288.6 and σ̂2
1 = 11.19.

Here we see that the data and the simulations are reasonably similar. They tend to have
outliers at different locations, but that is to be expected due to random variation. Overall these
simulations seems consistent with the hypothesis that the data follows the fitted model.

4.4 Simulation Study

In this section we perform a simulation study of the WWN process. This means that we
specify some parameter values and perform many simulations with the specified parameter-
values, estimate the parameters given the simulations and finally examine the behaviour of the
estimated values. First we use the values σ2

0 = 10 and σ2
1 = 20.
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Figure 4.7: Histograms of the estimated values of σ2
0 and σ2

1 based on simulations where the true values are
σ2

0 = 10 and σ2
1 = 20.

On the right in Figure 4.7 we see that σ2
1 is estimated reasonably accurately most of the

time. Indeed the mean of the estimates is 19.45, which is quite close to the correct value, and
the standard deviation is 3.13. Things are much worse for the estimations of σ2

0. Here we see
that it is rarely accurate and most of the time substantially underestimated. In fact σ̂2

0 = 0
for about 25% of the estimates. This behaviour may explain what we see in Section 4.3 for the
aluminium data. It is also worth noting that, in some cases, σ2

0 is estimated to be much larger
than the true value. In fact for 9 % of the simulations we get σ̂2

0 > 30. However Figure 4.8
shows that these cases coincide with the cases where σ2

1 is underestimated.
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Figure 4.8: This plot shows the correlation between the estimated values for σ2
0 and σ2

1 , based on simulated
data with the true parameter-values σ2

0 = 10 and σ2
1 = 20.

There are several potential explanations for this behaviour. First note that while we have
shown in Section 3.3 that Q>V Q is positive definite in the theoretical setting, in practice we
have to approximate the entries in V . We note that if the approximated covariance matrix
Q>ΦQ = σ2

0I+σ2
1Q
>V Q was not positive definite, then R would return an error when simulation

is attempted, but it could be the case that Q>ΦQ is positive definite, but not Q>V Q. To check
this we simply evaluate the eigenvalues, λ1 > · · · > λn−1, of Q>V Q. Here we get

λ1 = 150, λn−1 = 1.85,
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so obviously the matrix is positive definite. Furthermore we also have that the condition number
is 150/1.85 = 79.8, so it is also well-conditioned. This rules out numeric issues as an explanation.

Another explanation may be that for the chosen parameter-values, the term σ2
1V dominates

the term σ2
0I to the point where the noise term is lost in some of the estimations. This would

be consistent with what we see for the mineralised nitrate concentrations in Section 4.3, where
σ̂2

0 > 0. Here σ̂2
0 was much larger than σ̂2

1.
The noise term may be dominated by the signal term, if the diagonal entries in Q>V Q are

much larger than 1. The diagonal elements of Q>V Q are not identical, and they vary between
6.54 and 7.78. This means that the true values of diagonal elements of Q>V Q varies between
10 + 6.54 · 20 = 140.8 and 10 + 7.78 · 20 = 165.6, of which the noise term only contributes 10.

To test whether the behaviour in Figure 4.7 is caused by the noise term contributing too
little in relation to the signal term, we perform the simulations for values, where σ2

0 is much
larger than σ2

1. Specifically let σ2
0 = 50 and σ2

1 = 5. Then the diagonal elements of Q>V Q varies
from 82.7 to 88.9 of which the noise term contributes 50, that is the noise term contributes
more than the signal term. When performing these simulations, the following histograms are
obtained.
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Figure 4.9: Histograms of the estimated values of σ2
0 and σ2

1 for simulated data with true values σ2
0 = 50 and

σ2
0 = 5.

What we see in Figure 4.9 backs up the hypothesis. We see that the histogram of estimates of
σ2

0 is concentrated around the true value. Indeed the mean value is 50.22. Furthermore σ̂2
0 = 0

was not even obtained a single time. In fact we do see three cases where σ̂2
1 = 0 is obtained, but

overall σ2
1 tends to be estimate fairly accurately too (the mean of the estimates of σ2

1 is 4.93).
The above simulations seem to suggest that, due to the fact that the diagonal of Q>V Q is

much larger than the diagonal of I, for some datasets the signal term dominates to the point,
where the noise term cannot be detected. But all this means that we cannot determine the size
of the noise term. It does not necessarily make the resulting models worthless. On Figure 4.7
we see that while the estimations of σ2

0 tended to yield poor results, the results for σ2
1 were still

reasonably accurate. This suggests that, in general, estimates of σ2
0 for the WWN Process for

the BCI dataset cannot be trusted, but estimates of σ2
1 are, generally, useful. Furthermore if the

reason we obtain σ̂2
0 = 0 is that the noise term contributes so little that it becomes undetectable,

then this is unlikely to be cause for concern, since the overall covariance is likely still reasonably
accurately estimated. To check this we return to the simulations for σ2

0 = 10 and σ2
1 = 20 and

check the estimates of Var
[
Z(µ1)

]
= σ2

0 + σ2
1[Q>V Q]11. Since [Q>V Q]11 = 7.78, the true value

is 10 + 20 · 7.78 = 165.6. On Figure 4.10 we see the estimated values of Var
[
Z(µ1)

]
based on
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the simulations.
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Figure 4.10: This figure show a histogram of the estimated values of σ2
0 + σ2

1 [Q>V Q]11 based on simulated
data with the true parameter-values σ2

0 = 10 and σ2
1 = 20.

We see the histogram over the estimated values of σ2
0 + [Q>V Q]11 centres around the true

value. In fact about 96 % of the simulated values are within 20 % of the true value. This
confirms that, assuming that a WWN Process is an appropriate model for a given dataset, the
covariance-structure is accurately estimated, even if the noise-term cannot be computed.



Chapter 5

Model Validation

In this chapter we evaluate how well the WWN Process fits the BCI dataset.

5.1 Computing the Variogram

In this section we seek to compute the empirical and the theoretical variogram for a WWN
Process with given parameter-values. This is done with the intention of using the variogram as
a summary statistic. First we define the variogram.

Definition 5.1 (Variogram). Let Y be a set-indexed random field. Then the function γ :
B2
d → R given by

γ(Ai, Aj) = Var
[
Y (Ai)− Y (Aj)

]
for any Ai, Aj ∈ Bd is said to be the variogram of Y .

Now let A1, . . . , An be the observed sets in the dataset and let Y =
(
Y (A1), . . . , Y (An)

)>. At
first glance it would not appear to be possible to compute an empirical variogram for the BCI
dataset, since for each pair of sets Ai, Aj only one observation of Y (Ai) − Y (Aj) is available,
and thus a sample variance cannot be computed. However as with random fields over Rd we
may assume that the variogram depends only on the distance between sets. What exactly is
meant by distance in the case of sets becomes clear later on. First we compute the theoretical
variogram. Suppose that Z = Q>Y , where Q is a projection-matrix, has covariance function

Cov
[
Z(µi), Z(µj)

]
=
∫ ∫

σ2
0δx−y − σ2

1 log‖x− y‖ dµi(x)dµj(y).

