
Behavioural Analysis of Malware Using Custom

Sandbox Environments

Master Thesis
January, 2020

Tarik Muhovic

Aalborg University

Networks and Distributed Systems

Networks and Distributed Systems

Aalborg University

https://www.aau.dk

Title:

Behavioural Analysis of Malware Using Custom

Sandbox Environments

Study:

Networks and Distributed Systems

Project Period:

10th semester, Fall 2019

Project Group:

NDS10

Participant(s):

Tarik Muhovic

Supervisor(s):

Jens Myrup Pedersen

Egon Kidmose

Copies: 1

Page Numbers: 100

Date of Completion:

January 10, 2020

Abstract:

The project and its contents were made for the

10th semester at Aalborg University. The task for

the project was to explore the idea of understand-

ing if changing different parameters called artefacts

within an established virtual environment would

lead to a behaviour change for malware samples by

creating and using a custom sandbox environment.

Using software such as the malware analysis tool

Cuckoo Sandbox and the Virtual Machine (VM)

manager called VirtualBox, a systematic way of

testing malware samples in different environments

for behaviour change, was made.

As such, a system was made consisting of Cuckoo

and VirtualBox where two custom VM images were

created with one resembling a normal virtual envi-

ronment and one where all references to the virtual

environment were taken out by manipulating differ-

ent artefacts in the system.

During the project, a test setup was created which

showed that malware changed behaviour between

different tests made when implementing different

artefacts. Some malware did however remain dor-

mant because of lack of additional artefacts in the

test environment. Overall, out of 21 randomly se-

lected malware samples, 9 were observed to have

a change in their behaviour. Because of the small

sample size used for testing, concluding that the

different artefacts had a definite impact on the be-

haviour of malware would require more malware

and repeated tests to be performed. The project

was therefore a success where a system was created

that showed behavioural change in different types

of malware, but further work would be required in

terms of system scaling and repeated tests in or-

der determine what caused each specific change in

behaviour.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the author.

https://www.aau.dk

Preface

About

The report is written and completed by Tarik Muhovic as a master thesis at Aalborg University

under the study Networks and Distributed Systems during the 10th semester, fall 2019.

The project and the related problem were made based on the occurring inaccuracy of malware testing

in closed of environments such as virtual ones and how malware behaviour would change upon the

detection of said closed environments in order to avoid being systematically tested.

The focus of the report was also twofold, in that it was made with being worked on in the future in

mind. Therefore the report is both focusing on the problem described as well as being informative

for people developing on the system at a later point in the future.

Acknowledgements

We would also like to thank VirusTotal for providing malware samples for the project in order to

optimally do malware analysis [51].

Report reading guide

Sources will be referenced throughout the report using the IEEE reference style. All the referenced

sources can be seen in the bibliography and are listed in alphabetical order.

A source will be referenced with the following method and layout, with numbers and square brackets:

”Example text [1].”

Where the source referenced in the text is number ”1” in the bibliography.

Sections and chapters are referenced with chapter and section numbers followed by one another.

Example:

”Example text (see section 2.3.1).”

Where the section referenced in the text is chapter 2 section 3 and subsection 1.

v

Acronyms

AAU Aalborg University. 24, 42–44, 48

ACPI Advanced Configuration and Power Interface. 51

API Application Programming Interface. 44, 46

DL Deep Learning. 2, 3, 79

DSDT Differentiated System Description Table. 51

FADT Fixed ACPI Description Table. 51

GPU Graphics Processing Unit. 42

JSON JavaScript Object Notation. 26

MAC Medium Access Control. 51

OS Operating System. 41, 44, 47, 61, 62

REST Representational State Transfer. 44

RSDT Root System Description Table. 51

SSDT System Service Descriptor Table. 51

UI User Interface. 50, 70

VM Virtual Machine. iii, 16, 30–33, 37, 41, 42, 44, 45, 48–51, 53, 57, 60, 61, 77

WPAD Web Proxy Auto-Discovery. 72

vii

Table of contents

1 Introduction 1

1.1 Discovering Malware . 4

1.1.1 Activating Malware . 5

1.2 Master Thesis Topic . 6

2 Preliminary Analysis 9

2.1 General Malware . 9

2.1.1 Evasion Techniques . 10

2.1.2 Time and Logic Dependant Malware . 11

2.2 Malware Triggers . 12

2.2.1 Activating Malware Through Specific Triggers 12

2.3 Malware Platforms . 13

2.4 Problem Statement . 13

3 Testing Malware and its Complexity 15

3.1 Malware Testing Complexity . 15

3.1.1 Reverse/Negative Triggers . 15

3.1.2 Sandboxing Artefacts, Wear and Tear Levels and Fingerprinting 16

3.2 User Machines vs. Sandbox Machines vs. Baseline Machines 18

3.2.1 Finding Common Virtual Artefacts . 20

3.3 Data Extraction from an Infected Machine . 21

3.4 Simulating User Activity . 22

3.5 Sourcing Malware Samples . 24

3.6 Conclusion . 27

4 System Specification 29

4.1 Use Cases . 29

4.2 System Requirements . 34

4.3 System Overview . 35

4.4 Malware Samples Test Requirements . 38

5 System Design 41

5.1 Creating a Malware Test Setup . 41

5.1.1 Current Setup . 42

5.1.2 Modified Setup . 43

5.1.3 Finalised Third Setup . 48

5.2 Malware Sample Processing . 50

ix

x Table of contents

5.3 Virtual Machine Snapshots . 51

6 Implementation 53

6.1 System Overview . 53

6.2 Cuckoo Sandbox . 54

6.3 VirtualBox . 56

6.3.1 Windows OS . 56

6.4 Networking and Data Transfers . 57

6.4.1 Host Networking . 57

6.4.2 Guest Networking . 58

6.4.3 Data Transfers . 59

6.5 VM Snapshots . 60

6.5.1 Base Image . 60

6.5.2 Modified Image . 60

6.5.3 Difference Test Using Pafish . 63

6.6 Running Everything . 65

7 System Testing and Malware Analysis 67

7.1 Testing Method . 68

7.1.1 Testing Criteria . 68

7.2 Malware Sample Test Results and Comparison . 69

7.3 Test and Analysis Conclusion . 73

8 Conclusion 75

9 Project Outlook and Future Work 77

List of Figures 79

List of Tables 81

Bibliography 83

A Docker and Virtual Machines 87

B Anti VM Detection Log 89

C Scripts Used for the System 93

D Malware Samples 97

1 | Introduction

Over the last years, the increase in use of personal computers and phones has led to a major increase

in cyber-attacks where some companies such as AV-Test record over 350.000 new malicious programs

each day [6] (see Figure 1.1).

Figure 1.1: How found malware has increased over time [28]

In order to beat the criminals and help protect the users, advanced methods are being developed to

analyse these large amounts of malware such as the use of machine learning where learning about

how malware behaves is done by observing different types of malware [27]. In the context of machine

learning for anti-malware purposes, researchers use a large amount of data in the form of malware

samples that are already classified as some type of malware. The samples then have their behaviour

or other features tested against software that is known to safe and not malicious in order to train a

machine learning algorithm and model to know the difference between malicious and non-malicious

software. A high accuracy is required since most anti-malware is deployed on personal computers

where the anti-malware runs. If the machine learning algorithm and model aren’t good enough,

false positives can occur which has been observed to have happened in the past. Here companies

such as Malwarebytes encourage people to label samples themselves which Malwarebytes can use to

improve their machine learning modules in their software [36].

The types of machine learning come in two different forms, unsupervised and supervised learning.

Both methods improve the rate and accuracy of how malware is detected and if a piece of software

is actually malicious or not. In other words, how fast and how few false positives are detected are

1

2 Chapter 1. Introduction

what is improved upon. Unsupervised learning includes having a large data set without knowing

the right answers for the task. This method requires a lot of manual labour to label different data

but is valuable for threat detection since it requires less resources to execute and can be done with

automation. Unsupervised learning helps threat detection by improving the rate at which classifiers

are applied to malware by learning how the malware is constructed in terms of how it interacts

with a system such as system calls and file searches. Supervised learning on the other hand are

where both the data and the right answer are available. Here a model is created to fit the right

answer where in the case of malware, the right answer is doing something malicious on a system

that is predefined. This can usually be done by knowing how previous malware behaves and ap-

ply those findings to new malware and observing if the same outcome can be reached (see Figure 1.2).

Figure 1.2: How supervised machine learning is done [27]

There are however rare cases where samples used for training a model are insignificant. These samples

typically are very rare but also cause a lot of damage such as samples that have zero day exploits

and come in the form of a combination of a computer worm and ransomware which has the ability to

infect and spread quickly over a network. These samples usually have only been seen once and are

therefore hard to use for training basic machine learning since there isn’t enough data to train with.

In this case special kinds of Deep Learning (DL) are applied where representations of input features

are made and tested with [32]. DL has in the past been observed to be successful in areas such as

computer vision, language processing and other tasks where you want to have high level meaning

from low level data. In some cases, DL can be fine-tuned enough to surpass human ability for a

specific task [45]. The difference between DL and normal machine learning is that DL uses feature

learning through patterns instead of task specific learning that humans tell the model to look for.

Using DL in an area such as malware, the model can learn to extract features and classify data into

various classes. A way of applying malware to DL is to create image signatures of malicious and non-

malicious software which the DL model can use to understand the difference between malicious and

non-malicious. An example of a simple DL model applied to malware can be seen on Figure 1.3. Here,

the different image signatures can be seen as well as the outcome determined by the DL model. The

different signatures generated showed that certain types of software have common types of behaviour

which could be showcased in the form of images. Using this technique, different malware types could

be identified via their signature.

3

Figure 1.3: Image signatures generated by running a simple DL model to identify malware samples [32].

A big problem with using machine learning to find new malware is the degradation of the model that

is used to find new malware. As malware gets detected, malware authors rewrite their code to avoid

new detection methods and as such, the model that was used earlier become worse over time as new

malware is made. This is however counteracted by allowing the models used to be updated over time

as new malware is discovered. If the model used isn’t updated, the degradation can look similar as

seen on Figure 1.4.

Figure 1.4: Degradation of machine learning models [27]

The degradation of a model also applies to the machine learning being used [42]. If the data samples

used to train the machine learning algorithms isn’t correctly labelled or corrupt, the model becomes

inaccurate since the difference between malicious and safe software can be harder to distinguish.

This results in more manual labour being required to fine tune the model and algorithm to prevent

problems which could result in unreliable results.

4 Chapter 1. Introduction

1.1 Discovering Malware

Finding all of the malware mentioned earlier is however not a trivial task. Unless the malware is

an already existing copy of a detected malware, special methods need to be used in order to figure

out if a particular piece of software is malicious or not. For simple malware this task can be easy

and doesn’t require any special equipment such as machine learning to find. This type of malware

can be found by using the process of reverse engineering of the software in order to see what it does

[2]. Reverse Engineering of software can be done by using what is called a disassembler which shows

what the executable is doing in assembly code. Tools such as ”IDA Pro”, ”WinDbg” or ”x64dbg” can

be used for debugging executable running on Microsoft Windows machines. An example can be seen

in the following code where a simple for loop is complied, then disassembled into assembly code.

1 int main() {

2 int count = 0;

3 for (int i = 0; i < 10; ++i) {

4 count++;

5 }

6 }

Figure 1.5: Source code

1 main:

2 400522 push rbp

3 400523 mov rbp,rsp

4 400526 mov DWORD PTR [rbp-0x4],0x0

5 40052d mov DWORD PTR [rbp-0x8],0x0

6 400534 cmp DWORD PTR [rbp-0x8],0x9

7 400538 jg 400544 <main+0x22>

8 40053a add DWORD PTR [rbp-0x4],0x1

9 40053e add DWORD PTR [rbp-0x8],0x1

10 400542 jmp 400534 <main+0x12>

11 400544 mov eax,0x0

12 400549 pop rbp

13 40054a ret

14 40054b nop DWORD PTR [rax+rax*1+0x0]

Figure 1.6: Decompiled assembly code

A problem with using disassembler is that modern compilers are very good at optimisation and

will omit and reorder a lot in order to make the program perform faster and be smaller in size. It is

therefore typically not an option to disassemble a piece of software and expect the original source code.

Using a disassembler where possible, if the software code reveals anything that can do harm such as

encrypting files on the machine, it can be marked as malicious. However, newer types of malware put

up several measures in order to stop unwanted people from viewing the code of the software. This

could come in the form of packing the software or using polymorphic code which would protect the

code from being read by reverse engineering which makes it harder to identify the malware since the

code doesn’t follow standard application binary conventions such as stripped symbols and obfuscation

[22] [67]. Because of this other forms of malware testing are required where some methods include

trying to reverse the packed malware all together [11] [63]. With the aforementioned machine learning

1.1. Discovering Malware 5

aspect of malware testing, it has also become popular to test malware in controlled environments

where reverse engineering can’t be achieved. These controlled environments are called sandboxes and

have the purpose of simulating a real system where the malware has been executed on. Sandboxes are

usually made by running a closed off virtual environment where the malware is executed and observed

what happens for a period of time. If it is observed that the malware sample does something harmful

in the virtual environment, such as removing or replacing critical system files, it can be classified as

malicious.

This method of testing comes with both pros and cons. The pros of it is that testing can be automated

which means that a lot of different potential malware samples can be tested over a longer period of

time. The testing can also be combined with machine learning and visualisation where an algorithm

can look for specific behaviour can classify malware all by itself without human interaction, if trained

enough [48]. The cons of the testing are that not all malware behaves the same. This comes from

the knowledge of basic software programming and how certain things are executed. For software to

do something it needs to be triggered into doing it and with malware it is no different [7]. Malware

developers implement certain triggers in their malware which look for specific things within a system

called artefacts before it actually activates itself and does anything malicious. This can also mean

that the malware can be programmed into looking for specific environments such as a sandbox.

A malware developer wouldn’t want their malware activated in an environment where it can be

potentially detected.

Because of that, testing malware by automation can become a problem which rises several questions.

How can one know if the triggers within the malware sample are activated? How long do you need

to test the malware for before moving to the next sample? Does the malware sample have sandbox

protection implemented such as looking for specific artefacts?

1.1.1 Activating Malware

The answer is that you can’t know exactly 100 percent of the triggers and protections but can,

however, cover as much as possible of the common methods used to identify a large number of

malware. Examples of observed triggers found in large sets of malware by simulating user activity

[23]:

• File Creation

• File Modification

• Browser Activity

• Explorer Activity

• Certain Commands

• Specific File Present

From [23] it was found that there were potential false negatives (malware that didn’t get activated

but should have been) where known installed malware did not get activated which skewed the result

of the experiment. There are several different factors as to why some malware didn’t get activated

where some are unrelated to the actual experiment. One case could be that the malware itself didn’t

execute properly i.e. something went wrong even though user activity triggered it. The system being

6 Chapter 1. Introduction

tested on could be incompatible with the malware or the hooking of the system doesn’t work. It might

also be a case of delayed activation as to not inform the user of potential problems. As mentioned

earlier, malware can also be pretty sophisticated in that there are built in measures set in place to

detect if the malware is being used in a place that it shouldn’t be such as a virtual environment.

Knowing what can trigger a large set of malware can result in several actions being performed on

the system by the malware. This can be achieved by implementing different kinds of artefacts which

are events or settings that malware responds to within a system. The outcome of the artefacts could

result in the following actions being done by the tested malware. To capture the malware behaviour,

tools such as Event Tracing for Windows (ETW) facility was used by [23] but can also be done via

a memory dump and process tree analysis:

• File Creation

• File Reading

• File Modification

• Registry Querying

• Registry Modification

• Network Operation

• Process Creation

As seen from the list above there were several different outcomes of implementing artefacts which

leads to malware changing its behaviour and execute its payload where any of them could have

malicious intent. The problem with the testing done by [23] was that it wasn’t very accurate in what

action done in the system activated the malware. A malware trigger could be delayed within the

malware as to not reveal what the cause of the activation was. Determining what malware looks for,

such as specific artefacts before being triggered, during testing, is therefore something to be looked

at and will be one of the main areas for the project.

1.2 Master Thesis Topic

The problem to be looked at for the master thesis will be around the topic of malware behaviour

in a closed sandbox environment. The actual problem will be finding out if implementing common

malware triggers or artefacts in a sandbox will result in more malware changing its behaviour during

testing of said malware in different virtual environments as well as finding out what triggers or

artefacts actually matter. Malware behaves different depending on what triggers for activation the

developer implemented and as such can either be activated within a sandbox environment or remain

dormant throughout the testing procedure of the malware sample. It is therefore necessary to look

at the common artefacts and typical triggers by looking at what common triggers and artefacts

other people have found through reverse engineering and testing of malware samples. By knowing

how the malware behaves in a general sense, what it looks for within a system to trigger as well

as how it detects virtual environments, a test platform can be created to analyse different malware

samples with and without the triggers that they use. By doing so for a general amount of samples,

a more efficient sandboxing environment can be created that can help in testing a large batch of

1.2. Master Thesis Topic 7

malware samples. The outcome of creating a test platform is to see more malware samples change

their behaviour during testing while triggers and artefacts are implemented compared to when the

triggers and artefacts are not implemented. The tests would in turn give results in terms of better

understanding of how malware behaves and activates during the run time of a system. The data

collected from the experiments can be used further in malware research.

The report for the thesis will start out with a preliminary analysis on malware and testing. Next, a

discussion on the testing procedures and sandboxing will be done which will motivate why specific

setups are desirable. The discussion will end with the type of platform that is going to be used

for testing malware to determine potential triggers or artefacts that can be implemented. This will

be followed by the system design for the project. The system design will describe the architecture

and methods used for the malware testing procedures. Once the design has been set in place, the

actual implementation of the malware testing will be discussed. This is followed by a testing and

demonstration section which will present the result of testing with and without triggers/artefacts. A

conclusion and discussion on future work will then end the report.

The project will therefore contribute with the following:

• Proof-of-concept testing of malware in different virtual environments.

• Implementing different system artefacts for altering malware behaviour.

• Assessment of malware behaviour change with implemented triggers/artefacts and without.

• Implementation of the testing platform with system modifications.

2 | Preliminary Analysis

Traditionally, malware and anti-malware research has consisted of running said malware in an en-

vironment where everything within the system can be monitored. With hardware, software and

techniques evolving, malware developers keep changing and improving the effectiveness of their mal-

ware which in turn means that anti-malware researchers have to improve their malware detection

methods.

As seen in Chapter 1, methods such as reverse engineering can’t be used on all malware and results in

more sophisticated methods being used such as machine learning where the behaviour of the malware

is analysed. But as seen, the models used with machine learning can become outdated fast. Learning

how malware behaves in the form of the triggers they use can therefore be another step in learning

how to better test malware.

This chapter will take a look at general malware and how it behaves in terms of evasion techniques

as well as what kind of triggers can be found to activate malware. The analysis is motivated by the

problem of exploring a different way of testing malware by looking at specific triggers and artefacts

that can increase the resolution of what actually activates malware more precisely. The analysis can

then be used to explore how testing of said malware samples can be done.

2.1 General Malware

Malware in its general term is a piece of software that has the intention to and is designed to cause

damage either in the form of rendering systems unusable of collecting personal information. Typically,

this can be achieved by having the user execute a malicious piece of software that then can render

a user’s machine unusable or spread, typically over a network, to other machines to maximise the

amount of infected machines that can be reached. A lot of malware uses methods to spread as fast

as possible when it is first released since anti-malware research can be fast with finding and patching

operating systems and anti-malware software to handle the newly released malware. Because of this,

some malware delays itself with executing until it has spread to enough systems and machines to

cause as much damage as possible in one fell swoop.

How malware spreads and infects machine can be done in several ways and to understand that,

understanding the common types of malware that exists is needed. On the following Table 2.1,

different types of malware can be seen as well as a small description of what it does.

9

10 Chapter 2. Preliminary Analysis

Type Description

Virus [55]

A virus modifies other system files in a way that when the file is executed, the virus is

also executed. With how malware and anti-malware has evolved over time, virus based

malware has become more uncommon.

When a virus successfully infects other files, getting rid of it can become hard since

antivirus software sometimes only gets rid of the original virus and not the infected files

Worm [54]

A worm is a self-replicating type of malware that has the purpose of spreading itself as

much as possible.

Compared to other types of malware, worms usually don’t need any end-user actions to take

place to spread itself. As such, worms can infect systems, devices, networks and

infrastructure without the user doing anything.

An example is e-mail based worms where the worm spread to a network after being opened

in a e-mail by a company employee, infecting a company within minutes.

Trojan [62]

Trojans, as the name implies tries to hide itself as legitimate software. Compared to worms

Trojans needs the user to activate them by running it. A typical example is a Trojan that

masks itself as a system cleaner or anti-virus application which is likely to prompt the user

to run it.

Ransomware [58]

Ransomware tries to take control of a system and locks the user out of it by holding it ransom.

Just like a worm, ransomware can spread very fast and infect several machines across a network

and if successful, can encrypt all files on a system, rendering the system inaccessible.

Ransomware typically asks for a payment in the form of crypto currency and in return the files

on the machine will be decrypted, but in some cases don’t actually do it after the payment has been

done.

Adware [53]

Tries to expose the user to malicious and unwanted advertising. Even though the adware itself can

be harmless, the resulting ads that end up being accessed by the user can host malware. The

damage done by adware can usually be remedied easier than other types of malware.

Spyware [59]

Malware that spies on its infected user. Spyware usually tries to gain access to personal data by

infecting a user’s machine with tools such as key loggers. Spyware can also be found in legitimate

software that intends to monitor a system such as a company employees computer.

This is often referred to as legal spyware or stalker-ware which are a problem in of itself [30].

File-less [56]

Takes advantage of exploits within other legitimate software and uses its memory as its host.

This type of malware can be hard to detect since it takes advantage of already installed software

that has legitimate uses such as Microsoft’s PowerShell or Command Prompt.

Hybrid

A combination of the above mentioned types of malware that, when combined, can be very

powerful. An example is malware that appears as a Trojan, spreads like a worm and infects like

a virus or ransomware.

Table 2.1: The most common types of malware.

Malware keeps evolving and as such looking at new trends in what kinds of malware to look out for is

needed [41]. Even though the end result is the same, how malware is made keeps changing by making

it harder to analyse what the program consists of and how it executes its malicious behaviour.

2.1.1 Evasion Techniques

Since malware is malicious, developers want to hide their malware from anti-malware software. To

do so, several methods can be used where the most to least common are as follows [57] [50]:

• Fingerprinting environment when executed to avoid detection [31] [33]. Also includes virtual

environment where artefacts can be found.

• Confusion of automated tools. Avoid detection by dynamically chaining server used by the

malware [14].

2.1. General Malware 11

• Time based evasion. Malware can avoid detection by only executing at specific time, dates or

when certain actions by the user are done.

• Obfuscation of internal data (packing, polymorphic code) to avoid detection by automated

tools [65].

A trend that has been seen is that more malware being discovered is moving from the common to the

least common evasion techniques by applying more evasion techniques in the malware [20]. This has

resulted in a reduction in new malware over the years but has led to an increase in more dangerous

malware that have a higher economic impact such as ransomware and cryptomining [46].

Another type of malware that has been recently seen is the so called Stegomalware which is con-

sidered one of the most sophisticated ways of applying obfuscation. [61] [10]. Stegomalware applies

steganography which helps the malware hide from being detected by concealing files or network traffic

via hiding and extracting malicious data within its own resources which is then executed dynamically

on a system [60].

2.1.2 Time and Logic Dependant Malware

When talking about malware there are also another type that can be harder to work with than your

typical malware. Normally when a malware binary is run, the machine gets infected right away and

the malware payload has been set and executed, but some type of malware takes some precautions

in the the form time or logic. The malware delays itself until some requirements are met either in

the form of the so called time or logic bombs.

Time Bombs

Some malware that has the intention of either not be detected immediately or by maximising its

spread, can be programmed to delay its malicious execution. Examples include executing during a

specific time during run-time of the operating system or on a specific date.

Running on a specific date can be very powerful if the goal of the malware is to spread to as many

machines as possible first. By doing so, the malware can create a coordinated attack by remaining

dormant until a specific date has been reached.

Determining if this type malware is dangerous can be hard to achieve since some testing of malware

can’t wait until some arbitrary date has been reached. As such time specific malware can go unnoticed

during testing.

