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Synopsis:

In 2004, G. Fertin, A. Raspaud and B. Reed
published their proof of the bounds to the star
chromatic number of Hypercubes χs(Qn). These
are two linear functions where the gap between
them grows for every dimension n in Qn. In
examples on star coloring of Hypercubes, it was
noticed that the lower bound does not hold. For
this Master’s Thesis, this has been examined and
since the bounds are based on the relation made
between star coloring and acyclic coloring, this
thesis has sought to establish possible criteria to
separate them in order to draw the upper and
lower bound to the star chromatic number for
Hypercubes closer together. This has led to the
introduction of the concept of star components
and how these with the right criteria will proof
that the lower bound is too low for a star coloring
of a hypercube to be correct.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale

med forfatterne.





Dansk resumé Aalborg Universitet

Dansk resumé

Dette speciale er skrevet ved Institutet for Matematiske Fag, Aalborg Universitet og
behandler begreber indenfor punktfarvning af grafer. Stjernefarvning er en gren af
punktfarvning, hvor to nabopunkter skal være farvet forskelligt og hvor en grafisk
vej af længde 3 aldrig må blive to-farvet. Som for enhver punktfarvning opstår et
optimeringsproblem: Hvad er det mindste mulige antal farver, der findes nødvendig for at
kunne punktfarve grafen korrekt? For stjernefarvning kaldes dette det stjerne-kromatiske
tal χs(G) for en graf G.

Grafen der behandles i dette speciale er de såkaldte Hypercubes Qn. Disse grafer er
konstrueret ved et kartetisk produkt, hvilket giver for dimension n en n-regulær graf med
2n punkter og n2n−1 kanter.
I 2004, Guillaume Fertin, André Raspaud og Bruce Reed sammen deres bevis for øvre og
nedre grænser for the stjernekromatiske tal χs(Qn).

Hovedvægten for dette speciale lægges på, at G. Fertin, A. Raspaud og B. Reed bygger
deres resultater for stjernefarvning på acyklisk farvning og at det acykliske kromatiske tal
er mindre end eller lig med det stjerne-kromatiske tal. Med andre ord, alle stjernefarvninger
er acykliske, men langt fra alle acykliske farvninger er stjernefarvninger.
Begge grænser for det stjerne-kromatiske tal er linære funktioner afhængige af dimensionen
n og når denne vokser, vokser afstanden mellem funktionsværdierne også. Derfor er det af
stor interesse i dette speciale, at undersøge og om muligt at indsnævre denne afstand.
Dertil undersøges først udførte stjernefarvninger af Hypercubes for at bestemme givne
resultater for disse.
Dernæst undersøges de anvendte argumenter i beviserne for Guillaume Fertin, André
Raspaud og Bruce Reeds resultater.
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This Master of Science Thesis is written by Anette Hyllested Grønhøj in the autumn of
2019 during the last semester of a Master’s degree programme in Mathematics at the
Department of Mathematical Sciences at Aalborg University.

The primary literature for this paper is "Star coloring of a graph" by G. Fertin, A. Raspaud,
and B. Reed, consulted by "Acyclic and k-distance coloring of the grid" by G. Fertin, E.
Godard, and A. Raspaud. For basic theory in advance "Graphs and Digraph" by G.
Chartrand, L. Lesniak, and P. Zhang has been consulted. A full bibliography is provided
on the last page.
The reader is expected to have a certain knowledge of Graph Theory beforehand and
to possess the mathematical qualifications corresponding to completion of a bachelor
education in Mathematical Sciences as a minimum.

The author wishes to thank her supervisor Oliver Wilhelm Gnilke for his help and
supervision, and the staff at Department of Mathematical Sciences at Aalborg University
for their support.

Reader’s Guide
The first chapter will first introduce general theory on proper vertex coloring in order to
define the general k-chromatic number after which the chapter narrows down to define star
coloring and its general properties.

The second chapter is devoted to Hypercubes and its star chromatic number χs(Qn).

The third chapter then treats the results found in the previous chapters and confronts the
properties of the lower bound to χs(Qn).

The final chapter then concludes the thesis with its results and opens up to further
investigation.

Sections, figures, mathematical definitions, etc., are numbered according to the chapter,
i.e. the first figure in Chapter 2 has number 2.1 etc. References to an equation is on the
form (x.y).

Anette Hyllested Grønhøj - Matematik - Aalborg Universitet

Anette Hyllested Grønhøj
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0.1. Introduction Aalborg Universitet

0.1 Introduction

Within the mathematical field of Graph Theory, the perhaps best known and most studied
area is inarguably coloring. Within the study of vertex coloring, one is the primary
problems is one of optimization. That is, what is the minimum number of colors necessary
for the vertex set of a graph such that no two adjacent vertices are assigned the same
color? otherwise known as the chromatic number of G, denoted by χ(G). This number
can be difficult to obtain, yet is rather straight forward to verify. Because of this difficulty,
boundaries to χ(G) have constructed various times.

One particular type of vertex coloring is called star coloring. Star coloring consists of two
conditions: 1) two adjacent vertices cannot be assigned the same color and 2) any path of
length 3 cannot be bicolored.
In 2004, G. Fertin, A. Raspaud and B. Reed published their results to determine boundaries
to the star chromatic number for a number of distinct families of graphs. The case of
interest to this thesis is the star chromatic number of Hypercubes χs(Qn). All star color
boundaries, in their work, are based on their observed relation between star coloring and
acyclic coloring.

The purpose of this thesis is to examine these boundaries to the star chromatic number of
Hypercubes χs(Qn).

0.2 Problem Statement and Thesis

For a Hypercube Qn of dimension n, the star chromatic number is bounded above and
below by ⌈

n+ 3

2

⌉
≤ χs(Qn) ≤ n+ 1.

These bounds are both linear functions according to the variable n. However as n grows,
so does the gap between the two bounds.
For this reason, this thesis will examine both bounds both in terms of validity in actual
execution as well as the theory precedent to the bounds. The goal of this thesis is to
then examine any possibility of improvement to the gap between the two boundaries and
present any given results that may emerge during the process.
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Vertex Colorings 1
Vertex coloring, in Graph theory, is the assignment of colors to the vertices of G. Unless
stated otherwise, this piece of theory is based on [1].
The main focus of this paper is the concept of star coloring which is a type of coloring
related to the general concept of proper vertex coloring. Therefor, an explanation of the
latter along with its properties will be given first and then, an elaboration of the main
topic will be given.

