«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Towards Object-Oriented Lifecycle Costing

Automating BIM objects quantity takeout
for lifecycle costing of cleaning operations

10" January 2020
Aalborg University
Adam Piaskowski
Master of Science in Construction Management and Building Informatics
Master Thesis

Aalborg, Denmark

Title:

Towards Object-Oriented Lifecycle Costing.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

An investigation towards BIM object-based lifecycle costing of cleaning operations

Project:

Master Thesis Report, final semester.

Project period:

Sept. 1%, 2019 to 10" Jan. 2020

Email:
akptech@outlook.com

Name and signature:

BT

Adam K Piaskowski

Supervisors:

Kjeld Svidt

Report page count:

55

Appendix page count:
47

Number of words:
22,000 (core text)

Number of characters:
191,000 (full document)

Finish date:
January 10™, 2020

Department of civil
engineering

Thomas Manns Vej 23,
9220 Aalborg st

Version
1.14 (7™ Jan. 2020)

mailto:akptech@outlook.com

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Acknowledgments

I wish to thank Kjeld Svidt for his supervision. | wish every graduate to experience such facilitation.

Thanks to my colleagues who had been developing their reports in parallel. It was good to discuss the
concepts and formatting with you.

I want to thank Rob Marsh from C.F Meller, for initiating the subject of this research, as well as for his
valuable contributions regarding the lifecycle costing audit process. His remarks sparkled important
considerations and pushed the project forward.

Thanks to Mathias Rasmussen from C.F Meller for testing the proposal through numerous meetings.
His inputs and efforts had significantly impacted the project development.

Special thanks to Maria Saridaki and Kim Haugbelle from AAU Copenhagen, who developed the
LCCbhyg tool, as well as for an in-depth lifecycle costing research. | consider this work partly a
continuation of Marias research, although she may not agree with some of my interpretations.

I want to thank all stakeholders who took their time to actively take part in this research, analyzing ideas
and relating them to their circumstances.

Lastly, I would like to thank my father and my partner, who both spent countless hours listening to every
presentation | made. They knew how much this meant before it all even started.

Dear reader, thanks for taking the time to read this report. | hope you enjoy it as much as | enjoyed
writing it.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Abstract

By 2020, the Danish government will require mandatory evaluation of Lifecycle Costs (LCC) for new
buildings, as opposed to only considering procurement costs. The maturing Danish building industry
sector looks towards LCC as a source of competitive advantage. LCChyg is a tool released by the Danish
authorities to calculate lifecycle costs. Potential for automation is investigated, as currently, design
model quantities need to be manually converted to facilitate the calculations in LCChyg.

Multiple methods exist for calculating procurement costs at an object level. The same cannot be said
about operational costs, where methods still rely simply on building areas. The generic approximations
fail to account for object quantity, type, and materials. Therefore, the objective of this study was twofold,;
firstly, to investigate the potential for basing cleaning costs on objects, and secondly, to develop and test
a data transfer method, integrating autonomous software packages for design and costing.

The involved stakeholders debated the potential risks and benefits of the object-oriented approach.
Regardless of the procedure, transfer automation was deemed useful. A semi-automated data transfer
was tested on an existing, and a design model of two office buildings using Building Information Models
(BIMs) and a Visual Programming Language (VPL).

To conclude, the stakeholders saw the benefits of basing operational data on objects, while also pointed
at obstacles concerning a lack of model detail in the early design phase. The proposed approach
transferred Revit object quantities to the LCCbyg XML schema, and the operational cleaning cost data
has been visualized using PowerBI. The method requires further integration with cost databases and
other subsets of LCC calculations to be considered a complete solution.

Keywords: Lifecycle Cost, BIM, Data transfer automation, XML, Facilities Management

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Table of Contents
) O Va1 oo [[ox £ o] o TSP 1
I R | (o] (V7= L4 o] o TSP R USSP 3
1.2 RESEAICN GOAISocviiiiiiiiite ettt bbb rer e 3
1.3 ReSEArCh QUESTIONSeoiiiiiieiie ittt ettt este e saesteeneesaeeneeneenne s 3
2 MEtNOAOIOQYveiiieiiieiieee e 4
21 LItErAtUIE REVIBWc.eiiiiee ittt s te et ste s e besneestesneeneeneeenes 5
N 0101 01 (-) (LU LI DT T o PSSR 5
3 BaCKGIOUNG......ociiieiiice bbb bbb 6
3.1 Lifecycle AsseSSMENt and COSTING........coveviiiiiiriieres e 6
3.2 Lifecycle Costing as a part 0F DGNB..........ccociiiiiiiiees e 7
3.3 Lifecycle Costing in Design & Operations Phase ... 9
4 Costing Approaches for Operational Cleaning.........cccccoccovvviiieiiie e 10
4.1 Existing DGNB Cost CalCulationccccoiiiiiiiiiicc e 10
4.2 Object-Oriented Cost calculation proposal.............ccoeiiriiiiienineneecs e 10
4.3 Factor-based vs. Instance-based vs. Type-based quantity takeoutcc.ccceverernenns 11
5 Software and TeChNOIOGIES.......civeiieiieiiee e 12
5.1 Building Information Modellingccccceiiiiiiiiiiieic e 12
5.2 Interoperability using Visual Programming Languageccccoceveeeeveieciesieseerveeeenn, 14
5.3 Lifecycle Costing t00l - LCCBYJ.....ccuciiiiiriiieieieieesie ettt 16
0 CASE STUIES ...ttt sttt e et e e beebe e beenrs 21
6.1 TeStREVITIMOEL.......cco ittt era e nre s 21
6.2 IMPlemMENtation CASE STUAYc.cviiiiieicce e st sre e 23
6.3 Implementation Of database SETUPcooeiirieriiiiiiii e 24
T USEr ENVIFONMENTooiiiiiiiieieeeee ettt 27
7.1 Using the dROTUS dAtADASE.couiiiiiiiiiiieeeee s 30
7.2 USING the REVITMOUELooviiiiice e ettt 32
A T U o To (4 o)Y/ o TSP SRSPSROSPN 33
T4 USING POWETBI ...t bbbttt 36
8 Data transfer PrototypPingccooeeiiiiiiiiiie e 38
8.1 Dynamo Scripting between Revit and LCCccooiiiiiiiiiiieeieeeeesese e 39
8.2 Python Scripting between .CSV and LCCbyg XMLccccocoiiiiiiiiiiiiicccceee e 40
8.3 Dynamo Scripting between Revit and POWerBlcccoco oo 41

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

0 ANAIYSIS ot 42
9.1 TrANSTEE ACCUTACYcviiiteiieeeeie ettt bbb e bbbt b nn e 42
9.2 WOrKFIOW TIME SAVINGS. ..c.eieieeiieiieiisiieesiese et 42
0.3 APPHCADIITY .o nre s 43
9.4 Stakeholder interviews and teSTINGccccviviiiiiiiieie e 43

TO RESUITS oottt bbb bbb 45
050 R O] 4 0 T= U g 110 1) o0 L] SRR 45
10.2 Beyond LCC — Operational USE CaSEScocereieieiinierisiesiesie et 48

L O B 11T 0 551 o] o RS URUSTSRURP 50
111 EVAIUALION .ottt b e ettt bbb 52
11.2 FUtUre DeVEIOPMENT. ..ot 53

12 CONCIUSION .ottt ettt ettt eneas 54

13 BibHOgraphy ..o 56

AN o] 0 1=] T o0 ST STR 1
141 ApPendixX A — FIOOK PIANS ..o 1
14.2 Appendix B — Revit Schedules and Cost Calculation Proposal..........c..cccocoveieiiiiiiennnnnnn 3
14.3 Appendix C - LCCbyg and Revit Mapping Schema...........ccccccovviieviiiiic e 7
14.4 Appendix D - LCChbyg Transfer DyNamo SCEIPTSccooviirininineieieiescse s 9
145 Appendix E — Python Transfer SCript.........c.oooioiiiiiiiiieese e 15
14.6 AppendiX F POWEIBI SCIIPLS......ccoviiiiieccece ettt st s 16
14.7 Appendix G — Future Research Calendar Potential & Filter setting Scripts 20
14.8 Appendix H — PowerBI Data Visualization.............ccccoviiiiininenencesese e 28
14.9 Appendix | — Examples of discrepancies in plumbing and furniture types. 30
14.10 Appendix J — Cost Results from LCCbyg — Comparison of two approaches. 37
1411 Appendix K — BPMN diagram desCriptioncccceoviiiirinenenieiese s 40
14.12 Appendix | — Summarized results of stakeholder meetings..........c.ccccevvvevieieiiciiennenn, 41

14.13 Appendix J — Key benefits and challenges ..o 45

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Factor-based approach
Family parameter
Instance parameter
Interoperability

KPIs
LCA

LCC

LCCbyg

Obiject-orientation

Object-oriented approach

00TB

Operational phase

Python 2.7 & 3.7
Revit 2019
Revit Family

Shared parameter

Type parameter

Ul
XML

Glossary

AEC Architecture, Engineering and Construction Industry

BIM Building Information Modelling, or Better Information
Management

C.FM C.F. Moller - an internationally renowned Danish architecture
company.

Cleaning A task of maintaining a property frequently to appealing standard.

DGNB The German Green Building Sustainability Rating — German:
Deutsche Gesellschaft fiir Nachhaltiges Bauen (DGNB)

Dynamo Dynamo or Dynamo Revit or Dynamo VPL is a Visual
Programming Language plugged to the Revit API, enabling data
manipulation.

UED User Environment Design - See (Beyer & Holtzblatt, 1998)

An approach of calculating cleaning costs based on square meter
areas, in accordance with the DGNB proposed approach.

A parameter is unique to a Revit family. It can be accessed from
the project level, but may not be deleted without opening the
family environment.

A parameter with a value unique to every object instance.

A flexible data interface, enabling unidirectional or bidirectional
communication between two software environments.

Key Performance Indicators.

Lifecycle Assessment, an assessment of lifecycle potential of the
building asset and its' components

Lifecycle Costing, an assessment of the lifecycle cost of the
building asset and its' components.

LCCbyg is a tool released by the Danish Building Research
Institute (SBi), at Aalborg University (AAU) on behalf of the
Danish Transport, Construction and Housing Agency

Holding data on an object following a hierarchy, where the object
is a parent element, and the information is the child element.

The proposed approach of quantity takeout for calculating
cleaning costs based on various units.

Out Of The Box — a function contained within the software
standard interface.

The period of time that the relevant part of the authorized
development is in operation after construction and commissioning
is complete

A coding language compatible with Dynamo VPL.

A software environment used across the AEC industry for BIM.
A name for an object type used in the Revit software environment

An exportable parameter stored in a .txt file accessed and shared
through multiple Revit projects.
A parameter with a value common to all objects of the same type.

User Interface
eXtensible Markup Language.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

List of Tables

TABLE 1. PACKAGES AND SCRIPT DEPENDENCIESuuviiiiitiieeeititeeeiieeeesitteeeestteeesssssaesasseseaastsesssssssssssssessanssseesannes 15
TABLE 2. COMPONENTS AND COMPONENT MATERIALS INCLUDED IN THE CASE STUDY MODELcvecvvveeiiveenireeanes 23
TABLE 3. STAKEHOLDER OPINIONS SUMMARY — OBJECT-ORIENTED CLEANING.......cciiuveiieeiieesreesneesneesneesnnee e 44
TABLE 4 STAKEHOLDER OPINIONS SUMMARY — DATA TRANSFER PROPOSALccoitiiieitieeeeetreeeeeteeeesivveeeeenreeeeenns 44
List of Figures

FIGURE 2.1 THE IMPLEMENTATION OF PLAN-DO-CHECK-ACT (PDCA) IN THE METHODOLOGYcvrveieienienianenen. 4
FIGURE 3.1 COMPONENTS OF LIFECYCLE COST CALCULATIONecittteiteeitteesreestteesreessseesssessssessssessssessssssssessnsessnns 6

FIGURE 3.2 DIVISION OF CATEGORIES INFLUENCING THE TOTAL SUSTAINABILITY RATING
FIGURE 3.3 THE SCOPING DIAGRAM FOR THESIS RESEARCHcccciiuiiieiiieeeiitieeeeettieeeeveeeesenreeeesaseeeens
FIGURE 3.4 THE ABILITY TO INFLUENCE DESIGN RELATIVE TO THE BUILDING DEVELOPMENT
FIGURE 3.5 BUILDING CERTIFICATION AT DIFFERENT STAGES OF THE BUILDING LIFECYCLE......ccccveiivverveeiveesneenns
FIGURE 4.1 FACTOR-BASED QUANTITY TAKEOUT — LCCBYG 2.2.52, SCREENSHOTvoiiiiiiieeiiieeeeetreeeeeveee e
FIGURE 4.2 INSTANCE-BASED QUANTITY TAKEOUT — LCCBYG 2.2.52, SCREENSHOTcocviieeiiiieeeeiieeeeeieee e
FIGURE 4.3 TYPE-BASED QUANTITY TAKEOUT — LCCBYG 2.2.52, SCREENSHOT ...ccvvviiiieriieeiineenineestreesnreesineesnneens
FIGURE 5.1 THE AREA OF INTEREST WITHIN THE LCCBYG SOFTWARE
FIGURE 5.2 XML FILE GENERATED BY LCCBYG 2.2.52......ccctiiiiiiiiiceeee e
FIGURE 5.3 LCC XML GENERATED INFORMATION ABOUT CLEANING ACCOUNT PLAN
FIGURE 5.4 EMPTY PLACEHOLDERS FOR XML DATA NEEDED FOR THIS PROJECT ...cccciviieiiirieeestreeesninneeesnneeessnneeas
FIGURE 5.5 THE STRUCTURE OF THE SUBGROUP CALLED BUILDINGS INTERNALcccivvtiiirieeeirieeeeeireeeeereee e s v
FIGURE 5.6 ROOM DATA LEVEL OF GRANULARITY ...ooiiiiiiieiiiieeectreeeeeitee e eveeeeeereee e enns
FIGURE 5.7 A DIAGRAM ILLUSTRATING ADDING A NEW OBJECT TO THE LCCBYG SCHEMA
FIGURE 5.8 PARAMETER PLACEHOLDERS, RELATIONSHIPS, AND DATA TYPES.......tutiiiiiieeiireeeeetreeeeeteeeeevneeesenveens
FIGURE 5.9 A DIAGRAM IS DEPICTING ADDING A NEW ATTRIBUTE TO AN OBJECT ..eccecuvieiiiireeeectieeeeetteeeeevneeesenvens
FIGURE 6.1 CASE STUDY REVIT MODEL IN 3D = SCREENSHOTuviiieiiireesiieeesstteeessineeessnneesessneeesansneeessnnnnsesnsnenas
FIGURE 6.2 SCHEMA COLOR LEGEND REPRESENTATION FOR REVIT ROOMS (SCREENSHOT) ...ccvvevvvevrsiesieesieeseeennes
FIGURE 6.3 CASE STUDY OFFICE BUILDING — GROUND-FLOOR PLAN (SCREENSHOT) ...ccueiveuinienieninienieesiesieneeneneens
FIGURE 6.4 PLACING LCC PLACEHOLDERS AT A ROOM LEVEL — DROFUS GUI EDITOR....
FIGURE 6.5 PLACING LCC PLACEHOLDERS AT AN OBJECT-LEVEL - DROFUS GUI EDITOR
FIGURE 6.6 ADDING PARAMETER BOXES AT AN OBJECT LEVELuvviiiiitiieeiiiteee e cteeeeeetteeeeenteeeesteeeeeetteeessnnneeesenseens
FIGURE 6.7 DROFUS: BI-DIRECTIONAL LINK INTERFACE BETWEEN A DATABASE AND THE MODEL..........ccceeenne... 26
FIGURE 7.1 SOFTWARE SEQUENCE MODEL PROCESS REPRESENTATIONccciuvireeitieeeeitrneesineeeesrreeesnsneesssnnnssssnneens
FIGURE 7.2 PROPOSED WORKFLOW BPMN DIAGRAMciiiitiiiiiiiiee e ettt e ettt e s tte e e st e e satee e e stae e e anttee e s snnneaesnneeeas
FIGURE 7.3 OVERVIEW DIAGRAM DEPICTING LCC FOR CLEANING PROCESS FLOWveeiiiiveeeeerieeeeeiieeeeeieeeesenvenns
FIGURE 7.4 USER ENVIRONMENT(UED) — OVERVIEW OF FUNCTIONScccvevvieiieeieninns

FIGURE 7.5 DROFUS EUD SEQUENCE: ADDING DATA TO THE DATABASE DIAGRAM
FIGURE 7.6 REVIT MODEL UED SEQUENCE: CONSISTENCY CHECK PROCEDURES (PART 1/2)coooviiiiiiiiecieen,
FIGURE 7.7 REVIT MODEL UED SEQUENCE: CONSISTENCY CHECK PROCEDURES (PART 2/2)ccocoviiiiiiiieieienen,
FIGURE 7.8 LCCBYG SOFTWARE ENVIRONMENT — WINDOW PANES CLARIFICATIONcccveeeivieennns
FIGURE 7.9 LCCBYG DYNAMO TRANSFER UED SEQUENCE: FUNCTIONS AND RISKS EXPLANATION
FIGURE 7.10 POWERBI PROJECT DASHBOARD COMPONENTS SUMMARYuvvieiirieeeeitreeeeinteeeeeteeeeessseesesssneesseseeens
FIGURE 7.11 SCRIPTS WHICH ARE SUPPORTING THE POWERBI DATA TRANSFERccccvvtiiiiieeeiiieeeeetire e e sveeeessnvens
FIGURE 8.1 DYNAMO COMPONENTS TRANSFERRING QUANTITIES (1/2) c.vicvviiieiie et
FIGURE 8.2 DYNAMO COMPONENTS TRANSFERRING QUANTITIES (2/2)eviiiiiiieiiienieise e
FIGURE 8.3 IMPORTING MODULES TO PYTHONcitiiiiiittieeeettie e ettt e e ettt e e etee e e e tte e e et e e e enteeeesnbaeesensteeessanneeeseseeens
FIGURE 8.4 PASSING COMMA-SEPARATED VALUES TO THE XML SUBELEMENT
FIGURE 8.5 .CSV DATA AND MODEL .SV G MAPS VISUALIZED IN POWERBI.........c.ooooiiiiieeie e
FIGURE 10.1 COST COMPARISON VARIABLES AND CONSTANTSuviiiiiiteeeeeeireeesiereeeeestreeeeesreesssseeesanssesssssseessssenees
FIGURE 10.2 A TABLE IS SHOWING TWO EXEMPLARY DESKS OF TWO VARIED FINISH MATERIALScoccveeeennenn.
FIGURE 10.3 MODEL REPRESENTATION OF SMOOTH SURFACE DESKS........coiiuieeiiiiieeeiiireeeeiiieeeesineee e