This makes it possible to compute the variogram of Y by letting µij be the measure with 1Ai−1Aj
as density with respect to the Lebesgue measure, since Y (Ai)− Y (Aj) = Z(µij) and thus

γ(Ai, Aj) = Var
[
Y (Ai)− Y (Aj)

]
= Var

[
Z(µij)

]
= Cov

[
Z(µij), Z(µij)

]
.

49



50 Chapter 5. Model Validation

Now we can compute an expression for the variogram using the covariance function of Z. Since
µij has density 1Ai(x)− 1Aj (x) with respect to the Lebesgue measure, we get

Cov
[
Z(µij), Z(µij)

]
=
∫ ∫

σ2
0δx−y − σ2

1 log‖x− y‖dµij(x)dµij(y)

=
∫ ∫ (

σ2
0δx−y − σ2

1 log‖x− y‖
) (

1Ai(x)− 1Aj (x)
)(

1Ai(y)− 1Aj (y)
)
dxdy

=
∫
Ai

∫
Ai

σ2
0δx−y − σ2

1 log‖x− y‖ dxdy−
∫
Ai

∫
Aj

σ2
0δx−y − σ2

1 log‖x− y‖dxdy

+
∫
Aj

∫
Aj

σ2
0δx−y − σ2

1 log‖x− y‖ dxdy−
∫
Aj

∫
Ai

σ2
0δx−y − σ2

1 log‖x− y‖dxdy

=2|A|σ2
0 − 2σ2

1AveAi×Aj
(
− log‖x− y‖

)
+ 2σ2

1AveAi×Ai
(
− log‖x− y‖

)
. (5.1)

Approximating the average log-distances as in Section 4.2 yields

γ(Ai, Aj) ≈ 2|A|σ2
0 + 2σ2

1

(
log
∥∥zi − zj∥∥+ Vii

)
,

where zi and zj are the centre-points of Ai and Aj respectively. This gives rise to the distance-
function for sets, d(Ai, Aj) =

∥∥zi − zj∥∥ (this is not a metric, since we may have d(B,C) = 0
for B 6= C, for example if C ⊂ B, but B and C has the same centre). Now we have that
the variogram, at least approximately, only depends on the distance between sets, since Vii is a
constant that does not depend on i. If h = d(Ai, Aj) we have, with an abuse of notation, that

γ(Ai, Aj) ≈ γ(h) = 2|A|σ2
0 + 2σ2

1 (log h+ Vii) .

Non-parametric Estimation of the Variogram

As mentioned previously, the purpose for introducing the variogram in this project, is to use
it as a summary statistic. That is, we seek to asses the goodness of fit of a fitted model,
by comparing the theoretical variogram (computed above) based on the fitted values, to a
non-parametric empirical estimate of the variogram. As seen above we may assume that the
variogram depends only on the distance between sets. As such we can use a modified versions
of the non-parametric variogram estimations used for random fields on Rd. The most straight-
forward way to estimate the variogram non-parametrically is simply by estimating the variances
at each distance of interest. This gives the estimator

γ̂(h) = 1
|N(h)|

∑
(i,j)∈N(h)

(Y (Ai)− Y (Aj))2,

where N(h) =
{
(i, j) ∈ {1, . . . , n} × {1, . . . , n} : d(Ai, Aj) = h

}
. This is the sample variogram

for random fields [Kim, 2015, p. 7] modified to be used for set-indexed random fields. The
sample variogram of a stationary random field on Rd is unbiased. For the sample variogram of
a set-indexed random field, the unbiasedness is only approximate, since

E
[
γ̂(h)

]
= 1
|N(h)|

∑
(i,j)∈N(h)

E
[
(Y (Ai)− Y (Aj))2

]
≈ 1
|N(h)|

∑
(i,j)∈N(h)

γ(h) = γ(h). (5.2)

The disadvantage of this estimator is that it is highly inaccurate, unless there is a large number
of pairs of observations at the exact same distance from one another. This means that it is only
usable for datasets where the sample points are located on a grid. For situations where this is
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not the case, binning is used. Binning means that we seek to estimate the variogram for the
distances h1, . . . , hm, where hi+1 − hi = δ for i = 1, . . . ,m− 1, and use all pairs of observations
where the distance is between hi − δ/2 and hi + δ/2 to compute γ̂(hi) [Kim, 2015, p. 17]. This
gives the estimator

γ̂(hk) = 1
|Nδ(hk)|

∑
(i,j)∈Nδ(hk)

(
Y (Ai)− Y (Aj)

)2
,

where Nδ(hk) =
{
(i, j) ∈ {1, . . . , n} × {1, . . . , n} : hk − δ/2 < d(Ai, Aj) ≤ hk + δ/2

}
. This esti-

mator is not unbiased, but it does include all data. In many geostatistical datasets binning is
a necessity, since there is at most one pair of observations at any given distance, making esti-
mation without binning impossible. For the BCI dataset either estimator can be used, but each
has disadvantages. The obvious disadvantage of using binning is that not all pairs used in the
estimation of the variogram at a given distance, are actually spaced apart by that distance, and
as mentioned the estimator is biased. Estimation without binning is approximately unbiased,
as shown in (5.2), but since one third of the data is not on a regularly spaced grid, it must be
left out of the estimation.

When using the estimate without binning, and comparing to the theoretical variogram with
the parameters estimated in Section 4.3 for mineralised nitrate, Figure 5.1 is obtained.
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Figure 5.1: The solid line is the theoretical variogram given a WWN process with parameters σ̂2
0 = 288.6 and

σ̂2
1 = 11.19. The dots are values of the variogram estimated from the data non-parametrically

without binning.

The sample variogram fluctuates around the theoretical variogram, which is to be expected from
a good fit. Unfortunately the sample variogram does not exhibit the same initial rapid increase
that the theoretical variogram does, but this mostly seems to be happening at distances smaller
than what we have available in the data anyway.

When using binning with h1 = 25 and δ = 50, Figure 5.2 is obtained.
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Figure 5.2: The solid line is the theoretical variogram given a WWN process with parameters σ̂2
0 = 288.6 and

σ̂2
1 = 11.19. The dots are values of the variogram estimated from the data non-parametrically with

binning.

We see that the sample variogram follows the theoretical variogram nicely up to a distance of 800
metres, after which it starts increasing. It should be noted that at these distances the number
of observations available to compute the sample variogram starts to decrease.

We cannot determine visually if the behaviour for h > 800 on Figure 5.2 is due to random
fluctuations, too few observations or a real discrepancy between the model and the data. A
helpful tool in this regard would be a confidence interval, but since we do not know the dis-
tribution of the fitted variogram, an expression of the confidence interval cannot be obtained.
Instead we use simulations. This is done by performing N simulations of WWN Process with
the parameter values fitted in Sections 4.3 as the true values. Then the empirical variogram is
computed for each simulation.

Suppose we haveN variograms, γ1(·, ·), . . . , γN (·, ·), each computed from a distinct simulation
and let γ0(·, ·) be the empirical variogram of the data. Under the null-hypothesis (that the fitted
values are true) we have

P
(
γ0(Ai, Aj) ≥ max{γ1(Ai, Aj), . . . , γN (Ai, Aj)}

)
= 1
N + 1 .