Definition 1.0.1: Proper Vertex Coloring

A Vertex coloring in which adjacent vertices are assigned different colors is called
proper vertex coloring.

For simplicity, we choose the positive integers 1,2, . . . ,k for some positive integer k, to
represent colors. Thus, the proper coloring can be considered as a function

c : V (G)→ N

such that c(u) 6= c(v) if u and v are adjacent in G.

In this paper, any coloring is assumed to have been executed through the Greedy Col-
oring Algorithm:

Algorithm 1.0.1: The Greedy Coloring Algorithm

Suppose that the vertices of a graph G are listed in the order v1,v2, . . . ,vn.
1. The vertex v1 is assigned color 1.
2. Once the vertices v1,v2, . . . ,vj have been assigned colors, where 1 ≤ j < n, the

vertex vj+1 is assigned the smallest color that is not assigned to any neighbours
of vj+1 belonging to the set {v1,v2, . . . ,vj}.

If G is colored using k colors, this coloring is referred to as a k-coloring.

Definition 1.0.2: Color class

Assume c is a k-coloring of a graph G.
If Vi(1 ≤ i ≤ k) is the set of vertices colored i and is nonempty, then Vi is called a
color class.
The nonempty elements of the set {V1,V2, . . . ,Vk} gives a partition of V (G).

3



Gruppe: 5.239a 1. Vertex Colorings

Due to the proper vertex coloring of G, each of the nonempty color classes Vi(1 ≤ i ≤ k)

is an independent set of vertices of G.

1.1 the k-Chromatic Number

G is called k-colorable if there exists a k-coloring of G.
The minimum positive integer k for which G is k-colorable is the chromatic number, χ(G)

of G.
So, if χ(G) = k, there exists a k-coloring of G, but no (k − 1)-coloring of G. From this, it
is clear that a graph G is k-colorable if and only if χ(G) ≤ k.
So, for a graph of order n, which is thus n-colorable, the range for the chromatic number
is

1 ≤ χ(G) ≤ n.

This is where χ(G) = n if and only if G = Kn, the complete graph of order n, and χ(G) = 1

if and only if G = K̄n - the complement of Kn.

Properties 1.1.1: the Calculation of χ(G)

In practice, the chromatic number k is calculated by, first showing that the graph
is k-colorable - that is, χ(G) ≤ k - and by showing that every coloring of G requires
at least k colors - that is, χ(G) ≥ k.

So, in terms of color classes, a k-coloring of a graph G gives a k-partition of G into k color
classes.

As there is no general formula for the chromatic number of a given graph, there are
bounds given in the following theorems:

Theorem 1.1.1: Upper bound for the chromatic number

For every graph G

χ(G) ≤ 1 + ∆(G), (1.1)

where ∆(G) is the maximum degree of G.

Proof. Assume that the greedy coloring algorithm 1 is applied and that the vertices of G
are listed as done in the algorithm.
Then v1 is assigned color 1 and for 2 ≤ i ≤ n, the vertex vi is either assigned color 1 or
the color k + 1, where k is the largest integer where all of the colors 1,2, . . . ,k are used to
color the neighbours of vi in the set S = {v1,v2, . . . ,vi−1}.
Since at most deg(vi) neighbours of vi belongs to S, the largest value of k is deg(vi).
Therefore, the color assigned to vi is at most 1 + deg(vi) and thereby

χ(G) ≤ max
1≤i≤n

{1 + deg(vi)} = 1 + ∆(G),

4



1.2. Star Coloring of a graph G Aalborg Universitet

which is the desired result.

In order to determine a lower bound for the chromatic number of G, the chromatic number
of its subgraph H is introduced:

Theorem 1.1.2

If H is a subgraph of a graph G, then χ(H) ≤ χ(G).

Proof. Assume that χ(G) = k.
Then there exists a k-coloring c of G.
Since c assigns distinct colors to every two adjacent vertices in G, the coloring c does the
same in H.
Therefore, H is k-colorable and thus, χ(H) ≤ k = χ(G).

So, in view of theorem 1.1, if a graph contains a complete subgraph, also known as a clique,
Kk, then χ(G) ≥ k. The clique number ω(G) of a graph G denotes the largest clique of G
and a clique of order k is called a k-clique.
Thus an immediate result as a consequence of theorem 1.1 is given:

Corollar 1.1.1: a Lower Bound for the Chromatic Number of G

For every graph G, χ(G) ≥ ω(G).

The theory about bounds to χ(G) is the main concern within this paper about star coloring
and the star chromatic number of a graph G.

1.2 Star Coloring of a graph G

In this part of proper vertex coloring, it may be useful that in [1], it is noted that a star Sn,
in graph theory, is the complete biparte graph K1,t, for an integer tm of order n = 1 + t.
This section is otherwise based on [2].
In figure 1.1, examples of proper vertex colored star graphs are given. The original picture
is acquired from [3]

5



Gruppe: 5.239a 1. Vertex Colorings

Figure 1.1. Proper vertex colored Star graphs

This understanding of what a star graph is, will aid in the understanding of what a star
coloring is.

Definition 1.2.1: Star Coloring

A star coloring of a graph G is a proper vertex coloring of G such that no path of
length 3 in G is bicolored.

The star graphs shown in figure 1.1 show that the maximum path length of a star is 2.
So, in terms of vertex coloring, this means that, in order to maintain the star formed by
the relationship between two colors, the second a path of a graph reaches length 3, a third
colors needs to be added. An example of star coloring of a graph is provided by [4] and is
given in figure 1.2. Comparing this to figure 1.1 visualizes the definition of star coloring.

6



1.3. The Star Problem Aalborg Universitet

Figure 1.2. An example of star coloring of a graphs

Along with this definition, the star chromatic number, denoted by χs(G), is the minimum
number of colors needed to star color a given graph G.
Thus, in terms of a star graph Sn, χs(S1) = 1 and χs(Sn) = 2 for any n > 1. In figure 1.2,
χs(G) = 4.