FIGURE 10.4 CHANGING THE TYPE OF DESKS FROM ROUGH TO SMOOTH-SURFACED

FIGURE 10.5 129 ROUGH SURFACE DESKS (NOTICE THE DESK COLOR CHANGE IN THE BIM MODEL)cccevuene. 47
FIGURE 10.6 LCC cOST DIFFERENCE RESULTING FROM THE MATERIAL FINISH FOR 129 DESKSccccveevvvieeeinineen. 47
FIGURE 10.7 POWERBI USER INTERFACEciittiieiitieeeeetteeeeettee e e et e eaitae e s seaaeeessstaeesssseessassesesssseeesansseessanseeessasenees 48
FIGURE 10.8 COST OF CLEANING RELATIVE TO THE ROOM AREAoceiitiiieieteeeeeteeeeeeiteeeeeaeeeestaeesenaaeesssnsenesseseees 49

FIGURE 10.9 POWERBI DASHBOARD - AN OVERVIEW OF CLEANING COST ALLOCATION.......ccovvveireeeeiiiiiiirieeeeeesians 49

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

List of Figures in the Appendix

FIGURE 14.1 CASE STUDY OFFICE BUILDING — BASEMENT PLANcccitiiiiiitiieeeitieeeeteeeesstreeessstseesssnsessassesasssseeseans 1
FIGURE 14.2 CASE STUDY OFFICE BUILDING — GROUND FLOOR PLANcvtiiiteeireesieesreesneesneessnessseesssesssneesnessnns 2
FIGURE 14.3 CASE STUDY OFFICE BUILDING — FIRST-FLOOR PLANutiiitteiteeiteesreesreesseesssneesssesssseesssessssessnsessnns 3
FIGURE 14.4 SCHEMA COLOR LEGENDuuuiiiiittieeiittieeeeiteeeesitteeeaatteeeasaseseessseseaasteessassseesassesesassseeeassssessabesasasseeeeans 1
FIGURE 14.5 INITIAL SKETCH OF THE MODEL CONSISTENCY CHECK PREPARATION.ceciiitiieeeiiieeeeireeesinreeeesreeeens 2
FIGURE 14.6 ROOM SCHEDULEuvtiiteeitteeiteeitteesteesteesaseestseesseessssesssseessseesssessssessnsessssessssesssseesssessssesssesssessnsessnns 3
FIGURE 14.7 FURNITURE SCHEDULEcutvtiiiitteeeiittteeeeteeeesitteeeaatteeeassteeeesbaeseaasbeeseaseseesassasesassseeeaassseesabesesasseeeeans 4
FIGURE 14.8 PLUMBING FIXTURES SCHEDULEcutiiiiititeeiitieeeeettteeeeteeeesetteeeesabteseebeeeesasseeesasbsessassseesasseeesasseeeans 5
FIGURE 14.9 DOOR SCHEDULE.......0cciitteittteiteeiteesteesteesseestbeesasessstessssesssseesssessssessssesssseesssessssessssessssessssessseesnsessnes 5
FIGURE 14.10 WINDOW SCHEDULE......ccittiiteeitteeiteesteesreestreesssesssseesssessssessssessssesssessssesssssssssessssessssessssessssessnsessnns 5
FIGURE 14.11 PROPOSED OBJECT-ORIENTED COSTING APPROACH.uutiiiitiieeeitieeeeitteeeeetteeeeetteeeestaeeesetreeeeansaeeeens 6
FIGURE 14.12 ENLARGED LCCBYG STRUCTURE, RELATIVE TO THE REVIT STRUCTURE........ccveiiieeireesieesreesnee s 7
FIGURE 14.13 A DIAGRAM DEPICTING THE DIFFERENT UNITS OF MEASURE FOR DIFFERENT COST OBJECTS. 8
FIGURE 14.14 NEW OBJECT, L.E., “DESK,” OR “HAND-WASH BASIN.”......ciitttiirieiiieiieesteesseesneessessseessessssesssessnns 8
FIGURE 14.15 NEW OBJECT ATTRIBUTE LE. “FREQUENCY = 507, .utiiiiiiiii ettt e ettt e ettt setree e e et e e e etre e e s eaveeaeantaeeeens 8
FIGURE 14.16 OVERVIEW SCRIPT RESPONSIBLE FOR DATA TRANSFER.......ctttiiteeitieiteesreesresssreessseesseessnesssnessnsessnns 9
FIGURE 14.17 OBJECT AREAS CUSTOM NODE SCRIPT. ...ouiiiiiiiieiitiee e ettt ettt ette e e et e e e eatee e e staeeeasatae e s snnneaesenreeas 10
FIGURE 14.18 OBJECT COUNTS CUSTOM NODE SCRIPT. ..viiiiittieeiitieeeeitteeeeitteeeestteeesssteeessstesesssaesssassessssssesessssens 11
FIGURE 14.19 OBJECT RUNNING METERS CUSTOM NODE SCRIPT. ...cciiitiiiiiieeeeiiieeeeitree e s siteeeestreeesnnanesssnsnneesnnneeas 12
FIGURE 14.20 OBJECT STAIRS RUNS CUSTOM NODE SCRIPT. ...cccititieiiiiieesiieee s stieeessireeessteeeesteesssnsneeessnnneaesnsnenas 13
FIGURE 14.21 ROOM FLOOR AREAS CUSTOM NODE SCRIPT. ..veeiiitieeeiitieeeeitteeesetieeeeetreeesesteeeesbeeessssseesssssesesssseens 14
FIGURE 14.22 PYTHON SCRIPT FOR XML DATA TRANSFER FROM A .CSV FILE TO LCCBYG SCHEMA.. 15
FIGURE 14.23 POPULATING ROOM IDS TO OBJECTS CONTAINED WITHIN THE ROOMS. ...ccovvieeeiiieeeeiieeeesiveee e 16
FIGURE 14.24 POWERBI TOTAL COSTS OF ITEMS PER YEAR SCRIPT ..ccuvviiiiiiieieeitieeeeetreeeeenteeeesteeeeeetteeessaveeeesenreeas 17
FIGURE 14.25 POWERBI GRAND TOTALS PER ROOM SCRIPT ...vviiiiitieeeiitieeeeitteeeeeitteeeeetreeeeesteesesbaeessesseesssnnesesissenns 18
FIGURE 14.26 SCRIPT AUTOMATING .CSV EXPORT OF ROOM DATA FROM PARAMETER PLACEHOLDERS................. 19
FIGURE 14.27 CLEANING CALENDAR OVERVIEW AND LEGEND.ccciiiuiiiiiiieeeiiieeeesirreessteeeesnveeesnsneesssnnneaesnsneeas 20
FIGURE 14.28 CLEANING CALENDAR MONDAY (SAMPLE CLEANING)tiveuiitiieiinientenisie ettt sne e 21
FIGURE 14.29 CLEANING CALENDAR WEDNESDAY (SAMPLE CLEANING) ...veeiveiteeitieieseesteesteesteeseesnesseesanesneeneas 22
FIGURE 14.30 CLEANING CALENDAR THURSDAY (SAMPLE CLEANING) ...vveiiveiiieiteeiteereseesteesteesseeeesnessnessessseenns 23
FIGURE 14.31 CLEANING CALENDAR FRIDAY (SAMPLE CLEANING).....cctitiuirteieninienienisiesiesessesieesie i s snens 24
FIGURE 14.32 CLEANING GUIDELINES — HOSTING INFORMATION ON OBJECTS......ceieiirieeeireeeeirieeeeereeeesnneeesinveens 25
FIGURE 14.33 AUTO FILTER SCRIPT FOR CLEANING CALENDAR REVIT VIEWS DYNAMO SCRIPT.cccovvevivieeenineen. 26
FIGURE 14.34 ROUTE OPTIMIZATION POTENTIAL SCRIPT USING FIRE EGRESS DYNAMO SCRIPT.cccvvveeeeirieeeennnenn. 27
FIGURE 14.35 DATA VISUALIZATION OF TOILET CLEANING COST. ..viieeittieeiireeeeireeeeestreeeeereeeesseeesassseesssssessesesseens 28
FIGURE 14.36 DATA VISUALIZATION OF OFFICE CLEANING COST: .uitiiiitiiieiiieeeeitreeeeitreeessnseeesstneessnsseesssssssessssnenas 29
FIGURE 14.37 TOILETS: EXAMPLES OF DEVIATIONS IN CLEANING DIFFICULTY . ..uvvtieiiiieeeiieeeectreeeeeeee e e svneeesenveeas 30
FIGURE 14.38 SURFACES: EXAMPLES OF DEVIATIONS IN CLEANING DIFFICULTY . ..eeeiiiieeieteeeeerieeeeetee e eveee e s 30
FIGURE 14.39 FREQUENCY: ISSUES WITH THE WRONG FREQUENCY OF DETAILED CLEANING.cccvvvreerrereeennnenn. 31
FIGURE 14.40 SOURCES OF VALUE: EXTRACURRICULAR TASKS TO BE FACTORED IN THE COSTING.ccccvveeennee. 31
FIGURE 14.41 BATHROOM EQUIPMENT CLEANING STORYBOARD.cecviieiiuteeeeitieeeeitreeeeeseeeesteeesassseessssseeeesaseeens 32
FIGURE 14.42 DESK CLEANING STORYBOARD.cccutiieiiitteeeeitteeeeetteeeeetteeeseaesesstaeesasstesesastessesseeesaasseeessseeessnseees 33
FIGURE 14.43 FLOOR CLEANING STORYBOARD.uvttiiiitttieiitteeeeitteeeastteessssesesssseeesssseessassessesssssssassesssssssesssssens 34
FIGURE 14.44 VACUUMING AND TRASH REMOVAL STORYBOARD.ccctttieiittereeitieeeeitreeessnteeeesasesssnsssesssnssssssssnenas 35
FIGURE 14.45 WINDOWS, DOORS, SKIRTINGS, ART, CEILINGS, PLANTS, KITCHENS STORYBOARD........ccccccu..... 37
FIGURE 14.46 COST OPTIONS USING DGINB TEMPLATEcciiiiiieiiiiee e ettt e e eitiee e stte e e s site e e sateeaesbaeeeasntneessnnneaesnnreeas
FIGURE 14.47 PROPOSED APPROACH “LIGHT” CLEANING COST

FIGURE 14.48 PROPOSED APPROACH “AVERAGE” CLEANING COST ...cciiutiieieureeeectieeeeetteeeeeereeeesteeeeeesseesssssneeesesseens 38
FIGURE 14.49 PROPOSED APPROACH “DEMANDING” CLEANING COST ...vvviiiiuveeeeireeeeeitreeesesseeessseeesasssessssssesessnsenees 38
FIGURE 14.50 COST AFTER 50 YEARS WITH ALL SMOOTH-SURFACED DESKS........uutieiiiieeeiieeeeiiieeeesieeeesvneeesssveens 39

FIGURE 14.51 COST AFTER 50 YEARS WITH ALL ROUGH-SURFACED DESKS......cccitiiitriiiieeessiiisreeieeessssiisnssesessssnnns 39

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

1 Introduction

Approaching the end of the second decade of the 21 century, it is no longer valid to solely consider
initial construction costs when making design decisions. The availability of poorly designed, low-quality
materials and components from all over the world poses a direct threat to sustainable building usability
(Shan, Melina, & Yang, 2018).

Western societies seek ways of creating long-lasting value, despite the higher upfront cost, whereby
long-term benefits outweigh initial purchase costs. Developed societies such as Denmark take lifecycle
costs of components and materials, as long-term benefits often outweigh initial purchase costs. It is no
longer just about the price, as early design decisions influence the built environment and its residents
often for as long as half a century (Green Building Council, 2013).

Nowadays, the materials used for building construction must undergo a much more rigorous and
conscious investigation, a lifecycle assessment (LCA), which will consider the building ecosystem
holistically, in terms of procurement, operation, disposal and reuse (Vigovskaya, Aleksandrova, &
Bulgakov, 2017). As far as a quantitative point of view is concerned, economic impact can be evaluated
using the lifecycle cost (LCC) calculation of the building individual components lifespan, as well as the
building as a whole (Maria Saridaki, Psarra, & Haugbelle, 2019).

LCC can be as much about economics as it can be about sustainability, social lifecycle, and environment,
combined, these factors can be converted to currency, a commonly agreeable way of expressing human
effort in dealing with value created, as well as the cost incurred to maintain a good standard of the
buildings’ usability.

Uncertainty of results is one of the most significant limitations when attempting to calculate the lifecycle
costs accurately. Gluch and Baumann (2005) identify three categories of uncertainties; physical,
business-related, and institutional. The physical uncertainties relate to material quality and predicted
lifespan, while the business-related to the applicability over the long-term, or a ban of the material from
the market. Furthermore, the institutional relates to the detail which would account for each anomaly
accurately may be lacking, due to generic models used during the calculation.

The term lifespan is categorized into four distinct categories; the economic, the technical, the physical,
and the utility (Kirk & Dell’Isola, 1995). The economic lifespan of a building refers to its profit-
generating years, the technical lifespan relates to the same technology used in the building, the physical
lifespan relates to the building usability by the users, and finally, the utility lifespan relates to its
compliance to the current building standards. Each of those may require a sooner replacement of
materials whose physical lifespan is still ongoing. The economic lifespan is the one most used during
LCC calculations (Maria; Saridaki & Psarra, 2017).

As a building is a long-term asset, and its lifespan can vary, depending on its design, materials,
craftsmanship, and life-long maintenance, it is the combination of those factors that ensure a prolonged
economic lifespan. Adequate maintenance during the operations phase is often wholly under-looked,
undervalued, and under-costed, resulting in worse material performance and faster building degradation.
According to (Guillen et al., 2016), up to 60% of the total lifecycle cost belongs to the post-occupancy
phase. This figure may be optimistic, given the detail entailed in the calculations.

An architect can enter a blue ocean of new services when offering additional value, generated from LCC
combined with Building Information Modelling (BIM). As more building types become subject to
requiring BIM models and IFC models to transfer information to the operational phase (Kiviniemi,
Tarandi, Karlshgj, Bell, & Karud, 2008; Rosendahls, 2019), and interoperable data specifications are
becoming more standardized in practice (Kiviniemi et al., 2008), it remains a task to find efficient and
effective ways of calculating translatable cost incurred during the lifecycle of a building.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Object-oriented parametric modeling used in the BIM models has another benefit; the operational
maintenance information can be grouped and explicitly attached to the components, thereby ensuring
adjusted quantification of cost and case-specific optimization. Furthermore, it can be used to visualize,
simulate, and generate value-adding intelligence, offering significant improvements in the FM
operational processes (Olatunji & Sher, 2010).

While there are many BIM environments used by the architects to build 3D BIM models, ultimately, the
model information must be accessible to the building owners so that the data can be further re-used
during the operational phase. The auditors can use standard file formats to transfer data between
independent software environments (Sacks, Eastman, Lee, & Teicholz, 2018).

The UK based Constructions and Operations Building Information Exchange Format (COBie) is a
suitable method for transferring project information in a standardized way, accessible by 3 party
Facility Management (FM) software, enabling storage of quantity and relevant information needed for
the building component operations and maintenance data (Patacas et al., 2015; thenbs.com, 2016).

The so-called “data drops” can used by external applications to calculate and display data relevant to
the building owner. COBie framework could support such information transfer, as COBIe attributes can
be mapped to specifications (IBM, 2019).

As COBie does not support the transfer of geometric model data, yet stems from the geometry
information in the form of an Excel spreadsheet, a method for translating 3D geometry information is
to use Industry Foundation Class file format (IFC). The IFC format provides a standardized model data
schema, which can be read and used by a vast amount of FM software.

IFC qualifies the model to be stored in a standardized, internationally agreed format, which ensures the
data will be safe for use by third-party stakeholders for many years to come. Furthermore, having been
agreed by the ISO (ISO 16739-1:2018, 2018), the file format, as well as the accompanying
documentation provided by the buildingSMART initiative (BuildingSMART, 2013), serving as a non-
profit organization, maintaining the format applicability and cross-platform interoperability.

IFC is a rigid schema that comes out in different versions, and roughly covers 90% of all required
exchanges; however the remaining percentage may be vitally breaking the value of the model after it
had been exchanged (Wix & Karlshgj, 2010; Yu, Froese, & Grobler, 1998).

What is interesting is that IFC files are interoperable and contain accessible, and human-readable source
code. It is, therefore, possible to query the contents of the file. It is also possible to append custom data
directly to the source code, to an existing model, and therefore make changes that may be updated over
time (Kim et al., 2017; Toth, Janssen, Stouffs, Chaszar, & Boeykens, 2012).

When using the IFC schema, the models are not restricted by the Revit licenses, nor the architects and
engineers designing the models can revoke their copyrights. This allows the building owner to use the
IFC file throughout the lifespan of the building.

Model View Definitions (MVDs) is a subset of the overall IFC schema, narrowing the scope of
Exchange Requirements (ER), which explicitly specifies the information needed for IFC data transfer
(BuildingSMART, 2010). The Information Delivery Manual (IDM) provides a standardized method for
process documentation. IDM enables third party FM software, to use IFC model data to optimize the
building during operations phase (Kang & Choi, 2015; Kim et al., 2017; Lawrence, Pottinger, Staub-
French, & Nepal, 2014, Patacas, Dawood, Vukovic, & Kassem, 2015).