Logic Bombs

Similar to time based malware, logic bomb based malware waits to execute until a set of requirements

have been met. If the requirements have been met, the software sets off some malicious code that

harms the host machine. Because of the nature of logic bombs, it is not necessarily only malware

that incorporates it as seen by legitimate software having them [13]. Other cases where the logic

bomb was intended for malicious purposes have also been seen where targeted attacks against several

companies was done [44] [43].

Most malware makes use of logic bombs in form of the aforementioned triggers. Malware waits until

something happens on the system which will trigger malicious code to execute within the software.

12 Chapter 2. Preliminary Analysis

2.2 Malware Triggers

From what was seen from Section 2.1.1 and Section 2.1.2 it was seen that for malware to execute

malicious code, some requirements are needed in the form of triggers. When looking at how malware

activates, some can be trivial in that they can easily be reverse engineered to see the software’s code

and what needs to happen in order to trigger malicious code. However, a lot of malware obfuscates

in order to avoid this and as such knowing beforehand what triggers or artefacts are needed cannot

be done. By testing a lot of malware and using different triggers or artefacts, it can be observed

that some malware will execute after a trigger has been done. From [23] it was seen that different

malware can include a lot of different categories of triggers which can be seen as follows:

• File Creation

• File Reading

• File Modification

• Registry Querying

• Registry Modification

• Network Operation

• Process Creation

• Browser activity (related to network operations)

• Current window capture mode

• Mouse Movements

• Scrolling documents that are opened

• Specific Date Reached

• Virtual Environment Artefacts

2.2.1 Activating Malware Through Specific Triggers

Forcing malware activation can be done by simulating different triggers/artefacts on a system. By

implementing specific triggers/artefacts within a system, malware can react to it and think it is

running in a real system. It is however not trivial as to how the triggers and artefacts are implemented.

As seen by [23] previously, implementing triggers to activate malware can bring an certain uncertainly

as to what type of trigger or artefact actually triggered the malware. It was seen that knowing exactly

what made the malware execute was hard to find out without knowing how the actual malware was

designed since it can, as mentioned earlier, incorporate logic and time bombs to delay itself after

being activated.

As such, other ways of changing malware behaviour through triggers/artefacts was done by [9] where

the actual malware was analysed to see exactly what needed to be done for it to execute malicious

code. This however requires that the malware can be read via reverse engineering and isn’t obfuscated

and packed so much that the code becomes unreadable. Tying triggers or artefacts to specific malware

2.3. Malware Platforms 13

can therefore be hard unless the parameters for testing can be changed such as increasing the time

a specific piece of malware is tested, allowing more time for the malware to activate in cases where

it might delay its execution.

2.3 Malware Platforms

When it comes to malware and the platforms it is being released on it can be seen that some

platforms are more popular than others [12]. With Windows based PC’s being the most used in the

world it makes sense that malware developers target it since it has the highest chance of getting a

victim infected with malware. With Windows being the preferred target for malware, anti-malware

researchers also tend to focus on malware specific to that platform since it is easier to obtain and

test malware on a Windows based environment.

However, other platforms such as Android based phones are also popular for infecting users since the

process of getting malware onto someone’s phone is easy with the platforms open based structure

where offloading applications can be done without authenticating the source. This is a contrast

to Apple based devices where applications are in a walled garden structure where it is hard to get

malicious software onto the App Store where all apps must be downloaded from. Because of the

open based nature of Android, the platform is also interesting to look at from a research perspective

since applications running on Android are typically Java base which means that reverse engineering

an Android application with a Java decompiler is easier than on Windows.

2.4 Problem Statement

The question that arises is how can malware be tested by implementing different triggers/artefacts

which would result in change in behaviour for the malware? The challenges seen through this chapter

come in the form of knowing how malware behaves, both in regards to activation and evasion tech-

niques and how to implement artefacts/triggers that could lead to more malware being discovered

which would otherwise remain dormant.

As such, the project and the proposed solution will focus on getting malware to change its behaviour

by using triggers/artefacts implemented into a sandbox environment. Thus the problem statement

for the project based on the preliminary analysis is as follows:

”How can a custom sandbox environment be designed by implementing artefacts to

change malware behaviour and possibly trigger otherwise dormant malware?”

3 | Testing Malware and its Complexity

From Chapter 2 it was seen how different types of malware behaves and the different types of malware

that exist as well different malware triggers. It was also seen how some platforms such as Android

was attractive to do malware research on since reverse engineering malware made as Android apps

was easier to do since most of the applications on Android are Java based. As mentioned during

Chapter 1, the introduction, testing malware can be done in a lot of different ways where reverse

engineering was one of them. As per [5], even though the amount of new malware seen has decreased

the malware that is being released is increasing in complexity and is becoming more sophisticated

as to how it is spread and executed. The authors also saw that even though malware types such as

ransomware only accounts for under one percent of total malware on Windows, it is seen to have

some of the highest impact in damage, both physically and economically since it renders the machines

useless while infected. Due to the sheer amount of complex malware being released daily, the more

popular technique to test malware is through the aforementioned sandbox environments which can

either be on physical or virtual machines.

As such, there are several key areas that need to be looked into during this chapter to see how testing

malware can be done in the most effective way. The key areas are as follows:

• What does malware look for when trying to see what environment it is running in?

• How do you simulate user activity?

• How do you make the machine look real?

• How can you extract data from an infected machine?

3.1 Malware Testing Complexity

To understand how malware can be tested most effectively, the first area to look into is the complexity

of it and what is needed to be taken care of as to avoid malware knowing it is being tested. This

includes the different key areas mentioned in the aforementioned list.

3.1.1 Reverse/Negative Triggers

As mentioned in Section 2.2, there are many different ways malware can be activated by depending

on how the developer programmed the software. But looking purely for triggers in the system that

will activate the malware is one of the areas where malware developers have gone a step further and

have implemented evasion techniques as to not be detected by test environments. These techniques

include the area of negative triggers.

15

16 Chapter 3. Testing Malware and its Complexity

Negative triggers are the triggers that the malware makes when it detects that it isn’t in a normal

environment such as a test environment. For an overall machine, there are several indicators as to

what type of environment the malware is run in. The first area is the drivers used within a system.

Many VM’s use drivers that are modified and refer to the VM itself. A malware can see this and

conclude that it should not run. Another area is the system itself. Depending on the wear and tear

artefacts on the system, malware can decide not to run if the system doesn’t seem like a regular system

(system is stripped of everything except the bare-bones components). Reverse/Negative triggers can

include many different things and can therefore be split into what is known as sandboxing artefacts,

wear and tear levels and fingerprinting of a machine. As a result, anti-malware researchers have

started to create ”fake” virtual machines which hides a virtual machine as a real machine during the

malwares detection stage [37].

3.1.2 Sandboxing Artefacts, Wear and Tear Levels and Fingerprinting

A technique that malware developers use to avoid their malware being detected by researchers is to

take the reverse/negative triggers that can be found within the sandbox environment as mentioned

in Section 3.1.1 and use them to avoid activating their malware in a test environment. Even if some

of the most common components are spoofed to look like a real system, there are still many different

elements within the sandbox that could be used to conclude that the environment is indeed a sandbox.

Using different artefacts that are tied to the sandbox, sandbox fingerprinting can be done, which is

a method to identify specific types of sandboxes. As seen by [64], using different characteristics of

a sandbox, fingerprinting can be done to mark the system as a sandbox and avoid activating the

malware. Fingerprinting is a real problem and a solution to this includes modifying the sandbox

environment enough to not look like the previous made fingerprints of the sandbox environments.

As per [29], there are two common scenarios when it comes to countering evasion techniques as seen

on Table 3.1.

Evasion Description Counter Description

A
The sandbox environment is typical of some known brand sandbox.

The malware recognises it and evades detection.
A Obfuscate and randomise the VM

B

The malware can detect the sandbox environment through a lack of user activity.

For some malware to run, the user needs to enter a password from an email,

click through a wizard or do other ‘human’ things.

Many sandboxes do not emulate this and therefore do not see the malware detonate.

B Simulate user activity

Table 3.1: Two common evasion techniques and their counters

Both solutions aren’t trivial since malware developers will always continue to find new evasion

techniques that build upon previous methods to always stay ahead of anti-malware researchers.

A way of fingerprinting a machine and find out of if a machine is indeed a sandbox is by looking

for different artefacts within the system. As per [39], Sandboxes and personal computers have a lot

of different system components that differ such as processes and files stored on the machine. The

amount of artefacts will determine how much the system has been potentially used. Depending on

the findings within the system a label can be put on the system which determines how much the

system looks like a ”real” system that a regular user would use. This label is called the wear and

tear level of the system. The wear and tear level comes in two different types: direct user actions

and indirect system actions. Former is actions done by the user and the latter is actions done by

3.1. Malware Testing Complexity 17

the system itself without the user.

In the following Table 3.2, different categories (system areas) and their artefacts which were found

by [39] are showcased. Note that not all artefacts are showcased here.

System Category Artefact

System

Total Processes
Windows updates installed
System of System Events
Application events
Elapsed time since first system/ application event
Drivers installed (GPU, LAN etc.)

Disk

Recycle bin size
Number of files in recycle bin
Size of temp files on system
Number of system files
Total size of process crash minidumps
Num of crash minidumps
Total size system thumbnails
Files on desktop

Network

Number entries in the ARP cache
Number entries in the DNS resolver cache
Number of cached wireless SSIDs
Number of active TCP connections

Registry

Size of the registry
Number of registered uninstallers
Number of programs set to autostart
Legacy DLL reference count
Number of registered application paths
Number of Active Setup application entries
Number of leftover registry entries
Number of registered DLLs that do not exist on disk
Number of entries in the UserAssist cache (frequently opened applications)
Number of entries in the Application Compatibility Infrastructure (Shim) cache
Number of Multi User Interface (MUI) cache entries
Number of rules in the Windows Firewall
Number of previously connected USB devices (DeviceInstance IDs)
Number of previously connected USB storage devices

Browser

Number of installed browsers (Internet Explorer, Firefox, Chrome)
Number of unique visited URLs
Number of URLs typed in the browser’s navigation bar
Number of of HTTP cookies
Number of unique HTTP cookie domains
Number of bookmarks
Number of downloaded files
Time elapsed between the oldest and newest visited URL (days)
Time elapsed between the oldest and newest HTTP cookie (days)

Table 3.2: Table showcasing different artefacts that can be found within a sandbox system.

Other examples of actual artefacts left behind by a virtual machine can also be found within the

sandbox. These artefacts can be found easily by simply looking in the common areas of the system

where such artefacts are usually located. Examples of artefacts in form of registry entries and files

are as follows on Table 3.3.

By looking at the findings from [39], the difference in artefacts as seen on Table 3.2 differed a lot

between different types of machines. As an example, [39] looked at three types of machines, a ”real”

one which was artefacts collected from a lot of real machines that people used, a common sandbox

and a baseline which was a fresh install of windows. Here it was seen that the difference between

a real system and the sandbox and baseline would be enough of an indicator to determine that the

sandbox wasn’t actually a real system since it resembled a baseline machine too much in terms of how

18 Chapter 3. Testing Malware and its Complexity

many artefacts were found on the system. As an example, the number of running processes running

on each machine differed a lot where the real machines had an average of 94, sandboxes had 35 and

the baseline machines had 41. As seen by the numbers, on average, real machines would have more

than twice the amount of running processes. With those averages in mind, looking at the number of

processes, or other artefacts, on a machine and comparing them to those measurements, determining

if the machine is real of virtual can be done.

Category Artefact

Registry

HKLM\SOFTWARE\Oracle\VirtualBox Guest Additions

HKLM\HARDWARE\Description\System\”SystemBiosVersion”;”VMWARE”

HKLM\HARDWARE\ACPI\DSDT\BOX

File

WINDOWS\system32\drivers\vmmouse.sys

WINDOWS\system32\vboxhook.dll

Windows\system32\vboxdisp.dll

Table 3.3: Different artefacts left behind by a virtual machine.

These artefacts are common and are actively used by malware to detect if they are in a virtual

environment [49] [47] [19]. The outcome of finding these artefacts is that the malware will decide that

it shouldn’t run and in some cases deletes itself completely from the system to avoid further detection.

During this section it was found out that there is a large difference between a ”real” system and a

virtual one such as a sandbox environment. The amount of artefacts found with each type of system

differed a lot and was seen be a metric that could be used to find out if a system is real or virtual.

In such cases, malware would be able to detect it and stop itself from doing anything malicious if

it figured out that it was being run in a sandbox or virtual machine. This also means that in order

to test malware using a base sandbox environment where artefacts are easily found would create a

problem. In this case, a base sandbox would need to be modified to the point that it resembles a

”real” system which could either be a physical system or a modified virtual machine.

3.2 User Machines vs. Sandbox Machines vs. Baseline Machines

To understand the difference of user machines and sandbox machines in terms of the difference it

makes when testing malware, a look at what was discussed in Section 3.1.2 is done. During this

section, it was seen how a ”normal” machine used by a user and a virtual system behaved in terms

of how many artefacts could be found within the system. Using several user machines as a base

line it was seen that is in fact a major difference between virtual machines, user machines and fresh

installed baseline machines. From [39] the three different areas are known as follows:

• User

– Artefacts collected from a large amount of real machines.

• Sandbox

– Artefacts collected from sandbox environments

3.2. User Machines vs. Sandbox Machines vs. Baseline Machines 19

• Baseline

– Artefacts collected from fresh installed versions of windows

Here it was seen that the difference between machines that were actually used by people would have

a lot more artefacts than virtual sandbox environments and fresh installed machines. As an example,

key artefacts were picked out and can be seen on Table 3.4.

Artefact Name User Sandbox Baseline

of processes 94 35 41

installed windows updates 794 19 2

Total size of recycle bin 2.5GB 50MB 0

of files in recycle bin 109 3 0

Size of thumbnails folder 63MB 8MB 2.6MB

Size of registry 144.8MB 53MB 35MB

of unique visited URLs 28K 14 2

of HTTP cookies 3K 135 2

of downloaded files 340 3 0

Table 3.4: Difference in artefacts between real, virtual and fresh machines [39]

As seen on Table 3.4, the user artefact category is always the largest in artefact count which makes

perfect sense since the machines where the artefacts were collected from were from real machines

that have been used for long periods of time. It can also be seen that the difference between virtual

sandbox machines and the baseline was not that large and in some cases the baseline would have

more artefacts such as the number of processes running.

As to how the artefacts were collected, [39] used a custom tool to scan a machine for known artefacts.

Since the majority of artefacts are easily readable and available, such tools are not hard to create.

Such tool is also important to use when a new sandbox for malware testing is going to be set up.

Other than sandbox artefacts, which can also be found easily, the common artefacts can be found

and quantified which can establish a baseline as to if the sandbox can pass a baseline test to see if

the machine can be used for malware testing. If the baseline isn’t met, the sandbox isn’t ready to

be used for malware testing.

When discussing the difference between user and sandbox machines, deciding on what type to use for

malware testing can be done. For user machines, artefacts seen in virtual machines such as Table 3.3

are not present which already removes extra checks needed to make the test environment. It is

however more time consuming to use user machines since the wipe and install processes takes longer

on a physical machine compared to a virtual one where the image can be replaced much more easily.

With the resources available and the time constraint of the project, using a virtual setup is more

efficient since a custom image of an operating system can be made before testing and re-flashed

faster than doing the same process to a normal hard-drive on a physical machine. The only downside

in using a virtual environment is the aforementioned artefacts that can be found by scanning the

machine. The artefacts for virtual environments are therefore one of the areas that is looked at before

creating the test setup that is going to be used for malware testing.

20 Chapter 3. Testing Malware and its Complexity

3.2.1 Finding Common Virtual Artefacts

To see the differences between a normal ”real” machine and a virtual one, scanning for common

artefacts can be done. Tools for this exist such as paranoid fish (Pafish for short) [1]. Pafish scans

for common artefacts found in different virtual machines and environments and showcases how easy

it can be done as well as how common malware families does it. As mentioned earlier, common

artefacts are stored as files either on disk or in the system registry. Finding those files can be done

just by looking up the location of it which can be coded into the detection aspect of the program.

Showcasing the results of Pafish can be seen on Figure 3.1 where a machine with artefacts and a

machine without artefacts were scanned. As seen on the two figures and as expected, the machine

which had artefacts present on the system were detected and displayed as such in the output of

the program whereas the machine without the artefacts showed an output without any detection.

In the example the machine with the artefacts were artificially created which mimic the location of

real artefacts [37]. This was done simply by creating empty entries in the locations where the real

artefacts would be located if the machine was in a virtual environment.

(a) Output from Pafish showing different detected

artefacts

(b) Output from Pafish showing different missing

artefacts

Figure 3.1: Pafish showing a machine with detected vs. missing artefacts

When preparing the system where malware will be tested on, Pafish can be used as a base layer of

preparation for the system image. Using Pafish will show if the virtual machine being used is being

masked as a real machine enough for common artefacts to not be detected. These anti-triggers will

therefore immediately help with activating more malware being run on the system since the malware

wouldn’t find any common artefacts on the machine. This, however, requires the artefacts to be

3.3. Data Extraction from an Infected Machine 21

obfuscated while still maintaining the functionality of the virtual machine and not accidentally break

the machine.

An extension of Pafish can also be made to include more than common virtual machine artefacts.

Since a lot more artefacts can be present on the system as seen from Section 3.1.2, covering those

within Pafish on top of what is already there will improve the base image used even more. This

will also help with the comparison between a normal virtual machine and a custom base image with

has those artefacts removed. It is therefore expected that if the malware run during the test has

anti sandbox detection, the custom base image used would have an increased activation number of

malware. Using Pafish will therefore show exactly what was done to the image in order to activate

more malware during testing.

3.3 Data Extraction from an Infected Machine

A key area that hasn’t been discussed so far is the data that will be generated when using a sandbox,

whether it is on a virtual machine or on a physical machine. The data that is generated consists of

a multitude of things that cover different aspects of the machine. From Table 3.2 it was seen that

there are 5 major categories on a system where artefacts are located. It is also in these locations that

changes can happen during testing of malware since it has been observed in the past and through

[23] that malware can make changes such as:

• File creation/modification

• Web browser changes (default settings)

• Registry key creation/modification

• Windows related settings (firewall, network, standard apps)

Monitoring these key areas is therefore necessary in order to understand what a particular piece

of malware is doing after it has been executed to run on a machine. Depending on what type of

sandbox is used, the level of monitoring and logging of a system can differ. As an example, the

Cuckoo sandbox has built-in monitoring and logging when a malware sample is being tested [15].

Here Cuckoo covers areas from the list above where several files are generated during and after testing

such as:

• analysis.log

Log file containing a report of process- and file creation as well as errors that occurred during

execution.

• dump.pcap

Network dump containing all network related activity during execution.

• memory.dmp

Full memory dump of the entire environment during execution.

• files/

All files that the malware operated on during execution (infected or modified files).

22 Chapter 3. Testing Malware and its Complexity

Sandboxes made to run malware are made specifically to not have malware interact with the log

files as to avoid the problem of having infected log files. The exception is of course the files that

the malware interacted with which are expected to be infected. Running a sandbox on a physical

machine and not a virtual one can therefore create a problem when running tests and expect to have

logs available afterwards. Not having the ability to extract information to a safe location makes it

difficult to know if the files that are generated are clean of infected by the malware. Using virtual

environments for malware testing is therefore preferred since there is more control over how the

environments intact with the outside system as well as making it faster to take down and spawn

new instances for testing. As an example, the architecture for the Cuckoo sandbox can be seen on

Figure 3.2.

Figure 3.2: Overview of the Cuckoo sandbox architecture [18]

From the figure it can be seen how Cuckoo creates its own virtual network that connects the host

machine to the virtual machines that are used for analysing malware. Running the virtual machines

in an isolated network allows Cuckoo to safely execute malware and analyse it without having to

worry about the malware infecting machines outside the isolated virtual network. Establishing a

virtual machine with the same architecture as Cuckoo for this project in terms of separating the

host machine and the virtual machines is preferred in order to avoid malware samples infecting other

machines on the network.

3.4 Simulating User Activity

When testing malware on in a sandbox environment it is important to note that user activity is a

big part of making malware think that a real user is actively interacting with the machine. One

way that malware developers have tried to detect if they are in a virtual environment such as a

sandbox, trying to look for user interaction has been done to determine if the machine is actually

used by someone or not. Looking for user activity can be achieved by looking at user interaction

elements such as mouse movement which was also one of the areas that Pafish was looking after

when scanning for artefacts (Section 3.2.1).

Because of the increase in malware that looks for user activity, it is necessary to look into simulating

a user to a certain degree in order to have malware behave in different ways and hopefully do

3.4. Simulating User Activity 23

something malicious within the sandbox. As seen on Table 3.1 evasion B, simulating a user can

either be random activity or through some exact actions done by a user. This depends on what the

malware’s purpose is and what it intends to achieve. An example could be a piece of malware that

wants access to bank details from a user. Here the malware won’t do anything until it detects that

someone is perhaps typing on their keyboard and accessing some known banking site where the user

would enter some personal details. Otherwise the malware can decide to remain dormant and not

do anything malicious.

Simulating a user can be done in different ways and requires some setup prior to doing so. In a

virtual environment it can occur that no actual human interface device (HID) is connected to the

machine. If no HID is connected, malware knows that something isn’t right and won’t activate. It is

therefore necessary to have the sandbox have HID’s such as a keyboard and a mouse before trying

to simulate a user activity.

Different types of tools for simulating user activity exist that can help make malware think that a

user is interacting with the machine. The following list is just a sample of what can be found and

used since there are many different tools available:

• AutoHotKey [3]

Scripting tool made to automate and create macros for different tasks. The tool can do repeti-

tive tasks where keyboard and even mouse movement can be done. Since AutoHotKey is open

source, it is the preferred tool to use when starting out with user simulation/automation.

• LoadRunner [34]

Tool used for simulating a lot of users in order to test software performance. Similar to Au-

toHotKey, LoadRunner can simulate keyboard and mouse activity to interact with different

applications. LoadRunner is a commercial product.

• AutoIt [4]

Lightweight scripting software for user simulation that can manipulate keystrokes, mouse move-

ment and GUI windows to automate different tasks. AutoIt uses the BASIC scripting language

which makes it more accessible to users without programming experience. AutoIt is a freeware

product.

It is however important to point out that these tools are running on the sandbox. Because of that,

malware can potentially look for these tools as well which would break the idea behind using the

tools in the first place. Some malware even comes in the form of an user simulation where scripting

tools such as AutoHotKey are used [26]. This type of malware will use tools such as AutoHotKey and

execute different tasks such as looking for specific browsers, fetch malicious extensions and replace

those already present and change windows specific settings.

Another possible way to simulate a user is through the use of an external device that can act as

a HID but is in reality a device sending different commands to the host machine such as different

keystrokes. An example of such tools is the Etherkey project which can take a micro controller and

emulate a USB keyboard [24].

Other types of tools that can simulate user activity is malware analysis tools themselves such as

malware sandbox tools. These tools have built in user simulation such as interacting with the system

and moving the mouse cursor around the desktop. For these cases creating your own user simulation

would be unnecessary when the work has already been done by the malware sandbox tools themselves.

24 Chapter 3. Testing Malware and its Complexity

3.5 Sourcing Malware Samples

Obtaining malware can be achieved in different ways. One way is to look for specific malware

feeds which are a constant feed of new malware being discovered. Companies such as the renowned

VirusTotal, who focus on analysing thousands of malware samples a day with many different antivirus

software, have an API which can be used to fetch new malware samples which can be used for testing

purposes.

It is also possible to find malware samples through what is called malware collections which can be

found in many different places such as theZoo on GitHub [66]. These collections have a curated list

of malware samples which can be used for different types of malware research.

Since malware exists in many different forms and can vary from completely broken and useless

to high level threats, it is needed to be very specific about what samples are being gathered

and used within the malware testing platform. In this case, the best option to use for testing

malware, and the fastest, is to get hands on a curated collection of malware. As mentioned

previously, things like malware feeds exist but can become difficult to use. The malware feeds are

simply a feed of malware that has been found and analysed, doesn’t matter how good or bad it

is. However, some feeds have an indicator in the form of a rating as to how high of a threat an

individual sample is. This can help quickly estimate if a sample can be used for testing specific

applications. Since you have to check if each sample can be used, spending time developing and test-

ing the actual system gets taken away. Because of this, another way to collect samples has been done.

A problem with some malware feeds is that they use a subscription based service for the public in

order to download a large set of malware samples. Because of that, quickly getting a large set of

malware samples can take time. However, some malware feeds offer malware samples for academic

purposes.