1.3 The Star Problem

The process to achieve the chromatic number (star or k) does not have a definitive
algorithm, and depends on repetitive use of the greedy coloring algorithm 1 until a
minimum number of colors for the given type of coloring is achieved.
A current method in order to realize any type of shortcut to this Brute Force approach -
where you simply try any possible approach until you obtain the wanted end result - is, as
done for any graph in theorems 1.1 and 1.1, by establishing boundaries to the chromatic

7



Gruppe: 5.239a 1. Vertex Colorings

number depending on the structure of the graph in question.

In chapter 2.1, this paper turns its face to the bounds for the star chromatic number for
Hypercubes presented in theorem 2.1.1. However, in order to successfully prove the bounds
of this theorem, results from [2] and [5] need to be noted.

Firstly, [2] draws a connection between star coloring and acyclic coloring:

Definition 1.3.1: Acyclic Coloring, a(G)

An acyclic coloring of a graph G is a proper vertex coloring of G such that no cycle
in G is bicolored.
Here, the acyclic chromatic number is denoted a(G).

An acyclig graph is also known as a forest, as an acyclic graph contains no cycles and thus,
only consists of trees. An understanding of this is useful for the general understanding of
the proof of theorem 1.3.

[2] notes that for any graph G, any star coloring of G is also an acyclic coloring of G:

"indeed, a cycle in G can be bicolored if and only if it is of even length, that is of length
greater than or equal to 4. However, by definition of a star coloring, no path of length 3
in G can be bicolored."

So, for a cycle of length 3, a triangle, star coloring and acyclic coloring, by definition, are
the same, as star coloring never moves beyond a path length of 3.
This gives the observation, that

a(G) ≤ χs(G). (1.2)

A result that is necessary in order to prove theorem 2.1.1, is proven via use of the acyclic
chromatic number and observation (1.2):

Theorem 1.3.1

For any graph G = (V,E), let n = |V |, m = |E| and γ = 4n(n− 1)− 8m+ 1.
Then, we have:

χs(G) ≥ a(G) ≥
2n+ 1−√γ

2
(1.3)

Proof. Let a(G) = p.
let Vi, 1 ≤ i ≤ p, be color class i in an acyclic coloring of G using p colors.
By definition, the subgraph of G induced by any Vi ∪ Vj , 1 ≤ i < j ≤ p, is a forest.
Let ei,j be the set of edges covered by this forest.
Then, for any two distinct pairs of vertices (i1,j1) and (i2,j2) with 1 ≤ i1 < j1 ≤ p and
1 ≤ i2 < j2 ≤ p, we have ei1,j1 ∩ ei2,j2 = ∅.

It can be seen that the number of pairwise distinct pairs of colors is equal to p(p−1)
2 , and

that over these p(p−1)
2 pairs of colors, each color 1 ≤ k ≤ p appears p− 1 times. Moreover,

8



1.3. The Star Problem Aalborg Universitet

for each pair (i,j), with 1 ≤ i < j ≤ p, we have |ei,j | ≤ |Vi|+ |Vj |−1. Thus, it additionally
holds that

∑
(i,j)

|ei,j | = m.

Combining these two results, we obtain that

m ≤
∑
(i,j)

|Vi|+ |Vj | − 1, (1.4)

that is

m ≤ (p− 1)(

p∑
k=1

|Vk|)−
p(p− 1)

2
. (1.5)

Since
p∑

k=1

|Vk| = n, we get that m ≤ n(p− 1)− p(p−1)
2 , which by regular Algebra gives

p2 − (2n+ 1)p+ 2(m+ n) ≤ 0. (1.6)

Let γ = 4n(n− 1)− 8m+ 1.
Since m ≤ n(n−1)

2 , we have γ ≥ 1 in all cases. Thus, we can conclude that

2n+ 1−√γ
2

≤ p ≤
2n+ 1 +

√
γ

2
.

However, we can see that the upper bound is not relevant, as we always have m ≤ n(n−1)
2 ,

that is γ ≥ 1; hence the least value for 2n+1+
√
γ

2 of n+ 1.
However, it is obvious that p ≤ n in all cases.
Thus, along with the observed relation between a(G) and χs(G) the result in the theorem
is given.

In [5], it is stated that this general lower bound is optimal for several families of graphs.
Examples mentioned are graphs such as trees (where γ = (2n − 3)2 and thus a(G) ≥ 2),
cycles (where 2n− 4 <

√
γ < 2n− 3 and thus, a(G) ≥ 3), and complete graphs (in which

case, γ = 1 and thus, a(G) ≥ n).
[2] additionally states that a star coloring can be noted as an acyclic coloring such that if
we have two color classes, then the induced subgraph is a forest composed only of stars.

9





the Hypercube Qn 2
In this chapter, Hypercubes are formally defined after which the the star chromatic number
for Hypercubes are proven based on [5] and [2]. This is then followed by examples of star
colorings.
The introductory definition of a Hypercube and its general properties are based on [1].
A Hypercube, also known as an n-cube, is denoted Qn.

Definition 2.0.1: the n-cube Qn

If n = 1, Qn = K2.
For n ≥ 2, Qn is recursively defined at the cartesian product

Qn−1 ×K2

of Qn−1 and K2.

This is illustrated in a Graphic Interchange Format (a GIF) in [6] which illustrates the
cartesian product as the transition from Qn to Qn+1 from a single vertex to a line, Q1, to
a square, Q2, to a cube, Q3, and then into a tesseract, Q4.
The graph Qn is thus an n-regular graph of order 2n.
The n-cubes for n = 1,2 and 3 are illustrated in figure 2.1

Figure 2.1. the n-cubes, Q1,Q2 and Q3

The vertex set V (Qn) of a given n-cube can be represented in binary code, using ordered
n-tuples (a1,a2, . . . , an) or a1a2 · · · an where ai ∈ {0,1} for 1 ≤ i ≤ n. This is used such
that two vertices are adjacent if and only if the corresponding n-tuples differ at precisely
one coordinate. For the hypercubes in figure 2.1 the binary presentation is illustrated in
figure 2.2.

11



Gruppe: 5.239a 2. the Hypercube Qn

Figure 2.2. the n-cubes from 2.1 with binary representations of the vertex set attached.

This use of bitstrings to identify the elements in V (G) of a hypercube Qn is a tool often
used within coding theory.