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

1.1 Motivation

Having worked as a BIM manager, hand to hand with architects, and as a member of a maintenance
team for building cleaning operations, personal insights are presented on how the industry could benefit
from more accurate costing approaches for facility cleaning.

From personal observations, the architects pay limited attention to the operational phase and often hire
external consultants to manage waste and janitorial services. On the other side, the companies later
facilitating the buildings, often rely on general figures when estimating the costs of building
maintenance and planning the cleaning sequencing.

Generic estimations may lead to inadequate contract value approximation, which is burdening either the
shoulders of the operational personnel or on the other side of the spectrum, form additional costs to the
building owner. It also leads to quicker degradation of components due to inadequate frequency, or
reduced service quality due to limitations imposed by the contract value. Thus, having a detailed
description of the model and objects contained within the BIM model allows for more accurate cost
estimation, offering a possibility of operational cost reduction.

1.2 Research Goals

The investigation aims to show the current approach of estimating the lifecycle cost proposed by the
DGNB TEC1.5 (Green Building Council Denmark, 2017, pp. 385-387) is insufficiently detailed to
inform the design and further operations effectively. As a proof of concept, this Master Thesis will
investigate how seemingly similar building scenarios can show varying lifecycle costing results,
depending on the equipment in use, and the calculation approach.

Furthermore, the information gathered during the design phase can be of significant value when reused
by Facility Management (FM). Current practices utilized by the FM teams are merely reactive and,
therefore, inefficient (Sullivan, Pugh, Melendez, & Hunt, 2010). Creating a reliable database for the
operations and maintenance is deemed necessary, and approaches to utilizing BIM models have been
tested (Akcamete, Akinci, & Garrett, 2019), using rooms, yet not objects.

1.3 Research Questions

Q1.1s there a possibility the current approach of estimating cleaning lifecycle costs is inaccurate?

Q2.Will the proposed approach increase the complexity of calculations experienced by the auditor?

Q3.Can the lifecycle cost data transfers be automated to prevent extracurricular tasks experienced
by the auditor?

Q4.Do the stakeholders agree that object-oriented approach could improve their workflows and
generate value?

Q5.Can a prototype include the functionality of a working software product?

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

2 Methodology

The study is based on a combination of methods. To address the qualitative research questions existing
literature on the subject was reviewed, followed by extensive stakeholder interviews. Personal insights
into the cleaning trade had been an inspiration for this study and had additionally influenced the
prototyping. The Contextual Design (CD) methodology was used to structure the investigation.

EXPERTS

PLAN ;. REQUIREMENTS .

i VISUALIZING :
{ PROCESSES :
S . N) §
{OPTIMIZING; OBSERVATIONS SCRIPT OB.ECT COST
On' o | PROGEBS: DEVELOPMENT FRAM EWORK . dRof
E ﬂ DEVELOPMENT ofus
» It

INTERVIEWS

w GM
-‘ ES IMATES
EXPERTS [ECTTTTETTEPPOPRePr :
¢ EVENTS :
S H @

Figure 2.1 The implementation of Plan-Do-Check-Act (PDCA) in the methodology

To implement cost information into the Revit model, two alternatives are presented. One method is to
use a V&S price-book, and the second is to use a dRofus proprietary project database. Both ways use
classification coding to identify objects and link them with the database counterparts. The subject is
investigated in chapter 5.1.

The investigation of BIM models , programming of transfer scripts, and supporting software were
carried out in the form of prototyping and case studies. The prototype transfer was tested on two case
studies, and the results were presented in two different tools; LCCbyg for LCC analysis and PowerBI
for data visualization.

The Autodesk Revit 2019 Environment (Revit) enabled populating the project with parameter
placeholders needed to run the lifecycle cost analysis. Furthermore, Dynamo 2.05 for Revit (Dynamo)
was used. To link object parametric data with external software, Visual Programming Language (VPL),
was used to map quantities with the LCChyg XML data schema. The XML file is used to transfer
generated reports from the Revit model, directly into LCChyg. More on the software will be described
later in chapter 5.3.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

2.1 Literature Review

The literature review was carried out to assist the problem development and to outline alternative
solutions to the solution discovery. The literature review was performed using the Aalborg University
Library called Primo, based on keyword search, using a range of strings and intermediary keywords
such as OR XOR, AND, Asterix*, concerning the following keywords: “BIM LCC”, “Lifecycle Cost”,
“DGNB”, “Sustainability”, “Operations”, “Maintenance”, “Cleaning”, “FM”, “Facility Management”,
“Python”, “Dynamo”, “LCCbyg”, “SBi”, “Classification”, “Design & Build”, “Data automation”,
“Object-Oriented”, “Building Information Modelling”, “Better Information Management”, “Building
Information Model”, “IFC”, “COBie”, “XML”, “XML Schema”, “Future Value”, “Lifecycle

Assessment”, “LCA”, “ISO 15686-5:2017”.

The abstracts were chosen and assessed for relevance. Mendeley referencing software was used to gather
sources. 92 sources were added to the library, and 65 are directly referenced in this report. The
bibliography mainly consists of research articles from trusted journals, as well as books. References to
websites and standards are supporting the primary literature. The areas of interest revolved around the
following goals:

e To identify existing approaches to cleaning and maintenance.

e To identify classification systems needed to classify components.

o To identify possibilities for automating the data transfer.

o To identify DGNB prerequisites, operational basis, and available databases supporting the
lifecycle cost for cleaning estimations.

e To identify existing BIM integration with FM operations.

2.2 Contextual Design

The CD methodology paves the way for a solid grounding of the methods and applications in a real
environment, and puts it through a set of testing environments, from the initial contextual inquiry, i.e.,
figuring what is essentially the problem, through to visioning, i.e., what could potentially solve the
problem, to storyboarding, i.e., creating a digestible explanation of the vision to the stakeholders,
through to stakeholder engagement.

The stakeholder engagement can be further subdivided into groups of development. Firstly, identifying
the stakeholder groups, requesting interviews, to conducting the interviews. The initial stakeholder
engagement is thoroughly described in the Contextual Design Methodology (Beyer & Holtzblatt, 1998).

The subgrouping of solution testing is further divided, depending on the development and the rigidity
of the solution. The first stakeholder presentations encapsulate presenting the idea and gathering initial
feedback, while further development concerns prototyping and presenting live demos of the proposal to
the stakeholders. According to the CD methodology, the prototyping should only follow after the UED;
however, a deviation from this sequence is made, as the prototype (Chapter 8) is developed right after
visioning. Having the prototype early in the process, enabled illustrating the goal of the research more
clearly, and encouraged the stakeholders to see the applications of the tool during live demonstrations.

Having developed a prototype, initial testing and feedback can be directed towards a more rigid solution,
which in turn can be further tested by the stakeholders — and ideally, be the end-users of the software
application. At this stage, the end-users should be able to try the proposed solution and see if they can
merge it with their existing workflows. This stage further illustrates the functionality and layout of the
tool and is described in the User Environment Design (UED) chapter 7.

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

3 Background

The following chapter is investigating lifecycle costing (LCC), its significance in the design and
operation of the building, and connections to sustainability certification. Moreover, background on cost
calculating approaches for operational cleaning is investigated.

3.1 Lifecycle Assessment and Costing

Lifecycle costing was first used in the US in 1933 for purchasing agricultural tractors by the General
Accounting Office. Back then, it was understood that the attention was brought to the initial purchase
price, not the lifecycle of the tractor. The operational cost over time can be much higher than the initial
investment (Thiebat, 2019). In the 1970s, the US Department of Defense drafted directives calculating
LCC of expensive military equipment during the development phase. Already then, investments were
based not only on the initial, but also on the Operations and Maintenance (O&M) cost of the asset
(Lichtenvort et al., 2008).

Lichtenvort et al. (2008) are distinguishing between three types of lifecycle costing — the Conventional,
Environmental, and Societal. He also suggests a need for different perspectives as each method is
lacking some scope on the others, and the processes need to include geographical differences, exchange
rates, discounting, etc. The point being that scoping and defining lifecycle costing can be a difficult
challenge, and there are many aspects which this thesis will not investigate. This thesis is concerning
the maintenance and operations costs, precisely indoor cleaning operations, which, due to the repetitive
nature, can significantly drive costs or offer desirable savings.

LCC Calculation
................... mEssssssslasssnssssngenannsnnsnnsannnnn,
v v v \ 4
R Costs in . Lifespan &
. uantities .
ates Life Cycle Q Frequencies

S R Na AR ,..

' ¢ H i
Construction Operation/Use Maintenance Renovation End of Life/
land acquisition, energy, cleaning external and replacement/ Demoliti

: ’ r molition
construction water, drainage, intemnal fittings, renewal of DI .
assets, taxes, insurance, utilities electrical and components d'SPOS';i;)
loans ete. etc. mechanical A e
2 recycling, reuse,
equipment, gas, e ato

lifts etc.
Figure 3.1 Components of lifecycle cost calculation

Source: (Maria Saridaki et al., 2019)

From the administrative standpoint, lifecycle costing will be required by law in 2020 (Rosendahls,
2019), by the Danish Transport, Building and Housing Agency (SBi) (“SBi,” 2019). Each new building
has not only the initial Design&Build cost considered but also the lifecycle cost of the overall asset’s
lifespan.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

From a practical standpoint, the building owners may require sustainability ratings to ensure that the
buildings they invest to be built will be created, following the modern standards. To evaluate if the
building is being built sustainably, building certification has become increasingly valuable. Amongst
many three certificates stand out: The German Green Building Sustainability Rating — German:
Deutsche Gesellschaft fiir Nachhaltiges Bauen (DGNB) (DGNB.de, 2019), the US made Leadership in
Energy and Environmental Design (LEED) and the British Building Research Establishment
Environmental Audit Monitoring (BREAM) (Goldstein, Herbel, & Figueroa, 2013).

According to Goldstein et al. (2013), each tool contains gaps in either embedded energy impacts not
being optimized for BREAM and LEED and lacking full Lifecycle Assessments (LCAs). What is a key
highlight that proves this thesis point is that although the DGNB satisfies a full-LCAs, it is weakened
by the generic data use. Although the DGNB does require building-specific data, precise results are still
somewhat ambiguous due to the generic information contained within.

As the DGNB is arguably the most accurate and developed certificate, it is being used by over 100
Architecture Engineering & Construction (AEC) companies in Denmark. A full list of companies
affiliated with the DGNB certificate in Denmark can be found here: (Green Building Council, 2013).

3.2 Lifecycle Costing as a part of DGNB

The DGNB is split into five main categories, giving 22.5% to 4 main categories and 10% of the total
score going to the process quality category. The four main categories consist of Environmental Quality,
Economic Quality, Sociocultural & Functional Quality, and the Technical quality, each equally having
a 22.5% say in the total building evaluation score (Green Building Council, 2013).

ECONOMY
(ECO 22,5 %)

SOCIETAL
ENVIRONMENT (SOC 22,5 %)

(ENV 22,5 %) ‘

TECHNICAL

PROCESS (TEC 22,5 %)

(PRO 10 %)

Figure 3.2 Division of categories influencing the total sustainability rating
Source: (Green Building Council, 2013)
Although environmental and socio-cultural qualities are split into more than ten subcategories, while

the Technical quality is divided into 5, the economic quality is split to only two subcategories — lifecycle
costs and suitability for third-party use (DGNB.de, 2019).

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Life Cycle
Costs
Calculation
________ | o ___
v 3 N N ¥
Construction | | Operation/Use| | Maintenance Renovation Demolition
| T
A4 J N
Media (Energy, Insurance, Help)
water, drainage, desk, Facility Cleaning
etc.) Management
v v ‘—i
Building Building Interior
Site Cleanin i g
9 CEI)étaer:Iiﬁrg | Cleaning
Furniture Plumbing Fixtures Surfaces Waste Disposal | [Other Services

Figure 3.3 The scoping diagram for thesis research

Highlighted in red is the scoped area of research for this report, while the children
are some categories amongst many that have the potential to be objectified.

Therefore, the category for lifecycle costs accounts for almost 10% (9.6%) of the overall score (Green
Building Council Denmark, 2017). It highlights how significant the lifecycle costs are and justifies why
such calculations shall be performed in the first place.

The DGNB focuses on building for people, giving users satisfaction, and ability to reduce costs and
optimize processes in the operation phase. Along with the DGNB, the Danish cleaning standard
DS/INSTA 800:2010 is responsible for outlining the national level for basing the standard of cleaning
(Dansk standard DS/INSTA 800 Rengoringskvalitet-System til fastlaeggelse og bedommelse af
rengoringskvalitet Cleaning quality-System for establishing and assessing cleaning quality, 2010). This
document is a reference point for quality standards and quality control during operations.

The categories are also interlinked — the lifecycle costs related to cleaning have an influence on the
suitability for third-party use (9%) and on the ease of building cleaning and maintenance (5%), as well
as other categories where it is compounded, such as optimization and complexity of the planning
method, awarding of tenders, conditions for optimal use and management, integrated planning and
commissioning, altogether accounting for further 2-6% of the total score.

Therefore, arguably, the cleaning strategy, the object-oriented lifecycle costing, the integrated planning,
and suitability for third-party use during operations, all come to form around 15-20% of the overall
score, hence find grounding for cleaning operations, an essential aspect of a building, relative to lifecycle
costs, integrated planning, and operational building management.

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

3.3 Lifecycle Costing in Design & Operations Phase

The primary difference between design and operations is that during the design, the project is not yet a
physical asset, and can, therefore, be altered with greater ease (DGNB.de, 2019).

a b c d e
\ :
+ Life-cycle Cost
\
[0 \ /
Q
& N
= Ability to influence
E \ at this point is very
o \ low land cost is high
> AY
E
<

~
"‘h-...
/ h"""——-—__\.

feasibility design construction planning/ operation & management/ demolition/
study construction in service renovation

-

Building Life Cycle (Time)
Figure 3.4 The ability to influence design relative to the building development

As seen above, during design and pre-certification, it is much simpler to optimize

building performance by benchmarking alternative solutions as early as possible.

Source: (Conradie & Roux, 2008)
During the design phase, calculating lifecycle costs makes the most sense, as the outcomes may
influence the decisions taken by the building owners to optimize the design relative to facility
maintenance. It is, however, also possible to calculate lifecycle Costs during the operational phase, to
inform the layout of the building, by arranging the movable assets, and by optimizing the use of spaces
and their maintenance (Huizenga, Hui, Duan, & Arens, 2001).

Project Planning and

. In use Modernization
Development Construction

Pre-
Certificate

Certificate | Certificate i Certificate for

for New
Buildings

for Existing Moderni-
Buildings zations

for New
Buildings

Figure 3.5 Building certification at different stages of the building lifecycle

Source: (DGNB.de, 2019)
It is in the operations phase when the LCCs are being influenced by the way the asset is maintained,
hence the information from the design phase is a foundation for future optimization, 4D scheduling, and
task management. Data at an object-level may have future benefits during the operations phase, where
each object can have its tracked history, operational parameters, and relative location represented in the
BIM model. Further discussion about future benefits can be found in the appendix 14.12. To facilitate
the information transfer, specific software is required to both derive the objects and calculate the cost.

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

4 Costing Approaches for Operational Cleaning

There are multiple ways of calculating the lifecycle costs and costs in general, depending on the level
of detail, fixed and variable conditions, limitations, and scope. The cost databases may vary depending
on the geographic, social, and economic conditions of a particular region. As the Thesis area is in
Aalborg, Denmark, prices will be derived using local currency — Danish Krone (DKK), which is worth
around 13 cents to a Euro (EUR) as of October 2019. In the following subchapters, the existing approach
is firstly presented, followed by the proposed approach, and then the two approaches are compared
against each other. Supplementary material to costing can be found in the appendices — chapter 14.2.

4.1 Existing DGNB Cost calculation

The existing costing approach is directly taken from the DGNB LCChyg template, which stems from
the TEC 1.5 (Green Building Council Denmark, 2017) of the DGNB costing manual. The costing
approach is based on the areal sum of square meter (m2) units for door areas, including skirtings, window
areas, stair areas, and floor areas. Furthermore, the floor areas are subdivided into categories, such as
bathrooms, office spaces, and hall spaces. The floor surfaces are then divided into material surfaces, i.e.,
carpets or hardwood floors, and subsequently, the price variation depends on the intensity of cleaning,
i.e., light, average, demanding, with corresponding explanation supplemented in TEC 1.5. The result is
therefore adjusted by providing the following variables:

1. Category (doors, windows, stairs, floors)
Material type (hard floor, carpet)
Quantity (m2)

Frequency (days/year)

Intensity (Light, average, demanding)

akrown

4.2 Object-Oriented Cost calculation proposal

The proposed approach uses information based on objects. Although the variable parameters are deemed
to be kept as closely similar to the original DGNB factor-based approach, there is a possibility of
achieving a greater accuracy due to calculating the count of individual objects within rooms. It is
possible to see differences between seemingly similar rooms in terms of area and function, yet having a
different layout, or different equipment within.

The approach uses similar parameters to the ones proposed by the existing DGNB template, with minor
changes. Below is a list of variables that will presumably complete the calculation.

1. Category (flexible, i.e., doors, windows, stairs, floors, walls, fixed furniture, furniture, plumbing
fixtures, lighting fixtures, skirtings, railings)

Material type (flexible, i.e., any material)

Quantity (m2, LBM, m3, units)

Frequency (days/year)

Intensity (Light, average, demanding)

gk~ own

The object categories and materials remain flexible, enabling the application of various components
specific to the building type and application, as well as using various materials, which may have its
cleaning cost adjusted beyond floor washing and carpet vacuuming. The intensity parameters can also
be case-specific and adjusted according to a min-average-max scale for each building or building type.

10

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Keeping the quantity, frequency, and intensity variables fixed to the original template offers the potential
to re-apply already existing parts of the LCCbyg software, as well as much of the previously gathered
knowledge needed to satisfy the DGNB LCC calculations.