Through Aalborg University (AAU) and employee Egon Kidmose, VirusTotal was contacted in re-

gards to getting hands on a larger, curated batch of malware samples. As mentioned earlier, Virus-

Total is a renowned platform for being the place where malware gets analysed and reported using

all of the industry standard anti-virus and anti-malware software. As an example, scanning a simple

file will go through upwards of 60 different anti-virus and anti-malware applications and report back

their findings. These applications include known ones such as AVG, Malwarebytes, ESET, McAfee

and more. The results of the scans include if the file was detected as malicious and what the result

of it was i.e. what type of malware it is such as a Trojan. The output of them could look as follows

after scanning a malicious file:

3.5. Sourcing Malware Samples 25

1 {

2 "scans": {

3 "Malwarebytes": {

4 "detected": true,

5 "result": "Trojan.VBClone",

6 "update": "20190510",

7 "version": "2.1.1.1115"

8 },

9

10 "McAfee": {

11 "detected": true,

12 "result": "Trojan-FGAU!BF9B26669990",

13 "update": "20190503",

14 "version": "6.0.6.653"

15 },

16

17 "ESET-NOD32": {

18 "detected": true,

19 "result": "Win32/VBClone.B",

20 "update": "20190510",

21 "version": "19331"

22 },

23

24 "AVG": {

25 "detected": true,

26 "result": "Win32:Malware-gen",

27 "update": "20190509",

28 "version": "18.4.3895.0"

29 }

30 }

31 }

Figure 3.3: Scans made by different anti-virus/malware companies

As such, using VirusTotal for malware sample analysis can quickly give an output of what the world’s

most renowned anti-virus and anti-malware applications find when analysing malware samples. By

contacting VirusTotal, a batch of curated malware for academic purposes was obtained. This batch

contains a wide variety of malware which is grouped together semi-annually and added to the archive.

This means that the batch obtained from VirusTotal contains very recent malware that can be tested.

The malware samples are also directly linked to VirusTotal’s own site where the individual sample

can be found. In total, from the 1s of January 2019 to the 10th of May 2019, over 19 GB of malware

samples were provided in the semi-annually archive. Older archives dating back to the beginning of

2017 were also provided but since that much malware can’t be tested in a short period of time, using

some malware samples from the newest archive has been done. The archive contains many different

malware samples which means that only a few were selected to be used for testing purposes. Besides

containing malware samples, VirusTotal has also provided an analysis of each malware sample that

explains a little about how big of a threat it is as well as what the malware sample does in terms of

type such as a Trojan.

In the archive provided the following structure is found:

26 Chapter 3. Testing Malware and its Complexity

Figure 3.4: File Structure from the VirusTotal archive

Which means that the files come in pairs as follows:

1 Sample1.(exe)

2 Sample1.json

3 Sample2.(exe)

4 Sample2.json

5 ...

Figure 3.5: Malware archive structure

As seen above in the archive structure, each malware sample executable has as corresponding

JavaScript Object Notation (JSON) file marked as ‘’.json”. This JSON file is what contains the

aforementioned information about VirusTotal’s own analysis of said malware sample. Using this

information, finding malware samples that fit with the coming testing procedures can be done faster

than if each sample were to be tested first. One downside of the ‘’.json” analysis is that VirusTotal

does not attach enough information to each malware sample. Having information such as how the

malware behaves and how big of a threat each malware sample is would further help in filtering and

identifying malware samples that would fit for testing in the project instead of selecting samples

that are outdated and wouldn’t work in a modern system. This means picking malware samples still

needs to be tested before determining if they can be used or not in terms of executing to be able to

analyse their behaviour. To do so, the randomly selected malware samples were run for a short test

within the VM to see if they would actually execute properly and not just crash upon starting.

3.6. Conclusion 27

3.6 Conclusion

From Chapter 3, the main take-away is that testing malware within virtual environments needs a

lot of extra thought put into it in order to avoid having malware detect the closed off environment.

Through the knowledge that we have about common artefacts within VM’s and using tools such as

Pafish, it can quickly be determined if a system is exposing any of the known artefacts or not.

During the chapter it was also learned how data extraction from infected machines could be done

as well as how simulating a user could be achieved. In order to not invent the wheel again, tools

exist that can handle these tasks in a safe manner in order to avoid spreading malware to innocent

machines.

Sourcing malware was also discussed and was seen that gathering malware can be complicated where

some sources are using subscription based services for the public. For academic purposes, big com-

panies such as VirusTotal help by providing malware samples which can be used without payment.

4 | System Specification

In order to design a system which can be used to solve the problem of systematically testing malware

with and without triggers/artefacts as stated by Chapter 2 and Chapter 3, it is necessary to first

specify what the system must do in order to fulfil its purpose of testing malware. The main goal

of the system is to be able to test malware with specific triggers/artefacts and without in order to

compare how effective implementing specific triggers/artefacts can showcase how malware behaves

under certain circumstances. Further, the system can also be used to identify what artefacts matter

and actually cause a change in malware behaviour. In this chapter, several use cases will be made

which describe the different system components and how they interact with each other during usage

of the system. Based on the use cases, a general overview of the system will be made which describes

how the system will be used.

4.1 Use Cases

With the system overview described in Section 4.3, the different use cases for what the system should

be able to do can be described in the following section. The use cases describe the system and how

it performs different actions during usage which in this case will be during the testing of malware.

It should be noted that the use cases define what the system should be able to do and not define

different malware test that should be performed on the system.

The following list contains the different use cases:

• Use Case 1: Base Image testing

• Use Case 2: Malware test on Base Image

• Use Case 3: Modified Image testing

• Use Case 4: Malware test on Modified Image

• Use Case 5: Process Test Results

• Use Case 6: Compare Test Reports

To establish an overview of the system in terms of what defines it the terms modified and base are

used. The terms are used to describe what the system as a base looks like and what the system

looks like after artefacts and triggers have been implemented. This distinction needs to be clearly

defined as to understand what changed within the system in cases where different malware behaviour

has been observed. It can then be traced back and seen what changed within the system that could

have influenced the behaviour change for a malware sample. As such, the two use cases, Use Case 1

and Use Case 3, explain how the system is tested for both the Base Image and Modified Image.

29

30 Chapter 4. System Specification

Using these two use cases will also lay the foundation for what is defined as a behaviour change. If

a malware sample is run multiple times on the Base Image system i.e. nothing has been modified

and the behaviour stays the same, but running the same sample on the Modified Image and it is

observed that the behaviour change, it would be clear that what was changed within the system

caused a behaviour change within the malware. As an example the behaviour change could be

that the malware started sending request to the internet on the modified baseline and not on the

baseline system. This would also require that certain parameters of the system being used stay the

same between the tests as to avoid problems with malware that uses time bomb like activation as

mentioned in Section 2.1.2.

The comparison between the base test (Use Case 2) and the modified test (Use Case 4) is done via

a comparison in the results collected from the tests. By quantifying different events that happen

during the tests such as system calls made by the malware samples process tree, a change in the

amount observed between the tests can be seen. These are covered by Use Case 5 and Use Case 6.

Use case name Base Image Testing - Use Case 1

Description The Sandbox Guest needs to be prepared for testing and to achieve this a Base

Image is made without any artefact modifications.

Actor • User

Assumptions Pafish is prepared to be run on the Sandbox Guest.

Steps 1. Windows VM is created with only changing what is needed to make testing

possible.

2. Pafish is transferred to he Sandbox.

3. Pafish is run to check for artefacts, triggers and anti-triggers.

4. Output from Pafish is saved.

Use case 1: Base Image Testing

For Use Case 1, the idea here is to prepare the Base Image that is going to be used for testing

malware samples and creating a so called baseline. With the Base Image, where nothing within the

VM has been changed, some malware samples might detect that they are running inside a virtual

environment if they have checks for it. This is because the Base Image hasn’t had its artefacts

removed that reference the virtual environment that it is in. As such it is expected that the malware

samples would be less likely to execute and deliver their payload. Using Pafish will create a result that

will show different artefacts that have been detected. The results will then be used in a comparison

with the Modified Image.

4.1. Use Cases 31

Use case name Malware test on Base Image - Use Case 2

Description The Sandbox Guest is prepared for malware testing with the Base Image and a

Malware sample.

Actor • User

Assumptions Base Image is set to run. A Malware sample is prepared to run on the Sandbox

Guest.

Steps 1. Base Image is loaded using a snapshot.

2. Malware is loaded into Malware Analysis application.

3. Malware configuration is made pre testing.

4. Test is started and malware is run on the Sandbox Guest.

5. Test results are saved.

6. Base Image snapshot is loaded.

7. Repeat from step 2 with different malware sample.

Use case 2: Malware test on Base Image

For Use Case 2, malware samples are tested using the Base Image. To make the testing easier after

every malware sample test, step 6 goes back and reloads a snapshot. This snapshot is a image of

what the system looked like before malware was run in it. This makes it possible to test multiple

malware samples after a malware sample has infected the machine it is running in.

After the test for a malware sample has been done, the results are saved.

Use case name Modified Image Testing - Use Case 3

Description The Sandbox Guest environment has been modified further than the original

Base Image in order to see if different artefacts, triggers and anti-triggers have

been modified.

Actor • User

Assumptions The Sandbox Guest has been modified and Pafish is prepared to be run on the

Sandbox.

Steps 1. A clone of Base Image is made called Modified Image.

2. Sandbox artefacts have been modified by changing settings outside and inside

the VM.

3. Pafish is transferred to he Sandbox.

4. Pafish is run to check for artefacts, triggers and anti-triggers.

5. Output from Pafish is saved.

Use case 3: Modified Image Testing

For Use Case 3, the same procedure as with the Base Image in Use Case 1 is done. The difference here

is that the Base Image is taken and modified further by removing common artefacts from the system.

32 Chapter 4. System Specification

This includes references to the virtual environment as well as system settings such as hardware

devices and other relevant settings such as network settings. Using Pafish again to find artefacts,

the results are compared to the earlier results from the Base Image. This is done to understand if

certain artefacts have been successfully removed from the system.

Use case name Malware test on Modified Image - Use Case 4

Description The Sandbox Guest is prepared for malware testing with the Modified Image

and a Malware sample.

Actor • User

Assumptions Modified Image is set to run. A Malware sample is prepared to run on the

Sandbox Guest.

Steps 1. Modified Image is loaded using a snapshot of the image that was modified

earlier.

2. Malware is loaded into Malware Analysis application.

3. Malware configuration is made pre testing.

4. Test is started and malware is run on the Sandbox Guest.

5. Test results are saved.

6. Modified Image snapshot is loaded.

7. Repeat from step 2 with different malware sample.

Use case 4: Malware test on Modified Image

As with Use Case 2, Use Case 4 uses a prepared VM image and tests malware in it. Difference here

is that the image used is the Modified Image. The idea here is that with all the artefacts removed

from the system, the malware will have different behaviour than with the Base Image tests. When

the tests have finished, the results are saved for later comparison.

Use case name Process Test Results - Use Case 5

Description The malware test has been run on either the Base Image or the Modified Image.

The test results are saved with a memory image from the VM

Actor • User

Assumptions A malware test has been run for a malware sample without any error and the

test results have been saved as well.

Steps 1. User has run the malware test either on Base or Modified Image.

2. Test results have been saved.

3. Malware Sandbox tool scans logs and memory image for malware behaviour.

4. Malware Sandbox tool saves results as a report.

5. Report is exported by the user and saved for later use.

Use case 5: Process Test Results

4.1. Use Cases 33

For Use Case 5, after a malware sample has been tested and the results have been saved, the data

needs to be processed as to display what changes the malware did within the VM. The process

is carried out by the Malware Analysis Tool which takes the saved VM memory image and scans

through all changes that were made before and after the malware sample had been tested. When

the analysis has been done, a report is made which is readable to the user.

Use case name Compare Test Reports - Use Case 6

Description After a malware sample has been tested on both the Base Image and Modified

Image, a comparison between them can be made.

Actor • User

Assumptions A malware test has been performed for a malware sample on both Base and

Modified Image. Reports have been saved and are prepared to be compared.

Steps 1. Reports for a malware sample are prepared.

2. The reports are loaded into the malware analysis comparison tool.

3. A comparison between the reports is made.

4. Any differences in the reports is logged.

5. Repeat for another malware samples results.

Use case 6: Compare Test Reports

For the final use case, Use Case 6, a malware sample has been tested twice, once on Base Image and

once on Modified Image. For both tests a post analysis was done on the results and reports were

exported by analysing the memory image that was saved during Use Case 5. The reports are then

compared by loading them back into the malware analysis caparison tool. Any differences between

the two reports are noted and determined if the change from Base Image to Modified Image had any

impact on the malware behaviour. These differences include areas such as network activity, system

calls and process/file creation within the system. As mentioned earlier, the differences are quantified

as events that occurred during the test by monitoring the process tree of the malware sample. An

example is having a malware sample have 10 percent of its events consist of system calls on the

Base Image test while the malware sample has 20 percent of its events consist of system calls on the

Modified Image. It can then be explored what those system calls consisted of which made up the

increase in events.

34 Chapter 4. System Specification

4.2 System Requirements

The system requirements are based on a number of different things. The requirements consist of

the different use cases as well as the system overview and what was discussed with the supervisors

in terms of what the system could potentially become if it is going to be used in the future as a

bigger system. In short, the purpose of the system is to analyse the behaviour of malware within

closed environments by seeing how different artefacts impact its behaviour. The different artefacts

that impact malware behaviour can then be used to simulate a more ”real” environment which would

make it possible to explore how malware samples behave that include virtual environment evasion

techniques such as looking for artefacts. The requirements listed influence how the system is going

to be designed and how the system is interacted with when it is going to be used for malware testing.

As such, a list of system requirements have therefore been laid out with what is considered a priority

for the system to be made.

• System Scalability

• System Reliability

• System Dependency Reliance

• System Design Complexity

• Master Thesis Project Scope

System Scalability

One of the key areas and one of the important aspects of the system that needs to be taken into

consideration when designing the system is the scalability of the project and system. The original idea

behind creating the system was to make a system that would be easy to scale as needed depending

on the amount of malware that should be tested at once. Because of this, the system would have

to be made with scalability in mind. A way to achieve this is using open source applications and

frameworks that allow themselves to be altered in order to be scaled into bigger system. As an

example, the scalability would come in the form of having a centralised sandbox host which then can

control several sandbox guests that run externally from the host itself.

The benefit of this would be to free up more resources on the host while still running many malware

sample tests at the same time as well as vary the amount of artefacts that have been modified or

removed which determine how ”real” a system is.

Another benefit is the future scalability of the system. If there are not enough guest machines

available, adding more to the system and connecting them to the host would be possible, thus

increasing the amount of malware samples that can be tested at the same time. This also makes

the system more future proof since people would easily be able to add more systems without having

to configure a lot themselves. Automation in terms of time allotted per malware test could also be

increased as well as vary the settings for a realistic system between different types of malware by

changing artefacts within a sandbox environment.

System Reliability

The second requirement it the system reliability. When using many different system components that

utilise virtualisation and processing of memory dumps, errors can occur in many different places. It is

4.3. System Overview 35

especially important when malware testing can take a long time and then suddenly crash because of

something going wrong either with the host or guests. The causes can also vary a lot; the host could

be overloaded because of too many malware sample request or the guest could be overloaded because

the malware samples that were used for the testing made the machine crash. As an example with

Cuckoo Sandbox, queuing too many samples would create problems when making memory dumps

which would lead to memory related soft-locks on the host.

For systems that are intended to potentially be scalable to bigger systems, having system fall-back

that can recover different things such as system crashing or data loss during processing is important.

System Dependency Reliance

A lesser but still important requirement is the dependency reliance. Relying on other peoples work or

using tools or systems that don’t allow for modification can cause problems when further developing

the system. If something breaks, contacting the original author is the only option. Because of

that, using open source tools and applications as well as making components yourself that are well

documented are preferred.

System Design Complexity

The complexity of the system is also an interesting and important part to take a look at when

considering that the system could be used by others in the future. Having the system be built

as simple as possible with as much of the details written down is important for other people to

understand when interacting with the system. The more components that get added to the overall

system, the more the system can quickly become overly complex and confusing. Creating a system

that uses the least components, protocols and subsystems is important which can also lead to a better

performing overall system.

Master Thesis Project Scope

The last system requirement is the scope of the project. Since only one person is working on a project

and subject that could be split into different smaller projects about malware behaviour and their

triggers/artefacts, creating a system that can make a definite answer is not possible since you would

have to test thousands of malware samples to have enough data to give a definite answer as to what

trigger/artefact changes the behaviour of specific malware samples.

Therefore, the goal and scope of the project is to create a proof of concept system that can be used

for malware sample testing as well as come with systematic way of testing malware samples with

and without triggers/artefacts. This includes the different ways of testing as well as how common

triggers/artefacts are implemented into a system. If the implementation works, looking into more

uncommon triggers/artefacts can be done which would require testing over a longer period of time.

4.3 System Overview

The idea behind making a sandbox for testing malware is to increase the knowledge on malware

behaviour by observing what happens when malware is executed when certain triggers/artefacts are

present and what happens when it isn’t. The system is a proof of concept which will be the base for a

potential larger system. It is therefore important to lay out the major different components which are

an essential part of the system. The system itself consists of three components, Malware Database,

36 Chapter 4. System Specification

Sandbox Guest, Sandbox Host, where the Malware Database is the malware used for testing on the

Sandbox Guest and the Sandbox Host which controls the Sandbox Guest and takes malware samples

from the Malware Database. The Sandbox Host also handles logging as well as the processing of the

malware samples after the tests have been conducted within the Sandbox Guest. Each component and

its set of sub component are used to represent different use cases that can be seen under Section 4.1.

The idea behind the components is to show how a system consisting of several components can

interact with each other and how malware samples are tested. When the Sandbox is ready to be

used, malware samples from the Malware Database are loaded into the Sandbox Host and prepared

to be executed within the Sandbox Guest. This means that only one sample is present at a time.

When the test is completed for a malware sample, data generated on by the Sandbox Guest is then

saved onto the Sandbox Host where the logs can be processed to see what happened within the

Sandbox during testing. Using this setup, different use cases can be tested where different conditions

for the Sandbox are made such as simulating user activity.

On Figure 4.1 the different components, their sub components and their interaction can be seen.

Figure 4.1: Diagram showing different system components

Malware Database

Inside the Malware Database there are 1 component.

• Database

Here the entire malware collection is located which is interacted with by the Actor and the

Sandbox Host. Besides the malware executables, information about each sample is also located

here which describes what type of malware each malware sample is.

Sandbox Host

Inside the Sandbox Host there are 4 different components.

• Communication Handler Host

Here the Sandbox Host can communicate with the Sandbox Guest in order to load and execute

malware samples and after that, retrieve information such as logs and memory images that need

4.3. System Overview 37

to be processed. From the Sandbox Host, updates can be sent to the Sandbox if anything needs

to be changed in terms of running malware samples and execution them. The communication

handler also has access to the malware database which is where malware samples are taken

from.

• Guest Memory / Logs

Here information about tested malware samples on the Sandbox Guest is stored. This includes

logs as well as memory images that were saved from the Sandbox Guest. From here processing

of the data can begin.

• Malware Analysis Processor

Here the data that was collected from testing malware samples is processed. Processing the

data by looking at a memory image and malware process tree reveals what happened during

testing in terms of what the malware sample did such as changing system settings and creating

more malicious files. As mentioned earlier this is measured as events that occurred during

testing.

• Malware Report Database

After the malware sample test data has been processed, a report is made which sorts everything

found during processing in a more readable manner. This can then be used to compare different

tests to find any change in malware behaviour by looking at the numerical number of different

events that happened during testing such as the amount of file creations and registry edits. As

an example for automation purposes, looking at the events can be done and if the different

tests differ a certain amount, a flag can be set to indicate that the malware sample potentially

changed its behaviour from one test to the other.

Sandbox Guest

Inside the Sandbox there are 4 different components.

• Communication Handler Agent

Here the Sandbox Guest can communicate the Sandbox Host. The agent makes sure to fetch

information from the host such as what malware sample to test and what settings to apply

before executing said malware sample.

• Malware Execution Handler

The malware execution handler, which is a part of the communication handler agent, can control

how the malware sample is run on the machine when everything is ready. The execution will

start the malware sample and if needed, start the user activity simulation. Here the user

activity simulation for the Sandbox is done if specified by the Sandbox Host. This is where

scripts to simulate user such as mouse movements are done.

• Logging / Memory Handler

Here the Sandbox Guest logs everything relevant to malware testing such as network, memory

and other system relevant dumps. The logs can then be transferred to the Sandbox Host when

the malware sample testing is done.

• Settings Handler

Here, the settings relevant to the VM are stored. This includes the triggers/artefacts that were

implemented as well other relevant settings such as network related settings.

38 Chapter 4. System Specification

4.4 Malware Samples Test Requirements

In order to score different malware and understand if any behaviour change was observed between

the different test that will be made, it is in order to look at the different criteria for what defines a

change in behaviour for a malware sample.

In the case of testing malware in a sandbox, some objective criteria can be made, however, those

criteria can’t be associated with every piece of malware since not one piece of malware that will be

tested will behave the same as another piece of malware. Because of this, a border of what is enough

and what isn’t can’t be established is an indicator for a change in behaviour.

As an example, here is a list of changes to look out for between testing different malware samples.

If a change between tests can be observed, it can be concluded that a change in malware behaviour

was also observed.

• Score created by sandbox (if available).

• Creates executable files on the file system.

• Change in number of system calls (API and Process).

• Change in network traffic (links and downloads).

• Change in Windows related settings (firewall etc.).

• Process injection.

It is however important to note that if a change in behaviour is observed, knowing exactly what

caused that behaviour in terms of artefacts is impractical with the test design established. The

reason for this is that the changes that are made from one test to another are so large, that

pinpointing what specific change could have caused the malware to behave differently is virtually

impossible. A way to alleviate this problem could be to test different configurations where the

artefacts used differ between configurations. Doing so could help pinpoint what combination of

artefacts impact a malware sample the most.

For the testing of malware there are several methods as to how testing can be done. Depending on

the time requirement and the results one might expect, the testing can either be done over a short

period of time where the malware and system are monitored or over a longer period of time where

the test concludes when the malware becomes inactive over the course of the testing procedure. The

benefits of the former is that malware might timeout or remain dormant for a short period of time

and then re-activate later, but comes with the cost spending more time with each malware sample.

With the estimated time for testing malware being almost an hour per sample for short tests, having

longer tests beyond that would prevent the testing of a large amount of malware samples. The

benefits of the latter are that each test is much shorter since the monitoring simply waits for the

executable process to finish. The isolation means that the tests can be done much faster. However,

the short tests could miss something crucial that could happen as a result of the malware delivering

its payload that could impact the system after the malware sample has stopped its execution. In

terms of testing with potential triggers/artefacts, one could test a single change within a system at

a time, but comes at the cost of there being a lot of different artefacts and combinations to test for.

It is therefore important to lay out that testing with artefacts will happen by testing with many

4.4. Malware Samples Test Requirements 39

artefacts at a time. This is because the testing of malware samples focuses on its behaviour, not the

actual artefact. If the malware changes behaviour because of the many different artefacts that are

implemented, it would be a success.

Implementing the triggers/artefacts is done in the same vein as altering different things within the

system, since the artefacts are related to different components on the system. The malware is run

on the system and a system-wide logging procedure occurs as well as taking a memory image of the

systems last state.

As for the requirements for what happens between the tests, the design of the malware analysis is

important to lay out (is described in more detail later). The basic understanding here is that one

test will, as mentioned earlier, consist of a Base test. This test will only include what is necessary to

execute malware in a virtual environment i.e. data collection applications and the virtual environment

itself. The other test that will be conducted after the Base test will come in the form of a Modified

test. This test takes the same base from the Base test and build on top of it in terms of removing

or changing different artefacts within the system. An example of removing artefacts could be the

references to the virtual environment that the malware is tested within.

After the tests have been conducted, a comparison between the Base test and the Modified test will

be done. This comparison will show what happened for each test as well as show if anything changed

between the two tests. It should be noted that even if one malware sample changes behaviour,

another malware sample might not. This all depends on how the malware was programmed and if it

was even made with the thought of trying to detect virtual environments and sandbox environments.