In [7], Hamming distance is often used to quantify the extent to which two bitstrings of
the same dimension differ. A formal definition is given by:

Definition 2.0.2

the Hamming distance between two bitstrings, x and y is defined as

d(x,y) = |{i : xi 6= yi}|

For instance, between bitstrings 111 and 000 in figure 2.2, the Hamming distance is 3.
An early application was in the theory of error-correcting codes where the Hamming
distance measured the error introduced by noise over a channel when a message, typically
a sequence of bits, is sent between its source and destination.

The binary representation is here used to prove the upper bound to the star chromatic
number for Hypercubes.

2.1 the Star Coloring of Hypercubes

In chapter 1.1, it was proven that although there were no direct computation of the k-
chromatic number, there were both upper and lower bounds to it. In fact, [2] gives an
estimate for upper and lower bounds to the star chromatic number χs(Qn) in theorem
2.1.1.

2.1.1 Acyclic coloring of Hypercubes and Grids

In [5], Hypercubes are explained via the construction of graphs called Grids whose elements
in V (G) also are represented by coordinates presented in tuples according to dimension.

12



2.1. the Star Coloring of Hypercubes Aalborg Universitet

Definition 2.1.1: the 2-dimensional Grid

the 2-dimensional Grid graph G(m,n) is the Cartesian product Pm × Pn of path
graphs on m and n vertices, respectively.
This graph has mn vertices
and (m− 1)n+ (n− 1)m = 2mn−m− n edges.
A vertex in G(m,n) is identified with tuples (mi,ni)

Expanding this, the d-dimensional Grid is defined as

Definition 2.1.2: the d-dimensional Grid

Let d ∈ N and (n1, . . . ,nd) ∈ Nd, with ni ≥ 2 for any 1 ≤ i ≤ d. The d-dimensional
grid of lengths n1, . . . ,nd, denoted by Gd(n1, . . . ,nd), is the following graph:

V (Gd(n1, . . . ,nd)) = [1,n1]× [1,n2]× · · · × [1,nd]

E(Gd(n1, . . . ,nd)) = {{u,v}|u = (u1, . . . ,ud),v = (v1, . . . ,vd),

and there exists i0 such that ∀i 6= i0, ui = vi,

and |ui0 − vi0 | = 1}

Additionally for any d-dimensional Grid Gd(n1, . . . ,nd), we have:

|V (Gd(n1, . . . ,nd))| = n1 × · · · × nd

|E(Gd(n1, . . . ,nd))| = n1 × · · · × nd × (d−
d∑
i=1

1

ni
)

The attentive reader may have noticed that for ni = 2, 1 ≤ i ≤ d, the d-dimensional grids
are in fact hypercubes Qn of dimension n = d.

In theorem 2.1.1 the proof of the upper bound is based on the proof of the upper bound
for acyclic coloring of d-dimensional Grids.

Theorem 2.1.1

Let n1, . . . ,nd ∈ N with ni ≥ 2 for any 1 ≤ i ≤ d.
For any grid Gd(n1, . . . ,nd) of dimension d,

a(Gd(n1, . . . ,nd)) ≤ d+ 1

Proof. Each vertex u of Gd(n1, . . . ,nd) is defined by its coordinates, ie. u = (x1,x2, . . . ,xd),
where 0 ≤ xi ≤ ni − 1.
Let us define the following coloring:
Each vertex u = (x1,x2, . . . ,xd) is assigned color

c(u) = (

d∑
i=1

i · xi) mod d+ 1 (2.1)

which uses no more than d+ 1 colors.

13



Gruppe: 5.239a 2. the Hypercube Qn

First we show that this is a proper coloring:
Assume that two adjacent vertices u and u′ are assigned the same color c.
Assume also that the coordinates of u and u′ differ in the j-th dimension. That is,

u = (x1,x2, . . . ,xj−1,xj ,xj+1, . . . ,xd) and

u′ = (x1,x2, . . . ,xj−1,xj ± 1,xj+1, . . . ,xd)

and by definition of c(u) and c(u′) we have

j · xj +
d∑

i=1,i 6=j
≡ (j ± 1) · xj +

d∑
i=1,i 6=j

i · xi mod d+ 1.

This gives ±j ≡ 0 mod d + 1, but j ∈ [1; d], so this is impossible and thus, two adjacent
vertices cannot have the same color by this coloring.

Now we prove that this is an acyclic coloring:
Take any two distinct colors c1 and c2 from coloring (2.1). Assume two adjacent vertices
u1 and u2 in Gd(n1, . . . ,nd) are assigned the colors c1 and c2, respectively.
Suppose that the coordinates of u1 and u2 differ on dimension j.
By definition of the coloring (2.1), we get the following equality:

c1 − c2 ≡ ±j mod d+ 1.

W.l.o.g., suppose that c1 > c2.
Thus, there exists only one neighbor u′2 of u1 other than u2 for which c(u′2) = c(u2) = c2.
This neighbor u′2 differs in the (d+ 1− j)-th coordinate from u2.
Now, to find a neighbor for u′2, other than u1, which is assigned color c1, using the same
argument as for finding u′2, it is notable that it must differ from u1 in the j-th coordinate.
By induction it comes to light that for any distinct pair of colors c1 and c2 with c1 > c2, the
vertices assigned either c1 or c2 form a cycle if and only if they lie in the same 2-dimensional
subgrid of Gd(n1, . . . ,nd). Here, this subgrid G2(c1,c2) is induced by dimension j = c1− c2
and j′ = d+ 1− j - cf. Figure 2.3.

No bicolored cycle can exist in that case, because in G2(c1,c2), the only authorized moves
between a given pair of colors will be either N and W; N and E; S and W; or S and E.
Therefore, the path will take on a stair-like shape and no cycle can be created.

14
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Figure 2.3. From [5], G2(c1,c2), the subgrid of Gd(n1, . . . ,nd) induced by dimensions j = c1− c2
and j′ = d+ 1− j

The coloring defined in the proof of theorem 2.1.1 is used in the proof of theorem 2.1.1:

Theorem 2.1.2: (Star-Coloring of Hypercube of dimension n, Qn

For any n-dimentional hypercube, Qn,⌈
n+ 3

2

⌉
≤ χs(Qn) ≤ n+ 1 (2.2)

Proof. The proof will begin with a proof of the lower bound and then prove the upper
bound.
The lower bound is a direct consequence of theorem 1.3, where |V | = 2n and size
m = n · 2n−1, which means we have

χs(Qn) ≥
2|V |+ 1−√γ

2
,

where γ = 4|V |(|V | − 1)− 8m+ 1.
Now we prove that χs(Qn) > n+2

2 .
For this, we now show that f(|V |,n) =

2|V |+1−√γ
2 − n+2

2 > 0.
Note that

f(|V |,n) =
(2|V | − 1− n)−√γ

2

=
(2|V | − 1− n)−√γ

2
·

(2|V | − 1− n) +
√
γ

(2|V | − 1− n) +
√
γ
.