4.3 Factor-based vs. Instance-based vs. Type-based quantity takeout

The calculations provided by the DGNB template account for a moderate level of detail. The quantities
are mainly split into a few factors and parameters. Figure 4.1 illustrates the grouping of categories
contained within the subset. In the existing DGNB template, the toilet has no detail, beyond defining
whether its use will be light, ordinary, or demanding.

Name Unit Quantity Unit price (DKK) Frequency (per year)
Buildings, internal
Space
Doors, window sills, skirting boards, etc.; cleaning - normal m2 226 2.00 26.00
Floars, hard; cleaning - normal m2 864 1.30 100.00
Floors, hard; cleaning - demanding m2 130 2.50 100.00
Toilets/baths; cleaning - normal m2 49 6.00 252.00

Figure 4.1 Factor-based quantity takeout — LCCbyg 2.2.52, Screenshot

The Instance-based approach undertakes instantiating rooms so that higher occupancy rates can be
differentiated from those with lesser occupancy. The automated data transfer can name instances
accordingly to Room IDs, function, floor finish material, and cleaning intensity. The greater detail aims
for a more accurate quantity takeout.

Name Unit Quantity Unit price (DKK) Frequency (per year)
580542/ lollet/ |ile antiskid/ Demanding mZ 3 £.80 23200
586545/ Tailet/Tile antiskid/Demanding m2 3 3.00 252.00
586548/ Tailet/Tile antiskid/Demanding m2 3 3.00 252.00
586551/ Toilet/Tiles/Demanding m2 5 2.50 252.00
586554/ Tailet/Tiles/Demanding m2 4 2.50 252.00
586560/ Toilet/Tiles/Demanding m2 7 2.50 252.00
586564/ Toilet/Tiles/Demanding m2 4 2.50 252.00
586567/ Tailet/Linoleum/Demanding m2 2 2.10 252.00
586570/ Tailet/Linoleum/Demanding m2 2 2.10 252.00

Figure 4.2 Instance-based quantity takeout — LCCbyg 2.2.52, Screenshot

The type-based approach is an attempt to find a balance between simplicity and accuracy. The combined
object types use units to calculate all instances within a building.

Name Unit Quantity Unit price (DKK) Frequency (per year)
L A AN AY YA I AR R AT 8 g PR AR M e s - B
Family Type: Cleaning_Bin_Toilet/ Family: Cleaning_Bin_Standard/Light units 12 3.00 100.00
Family Type: Test bin123412341234/ Family: Cleaning_Bin_Standard/Light units 2 2.00 100.00
Family Type: Cleaning_Desk_Chair/ Family: Cleaning_Chair_Standard/Light units 198 1.00 100.00
Family Type: Cleaning_Lounge_Chair/ Family: Cleaning_Chair_Standard/Light units 3 4.00 100.00
Family Type: Cleaning_Conference_Tabler/ Family: Cleaning_Conference_Tabler/Light units 4 6.00 100.00
Family Type: Desk_Meeting/ Family: Desk_Standard/Light units 1 5.00 100.00
Family Type: Desk_Meeting_800x1400/ Family: Desk_Standard/Light units 2 2.50 100.00

Figure 4.3 Type-based quantity takeout — LCCbyg 2.2.52, Screenshot

This visualizes cleaning costs on per room basis. This approach is possible, thanks to the structural
composition of BIM models. The underlying technology is investigated in the following chapter.

11

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

5 Software and Technologies

To facilitate the BIM model quantity takeout for lifecycle costing, the SBi has created a freely available
software called the LCCbyg (Haugbelle et al., 2017). More on the software can be found in chapter 5.3.
As of the writing of this thesis, there is no direct plugin which can transfer quantities from a Revit model,
directly to LCChbyg. Therefore this process is currently transferred manually, or MS Excel spreadsheets
are used as opposed to the LCChyg software (Maria Saridaki et al., 2019).

Manual data entry may take a considerable amount of time to transfer. Additionally, the accuracy of
manual data transfer is questionable, as input errors are inevitable (Piaskowski, AK, Petersons, R, Wyke,
SCS, Petrova, EA & Svidt, K, 2019).

Thankfully, the LCChbyg calculation report uses a .xml format enabling open access to its template
reports. It is, therefore, possible to access the contents and append the structure using Dynamo Revit
and Python scripting. This chapter will explain further, the underlying technologies needed for data
transfer automation and the technologies used to facilitate data transfer. Firstly, the application of BIM
relative to the subject of LCC quantity takeout is explained, followed by cost and object databases,
VPLs, and analyzing and visualizing tools. Lastly, open standard technologies are described as
alternatives to the proposed workflow.

5.1 Building Information Modelling

Building Information Modelling (BIM), or Better Information Management (BIM), (Eastman, Teicholz,
Sacks, & Liston, 2018) both form a backbone for object-oriented building modeling. Building
Information Modelling is concerned with geometrical and parametrical, object-oriented modeling of
digital twins (Kaewunruen & Lian, 2019).

Better Information Management is about what to do with the parametric models and information
attached to objects later on, during the design and operation. Both concepts are what enable a more
detailed approach , as opposed to non-parametric CAD.

The hierarchical relationships help establish project breakdown and permit objects such as furniture and
plumbing fixtures to be hosted by spaces (rooms in Revit), which can then share common properties of
a particular room type, thanks to the concept of inheritance. Inheritance in computational terms is when
a child inherits properties of the parent, i.e., the furniture inherits the location of the room it is located
in (Ugwu, Kumaraswamy, Kung, & Ng, 2005).

The objects within rooms can further be categorized by the properties the room shares with a building
zone, the zone with a building level, and the level with the building envelope. Further, the building
relates to the site it is built on, and the site can relate to its geographical placement within the city.
(Christian Koch, 2018).

This way, information about assets can be neatly organized, and the level of detail from the city scale to
the object scale be distinguishably associated with objects. The data can then be utilized in a range of
tests and optimization models.

Autodesk Revit Models

Autodesk Revit is a proprietary BIM environment tool, which encompasses a wide range of external
tools that can plug into its API and feed in information to or from the model (Kensek, 2014). Tools like
Dynamo use the Revit API and display it in a graphical interface.

Revit rooms can be exported to external software that may further process quantities and specifications.
Linking Revit models with external databases facilitate the standardization of workflows and ensure that

12

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

the models use accurate and reliable data from a single source of reference. Linking requires classifying
objects. What is significant is that Revit supports a certified export using the Industry Foundation Class
format (IFC), used by many FM software tools during the operations phase (Autodesk, 2018; 1SO,
2013).

Classification systems

A classification type parameter must be provided to connect cost information from an external database
with the Revit model. An exception is to use Globally Unique Identifiers (GUIDs); however, those apply
to instances at a modeling level. Type properties may also contain GUIDs, just like any other properties;
however, GUIDs are not human-readable (Mendes De Farias, Roxin, & Nicolle, 2018).

On the other hand, classifications can be recognizable as their identification is standardized. Three most

commonly used classification systems in Denmark are investigated — the SfB classification
(Samarbetskomitén for Byggnadsfragor, 2012), the Cuneco Classification System (CSS) (BIPS, 2015)
and the BIM7AA classification system (BIM7AA, 2018).

Because the BIM7AA classification is based on SfB, and both the Sigma Estimates and the LCChyg
software uses SfB to classify objects, SfB had been chosen as a classification for the prototype
development. Many tools facilitate automatic object classification. For the sake of project testing,
manual classification was entered. Though, using an automated classifier significantly reduces the effort
needed to classify objects, as well as ensures no typos break the consistency.

Following the classification, the objects can now be linked to the database placeholders in proprietary
databases such as dRofus or Sigma Estimates. The advantage of using proprietary databases is that the
links to the Revit model are premade, and further automated connection can be utilized, thus saving
effort and increasing transfer accuracy.

Below are two possibilities of cost data placement explained, either directly on objects, using the dRofus
template, or in a cost database associated with the objects using the classification code.

dRofus

dRofus is an integrated design validation of the building requirements between the Revit model and the
initial clients brief. The purpose is to plan, create, and manage building data from various stakeholders,
providing workflow support and building information from multiple phases.

It can save employers' exchange requirements (EIR) and validate the design models against the database.
It integrates bi-directional data synchronization, including planning data, geometric data, parametric
data, and accessible format documentation links to supplementary images and PDFs.

dRofus is a solution for enhancing architects' capabilities, packaged in a neat and intuitive interface. The
architects are using this software as a database storing BIM geometry and information. Its purpose is
further extended, to control accessibility and versioning, and to facilitate model checking against
building code requirements and the brief.

The significance of dRofus for this project is twofold. One, it is a part of the workflow used by the
architects' office with regards to the context of the case study, and two, the software stores parametric
information within the template database, and through a bidirectional link with Revit, it can populate
the data to multiple models.

The price and frequency data can be populated within the dRofus room and object database, and be
linked to the Revit models using the aforementioned classification methods. This way, data transfer has
two advantages. One, it can be incorporated into existing processes, and two, a higher degree of
automation, reduces manual input while preventing entry errors.

13

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

V&S Price books using Sigma Estimates

An alternative to dRofus is to use another database. Sigma Estimates —software capable of a bi-
directional link between the Revit model and the V&S Price books, enables a similar workflow. The
software has the capability of linking the Revit model with the price books by utilizing its in-built out
of the box capability to link project data using classification coding (Maria; Saridaki & Psarra, 2017).

The significance of V&S Price books for this project is the following. The price books are a standard
method for costing used by the Danish AEC sector, and thereby its reliability is well validated over the
years. Secondly, the price books are maintained and adjusted for inflation and other factors, adjusted
yearly to meet current market conditions (Molio, 2019).

To the authors' knowledge, no cost database exists for object-based cleaning. Therefore, linking a price
book would require creating a price book in the first place. This is beyond the scope of this thesis. Once
the research is conducted on the prices, linking the price book with a Revit model, using the Sigma
Autodesk Integrations plugin, is a well-documented process, and therefore it will not be described
further. Please refer to (Maria Saridaki et al., 2019) or Sigma Estimates official website for further
guidance.

Data visualization

Business Intelligence tools permit an executive view at options by displaying the data in a presentable
and easily digestible manner. Key Performance Indicators (KPIs) can be used as metrics for representing
how the costs may influence the design. There are various tools to choose from, both open source and
paid versions. These tools usually consist of Ad Hoc reports, dashboards for displaying data, KPIs,
strategic planning, and visual analytics possibilities. It is generally possible to view the data through the
cloud, and the data can be accessed using both mobile and stationary platforms. Due to the integration
with the Microsoft Office package, the PowerBI tool was chosen for this project.

5.2 Interoperability using Visual Programming Language

Dynamo is a Visual Programming Language (VPL) which directly plugs to the Revit API. It uses the
Dynamo Textual Language (DTL), formerly DesignScript (Aish, 2017). It enables a direct connection
with Python 2.7. It has been created to express design intentions and ease the wiring of data and
geometry, beyond the out of the box capabilities of the Revit model (Mccrone, 2010). The Dynamo
version 2.0.3 is used.

As Dynamo contains a Python scripting interface, the functionality of the software is broad. Python
scripts can create loops capable of traversing through data and parsing it to appropriate code snippets,
which are appended to the original XML template file from the LCChyg.

Packages and Prototype dependencies

Packages from external authors are modules increasing the OOTB Dynamo capabilities. The content is
open-sourced, and a big thank you goes to all the programmers who spent their effort in creating these
excellent packages. Below is a description of how the packages are used explaining the dependencies.

14

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Table 1. Packages and script dependencies

Package and Author Description

Bakery package (Johnson, - Itis used to obtain All Family Types of Category — a very useful node

2019) that creates a list of family types for each category — used extensively
for the LCCbyg data transfer script.

Archilab Net (Sobon, 2019) FamilyInstance.FamilyType — Takes all family instances within the

project and creates a list of family types, which can later be used as
keys for further data structuring. Used extensively for the LCCbyg
data transfer script.

- View.OverrideGraphicsSettings — a custom node used to set color
settings for the view filter overrides. It is used for the Calendar filter
scripts.

- View.SetFilterOverrides - a custom node used to set view filter
overrides. It is used for the Calendar filter scripts.

Lunchbox (“LunchBox — - RemoveNullValues — a script that removes null values from the data,
PROVING GROUND,” thereby ensuring the list (column) will always correspond to the
2019) correct row. Used extensively for the LCCbyg data transfer script.
Clockwork (Andydandy74, - View. Duplicate — duplicate existing views to create new views
2019) automatically. It is used for the Calendar filter scripts.

- List.JoinbyKey — A node useful for joining two lists of different
lengths. Used for the Room cost grand totals script to combine lists of
rooms with objects contained within the rooms.

Rhythm (Pierson, 2019) - Elements.SetParameterByNameorlnstance — A node useful for setting
parameters to instances of objects. Used for the grand totals room
script to populate costing information to every room instance.

- Elements.GetParameterByNameorInstance — A node useful for getting
parameters from instances of objects. Used for the object cost yearly
totals script to populate costing information to every object instance.

Room SVG Exporter, by - Python Script is enabling the export of Rooms from Views to the

Adam Bear (Bear, 2019) .SVG format. Extremely useful for PowerBI applications.

Modularity of Dynamo

Using custom nodes permits scaling of Dynamo scripts, and controlling the granularity of the code. It is
possible first to create a draft code transfer, and later replace it by modules of custom nodes or Python
scripts.

This way, clarity can be kept, and the detailed source code can be kept away from the primary visual
view. Furthermore, there is a possibility to execute subscripts, or custom nodes in a sequence, ensuring
there is an order of script execution. The script retrieves, then populates new data, and further retrieves
the newly appended data. It is possible to publish self-made packages and custom nodes, in line with the
Dynamo coders mentality, that scripts should be openly shared amongst the Dynamo community.

Custom made packages

Creating a custom package requires opening a custom package interface, as well as specifying the inputs
and outputs, along with the processing content of the custom script. The custom script is then saved as
.dyf file, which can be grouped under appropriate hierarchy within the Dynamo browser interface. The
package of custom nodes can then be shared online with the rest of the Dynamo community. For this
project, a script package necessary to support the main transfer scripts is created.

15

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Replicating packages to reduce third party reliance is a possibility for applications that are openly
compound and designed within Dynamo. For those applications designed in C#, or other external
programming languages, they may come as a complete product node, rather than a compound node, and
therefore editing and replicating them may require edits on the source code.

The Dynamo Player interface plays scripts without the need to open the Dynamo interface. The player
enables data input directly from the interface, given the nodes within the script code are marked as “Input
nodes”. It is a neat interface for users not familiar with Dynamo, whose job is partly to run scripts that
are ready for use.

5.3 Lifecycle Costing tool - LCCByg

LCCbyg is atool released by the Danish Building Research Institute (SBi), at Aalborg University (AAU)
on behalf of the Danish Transport, Construction and Housing Agency (Haugbelle et al., 2017) to allow
for an accurate and uniform lifecycle cost calculation for all future public developments in Denmark.

The tools’ calculation utility is split into Six main categories visible in Figure 5.1. Although all five
categories are equally essential to achieve the complete calculation, only cleaning is investigated in
detail. The assumption is that if object-oriented quantity takeout can be performed for cleaning, while
the other categories relying on objects can be transferred using the same approach.

| Project information Assumptions Account plans Conclusion | Report section

Plot, consultancy and client costs
i Y Cleaning

Site and structures Acquisition 0

Furniture and equipment Operation and maintenance —sum: 25,607,741
Present value 25,607,741

Management

Gross floor area

Figure 5.1 The area of interest within the LCCbyg software

To briefly explain the contents of the window panes, the first category accounts for initial development
fees, while the site and structures account for factors related to the building envelope. For furniture and
equipment, one can expect 2 to 5 changes over the economic lifespan (Maria; Saridaki & Psarra,
2017).The management and supply costs have future value (FV) and price fluctuation adjustments
applied.

Cleaning is arguably the most interesting, as it requires maintenance on a daily level. As each
inefficiency is multiplied by roughly 200 working days a year, over 50 years, it equates to a factor of
10,000.

LCCbyg and XML

The LCCbyg underlying data schema is parsed to an openly available .xsd schema file for .xml data
format, observed from the source materials from the LCCbyg website.

“Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable.”

Source: (“XML,” 2019)

XML is a standardized and internationally recognized data schema language created by Charles F.
Goldfarb, Ed Mosher, and Ray Lorie at IBM in the 1970s (Harold & Means, 2001), enabling a
descriptive and hierarchical data transfer. Furthermore, the XML format can be human-readable and
uses a set of user-defined tags to tag information it conveys.

“The purpose of an XSD schema is to define the legal building blocks of an XML document.”

16

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

(“XML Schema Tutorial,” 2019)

The schema is interoperable and fully accessible when openly shared. The main advantage of using an
interoperable format is that the data transfer can be mapped to follow a defined schema and be translated
from one program to another (Eastman et al., 2018). The attribute values within the XML file can be
appended, and new data sets can be merged to an existing document using data parsing modules such as
SAX, ElementTree, and DOM (Harold & Means, 2001). Below presented, are lines of code generated
by the LCCbyg software in the form of an XML file.

1

2 <project generator="LCCbyg 2.2.52" languagecode="en" currency="DKK" locked="false"” name="Main Project” projecttypedescription="Project type sui
<reportdefinitions>

4 <viewdefinition label="Logo or image” name="metablock” blockname="headerlogo” include="true"” comment="Evt. Logo" />

5 <viewdefinition label="Title and description” name="metablock" blockname="projectdescription” include="true” comment="Titel pd rapport’>

6 <body>

7 <div>

8 <h2 id="title ">xxx</h2>

9 <h3 id="description »xxx</h3>

18 <fdiv>

11 </body>

12 <fviewdefinition>

13 <viewdefinition label="Project” name="metablock” blockname="case

14 <viewdefinition label="Client"” name="metablock" blockname="bui

15 <viewdefinition label="Consultant 1" name="metablock” blockname=

16 <viewdefinition label="Consultant 2" name: ablock” blockname= lata blokke™ [>

17 <viewdefinition label="Consultant 3" name ablock”™ blockname= '] tadata blokke" />

18 <viewdefinition label="Alternatives"” name="versions” include="true” comment="Alternativer (versioner)™»

19 <body>

Figure 5.2 XML file generated by LCCbyg 2.2.52

The beginning of the code shows the XML and encoding version, as well as the tool

needed for generating the project. Other data is available such as language and

currency. Source: LCChyg 2.2.52 XML template file
Line 1 contains the encoding set to UTF-8. Line 2 is descriptive of the project language, currency,
accessibility, name, and project description. Lines 4 and 5 labels the project metadata, such as project
logo, title, and description. View definition labels define views containing information about the project,
the client, the consultants, and the project alternatives, which are visible between lines 13 and 18. This
information is unaffected by the proposed data transfer and can be filled in either manually by the
auditor, or through another data automation plugin or module.