A good indicator here would be the score generated for each malware sample. The score can be used

as an indicator if anything differently happened between the tests. Of course, the tests might not

change in score and because of that, a more in depth investigation of the results are needed just in

case something else changed that wasn’t reflected in the score.

The process of testing and analysing the malware samples can be seen on Figure 4.2.

Figure 4.2: Process of testing and analysing malware test results

5 | System Design

The system design chapter will describe the general design for the system and look into the different

considerations made when deciding how the system should be made.

5.1 Creating a Malware Test Setup

To create a setup for testing malware and how triggers/artefacts affects its behaviour, a test setup is

needed. Testing on your own hardware can be risky in that malware could potentially escape a virtual

environment and infect the actual machine and not only the virtual machine. In this case a platform

at Aalborg University will be taken advantage of in order to test malware in a more controlled

environment. From Chapter 4 it was learned that the setup where the testing of malware should take

place needs some flexibility in the form of running and saving snapshots of virtual machines. This

is needed since modifying the virtual machines needs to be done for multiple tests in order to see a

behaviour change for malware that is tested. Not only does the modifications need to see a change

in malware behaviour but also to eliminate common artefacts that are found within commonly used

virtual machines such as VirtualBox and VMware. From Figure 3.1 it was also seen that depending

on the virtual machine used, the amount of artefacts could differ a lot since their implementation of

how they handle virtualisation differs. Another aspect is the security of the test setup. Running live

malware, especially malware that can spread through the network, is very dangerous and if the local

network contains other machines the malware could potentially spread to them. The design of the

current setup at Aalborg University will be looked and thereafter the design of the proposed setup

will be looked at.

Because of what was mentioned above as well what learned during Chapter 2, Chapter 3 and Chap-

ter 4, some restrictions need to be applied to the system for both security and usability. As such,

the restrictions are as follows:

• Using VirtualBox and Cuckoo Sandbox

• Restrict access from VM to outside internet

• Managing snapshots and modified Operating System (OS)

• Upload malware samples into the sandbox

To summarise the list of restrictions from above there are some key aspects that are crucial for the

system to function properly and at an acceptable level.

The first area is that the system components to be used is VirtualBox and Cuckoo Sandbox which

are compatible with each other and is the recommended way to run a malware sandbox without

building something from the ground up.

41

42 Chapter 5. System Design

The second area is restricting access to the local and outside internet. A lot of malware operates by

communicating with the outside internet for downloading malicious content but also uses the local

internet in order to sniff out other machines on the network in order to infect them. Making sure

that the VM cannot access anything outside of its own environment is therefore a high priority. A

downside of doing so is that an artefact has been introduced in the sense that there is no internet

available which some malware can use to determine if they are potentially inside a sandbox.

The third area is the management of snapshots used for testing. Testing malware is as mentioned

earlier done through the use of multiple snapshots where one is used as a baseline and one for the

artefact implementations. Managing them properly in order to test multiple use cases is therefore

needed.

The fourth and last area is how malware is uploaded to the VM. The malware should be contained

on a system where the malware cannot execute by accident. An example here is using Linux for

malware storage and Windows for the VM.

5.1.1 Current Setup

To be able to implement a modified version of a sandbox using Cuckoo, understanding the current

setup at AAU is needed which is available to use.

The current setup consists of a bunch of high end servers that are made to run for long periods

of time for applications such as machine learning. For this project, the purpose goes away from

the machine learning aspect with really long testing and more towards smaller tests. The high end

hardware such as Graphics Processing Unit (GPU)’s is also not needed since no intense use of GPU

powered rendering is needed.

The AAU setup is interacted with as if it was any other computer where are full desktop is available

for the user to use. As such, creating a setup using the current AAU setup would work as if you

already exist inside a virtual environment, meaning that the system you are working in is the actual

sandbox environment. As an example on Figure 5.1, a dummy setup showcasing how a sandbox

environment on the current AAU setup is seen.

Figure 5.1: Example architecture of a malware testing environment

5.1. Creating a Malware Test Setup 43

It can be seen how external malware is loaded into the sandbox after which monitoring, logging and

simulation happens within the sandbox. In this scenario, no tools for handling the sandbox are taken

into account and as such, handling the execution, monitoring and logging needs to be made and

implemented within or outside the sandbox. This shows how the current setup has some flexibility

in that one if free to implement whatever they want within the sandbox but can become a problem

to implement. One of the problems with Figure 5.1 is that such an environment is very risky to

create since everything is handled within a single environment. What is needed here is to modify

the setup to create a second layer that can handle the actual sandbox. By having the second layer,

more control over testing, including scalability, can become available and avoids being locked down

to a single sandbox instance.

5.1.2 Modified Setup

Since the current setup is insufficient in terms of reliability and scalability, a modification of the

setup is required. The modified setup is based on the architecture of the Cuckoo Sandbox which

includes separating the host from the sandbox environments which decreases the chances of malware

infecting the host running and collecting data from the tests. An overview of this setup which runs

on the AAU setup can be seen on Figure 5.2.

Figure 5.2: Architecture of modified setup

The setup as seen on Figure 5.2 might look fine, but after looking closer at the different components

it can be seen that it is impossible to implement with what is available with the current AAU setup.

Since the virtualisation part of it uses VirtualBox, having nested VM’s is impossible since it isn’t

supported by VirtualBox since the CPU within a VirtualBox VM doesn’t have the virtualisation

extensions that a physical CPU has. As such, the setup needs to be reworked yet again. Since

nothing major is allowed to be installed on the physical server a different approach can be made.

Instead of using nested VM’s, Docker can be explored as an alternative to run Cuckoo. In this

scenario, Cuckoo and the Sandbox VM run separately, but will still be able to communicate with

each other by forwarding the necessary network related traffic through the server and virtual network

interface. The architecture for the second modified setup can be see on Figure 5.3.

44 Chapter 5. System Design

Figure 5.3: Architecture of second modified setup

As seen on Figure 5.3, the architecture is different in the sense that the VM and Cuckoo Host have

been separated. This avoids the problem which was mentioned earlier where the VM couldn’t run

inside another VM since now there is only one VM. However, since the AAU setup doesn’t allow

programs to be installed directly on the server as root, the Cuckoo aspect needs to be encapsulated

somehow. As shown by the figure this is achieved by using Docker [21]. Docker is similar to the way

virtualisation works in that the application that you want to run is isolated from the physical machine,

which in this case is the AAU server. However, Docker doesn’t rely on a lot of the requirements that

an actual VM needs such as an OS for it to function. This makes Docker ideal for applications such

as micro services and distributed systems where small to medium applications can be duplicated for

scalability. This also makes it possible to explore running the Cuckoo Sandbox within Docker to

avoid the problem of not being able to run Cuckoo on the AAU server. As for the more in depth

differences between Docker and Virtual Machines, more info can be read about it in Appendix A

(Docker and Virtual Machines) where the differences between what and how the different technologies

work compared to each other is explained in more detail.

In theory, now the only work that needs to be done around the design aspect of the system is

linking the communication between the VM and the Docker Host where Cuckoo is located. From

the figure it can be seen that it is achieved through two communication pipes known as Docker-

Hypervisor and Representational State Transfer (REST) Application Programming Interface (API).

The communication pipes are where, in theory, data is sent back and forth where the data sent

consists of Cuckoo logs and monitoring and managing the VM such as starting the machine and

resetting the snapshot. This can be achieved by setting up some specific network settings that point

the two machines to each other. For the VM, using the built in ipv4 settings can be used and for

the Docker-Cuckoo setup, using Docker and how it exposes services through IP’s and ports can be

utilised which routes the Docker containers to the host machine and to the VM.

However the setup as shown on Figure 5.3 is also deemed to be a problem to get up and running.

The problem with constructing such setup is that Cuckoo, VirtualBox and everything needed to

make them communicate with each other isn’t officially supported when using Docker containers.

Because of this, setting up such system is going to be difficult. One of the problems with using the

modified setup is related to Cuckoo and its interaction with the virtual machine. Cuckoo wasn’t

made to run inside of a Docker container and as such a custom Docker image for Cuckoo and its

dependencies must be made. The problem with this is, as mentioned, the interaction with VirtualBox.

5.1. Creating a Malware Test Setup 45

Traditionally, Cuckoo is running on the same machine as the virtual machine and as such, can see the

installation and tools for VirtualBox. In this case the tool ”VBoxManager”, which comes with the

VirtualBox installation, is used by Cuckoo to manage the virtual machine in regards to snapshots,

shutdowns, reboots etc. When inside a Docker container, Cuckoo can’t see VBoxManager which

makes it not function since no interaction can be made with the virtual machine. A workaround is

therefore needed that can take inputs from Cuckoo and pass it to ”VBoxManager” which resides on

the physical servers.

However, some people have tried to get such system design up and running. Known as ”Blacktop”

on GitHub [8], they have tried to take the Cuckoo Sandbox and implement it within several Docker

containers (one for Cuckoo and several for other services). With limited success using other specific

remote virtualisation software such as VMware ESX, VMware vSphere and XenServer. Implementing

their work becomes a problem since the VM to be used for the project is VirtualBox.

Blacktop Docker-Cuckoo Design

As mentioned earlier, Cuckoo and its dependencies weren’t meant to run inside of Docker containers.

Taking a look at the work that Blacktop have made it is clear that a lot has been modified in general

in order to make Cuckoo work as well as modifying the network related settings in order to route

different data properly. At first it seems like using the project might work but as mentioned earlier,

there is no current support for VirtualBox which is what is used for the project. The problem with

the support is that the tool which manages the actual VirtualBox called VBoxManager can’t be

directly accessed through Docker. However, Blacktop with some external help from another user

called Ilyaglow [25] have come up with a solution to make VirtualBox compatible with Cuckoo inside

a Docker container. Doing so requires exposing the Docker container for network access and utilising

a dummy version of VBoxManager that runs inside the Docker Container. The trick here is that

the dummy application uses the exposed network to communicate outside of the Docker container

and communicate with real VBoxManager. In short, an application is made which just redirects

commands to the real VBoxManager outside of the Docker container. An example of it can be seen

on Figure 5.4.

Figure 5.4: Diagram showing how VBoxManager works with Docker

On the figure it can be seen how the dummy VBoxManager communicates with the real VBoxManager

which then interacts with VirtualBox.

With all the fixes to interact with VirtualBox being installed, setting up Cuckoo in Docker is done by

executing the docker-compose script. The script, which comes in the form of a YAML file, handles

46 Chapter 5. System Design

setting up all the different Docker containers that are needed to run Cuckoo Sandbox. The script also

handles exposing the containers for network related settings which are needed to communicate with

VirtualBox outside the Docker container. The different applications are set up as different services

which run independently of each other but can still rely on each other. This is done by running

each services dockerfile configuration which constructs its Docker container. As an example, the

following code on Figure 5.5 is the docker-compose information for setting Cuckoo up in a Docker

container. Other services which aren’t shown include the web interface, API, MongoDB (database),

Elasticsearch (RESTful search engine) and Postgres (database).

1 services:

2 cuckoo:

3 build:

4 dockerfile: vbox/Dockerfile

5 context: .

6 args:

7 - CUCKOO_UID=1000

8 command: daemon

9 ports:

10 - "2042:2042"

11 volumes:

12 - ./cuckoo-tmp/:/tmp/cuckoo-tmp/

13 - /mnt/cuckoo-storage/:/cuckoo/storage/

14 - ./vbox/conf/:/cuckoo/conf/

15 env_file:

16 - ./vbox/config-file.env

Figure 5.5: Snippet of what is inside a docker-compose file

From the .yaml file, the dockerfile vbox/Dockerfile on line 4 is referenced which as mentioned earlier

constructs the Docker container wherein Cuckoo is running. A snippet of that file can be seen on

Figure 5.6.

5.1. Creating a Malware Test Setup 47

1 FROM blacktop/volatility:2.6

2

3 LABEL maintainer "https://github.com/blacktop"

4

5 ARG DEFAULT_CUCKOO_UID=1000

6

7 ENV CUCKOO_VERSION 2.0.6

8 ENV CUCKOO_CWD /cuckoo

9

10 # Install Cuckoo Sandbox Required Dependencies

11 COPY 2.0/requirements.txt /tmp/requirements.txt

12 RUN apk add --update DEPENDENCIES

13 COPY 2.0/conf /cuckoo/conf

14 COPY 2.0/update_conf.py /update_conf.py

15 COPY vbox/docker-entrypoint.sh /entrypoint.sh

16

17 RUN chown -R cuckoo /cuckoo && chmod +x /entrypoint.sh

18

19 WORKDIR /cuckoo

20 VOLUME ["/cuckoo/conf"]

21 EXPOSE 1337 31337

22

23 ADD /cuckoo/machinery/virtualbox_websrv.py /machinery/virtualbox_websrv.py

24 ADD /cuckoo/common/config.py /common/config.py

25

26 RUN chmod 644 /common/config.py /machinery/virtualbox_websrv.py

27

28 ENTRYPOINT ["/entrypoint.sh"]

Figure 5.6: Snippet of what is inside a dockerfile file

From Figure 5.6, the dockerfile goes through several steps. First, the backbone is gathered on line 1.

On this line one would usually specify the OS that the container should be based on. In this case the

container is based on a modified Linux Alpine OS which Blacktop has made. From there requirements

and dependencies to get Cuckoo installed are done from line 10 to 15. On line 19 to 21 the working

directory, volume and ports to expose are defined. Then on line 23-26 the modified VBoxManager is

added as a python script with some configuration files. On the last line, 28, the entrypoint is defined

which is the file that will be run when the Docker container starts. The entrypoint file specifies how

the container should run such as what programs to start.

When the dockerfile and Docker-compose files have been set up, running the docker-compose.yml

script gives the following output which can be seen on Figure 5.7a and Figure 5.7b.

48 Chapter 5. System Design

1 sudo docker-compose -f docker-compose.vbox.yml up -d

2 Creating docker-cuckoo_cuckoo_1 ... done

3 Creating docker-cuckoo_elasticsearch_1 ... done

4 Creating docker-cuckoo_mongo_1 ... done

5 Creating docker-cuckoo_postgres_1 ... done

6 Creating docker-cuckoo_api_1 ... done

7 Creating docker-cuckoo_web_1 ... done

(a) Starting docker-cuckoo using docker-compose

(b) Interface showing the different

launched Docker containers

Figure 5.7: Setting up docker and its output

At first it seems fine with the Docker UI reporting that the containers are running as expected,

however, the containers soon after run into problems. Since the project made by Blacktop hasn’t

been worked on in years and not actually testing the VBoxManager implementation, the Docker

containers run into fatal errors which results in crashes happening. At this point, working with

several years old software that someone else has worked on becomes a problem and a cat and mouse

game where every time a fatal error is fixed, another one appears in some other area which needs

to be fixed. Because of this and with the limited available time to actually work on the project,

another design needs to made. As such, the concept with using Docker containers, which in theory

would be good to have working because of the scalability it provides, can’t be used since getting it

to work would require a lot of time for debugging and fixing the problems with the original project

by Blacktop.

5.1.3 Finalised Third Setup

Since the option of running Cuckoo inside of a Docker container turned out to be harder than

expected and unfeasible at this stage of the project, turning over to a more traditional setup is done.

Since the AAU setup doesn’t allow software to be run directly on the machine (machine is shared

with other people), using a separate machine is done. This machine doesn’t have restrictions and

can be configured in any way one would desire. Instead, the machine allows one to do whatever they

want with it. With the requirements of Cuckoo in mind such as running a Linux based environment,

a spare machine was chosen that could support this as well as have enough power to support running

malware samples. When doing malware analysis with Cuckoo, memory dumps from the VM’s are

used to see what happened during the execution of the malware samples. As such, enough CPU

cores and RAM was needed to make sure that Cuckoo, VM and the malware analysis could run

properly.

With that in mind, the system can be made as a traditional system with system components used

that can be seen as follows on Table 5.1

5.1. Creating a Malware Test Setup 49

Component Info

Processor Intel i7-3770k 8 core @ 3.40GHz

RAM 16 GB

OS Ubuntu 18.04

Storage 500 GB

Programs
VirtualBox 6.1

Cuckoo 2.0.7

Table 5.1: Table showing what components was used for the malware analysis.

As seen on the Table 5.1, the system used is very basic and several years old in terms of processor

power. However, the system is still very capable albeit a little slower than if a processor form 2019

was used such as the i9-9900k. With the physical system in place, the design within the system can

be made. With what was learned from Section 5.1.1 and Section 5.1.2, the system is made with

similar design principles but differ in that Cuckoo, which is run as root on the system, can see the

VirtualBox installation and can modify it according to what kind of tests, VM and snapshots are

used. The system can be seen as follows on Figure 5.8.

Figure 5.8: Architecture of third and final modified setup

As seen on the figure, the system still works by having two communication pipes from the Ubuntu OS

to the VM. Here, Cuckoo uses the Hypervisor to control the VM and the virtual network interface

to communicate directly within the Windows 7 VM directly through an agent process. The agent

process, which is a python script, runs with the Windows 7 VM and allows for monitoring and user

simulation during run-time which is then reported back to Cuckoo running outside the system by

using some specific network settings (see Section 6.4).

With this system design in place, malware analysis via Cuckoo is possible and is what will be used

for the different tests that will be done to determine if changing different artefacts within the VM

will lead to a change in the malware sample behaviour.

50 Chapter 5. System Design

5.2 Malware Sample Processing

With the system design set in place, the processing of malware samples can now be designed. By

using Cuckoo’s handbook [16], the flow of uploading a piece of malware, executing it within the VM

and doing an analysis on the results can be done. The flow can be seen on Figure 5.9.

With Cuckoo, a malware sample can be uploaded directly through the command line or through a web

User Interface (UI) where analysis results are also reported. From the web UI, the malware sample

is uploaded to the Cuckoo Core and different options can be chosen in regards to what happens with

the VM. When ready to start, the Cuckoo Core activates the VM and puts the malware sample

locally in the Windows 7 VM. From there, the sample is executed and the Cuckoo Agent reports

back to Cuckoo Core with what happens within the VM such as file and network changes. After the

test is completed, which is defined by the malware sample activity, if it’s still running, timed out or

simply finished by shutting down, a memory dump of the entire VM is done and stored on the host

machine. This memory dump contains the last state of the VM and will show everything that was

changed from before to after the malware sample was executed. The analysis part is done by tools

such as Volatility and MalConfScan which give a detailed report of what happened within the VM.

Figure 5.9: Simple Diagram showcasing the malware analysis process

When the malware sample analysis is done, a report is made which can be viewed within the web

UI. From the report, noting down the different criteria for how malware behaviour is defined (see

Section 4.4) and comparing it between the baseline test and the modified test can be done. Doing so

can determine if the tested malware changed its behaviour between the different tests. Since running

a single sample can take anywhere from 45 minutes to 1 hour the design also allows for malware

samples to be queued which makes it possible to test a large batch of samples without interacting

with the system. Cuckoo makes sure that the correct Windows 7 VM is used and after every test

reverts to the proper snapshot as defined by its configuration.

Running a malware sample test outputs a log to the Cuckoo Core terminal which can help with

knowing when the analysis is done as well as any problems that could have occurred during testing.

The example output can be seen on Figure 5.10.

5.3. Virtual Machine Snapshots 51

Figure 5.10: Example Output from Cuckoo During a Malware Sample Analysis

5.3 Virtual Machine Snapshots

In order to test malware and determine if removing and adding different artefacts has an effect on

malware behaviour, having several data set to compare against each other is needed. In this case

the optimal choice is to have several VM images to compare against each other. For this scenario it

is decided to have two different snapshots, or images, where one image is used as a Base Image and

another image is used as a Modified Image. For the Base Image the idea is to only change as much

as needed within the VM in order to make testing functional. Changing anything else could have

the result of removing or changing different artefacts within the system, which for a Base Image, is

not wanted. As for the Modified Image, removing or changing artefacts is applied. For the Modified

Image, trying to remove as many artefacts that reference the virtual environment, which in this case

is VirtualBox, is done in order to look like a ”real” system. From a design perspective this is achieved

by going through all known common artefacts within the VM and removing or changing them to

remove their reference trace. As an example, the list of common artefacts includes, but are not

limited to, the following list:

• Changing BIOS information.

• Changing Windows Serials.

• Changing Hardware serial, firmware, model numbers and vendors.

• Changing Medium Access Control (MAC) addresses and interfaces.

• Changing Advanced Configuration and Power Interface (ACPI) system description tables [38]

(Differentiated System Description Table (DSDT), Fixed ACPI Description Table (FADT),

Root System Description Table (RSDT) and System Service Descriptor Table (SSDT)).

Besides changing information within the system, creating different artefacts is also wanted. Creating

artefacts has the chance of increases the number of malware which deliver their payloads. An example

is a piece of malware that looks for a certain program such as Adobe Reader or for specific files such as

Microsoft Office documents and image files. Without those specific programs or files, some malware

might not detonate and will be reported by the analysis tool used as safe or dormant executable.

For all cases mentioned above, some things can be changed outside the VM but in many cases, the

only way to change things is to go directly into the VM itself and change it while the system is

running. In this case, every time the VM machine boots up, a script would need to run and change

settings and registry entries in order to remove or add artefacts. This can simply be done by adding

52 Chapter 5. System Design

a script to the system startup that executes with the system before malware is run on the system.

Since the system works with using snapshots, after the script has been executed it can be deleted in

order to remove any trace of it before malware is executed. The snapshot would then be reverted and

the script could run again before the next malware test. For the cases of the two image snapshots

that are to be used, the Base image will not feature a script to change anything while the Modified

image will.

With that in mind, the two images, Base and Modified and their differences can be seen on Figure 5.11.

Figure 5.11: Differences between Base and Modified Image

As seen from Figure 5.11, the two images differ a lot but are also what is needed to see if changing a

lot of things within a VM is enough to change malware behaviour that is executed within the VM.

As such, the design of the images will carry over to the implementation that will be used for the

testing and analysis of malware.

6 | Implementation

In this chapter the implementation of the system and all of the different system components will be

described in detail. This includes everything from malware samples to malware execution within the

system. From what was learned in the previous chapters, the system needs to fulfil different criteria

in order to systematically test malware samples. The system needs to be able to support handling

different VM images that are going to be used to see if malware changes behaviour when executed

in different virtual environments. From the system requirements, key areas to work around were

the scalability, reliability and complexity of the system which need to be taken into consideration

when building the system. This included being able to expand the system if needed in order to

test different kinds of implementations in terms of artefacts and triggers put into the system. In

the system design chapter it was learned how using known software and tools such as Cuckoo and

VirtualBox as well as changing their configuration would help with fulfilling the different requirements

as well as support the different use cases that were laid out in terms of testing and comparing the

results. This also includes how malware is tested within the system in terms of creating and running

the two different VM images as well as how data is processed and compared in order to evaluate the

artefacts implemented and the change in malware behaviour.

The system is intended to be used for malware testing both for this project but also for future work

done at Aalborg University. This means that the implementation will go into detail of every major

component, how it was developed and used within the system. For this going into detail in areas

such as components that were set up using commands as well as including a description of different

approaches that were taken to make setting up the system easier for future work. The reason why

this area will go into depth with the different components is that AAU wants to potentially use the

system in the future. Because of this making sure that the system is set up properly and is well

documented is a high priority. The chapter contains the following components that will be described:

System Overview, Cuckoo Sandbox, VirtualBox, Networking and Data Transfers and VM Snapshots.

6.1 System Overview

The system that is made is based on what was seen during the system specification and system design

where the figures Figure 4.1 and Figure 5.8 were used for the system implementation.

As mentioned above the system consists of several components which make up the entire system

where the following components that make up parts of the system are described as follows.

• Cuckoo Sandbox

The Malware Analysis System. This component handles the malware samples by loading them

into the VM and execute it for malware testing. Cuckoo also handles the processing and

comparison of the results from running the malware sample tests

53

54 Chapter 6. Implementation

• VirtualBox

VirtualBox is where the malware testing actually happens. As a standalone product, VirtualBox

can’t be used for automated malware testing and as such needs to be modified to be able to

test malware with the Cuckoo Sandbox System.

• Networking

Another important component is the networking aspect of the system. Since the system is

connected to the internet, having your network settings allow the VM to access the network

outside of the virtual environment can become a big problem if everything isn’t set up properly.

In a controlled environment, networking would be set up for the VM to access the internet but

since the system to be implemented is a proof of concept running on a network with other

important machines, that can’t be allowed. A simulated network which could include using the

Tor network could also have been a possibility.