That is, f(|V |,n) = (2|V |−1−n)2−γ
2((2|V |−1−n)√γ) .

However, the denominator, D(|V |,n) = 2((2|V | − 1− n) +
√
γ), is positive for any n ≥ 1,

as √γ ≥ 1 in all circumstances and |V | = 2n.

15
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Therefore, it is enough to show that the nominator f ′(|V |,n) = (2|V | − 1 − n)2 − √γ is
positive in order to prove the lower bound.

f ′(|V |,n) = (2|V | − 1− n)2 − (4|V |2 − 4|V | − 8m+ 1),

thus, f ′(|V |,n) = n2 − 4|V |n+ 2n− 8m.
Since m = |V |n

2 , it is concluded that f ′(|V |,n) = n(n + 2) > 0 for any n ≥ 1.Therefore,

χs(Qn) > n+2
2 , that is χs(Qn) ≥

⌈
n+3
2

⌉
.

In order to prove the upper bound we give the following coloring:
Suppose the vertices of Qn are labeled according to their binary presentation; that is, every
vertex u ∈ V (Qn) is labeled as such: u = b1b2 . . . bn, with every bi ∈ {0,1} for 1 ≤ i ≤ n.
We then assign a color c(u) to u according to the following equation:

c(u) =
n∑
i=1

i · bi mod n+ 1.

From the proof of theorem 2.1.1, we have that this coloring is acyclic and that any bicolored
path in Qn can only appear in a copy of a 2-dimensional square Q2. So, since this coloring
is acyclic, we can conclude that no bicolored path of length strictly greater than 2 can
appear, and thus it is a star coloring.

These bounds are given in the shape of two functions of one independent variable n. These
are plotted with the aid of [8], and displayed in Figure 2.4:

Figure 2.4. Graphic presentation of the upper (blue) and lower (red) boundaries to χs(Qn) where
x = n

Notice that the red lines cover the intervals [0,1],]1,3],]3,4],]4,5] . . . of the x = n on the first
hand axis.
The values of both boundaries for 1 ≥ n ≥ 7 are given Table 1 below:
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Table 1

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7⌈
n+3
2

⌉
2 3 3 4 4 5 5

n+ 1 2 3 4 5 6 7 8

From both figure 2.4 and the table, it is visible that they both take on a linear behaviour
but are different in scopes. Because of this, the distance between the extrema grows with
every dimension n. This means that for a hypercube of higher dimension n, the more cases
of star colorings of that hypercube can be accepted as a minimum star coloring.

Star colorings of Hypercubes of three dimensions are displayed in chapter 2.2:

2.2 Examples of star colorings

In these examples the vertices are both given an actual color as well as a corresponding
number x ∈ N.
Since Q1 only consists of two adjacent vertices, this case is trivial and we move on to the
next dimension.

2.2.1 Hypercube of 2nd dimension (a Square):

For this dimension, only one star chromatic number, 3, was given in the table.
By use of the greedy coloring algorithm approach, by assigning the first color, 1/red, it
was easily possible to assign the two adjacent vertices with the color 2/yellow and then
in order to meet the criteria for a star coloring, the final vertex was assigned the color
3/green. This is illustrated in figure 2.5.

Figure 2.5.
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Gruppe: 5.239a 2. the Hypercube Qn

Although the above explanation of the coloring process is sufficient, the greedy coloring is
additionally illustrated in figure 2.6 with starting point being the vertex with the binary
code 00.

Figure 2.6.

2.2.2 Hypercube of 3rd dimension (a Cube):

For dimension 3, the star chromatic number is limited to 3 and 4.
In figure 2.7, a star coloring by use of 4 colors is shown. It is notable that it is even
symmetric across K2 of the cartesian product Q2 ×K2 with an oscillation of 180 degrees.
In other words, the two vertices with the same color are placed in the corners that are the
farthest away from each other - they have a minimum path of length 3 apart.

Figure 2.7.

This coloring by use of binary coding, starting at vertex 000 and moving upward, is shown
in figure 2.8.

18
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Figure 2.8.

Since the cube in dimension 3 is relatively easy to comprehend visually, its coloring was
achieved within a relatively short time frame. For the sake of curiosity, let us see if a
symmetric star coloring is also possible for the Tesseract (Q4).

2.2.3 Hypercube of 4th dimension (a Tesseract):

Although this one was no easy task, it was possible to achieve some sort of symmetry to
the Tesseract, while it was drawn up in a 2 dimensional environment as shown in figure
2.9.

Figure 2.9.

This coloring with use of binary code, as in the two previous examples, is shown in figure
2.10
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Figure 2.10.

Again, this was only possible with the upper bound of 5 colors, although attempts on fewer
were made. Consider the tesseract as its cartesian product Q3 ×K2, illustrated in figure
2.11 where the red and blue color illustrates the two Q3s and the yellow color illustrates
K2.
This makes it visible that, like in example 2.2.2 about Q3, the two vertices with the same
color are placed in the corners that are the farthest away from each other - they have a
minimum path of length 4 apart. This may not be so clear due to the many uses of color
2/yellow. So, in viewing figure 2.9 and figure 2.11 together and, as an example consider
the positions of the vertices with color 5, the explanation may become clearer.

Figure 2.11.
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This additionally shows that the two subgraphs Q3 are also star colored and indeed in the
exact same way only that they have been oscillated 180 degrees around the first axis of the
3 dimensional coordinate system and then by 90 degrees around the second axis. This is
also similar to the symmetric star coloring of the cube Q3 as mentioned in example 2.2.2.