This is because all the variograms are identically distributed, so all of them are equally likely to
be the largest. Similarly

P
(
γ0(Ai, Aj) ≤ min{γ1(Ai, Aj), . . . , γN (Ai, Aj)}

)
= 1
N + 1 .

Setting N = 39 thus yields a points-wise 95 % envelope.
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Figure 5.3: The solid line is the theoretical variogram given a WWN process with parameters σ̂2
0 = 288.6 and

σ̂2
1 = 11.19. The red dots are values of the variogram estimated from the data non-parametrically
without binning, and the black triangles are the lower and upper edges of a 95 % envelope.

On Figure 5.3 we see that all the empirically estimated values for the variogram are inside
the envelope. Since it is only estimated at 18 points, this is reasonable, even though we would
expect that one point would be outside the envelope. Under the null hypothesis there is a
probability of 0.9518 ≈ 0.4 that all points are within the envelope, so it is fairly probable.
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Figure 5.4: The solid line is the theoretical variogram given a WWN process with parameters σ̂2
0 = 288.6 and

σ̂2
1 = 11.19. The red dots are values of the variogram estimated from the data non-parametrically

with binning, and the black triangles are the lower and upper edges of a 95 % envelope.

On Figure 5.4 we see that two points at the end are outside the envelope, but one of them
is only just barely outside.

In summary the empirical variogram fits fairly well to the theoretical variogram. Under the
null hypothesis, one point should be outside the envelope. Without binning all points are inside
the envelope and with binning, two points are outside the envelope. This behaviour does not
seem inconsistent with the model, and as such it cannot be rejected on this basis.
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5.2 Kriging on Set-indexed Random Fields

In practical applications, predicting a value not present in the dataset is often useful. In this
section we seek to perform kriging when working with set-indexed random fields. The covariance
structure is only defined for contrast-measures, but predicting the value of a contrast is rarely
useful in practice. Instead we seek to predict values of the underlying set-indexed random
field. Now suppose we have have A1, . . . , An ∈ Bd where |A1| = · · · = |An| and we denote
this volume |A|. Then for some other A0 ∈ Bd we wish to predict Y (A0) based on Y =(
Y (A1), . . . , Y (An)

)>. We do this using kriging, which means we seek to use the Best Linear
Unbiased Predictor (BLUP). That is we seek a predictor Ŷ (A0) = λ>Y , where λ ∈ Rn, such
that E

[
Ŷ (A0)− Y (A0)

]
= 0 and the variance is minimised.

First we focus on minimising the variance and, as we shall see, the unbiasedness gets taken
care of in the process. First we note that we cannot choose the kriging weight in an unconstrained
manner. This is because the covariance structure of the underlying set-indexed random field of
a WWN Process is not well-defined, and thus a closed form of E

[(
Ŷ (A0)− Y (A0)

)2
]
does not,

in general, exist. What we do instead is to demand certain restrictions on the kriging weights,
such that the covariance-matrix is well-defined. Specifically we demand that the kriging weights
are chosen such that the measure µ satisfying µ(B) =

∑n
i=1 λi|B ∩Ai| − |B ∩A0| is in W. Then

Ŷ (A0)−Y (A0) = Z(µ), which has known covariance-structure. Due to the way µ is constructed
µ ∈ W holds by Proposition 3.10 if µ(Rd) = 0. Since µ(Rd) = |A|

∑n
i=1 λi − |A0|, this holds if∑n

i=1 λi = |A0|/|A|. Obviously if A0 is chosen to have the same volume as the sets in the dataset,
then

∑n
i=1 λi = 1 is required. If the set-indexed random field is sufficiently well-behaved, this

also takes care of unbiasedness. If |A0| = |A| and E
[
Y (B)

]
= m for all B ∈ Bd and some m ∈ R,

then

E

 n∑
i=1

λiY (Ai)− Y (A0)

 = m
n∑
i=1

λi −m = m−m = 0,

and the estimator is unbiased. If |A0| 6= |A|, then

E

 n∑
i=1

λiY (Ai)− Y (A0)

 = m
n∑
i=1

λi −m = m|A0|/|A| −m 6= 0.

This may be solved by slightly altering the assumptions on the mean structure. Instead of
assuming that the mean is constant, we may assume that E

[
Y (B)

]
= |B|m, for some m ∈ R.

If all the sets in the dataset has the same size it changes very little, except that unbiasedness
is ensured if

∑n
i=1 λi = |A0|/|A|. This assumption is also quite sensible for many datasets

encountered in practice, such as crop yield data. It makes sense that an area twice as large is
expected to yield twice as much of a given crop. Unfortunately this assumption does not make
sense for the BCI dataset, since the mineral concentrations are measured in mg per kg of oven
dried soil, so there is no reason to assume that larger areas have higher concentrations. For this
reason we now restrict ourselves to the case where |A0| = |A|.

In order to minimise the variance of λ>Y − Y (A0) we note that, while we do not have a
covariance function for the set-indexed random field, the function

B(Ai, Aj) =
∫
Ai

∫
Aj

δx−y − log‖x− y‖dxdy

comes close in the sense that a matrix, Φ, where Φij = B(Ai, Aj), satisfies Var
[
Q>Y

]
= Q>ΦQ.

As we saw in Section 3.3 we get that Φ = σ0|A|I + σ2
1|A|2V when Y = (Y (A1), . . . , Y (An))>. If
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we use
[
−1 λ>

]
in place of Q and Ỹ = (Y (A0), Y (A1), . . . , Y (An))> we get

Var
[[
−1 λ>

]
Ỹ

]
=
[
−1 λ>

] [B(A0, A0) φ>

φ Φ

] [
−1
λ

]
= B(A0, A0)− 2λ>φ+ λ>Φλ,

where φ =
(
B(A0, A1), . . . , B(A0, An)

)>. By definition we have

B(A0, Ai) =
∫
A0

∫
Ai

σ2
0δx−y − σ2

1 log‖x− y‖dxdy,

and from Section 3.3 we know that∫
A0

∫
Ai

δx−ydxdy = |A0 ∩Ai| = 0,

and ∫
A0

∫
Ai

− log‖x− y‖dxdy = |A|2AveA0×Ai(− log‖x− y‖) ≈ −|A|2 log‖z0 − zi‖ ,

where z0 is the centre of A0. Thus we get

B(A0, Ai) ≈ −σ2
1|A|2 log‖z0 − zi‖ . (5.3)

We now use Lagrange multipliers to minimise the variance of λ>Y − Y (A0) under the con-
straint that λ>1n = 1. We must minimise

L(λ, α) = B(A0, A0)− 2λ>φ+ λ>Φλ+ 2α(1>n λ− 1).

We get the derivatives
∂L

∂λ
= −2φ+ 2Φλ+ 2α1n

and
∂L

∂α
= 2(1>n λ− 1).