• VM Snapshots

The snapshots are what makes it possible to automate malware testing. The snapshots are

what contains the current state of the VM that is used and is what the Cuckoo Sandbox will

revert to before each malware test. The snapshots are therefore in a state where they are ready

to be used for testing purposes.

In order to make the installation process as smooth as possible, everything was made in the form of

installation shell scripts where each was carefully made to install properly. The different scripts can

be found in Appendix C. The list of scripts that were made look and have the following order:

1. installprereq.sh

Installation of all pre-requisites.

2. installpostreq.sh

Installation of Cuckoo and its components.

3. installvirtualbox.sh

Installation of VirtualBox.

4. installantivmdetection.sh

Installation of Anti VM Detection scripts.

5. installNetworkConfiguration.sh

Configuration of the Host Networking.

6.2 Cuckoo Sandbox

As mentioned earlier the Cuckoo Sandbox is the component responsible for running the malware

tests as well as analysing and comparing the results of said tests. To get started with Cuckoo, their

own guide as well as guides found on the internet were used for installing and running everything

needed to get Cuckoo up and running. Since Cuckoo is open source, a lot of different ways to install

and run Cuckoo can be found on the internet. It has therefore been decided to stay as close to the

original guide made by Cuckoo themselves as possible.

As for Cuckoo itself, the application consists of two parts. The first is the Cuckoo Core and the

6.2. Cuckoo Sandbox 55

other one is the Cuckoo Web Interface.

In order to install Cuckoo a lot of dependencies are needed to be installed. These dependencies are

simply to make Cuckoo function as well as make other applications that also need to run function

properly.

1 sudo apt-get update && sudo apt-get upgrade -y && sudo apt-get autoremove -y

2 sudo apt-get install DEPENDENCIES

3

4 // Install Python, MongoDB, Postgresql, Tcpdump, M2Crypto, Volatility, Distrom and YARA

The above installed applications include a lot of different types of applications that each has some-

thing to do with Cuckoo. In short the applications handle the following areas:

• Database management (MongoDB, Postgresql)

• Network Packet Analyser (tcpdump)

• Cryptography support and security for Python (M2Crypto)

• Forensic analysis on memory dumps (Volatility)

• Binary stream instruction decomposer (Distorm)

• Malware Identification and classifications (YARA)

After the aforementioned applications have been installed, we can progress to install the Cuckoo

Sandbox. To do so, we go into superuser mode and install it in a virtualenv which isolates Cuckoo

in its own environment:

1 virtualenv venv

2 sudo su

3 . venv/bin/activate

4 sudo pip install -U pip setuptools

5 sudo pip install -U cuckoo

After Cuckoo has been installed, running the following command can be started to check if everything

is in order:

1 cuckoo -d

As for the configuration of the Cuckoo Sandbox, some things that we want to do such as analyse

memory dumps as well as specify our VM, need to changed. This is achieved by going through

Cuckoo’s configuration files and changing thing accordingly. This is done as follows:

56 Chapter 6. Implementation

1 sudo nano /root/.cuckoo/conf/cuckoo.conf

2 memory_dump = yes

3

4 sudo nano /root/.cuckoo/conf/virtualbox.conf

5 mode = gui

6 machines = sandbox-win7-01

7 [sandbox-win7-01]

8 label = sandbox-win7-01

9 snapshot = clean-final-X

10 tags = windows_7, 64_bit, python

11

12 sudo nano /root/.cuckoo/conf/memory.conf

13 guest_profile = Win7SP1x64

14 delete_memdump = yes

15

16 sudo nano /root/.cuckoo/conf/processing.conf

17 [memory]

18 enabled yes

19

20 sudo nano /root/.cuckoo/conf/reporting.conf

21 [singlefile]

22 enabled = yes

23 html = yes

24 pdf = no

Now that everything has been installed and configured, Cuckoo can now be started together with its

web interface in order to start testing malware samples. However, we also need to install VirtualBox

which is the next step.

6.3 VirtualBox

Installing VirtualBox is one of the easier parts of the system since everything needed to make it run

comes in one package. To do so the official repository for VirtualBox is added to the machine and

then the newest version of VirtualBox is downloaded and installed.

1 echo deb [arch=amd64] https://download.virtualbox.org/virtualbox/debian bionic contrib |

sudo tee -a /etc/apt/sources.list.d/virtualbox.list↪→

2

3 wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- | sudo apt-key add -

4 wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- | sudo apt-key add -

5 sudo apt-get update

6 sudo apt-get install virtualbox-6.1

6.3.1 Windows OS

In order to test malware, a copy of windows is needed. In this case and as recommended by Cuckoo

Sandbox, Windows 7 is installed. This is simply done by taking the .iso file for the copy of Windows

7 and using it as a booting device within VirtualBox. When the installation is complete, the VM

can be configured. This is done in two ways. Since two separate images are required, a Base and a

Modified one, there are also two VM’s to work with which each have their own configuration, the

6.4. Networking and Data Transfers 57

default one and the recommended one. The difference between the default and the recommended

configuration is the hardware supplied to the VM. For the default, the following settings are applied:

1 General:

2 Name: sanbox-win7-01 (base)

3 Operating System: Windows 7 Ultimate (64-bit)

4 System:

5 Cores: 1

6 Base Memory: 2048MB

7 Display:

8 Video Memory: 27MB

9 Storage:

10 Normal 40GB

And for the recommended one the settings are slightly changed going from 1 CPU core to 2 and from

2048MB of RAM to 4096MB.

1 General:

2 Name: sanbox-win7-02 (modfified)

3 Operating System: Windows 7 Ultimate (64-bit)

4 System:

5 Cores: 2

6 Base Memory: 4096MB

7 Display:

8 Video Memory: 150MB

9 Storage:

10 Normal 40GB

Now that both images have been set up in relation to their VirtualBox settings, the networking

between the Guest VM’s and the Host can be done.

6.4 Networking and Data Transfers

The networking aspect of the system consists of several areas. One area is the host system and the

other area is inside the guest VM. Both have been set up to allow traffic and data to be exchanged

between the, while keeping the Guest away from the real internet.

6.4.1 Host Networking

On the host, specific settings need to be made in order for Cuckoo and VirtualBox to be able to

interact with each other over the network.

First, the networking tools are installed:

1 sudo apt install net-tools

Then, the network is configured for the by utilising the VBoxManager which is the tool that controls

the VirtualBox application. Here a new network interface is created which is bound to VirtualBox.

Using VBoxManager the configuration is done automatically and only needs a couple of commands:

58 Chapter 6. Implementation

1 sudo vboxmanage hostonlyif create

2 sudo vboxmanage hostonlyif ipconfig vboxnet0 --ip 192.168.56.1

3 sudo vboxmanage modifyvm sandbox-win7-01 --hostonlyadapter1 vboxnet0

4 sudo vboxmanage modifyvm sandbox-win7-01 --nic1 hostonly

In the above commands, a new interface is made called vboxnet0 and is bound to the IP

192.168.56.1. After that, the VM called sandbox-win7-01 is bound to that interface.

When the interface is up and running, the routing and traffic restrictions can be applied. As

mentioned earlier, we want traffic to go from the Host to the Guest and back, but we don’t want

the Guest to be able to access the outgoing internet from the Host. To do so, the default settings

are to drop all forward requests and only allow internal traffic. The settings are configured with the

tool called IPtables:

1 sudo iptables -t nat -A POSTROUTING -o eth0 -s 192.168.56.0/24 -j MASQUERADE

2

3 //Default drop.

4 sudo iptables -P FORWARD DROP

5

6 //Existing connections.

7 sudo iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT

8

9 //Disallow connections from vboxnet to the whole internet.

10 sudo iptables -A FORWARD -s 192.168.56.0/24 -j DROP

11

12 //Internal traffic.

13 sudo iptables -A FORWARD -s 192.168.56.0/24 -d 192.168.56.0/24 -j ACCEPT

The rules applied here won’t be able to do any form of packet forwarding unless IP forwarding is

enabled within the kernel on the system. To do so, there is a temporary method that resets upon

reboot as well as a permanent method which saves the settings even after reboots.

For the temporary solution:

1 echo 1 | sudo tee -a /proc/sys/net/ipv4/ip_forward

2 sudo sysctl -w net.ipv4.ip_forward=1

And for the permanent solution:

1 sudo apt-get install iptables-persistent

After everything above has been done, the networking for the Host machine has been finished.

6.4.2 Guest Networking

After the Guest has been set up with a copy of Windows 7, the network settings can now be changed

in the VM. To do so, the local interface is configured to communicate with the Host machine by

routing all traffic from the VM to the Host machine. This is done as follows:

6.4. Networking and Data Transfers 59

1 IP Address: 192.168.56.101

2 Subnet Mask: 255.255.255.0

3 Default Gateway: 192.168.56.1

4 Primary DNS: 1.1.1.1

5 Secondary DNS: 1.0.0.1

With the above settings applied, the quest can interact with any network application running on

the 192.168.56.1 IP.

With the networking being applied data can now flow between the Host and the Guest without any

issue.

6.4.3 Data Transfers

In order to transfer data to the VM without using VirtualBox, since that introduces artefacts, a FTP

server is created on the host which the Guest can access and take data from. This is needed since

we want to transfer the Cuckoo agent to the VM as well as other files such as programs and scripts

to set up the Base and Modified images. To do so, an application called vsftp is installed:

1 sudo apt-get install vsftpd

After the application has been installed, it is configured to be accesed by the local machine from the

Guest:

1 sudo mkdir -p /home/tarik/vmshared/pub

2 sudo chown -R tarik:tarik /home/tarik/vmshared

3 sudo chmod -R ug=rwX,o=rX /home/tarik/vmshared/

4 sudo chmod -R ugo=rwX /home/tarik/vmshared/pub

5

6 sudo nano /etc/vsftpd.conf

7 write_enable=YES

8 anon_upload_enable=YES

9 anon_mkdir_write_enable=YES

10 listen_address=192.168.100.1

11 listen_port=2121

12 anon_root=/home/tarik/vmshared

13 anon_umask=000

14 chown_upload_mode=0666

15 pasv_enable=Yes

16 pasv_min_port=10090

17 pasv_max_port=10100

The above settings make it possible to access the newly created folder called vmshared. In this folder

we will place the files that we want to be accessed from the Guest VM. After the files have been

transferred, the FTP server can be shut down just in case no malware sample finds and accesses it.

60 Chapter 6. Implementation

6.5 VM Snapshots

As mentioned during Section 5.3, two different VM images are used for the malware testing and

analysis. The two images differ in that one image is used as a clean base i.e. Only the essentials

were installed to make it work malware testing. The other is used as a modified base where extra

programs, updates and anti virtual machine tactics were used to make the modified image look more

like a real system instead of a blatant virtual machine.

In this section, an overview of what and how these things were done to the two images will be

explained as well as a quick test through a test script with Pafish. For both images, files were

transferred to the guest VM’s by using FTP.

6.5.1 Base Image

For the base image that was used for the initial testing and analysis of malware, the only changes

that were made were done in order to make the Cuckoo Agent function as well as allow malware to

execute. The agent comes in the form of a python script which creates a basic web service that can

communicate with Cuckoo outside of the VM. The changes that were applied to the base image are

as follows:

• VC-redists

Visual C++ Libraries that allows many different programs to run properly. This is needed to

test a variety of malware.

• Python

Allows the agent to run as well as collect data from the guest virtual machine.

• Pillow (Python Imaging Library)

Adds image processing capabilities to python. This is used to take screenshots of the desktop.

• Cuckoo Agent

Allows the VM to send data back to the Cuckoo host for analysis.

With the above list installed on the guest VM, the base image is now ready to be used for malware

analysis. It should also be note that the Cuckoo Agent was also set to run on startup in order to

automate the boot process of the guest virtual machine.

6.5.2 Modified Image

For the modified image that was used for the second round of malware testing and analysis, the base

image that was initially made was cloned. This was done in order to have the same foundation for both

images and would avoid creating further artefacts during testing by having different configurations

on the two images. The cloned image was then further edited by installing different software as

well as running an anti VM detection script which changes files, registry entries and settings on the

guest VM in order to make harder to detect as a virtual machine. The most important part here is

the registry entries and settings part. This includes files and references to VirtualBox and anything

related to the system being a virtual machine.

The changes that were applied to the modified image are as follows:

6.5. VM Snapshots 61

1. Removed VirtualBox Guest Additions

Consist of device drivers and system applications that optimise the guest operating system for

better performance and usability. These are by default a part of the OS when installed via

VirtualBox.

2. Added Programs and Updates

Adobe Reader (XI 11.0.01), Adobe Flash player 11.9, Java 7, Windows Update KB958830 (Re-

mote Server Administration Tools), LibreOffice, VLC Media Player, Firefox, Google Chrome,

7Zip, paint.net.

3. Anti VM Detection part 1

Changes settings, registry entries and add randomisation in the form of files with common

extensions.

4. Anti VM Detection part 2

On every reboot, registry entries and settings that are reset are changed again.

From the list above there are a lot of changes that impact the system being worked with which

in this case is the modified image. The idea is that these changes will have an effect on how the

different malware samples behave by eliminating common artefacts that are introduced by using

virtual machines.

From Section 5.3 and Section 3.1 different types of artefacts and triggers were discussed and

how they are easily found since they are always located in the same place. In order to change

artefacts within the modified image some have been identified and either removed or edited. For

the configuration used for testing in this project, the most common artefacts are identified which

are those that are added by default into the system. The identified artefacts include the ones from

the above list such as the VirtualBox Guest Additions which is added by VirtualBox itself where

some of them can be seen on Table 3.3. Since this is the case, it is also one of the easiest to detect

because they are a default setting that can be applied to a VM image. Going further than that, the

anti VM detection parts also work with these artefacts by removing the artefacts that are outside of

the Guest Additions and are located as default within the VM image (as discussed in Chapter 3 and

Section 5.3). These include artefacts found by Pafish (Section 3.2.1) as well as what was described

in places such as [19]. In terms of the second bullet point which includes the different applications

that were installed, these include a combination of older applications as well as other common

applications that typically installed by many machines which lie in the category of ”must have”

applications for most systems [35] [17]. The idea here is that for some malware, their detection

schemes include looking for different common applications such as browsers and PDF readers in

order to determine if a system is in use by a real person. This also includes artefacts left by said

applications such as bookmarks for browsers and PDF files for the PDF reader recent list. As far as

what applications are more important than others, if entirely depends on the malware being tested

which means that knowing what applications to install varies between malware samples.

To ensure that everything is installed properly, the modification process of the image was done in

several steps.

First, the guest additions added by VirtualBox are removed. The guest additions add a lot of arte-

facts in terms of references to VirtualBox. Simply removing the installation helps with minimising

artefacts but does lower performance inside the VM.

62 Chapter 6. Implementation

Second, basic programs and updates were installed. The programs installed, as explained in Sec-

tion 5.3, are used as a trigger artefact for malware since a large variety of malware looks for or uses

said applications. The chosen applications were taken based on several sources of recommended or

essential applications that are installed on new user machines as mentioned earlier.

After the basic part was modified, the more advanced and crucial part was modified which is the

OS aspect of the guest VM. As mentioned earlier in the report, virtual machines and their guest OS

come with a lot of files, registry entries and references that refer to the virtual machine that is used.

In this case VirtualBox is referenced a lot either as VirtualBox or as VBox. To change or remove

those references, an open source script on GitHub called ”antivmdetection” was used with slight

modifications in order to work with the VM images used [40]. The script goes through everything

known for a virtual machine that could be referenced within VirtualBox and edits or removes them.

As an example, the script goes through the following to either remove, create or edit files, settings

or registry settings based on either current or randomised values:

1 # Check dependencies

2 # Randomize BIOS serial

3 # Check other present hardware

4 # Create a new UUID

5 # Create a new system serial number

6 # Create a new chassi serial number

7 # Change disk serial

8 # Change disk firmware rev

9 # Change disk model number

10 # Change CD-ROM firmware number

11 # Change CD-ROM model number

12 # Change CD-ROM vendor name

13 # Get and write DSDT image to file

14 # Randomize VM MAC address, based on the host interface MAC

15 # Copy and set the CPU brand string

16 # Check the numbers of CPUs, should be 2 or more

17 # Check the set VM memory size. If it's less them 2GB notify user

18 # Check if hostonlyifs IP address is the default

19 # Check witch paravirtualization interface is being used

20 # Set custom Differentiated System Description Table (DSDT) information

21 # Set custom Fixed ACPI Description Table (FADT) values

22 # Set custom Root System Description Table (RSDT) data

23 # Set custom Supplemental Descriptive Data Table (SDDT) information

24 # Set operating system InstallDate and MachineGuid

25 # Depending on the operating system, set DACType and video card type

26 # Set the Microsoft Product ID (ProductId) and desktop background

27 # Check if audio support is enabled

28 # Check if you have the correct DevManview binary for the target architecture

29 # Write all data to file

30 # Generate random files with the following extensions: .txt, .pdf, .txt, .docx, .doc, .xls,

.xlsx, .zip, .png, .jpg, .jpeg, .gif, .bmp, .html, .htm, .ppt, .pptx.↪→

Figure 6.16: Anti VM Detection Script excerpt

The output from the script comes in the form of a PowerShell script which is then executed within

the guest VM in order to apply the changes that are to be made. How the PowerShell script is made

can be seen on Figure 6.17.

6.5. VM Snapshots 63

Figure 6.17: Flow of how the Anti VM Detection script is generated and run.

In the above figure it can be seen how the PowerShell script is made by first running a Python

scripts that is collecting information from the Host system which in this case is a Ubuntu based

machine. The reason it does this is because of the VirtualBox installation. The script needs to

know its configuration before it can change it. When all the information is collected another script

is made in the form of a Shell script. The Shell script then generates the PowerShell script which is

what will actually change things inside the VM. This combined with some auxiliary files will remove

and modify different artefacts within the Windows 7 VM. The auxiliary files help the script remove

certain settings and devices that are made by VirtualBox and with the help of the .lst files, the script

can generate random files on the system.

6.5.3 Difference Test Using Pafish

Running the two different images should in theory give two different output from Pafish since the

images used have been altered in relation to each other. The base image hasn’t been altered with

and thus includes a lot of artefacts that reference VirtualBox. The modified image has been altered

by removing as much as possible that reference VirtualBox.

As such, running Pafish on both images gives the following output on Figure 6.18a and Figure 6.18b:

64 Chapter 6. Implementation

(a) Pafish output from the base image. (b) Pafish output from the modified image

Figure 6.18: Pafish output from both images used which show the differences between them.

As it can be seen from Figure 6.18, the two Pafish outputs differ in several places. The artefacts for

the things that are related to VirtualBox have gone from being ”traced” to ”OK”. This means that

the artefacts have been removed from the system and can’t be found anymore.

For testing malware, the malware should be tricked into thinking that it is inside a real system since

it can’t find anything related to VirtualBox or other virtualisation software. It should be noted that

there are still some artefacts that are present as it can be seen from the two images. Those artefacts

are mainly related to the system itself which can’t be removed. One of the artefacts is the mouse

movement. For the Pafish tests, no mouse movement was simulated but for the malware testing, it

should be noted that mouse movement and interaction is simulated by Cuckoo. Two other artefacts

can also be removed which are the detected disk size of the systems. For the Pafish testing the images

were set to 40 GB each. The size of the disk can vary a lot depending on what malware considers a

”real” size. As such, having a definite answer to how big the disk size should be can’t be answered

unless a very large sample size is tested where it is known what disk size is expected, if it is even

being detected.

6.6. Running Everything 65

6.6 Running Everything

When everything is installed and ready to go, launching the different components is done as follows:

VirtualBox:

Starting VirtualBox is simple. The only thing that needs to be done is running the following com-

mand:

1 sudo virtualbox

Cuckoo Sandbox:

Since Cuckoo is installed as root, the way to launch Cuckoo is going into root mode. Besides that,

after a reboot, VirtualBox also needs to attach itself to the correct IP address which will be used for

communication between Cuckoo and VirtualBox. To do so the application VBoxManager is used.

The following commands are used:

1 sudo su

2 VBoxManage hostonlyif ipconfig vboxnet0 --ip 192.168.56.1 --netmask 255.255.255.0

3 cuckoo

Cuckoo Web Interface:

To start the web interface that is used to start malware sample tests, the cuckoo web service needs to

be started together with mongodb in order to save things to a database. As with normally starting

Cuckoo, root must be used. The following commands are used to get the web interface up and

running:

1 sudo su

2 cd /root/.cuckoo

3 sudo service mongodb start

4 cuckoo web runserver 0.0.0.0:8080

When everything is up and running, testing malware samples can begin.

7 | System Testing and Malware Analysis

In this chapter the different tests as well as examples of malware analysis will be shown. The idea

with the system created was to see if changing different parameters in the form of artefacts within

a closed environment would lead to a change in malware behaviour. Because of this, a system was

described and implemented in Chapter 4, Chapter 5 and Chapter 6 which can be used to test and

measure for malware behaviour changes. The purpose of the tests is to see if the aforementioned

artefacts that were changed within the described system would change how malware behaves by

using two different closed environments. The behaviour change will then be evaluated by looking at

different events (file/process creation, registry edits etc.) that happened during testing and if the

amount of events differed between the two VM images used. If the results from running a malware

sample differ between the two VM images, a change in behaviour could possibly observed.

Before the system could be tested with live malware, the system needs to be validated in terms of

running as it should as well as performance. With virtual machines, performance can vary a lot

depending on the host systems hardware. As such each of the two VM images made are tested before

anything else is done to them.

Besides the validation, compatibility of the malware samples is required to be checked since the

system that is implemented only supports Windows based executable. These executable are also

limited to what the system allows to run since not every Windows update to ever exist would be

installed on the VM images. The reason for this is to have a system that isn’t running on the newest

version of Windows which could have patches made and implemented that would prevent some form

of malware to even run. This scenario was observed in the preliminary testing where a sample that

was too old, dated back to 2002, simply couldn’t run because by the time Windows 7 was released,

patches to stop the malware sample were already integrated into the system.

Another area in terms of system testing and performance is the how the system is presented in a

realistic manner like a real world system with real world usage. Since virtual machines are limited

in of themselves, making sure that the system mimics a real world system with real world scenarios

would be a top priority. The reason for this is that some malware tends to look at user activity

before they execute. As mentioned earlier in the report the user activity can come in many forms

such as mouse movements but also in terms of what is happening in the active session. This comes

in the form of applications installed and applications that are running in the active session. Though

not every type of application can be installed and run, making sure the sessions cover ”enough” can

be done.

For this reason, the two VM images used showcase how one system, the Base image, omits having

any real world sessions while the other image, the Modified one, includes a lot of different things

such as randomised files, applications and user simulation.

67

68 Chapter 7. System Testing and Malware Analysis

7.1 Testing Method

In this section, the testing method used for testing and analysing live malware samples within VM’s.

The method for testing that was used was quite simple, since everything for the system was setup

to be automatic, the only thing a user needs to add the chosen malware sample to the Cuckoo Web

Interface. After that, the user can configure some basic settings in regards to the test and what VM

to choose from. The rest is then handed over to Cuckoo to run the malware sample and collect all

the different data required to do an analysis afterwards. In a sense the method used is black box

testing since the user doesn’t know what happens while the test is running. Some input is given, the

malware sample, and a result is given back afterwards that you can read through.

7.1.1 Testing Criteria

As mentioned previously, there are certain things to look out for when comparing the different

malware sample tests after results have been gathered. For the basic ones and what will be shown in

the results is the Cuckoo ranking system. After each analysis, based on what Cuckoo and its analysis

found such as anything resembling malicious behaviour, a malware sample is classified by a ranking.

This ranking goes from 1 and up where 1 to 10 is the colour brackets. The ranking is based on

the many different malicious things such as creating files, editing the registry and changing windows

settings such as the firewall. If the malware sample does something within each category the score

goes up. The scoring system that is applied by Cuckoo is however a little misleading because of the

underlying methodology that it uses as per [52]. Even if a malware sample gets a low score does not

mean that it is not malicious since the degree can vary and cannot always be rated in an objective

way. Because of this, the ranking should be looked at as a guide and a more in depth analysis of the

results are needed.