2.3 Results

The above examples have shed the following light on what properties the theorem 2.2
provide for a hypergraph:

In third and fourth dimension, it was proved that the cartesian product which constitutes
all hypergraphs of dimension n constitutes of two identically star colored hyper-subgraphs
of dimension n− 1 connected via K2. The last made possible by oscillation(s) in the three
dimentional space.
It is additionally notable that a symmetric star coloring was only possible by use of the
upper bound to the star chromatric number in theorem 2.1.1.
Since these results have such strong similarities in both third and fourth dimension, they
provide an indication that the same results may very well be possible for dimension 5 as
well.

From this chapter, it is clear that the lower bound in theorem 2.1.1 is off. In the next
chapter, criteria that may lie as base for the proof of this will be introduced
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the Acyclic Lower Bound 3
As observed in the proof of theorem 2.1.1 the lower bound is based on the acyclic lower
bound in theorem 1.3. We know that star colorings are acyclic colorings, however, not all
acyclic colorings are star colorings.
Therefore, the proof for the acyclic lower bound 1.3 is examined to and in the sum (1.4):

m ≤
∑
(i,j)

|Vi|+ |Vj | − 1

it is noticed that "-1" is the subtraction of one component.
Now, this is for acyclic coloring, so, for star coloring, assume

m =
∑
(i,j)

|Vi|+ |Vj | − cij . (3.1)

Here, let cij be the number of star components between the vertices assigned the colors i
and j.

Definition 3.0.1

the number of star components between two color classes Vi and Vj is defined as

cij = {∀u ∈ Vi and ∀v ∈ Vj where uv ∈ E(G)|#K1,t}

This definition does not account for isolated vertices that may occur in the subgraph
constituted by the color classes Vi and Vj . This is the topic of the following theorems 3, 3
and the subsequent corollary.

Theorem 3.0.1

Consider a star colored Hypercube Qn. Then, for adjacent vertices of two color
classes |Vi| ≤ |Vj |, where u ∈ Vi and v ∈ Vj . The star components are given by:

cij = min{|Vi|,|Vj |}.

Proof. Let, k ≤ n
Consider two color classes where k vertices belong to color class Vi and n vertices to Vj .
Assume no isolated vertices.
Since this is a star coloring, the resulting subgraph by V1, V2 and the edges connecting
them is a forest of K1,t trees for t ∈ N.
For |Vi| < |Vj |, Consider graph A below, where |V2| < |V1| and the two subsets equals a
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forest of stars, then c12 = |V2|.
Consider Graph A as two color classes of k in |Vi| and n in |Vj |. This expands the above
to, that for two adjacent color classes |Vi| < |Vj | in a star coloring of a Hypercube, then
ci,j = |Vi|.

r2
r
r
r

Graph A

1

1

1

�
�
�
��

Q
Q
Q
QQ

For k and n such that |Vi| = |Vj |, the subgraph of the connected graph G, is at least a
forest of K2 trees, and in that case, |Vi| = cij = |Vj |.
If the subgraph constitutes of a mix of different K1,t trees other then K2, the number of
star components is the number of roots to every tree, that is the number of vertices of
degree deg(v) > 1.
So, for vertices of color classes |Vi| ≤ |Vj | where u ∈ Vi and v ∈ Vj and uv ∈ E(G), for the
general graph G, the result holds.

For a star colored hypercube of dimension n ≥ 2, a subgraph of two adjacent color classes
would result in isolated vertices that used to be connected to at least a third color class in
order to avoid bicolored cycles or paths of length 3 or above. Theorem 3 did not concern
with these, at they are paid attention to in 3.

Theorem 3.0.2

For two non-adjacent color classes |Vi| < |Vj | separated by a third color class Vk
cij is |Vi| times the path length between color class Vi and Vj

Proof. For non-adjacent color classes, cij is the number of aligned star components between
color class Vi and Vj .
Considering the proof of theorem 3, it becomes apparent that, as the minimum requirement
of a star component is that it has the shape of K2 between two adjacent color classes, the
number of star components from color class Vi to Vj is equal to |Vi| times the number of
edges between the color classes. This holds, due to the symmetry of the star coloring of
Hypercubes. Thus, in Graph B, c12 = 1, c13 = 1 and c23 = 1 + 1 = 2.

Graph Br2
r
r
r

1

1

1

r3
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�
�
��

Q
Q
Q
QQ

�
�
�
��
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These results of theorem 3 and 3 lead to the following collorary:

Corollar 3.0.1

For an n-colorable star colored graph with color classes V1, . . . ,Vn, where
|V1| ≤ . . . ≤ |Vn| and V1 and Vn are separated by n− 2 color classes:

c1n = |V1| · (n− 1)

Remark: These theorems 3 and 3 and corollary assume symmetry such that all paths
between color i and j are of equal length. Therefore, this is a concept open for further
examination.

As an example, consider the star colored square Q2 from chapter 1.

r
1

r

r

r 3

2

2

Here, the vertex assigned color 2 along with the two adjacent vertices assigned the color 1
constitutes one star component. So, c12 = 1.
This is the exact same case with the vertex colored 3 with the adjacent vertices colored 2
- c23 = 1. But c13 constitutes of both previous two star components, so c23 = 2.

Therefore, for the star colored square Q2, (3.1) gives:

1,2 : 2 + 1− 1 = 2

1,3 : 1 + 1− 2 = 0

2,3 : 2 + 1− 1 = 2

and the sum of this is 4 - the size of Q2. The sum in (1.4) would have given the number 5
- larger than the size of Q2.

Returning to the proof of theorem 1.3, we know that the number of pairwise distinct pairs
of colors is equal to

p(p− 1)

2

for p colors. This is precisely
∑
(i,j)

cij . So, from (1.5) and (3.1), we obtain for any graph G

of order V (G)

m = (p− 1)V (G)−
∑

cij (3.2)

and by isolating the number of colors p, we get

m+
∑
cij

V (G)
+ 1 = p (3.3)
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Thus, for Hypercubes Qn, this is:

n2n−1 +
∑
ci,j

2n
+ 1 = p. (3.4)

3.1 Star components in star colored Hypercubes

In chapter 1, it was presumed that all star colorings are executed via the greedy coloring
algorithm 1. However, in this chapter algorithms fitted to star color hypercubes to obtain
χs(Qn) are drawn up. In chapter 2.1, Consider the star coloring in figures 2.6 and 2.10.
From these a special type of coloring algorithm appears possible.
By assigning the same color, A, to vertices of either even or odd weighted bitcode, cij
can be evaluated as cAj = |Vj |. This is because |VA| in a star coloring of Hypercubes
automatically becomes strictly greater than the cardinality of any other color class.