5443 <accountplan vid="standardcleaning” label="Cleaning” type="management"” indexdevelopmentname="inflationgeneral”
5444 npvdevelopmentname="discountrate” lockbasevalues="true"” hideamount="false"” includeinreport="true">

5445 <structuredefinition calculationmethod="standordizedcleaning” resultgroups="cleaning” indexdevelopments="inflationgeneral">
5446 <field name="indexdevelopment” level="row" group="basevalues” label="Priice development” />

5447 <fileld name="units" level="row"

5448 <field name="unitprice” level="

5449 <field name=

5450 <field name=

5451 <field name= /

5452 <field name= v putvalues” label t cost (DKK)" />
5453 <field name="comment” level="row" group="inputvalues"” label="Comment™ [}
5454 </structuredefinition>

5455

5456

5457

5458 <unit name="units" /[>

5459 <unit name="stacked m3" />

5460 <funits>

Figure 5.3 LCC XML generated Information about cleaning account plan

Source: LCChyg 2.2.52 XML template file
The data about project cleaning is represented in line 5443. The line count can vary depending on the
data input from other categories, i.e., construction or demolition. Therefore any code relying on
character or line count will not work here.

The account plan from line 5443 is created to contain information for standard cleaning. It has a general
inflation rate and is categorized under management costs. Sub children of the cleaning account plan
include price development, “initial” units, frequency and unit price, and after that, input values for
instantiated units, unit price, frequency, and count (amount). The available units, along with the default
unit, can be seen in lines 5455-5460.

17

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

The account plan enables the data to be hierarchically intertwined with the rest of the software. Its
children indented further, will store the input values once those are transferred, and it is where the Python
script will have to input new information, directly based on the Revit model and its parameter values.

5654 <maingroup name="Buildings, internal” sharedvaluegroups="indoor">
5655 <subgroup templatename="Rum" istemplate="true” name="Space">
5656 <row name="empty" include="false"” indexdevelopmentname="inflationgeneral” units="m2">
5657 <basevalues>

5658 <values vid="template" />

5659 </basevalues>

5660 <inputvalues>

5661 <values vid="1" />

5662 </inputvalues>

5663 </row>

5664 </subgroup>

5665 </maingroup>

5666 </accountplan>

5667 </costdatabreakdown>
5668 </project>

Figure 5.4 Empty placeholders for XML data needed for this project

Above, the predefined element tree is visible for the maingroup = “Buildings,

internal. ” Source: LCChyg 2.2.52 XML template file
An empty space called “Rum” contains no base and no input values besides a version 1D (vid) set to a
template for base values, and set to “1” for input values. The data is missing regarding units, unit price,
frequency, and amount. This is the data needed to be filled in from Revit using a coding technique that
will convert the data appropriately.

Before this can take place, the Revit model must be populated with unit price data, as well as cleaning
frequency, units, and quantities. To do so, besides linking the database with the Revit parameters, the
attribute values within must be assessed. Costing methods can be taken from external databases, as
explained earlier. The frequency of cleaning is case-specific, and no specific calculation approach is
considered in this report.

XMLOperation — SetAttributeValue — i.e. "maingroup name ="Buildings,internal”

S XMLSourceFilePath ——————————— .xml template or existing analysis file

N
Buildings, XMLDestinationFilePath xml appended file
Internal

N XMLNodePath (XPATH) ———— ./costdatabreakdown/accountplan/maingroup
NodeORAttrinbute_Name maingroup name
NodeORAttribute_Value CleaningContractType i.e. "Buildings, internal"

Figure 5.5 The structure of the subgroup called Buildings Internal

To create a Revit counterpart of the frequency, cost, count, and unit type parameters, Revit counterpart
parameters were added in the form of shared parameters. The data mapping diagram can be observed in
the appendix 14.3. Shared parameters can be shared across models and be stored separately.

XMLOperation ——— CreateChildNode —— — "Create a new Room"
s 7 \\ XMLSourceFilePath ———— .xml template or existing analysis file
Room Data J
\ / XMLDestinationFilePath xml appended file

e p

XMLNodePath (XPATH) — ./costdatabreakdown/accountplan/maingroup/subgroup
NodeORAttrinbute_ Name RoomType+ID+Level
NodeORAttribute_Value *

Figure 5.6 Room data level of granularity

18

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

Accessing the XML structure requires reaching a certain sub-level of the element tree. In the above
illustration, XPATH is used to access the Buildings Internal subcategory — a child of the maintenance
category. After that, rooms are the children of the maingroup (Buildings Internal subcategory), holding
room name information.

A level below, “Room Data” is a container of room instances within the building. For simplicity zones
are omitted in the schema; however, it is possible to use zones, instead of rooms, by reorganizing the
structure.lt is also possible to place all objects directly under a single room —which is the approach used
by the prototype to simplify the data transfer.

Object structure and object attributes
There are at least three possible approaches to structuring the data:

1. Grouping objects by combined aerial categories: i.e., stairs, floor surfaces, doors, etc. using
areas (m2)

2. Grouping object by combined unit type counts: i.e., stairs Type A, single leaf wooden door, etc.
using units (pieces)

3. Grouping objects by Room IDs, i.e., Room 123456/stairs Type A, Room12345/wooden floor,
etc. using both units and areas.

Alternatively, a combination of metrics can be used to simplify the data transfer while maintaining the
level of detail. This approach uses a mix of the three approaches above.

1. The objects' categories are used for the main classification (categories).

2. The object types are forming a child of the categories superstructure (types) through a division
of types depending on the metric, i.e., units, running meters, areas, and volumes,

3. The floor surfaces are individually assessed using Room instances, sorted by Revit element IDs
(Room IDs).

This approach permits testing of all three approaches with a relatively lesser amount of scripts needed.
All three approaches can be combined and coded to form a basis for future updates, once a preferred
approach is chosen. As for the initial prototype, the room container will hold areas of floor surfaces,
doors, curtain walls, and windows, while furniture, fittings, and plumbing fixtures will be grouped per
object type. A diagram depicting units of measure per object type can be found in Appendix 14.3 -
Figure 14.13 A diagram depicting the different units of measure for different cost objects.

The proposed approach quantifies objects by object type. This approach has a drawback that the objects
within rooms are not independently costed. Instead, they are costed together, as a sum of all objects of
a specified category and type — say, a laminated plywood desk 1500x750mm will be counted for all
instances within the building, rather than a single room. The location of a new object in the XML schema
can be seen in Figure 5.7 A diagram illustrating adding a new object to the LCChyg Schema.

XMLOperation ———— CreateChildNode ——————— "Create a new Object"
/ \\ XMLSourceFilePath ———— .xml template or existing analysis file
“ New Object]
| Data | XMLDestinationFilePath xml appended analysis file
\ J
- -~ XMLNodePath (XPATH) —— ./costdatabreakdown/accountplan/maingroup/subgroup/row
NodeORAttrinbute_Name ObjectType+Room ID+Intensity

Figure 5.7 A diagram illustrating adding a new object to the LCCbyg Schema

The advantage is that the data structure will be much simpler. It is also unlikely there should be
discrepancies between rooms with similar object types. It is possible to account for anomalies by
creating a new object type.

19

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Adding Attributes to objects

The database must store attributes. The placeholders must follow a schema that will be uniform, from
documentation to the database, to the model, the scripts, all the way to the LCChyg costing tool. The
structure is taken from the LCChbyg tool, given this is the part that cannot be altered. As the tool requires

costing, frequency, and quantity inputs, grouped by cleaning intensity, the below diagram in Figure 5.8
depicts the parameter structure.

Cost
Frequency

Intensity - Light
Count

7

Units
Cost
LCC byg Frequency
Intensity - Average
Count
Units

Cost

Frequency
Intensity - Demanding

PowerBl — Sums

Count

Units

Total floor cleaning cost

Total room cleaning cost (floor+objects)
Belonging Room ID (for objects)

Room number (for .SVG)

Supporting Parameters Object ID (GUID or Revit ID)

Object Classification Parameter

Zone ID

AN A AN AN

Part of Contract (yes/no)

Figure 5.8 Parameter placeholders, relationships, and data types

The light, average, demanding intensity parameter can be tailored to the specific use case of the building,
and not necessarily follow the guidelines of the TEC 1.5 DGNB standard.

XMLOperation ————— SetAttributeValue ———— i.e. frequency ="50"
// ™ XMLSourceFilePath ——————————— .xml template or existing analysis file
[New Object
Attribute Value | XMLDestinationFilePath ———————————— .xml appended analysis file

XMLNodePath (XPATH) - ./costdatabreakdown/accountplan/maingroup/subgroup/row/inputvalues/values
NodeORAttrinbute_ Name ———— Frequency

NodeORAttribute_Value *
Figure 5.9 A diagram is depicting adding a new attribute to an object

Attributes such as frequency or cost are placed as values under objects in the
“inputvalues” hierarchy level. Objects are called rows in the XML schema, where
subgroups equate to room instances in the Revit model.

Specifying the intensity levels lets the auditor to explicitly state what is meant by light cleaning, as
opposed to average, for a particular object. The list of object types and intensity specifications should
be accounted for in the database, or linked to an external document file.

20

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

6 Case Studies

Two case studies are investigated for this project. The initial case study comprises an office building
created to develop the prototype for the data transfer. as well as to establish modeling procedures
required to create a BIM model for a facility that is already in operation. The second case study is an
office building during its design development phase, supplied by C.F Meller. This case study is used as
a testing model to figure any transfer errors or modeling techniques for which the transfer scripts cannot
account for.

To enable object-oriented lifecycle costing, a BIM model is a prerequisite. This is a lesser problem for
new project procurements, as BIM has become very popular, and most of the new public projects do
have BIM models available for this calculation as required by the Danish law (Smith, 2014). It may not
be the same for existing buildings built decades or centuries ago, where BIM models are not so readily
available. Even when the BIM model is available, the model might not be modeled accurately, or may
not contain adequate objects needed for the data transfer.

The case study aims to investigate the minimum data required to satisfy the LCC data transfer to
LCCbyg. To do that, an object library is developed, along with the parameters, placeholders, and data
transfer scripts. The data is developed directly within Autodesk Revit, as this BIM environment is
familiar to the author. No external database is used to support the model setup, and the parameter values
are keyed in manually using the Revit schedules. The schedules can be found in appendix 14.2. The
second case study uses dRofus to transfer parameters between the database and the Revit model.

6.1 Test Revit Model

The model has been created in Revit, along with families needed to represent the furniture, plumbing
fixtures, and lighting fixtures. The geometry level of detail was generic LOD200 (DiKon, 2017), as the
only purpose of object geometry was to retrieve item location relative to its placement in the building
and having an object placeholder for parameter storage.

Figure 6.1 Case Study Revit model in 3D - Screenshot

Note that the roof and windows have been hidden, and sections were cut on the
two front-facing walls. The illustration presents 3D objects taken into calculations.

21

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Families have been created to support object-based library creation for information exchange and to
support visual and spatial planning. The list of family types can be seen in Table 2. The families must
have a 3D geometry for bounding boxes to exist, allowing for intersections with room bounding boxes.

RGB 191-235} «5olid fill>
I RGE 128-128 <Solid fill>
RGB 192-192 | Steel
RGB 218-219} <5olid fill»
RGB 147-147 | <5olid fill>
RGB 0B4-192 | <Solid fill>
RGB 221-198 | <Solid fill>

Carpet
Linoleum

Perforated Metal

Polished Concre

Tile antiskid
Tiles
Wood

| | e[e[| pa| =

REERERREIER

Figure 6.2 Schema color legend representation for Revit rooms (Screenshot)

Figure 6.2 and Figure 6.3 present a color schema legend depicting floor surfaces and a sample floor plan
of the model. Full plans can be found in chapter 14.1 - Appendix A —Floor plans. The drawing represents
an existing office building of roughly 1700m2, built in the 1980s.

Figure 6.3 Case study office building — Ground-floor plan (Screenshot)

Orange-colored objects are made of laminated wood.

The model setup took just a few hours, proving its early design phase applicability. It is hard to quantify
the effort needed to create models of existing buildings, yet with the advancement of photogrammetry
and machine learning, it may soon be automated and down to a surveyor capturing the structure on a
camera (Barazzetti, Banfi, Brumana, & Previtali, 2015). Until then, a standardized object database and
workflow will reduce the model constructing process.

Some of the families were imported from other Danish-made Revit models, to see how such items will
behave and to check for any bugs related to premade families, with pre-existing parameters. One bug
came out for a family with no geometry, which only contained 2D annotations. As it could not intersect
with a room, it had given a null value to the group by key code, thereby creating an error.

The test model did not contain all of the elements due to time constraints; however, scripts were made,
capable of transferring various units of measure, which work with multiple categories. The data transfer
is further explained in chapter 8 - Data transfer Prototyping.

22

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Table 2. Components and component materials included in the Case study model

Furniture Families Plumbing Fixtures Casework
Toilets, Washbasins, Hand dryers, Towel

Desks, Tables, . . .
dispensers, Soap dispensers, Sanitary bag

Chairs, Bins .
mounts, Mirrors

Doors Windows Curtain Walls

Single & double leaf Openable, Fixed Openable, Fixed

Stair runs Lighting Fixtures Railings/Skirtings

Steel staircase runs - Stair railings, Balusters

Ceilings Object Materials Floor Materials
Smooth laminated wood, Gripped rubber plastic, Mosaic Wood, Tile antiskid, Tile smooth,
Metal, Porcelain/Ceramic, Glass, Paint, Steel, Carpet, Perforated Steel, Linoleum, Entry
Glass Mats

The model was created based on an existing building, personally investigated, and measured over a
period of two years, employed as a janitor. The case study has a practical grounding concerning cleaning
and anomalies derived from this space. One oddity was the occupancy rate of individual bathrooms in
the building. The two bathrooms on the first floor to the left (West side of the building) were used by
44 people (desk count), and 23 people only used the four toilets to the right. The high occupancy rates
made the two toilets to the left extremely time-consuming, whereby the four bathrooms to the right
relatively quick to clean.

Such analysis could be derived from a BIM model given it has shortest path algorithms calculating
occupancy rates. A Dynamo script is capable of calculating the shortest paths is made available by Dieter
Vermuelen (2017). It is possible to adapt the script to uses other than a fire escape.

Although bins are not objects included by the architects, they are placed afterward by the cleaning
companies can often be cumbersome on the cleaning personnel, as explained in this model, 93 bins were
placed in the building, which made emptying a 30-45 minute task, each day. If the containers were
instead located at strategic locations, this effort could be significantly reduced.

6.2 Implementation case study

The second case study is a model provided by CF Moiller is a 700m2 office building. It can be observed
from the floor plans, that surface material optimization and furniture layout, as well as craftsmanship,
will likely influence the LCC calculations. The plans are not made available due to copyrights. The
following section describes the testing of prototypes on the case study model. Some readers may prefer
to read chapters 7 - User Environment and chapter 8 - Data transfer Prototyping, prior to reading the
case study implementation.

The dRofus implementation for costing and using a standardized template is the desired workflow;
however, the initial test was performed without the dRofus database, as it required permissions to alter
its setup. The model was to be populated with sample data that may not provide 100% accuracy due to
a lack of reliable object costing information. The primary purpose was to highlight all deficiencies of
data transfer and potential risks when implementing the workflow on alternative buildings.

While checking the model, it became apparent that additional scripts were to be required to facilitate
curtain panel windows and the transfer for lighting fixtures. The scripts have proven to support both
curtain wall windows and doors, as well as lighting fixtures, after minor modifications. The scripts are
explained in chapter 8.

A shared parameter file is imported to commence the transfer. The simplest way to do this is to insert a
view from another project. In this case, — the views consist of schedules necessary for data transfer. The

23

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

schedules automatically populate parameters needed for each component, without the need of running
any Dynamo scripts.

Floor Finish parameter values were missing, and the floor finishes were annotated as surface materials
on floor build-ups. This may require an additional script that will match the material type with the room
type. Unfortunately, there were double floor buildups made in the model — one generic, marking the
space build-up of the structural floor, and the other finish floors. The attempt to transfer materials to
room data has failed due to the duplications of floors intersecting with the rooms; however, an alternative
approach of if-then based logic gateways could have been used instead. The room floor finish parameters
were instead filled in manually due to a small complexity of the model, taking approximately 10 minutes.

Some objects are created as generic models, where instead, they should belong to the furniture type.
This is asmall issue, as it only requires the objects to be classified as furniture families. A bigger problem
was presented, when stairs were modeled as a generic family. The stairs are a built-in Revit family and
must be modeled appropriately, or otherwise, the family does not contain nested components such as
baluster, railings, or stair runs, and therefore, will not show in the transfer. Lastly, some objects were
created as 2D plan representations instead of 3D geometry; therefore, those objects required adding a
3D component, or otherwise, were not considered during the data transfer.

The auditor needs to pick up those errors and fix them before the data transfer, or otherwise, the LCC
estimations will lack in accuracy. According to the BIM manager, it is challenging to convince seasoned
employees of big organizations to stick with modeling conventions, and therefore a proposed approach
is to; one, audit the model, two, switch the families to temporary ones, keeping in mind that the detailed
geometry is not required for the transfer, three, make the LCC transfer, and four, return to the original
model objects afterward. This is not the best practice, but it does not disturb the workflow and keeps the
job of change advocates much easier. A long-term solution will require the correct object database,
accessible by all modelers.