Thus we get that the kriging weight may be obtained by solving the linear equation system[
Φ 1n
1>n 0

] [
λ

α

]
=
[
φ

1

]
. (5.4)

Then we get that the kriging variance is

E
[(
Z(λ>)Y − Y (A0)

)2
]

= B(A0, A0)− 2λ>φ+ λ>Φλ

= B(A0, A0)− λ>φ+ λ>(Φλ− φ)
= B(A0, A0)− λ>φ− αλ>1n
= B(A0, A0)− λ>φ− α,

where the last two equalities comes from (5.4). In order to compute this we need an expression
for B(A0, A0). We first note that

B(A0, A0) =
∫
A0

∫
A0
σ2

0δx−y − σ2
1 log‖x− y‖dxdy = σ2

0|A|+ σ2
1|A|2AveA0×A0(− log‖x− y‖).

In Section 4.2 we discussed how to compute the average value of − log‖x− y‖ over a set on
the form A × A, but only when that set consists of three smaller sets all one metre from a
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centre-point. We have no such assumptions about the shape of A0, only that it has the same
volume as A1, . . . , An. However when performing kriging, one is likely more interested in the
value over a single square. In that case we simply define A0 as a square with side-length

√
|A|

and we get
AveA0×A0(− log‖x− y‖) = 25− 4(π + log 2)

12 − 1
2 log |A|.

Finally we also note that due to (5.3) we use the approximation

φ ≈ −σ2
1|A|2v,

where v =
(
log‖z1 − z0‖ , . . . , log‖zn − z0‖

)>.
From (5.4) we see that kriging for set-indexed random fields is analogous to intrinsic kriging

for an intrinsic random field of order 0. The only difference is that for intrinsic kriging, the
generalised covarince function would be used instead of B(·, ·) (for more information see [Jensen
and Fitzhugh, 2018, Section 2.1]).

The code for the above theory is shown below

1 Setkriging <- function (pts ,new.pts ,data ,A,sigma0 , sigma1 ){
2 pts <- as. matrix (pts)
3 new.pts <- as. matrix (new.pts)
4 data <- as. numeric (data)
5 n <- nrow(pts)
6

7 V <- Vmatrix (pts)
8 V <- V+t(V)
9 diag(V) <- 2/3*(-log (2*sin(pi/3)*sqrt(A/ 0.00147) ))

10 +1/3*((25 -4*(pi+log (2)))/12 -0.5*log(A)+0.5*log (3))
11

12 big.mat <- matrix (1,n+1,n+1)
13 big.mat [1:n ,1:n] <- sigma0 *A*eye(n)+ sigma1 *A^2*V
14 big.mat[n+1,n+1] <- 0
15

16 v <- apply(pts , 1, function (x) log(Norm(x-new.pts)))
17 phi <- -sigma1 *A^2*v
18 big.vec <- c(v ,1)
19

20 lambdalpha <- solve(big.mat , big.vec)
21 lambda <- lambdalpha [-(n+1)]
22 alpha <- lambdalpha [n+1]
23

24 y <- as. numeric ( lambda %*% data)
25 krig. variance <- sigma0 *A + sigma1 *A^2*( (25 -4*(pi+log (2)))/12
26 - 0.5*log(A) ) - lambda %*% phi + alpha
27

28 out <- list(pred=y, var=krig. variance )
29 return (out)
30 }

Code 5.1: Here a function for kriging using realisations of a set-indexed random field is shown.

Note that the function Vmatrix used in R-code 5.1 is simply a function which computes the



5.2. Kriging on Set-indexed Random Fields 57

above-diagonal elements of the matrix V given a set of locations. The argument A is the desired
size of the sample areas, so the points are scaled accordingly.

Cross-validation

We now perform a 10-fold cross-validation on the BCI Dataset. In order to get an idea of how
good the results of the cross-validation are, we need some naive prediction method, to use as
a benchmark. Here we predict using the sample mean, that is, if µ̂ is the sample mean of the
data, we predict that Ŷ (A0) = µ̂ for all A0 ∈ Bd. If the WWN Process does not provide better
predictions than this, it is not a useful model for prediction purposes.

Mineral RMSE Benchmark σ̂0 (full data) σ̂1 (full data)
Al 260 336 0 15128
B 0.648 0.760 0 0.080
Ca 833 1022 0 139395
Cu 2.15 2.88 0.055 1.07
Fe 48.8 65.2 0 530
K 89.9 110 0 1593
Mg 151 190 0 4559
Mn 132 186 0 4059
Na 38.4 72.5 0 448
P 2.01 2.45 0 0.840
S 6.98 8.04 5.72 9.55
Zn 3.93 5.10 0 3.23
NH4 7.00 11.8 0 11.8
NO3 4.87 6.21 9.96 2.78

total N 9.84 12.5 9.12 17.44
min.NH4 10.2 15.8 20.2 18.7
min.NO3 19.0 19.2 289 11.2
min N 23.0 25.3 304 40.1
pH 0.290 0.427 0 0.019

Table 5.1: Results of 10-fold cross-validation for all minerals. Benchmark refers to the RMSE of predictions
using the sample mean.

Note that on Table 5.1, the values for σ̂2
0 and σ̂2

1 in the last two columns are computed based on
the full data, but for every prediction in the cross-validations, the parameters estimated based
only on the training data are used.

We see that the WWN process performs better than the benchmark for all minerals, but
for mineralised nitrate, which we analysed in previous the sections, it only performs marginally
better than the benchmark. However, this is to be expected since σ̂2

0 is considerably larger than
σ̂2

1 (at least for the full data). To see this note that if σ2
0 > 0 and σ2

1 = 0 then the only solution
to (5.4) is λ1 = · · · = λn = 1/n which would make kriging identical to using the empirical mean,
which is the benchmark. For the other minerals the WWN process yields RMSEs that range
between 10 % and 45 % under the RMSE of the benchmark. Finally, we also see that there is
no relation between the performance of the WWN process, and whether or not σ̂2

0 = 0 for the
full data.
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5.3 Comparison to Other Models

In this section we compare the WWN Process to models with other generalised covariances.
Specifically we compare it to the power model, which has a generalised covariance on the form

KPow(‖x− y‖) = σ2
0δx−y − σ2

1‖x− y‖
2ν ,

and the exponential model, which has a generalised covariance on the form

Kexp(‖x− y‖) = σ2
0δx−y + σ2

1 exp
(
−ν‖x− y‖

)
.

The covariance can be computed using the same approach used for the WWN process in
Section 3.3. Thus, for the power model, we get

Cov
[
Z(µi), Z(µj)

]
=
∫ ∫

σ2
0δx−y − σ2

1‖x− y‖
2ν dµi(x)dµj(y)

= |A|1[i = j]σ2
0 + |A|2σ2

1AveAi×Aj
(
−‖x− y‖2ν

)
,

so if Z =
(
Z(µ1), . . . , Z(µn−1)

)> follows a power model, then

Var [Z] = σ2
0|A|I + σ2

1|A|2Q>V (ν)Q, (5.5)

where Vij(ν) = AveAi×Aj
(
−‖x− y‖2ν

)
. The form of the covariance matrix for data following an

exponential model would be identical to (5.5) except here Vij(ν) = AveAi×Aj
(
exp

(
−ν‖x− y‖

))
.