Algorithm 1: Even or Odd Algorithm
Result: Star coloring of Hypercube Qn
All vertices with bitcode of odd weight are assigned color A;
while bitcode is of even weight do

assign a unique color i other than A if the even bitcode differs in precisely 2 bits
then

assign a new color;
else

assign color i;
end

end

In figures 2.10 and 2.6, it shows that the algorithm works in 2nd and 4th dimensional
Hypercubes.

Remark: The importance here, is that you can decide to assign the color A to vertices of
even weight instead as long as consistency is maintained.

In figure 3.1, the Hypercube of dimension 5 Q5 is star colored using the Even or Odd
Algorithm 1. This time, the color A is assigned to every vertex of even weighted bitcode.
The vertices of bit weight w(v) = 1 are then assigned a unique color each. This creates a
base for the coloring of vertices of weight w(v) = 3.
Thus, vertex 01110 cannot be assigned the same color as 01000,00100 and 00010. This
leaves the choice between two of the remaining base colors from 10000 or 00001.

Remark: It becomes apparent, in figure 3.1, that this method does not hold for the
maximum of the star chromatic number of Q5 in theorem 2.1.1 - 6 colors.
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Figure 3.1.

This is also the case for Q3 as shown in figure 3.2

Figure 3.2.

In both cases, Q3 and Q5, n+ 2 colors are needed at least for this method to hold and not
n+ 1 - the upper bound for the star chromatic number.

The Even or Odd Algorithm 1, does, however, fit the star chromatic number for Q2 and
Q4 as shown in figures 2.6 and 2.10, where all vertices of odd bit weight are assigned color
A = 2.

Thus, for hypercubes of even dimension, this method of coloring excludes any bicolored
cycles or paths of length 3 or above and works by the upper bound of theorem 2.1.1.
So, considering hypercubes Qn of even dimension n, the color classes from the Even or
Odd coloring form a complete bipartition K1,n as illustrated in figures 3.3 and 3.4.
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Figure 3.3.

Figure 3.4.

This complete bipartite structure ensures that the number of star components cij of colors
i and j is either |Vj | for adjacent color classes |Vi| ≥ |Vj |. For non-adjacent color classes,
cij = 2|Vj | if |Vi| ≥ |Vj |.

3.1.1 the Sum of Star Components

In chapter 2.1, the lower bound for the star chromatic number of Hypercubes was given
and it was calculated for 1 ≤ n ≤ 7. It was only possible of achieve the lower bound for
dimensions 1 and 2, but for these the upper and lower bound were identical. In dimension
3 and 4, a star coloring was only possible with the upper bound.

In Table 2, calculated χs(Qn) from chapter 2.1 and figure 3.5 are added to Table 1

Table 2
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n=1 n=2 n=3 n=4 n=5 n=6 n=7⌈
n+3
2

⌉
2 3 3 4 4 5 5

n+ 1 2 3 4 5 6 7 8
actual cal-
culations

2 3 4 5 6

In this chapter, we investigate the inequality:

Theorem 3.1.1

For a Hypercube Qn

n2n−1 +
∑
cij

2n
>

⌈
n+ 3

2

⌉
(3.5)

Proof. the validity of equation (3.5) lies with the sum of star components.
For Q3, the claim of theorem 2.1.1, by equation (3.4) gives that

∑
cij = 4 - that there will

in total be four stars in a cube Q3 by use of p = 3 colors.
This is impossible for a star coloring.

For Q4, we get

4 · 23 +
∑
Cij

24
+ 1 = 4, (3.6)

which gives
∑
cij = 16 by use of p = 4 colors.

In a hypercube of any dimension n, the smallest cycle is a square of path length 4 because of
the Cartesian product Qn−1×K2. such a cycle requires at least 3 colors to be both acyclic
and star colored. However, when the regularity of the hypercube grows by one every cycle
of path length 4 becomes interconnected into several 4-cycles and thus, 3 colors cannot be
enough for a cube and by the same argument, 4 colors cannot be enough for a tesseract
Q4.

This proof is incomplete as it solely depends on
∑
Cij and that Cij is properly defined for

Hypercubes. That is, the key to correct the lower bound to the star chromatic number for
Hypercubes follows a clear lower bound to the total sum of star components. That is,

16 =
3 · 32

6
≤
∑

cij

for Q4.

To give an indication of this, The actual results from Table 2 is illustrated in Equation 3.5
for Q3 and Q4:

for Q3 this would be:
12 +

∑
cij

8
+ 1 > 3
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for this to hold,
∑
cij > 4 is necessary.

For the symmetric star coloring of Q3 in figure 2.8, we obtain the cij values:

c12 = 2

c13 = 2

c14 = 2

c23 = 2

c24 = 2

c34 = 2

and thus,
∑
cij = 12 > 4.

For Q4 the equation is:
32 +

∑
cij

16
+ 1 > 4

and for this to hold, we need
∑
cij > 16 and from figure 2.10, we get:

c12 = 2

c13 = 4

c14 = 4

c15 = 4

c23 = 2

c24 = 2

c25 = 2

c34 = 4

c35 = 4

c45 = 4

and
∑
cij = 32 > 16

From these two examples, another result emerges that:

Theorem 3.1.2

For a Hypercube Qn∑
cij = m (3.7)

Proof. HypercubesQn, because of the Cartesian product, derives from n cartesian products
of K2 to a vertex as

Q4 = Q3 ×K2

= (Q2 ×K2)×K2

= ((Q1 ×K2)×K2)×K2

= (((Q0 ×K2)×K2)×K2)×K2,
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Where Q0 is but an isolated vertex.
K2 ≡ S2 and for a star colored Hypercube Qn, that may be solely containing S2 stars, like
Q3 in figure 2.7, or be a complete bipartite set K1,t of color classes, as shown in figures
2.9, 3.3 and 3.4. Thus, the total number of stars,

∑
cij , equals the total number edges in

the graph.