6.3 Implementation of database setup

To set up and link a dRofus database, specific actions are needed to be carried out. Firstly, a Dynamic
GUI editor must be appended with new LCC window pane, and parameter placeholders, and secondly,
the parameter values must be filled in for each object in the database. Lastly, a link must be created
between the database and the Revit model.

) Dynamic GUI editor - Raom Data — O %
[New XX Delete | Saveto database Refresh

Room Dat ,
=0 Dmm’:iion EEAes) Checkbox field -

45 Design/building Position Move up | |Move down

#-[Z] Windows and doors Label ‘
-] Hydraulic

%[5 Aircon Emn 15 Do not shaw label v
-] Hec+Lighting Help Text
+-[3 ICT. alerm and signal

Read orly |
Enableddisabled by: | I

FCProperty St [Pset_SpaceFMRequirements]
IFC Property [SpaceCleaninglrtervalSpecial]

. [(Gingleine edt) IFD GUID [2_326enUUGHNK 500y V007]
& Special treatment of waste =

[Other OwnerAlignment 0A_NO v
== Fire =
Humber 15111210

Underine]
Figure 6.4 Placing LCC placeholders at a Room Level — dRofus GUI editor

Source: dRofus (screenshot)

24

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

To alter the template administration rights are required. To change the administration rights, the head of
BIM must be informed. In the settings, it is possible to set up the necessary parameters for the LCC data
transfer both at room and object level (see Figure 6.4 and Figure 6.5 for reference).

Setting up the parameter placeholders at room and item level is required to be done only once. The
harder part is updating parameter values when the object or floor cleaning prices change.

r!_h Dynamic GUI editor - ltem

] New x Delete | Save to database Refresh

= ltem ~

2] DESCRIPTION oo
=0 %FPEC Row position
(= Description Column position
-{E] Light (Mutti line edit) Border-
E Average (Multi line edit)
E Demanding (Mutti line edit) ELTEITUEN LR group il

[Intensity (Checkbox field)

[Frequency (Numeric field)
E Cost of Cleaning (Mumeric field)
- Average
E Intensity (Checkbox field)

[Frequency (Numeric field)
(] Cost of Cleaning (Numeric field)
== Demanding

E Intensity (Checkbox field)

E Frequency (Numeric field)
E Cost of Cleaning (Mumeric field)

Figure 6.5 Placing LCC placeholders at an object-level - dRofus GUI editor
Source: dRofus (screenshot)

Itis also possible to change the instance parameters, which is unique for dRofus, as most other databases
only work on type parameters. Seeing all instances of type is extremely useful when making a quantity
takeout for the model. Furthermore, some instances may be highlighted with instance parameters such
as areas and quantities. It also shows the location within the model, such as level or zone, the base, and
top offset if applicable, and other instance parameters.

LCC

Description

Light Average Demanding
Light Intensity [Frequency 0| Cost of Cleaning 0
Average Intensity [] Frequency 0| Cost of Cleaning 0
Demanding |ntensity [| Frequency 0| Cost of Cleaning]

Figure 6.6 Adding parameter boxes at an object level

In dRofus referred to as “Item-level, ” instead of “Object-level.”
Source: dRofus (screenshot)

The dRofus database has predefined filters included in the template. Those are classifications based on
different countries, measurements, and specifications of work. It is also possible to remove parts of the
template that are not being used on a specific project to make it more user-friendly.

For this project, the building owner requested a CCS classification. It is possible to use merged
parameters to merge the type name and the type code to name objects fully. The combined parameter is
then pushed into Revit, naming family types accordingly.

BIM7AA can be used as a structure classification that can be translated to other classifications. The
dRofus can automatically transfer it to other classification systems. Specifications are used as headlines
for the building material tender. This plugs into the building component journal. Building component
descriptions code is used for specifications connection with the building journal.

25

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

B2} Room Attribute Configuration Editor — O b4

Choose Configuration:

Revit Rooms - Auto Link © Mew || Copy || Rename || Delete

Configuration properties: Available to users Is Default Configuration

Attributes not linked:

Name and Numbers Revit parameter

[

I Groups @ Phasing

I* Areas and Measurements

I Functional Location

I* Room Data Status & ltem List Status e — @ Identity Data

I Room Data Link —= Occupancy

I Item Lists (content) Link —> Comments

I Other - - Base Finish

I Pictures/Documents = Floor Finish

I Log History Wall Finish

I Static values =l
Linked Attributes:

dRofus attribute <o Revit parameter

@ Key Attribute used for comparing

Room Number == Identity Data: Number

@ Write data to Model
Programmed Area - drofus_room_program_area (does not exist, but

Room Function # - drefus_room_func_no (does not exist, but will b

@ Write data to dRofus
Ceiling Height < Dimensions: Unbounded Height

Figure 6.7 dRofus: Bi-directional link interface between a database and the model

Source: dRofus (screenshot)

If the family is both in the model and in dRofus, the two can be linked. A human-readable classification
parameter links the two models. Once the correct element classification is found, the component, along
with the geometry, is uploaded to dRofus, automatically adding the family geometry to the dRofus
documents. Once the object is in dRofus, it can be renamed to an appropriate name.

The Revit-dRofus plugin permits bi-directional information exchange. Attribute Configuration Settings
is a pane where the parameters are mapped between the dRofus and Revit. The database holds all presets
when the project is started. It is possible to edit the mapping in the item Attribute Configurator Editor,
as the list shows the parameters which can be linked from dRofus to Revit, all in one interface. There is
a window of dRofus parameters and a window for Revit parameters. Below are two mapping windows,
one from dRofus to Revit and the other from Revit to dRofus.

“Some parameters are defined in Revit, such as the wall face, i.e., Exterior, which goes from Revit to
dRofus, but most of the parameters go the other way around, from the database to Revit. Inside the
dRofus, we can change the item naming. If we have a building component in the model that we want to
load into the dRofus, we simply select the building component on the selection window pane, and the
mapping arrows are used to create it in dRofus or Revit, depending on the arrow direction. If a
component is in another project, the object geometry and information can be transferred directly from
the other dRofus project. The files of the family relate to the dRofus item by the Documents tab. This
way, every modeler is using precisely the same family. This also ensures there are the same families and
types across two models of the same project. ”

“Normally, we would have to remember to do this in the same way, but with dRofus, it is possible to
synchronize the two files. Often we have to change the descriptions of say the wall buildup, by
specifications, and it will synchronize to all the models, not just one of them.” -BIM Manager

The database was not fully integrated with the model due to a lack of adequate administration rights. It
remains a task to integrate the processes to a greater extent. The full potential will only be utilized; once
appropriate costing mechanisms will be in place to correctly estimate the cost of object cleaning.
Meanwhile, the area based calculations transfer will have to suffice.

26

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

7 User Environment

A summary of the user environment and the resulting workflow design will be presented following the
User Environment Design Contextual Methodology. The software sequence model below best describes
an overview process necessary to store, model, map, transfer, and view data concerning lifecycle
costing.

OBJECT MAPPING LCC DATA el

. dRofus—

R _f*.]“ Dynamo—
, # python
$SIGMA

COMMON
——» CASE MODEL —| TRANSFER

_.[_m‘

Y

g
|—=| STORAGE ——»[CALCULATION} VISUALIZATION]

Figure 7.1 Software sequence model process representation

The object database contains costing information at an object level, which is linked with the BIM model
using a classification code. Alternatively, entire objects (Revit families) can be stored in a database
containing necessary LCC information within the template file. All it requires is to connect a database
with a BIM model.

The Revit template file either already holds parameter placeholders for cleaning operations, or if those
are missing, a view schedule can be inserted from a parallel project. This enables the automatic
parameter placeholder transfer, ensuring correct naming, data types, and grouping. Furthermore, this
approach creates schedules named in an orderly fashion, creating a standardized appearance across all
projects.

From there on, the Dynamo data transfer script is run, and the Python code sends the data to the LCCbyg
software. The chosen design is then saved as a final option within Revit, and the reports from LCCbyg
can be generated.

If the reports generated by LCChbyg are hard to interpret, or the difference between options is difficult
to observe, the information can be carried over to PowerBI. The results are then made presentable and
easily digestible for clients and other stakeholders.

PowerBI can then be used to visualize optimization efforts and resulting savings. The design choices
can also generate updates to the templates from the dRofus database if new optimized discoveries had
proven more cost-effective than previous assumptions.

The resulting workflow can inform best practices, which can then be applied to a variety of projects.
Flexibility can be achieved by enabling updating of the results once new discoveries regarding materials,
costs, or cleaning techniques are brought to light.

Figure 7.2 Proposed workflow BPMN diagram shows the process using swim lanes — following the
conventions of a Business Process Modelling and Notation (BPMN). The description can be found in
Appendix K — BPMN diagram description.

27

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Object : Object Pricing
g dRofus Dé:‘ﬁflni:?’ns - :
- Database P "
c
= =)
= &3 ypdate the
H Database in dRofus
-1
=
=
) D - D
Cbject Parameter
Cleaning placeholders
Frequency setup
K]
]
-]
]
i eo—
=
T
]
£ Revit Madel
< Ready for LCC
Choosing the
1D Check T Compliance right madel
. Check categories
: S . Pass model 3 T
. v =
¢ = L Check 8 = e
5 =y Validate Plugin: Assign [" th Running the
-E Material Check =+ - Model parameters to Dy'nl“anm":ila:er Python
a Geometry components Transfer Script
% - CChyg Model
-] 5 R populated
= -1 .
z |2 :
iz :
i 4 Element Check .
sz
§] Rooms Check
=
@
]
£
=
E
g & 0. o G o o
o
2 Check costs = o set 51 Ren = R = o = Eo
for diferent Room ID to “Calculate “Calculate “Export LSV “Export SVG
model setups Objects” script Object Cost” Total Room Schedules™ Floor plans™
2 z script Cost” script script script Al design Option|Models
optians Ready fof PowerBl
fa exhausted? Anaysis
I
- : D(
ES .
E Save .C5V data .
< file for PowerBl save S flaar
= plans for PowwerBl
&
[=]
= S o &
2 Ex;rat\:t jCSV Link Data Link Data to other
§ B d .a 'g‘ to .SVG Floor PowerBl template
E] owerl plans charts
Run PowverBl PowerEl
Template file dashboards
ready
e
g Collecting
2 Stakeholder
E Feedback
=
3
@
=
E
=2
]
=
]
z
E Design
E Decision

Figure 7.2 Proposed workflow BPMN diagram

See appendix 14.11 for node descriptions.

Updating the database is often the job of a different person from the designer, and there exist various
milestones for new design trends, cleaning techniques, and products. The diagram above depicts what
roles are expected of the team to succeed when performing the transfer.

28

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

The job of the auditor is to validate the model, prior to transfer. This gateway event ensures the model
is compliant with the analysis model view definition. Once the data had content had been approved, the
updated parameters from the database can be assigned.

A set of scripts are then turned on following the sequence illustrated in Figure 7.2. It is likely that the
PowerBI analyst will merge various workflows, based on data and data view GUI templates, including
combining data with the .SVG floor plan infographics.

Lastly, the clients and the architects, given all the required data, and thanks to their project overview,
will be able to make design decisions and choose the right solution.

For this to work smoothly with the auditor and the database manager, the workflow must be easily
replicable, ensuring correct deployment, adoption, and standardization. Below, Figure 7.4 presents the
process overview sequence model, followed by more detailed explanations of the process, found in the
following subchapters.

To accommodate a model which will be of any complexity, and of a customized workflow, specific to
the company needs and standards, flexible mapping procedures will be required. Furthermore, the end
solution user must be able to understand the prerequisites of the workflow, as well as be able to
customize the setup, and in some cases, create a custom mapping system. The purpose of the diagrams
in this chapter is to show the workflow and functions, as well as to highlight potential risks.

Object Database
Purpose:

Create template
rooms to link with
Revit model
Functions:
Populate Revit
rooms and objects

with template data.

Revit Model

Purpose:
Create/store BIM
model including data
and geometry.
Eunctions:

BIM environment for
the 3D model.

Dynamo LCC Python LCC XML data file LCCbyg tool
Transfer Transfer Purpose: Purpose:
Purpose: Purpose: Data file derived Interpret cost
Export data from Link data from .CSV form LCC empty information over

Revit to a .CSVfile.
Functions:

Exporting, sorting,
grouping data.

to LCCbyg.
Functions:

Access XML element
tree and traverse
tree with XPATH.

Dynamo PowerBI
transfer

Transfer data from
Revit to PowerBI
Functions:

Use Dynamo scripts
to export .CSV and
.SVGreadable by
PowerBI.

PowerBI tool
Purpose:
Executive Summary
view at data for
decision making
Functions:

Display Business
Intelligence
information in KPI
and interactive
graphical interface.

template with data
from the Revit
model
Functions:

buildings lifespan.
Functions:

Append data
manually, generate
reports, input data.

Figure 7.3 Overview diagram depicting LCC for cleaning process flow

Full illustration on the next page.

29

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

Data file derived
form LCC empty
template with data
from the Revit model
Functions:

Store LCC data.
Links:

Template LCCfile,
LCC file with other
LCC data, LCChyg
software.

Objects:

XML file.

Risks:

Wrong data
categorization,
danish characters
data transfer,
Outdated template,
Outdated LCCbyg
software version.

Interpret cost
information over
buildings lifespan.
Functions:

Append data
manually, generate
reports, input data.
Links:

Revit model, DGNB
template data.
DGNB certification
Objects:

Menu ribbons,
Assumptions, Project
Information, Account
plans, Entry data,
Conclusions/Report
Risks:

Newer Version of
LCC coming out.
Entry input errors.
Poorly detailed
calculation
techniques.

Purpose:

Transfer data from
Revit to PowerBlI
Functions:

Use Dynamo scripts
to export .CSV and
.SVGreadable by
PowerBI.

Links:

Rooms, Objects,
Schedules,
parameters, floor
plan views.
Objects:

floor plans,
parameter data, total
floor cleaning cost,
total room cleaning
cost.

Risks:

Missing data values,
Wrong room
numbering for SVG
plans, duplicated
room tags.

Figure 7.4 User Environment(UED) — Overview of functions

7.1 Using the dRofus database

Object Database Revit Model Dynamo LCC Python LCC
Purpose: Purpose: Transfer Transfer
Create template Create/store BIM Purpose: Purpose:
rooms to link with model including data Export data from Link data from .CSV
Revit model and geometry. Revit to a .CSVfile. to LCCbyg.
Functions: Functions: Functions: Functions:
Populate Revit BIM environment for Exporting, sorting, Access XML element
rooms and objects the 3D model. grouping data. tree and traverse
with template data. Links: Links: tree with XPATH.
Links: dRofus database, Revit model, Links:
Database Objects LCCbyg, Python LCCtransfer LCCbyg XML schema,
Revit model Dynamo, Excel, script. .CSV LCC transfer
Objects: Python, PowerBl.] Objects: file.
Rooms, BIM objects Objects: Rooms & objects, Objects:
Risks: BIM objects, Rooms, Cost, Frequency, Rooms & objects,
No data on some BIM model, Intensity, units, Risks:
room types. specifications, quantity data. Rigid data transfer,
Outdated data, schedules, model Risks: new LCCbyg XML
Missing data. views. Missing parameter schema or version
3rd party software Risks: values or object will break the link.
reliance. Wrongly modeled categories for File path manual

objects, missing transfer, broken entry and file name

data, corrupted file, links, outdated script change.

wrong version. components or

versioning.
|
]

XML data file LCCbyg tool Dynamo PowerBl PowerBlI tool
Purpose: Purpose: transfer Purpose:

Executive Summary
view at data for
decision making
Functions;

Display Business
Intelligence
information in KPI
and interactive
graphical interface.
Links:

Revit model
Dynamo transfer
script, SVG floor
plans, .CSV database
Objects:

floor plans,
parameter data,
total floor cleaning
cost, total room
cleaning cost.
Risks:

KPI's may be not
indicative, Yearly
cost not accounted
for Future Value.

The proposed workflow suitable for the use of C.F Meller architects, and mainly their auditor is based
on using existing work processes as much as possible. In the dRofus software, the architects store
standardized information suitable for use in future projects. Room templates for standard offices,

30

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

bathrooms, hospital rooms, and other room types alike are stored, enabling knowledge gathering from
previous projects. The eight steps below investigate adding the required parameter information from the
database to the Revit model.

Adding rooms
Purpose:

Create template
rooms to link with
Revit model
Functions:

Add new room

Adding objects
Purpose:

Create template
objects to link with
rooms.

Funcitons:

Add new objects

Adding
classification
Purpose:

Adding ID to link
object types with
other systems using
sfB, CSS, BIM7AA

Adding intensity
data

Purpose:

Add data about
template cleaning
intensity
Functions:

template. Add base templates. Add base Functions: Specifies three levels
parameters parameters. Enable of intensity, Light,
Links: Links: interoperability. Average, Demanding
Database Objects dRofus Rooms Links: Links:
Revit model Revit model rooms PowerBIl analysis Rooms, Objects,
Objects: L] link Revit Specification sheets,
Rooms Objects: Sigma DGNB audit
Risks: Stairs, Furniture, Objects:
No data on some Casework, Plumbing, Objects: Stairs, Furniture,
room types. Doors, Curtain Rooms & objects Casework, Plumbing,
Outdated data, Panels, Windows, Risks: Doors, Curtain
Missing data. Railings, Wrong classification Panels, Windows,
annotations. value, missing value. Railings, Rooms
Risks: Risks:
Missing template Missing, outdated
components data, wrong
Outdated or missing specification, wrong
data. data type
I
v
Adding units of Adding frequency Adding cost data Linking to Revit
measure data Purpose: Geometry
Purpose: Purpose: Add data about Purpose:

Add data about
template units of
measure.
Functions:

Specified units of
measure i.e. m2,
Ibm, m3, units.
Links:

Rooms, Objects,
Specification sheets,
DGNB audit, LCCbyg,
PowerBI

Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Risks:

Missing, outdated
data, wrong units,
wrong data type

—|

Add data about
template frequency
of cleaning
Functions:

Standard cleaning
frequency in days
per year.