In Section 4.2 the diagonal of V for the WWN Process was computed using a result in Clifford
[2005], which gives an explicit closed form of the integral

∫
Ai

∫
Ai
− log‖x− y‖ dxdy when Ai is

a square. A similar result for the power model exists, but it is extremely long and unwieldy,
so instead we simply use Monte Carlo approximation. For the exponential model no explicit
expression is obtained, and thus, once again, we use Monte Carlo approximation to compute the
diagonal of V .

Before proceeding further, we show that the matrix in (5.5) is positive definite. We first
note that the argument used in Section 3.3 to show that the covariance matrix obtained from
the WWN Process can also be used here, if∫ ∫

−‖x− y‖2ν dµ(x)dµ(y) > 0, (5.6)

for all µ ∈M for the power model and∫ ∫
exp

(
−ν‖x− y‖

)
dµ(x)dµ(y) > 0, (5.7)

for all µ ∈ M for the exponential model. We start by showing (5.6). By Proposition 3.8 it is
sufficient to show that f(r) = −rν satisfies that (−1)nf (n)(r) ≥ 0 for all n ≤ 1. Note that

f (n)(r) = −ν(ν − 1) · · · (ν − (n− 1))rν−n,

and thus if we restrict the model to the case where ν ∈ (0, 1), we get

(−1)nf (n)(r) = (−1)n+1ν(ν − 1) · · · (ν − (n− 1))rν−n

= (−1)2ν(1− ν) · · · (n− 1− ν)rν−n ≥ 0,
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where the inequality follows from the fact that 0 < ν < 1. Now we show (5.7). Once again
we seek to use Proposition 3.8, so it is sufficient to show that g(r) = exp

(
−ν
√
r
)

satisfies
(−1)ng(n)(r) ≥ 0 for n ≥ 1. Note that

g(n)(r) =
n∑
i=1

(−1)nai,nν
i exp(−ν

√
r)

2nr(2n−1)/2 ,

where ai,n is a positive integer, which depends on i and n. Thus, if we restrict the model to the
case where ν > 0, we get (−1)ng(n)(r) ≥ 0 for r ≥ 0.

The estimate of γ0 can be computed as for the WWN Process, and we get

γ̂0(γ1, ν) =
Z>
(
I + γ1(|A|Q>V (ν)Q− I)

)−1
Z

|A|(n− p) .

Then we can write the profile log-likelihood of γ1 and ν as

`(γ̂0(γ1, ν), γ1, ν) = −n− p2 log
(
Z>
(
I + γ1(|A|Q>V (ν)Q− I)

)−1
Z

)
−1

2 log
∣∣∣I + γ1(|A|Q>V (ν)Q− I)

∣∣∣ .
This is then maximised numerically over (γ1, ν). In practice this is simply done by using optim
rather than optimise in R. Note that for both the exponential and the power model, we use
the unscaled locations, so |A| = 0.00147. This is because otherwise the power- and exponential
models may obtain very large or very small values values respectively, even for modest values
of ν. For instance if ν = 0.7, then for i, j such that d(Ai, Aj) = 100, the power model yields
Cov

[
Z(µi), Z(µj)

]
= Vij(0.7) = −(100/

√
0.00147)1.4 ≈ −60, 657 for the scaled locations, but

only Vij(0.7) = −1001.4 ≈ −631 for the unscaled locations. It is even more necessary to use
unscaled data for the exponential model, where we get Vij(0.1) = exp(−0.1 · 100) = 5.34 · 10−5

for the unscaled data, but Vij(0.1) = exp(−0.1 · 100/
√

0.00147) = 5.34 · 10−114 for the scaled
data. This means that the log-likelihood is less susceptible to small changes of ν, and thus the
numerical estimates become more stable.

Before applying the exponential- or power model, we need to address a practical issue.
While, in theory, the matrix Q>V (ν)Q is positive definite for all ν > 0 for the exponential and
ν ∈ (0, 1) for the power model, it is not always the case in practice. This is because V (ν) has
to approximated, so when ν is close the to boundary of the area it is defined on (close to 0 for
the exponential model and close to 1 for the power model) the matrix Q>V (ν)Q is not positive
definite. This happens for ν > 0.91 for the power model and ν < 1.65 for the exponential model.
We cannot entirely solve this problem, but we can substantially mitigate it, by only applying
these models on the grid. Here Q>V (ν)Q becomes non-positive-definite for ν > 0.998 for the
power model and ν < 0.0175 for the exponential model.

Applying The Power Model

In order to compute the profile log-likelihood of (ν, γ1) for the power model, the following R-code
is used.
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1 reml <- function (param ,z,A){
2 q <- length (z)
3 V <- Vmatrix (nu=exp(param [1]) ,cov = "power",A=A)
4 cov.mat <- eye(q)+param [2]*(A*t(Q) %*% V %*% Q-eye(q))
5 d <- as. numeric ( determinant (cov.mat)$ modulus )
6 cov.mat.inv <- solve(cov.mat)
7 l <- -q/2*log(t(z) %*% cov.mat.inv %*% z) -0.5*d
8 return (-l)
9 }

Code 5.2: R-code used to compute the profile-likelihood function for (ν, γ1). The matrix Q is a
projection-matrix that must be specified before running this function.

R-code 5.2 returns the negative profile log-likelihood, since optim minimises rather than
maximises. The function Vmatrix returns the matrix V (ν) and the argument cov accepts
the inputs "power", "exp" and "log" (if cov="log", then nu=NULL is required as an input).
The reason that the argument nu takes exp(param[1]) rather than simply param[1] is to
ensure that ν̂ is positive. That is, rather than optimise ν over (0, 0.998], we optimise log ν over
(−∞, log 0.998].

When performing the estimation for the mineralised nitrate dataset we obtain the estimates

σ̂2
0 = 236, 285, σ̂2

1 = 7, 215, 022, ν̂ = 0.114.

As an initial indication of the fit, we check simulations of a generalised random field with a
power covariance matrix, with the estimated parameters.
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Figure 5.5: Black dots are the contrasts from the data, red dots are contrasts simulated from a generalised
random field following the power model with the fitted values σ̂2

0 = 236, 285, σ̂2
1 = 7, 215, 022 and

ν̂ = 0.114.
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We see that the simulations and the data behave reasonably similarly. Any difference between
them seem consistent with random variation. Next we use the variogram as a summary statistic,
and we note that, using the same arguments as in Section 5.1, we obtain

γ(Ai, Aj) ≈ γ(h) = 2|A|σ2
0 + 2σ2

1(h2ν + Vii(ν)),

where d(Ai, Aj) = h. Below we examine the variogram for the mineralised nitrate data using
the power model.
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Figure 5.6: On the left we see the empirical variogram without binning (red dots) vs the theoretical variogram
(solid line) for the power model, with an upper and lower simulated point-wise 95% envelope
(triangles). On the right we see the same, except the empirical variogram is computed with

binning.

On Figure 5.6 on the left we see that without binning, all points are inside the envelope, but
two of them are just barely above the lower edge of it. When using binning, there is one point
outside the envelope. This is consistent with the behaviour expected if the model is true.