In this chapter many exciting results have arisen:

Above all that improvement to the lower bound in theorem 2.1.1 is possible with the
introduction of the total sum of star components. Although this is still a concept that
needs improvement in itself, this separates star coloring from acyclic coloring and could
complete the proof of theorem 3.1.1 and thus, that the actually calculated χs(Qn) are in

fact the smallest number k for which Qn is star colorable. That is,
⌈
n+3
2

⌉
is strictly too

low for dimensions n > 2.

For even dimensions n, the color classes from a star coloring of Hypercubes produce a
complete bipartite graphs K1,n.
Bipartite graphs Kx,y are extensively used in modern coding theory. In [9], The function of
bipartite graphs in error correcting codes is explained in short. This is where the vertices
in the x part of the graph are bits of information that need to be preserved and corrected
if corrupted. The vertices on the y part of the graph are parity checks. By use of the
parity checks, errors can be corrected if some of the bits are corrupted. Low density parity
check (LDPC) codes are used in satellite TV transmission, the relatively new 10G Ethernet
standard, and part of the WiFi 802.11 standard.
This, along with the binary coding already present in the presentation of vertices in
Hypercubes, promotes some of the uses in modern coding that can be provided by star
coloring.

3.2 the Vector Space of Star Coloring Hypercubes

Achieving a symmetric star coloring of, for instance, Q5, two vertices with distance 4 can
be assigned the same color c(00100) = c(11011). With linear coding this can be equivalent
to a map

Fn2 ⇒ Fn2 .

In order to validify this approach, the space needs to to be split into cosets. Denote this
measure of cosets C.
First, C, must contain the code 00000 - the dimension 0 vector space.
To then get a vector space of dimension 1, add 11100.
If 00111 is also added, then the sum of the two must be added to maintain the vector space
- 11100 + 00111 = 11011. This gives 4 elements in a 2 dimensional vector space.

C = {00000, 11100, 00111, 11011}

For the star coloring, we then color two vertices x and y with the same color whenever
x − y is in C. These two vertices must be of path length 3 apart, so their bit code have
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Hamming distance of at least 3.
Observing the result of this algorithm, in figure 3.5, it is apparent that too many colors are
in use considering the upper bound in theorem 2.1.1. However, what is also apparent is
that pairs of distinct colors/cosets could be united. The criteria for this union to be valid
is that the resulting new linear space is with minimum Hamming distance 2. In figure 3.5
such a union has been constructed of cosets [00000] and [01110] under the color green.
This union is a new code/linear space with minimum Hamming distance 2. Hence, the
coloring is still valid.

Figure 3.5.

After this union it can be asked whether any other two color classes can be united. In the
same figure, it is visible that any additional union will result in either bicolored cycles;
bicolored paths of length 3 or above; and/or even adjacent vertices assigned the same color.

32



3.2. the Vector Space of Star Coloring Hypercubes Aalborg Universitet

This algorithm is formally defined in Algorithm 2:

Algorithm 2: Coset Algorithm
Result: Star coloring of Hypercube Qn
Take a measure of cosets C ∈ Fn2 and assign this measure a unique color.;
while given two vertices x and y do

consider x− y;
if x− y ∈ C then

assign both the same color;
else

assign each a different color;
end

end
while given two resulting color classes Vi and Vj do

consider Vi ∪ Vj ;
if ∀x,y ∈ Vi ∪ Vj has min{d(x,y)} ≥ 2 then

unite the color classes under the same color;
else

consider another union;
end

end

For Q5 in view of Algorithm 2, the resulting color classes do not form a bipartition.

This approach, however, does not work for Q4 since there is no code of length 4. For Q5, a
2-dimensional code of minimum weight 3 was possible and thus, every coset had had four
elements.
But for length 4 the only codes of minimum weight are 1-dimensional and thus the cosets
would only contain 2 elements.

In fact, this algorithm holds for dimensions n ∈ {2n−1,2n−n,3}, this is because the codes
of these dimensions are have lengths that enable a minimum weight 3. For code length 3 -
Q3 - the coset is {000,111} which by algorithm 2 gives exactly the coloring of Q3 in figure
2.8.
With this logic, the coset to the algorithm 2 coloring of Q6 will be of dimension 3 and hold
as much as 8 elements.

This gives two algorithms that give the upper bound in theorem 2.1.1.
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Conclusion 4
The main issue of this paper has been the lower bound to the star chromatic number of
Hypercubes Qn ⌈

n+ 3

2

⌉
≤ χs(Qn) ≤ n+ 1.

This lower bound is based on the general lower bound

χs(G) ≥ a(G) ≥
2n+ 1−√γ

2
,

and from its proof, it was obtained that for acyclic coloring, m ≤
∑
(i,j)

|Vi|+ |Vj | − 1. This

is where the theory about that in star coloring, as opposed to acyclic coloring, there could
possibly be more components to subtract than merely 1 as χs(G) ≥ a(G).
This thesis has yet to fully prove that for |Vi| ≤ |Vj |, cij = |Vij| in every case as the cases
used still rely heavily on symmetry and equal path length.
In this thesis, this concept of star components cij has been introduced, but must no less

be studied further to be complete, and to prove that for
⌈
n+3
2

⌉
= p the equation

n2n−1 +
∑
ci,j

2n
+ 1 = p

gives an incorrect sum of components. Ultimately, a lower bound to this sum of star
component would provide solid criteria that would have lasting consequences for the
estimated χs(Qn).

For this verification, this thesis has additionally drawn up two algorithms that result in
star colorings that use the upper bound of the star chromatic number.
In chapter 3, the Even or Odd Algorithm 1 was defined. For Qn of even dimension n, this
algorithm gives a complete bipartition of the color classes K1,t for 1 + t = χs(Qn).
The Coset Algorithm 2 utilizes cosets of vector spaces to insure path lengths 3 between
vertices of the same color. This algorithm holds for dimensions n ∈ {2n − 1,2n − n,3}.
These may aid in any further definition of star components.

Bipartition is a concept used in error correction programs in detecting and correcting
corruption in the information in the 1 part of K1,t. The vertex set is presented by binary
coded bitstrings which is also a concept used within error correction programs in the
detection of Hamming distance between compared bitstrings. Therefore, star coloring of
Hypercubes provides a further addition to the tools within the subject of error correction.

Therefore, due to the incompletion to the concept of star components, the improvement
these still needs further attention in the future in order to improve the boundaries of
χs(Qn) via this method.
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