As such, the ranking is put into three different categories of danger:

• Rank: 1-4 (Green) -> Numerous Signs of Malicious Behaviour

• Rank: 4-7 (Yellow) -> Many Signs of Malicious Behaviour

• Rank: 7-10 and up (Red) -> Very Suspicious Malware Behaviour

Looking at the ranking can give a quick overview of how malicious a malware sample is as well as

indicating if a malware sample changed behaviour from one test to another by having a different rank

between the tests. It is however not necessary, for this project at least, to look for specific scores such

as the ones that are high. What is important to look after is the change in score. So if one malware

sample goes from a score of 4 to a score of 8, then it would be taken as a set of results to investigate

what happened that could have caused the change in score. The ranking score can, as mentioned

earlier, be misleading and could produce the same score even though something differently happened

between tests. In order to trust the ranking system, a replacement as provided by [52] would be in

order, otherwise a more manual approach in comparison is needed for the different tests.

Another thing for what is considered a change in malware behaviour and what is looked after when

investigating the results is the proportions and distribution of events that happened during testing.

As an example, an event could be a single instance of many things such as a file creation or a change

in the system registry. Basically any system interaction is counted as an event and if that event is

classified as malicious, it will be added to the total distribution as well as the total signatures that

were detected.

7.2. Malware Sample Test Results and Comparison 69

7.2 Malware Sample Test Results and Comparison

With all the test being done, a total of 21 different malware samples were tested. In Appendix D,

information about the different malware samples can be found. Even with this small samples size,

testing all of them twice, one for each VM image, took a long time (45-60 minutes). Because of this,

testing more malware sample would have been preferred but was not possible due to time constraints.

Because of this limitation it can be seen that different malware samples did change their behaviour

from testing in one image to another. For the results the different malware samples, their type, date

and ranking for both tests are displayed. The results are as follows:

Sample No. Malware Type Malware Date Cuckoo Rank Base Cuckoo Rank Modified Change ? Amount

1 Trojan-Generic 2012-06-24 4.6 4.6 No 0

2 Trojan-Adware-Ransom 2013-10-26 10.4 11 Yes 0.6

3 Virus-Botnet 2004-08-04 4 4 No 0

4 TrojanWorm-Prepender-Shodi 2004-09-12 5.6 6. Yes 0.4

5 Trojan-Dloader 2013-09-18 6.6 6.6 No 0

6 Trojan-GameModding 2018-06-19 4.8 6.4 Yes 1.6

7 Dropped-Backdoor-Prorat 2009-07-14 11.4 11.8 Yes 0.4

8 Worm-Generic-Porn 2006-03-02 8.2 10.2 Yes 2

9 Virut-Generic 2002-08-12 5.2 6 Yes 0.8

10 FileRepMalware-Worm 2007-08-30 3.8 3.8 No 0

11 Trojan-Generic 2019-04-24 4.4 4.4 No 0

12 Trojan-Backdoor-Wabot 1992-06-20 4.8 5.4 Yes 0.6

13 Trojan-Ransom-Gandcrab 2018-05-01 10 10 No 0

14 Trojan-MSIL-Bladabindi 2019-05-09 5.2 5.8 Yes 0.6

15 Trojan-Generic 2019-05-07 7.2 7.2 No 0

16 Trojan-Shipup 2013-05-02 5.2 5.2 No 0

17 Virus-Virut-Generic 2001-08-17 3.8 4.2 Yes 0.4

18 Trojan-Downloader-Injector 2010-08-30 6.4 6.4 No 0

19 Trojan-Downlaoder-Waski 2013-11-25 7.2 7.2 No 0

20 Trojan-Dropper-Generic 2013-04-19 5.2 5.2 No 0

21 Trojan-FileRepMalware 2014-02-27 5 5 No 0

Table 7.1: The results of testing the different malware samples on both VM images.

From Table 7.1 it can be seen that out of the 21 different malware samples, 9 malware samples were

observed to have a different ranking and thus some change in behaviour. However, to be sure that the

ranking isn’t just an anomaly since some rankings are close together, comparing some of the malware

samples is in order. As mentioned earlier in the use cases in Chapter 4, the two different tests need

to be compared in a way that can quantify the results which can be done by measuring events that

occurred during testing. To do so, one malware sample and its two different test results are picked

and compared using the Cuckoo comparison tool. From the comparison, different observations in

terms of system interaction are shown. These interactions are measured as events that were detected

during testing by tracing the process tree of the malware sample. The event categories, which are

made by Cuckoo, are as follows:

• Registry

If the registry has been modified.

• File

If any file was created or modified.

70 Chapter 7. System Testing and Malware Analysis

• System

If the system settings have been altered.

• Network

If the network has been used, both for links and downloads.

• Process

How much processes were interacted with, both read/write but also injections.

• Services

If any system services were interacted with.

• UI

If any UI elements were interacted with.

For the comparison, an execution graph is made. The graph gives an abstracted overview of the

execution of the malware sample. The graph represents the percentage of occurrences of events

classified by each category. The bigger the block or percentage, the higher the count of events for

that category out of all events that were counted which were performed by the analysed malware

sample.

The different categories are labelled and coloured to make it easier to see what part of the system

was inflicted the most by the malware and its behaviour. It should be noted that the comparison

only shows the distribution out of 100 percent. As such, one percentage might be bigger in one test

than another even though the numerical number for the category didn’t change.

From Table 7.1, malware sample no. 6 was used since it differed a lot from one test to another in

terms of ranking. The comparison between the two tests can be seen on Figure 7.1.

Figure 7.1: Malware sample 6 execution graph comparison

As seen on Figure 7.1, there are some difference between the two executions graphs. What is im-

portant to note from the two graphs is the ”registry” and ”file” category which went from 12 to 59

percent and 5 to 11 percent respectively. From the graphs it can be seen that they have grown in

number of events where the ”registry” category increased the most going from the base image to the

modified image. From what is known about the categories it is therefore believed that the malware

7.2. Malware Sample Test Results and Comparison 71

sample decided to make further changes to the registry and file system based on the changes that

happened between the base image and the modified images. Looking at the events that happened

through the Cuckoo report, the following table shows a breakdown of the different categories:

Category Base Image Modified Image

Resource 121 226

Process 30 583

System 227 1381

UI 325 418

Registry 106 5586

File 41 1053

Total 850 9247

Table 7.2: Malware sample 6 events comparison for each category for both images

As it can be seen from Table 7.2, the amount of events increased a lot from the Base Image test

to the Modified Image test where the Base Image had 850 events in total which was increased to

9247 events in total for the Modified Image. The number of events further proves that the malware

behaved differently by doing a lot more during the test when compared to the Base Image test.

As for the different signatures that were detected during the testing, different results were produced

by each test. The signatures cover everything from the malware sample unpacking itself, injecting

into processes, creating files and stopping different services. For the tests with malware sample 6,

the signatures that were detected for both tests can be shown on Figure 7.2.

Figure 7.2: Malware sample 6 signature comparison

72 Chapter 7. System Testing and Malware Analysis

As it can be seen from Figure 7.2, when testing with the modified image, more signatures are detected

as well as the amount of previous detected signatures. From the test new signatures came up that

indicate that the malware did several things more than when it was run on the base image test. From

the figure the following signatures were detected during the modified image tests:

• One or more processes crashed (2 events)

• Searches running processes (6 events)

• Checks adapter addresses used to detect virtual network interfaces (1 event)

• Sets or modifies WPAD proxy autoconfiguration file for traffic interception (14 events)

As it can be seen from the list, what can be seen as the common denominator is that the events that

happened during the modified test which didn’t happen during the base test are related to potential

sandbox evasion. The malware sample searched for processes which include the following processes:

• process name: pythonw.exe

process identifier: 2524

• process name: taskhost.exe

process identifier: 2260

• process name: mobsync.exe

process identifier: 1736

• process name: SearchProtocolHost.exe

process identifier: 2196

• process name: SearchFilterHost.exe

process identifier: 1112

• process name: 6 Mod 00aa31683f9292a003aed.exe (malware sample)

process identifier: 2764

From the list above there are several processes that stand out. The first and probably the most

important is the process called pythonw.exe. This process is a python process and is actually the

process that is tied to the Cuckoo agent. If the malware was sophisticated enough, it could have

tried to inject some malicious code into the process which could end up crashing the process or send

malicious code back to the Cuckoo Host.

From what was found in the signatures it can be guessed that the malware went through several

other sandbox evasion techniques, but because of the removed artefacts in the modified image,

it continued with its payload which included looking up different processes, adapter addresses as

well as changing several Web Proxy Auto-Discovery (WPAD) proxy configurations. From what

is understood about WPAD, the malware most likely tried to spoof the WPAD in order to use a

non-authorised server as a proxy server. This could be used to get requests from malicious domains

in order to download more malicious files.

7.3. Test and Analysis Conclusion 73

As for the other samples that were seen to have a change in behaviour, the results are similar to what

was shown with minor differences in what aspect of the system were interacted with. Some malware

samples such as downloader types tried to download several files which increased the network related

events and some malware that created a lot of different files which were a copy of themselves or

simply infected copies of other known files on the system.

7.3 Test and Analysis Conclusion

In this chapter a look into how testing was done for the malware sample testing and what thoughts

lied behind it was done. Furthermore, testing and an analysis of the actual malware samples was

done using the developed system which consisted of Cuckoo Sandbox and two VirtualBox VM images.

This was done by collecting all the data from each of the two separate test categories and compiling

them into different tables with the major outlier being described more in-depth.

As seen from the malware sample results, a lot of the samples that were randomly chosen to be

used, didn’t show any sign of changing its behaviour when going from one VM image to the other

VM image. As discussed during the project, the reason for why a lot of the different malware

samples didn’t change behaviour lies in the fact that a lot of malware samples do not have evasion

techniques implemented. Most malware samples simply deliver their payload and don’t care if they

get detected. One of the reasons for why this behaviour is common is simply because the malware

sample was designed quickly and to attack as many systems as possible. If the sample is detected,

the developer simply creates a new version and sends it out. This cycle repeats and is why there will

always be a cat and mouse game between malware developers and anti-malware developers.

However, looking at the different tables it was seen how some malware samples did in fact change

their behaviour. The behaviour observed mostly consisted of generating more malicious files, system

calls and links. Further, the age of the malware samples didn’t seem to matter since samples that

were many years old and new ones both were observed to have a change in behaviour.

It should be noted that because of the nature of the testing where a malware sample was only

tested ones per VM image, no definite conclusion can be made since more of the behaviour change

could in fact simply be an anomaly with the malware samples and could be reverted back if they

were tested again. More tests would be needed in order to confirm a definite change in malware

sample behaviour. It is however shown that the system created during the project and the testing

methodology can indeed be used for testing behaviour for different malware samples as shown by the

results.

8 | Conclusion

During this project the task was to find out if creating a test setup that could be used to alter a

closed environment could lead to a change in malware behaviour when testing malware samples

using virtual machines. The different types of virtual machines should have altered environments

where one would resemble a basic virtual machine while the other machine would have any reference

of said virtual machines stripped among other changes in order to make the machine resemble a

real system more. The solution designed and implemented was made at Aalborg University with a

dedicated machine that was running on a isolated network in order to avoid infecting other network

attached machines.

The system that was made to test malware samples was developed in different stages. The first

stage was to find out what would be needed to test malware in terms of tools and software. In

order to avoid inventing the wheel again, the choice was set on using established, open source

tools, that could handle testing different kinds of malware samples in different virtual environments.

To understand if malware samples changed behaviour between different environments, the system

should support easily going from one environment to another in order to test malware samples

quickly without taking an environment down in order to test in another. The solution landed on

using the well established malware analysis tool called Cuckoo Sandbox together with the virtual

machine manager VirtualBox. Both components supported each other which meant that little setup

was required to make both work together. Using VirtualBox also allowed for switching between

different virtual machines quickly.

The second stage was finding out what kind of system that would be used. At the beginning the

choice was set on a powerful server, but because of the nature of Cuckoo Sandbox and VirtualBox

and their need to have root access to the host machine, the server could not be used since root access

was unavailable. The idea then was to take all the root requirements and put it inside a Docker

Container. However, since Cuckoo Sandbox wasn’t supported by Docker, that option quickly fell

apart. In the end a dedicated machine was used where everything was made from the ground up to

support Cuckoo Sandbox and VirtualBox.

In addition to setting up a dedicated machine for malware testing, it was also needed to implement

artefacts and triggers in order to change the behaviour of the malware samples. This was achieved

by creating several scripts that would strip the virtual environment for commonly found artefacts

and add other artefacts that would help simulate a real system such as different types of system files

and commonly used applications.

The results of running malware samples in different virtual environments showed promise since

several malware samples did in fact show signs of behaviour change when comparing the result of

the two different environments. However, the results were not enough to conclude anything definite

75

76 Chapter 8. Conclusion

since the sample size used for testing was small at 21 different malware samples. In order to make a

definite conclusion, more malware samples would need to be tested as well as run the same malware

samples multiple times in order to avoid anomalies. The system developed for testing did however

work and shows promise in the sense that using the testing methodology in combination with the

system made can lead to a change in malware behaviour.

In conclusion, it can be said that a system which can be used for testing malware sample behaviour

was made and that it fulfilled the requirement of being able to showcase that removing or changing

different artefacts and triggers would impact malware behaviour which was quantified with different

”events”. The results produced by the system showed promise, but more testing would be needed in

terms of more malware samples in order to prove that the artefacts and triggers changed the malware

behaviour. The project therefore also contributes with the following:

• A test platform for testing malware was made.

• An overview of common artefacts for virtual environments were identified.

• A description and demonstration of hot to remove and modify artefacts within a VM image.

• A method, based on different parameters such as events, can be used to measure and quantify

a change in malware behaviour.

9 | Project Outlook and Future Work

When looking at the project and what was achieved through the finished system, several aspects

could have been done in a different way or improved.

The first area would be the analysis and selection of what artefacts and triggers to implement into

the system. Because of the number of different things to look for as seen during the analysis part

of the report, selecting something that would cover most malware samples was near impossible. In

order to make the selection easier, using a different testing methodology of using multiple different

VM images with different artefact implementations would improve that accuracy of what artefacts

impact malware behaviour the most.

Another area that was discussed during the project but turned out to be too much work was the

scalability of the project. The original idea was to create a system which could be scaled easily

which could have been done using Docker containers and perhaps an orchestrating tool such as

Kubernetes. This would allow for easily adding more services that could point to different VM’s

which could be attached via the network. Due to the sheer size of such a task, the decision was

made to focus on a smaller setup in order to test the idea of having different VM images for malware

behaviour testing. With more time to work on the scalability, a port of Cuckoo and VirtualBox that

could work and communicate within Docker containers could be a possibility, but due to the many

different components as well as the many different network configurations, making sure it all works to-

gether could turn out to be impossible if any component fails to be implemented in Docker containers.

For the testing of malware sample behaviour, things could also have been done differently in terms of

how the malware samples were tested in the different environments. For the tests, a single modified

VM image was used for testing. This meant that the configuration in terms of the artefacts that

were implemented were limited to a one configuration. In order to investigate how and what artefacts

would have the biggest impact on malware behaviour, several different configurations would have to

be made where each image used would have the same base, but would differ in what artefacts would

be implemented. This also ties into the results and how they were presented in the report. Due

to the nature of Cuckoo, each comparison would have to be manually made in order to determine

if the malware samples changed behaviour based on the criteria that were made that defined what

a change in malware behaviour is. In combination with using different image configurations, a tool

could have been made that would replace Cuckoos tool in order to compare different results.

As an extension of the testing, an area which was difficult to work with was the selection of malware

samples. Since the archive that was used didn’t have anything informative other than randomised

names on the malware samples, figuring out what sample was good to use and what sample was not

was impossible. A more thorough method of selecting malware samples which are known to have

sandbox evasion techniques would be a major improvement to the testing aspect of the project and

would also allow testing different VM image configurations where different artefacts are implemented.

77

List of Figures

1.1 How found malware has increased over time [28] . 1

1.2 How supervised machine learning is done [27] . 2

1.3 Image signatures generated by running a simple DL model to identify malware samples

[32]. 3

1.4 Degradation of machine learning models [27] . 3

1.5 Source code . 4

1.6 Decompiled assembly code . 4

3.1 Pafish showing a machine with detected vs. missing artefacts 20

3.2 Overview of the Cuckoo sandbox architecture [18] . 22

3.3 Scans made by different anti-virus/malware companies 25

3.4 File Structure from the VirusTotal archive . 26

3.5 Malware archive structure . 26

4.1 Diagram showing different system components . 36

4.2 Process of testing and analysing malware test results 39

5.1 Example architecture of a malware testing environment 42

5.2 Architecture of modified setup . 43

5.3 Architecture of second modified setup . 44

5.4 Diagram showing how VBoxManager works with Docker 45

5.5 Snippet of what is inside a docker-compose file . 46

5.6 Snippet of what is inside a dockerfile file . 47

5.7 Setting up docker and its output . 48

5.8 Architecture of third and final modified setup . 49

5.9 Simple Diagram showcasing the malware analysis process 50

5.10 Example Output from Cuckoo During a Malware Sample Analysis 51

5.11 Differences between Base and Modified Image . 52

6.16 Anti VM Detection Script excerpt . 62

6.17 Flow of how the Anti VM Detection script is generated and run. 63

6.18 Pafish output from both images used which show the differences between them. . . . 64

7.1 Malware sample 6 execution graph comparison . 70

7.2 Malware sample 6 signature comparison . 71

A.1 Overview of the differences between a virtual machine and docker containers (credit:

techtarget.com) . 87

79

List of Tables

2.1 The most common types of malware. 10

3.1 Two common evasion techniques and their counters 16

3.2 Table showcasing different artefacts that can be found within a sandbox system. . . . 17

3.3 Different artefacts left behind by a virtual machine. 18

3.4 Difference in artefacts between real, virtual and fresh machines [39] 19

5.1 Table showing what components was used for the malware analysis. 49

7.1 The results of testing the different malware samples on both VM images. 69

7.2 Malware sample 6 events comparison for each category for both images 71

81

Bibliography

[1] a0rtega. a0rtega/pafish: Pafish is a demonstration tool that employs several techniques to detect sandboxes and

analysis environments in the same way as malware families do. https://github.com/a0rtega/pafish, Nov

2019. (Accessed on 11/07/2019).

[2] Apriorit. How to reverse engineer software (windows) in a right way. https://www.apriorit.com/dev-blog/

364-how-to-reverse-engineer-software-windows-in-a-right-way, Mar 2019. (Accessed on 10/11/2019).

[3] AutoHotKey. Autohotkey. https://www.autohotkey.com/, Nov 2019. (Accessed on 11/11/2019).

[4] AutoIt. Home - autoit. https://www.autoitscript.com/site/, Nov 2019. (Accessed on 11/11/2019).

[5] AV-Test. 170807-securityreport2017 e final.indd. https://www.av-test.org/fileadmin/pdf/security_repor

t/AV-TEST_Security_Report_2016-2017.pdf, Oct 2019. (Accessed on 20/10/2019).

[6] AV-Test. Malware statistics & trends report | av-test. https://www.av-test.org/en/statistics/malware/,

Sep 2019. (Accessed on 18/09/2019).

[7] H. Bai, C. Hu, X. Jing, N. Li, and X. Wang. Approach for malware identification using dynamic behaviour and

outcome triggering. https://ieeexplore.ieee.org/document/6748548, March 2014.

[8] Blacktop. blacktop/docker-cuckoo: Cuckoo sandbox dockerfile. https://github.com/blacktop/docker-cucko

o, Dec 2019. (Accessed on 12/18/2019).

[9] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and Heng Yin. Automatically

identifying trigger-based behavior in malware. https://www.researchgate.net/publication/226302439_Au

tomatically_Identifying_Trigger-based_Behavior_in_Malware, 01 1970.

[10] Krzysztof Cabaj, Luca Caviglione, Wojciech Mazurczyk, Steffen Wendzel, Alan Woodward, and Sebastian Zander.

The new threats of information hiding: the road ahead. https://arxiv.org/abs/1801.00694, 2018. URL

http://arxiv.org/abs/1801.00694.

[11] S. Cesare, Y. Xiang, and W. Zhou. Malwise; an effective and efficient classification system for packed and

polymorphic malware. https://ieeexplore.ieee.org/document/6171162, June 2013.

[12] Checkpoint. Malware evolution: Pc-based vs. mobile - check point software. https://blog.checkpoint.com/

2013/01/02/malware-evolution-pc-based-vs-mobile-2/, Oct 2019. (Accessed on 21/10/2019).

[13] Catalin Cimpanu. Siemens contractor pleads guilty to planting logic bomb in company spreadsheets |
zdnet. https://www.zdnet.com/article/siemens-contractor-pleads-guilty-to-planting-logic-bomb-i

n-company-spreadsheets/, Jul 2019. (Accessed on 21/10/2019).

[14] Cisco. Threat spotlight: Dyre/dyreza: An analysis to discover the dga - cisco blog. https://blogs.cisco.com/

security/talos/threat-spotlight-dyre, Oct 2019. (Accessed on 21/10/2019).

[15] Cuckoo. Analysis results — cuckoo sandbox v2.0.6 book. https://cuckoo.readthedocs.io/en/latest/usag

e/results/, Nov 2019. (Accessed on 11/11/2019).

83

https://github.com/a0rtega/pafish
https://www.apriorit.com/dev-blog/364-how-to-reverse-engineer-software-windows-in-a-right-way
https://www.apriorit.com/dev-blog/364-how-to-reverse-engineer-software-windows-in-a-right-way
https://www.autohotkey.com/
https://www.autoitscript.com/site/
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf
https://www.av-test.org/en/statistics/malware/
https://ieeexplore.ieee.org/document/6748548
https://github.com/blacktop/docker-cuckoo
https://github.com/blacktop/docker-cuckoo
https://www.researchgate.net/publication/226302439_Automatically_Identifying_Trigger-based_Behavior_in_Malware
https://www.researchgate.net/publication/226302439_Automatically_Identifying_Trigger-based_Behavior_in_Malware
https://arxiv.org/abs/1801.00694
http://arxiv.org/abs/1801.00694
https://ieeexplore.ieee.org/document/6171162
https://blog.checkpoint.com/2013/01/02/malware-evolution-pc-based-vs-mobile-2/
https://blog.checkpoint.com/2013/01/02/malware-evolution-pc-based-vs-mobile-2/
https://www.zdnet.com/article/siemens-contractor-pleads-guilty-to-planting-logic-bomb-in-company-spreadsheets/
https://www.zdnet.com/article/siemens-contractor-pleads-guilty-to-planting-logic-bomb-in-company-spreadsheets/
https://blogs.cisco.com/security/talos/threat-spotlight-dyre
https://blogs.cisco.com/security/talos/threat-spotlight-dyre
https://cuckoo.readthedocs.io/en/latest/usage/results/
https://cuckoo.readthedocs.io/en/latest/usage/results/

84 Bibliography

[16] Cuckoo. Cuckoo sandbox book — cuckoo sandbox v2.0.6 book. https://cuckoo.readthedocs.io/en/latest/,

Dec 2019. (Accessed on 12/21/2019).

[17] Cuckoo. Requirements — cuckoo sandbox v2.0.6 book. https://cuckoo.readthedocs.io/en/latest/instal

lation/guest/requirements/#additional-software, Dec 2019. (Accessed on 29/12/2019).

[18] Cuckoo. What is cuckoo? — cuckoo sandbox v2.0.6 book. https://cuckoo.readthedocs.io/en/latest/intr

oduction/what/#architecture, Nov 2019. (Accessed on 11/11/2019).

[19] deepinstinct. Malware evasion techniques part 2: Anti-vm blog - deep instinct. https://www.deepinstinct.c

om/2019/10/29/malware-evasion-techniques-part-2-anti-vm-blog/, Oct 2019. (Accessed on 29/12/2019).

[20] Milena Dimitrova. Malware trends 2018: How is the threat landscape shaping? https://sensorstechforum.c

om/malware-trends-2018-threat-landscape/, Jan 2018. (Accessed on 21/10/2019).

[21] Docker. Enterprise container platform | docker. https://www.docker.com/, Dec 2019. (Accessed on 12/18/2019).

[22] J. Donahue, A. Paturi, and S. Mukkamala. Visualization techniques for efficient malware detection. https:

//ieeexplore.ieee.org/document/6578845, June 2013.

[23] D. Fleck, A. Tokhtabayev, A. Alarif, A. Stavrou, and T. Nykodym. Pytrigger: A system to trigger extract

user-activated malware behavior. https://ieeexplore.ieee.org/document/6657230, Sep. 2013.

[24] Flowm. Github - flowm/etherkey: Emulate a conventional usb keyboard with a scriptable, network capable

microcontroller. https://github.com/Flowm/etherkey, Dec 2019. (Accessed on 23/12/2019).