Now we perform a 10-fold cross-validation using the power model.
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Mineral RMSE Benchmark σ̂2
0 (full grid) σ̂2

1 (full grid) ν̂ (full grid)
Al 277 331 14154517 11630728482 0.132
B 0.656 0.760 187 8967 0.225
Ca 909 1025 316944749 54758210743 0.140
Cu 2.25 2.83 0 904719 0.148
Fe 51.9 59.8 89960 735732409 0.093
K 96.9 114 4104121 317335842 0.187
Mg 159 184 16349713 210671 0.829
Mn 141 183 0 3758205970 0.145
Na 37.1 70.9 0 7229105 0.622
P 2.13 2.35 1778 290426 0.149
S 8.02 8.05 42402 302 0.669
Zn 4.08 5.13 10638 81.0 0.873
NH4 7.46 11.7 11610 2519861 0.258
NO3 5.11 6.13 10596 445270 0.266

total N 10.5 12.7 36046 4516762 0.213
min.NH4 9.76 15.0 52342 24847 0.672
min.NO3 19.8 19.9 236286 7214990 0.114
min N 24.1 26.0 355613 26955 0.664
pH 0.327 0.423 26.3 11674 0.143

Table 5.2: Results for a 10-fold cross validation for all minerals using the power model. The column
’benchmark’ refers to the RMSE when predicting using the sample mean.

As with Table 5.1, we note that the parameter-estimates shown in Table 5.2 are based on the
whole grid, but the predictions in the cross-validation uses parameters estimated based only on
the training data.

From Table 5.2 we see that, with the exceptions of sulphur (S) and mineralised nitrate
(min.NO3), where the power model and benchmark perform identically, the power model always
outperform the benchmark. This is not better than what we saw for the WWN process, but it
should be noted that results on Table 5.2 and those on Table 5.1 are not directly comparable,
since one was performed on the full dataset and one was only performed on the grid.

Applying The Exponential Model

Now we perform the same analysis using the exponential model, as we just did using the power
model. First we apply it to the mineralised nitrate dataset, where we obtain the estimates

σ̂2
0 = 245, 532, σ̂2

1 = 24, 288, 605, ν̂ = 0.0175.

We recall that due to numerical issues, we had to require ν ≥ 0.0175, so the fact that ν̂ = 0.0175
is somewhat problematic. It suggests that a better exponential model may be obtainable, but
it is inaccessible with the approximations we have performed.

Once again we start by simulating data with the above parameters with the exponential
model, and compare them to the data.
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Figure 5.7: Black dots are the contrasts from the data, red dots are contrasts simulated from a generalised
random field following an exponential model with the fitted values σ̂2

0 = 245, 532, σ̂2
1 = 24, 288, 605

and ν̂ = 0.0175.

Overall the simulations look fairly reasonable, although they do tend to have more negative
outliers than the data. Next we use the variogram as a summary statistic, and note that,
analogously to the computations for the WWN Process in Section 5.1, we get

γ(Ai, Aj) ≈ γ(h) = 2|A|σ2
0 + 2σ2

1(Vii(ν)− e−νh),

where d(Ai, Aj) = h. Now we check how well the exponential model fits the mineralised nitrate
data by using the variogram.
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Figure 5.8: On the left we see the empirical variogram without binning (red dots) vs the theoretical variogram
(solid line) for the exponential model, with an upper and lower simulated point-wise 95% envelope

(triangles). On the right we see the same, except the empirical variogram is computed with
binning.



64 Chapter 5. Model Validation

When using binning, only one point is outside the envelope, as expected. When using binning
two points are outside the envelope rather than the expected one point. This does not go against
the model strongly enough to reject it.

We now perform a 10-fold cross-validation of the exponential model on all minerals.

Mineral RMSE Benchmark σ̂2
0 (full grid) σ̂2

1 (full grid) ν̂ (full grid)
Al 339 331 36768006 36587310350 0.018
B 0.658 0.760 192 179101 0.018
Ca 964 1025 369958933 340263857007 0.018
Cu 2.23 2.83 2541 2275644 0.018
Fe 50.0 59.8 1270753 941880406 0.018
K 96.7 114 4481644 3768725875 0.018
Mg 187 184 14032896 8116555976 0.018
Mn 161 183 9856203 9860475081 0.018
Na 32.8 70.9 0 3004879366 0.019
P 2.14 2.35 2375 1339147 0.018
S 8.06 8.05 41109 3070009 0.018
Zn 4.25 5.13 8971 6425664 0.018
NH4 7.80 11.7 31148 31306097 0.018
NO3 5.06 6.13 12403 9959397 0.018

total N 10.5 12.7 53909 43283070 0.018
min.NH4 10.3 15.0 53691 49066775 0.018
min.NO3 19.9 19.9 245536 24284150 0.018
min N 24.4 26.0 324493 122431174 0.018
pH 0.337 0.423 52.6 47528 0.018

Table 5.3: Results for a 10-fold cross validation for all minerals using the exponential model. The column
’benchmark’ refers to the RMSE when predicting using the sample mean.

Once again, we note that the parameter-estimates shown in Table 5.3 are based on the whole
grid, but the predictions in the cross-validation uses parameter-estimates based only on the
training data.

Comparing Table 5.3 to Table 5.2 we see that the exponential and power model perform very
similarly on most minerals. That said, for the exponential model we get ν̂ = 0.0175 for all but
one mineral (rounded up to 0.018 on Table 5.3). Once again this suggests that the exponential
model may have yielded superior results if our approximations of

∫
Ai

∫
Aj

exp
(
−ν‖x− y‖

)
dxdy

had allowed for smaller ν.
Finally we compare the exponential model, the power model and the WWN process directly.

To do so cross-validations on the grid is performed with the WWN process.
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Mineral RMSE (WWN) RMSE (power) RMSE (exp) Benchmark
Al 280 277 339 331
B 0.703 0.656 0.658 0.760
Ca 990 909 964 1025
Cu 2.37 2.25 2.23 2.83
Fe 49.8 51.9 50.0 59.8
K 104 96.9 96.7 114
Mg 182 159 187 184
Mn 146 141 161 183
Na 47.9 37.1 32.8 70.9
P 2.32 2.13 2.14 2.35
S 8.08 8.02 8.06 8.05
Zn 4.91 4.08 4.25 5.13
NH4 7.55 7.46 7.81 11.7
NO3 5.00 5.11 5.06 6.13

total N 10.2 10.5 10.5 12.7
min.NH4 9.70 9.76 10.3 15.0
min.NO3 20.0 19.8 19.9 19.9
min N 25.9 24.1 24.4 26.0
pH 0.324 0.327 0.337 0.423

Table 5.4: Results for a 10-fold cross validation for all minerals using the WWN process, the power mode, and
the exponential model on the grid. The column ’benchmark’ refers to the RMSE when predicting

using the sample mean.

On Table 5.4 we see that the power model has the lowest RMSE for most minerals. However
it should be noted that the WWN process does not have the parameter ν and thus fitting it
is substantially faster. Moreover it is much easier to check that Q>V Q is positive definite,
since V does not depend on any parameters, thus giving WWN greater ease of use. With these
advantages in mind, the WWN process is probably best, unless the performance advantage of
the power or exponential model is substantial. For example for sodium (Na), the exponential
model is preferred (RMSE of 32.8 compared to 47.9 for the WWN process), but for aluminium
(Al) the WWN process is preferred even though the power model performs marginally better
(RMSE 277 for the power model versus 280 for the WWN process).