Links:

Rooms, Objects,
Specification sheets,
DGNB audit, LCCbyg,
PowerBI

Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Risks:

Missing, outdated
data, wrong units,
wrong data type

template cost of
cleaning per object
Functions:

Enables cost
calculation at an
object level.

Links:

Rooms, Objects,
Specification sheets,
DGNB audit, LCCbyg,
PowerBI

Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Risks:

Missing, outdated
data, wrong units,
wrong data type

Attach LCC costing
database
information to a
Revit model.
Functions:
Enables data
transfer between
dRofus and Revit.
Links:

Revit model
dRofus Database
Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Risks:

Skipped elements
Missing data
Errors during script
transfer

Figure 7.5 dRofus EUD sequence: Adding data to the database diagram

It is also possible to create custom room instances — those slightly different than the template. Within
those templates, information regarding the cost and frequency of cleaning for both rooms and objects
contained within can be stored. A link is established, creating a bi-directional connection between the
Revit model and the dRofus database.

31

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

Once the Revit model is linked, and data is populated, discrepancies between desired object/room count
are checked against, and missing objects are populated. dRofus displays object counts within the Revit
model relative to the desired object count from the template. The only nonautomatic task left is to place
the object in the desired location. Ideally, to populate the data automatically, the data should be directly
linked from the database, as explained in chapter 5.1.

7.2 Using the Revit model

The eight steps below will ensure that the user will check if all needed categories are matching the script
input expectations. Generic models are models that are not grouped into any category, and category is a
primary data filter used to access information hosted in the children of the category data tree. Therefore,
all generic objects must be assigned an object type, albeit furniture, plumbing fixtures, a door, or be it
stair runs. Furthermore, 2D family annotations require a 3D component to account for object intersection

with the room bounding box, which is needed for the cost calculations script.

Object Naming
Purpose:

Naming objects
meaningfully and
consistently
Functions:

Human readable
Key-Value dictionary
relationships
BIM7AA

CCs

Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Broken links
Unreadable
information.

Object Numbering
Purpose:
Relationships with
PowerBI .SVG floor
plans

Functions:
Connecting data to
.SVG.

PowerBI
Graphicimaging
Databases
Objects:

Rooms.

Broken links,

Duplicated numbers,

Missing data

Parameter Check
Purpose:
Distinguish
type/instance
parameters
Populate cost data
from Database
Functions:

Enables cost
calculation
Parameter file

Cost database (if any)
Schedules

DGNB Script
PowerBlI Script
Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Skipped elements
Missing data
Errors during script
transfer

Room Finishes
Check

Purpose:

Ensure room
finishes are added to
objects.

Functions:

Enables floor cost
calculation

Enables LCC.
Parameter file
Schedules

dRofus Database
Cost database
DGNB Script
PowerBI Script
Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Skipped elements
Missing data
Errors during script
transfer

Figure 7.6 Revit model UED sequence: Consistency Check procedures (Part 1/2)

Unplaced rooms must be deleted, and grouped objects must be exploded, as group object data cannot be
edited otherwise, in a simple way. Object naming must adhere to type coding so that the subset of LCC
cleaning can be connected with other LCC calculations and databases, which will rely on the code type
as the type ID, a mapping value which will be shared between platforms, thus enabling seamless
interoperability. Object numbering for Rooms permits a direct link with Simple Vector Graphics (SVG)
hosted in the PowerBI application. This will, in turn, permit interaction with the .SVG graphics, as the
.SVG objects will be linked to the Revit room numbers.

32

AALBORG UNIVERSITET
STUDENTERRAPPORT

Generic Models
Purpose:

Ensure generic
models are updated
to appropriate
category

Functions:

Manually update
families.

Create modelling
standards.

Area parameter, unit
type, type or
instance.

Objects:

Stairs, Furniture,
Casework, Plumbing,

2D Families to 3D
Purpose:

Ensure all families
have a 3D element
Funcitons:

Enables locating the
object in a given
room.

PowerBl analysis
Dynamo RoomID
Dynamo Cost
Calculation

Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,

Unplaced Rooms
Purpose:

Remove all unplaced
Rooms.
Functions:

Ensure no errors
show up later.
PowerBl analysis
Dynamo RoomID
Dynamo Cost
Calculation

DGNB Script
Objects:

Rooms

Empty data sets
Errors

Grouped Objects
Purpose:

Ungroup all grouped
objects

Functions:

Enables changing
parameter values to
instances.

Type Parameters
Instance Parameters
Cost information
Frequency
information

Part of Contract
information
Objects:

Stairs, Furniture,

«

Doors, Curtain Railings, Casework, Plumbing,

Panels, Windows, annotations. Doors, Curtain

Railings Risks: Panels, Windows,

Risks: Data not displayed Railings

Object not taken into in PowerBI analysis Risks:

account. Object groups might
be needed.

Figure 7.7 Revit model UED sequence: Consistency Check procedures (Part 2/2)

Lastly, the parameter values must be checked to ensure that the data is filled in as required. This concerns
the cost, frequency, intensity (instance or type) parameters such as light intensity, average intensity, and
demanding intensity, as well as room floor finishes. Room floor finishes must be populated with material
finishes, as it is often the case, that the floor material is hosted within the floor composition model. From
there, it must be referenced to the room the floor belongs to. Rooms cannot contain more than one
material. A separate room container must be made if the floor contains two materials, or a cost parameter
with a value which will account for the proportional mix of two-floor materials must be considered.

7.3 Using LCChyg

Here the process of using LCChyg to evaluate how each of the approaches assumed costs and how does
the level of detail influence the price fluctuation and variance. Here the information retrieved from the
lifecycle costs can be further used during the Operations phase, and the description of how such
processes can grant further DGNB certification points be investigated. Currently, to retrieve alternative
results, a user must make a change in the Revit model, then run the dynamo script, followed by the
Python script. Then the changes need to be saved to a new file, and the file can be compared. Although
not an entirely automated process, each version change takes less than a minute.

The downside is that the versions cannot be compared within the software, as in the object level
approach, altering existing template elements would require accessing each sub child. Hopefully, there
is an alternative approach to the data transfer, which can account for such changes. An alternative is to
publish to parallel transfers and disable one of them manually inside the LCCbyg software. This way,
one solution will have “template x” greyed out, while solution two will have “template y” greyed out.
This is a workaround solution to comparing versions within the software. However, since the Lifecycle
costs are displayed as a lump sum, PowerBI is a more suitable tool to analyze cost savings and display
optimization potential.

33

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Project
Information
Purpose:
Information to
generate the report
Features:

Header, logo, Title,
description, project
information, client
information,
consultant
information, notes.
Conclusion/Report
Objects:

Entry fields

Risks:

Manual Entry

Assumptions
Purpose:
Calculation of
Present and Future
value.

Features:

Price development,
Discount rate,

calculation principle,

calculation period.
Calculation method,
Account plans, data
entry,
conclusion/report.
Objects:

Entry fields.

Manual Entry
Incorrect
Assumptions

Account Plans
Purpose:

Data Entry
Features:

Input for data
relevant to the
building model.
Plot, consultancy,
client costs, site and
structure costs,
Furniture and
equipment costs,
Management costs,
Supply costs,
cleaning costs.
Objects:

Templates including:

Groups, subgroups
and rows. Rows
including: units, unit
price, frequency and
notes.

Entry errors if
manually edited,
Inaccuracy of data
Incorrect placement
of data

Incomplete
calculation.

Data Entry
Purpose:

Enter Data from
template or
externally.
Features:
Input/alter data
relevant to the
building model
Plot, consultancy,
client costs, site and
structure costs,
Furniture and
equipment costs,
Management costs,
Supply costs,
cleaning costs.
Objects:

Quantity, Units, Unit
price, Frequency,
include, notes.
Automated data
entry errors if
manually edited,
Inaccuracy of data
Incorrect placement
of data

Incomplete

Conclusion/Report
Purpose:

Export LCCreport
Features:

Compare design
options

Compare category
options

Export Excel data
Export PDF data
Export HTML data
Objects:

Alternative views
Options data
Insufficient detail for
in-depth analysis

Figure 7.8 LCCbyg Software Environment — window panes clarification

The LCCbyg 2.2.52 software environment is best described in the software documentation (Haugbelle
etal., 2017). However, for a quick overview and relation to the project, the above figure depicts the five
primary tabs. The main project information tab holds information about the client, the building itself,
the company carrying out the LCC, information about consultants, etc. The data here is filled in
manually unless automation is developed internally by the auditors' office.

The purpose of the assumptions tab is to calculate the present value of future costs. It consists of features
such as price development, discount rate, calculation principles, calculations periods, and calculation
methods for media, maintenance, replacement, operations, and demolition.

Account plans and data entry fields account for template and data entry, respectively. Those are
independent for each category, i.e., plot, consultancy, structure, furniture, supply, and cleaning costs.
This report is only concerned with the latter cleaning costs, and the purpose is to showcase cleaning
placement located in the greater context of the LCCbyg. Automatically filling data using the approach
proposed here will populate both the account plan template and the data entry field. This is because the
parameter “isTemplate” is set to “true” when parsing data from the .CSV file to the LCCbyg XML
schema.

To fully understand the data gathered, as well as optimize the cost and foresee where the cost is assighed
to, it is proposed to use the PowerBI platform. This platform will enable a detailed outlook on the
frequency and cost of cleaning, individually for each room. The data will also form a transfer backbone
so that it can be later utilized as a subset for Facility Management (FM) programs such as MdocFM or
Dalux FM.

34

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Correct sub-scripts
mapping

Purpose:

Ensure object
categories use
appropriate data
transfer mechanism.
Features:

Object Type Area-
based script, Room
Instance Area-based
script,

Object Type Unit-
based script,

Stairs Area script
(runs only)

Object Running-
meter script

Object Categories
Export to .CSVfile
Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Incorrect mapping.
User error.

Script error.
Modelling error.
Too much model
data.

Data Flexibility
Purpose:

Ensure minor errors
are supported and
don't break the
program.

Features:

Change Danish
Characters to

standard English set.

Remove Empty
datasets.
Remove null values.

Preserve List indices.

Editable Scripts.
Sub-scripts

Objects:

Dynamo nodes.
Data objects.
Version ID

Change Dictionary
Inexperienced users
may break the script
without knowing.
Hard to reverse
errors if not saved.
Dynamo crashing.

Versioning
Purpose:

Enabling comparing
versions inside
LCCbyg

Features:

Version control from
within the Dynamo
Script

Model elements,
.CSV export

Objects:

Version ID,

Version template ID,
IsTemplate (yes/no)
LCCbyg version
update.

LCCbyg crashing.

LCCbyg Version
Update

Purpose:

Improve the
program

Features:

Extended Features.
DGNB Script

Revit Model

Cost data
Frequency data
Objects:

LCCbyg interface
LCCbyg XML
LCCbyg
documentation
Needs script update
to facilitate the data
transfer

Using Python 3.7
Purpose:

Transfer .CSV data to
LCCbyg XML file.
Features:
Hard-coded data
transfer to a single
data tree location :
internal cleaning
within Operations
and Maintenance
Category.

.CSVfile generated
by the DGNB script
LCCbyg software
LCCbyg XML file
LCCbyg XML schema
structure

Objects:

Transfer script
written in Python
3.7, accessed
through Spyder or
pip execute.
Hard-coded
(inflexible),

Subject to LCCbyg
updates,
Insufficiently
accurate for future
needs.
Non-extensible

Figure 7.9 LCCbyg Dynamo transfer UED sequence: Functions and risks explanation

Specific measures must be taken by the auditor to familiarize himself/herself with the transfer scripts.
Firstly, the auditor must ensure correct sub-script mapping. As mentioned before, the units of data
transfer are category dependent. Rooms will take room floor finish information, whereas windows will
take area information in m2, regardless of its location within the room.

Subsequently, object families who rely on object counts, such as furniture, plumbing fixtures, or
casework, will use an object unit-based script. On the other hand, system families such as railings or
stairs will require a separate script operation to transfer the data to the LCCbyg software. This will also
be true for other system families that may be added in the future. Two sub-scripts were created, enabling
the transfers. One for stair runs calculation, which takes measurements from parameters unique to stair
runs, such as run width, or thread height, and for railings, which is based on the length parameter
measured in running meters. This script can also be used for other length-based measurements (RMT),
such as skirtings or ceiling architraves.

The script is made in a way that will be forgiving of some prevalent errors. It has an inbuilt list cleaner,
meaning that null values and 0’s will be removed from the list, to ensure the transfer works. However,
this means that the auditor must be aware that there will be no error visible, if the data inside the
parameters are incorrect and must visually check if the subscripts are sending the data through, by
looking at the watch nodes. The data can be revised before export either by checking the schedules, or
by applying Revit filters to objects, to hide all elements that have been mapped, and expose those with
missing information. A rigid solution should ideally use error prompts instead of concealing errors. It is
a bad practice to hide transfer errors as those lead to calculation errors.

35

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

As of now, the approach used to transfer data between the .CSV file and the LCCbyg software is creating
a template file, which means that automatic versioning inside of the LCCbyg software is currently not
supported. A workaround to versioning can be achieved by creating lateral files and assessing the data
using PowerBI. This would be most likely addressed in the future if it was considered a significant
letdown. However, this does not mean that versioning is impossible; it just means that it might need
some degree of manual rework at this point. An alternative is to publish a second child subset and then
disable the previous subset, which will permit versioning.

Lastly, the current script is using Python 3.7, and therefore it requires an extra step, as opposed to direct
export through Dynamo, which uses Python 2.7. This is most likely a simple fix, but during the short
development time of the script, this was not achieved.

7.4 Using PowerBI

The PowerBI project dashboard enables users to have an executive view of the data gathered throughout
the optimization process. The stakeholders can then make informed decisions on design considerations
and are able to compare solutions with other data sets. The project dashboard can consist of multiple
components. The representation model envisions using SVG floor plans to link data with visual location
representation.

Graphs, tables, and lists are other mechanisms of depicting data and information regarding the room
cleaning cost, the floor cleaning cost, and the objects contained within the rooms. Furthermore, graphs
present the visual representation of anomalies not so easily visible in the datasets, or in the LCC graphs,
which summarize total data values.

Project Dashboard Floor plans Graph charts Tables Lists

Purpose: Purpose: Purpose: Purpose: Purpose:

Executive Visualize data per Visualize data per Visualize data per Visualize data per
information on the specific room. specific room. specific room. specific room.
project status. Features: Features: Features: Features:

Features: Direct link to room Direct link to room Direct link to room Direct link to room
Interactive data number. number. number. number.

display on various Data adjustment Data adjustment Data adjustment Data adjustment
graphs. based on Room based on Room based on Room based on Room
Links: location location location location

Revit model data Links: Links: Links: Links:

LCC data Total Room cost Total Room cost Total Room cost Total Room cost
Revit model plan Total Floor cost Total Floor cost Total Floor cost Total Floor cost
views Floor Finish Foor Finish Floor Finish Floor Finish
Objects: Populate CSV Script Populate CSV Script Populate CSV Script Populate CSV Script
Visualizations Objects: Objects: Objects: Objects:

Fields Entry fields. Entry fields. Entry fields. Entry fields.

Wrong data source Wrong data source Wrong data source Wrong data source Wrong data source
Manual editing Manual editing Manual editing Manual editing Manual editing
Inexperienced users Inexperienced users Inexperienced users Inexperienced users Inexperienced users

Figure 7.10 PowerBI project dashboard components summary

Graphs show properties such as cost variance relative to the room size or cost variance between rooms
of the same type, function, occupancy, or size. The data can be further used to calculate contract values
for specific building users, albeit if the building was divided between various tenants so that the costs
can be assigned accurately and without a dispute.

A set of scripts is created in Dynamo, to showcase how such data can be grouped, filtered, and organized
to support the transfer. This list is not explicit; it thus serves as a method representation, and parts of the
Dynamo scripts can be utilized to derive other metrics and performance indicators.

36

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

A Belonging Room ID parameter is used to associate a component with the room it is residing in. For
this to work, the object must have a 3D geometry, so that the geometry bounding box can intersect the
room bounding box.

Belonging Room ID
Purpose:

Ensure objects are
located within rooms
to calculate total
room cost.
Features:

Script appending
Room ID to every
object, relative to its
location.

Objects and Rooms.
Revit model.
Objects:

Stairs, Furniture,
Casework, Plumbing,
Doors, Curtain
Panels, Windows,
Railings, Rooms.
Risks:

Incorrect model

Room Floor
cleaning cost
Purpose:

Calculate cost of
cleaning floors
relative to rooms for
PowerBI analysis.
Features:

Script calculating
cost based on floor
surface and area.
Sub-scripts

Objects:

Dynamo nodes.
Data objects.
Version ID

Change Dictionary
Floor finishes are not
added to Room data
in the schedule.

Total Room
cleaning cost
Purpose:

Enabling comparing
versions inside
LCCbyg

Features:

Script searching for
all objects in room.
Adding each object
cost

Model elements,
.CSV export
Objects:

Version ID,

Version template ID,

IsTemplate (yes/no)
LCCbyg version
update.

LCCbyg crashing.

Simple Vector
Graphics Script
Purpose:

Export SVG plans of
the building to
PowerBl.
Features:

Exports plans with
one button press.
Exports
corresponding
Numbers.

Revit Model

Room numbering
PowerBI

SVG script

Populate CSV Script
Purpose:

Transfer .CSV data to
PowerBl database.
Features:

Collect all schedule
parameter data
relevant to PowerBI
SVG floor plans

Data from Revit:
Belonging Room ID
Room Numbers
Floor cleaning cost
Room cleaning cost
Script

Risks:

Dynamo knowledge
needed to extend
script functionality.

preparation.

Insuffi cient data for
transfer (especially
for area or running
meters scripts).