[25] ilyaglow. ilyaglow/remote-virtualbox: Little package to do simple things with virtualbox remotely using it’s soap

api. https://github.com/ilyaglow/remote-virtualbox, Dec 2019. (Accessed on 12/19/2019).

[26] Osanda Malith Jayathissa. Analyzing an autohotkey malware | blog of osanda. https://osandamalith.com

/2019/05/22/analyzing-an-autohotkey-malware/, May 2019. (Accessed on 11/11/2019).

[27] Kaspersky. Kaspersky-lab-whitepaper-machine-learning.pdf. https://media.kaspersky.com/en/enterprise-s

ecurity/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf, Sep 2019. (Accessed on 18/09/2019).

[28] Kaspersky. Machine learning in cybersecurity | kaspersky. https://www.kaspersky.com/enterprise-securit

y/wiki-section/products/machine-learning-in-cybersecurity, Sep 2019. (Accessed on 18/09/2019).

[29] Kaspersky. Sandbox | kaspersky. https://www.kaspersky.com/enterprise-security/wiki-section/produ

cts/sandbox, Oct 2019. (Accessed on 19/10/2019).

[30] Kaspersky. What makes the legal spying software — stalkerware — dangerous? | kaspersky official blog. https:

//www.kaspersky.com/blog/stalkerware-spouseware/26292/, Dec 2019. (Accessed on 29/12/2019).

[31] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: Bare-metal analysis-based evasive malware

detection. http://dl.acm.org/citation.cfm?id=2671225.2671244, 2014.

[32] RIA KULSHRESTHA. Malware detection using deep learning - towards data science. https://towardsdatas

cience.com/malware-detection-using-deep-learning-6c95dd235432, Jul 2019. (Accessed on 10/11/2019).

[33] LastLine. Carbanak malware — ninety five percent exhibits stealthy or evasive behaviors | last-

line. https://www.lastline.com/labsblog/carbanak-malware-ninety-five-percent-exhibits-stealth

y-or-evasive-behaviors/, Oct 2019. (Accessed on 21/10/2019).

[34] LoadRunner. Loadrunner: Application load testing software | micro focus. https://www.microfocus.com/en-u

s/products/loadrunner-load-testing/overview, Nov 2019. (Accessed on 11/11/2019).

[35] makeuseof. New pc? 15 must-have windows applications you should install first. https://www.makeuseo

f.com/tag/getting-a-new-pc-12-must-have-applications-to-install-first/, Jan 2019. (Accessed on

29/12/2019).

https://cuckoo.readthedocs.io/en/latest/
https://cuckoo.readthedocs.io/en/latest/installation/guest/requirements/#additional-software
https://cuckoo.readthedocs.io/en/latest/installation/guest/requirements/#additional-software
https://cuckoo.readthedocs.io/en/latest/introduction/what/#architecture
https://cuckoo.readthedocs.io/en/latest/introduction/what/#architecture
https://www.deepinstinct.com/2019/10/29/malware-evasion-techniques-part-2-anti-vm-blog/
https://www.deepinstinct.com/2019/10/29/malware-evasion-techniques-part-2-anti-vm-blog/
https://sensorstechforum.com/malware-trends-2018-threat-landscape/
https://sensorstechforum.com/malware-trends-2018-threat-landscape/
https://www.docker.com/
https://ieeexplore.ieee.org/document/6578845
https://ieeexplore.ieee.org/document/6578845
https://ieeexplore.ieee.org/document/6657230
https://github.com/Flowm/etherkey
https://github.com/ilyaglow/remote-virtualbox
https://osandamalith.com/2019/05/22/analyzing-an-autohotkey-malware/
https://osandamalith.com/2019/05/22/analyzing-an-autohotkey-malware/
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/sandbox
https://www.kaspersky.com/enterprise-security/wiki-section/products/sandbox
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/
http://dl.acm.org/citation.cfm?id=2671225.2671244
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://www.lastline.com/labsblog/carbanak-malware-ninety-five-percent-exhibits-stealthy-or-evasive-behaviors/
https://www.lastline.com/labsblog/carbanak-malware-ninety-five-percent-exhibits-stealthy-or-evasive-behaviors/
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.makeuseof.com/tag/getting-a-new-pc-12-must-have-applications-to-install-first/
https://www.makeuseof.com/tag/getting-a-new-pc-12-must-have-applications-to-install-first/

Bibliography 85

[36] Malwarebytes. Machinelearning/anomalous.100% - malwarebytes labs | malwarebytes labs | detections. ht

tps://blog.malwarebytes.com/detections/machinelearning-anomalous-100/, Nov 2019. (Accessed on

10/11/2019).

[37] McAfee. Stopping malware with a fake virtual machine | mcafee blogs. https://securingtomorrow.mcafee.com/

other-blogs/mcafee-labs/stopping-malware-fake-virtual-machine/, Jan 2017. (Accessed on 21/10/2019).

[38] Microsoft. Acpi system description tables - windows drivers | microsoft docs. https://docs.microsoft.c

om/en-us/windows-hardware/drivers/bringup/acpi-system-description-tables, Dec 2019. (Accessed on

23/12/2019).

[39] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis. Spotless sandboxes: Evading malware

analysis systems using wear-and-tear artifacts. https://ieeexplore.ieee.org/document/7958622, May 2017.

[40] nsmfoo. nsmfoo/antivmdetection: Script to create templates to use with virtualbox to make vm detection harder.

https://github.com/nsmfoo/antivmdetection, Jan 2020. (Accessed on 08/01/2020).

[41] Lindsey O’Donnell. 2019 malware trends to watch | threatpost. https://threatpost.com/2019-malware-tre

nds-to-watch/140344/, Jan 2019. (Accessed on 21/10/2019).

[42] Luana Pascu. Limitations of machine learning algorithms in malware detection. https://businessinsights.b

itdefender.com/limitations-of-machine-learning-algorithms-in-malware-detection, Nov 2019. (Ac-

cessed on 10/11/2019).

[43] Symantec Security Response. Remote linux wiper found in south korean cyberattack | symantec connect com-

munity. https://www.symantec.com/connect/blogs/remote-linux-wiper-found-south-korean-cyber-att

ack, Mar 2013. (Accessed on 21/10/2019).

[44] Symantec Security Response. South korean banks and broadcasting organizations suffer major damage from cyber-

attack | symantec connect community. https://www.symantec.com/connect/blogs/south-korean-banks-and

-broadcasting-organizations-suffer-major-damage-cyber-attack, Mar 2013. (Accessed on 21/10/2019).

[45] UKIT AI ROMAN STEINBERG. 6 areas where artificial neural networks outperform humans | venture-

beat. https://venturebeat.com/2017/12/08/6-areas-where-artificial-neural-networks-outperform-h

umans/, Dec 2017. (Accessed on 03/01/2020).

[46] Andrew Sanders. Malware statistics, trends and facts in 2019. https://www.safetydetectives.com/blog/ma

lware-statistics/, Jul 2019. (Accessed on 21/10/2019).

[47] scmagazine. Gravityrat malware detects virtualized environments by taking infected machines’ temperature | sc

media. https://www.scmagazine.com/home/security-news/malware/gravityrat-malware-detects-virtu

alized-environments-by-taking-infected-machines-temperature/, May 2018. (Accessed on 29/12/2019).

[48] P. Su, L. Ying, and D. Feng. Exploring malware behaviors based on environment constitution. https://ieeexp

lore.ieee.org/document/4724666, Dec 2008.

[49] Symantec. Does malware still detect virtual machines? | symantec connect community. https://www.symantec

.com/connect/blogs/does-malware-still-detect-virtual-machines, Aug 2014. (Accessed on 29/12/2019).

[50] Tripwire. The four most common evasive techniques used by malware. https://www.tripwire.com/state-o

f-security/security-data-protection/the-four-most-common-evasive-techniques-used-by-malware/,

Oct 2019. (Accessed on 21/10/2019).

[51] VirusTotal. Virustotal. https://www.virustotal.com/, Dec 2019. (Accessed on 12/18/2019).

[52] A. Walker, M. F. Amjad, and S. Sengupta. Cuckoo’s malware threat scoring and classification: Friend or foe?

https://ieeexplore.ieee.org/document/8666454, Jan 2019.

[53] Wikipedia. Adware - wikipedia. https://en.wikipedia.org/wiki/Adware, Oct 2019. (Accessed on 21/10/2019).

https://blog.malwarebytes.com/detections/machinelearning-anomalous-100/
https://blog.malwarebytes.com/detections/machinelearning-anomalous-100/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/stopping-malware-fake-virtual-machine/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/stopping-malware-fake-virtual-machine/
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/acpi-system-description-tables
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/acpi-system-description-tables
https://ieeexplore.ieee.org/document/7958622
https://github.com/nsmfoo/antivmdetection
https://threatpost.com/2019-malware-trends-to-watch/140344/
https://threatpost.com/2019-malware-trends-to-watch/140344/
https://businessinsights.bitdefender.com/limitations-of-machine-learning-algorithms-in-malware-detection
https://businessinsights.bitdefender.com/limitations-of-machine-learning-algorithms-in-malware-detection
https://www.symantec.com/connect/blogs/remote-linux-wiper-found-south-korean-cyber-attack
https://www.symantec.com/connect/blogs/remote-linux-wiper-found-south-korean-cyber-attack
https://www.symantec.com/connect/blogs/south-korean-banks-and-broadcasting-organizations-suffer-major-damage-cyber-attack
https://www.symantec.com/connect/blogs/south-korean-banks-and-broadcasting-organizations-suffer-major-damage-cyber-attack
https://venturebeat.com/2017/12/08/6-areas-where-artificial-neural-networks-outperform-humans/
https://venturebeat.com/2017/12/08/6-areas-where-artificial-neural-networks-outperform-humans/
https://www.safetydetectives.com/blog/malware-statistics/
https://www.safetydetectives.com/blog/malware-statistics/
https://www.scmagazine.com/home/security-news/malware/gravityrat-malware-detects-virtualized-environments-by-taking-infected-machines-temperature/
https://www.scmagazine.com/home/security-news/malware/gravityrat-malware-detects-virtualized-environments-by-taking-infected-machines-temperature/
https://ieeexplore.ieee.org/document/4724666
https://ieeexplore.ieee.org/document/4724666
https://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
https://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
https://www.tripwire.com/state-of-security/security-data-protection/the-four-most-common-evasive-techniques-used-by-malware/
https://www.tripwire.com/state-of-security/security-data-protection/the-four-most-common-evasive-techniques-used-by-malware/
https://www.virustotal.com/
https://ieeexplore.ieee.org/document/8666454
https://en.wikipedia.org/wiki/Adware

86 Bibliography

[54] Wikipedia. Computer worm - wikipedia. https://en.wikipedia.org/wiki/Computer_worm, Oct 2019. (Ac-

cessed on 21/10/2019).

[55] Wikipedia. Computer virus - wikipedia. https://en.wikipedia.org/wiki/Computer_virus, Oct 2019. (Ac-

cessed on 21/10/2019).

[56] Wikipedia. Fileless malware - wikipedia. https://en.wikipedia.org/wiki/Fileless_malware, Oct 2019. (Ac-

cessed on 21/10/2019).

[57] Wikipedia. Malware - wikipedia. https://en.wikipedia.org/wiki/Malware#Evasion, Oct 2019. (Accessed on

21/10/2019).

[58] Wikipedia. Ransomware - wikipedia. https://en.wikipedia.org/wiki/Ransomware, Oct 2019. (Accessed on

21/10/2019).

[59] Wikipedia. Spyware - wikipedia. https://en.wikipedia.org/wiki/Spyware, Oct 2019. (Accessed on

21/10/2019).

[60] Wikipedia. Steganography - wikipedia. https://en.wikipedia.org/wiki/Steganography, Oct 2019. (Accessed

on 21/10/2019).

[61] Wikipedia. Stegomalware - wikipedia. https://en.wikipedia.org/wiki/Stegomalware, Oct 2019. (Accessed

on 21/10/2019).

[62] Wikipedia. Trojan horse (computing) - wikipedia. https://en.wikipedia.org/wiki/Trojan_horse_(comput

ing), Oct 2019. (Accessed on 21/10/2019).

[63] W. Yan, Z. Zhang, and N. Ansari. Revealing packed malware. https://ieeexplore.ieee.org/document

/4639028, Sep. 2008.

[64] Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro

Kasama, Daisuke Inoue, Michael Brengel, Michael Backes, and Christian Rossow. Sandprint: Fingerprinting

malware sandboxes to provide intelligence for sandbox evasion. https://link.springer.com/chapter/10.1007/

978-3-319-45719-2_8, 2016.

[65] A. Young and Moti Yung. Deniable password snatching: on the possibility of evasive electronic espionage.

https://ieeexplore.ieee.org/abstract/document/601339, May 1997.

[66] ytisf. Github - ytisf/thezoo: A repository of live malwares for your own joy and pleasure. thezoo is a project created

to make the possibility of malware analysis open and available to the public. https://github.com/ytisf/theZoo,

Nov 2019. (Accessed on 11/11/2019).

[67] L. Ďurfina, J. Křoustek, and P. Zemek. Psybot malware: A step-by-step decompilation case study. https:

//ieeexplore.ieee.org/document/6671321, Oct 2013.

https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/Computer_virus
https://en.wikipedia.org/wiki/Fileless_malware
https://en.wikipedia.org/wiki/Malware#Evasion
https://en.wikipedia.org/wiki/Ransomware
https://en.wikipedia.org/wiki/Spyware
https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Stegomalware
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://ieeexplore.ieee.org/document/4639028
https://ieeexplore.ieee.org/document/4639028
https://link.springer.com/chapter/10.1007/978-3-319-45719-2_8
https://link.springer.com/chapter/10.1007/978-3-319-45719-2_8
https://ieeexplore.ieee.org/abstract/document/601339
https://github.com/ytisf/theZoo
https://ieeexplore.ieee.org/document/6671321
https://ieeexplore.ieee.org/document/6671321

A | Docker and Virtual Machines

The difference between Docker containers and Virtual Machines comes in the difference between the

architecture that they use. For both, the common component is that they are running some sort of

application that has access to resources by the host system. The basic difference between them is

that a Docker container relies on virtual isolation and doesn’t rely on an actual virtual machine to

execute applications, whereas a virtual machine emulates a real operating system and hardware. A

virtual machine reserves resources from the host system and emulates hardware and operating system

in isolation. A Docker container does away with that by having direct access to the host machines

resources. Comparing the two can be seen on fig. A.1.

Figure A.1: Overview of the differences between a virtual machine and docker containers (credit: techtarget.com)

As seen on the figure, containers use some type of middleware which in this case is the Docker

engine. The engine is used to run and maintain the different containers that are selected to run. The

containers are taken and run inside their own virtual environment but still have access to the host

machines resources.

For virtual machines, a middleware is also present in the form of a hypervisor. The hypervisor

manages different virtual machines where each includes its own virtual environment complete with

a full operating system which acts as a normal system. In comparison a container needs to be built

before it is run which is achieved by building the container in different layers. This means that in

order to add anything to the container such as more applications, the container needs to be rebuilt.

Here the virtual machine has the advantage of not needing to be rebuilt since applications can be

installed as if was a normal system.

87

B | Anti VM Detection Log

Output of running the anti VM script. Big chunks were removed to avoid unnecessary text.

1 Windows PowerShell

2 Copyright (C) 2009 Microsoft Corporation. All rights reserved.

3

4 Directory: C:\Users\Nikolaj\Desktop\avmd

5 PS C:\Users\Nikolaj\Desktop\avmd> Set-ExecutionPolicy -ExecutionPolicy Unrestricted

6 PS C:\Users\Nikolaj\Desktop\avmd> .\OptiPlex7010.ps1

7

8 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System

9 PSDrive : HKLM

10 PSProvider : Microsoft.PowerShell.Core\Registry

11 SystemBiosVersion : DELL - v02

12

13 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System

14 PSDrive : HKLM

15 PSProvider : Microsoft.PowerShell.Core\Registry

16 VideoBiosVersion : v02

17

18 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System

19 PSDrive : HKLM

20 PSProvider : Microsoft.PowerShell.Core\Registry

21 SystemBiosDate : 09/19/12

22

23 PSPath: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\SOFTWARE\Microsoft\WindowsNT\CurrentVersion

24 PSDrive : HKCU

25 PSProvider : Microsoft.PowerShell.Core\Registry

26 InstallDate : 1533512470

27

28 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\SOFTWARE\Microsoft\Internet Explorer\SQM

29 PSDrive : HKCU

30 PSProvider : Microsoft.PowerShell.Core\Registry

31 InstallDate : 1533512470

32

33 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography

34 PSDrive : HKLM

35 PSProvider : Microsoft.PowerShell.Core\Registry

36 MachineGuid : 5c17761a-43f8-485f-aa68-5f87d13fa7c5

37

38 CodeBase : file:///C:/Windows/assembly/GAC_64/System.Web/2.0.0.0__b03f5f7f11d50a3a/System.Web.dll

39 EscapedCodeBase : file:///C:/Windows/assembly/GAC_64/System.Web/2.0.0.0__b03f5f7f11d50a3a/System.Web.dll

40 FullName : System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

41 Evidence : {...}

42 ManifestModule : System.Web.dll

43 ReflectionOnly : False

44 Location : C:\Windows\assembly\GAC_64\System.Web\2.0.0.0__b03f5f7f11d50a3a\System.Web.dll

45 ImageRuntimeVersion : v2.0.50727

46 GlobalAssemblyCache : True

47 HostContext : 0

48

49 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion↪→
50 PSDrive : HKLM

51 PSProvider : Microsoft.PowerShell.Core\Registry

52 ProductId : 02948-646-8799910-37269

53

89

90 Appendix B. Anti VM Detection Log

54 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet

Explorer\Registration↪→
55 PSDrive : HKLM

56 PSProvider : Microsoft.PowerShell.Core\Registry

57 ProductId : 02948-646-8799910-37269

58

59 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\DefaultProductKey↪→
60 PSDrive : HKLM

61 PSProvider : Microsoft.PowerShell.Core\Registry

62 ProductId : 02948-646-8799910-37269

63

64 Microsoft (R) Windows Script Host Version 5.8

65 Copyright (C) Microsoft Corporation. All rights reserved.

66

67 Product key from registry cleared successfully.

68

69 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\Sysinternals

70 PSDrive : HKCU

71 PSProvider : Microsoft.PowerShell.Core\Registry

72 PSIsContainer : True

73 Name : HKEY_CURRENT_USER\Software\Sysinternals

74

75 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\Sysinternals\VolumeId

76 PSDrive : HKCU

77 PSProvider : Microsoft.PowerShell.Core\Registry

78 PSIsContainer : True

79 Name : HKEY_CURRENT_USER\Software\Sysinternals\VolumeId

80

81 PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\Sysinternals\VolumeId

82 PSDrive : HKCU

83 PSProvider : Microsoft.PowerShell.Core\Registry

84 EulaAccepted : 1

85

86

87 VolumeId v2.1 - Set disk volume id

88 Copyright (C) 1997-2016 Mark Russinovich

89 Sysinternals - www.sysinternals.com

90

91 Volume ID for drive c: updated to 7443-96c9

92 __GENUS : 2

93 __CLASS : __PARAMETERS

94 __DYNASTY : __PARAMETERS

95 __PROPERTY_COUNT : 1

96 __DERIVATION : {}

97 ReturnValue : 0

98

99 LastWriteTime : 16-12-2019 16:25:44

100 Length : 0

101 Name : kummerspeck

102

103 CodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.Forms/

104 2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

105 EscapedCodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.Forms/

106 2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

107 FullName : System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

108 Evidence : {...}

109 ManifestModule : System.Windows.Forms.dll

110 ReflectionOnly : False

111 Location : C:\Windows\assembly\GAC_MSIL\System.Windows.Forms\

112 2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll

113 ImageRuntimeVersion : v2.0.50727

114 GlobalAssemblyCache : True

115 HostContext : 0

116

117 OK

118 LastWriteTime : 16-12-2019 16:25:52

119 Name : nikolaj-OptiPlex-7010.doc/ppt/jpeg/doc/jpg/xlsx/zip/html/docx/xls/pptx/bmp/gif

120

91

121 .divx=WMP11.AssocFile.WAV

122 .mkv=WMP11.AssocFile.WAV

123 .m4p=WMP11.AssocFile.WAV

124 .skype=WMP11.AssocFile.WAV

125 .flac=WMP11.AssocFile.WAV

126 .psd=WMP11.AssocFile.WAV

127 .torrent=WMP11.AssocFile.WAV

C | Scripts Used for the System

This appendix includes all the different scripts that were used for the system.

Installprereq.sh

1 #!/bin/bash

2 echo "Installing Updates and dependencies..."

3 sudo apt-get update && sudo apt-get upgrade -y && sudo apt-get autoremove -y

4 sudo apt-get install python python-pip python-dev libffi-dev libreadline-gplv2-dev libncursesw5-dev libssl-dev

libsqlite3-dev -y↪→
5 sudo apt-get install python-virtualenv python-setuptools -y

6 sudo apt-get install libjpeg-dev zlib1g-dev -y

7 sudo apt-get install libxml2-dev libxslt1-dev libevent-dev libpcre3 libpcre3-dev libtool libpcre++-dev g++ -y

8 sudo apt-get install git automake dkms unzip wget python-sqlalchemy python-bson python-dpkt python-jinja2 -y

9 sudo apt-get install python-magic python-mysqldb python-gridfs python-bottle python-pefile python-chardet -y

10

11 echo "Python 3"

12 cd /usr/src

13 sudo wget https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz

14 sudo tar -xvf Python-3-8.0.tgz

15 cd Python-3-8.0

16 ./configure

17 sudo make && make install

18

19 echo "Pip"

20 pip install --upgrade pip

21 sudo -H pip install pillow -y

22

23 echo "MongoDB"

24 sudo apt-get install mongodb -y

25

26 echo "Postgresql"

27 sudo apt-get install postgresql libpq-dev -y

28 sudo pip install psycopg2

29

30 echo "Tcpdump"

31 sudo apt-get install tcpdump apparmor-utils -y

32 sudo aa-disable /usr/sbin/tcpdump

33 sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

34 getcap /usr/sbin/tcpdump

35

36 sudo -H pip install lxml cybox==2.0.1.4 maec==4.0.1.0 "Django<2"

Installpostreq.sh

1 #!/bin/bash

2 echo " - Installing -"

3 echo "Adding cuckoo user"

4 sudo adduser --disabled-login -gecos "" cuckoo

5 sudo usermod -G cuckoo cuckoo

6

7 echo "ssdeep"

8 sudo apt-get install ssdeep python-pyrex subversion libfuzzy-dev -y

9

10 echo "M2Crypto"

11 sudo apt-get install swig -y

93

94 Appendix C. Scripts Used for the System

12 sudo -H pip install m2crypto==0.31.0

13

14 echo "Volatility"

15 git clone https://github.com/volatilityfoundation/volatility.git

16 cd volatility

17 sudo python setup.py install

18 cd ..

19

20 echo "Distrom"

21 wget -O distormv3.4.1.tar.gz https://github.com/gdabah/distorm/archive/v3.4.1.tar.gz

22 tar -zxvf distormv3.4.1.tar.gz

23 cd distorm-3.4.1

24 sudo python setup.py install

25 sudo apt-get install libjansson-dev libmagic-dev

26 sudo apt-get install libtool-bin

27 cd ..