Chapter 6

Discussion and Conclusion

In this chapter, the results from the previous chapters are discussed and summarised.

6.1 Estimations and Numerical approximations

In Section 4.2 it is shown how the matrix V is specified in this project. Specifically we have that
Vij = AveAi×Aj (− log‖x− y‖), which we do not know exactly, so approximations are necessary.
When i 6= j this is done by noting AveAi×Aj (− log‖x− y‖) ≈ − log

∥∥zi − zj∥∥, where zi and zj
are the centres of Ai and Aj respectively. However, we know that the set Ai actually consists
of three areas, each at most one metre from zi, centred at z1

i , z
2
i and z3

i , so it should be more
accurate to use the approximation

AveAi×Aj (− log‖x− y‖) ≈
3∑

k=1

3∑
l=1
− log

∥∥∥zki − zlj∥∥∥ .
In practice it makes no difference which approximation is used when i 6= j. To see this let
zi = (25, 25) and zj = (75, 25), and let z1

i , z
2
i , z

3
i and z1

j , z
2
j , z

3
j be distributed around zi and zj

as in Figure 4.2. Then we get that∣∣∣∣∣∣
 3∑
k=1

3∑
l=1
− log

∥∥∥zki − zli∥∥∥
− (− log

∥∥zi − zj∥∥)
∣∣∣∣∣∣ < 10−9,

so clearly this has no impact on the results obtained by the WWN Process.
The approximations made to compute Vii is a bigger concern, since the diagonal entries are

more affected by the locations of z1
i , z

2
i , z

3
i . This is a problem, since these locations are not

reported in the dataset, so the necessary information is simply not available. We assumed that
they are located as shown in Figure 4.2, but this is merely an assumption. Another approach
could be to randomly sample the points in a unit disc centred around the point reported in the
dataset. This might make the diagonal of V more realistic, since it would be non-constant, like
for the real locations (it is highly unlikely that samples are taken a the same locations relative
to their centres for all data-points). However this does not solve the underlying problem, which
is that the real locations of soil samples are unknown, so it is unlikely that it would lead to
better results.

In Section 5.3 we compared the WWN process with the exponential model and the power
model. A problem was encountered in that for some parameter-values the approximations
performed to compute the matrix V (ν) results in Q>V (ν)Q not being positive definite. For

67
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the power model this is largely mitigated by only using the grid, instead of the whole data,
but for the exponential model this still presents a problem. Specifically it was found that for
ν < 0.0175, Q>V (ν)Q is not positive definite, but for all but one mineral we get ν̂ = 0.0175.
This suggests that a lower value for ν may have yielded better results, but then a different
approximation would have been necessary. All in all this raises questions of the generality for
the approximations performed in this report as it pertains to the exponential and power model.
If Q>V (ν)Q is not positive definite for all ν when applied to the whole BCI dataset, what about
other datasets? Clearly if the power and exponential models are to be used on general datasets,
other approximations to compute V (ν) must be used.

In Section 4.3 we found that when performing REML estimation on the aluminium dataset,
we get σ̂2

0 = 0. We then found in Section 4.4 that this is likely due to the fact that the
term σ2

1|A|2Q>V Q dominates on the diagonal, to the point where the effect of σ2
0|A|I becomes

undetectable. We then saw that σ̂2
0 > 0 is obtained for the mineralised nitrate data. Specifically

σ̂2
0 = 288.6, and since σ̂2

1 = 11.19 this is consistent with the conclusion from Section 4.4; that
the term σ2

0|A|I is only detectable, when σ2
0 is substantially larger than σ2

1. However it may also
be an example of what we see on Figure 4.7, where σ2

0 is sometimes estimated to be far larger
than σ2

1 even if the true value of σ2
1 is actually slightly larger than the true value of σ2

0. Whether
or not this is the case is impossible to determine.

6.2 Comparison to Traditional Geostatistics

It is not entirely clear if the BCI dataset is even suitable for the set-indexed random field
setup. The idea behind using sets rather than points to index the data, is that in practice
geostatistical data is not sampled on an infinitesimally sized area. For some datasets, such as
crop yields, this is crucial, but in the BCI dataset, the sampled areas are so small and so far
apart, that the abstraction of considering the soil samples to be from infinitely small areas is
not an unreasonable one. To investigate whether it is even beneficial to use the set-index setup,
we compare the cross-validations of kriging with the WWN Process to intrinsic kriging for an
IRF-0 with polynomial generalised covariance function (see Jensen and Fitzhugh [2018, Section
2.1-2.2]), that is, the generalised covariance function is on the form K(‖x− y‖) = −b‖x− y‖
(note that the implementation we have available does not include a nugget effect). This is almost
a special case of the power model, where σ2

0 = 0 and σ2
1 = b/|A|2. The only difference between

them for kriging purposes is the diagonal of Φ. An IRF-0 is indexed on points in Rd so here we
can simply take Φii = −b‖xi − xi‖ = 0, but since the WWN process is indexed on measures,
the diagonal of Φ is an approximation of

∫
Ai

∫
Ai
− log‖x− y‖ dxdy (see Section 5.3).
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Mineral RMSE (WWN) RMSE (IRF-0) Benchmark
Al 260 290 336
B 0.648 0.697 0.760
Ca 833 869 1022
Cu 2.15 2.38 2.88
Fe 48.8 52.4 65.2
K 89.9 94.2 110
Mg 151 166 190
Mn 132 138 186
Na 38.4 29.4 72.5
P 2.01 2.11 2.45
S 6.98 7.02 8.04
Zn 3.93 4.76 5.10
NH4 7.00 7.53 11.8
NO3 4.87 5.46 6.21

total N 9.84 10.3 12.5
min.NH4 10.2 11.8 15.8
min.NO3 19.0 22.5 19.2
min N 23.0 26.7 25.3
pH 0.290 0.294 0.427

Table 6.1: Results of 10-fold cross-validation for all minerals for both the WWN Process and for an IRF-0 with
polynomial generalised covariance function. Benchmark refers to prediction using the sample mean.

We see on Table 6.1 that the WWN process consistently outperforms the IRF-0 with the
exception of sodium (Na), where the RMSE of the WWN process is about 30 % larger than that
of the IRF-0. It should also be noted that the IRF-0 achieves a better performance relative to
the benchmark on sodium, than any other model considered in this report does on any mineral.
We also note that, while the WWN process technically outperforms the IRF-0 on all other
minerals, they perform essentially identically on Sulphur (S) and pH (the RMSEs of the WWN
process are respectively 0.5 % and 1.3 % lower than that of the IRF-0). There are even two
minerals (mineralised nitrate and mineralised nitrogen), where the IRF-0 performs worse than
the benchmark.