28

29 echo "PyCrypto"

30 sudo -H pip install pycrypto ansible --upgrade IPython==5.0 jupyter openpyxl ujson

31

32 echo "Yara"

33 wget -O yarav3.11.0.tar.gz https://github.com/VirusTotal/yara/archive/v3.11.0.tar.gz

34 tar -zxvf yarav3.11.0.tar.gz

35 cd yara-3.11.0

36 sudo ./bootstrap.sh

37 sudo ./configure --with-crypto --enable-magic -enable-cuckoo

38 sudo make

39 sudo make install

40 sudo -H pip install yara-python

41

42 echo "FTP Server"

43 sudo mkdir -p /home/tarik/vmshared/pub

44 sudo chown -R cuckoo:cuckoo /home/tarik/vmshared

45 sudo chmod -R ug=rwX,o=rX /home/tarik/vmshared/

46 sudo chmod -R ugo=rwX /home/tarik/vmshared/pub

47 sudo apt-get install vsftpd

48

49 echo "Adding stuff to /etc/vsftpd.conf"

50 sudo sed -i 's/#write_enable=YES/write_enable=YES/g' /etc/vsftpd.conf

51 sudo sed -i 's/#anon_upload_enable=YES/anon_upload_enable=YES/g' /etc/vsftpd.conf

52 sudo sed -i 's/#anon_mkdir_write_enable=YES/anon_mkdir_write_enable=YES/g' /etc/vsftpd.conf

53 sudo bash -c 'echo "listen_address=192.168.100.1" >> /etc/vsftpd.conf'
54 sudo bash -c 'echo "listen_port=2121" >> /etc/vsftpd.conf'
55 sudo bash -c 'echo "anon_root=/home/tarik/vmshared" >> /etc/vsftpd.conf'
56 sudo bash -c 'echo "anon_umask=000" >> /etc/vsftpd.conf'
57 sudo bash -c 'echo "chown_upload_mode=0666" >> /etc/vsftpd.conf'
58 sudo bash -c 'echo "pasv_enable=Yes" >> /etc/vsftpd.conf'
59 sudo bash -c 'echo "pasv_min_port=10090" >> /etc/vsftpd.conf'
60 sudo bash -c 'echo "pasv_max_port=10100" >> /etc/vsftpd.conf'
61

62 sudo service vsftpd restart

63 sudo service vsftpd status

64 sudo ufw allow 20/tcp

65 sudo ufw allow 21/tcp

66 sudo ufw allow 990/tcp

67 sudo ufw allow 10090:10100/tcp

68 sudo ufw enable

69 sudo ufw disable

70

71 echo "Cuckoo"

72 cat <<EO {

73 Do the following:

74 virtualenv venv

75 sudo apt-get remove python-dpkt

76 sudo su

77 . venv/bin/activate

78 sudo pip install -U pip setuptools

79 sudo pip install -U cuckoo

80 cuckoo -d

95

81 cp /root/.cuckoo/agent/agent.py /home/tarik/vmshared/agent.pyw

82 cd /root/.cuckoo

83 service mongodb start

84 EO

85 }

Installvirtualbox.sh
1 #!/bin/bash

2 echo "Installing VirtualBox"

3 codename=(lsb_release --codename | cut -f2)

4

5 echo deb [arch=amd64] https://download.virtualbox.org/virtualbox/debian bionic contrib | sudo tee -a

/etc/apt/sources.list.d/virtualbox.list↪→
6 wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- | sudo apt-key add -

7 wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- | sudo apt-key add -

8 sudo apt-get update

9 sudo apt-get install virtualbox-6.1

Installantivmdetection.sh
1 #!/bin/bash

2 echo " - Installing -"

3 sudo apt-get install python3-pip libcdio-utils acpica-tools mesa-utils

4 sudo pip3 install -r requirements.txt

5 wget https://download.sysinternals.com/files/VolumeId.zip https://www.nirsoft.net/utils/devmanview-x64.zip

6 hostname > computer.lst

7 whoami > user.lst

8 sudo python3 antivmdetect.py

9 echo "Installation complete"

InstallNetworkConfiguration.sh

1 #!/bin/bash

2 echo "- Installing -"

3

4 sudo apt install net-tools

5 sudo vboxmanage hostonlyif create

6 sudo vboxmanage hostonlyif ipconfig vboxnet0 --ip 192.168.56.1

7 sudo vboxmanage modifyvm sandbox-win7-01 --hostonlyadapter1 vboxnet0

8 sudo vboxmanage modifyvm sandbox-win7-01 --nic1 hostonly

9

10 sudo iptables -t nat -A POSTROUTING -o eth0 -s 192.168.56.0/24 -j MASQUERADE

11 sudo iptables -P FORWARD DROP

12 sudo iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT

13 sudo iptables -A FORWARD -s 192.168.56.0/24 -j DROP

14 sudo iptables -A FORWARD -s 192.168.56.0/24 -d 192.168.56.0/24 -j ACCEPT

15

16 echo 1 | sudo tee -a /proc/sys/net/ipv4/ip_forward

17 sudo sysctl -w net.ipv4.ip_forward=1

18

19 sudo apt-get install iptables-persistent

D | Malware Samples

This appendix includes information about the 21 different malware samples used during testing for

malware behaviour.

Sample 1 - Trojan-Generic

• Authentihash: 3e765c2cfafdfd2610c0ac7f8a8def05d04d4d5cb4190b064f6df621f2b57bc4
• MD5: bf9b26669990c1a4d2f71154569e55cc
• Permalink: https://www.virustotal.com/file/00a0a5620b21090429b530dd66c6745eaaeb

0f7c1be14150127e7801729ffb9a/analysis/1557449218/
• Scan id: 00a0a5620b21090429b530dd66c6745eaaeb0f7c1be14150127e7801729ffb9a-1557449218

Sample 2 - Trojan-Adware-Ransom

• Authentihash: 076e93f566b063fed0d08006e3ac52bb72ce34f7e034b9bfd332af33b8f40bf1
• MD5: faf96aa3f8c97e18c0be2caac88762ee
• Permalink: https://www.virustotal.com/file/000a2c5a191712db64311536e6df70ed14f

75a47fae37d2592817d66ba682660/analysis/1557449638/
• Scan id: 000a2c5a191712db64311536e6df70ed14f75a47fae37d2592817d66ba682660-1557449638

Sample 3 - Virut-Botnet

• Authentihash: a4c8fdd7f1d8cfad6ba583e906980ca04476813881a7abe5a3d2fb6dcc77e970
• MD5: b76622fceabd9dcce69e19fb088843da
• Permalink: https://www.virustotal.com/file/00a3c4d66f0fe3b0f228ed07e48452254f

c3246f378d8794f42d98be6a394b5e/analysis/1557448255/
• Scan id: 00a3c4d66f0fe3b0f228ed07e48452254fc3246f378d8794f42d98be6a394b5e-1557448255

Sample 4 - TrojanWorm-Prepender-Shodi

• Authentihash: 4301221c3acddefd310257421bb396543dc67c471f2f522aa17bfacde1e372b1
• MD5: c810f46d6ed235718dc51d16e80c5501
• Permalink: https://www.virustotal.com/file/00a5d286a0cb8c41b93a52ce80a8e7d28b

70724c6919080858f877406eb30cf7/analysis/1557462074/
• Scan id: 00a5d286a0cb8c41b93a52ce80a8e7d28b70724c6919080858f877406eb30cf7-1557462074

Sample 5 - Trojan-Dloader

• Authentihash: ac22ea2a47418dec73861cbcc5ee8a765625ecdc129ec8440dbfc4fd301fc382
• MD5: 46b0950b386b3daef7ca327c84daba5b
• Permalink: https://www.virustotal.com/file/00a884d53f3cd9df407e5dc24da0f50740b

80f8b543bee856251fcaea4aa7ea8/analysis/1557446876/
• Scan id: 00a884d53f3cd9df407e5dc24da0f50740b80f8b543bee856251fcaea4aa7ea8-1557446876

97

https://www.virustotal.com/file/00a0a5620b21090429b530dd66c6745eaaeb0f7c1be14150127e7801729ffb9a/analysis/1557449218/
https://www.virustotal.com/file/00a0a5620b21090429b530dd66c6745eaaeb0f7c1be14150127e7801729ffb9a/analysis/1557449218/
https://www.virustotal.com/file/000a2c5a191712db64311536e6df70ed14f75a47fae37d2592817d66ba682660/analysis/1557449638/
https://www.virustotal.com/file/000a2c5a191712db64311536e6df70ed14f75a47fae37d2592817d66ba682660/analysis/1557449638/
https://www.virustotal.com/file/00a3c4d66f0fe3b0f228ed07e48452254fc3246f378d8794f42d98be6a394b5e/analysis/1557448255/
https://www.virustotal.com/file/00a3c4d66f0fe3b0f228ed07e48452254fc3246f378d8794f42d98be6a394b5e/analysis/1557448255/
https://www.virustotal.com/file/00a5d286a0cb8c41b93a52ce80a8e7d28b70724c6919080858f877406eb30cf7/analysis/1557462074/
https://www.virustotal.com/file/00a5d286a0cb8c41b93a52ce80a8e7d28b70724c6919080858f877406eb30cf7/analysis/1557462074/
https://www.virustotal.com/file/00a884d53f3cd9df407e5dc24da0f50740b80f8b543bee856251fcaea4aa7ea8/analysis/1557446876/
https://www.virustotal.com/file/00a884d53f3cd9df407e5dc24da0f50740b80f8b543bee856251fcaea4aa7ea8/analysis/1557446876/

98 Appendix D. Malware Samples

Sample 6 - Trojan-GameModding

• Authentihash: 215ae1ad0df93eb90185ebd813a8d7f1ecfd4a6740c9af73b811b81995692271
• MD5: 4030413c47414961322c2b5d46be9b87
• Permalink: https://www.virustotal.com/file/00aa31683f9292a003aed7f91b4f4113113f

5cf5c30075a14305269bfafff921/analysis/1557440725/

• Scan id: 00aa31683f9292a003aed7f91b4f4113113f5cf5c30075a14305269bfafff921-1557440725

Sample 7 - Dropped-Backdoor-Prorat

• Authentihash: 5550f0a282316279eaeabeb778d05d104263d8e1b8a058f99caa5ca9539bc197
• MD5: 59402be7d5db53e5bb73ef1b1b0ba3fd
• Permalink: https://www.virustotal.com/file/00ac5624960a04fb946491f3e35c84e2d

614644cd164c07b19f0651754ecc200/analysis/1557451874/

• Scan id: 00ac5624960a04fb946491f3e35c84e2d614644cd164c07b19f0651754ecc200-1557451874

Sample 8 - Worm-Generic-Porn

• Authentihash: fec004c3fdf080001cc8e318d2d0a0c13e21a3027abfc51837f096730bc2a234
• MD5: b922d0cc57568122580b543839e42c8a
• Permalink: https://www.virustotal.com/file/00acad78bb0da3e66f751f792282a22eae

89d7fb2760d61aee33f99eaa64f718/analysis/1557454492/

• Scan id: 00acad78bb0da3e66f751f792282a22eae89d7fb2760d61aee33f99eaa64f718-1557454492

Sample 9 - Virut

• Authentihash: 6db2b419e1d13d17e35dd49318ec35e64d033f7ab7855b587f8d53d17c272610
• MD5: b78d8dd916fa3cd9e87ece5654511d88
• Permalink: https://www.virustotal.com/file/00ae87107a422d7e24e4f83870d98939a41d

02a22e04d71c3dcc6b9ff183c5fb/analysis/1557463448/

• Scan id: 00ae87107a422d7e24e4f83870d98939a41d02a22e04d71c3dcc6b9ff183c5fb-1557463448

Sample 10 - FileRepMalware-Worm

• Authentihash: 6c25efdb89b3c83316cc2d87dfaf23d4466d0ff135230469d413ea7c8ec82bec
• MD5: ba733e37ef6aee948c09db7018468010
• Permalink: https://www.virustotal.com/file/00aece6855c7787c9b4c97814ca9c8a3c

97644df74cf27266360c25df63b8367/analysis/1557460415/

• Scan id: 00aece6855c7787c9b4c97814ca9c8a3c97644df74cf27266360c25df63b8367-1557460415

Sample 11 - Trojan-Generic

• Authentihash: 9299c9523a3940d8a154ba4541f3304614978e428039366d477e80505c31d610
• MD5: a334851b61130c2e8540b5c2518d2ad1
• Permalink: https://www.virustotal.com/file/00b7c13e7370062209067a59a183741b317d

d5a6cea0ac218eb4424dca3d6e0e/analysis/1557447611/

• Scan id: 00b7c13e7370062209067a59a183741b317dd5a6cea0ac218eb4424dca3d6e0e-1557447611

https://www.virustotal.com/file/00aa31683f9292a003aed7f91b4f4113113f5cf5c30075a14305269bfafff921/analysis/1557440725/
https://www.virustotal.com/file/00aa31683f9292a003aed7f91b4f4113113f5cf5c30075a14305269bfafff921/analysis/1557440725/
https://www.virustotal.com/file/00ac5624960a04fb946491f3e35c84e2d614644cd164c07b19f0651754ecc200/analysis/1557451874/
https://www.virustotal.com/file/00ac5624960a04fb946491f3e35c84e2d614644cd164c07b19f0651754ecc200/analysis/1557451874/
https://www.virustotal.com/file/00acad78bb0da3e66f751f792282a22eae89d7fb2760d61aee33f99eaa64f718/analysis/1557454492/
https://www.virustotal.com/file/00acad78bb0da3e66f751f792282a22eae89d7fb2760d61aee33f99eaa64f718/analysis/1557454492/
https://www.virustotal.com/file/00ae87107a422d7e24e4f83870d98939a41d02a22e04d71c3dcc6b9ff183c5fb/analysis/1557463448/
https://www.virustotal.com/file/00ae87107a422d7e24e4f83870d98939a41d02a22e04d71c3dcc6b9ff183c5fb/analysis/1557463448/
https://www.virustotal.com/file/00aece6855c7787c9b4c97814ca9c8a3c97644df74cf27266360c25df63b8367/analysis/1557460415/
https://www.virustotal.com/file/00aece6855c7787c9b4c97814ca9c8a3c97644df74cf27266360c25df63b8367/analysis/1557460415/
https://www.virustotal.com/file/00b7c13e7370062209067a59a183741b317dd5a6cea0ac218eb4424dca3d6e0e/analysis/1557447611/
https://www.virustotal.com/file/00b7c13e7370062209067a59a183741b317dd5a6cea0ac218eb4424dca3d6e0e/analysis/1557447611/

99

Sample 12 - Trojan-Backddoor-Wabot

• Authentihash: 882bc4959fc34d00bd02c18d7fc2f5fbdc7550e89c1901c6ac02344585059ba2
• MD5: 61ed9a49a46ce07838aede8a7818e339
• Permalink: https://www.virustotal.com/file/00b9b118233ddb6f2e76af3696cd220087f

2ac14aee0a15ea2564e2a85b249fb/analysis/1557449658/

• Scan id: 00b9b118233ddb6f2e76af3696cd220087f2ac14aee0a15ea2564e2a85b249fb-1557449658

Sample 13 - Trojan-Ransom-Gandcrab

• Authentihash: bef736adbaf77090f3d8af86d921269f7d4d4107b268501ee44b451cef925143
• MD5: f69166e74d77309c5681fa8453e26f05
• Permalink: https://www.virustotal.com/file/00b78c0e37d92d64886a063373431dca

d6787721b888de759ae9f22d50a3ac40/analysis/1557465616/

• Scan id: 00b78c0e37d92d64886a063373431dcad6787721b888de759ae9f22d50a3ac40-1557465616

Sample 14 - Trojan-MSIL-Bladabindi

• Authentihash: 03fa076c73dd0718b133491a42b20eb59f9fdc56215d7a479628f82db380d525
• MD5: ca9dfe5d4f6e8d532e88d0746f544571
• Permalink: https://www.virustotal.com/file/00b95e3bee4f6a72b2b28fc8fc76a41e55a

66df850d00aac4e3ca9e60b270bd8/analysis/1557452979/

• Scan id: 00b95e3bee4f6a72b2b28fc8fc76a41e55a66df850d00aac4e3ca9e60b270bd8-1557452979

Sample 15 - Trojan-Generic

• Authentihash: 142518c63cd3a29e5e41ec6799de4d2ed349877eb14af16f70cfa6a8afed7bf5
• MD5: baaecd7bd97845476107b35c45dbf4a4
• Permalink: https://www.virustotal.com/file/00b3182e5da1141e8000292e974cac32ade

84a40d556682df32b3448782961ca/analysis/1557468610/

• Scan id: 00b3182e5da1141e8000292e974cac32ade84a40d556682df32b3448782961ca-1557468610

Sample 16 - Trojan-Shipup

• Authentihash: d51374b9f54ff9c831335c3c2445717ea97f7176cc7698603e2685ffcf7eaaaf
• MD5: a8f3031d3657fe9b46f638ba5457a9d6
• Permalink: https://www.virustotal.com/file/00bab30b5ac84c4fa50227c94d888095b

8418d875cb934804b31c0f0acb77761/analysis/1557466602/

• Scan id: 00bab30b5ac84c4fa50227c94d888095b8418d875cb934804b31c0f0acb77761-1557466602

Sample 17 - Virus-Virut-Generic

• Authentihash: 7a81ad7dc9f33ff2e7646085646d13c2209cb03aa41fd0a659425b290eee8ae0
• MD5: c52c0016b883b087ef514a428d130fc8
• Permalink: https://www.virustotal.com/file/00bb5b1220f08c994b0dbe26d4815bc8cca

749dd9b28794a060f64a77de024fd/analysis/1557448288/

• Scan id: 00bb5b1220f08c994b0dbe26d4815bc8cca749dd9b28794a060f64a77de024fd-1557448288

https://www.virustotal.com/file/00b9b118233ddb6f2e76af3696cd220087f2ac14aee0a15ea2564e2a85b249fb/analysis/1557449658/
https://www.virustotal.com/file/00b9b118233ddb6f2e76af3696cd220087f2ac14aee0a15ea2564e2a85b249fb/analysis/1557449658/
https://www.virustotal.com/file/00b78c0e37d92d64886a063373431dcad6787721b888de759ae9f22d50a3ac40/analysis/1557465616/
https://www.virustotal.com/file/00b78c0e37d92d64886a063373431dcad6787721b888de759ae9f22d50a3ac40/analysis/1557465616/
https://www.virustotal.com/file/00b95e3bee4f6a72b2b28fc8fc76a41e55a66df850d00aac4e3ca9e60b270bd8/analysis/1557452979/
https://www.virustotal.com/file/00b95e3bee4f6a72b2b28fc8fc76a41e55a66df850d00aac4e3ca9e60b270bd8/analysis/1557452979/
https://www.virustotal.com/file/00b3182e5da1141e8000292e974cac32ade84a40d556682df32b3448782961ca/analysis/1557468610/
https://www.virustotal.com/file/00b3182e5da1141e8000292e974cac32ade84a40d556682df32b3448782961ca/analysis/1557468610/
https://www.virustotal.com/file/00bab30b5ac84c4fa50227c94d888095b8418d875cb934804b31c0f0acb77761/analysis/1557466602/
https://www.virustotal.com/file/00bab30b5ac84c4fa50227c94d888095b8418d875cb934804b31c0f0acb77761/analysis/1557466602/
https://www.virustotal.com/file/00bb5b1220f08c994b0dbe26d4815bc8cca749dd9b28794a060f64a77de024fd/analysis/1557448288/
https://www.virustotal.com/file/00bb5b1220f08c994b0dbe26d4815bc8cca749dd9b28794a060f64a77de024fd/analysis/1557448288/

100 Appendix D. Malware Samples

Sample 18 - Trojan-Downloader-Injector

• Authentihash: 4dc7943affada702460572144bdda55a2a8c2d118e80a9a207a16b656612655b
• MD5: df7bfcab29e4ab1a88fca7712556d041
• Permalink: https://www.virustotal.com/file/00c0a11036619cca9a41e512d1127166357a

b300a8bb7488fbe5368a0667b27d/analysis/1557468323/

• Scan id: 00c0a11036619cca9a41e512d1127166357ab300a8bb7488fbe5368a0667b27d-1557468323

Sample 19 - Trojan-Downlaoder-Waski

• Authentihash: 4cf010d351f6dca825c3ca812cc104907c516246649f7b84ff3c64508f0c05b8
• community reputation: 0
• MD5: fb9f49145e1d4be72bca7987238e8af2
• Permalink: https://www.virustotal.com/file/00c1eb7bba0d6c92367452199ae58d84bda

13513d0c642862af44c998a0f3fc5/analysis/1557467452/

• Scan id: 00c1eb7bba0d6c92367452199ae58d84bda13513d0c642862af44c998a0f3fc5-1557467452

Sample 20 - Trojan-Dropper-Generic

• Authentihash: 9f86f4b23b0d43796290abd50bba38ce3117afd7cee418fd01c4c867a435310c
• MD5: 45dd58d182f906c10abaa43aa0216c5a
• Permalink: https://www.virustotal.com/file/00c7d6b5416c5b96c4757001a1a707ee227c

0aa7d758ea3977d1e53a60f446f4/analysis/1557445123/

• Scan id: 00c7d6b5416c5b96c4757001a1a707ee227c0aa7d758ea3977d1e53a60f446f4-1557445123

Sample 21 - Trojan-FileRepMalware

• Authentihash: 334e5742dc80bf29e544f525360f5e1a2eddb0d7f1aad4cbcb021100542d8c88
• MD5: 869dc9f56833bf7bd4313d535e03eaf0
• Permalink: https://www.virustotal.com/file/a388018c75b6d54d27f447c379c3b7d417a

8fd9d0d8903d83376c56b0d28c05d/analysis/1557462600/

• Scan id: a388018c75b6d54d27f447c379c3b7d417a8fd9d0d8903d83376c56b0d28c05d-1557462600

https://www.virustotal.com/file/00c0a11036619cca9a41e512d1127166357ab300a8bb7488fbe5368a0667b27d/analysis/1557468323/
https://www.virustotal.com/file/00c0a11036619cca9a41e512d1127166357ab300a8bb7488fbe5368a0667b27d/analysis/1557468323/
https://www.virustotal.com/file/00c1eb7bba0d6c92367452199ae58d84bda13513d0c642862af44c998a0f3fc5/analysis/1557467452/
https://www.virustotal.com/file/00c1eb7bba0d6c92367452199ae58d84bda13513d0c642862af44c998a0f3fc5/analysis/1557467452/
https://www.virustotal.com/file/00c7d6b5416c5b96c4757001a1a707ee227c0aa7d758ea3977d1e53a60f446f4/analysis/1557445123/
https://www.virustotal.com/file/00c7d6b5416c5b96c4757001a1a707ee227c0aa7d758ea3977d1e53a60f446f4/analysis/1557445123/
https://www.virustotal.com/file/a388018c75b6d54d27f447c379c3b7d417a8fd9d0d8903d83376c56b0d28c05d/analysis/1557462600/
https://www.virustotal.com/file/a388018c75b6d54d27f447c379c3b7d417a8fd9d0d8903d83376c56b0d28c05d/analysis/1557462600/

	English title page
	Contents
	1 Introduction
	1.1 Discovering Malware
	1.1.1 Activating Malware

	1.2 Master Thesis Topic

	2 Preliminary Analysis
	2.1 General Malware
	2.1.1 Evasion Techniques
	2.1.2 Time and Logic Dependant Malware

	2.2 Malware Triggers
	2.2.1 Activating Malware Through Specific Triggers

	2.3 Malware Platforms
	2.4 Problem Statement

	3 Testing Malware and its Complexity
	3.1 Malware Testing Complexity
	3.1.1 Reverse/Negative Triggers
	3.1.2 Sandboxing Artefacts, Wear and Tear Levels and Fingerprinting

	3.2 User Machines vs. Sandbox Machines vs. Baseline Machines
	3.2.1 Finding Common Virtual Artefacts

	3.3 Data Extraction from an Infected Machine
	3.4 Simulating User Activity
	3.5 Sourcing Malware Samples
	3.6 Conclusion

	4 System Specification
	4.1 Use Cases
	4.2 System Requirements
	4.3 System Overview
	4.4 Malware Samples Test Requirements

	5 System Design
	5.1 Creating a Malware Test Setup
	5.1.1 Current Setup
	5.1.2 Modified Setup
	5.1.3 Finalised Third Setup

	5.2 Malware Sample Processing
	5.3 Virtual Machine Snapshots

	6 Implementation
	6.1 System Overview
	6.2 Cuckoo Sandbox
	6.3 VirtualBox
	6.3.1 Windows OS

	6.4 Networking and Data Transfers
	6.4.1 Host Networking
	6.4.2 Guest Networking
	6.4.3 Data Transfers

	6.5 VM Snapshots
	6.5.1 Base Image
	6.5.2 Modified Image
	6.5.3 Difference Test Using Pafish

	6.6 Running Everything

	7 System Testing and Malware Analysis
	7.1 Testing Method
	7.1.1 Testing Criteria

	7.2 Malware Sample Test Results and Comparison
	7.3 Test and Analysis Conclusion

	8 Conclusion
	9 Project Outlook and Future Work
	List of Figures
	List of Tables
	Bibliography
	A Docker and Virtual Machines
	B Anti VM Detection Log
	C Scripts Used for the System
	D Malware Samples