6.3 Summary of Results for Predictions

When analysing the BCI dataset the WWN Process, the kriging predictions are worse than
those for an IRF-0 for sodium (Na), the two performed essentially identically on sulphur (S)
and pH, and on the remaining 16 minerals the WWN performed better than the IRF-0. The
best predictions obtained from the WWN process was on sodium, where the RMSE of the
kriging predictions using the WWN process was 46 % lower than the RMSE of predictions
using the sample mean. When predicting only on the grid the WWN process achieves better
predictions than the exponential and power model on five minerals (iron (Fe), nitrate (NO3),
total nitrogen, mineralised ammonium (min.NH4) and pH), and there are two minerals where the
WWN process is outperformed considerably by either the power or exponential model (calcium
(Ca) and sodium (Na)). Then there are four minerals (magnesium (Mg), phosphorous (P),
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zinc (Zn) and mineralised nitrogen (Min N)) where the WWN process only barely outperforms
the sample mean, but the power model outperforms the sample mean substantially. On two of
the minerals (sulphur (S) and mineralised nitrate (min.NO3)), none of the model outperformed
the sample mean. On the six remaining minerals (aluminium (Al), boron (B), copper (Cu),
potassium (K), manganese (Mn) and ammonium (NH4)) the power model performs better than
the WWN process, but not by much and the WWN process may still be preferred due to its
simplicity.

6.4 Is the WWN Process a Loi du Terroir?

Suppose we have a generalised random field with a generalised covariance function on the form

K(‖x− y‖) = σ2
0δx−y + σ2

1(λ‖x− y‖)νKν(λ‖x− y‖),

where Kν is a Bessel function. This is called theMatérn class of generalised covariance functions,
and it turns out that for ν = 0.5 it reduces to the exponential model, when ν > 0 and λ→ 0 it
reduces to the power model, and when ν → 0 and λ→ 0 it reduces to the WWN process [Clifford
and McCullagh, 2006, p. 2120-2121]. This means that the power model, the exponential model
and the WWN process are all from the same model class. David Clifford and Peter McCullagh
noticed that on crop yield data, the WWN process is as good as the full Matérn model regardless
of the climate and the crop [Clifford and McCullagh, 2006, p. 2142]. Due to this, they deemed
the WWN process to be a loi du terroir (law of the soil) [McCullagh, 2003]. In this project
we can conclude that this notion of a loi du terroir does not extend to forest soil data. To see
this observe Table 5.4. Here we see that for sodium (Na), the RMSE of the kriging predictions
obtained by the exponential model is 32 % lower than the RMSE obtained by the WWN process
on the grid.
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Appendix A

Danish Summary

Dette resumé eksisterer for at overholde de formelle krav forskrevet i studieordningens sektion
5.1.

Kapitel 1 omhandler genereliserede funktioner. Først introduceres test-funktioner, som er
uendelige-ofte differentiable funktioner med begrænset support. Herefter indføres funktionaler
og derefter genereliserede funktioner, som er kontinuerte afbildninger fra mængden af test-
funktioner over i de reelle tal.

I Kapitel 2 introduceres stokastiske processer med en meget generel formulering. Her anses
de som en samling a stokastiske variable, indekseret over en vilkårlig ikke-tom mængde. Herefter
følger nogle målteoretiske resultater, som til sidst munder ud i et bevis for Kolmogorovs Sætning,
som siger, at for enhver indeksmængde og enhver passende valgt samling af sandsynlighedsmål,
eksisterer der en stokastisk proces over indeksmængden med de valgte sandsynlighedsmål som
dens endelig-dimensionelle fordelinger. Herefter introduceres genereliserede stokastiske pro-
cesser, som er stokastiske processer indekseret over mængden af testfunktioner. Hovedresultatet
herom omhandler konstruktion af Gaussiske stokastiske processer, og anvender Kolmogorovs
Sætning. Desuden vises det også hvordan der kan gives mening til differentialet af en Brownsk
bevægelse, som eksempel på en anvendelse af genereliserede stokastiske processer.

I Kapitel 3 introduceres to nye typer stokastiske processer, de mængdeindekserede stokastiske
funktioner (set-indexed random fields på engelsk) samt de genereliserede stokastiske funktioner
(generalised random fields på engelsk). Disse to typer er tæt forbundne, da genereliserede
stokastiske funktioner som oftest anvendes til at modellere kontraster af mængdeindekserede
stokastiske funktioner. Herefter introduceres De Wijs processen, og det bevises at den eksisterer.
Herefter introduceres De Wijs Plus Hvid Støj (WWN) processen, og det beskrives hvordan dens
parametre kan estimeres ved brug af restricted maximum likelihood (REML).

Kapitel 4 omhandler praktisk anvendelse af WWN processen. Først introduceres datasættet,
som indeholder koncentrationer af 18 forskellige mineraler samt pH værdi (for simpelhedens
skyld refereres de alle til som mineraler, selv når pH er inkluderet) fra jordprøver opsamlet i
300 forskellige lokationer inden for et 50 hektar stort område af en regnskov i Panama. Herefter
beskrives nogle numeriske approksimationer, som foretages for at udregne kovariansmatricen af
en WWN proces. Herefter fittes en WWN proces data for aluminium og mineraliseret nitrat.
Fittet til aluminium har nogle tilsyneladende problematiske egenskaber, som undersøge nærmere
i et simulationsstudie.

I Kapitel 5 foretages modelkontrol af WWN processen. Først introduceres variogrammet,
som anvendes som summary statistic. Ud fra variogrammet ses det, at fittet til data for min-
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eraliseret nitrat er plausibelt. Herefter introduceres kriging af mængdeindekserede stokastiske
funktioner, analogt med intrinsic kriging inden for klassisk geostatistik. Herefter foretages en
10-folds krydsvalidering på alle mineraler. Resultaterne herfor sammenlignes med prædiktion
ved brug af den empiriske middelværdi (altså prædiktion med modellen, hvor middelværdien
er konstant og der ikke er nogen rumlig korrelation), og det konkluderes at WWN processen
er bedre end den empiriske middelværdi for alle mineraler. Til sidst introduceres to andre ko-
variansmodeller (potensmodellen og den eksponentielle model), som begge er inden for samme
modelklasse som WWN processen, men med flere parametre. Disse fittes også til data, og vari-
ogrammet konstrueres. Disse modeller er lige så plausible som WWN processen for mineraliseret
nitrat. Herefter foretages også en 10-folds krydsvalidering på potensmodellen og den eksponen-
tielle model. Det konkluderes at WWN processen er at foretrække i de fleste tilfælde, men der
er også tilfælde hvor enten potensmodellen eller den eksponentielle model giver bedre resultater
end WWN processen. Peter McCullaghs kaldte WWN processen for en loi du terroir, da den
skulle være lige så god som den fulde model inden for dens modelklasse på al udbyttedata for
afgrøder, uafhængig hvilken plante og hvilket klima der er tale om. Resultaterne i denne rapport
antyder, at dette ikke kan genereliseres til skovbundsdata.

I Kapitel 6 diskuteres og opsummeres resultaterne fra de tidligere kapitler. Desuden foretages
der her også en sammenligning mellem WWN processen, og metoder indenfor klassisk geostatis-
tik. Her konkluderes det at i 16 ud af 19 tilfælde giver WWN processen bedre prædiktioner end
en IRF-0 med polynomiel generaliseret kovariansfunktion. I 2 ud af 19 er prædiktionerne for
begge modeller lige gode og i ét enkelt tilfælde giver IRF-0-modellen bedre prædiktioner.
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