Figure 7.11 Scripts which are supporting the PowerBI data transfer

One of the possible performance indicators may be the room floor cleaning cost. This approach
calculates the cost of cleaning floors relative to the room location within the building. Depending on the
material, the frequency, and the intensity, the costs are calculated per year. Note that LCC costs are not
calculated in PowerBl, and the costs do not account for Future Values (FV), nor do they consider a
building lifespan of x years. All data is calculated yearly in the Present Value (PV).

Another metric is the Total Room Cleaning Cost, which encapsulates all objects with the Belonging
Room ID parameter inside a room, and then uses a calculation mechanism to multiply the cost, again,
depending on the frequency, the intensity, and the cost of cleaning the object. The two metrics of floor
cleaning and room cleaning are then added, and they can be visualized and compared inside of the
PowerBI tool.

Another useful script is the SVG generator script. This step can be omitted, as many websites provide
such service free of charge, based on the images given; however, this approach allows for a rapid transfer
of the room plan model, directly to the SVG. This can be made even better by adapting the script to
work with object instances within the room, thereby showing the data per object, as initially intended.

Lastly, populate .CSV script has been created, to automatically extract data from Revit schedules and
create a consistent .CSV file, ready for PowerBI input. This script collects parameter values and converts
them to a tabular form. The list of parameters collected by the script is presented in the figure below.
The list is not exhaustive, and can be easily altered, or appended, depending on the performance
measurement use case. The script can be seen in the Appendix F PowerBI scripts.

37

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

8 Data transfer Prototyping

To enable a connection between the model environment in Revit and lifecycle costing environment in
LCCbyg, an interfacing VPL in Dynamo is used to extract information directly from Revit, by plugging
to its API, and performing a series of operations, including categorization, grouping, and mapping. More
on Dynamo functionality can be found at “What is Dynamo? | The Dynamo Primer” (2018). The
resulting.CSV file is parsed using Python.

The prototype is capable of grouping the parameters and exporting them to a structured list, for multiple
categories, accounting for the anomalies of their calculation approaches. The prototype does not entail
any other LCC calculations beyond indoor cleaning. It is, however, possible to apply the principles
presented below and make them available for other LCC categories such as object-based construction,
maintenance, or demolition cost. The following methods are used to create shared parameter
placeholders:

o Parameter insert Script creates shared parameters by reading an Excel shared parameter file.
e Schedules are manually adjusted, and the .rvt or .rte template file is saved for use in other
projects. Contact the author for the Revit schedules template file.

The parameters can be loaded directly to the families or added to the project. Adding them to the project
by using “Insert views from file” command is the preferred option, as adding parameters directly to
elements makes version control quite cumbersome, unless when using a database. As Dynamo can only
be run on a single project at a time, it means that changing the information contained within families,
even using Dynamo scripting, will require opening each family at a time, thereby taking more extended
time, as opposed to changing the parameters at the Revit project level.

The model is now ready for export having the above parameters populated with data, ideally, through a
bi-directional link with the database, see Chapter 7.1 - Using the dRofus database, as an example. The
following Dynamo VPL scripts were created for the LCChyg.CSV data mapping:

e Main Script: LCCbyg cleaning data transfer to .CSV (see Appendix D - LCChbyg Transfer
Dynamo Scripts for reference to the Dynamo Script canvases):
o Custom node #1: Grouping objects by Areas (Curtain Walls, Windows, Doors, etc.),
o Custom node #2: Grouping objects by Running Meters (Railings, skirtings, etc.),
o Custom node #3: Grouping objects by Unit Count (Furniture, Plumbing, etc.),
o Custom node #4: Grouping floor surfaces by Room (Room instances),
o Custom node #5: Grouping stair areas by Stairs run type (Stairs types).
e Python Script: .CSV to LCChyg XML mapping script (see Appendix E — Python Transfer
Script Appendix D - LCCbyg Transfer Dynamo Scripts for reference to the Dynamo Script
canvases)

The following Dynamo VPL scripts were created for the PowerBI.CSV data mapping(see Appendix F
PowerBI scripts Appendix D - LCCbyg Transfer Dynamo Scripts for reference to the Dynamo Script
canvases):

e Script #1: Assign belonging_RoomID to every object instance including rooms,

e Script #2: Calculate the cost for floor cleaning of each room instance,

e Script #3: Calculate the total cost including floor cleaning and object cleaning of each room
instance,

e Script #4: Export structured schedule information .CSV for PowerBI application.

Furthermore, a Dynamo, Python coded script by Adam Bear (Bear, 2019) was borrowed to convert Revit
floor plans to.SVG floor plans.

38

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

The following Dynamo VPL scripts were created for the cleaning calendar work schedule (see Appendix
G — Future Research Calendar Potential & Filter setting Scripts Appendix D - LCCbyg Transfer Dynamo
Scripts for reference to the Dynamo Script canvases):

e Script #1: Set cleaning filters to views
e Script #2: Set cleaning parameters to objects

Below are subchapters dwelling into a further explanation of each script structure supporting the data
transfer and presentation.

8.1 Dynamo Scripting between Revitand LCC

The purpose of this transfer is explained in the User Environment Design Chapter 7.3 - Using LCCbyg.
The script modules can accommodate various architectural components.

Furniture Types

Windows/Curtain Walls Object_count
Furnit v
Categories Object Area urniture Category Category > Cleaned
Windows v | Category p4q Category > Cleaned =
AuTo Plumbing Types -
@0 Family Type: 15
Do 3
Plumbing Fixtures v ' Categ 3 l‘
Categories Object_Area 4
Doors v | Category p4 Category > Cleaned 1 @1 Fanily Type: w1525 x d762

Casework Types 2 14

Categories

o List AR
Bl Family Type: 810 x 2030/ Family Casework v Category “ BEE Fanily Type: Cleaning bin_star

L3612 AL 295,

Figure 8.1 Dynamo components transferring quantities (1/2)

The primary categories used can be seen in Figure 8.1, and those support the transfer needed for the
initial case study, as well as the implementation case study. The modular design of scripts embodies
complex transfers to be interlinked, or nested within a larger software schema.

The “Object Area” custom node groups data for families/objects with area parameters, such as doors
and windows, where quantity does not well represent the cost of maintenance. The “RoomFloorsbylD”
custom node groups data for room instances with the area and finishes parameters.

Floor surfaces

RoomFloorsBylnstance
Categories Cat > cl d o i
| SRESH cane Railing Types Stair-run Types
Rooms v | Category AUTO

Categories Object_RunningMeters Categories

Object _Stairs_Area

Railings v | Category Category > Cleaned Stairs-Runs v | Category

AAAAA

Figure 8.2 Dynamo components transferring quantities (2/2)

The “Object_count” custom node is grouping data for object types, based on the repeated count of the
objects within the project. The custom node best suits furniture and fixtures. The data is then converted
to a single list, appended by the version ID, and the Danish characters are converted to the standard
alphabet set.

39

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

8.2 Python Scripting between .CSV and LCCbyg XML

Finally, the data is sent to a .CSV file, ready to be converted to the LCCbyg XML format. The Python
version used by Revit and Dynamo is IronPython — version 2.7. Therefore, there is no possibility to use
some libraries that come as standard with Python 3.7 in the Anaconda environment. There are also some
syntax differences that can be corrected using a commonly available Python validator.

The basic principle of converting a .CSV file to an LCCbyg XML file is to access the Element Tree by
using the ElementTree Python module. The module has a function called XPATH, which allows
accessing the right level in the file structure and altering the information at that level. The code creates
new child nodes containing pieces of information on objects and objects’ attributes, following the
LCCbyg XML schema. The prototype script is hardcoded and does not use LCChyg XSD; therefore, it
is only a proof of concept and not a complete solution.

1

E

3 Created on Mon Oct 7 13:45:51 2819 by Adam Piaskowski

4 akptech@outlook. com

g mum

6 import csv

7 import xml.etree.ElementTree as ET

8tree = ET.parse('./Test samples/EmptyProject_ENG.xmL")

S root = tree.getroot()

16 subgroup_element = root.find("./accountplan/maingroup[@ name='Buildings, internal']")

11 room_name = 'Version2'

12 yesno = 'true’
13 values ="'

Figure 8.3 Importing modules to Python

Modules imported are .CSV — a module needed to read comma-separated values files,
XML.etree.ElementTree —a module needed to traverse through a tree structure. Parsing the Element tree
(ET) lets accessing information within the XML file. Navigating to the correct subgroup element is
made possible with the root find function, which takes the input of the XPATH. For an explanation on
XPATH refer to (“XML Schema Tutorial,” 2019).

14 subgroup = ET.SubElement(subgroup_element, ‘'subgroup’, {'name’:room_name,

15 'istemplate':yesno})

16with open('DGNBdatapass.csv', 'rt’) as f: LCC datafile exported from Revit

17 row = None

18 reader = csv.reader(f)

19 for row_att in reader:

28 object_name, amount, frequency, units, unitprice, inputvid, vid, include = row_att
21 if row is None or object_name != row:

22

23 row = ET.SubElement(subgroup, ‘row’, {'name’:object_name, Name of the Revit
24 "include':include, object

25 'units':units})

26 basevalues = ET.SubElement(row, 'basevalues') b lues = .

27 if values is None or values != basevalues: asevalues = frequency + price

28 values = ET.SubElement(basevalues, 'values’, {'frequency':frequency,

29 'unitprice ':unitprice,

0 rEay

31 inputvalues = ET.SubElement(row, 'inputvalues') . _ .

32 1f values 1s None or values != inputvalues: inputvalues = quantities

33 values = ET.SubElement(inputvalues, 'values®, {'amount':amount,

34 'vid':inputvid})

35 new_xml_tree_string = ET.tostring(root)
36with open('./Test samples/OfficeModel_test.xmlL', 'wb') as f:
37 f.write(new_xml_tree_string)

Figure 8.4 Passing comma-separated values to the XML SubElement

The subelement takes values on a row-level, which has two children: base values and input values. At
each level, the data is parsed. The data cells include, amongst others, object name, frequency of cleaning,

L http://infoheap.com/Python-lint-online/

40

http://infoheap.com/python-lint-online/

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

and the number of objects, as well as a unit used and unit price. The ending step is to convert the Element
Tree to string and write it to a new file at a specified location.

8.3 Dynamo Scripting between Revit and PowerBl

Dynamo scripts can automate a big part of the job when exporting data from the Revit model to the
PowerBI model. The model can then be used to derive KPIs based on the data from the Revit model.
Two examples of KPIs were derived to support the process description.

The first KPI is the yearly cost of floor cleaning per room. This KPI calculates the cost of a square meter
of a floor surface, which is multiplied per room size. Furthermore, the cost per single cleaning is then
multiplied by the yearly frequency. The cost depends on the intensity; hence, three intensities (light,
average, demanding) are calculated individually and then added together.

The same calculation principle concerns the objects situated in rooms. Those objects are grouped in
rooms using their geometry as a location indicator. A single script calculates both floor cleaning costs
and object costs, and then, sets cost parameter values within the room instances, and object instances.
The script can be found in Figure 14.24 PowerBI Total costs of items per year script.

The yearly costs of objects cleaning, again, depending on intensity, are then added together with the
floor cleaning cost, giving a cost of room cleaning all-inclusive. This script involves matching keys with
lists, and the script can be found in Figure 14.25 PowerBI Grand totals per room script. The .SVG files
are generated based on the floor plans. These floor plans are later connected with the data inside
PowerBI. The rooms must have unique numbering for this script to work.

Basement Ground Floor First Floor Area by Floor Finish

00BASIMENTro ¥ [00LEVELOroom ¥ [N [Gallery O1LEVEL1room v [[Gallery Floor Finish
— (0% ©%) @ Capet
ey 4+ — X + - X + - %

~ ® Wood
Polished Conc,
Tiles
@ Tile antiskid

61036 g linoleum
2137 (35.04%)

(1571%) Perforated Me.

Cost Per Room Type

Name

19K
o @ Office

1,69%)

8ok
(7.56%)
101K

Toilet

Area Floor Finish ~ Name Level Number Total Floor-cleaning a Name ®Offics Hal

E;m Cost _ 100K @) Meeting Room
8 Canteen
156,65 Carpet Office 01LEVEL1 02.05 98295 37595 g ok Saircae
9382 Carpet Office 01LEVEL1 02.03 55996 22516 -4 167K
7243 Carpet Office 01LEVEL1 0204 34632 17382 2 (1462%) o fdichen
4859 Wood Office 00 LEVELO 01.02 48893 10203 0K o -
48,14 Wood Office 01LEVEL1 0208 38378 10109 0 100 200
44,68 Wood Office 00 LEVELO 01.03 36875 9383 Area Total Room Cost by Zone ID
4248 Wood Office 01LEVEL1 02.11 34821 8921 Floor Finish ZoneID @ Biank) @A ©C OL
37,27 Carpet Office 00 LEVELO 01.07 37687 8944 Carpet
3145 Wood Office 01LEVEL1 02.10 28642 6605 Unoleum .
27,02 Wood Office 00 LEVELO O1.01 24653 5675 Perforated Metal B ’
2134 Carpet Office 00 LEVELO 01.08 15039 5121 Polished Concrete
2098 Carpet Office 00LEVELO O1.13 17108 5036 Tile antiskid 5
2088 Carpet Office 00 LEVELO 01.09 16279 5011 Tiles T I
1914 Carpet Office 00LEVELO O1.11 18192 4594 Wood =
1 5 _Carnet Office 00 1R/A 00115 13812 4260 v
884,06 664780 203961 0.0M

Figure 8.5 .CSV data and model .SVG maps visualized in PowerBlI.

Following the SVG exports, the data can be exported to a .CSV file using the script showcased in Figure
14.26 Script automating .CSV export of room data from parameter placeholders. This script exports
room schedule information needed for the PowerBI to work with the .SVG plans and the costing
parameters set up earlier on. The last thing left to do is to map the .CSV data frames and the .SVG floor
plans with the graphical interfaces available in the PowerBI application.

41

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

9 Analysis

The purpose of this workflow proposal is to check if the proposed approach can give more accurate
results with lesser effort. The goal of the analysis chapter is to analyze the tool, rather than the results
that can be obtained from the individual projects. It is as if a hammer was being created to hammer nails,
and the quality and usability of the hammer was tested, rather than the applicability of the project the
hammer was used on.

9.1 Transfer accuracy

The proposed approach allows for adding costs based on objects contained within the Revit model,
meaning that costs can be flexibly added and removed depending on the quantity, intensity, frequency,
and object cost per unit of measure. The accuracy relies on correct BIM modeling and correct costing
databases for cost estimation. However, the accuracy of the tool is somewhat concerned with how
flexibly the tool will be able to transfer this information.

Furthermore, dividing intensity into three categories, “Light, Average, Demanding,” can pose
inaccuracies due to various assumptions companies may take on what is considered “Light” and what is
considered “Demanding.” It may relate to high-quality standard cleaning, or “Demanding” may mean,
say in the case of carpet cleaning, that the carpet needs a heavy-duty carpet washing machine to freshen
the carpet.

A building-specific definition of what is meant by Light, Average, and Demanding for specific building
parts and furniture objects should be provided. This will further inform the object price. Such standards
already exist (Green Building Council Denmark, 2017) for the DGNB surface material cleaning;
however, the considerations specified there do not relate to the intensity of cleaning, but rather the ease
of accessibility, say the height of the window —accessible with or without a ladder, as an example (Green
Building Council Denmark, 2017, pp. 385-387).

The transfer of data sends information that is beforehand linked from the database directly to the Revit
parameter placeholders. Therefore, if the data is accurate, there is hardly anything that can go wrong,
given the modeling techniques are in accordance with the assumptions presented earlier.

9.2 Workflow time savings

LCCbyg

The proposed approach requires a certain Level of Detail (LoD) of object geometry and information.
Though creating Revit models should not be considered as time spent on making the LCC transfer, some
adjustments mentioned in the User Environment Design in chapter 7, may take a considerable amount
of time if the workflow is not standardized and the techniques are not followed by the modelers. Given
the process is standardized, altering model information will depend on the scale of the task.

The actual process of data transfer is pretty much fully automated. All the auditor has to do, once the
model preparation phase is over and validated, is to click a button in the Dynamo player to transfer the
data. The processing time takes between 5 and 15 seconds. After that, the Python script must be
appended with a new file name and ran to transfer data. This takes further 10-15 seconds. Lastly,
LCCbyg has to be re-opened, and the results can be observed, taking additional 10-20 seconds. This
means that the time taken for the tool to run a full calculation cycle (excluding the time taken to alter
the model environment) takes less than one minute.

42

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

PowerBl

The process of transferring information to PowerBI takes a little longer. Given the SVG map is already
there, and the PowerBI dashboard is setup from the template, four scripts are executed, one following
the other. The first script must reassign object IDs from Rooms to objects, and the second calculates
floor cleaning cost, the third populates room costs and the final script transfers data from Revit schedules
toa.CSV file.

The PowerBI dashboard template must be linked to new datasets, which may take a couple of minutes.
The resulting time for running scripts and linking datasets should take no longer than 5 minutes. It takes
a considerable amount of time to create a new Dynamo script for a new KPI dataset; however, this is a
one-time-only operation.

9.3 Applicability

The benefit of object-oriented cost calculation is that any objects can be calculated. Internal cleaning
can be just as well converted to gardening or washing facades. All it will take is to apply the same
structure — by using quantity, intensity, frequency, and object cost per unit of measure, while changing
the objects, the cost databases and the descriptions for what “Light, Average, and Demanding”
intensities mean.

The author is convinced that any objects cleaning cost can be calculated using the proposed process
workflow. It may involve changing some custom Dynamo nodes, too, for example, change the area or
volume calculation principles; however, the overall approach of data transfer will vastly remain the
same.

Say, instead of calculating the LCC of cleaning, gardening was calculated, and something as replacing
soil was to be measured. Soil is a volume, and the object category for soil may not exist. However, a
script can be created, which will take generic objects of type “soil” and will calculate the metric volume
of soil factored with soil compression multiplier.

Following the same logic, calculations for specific window awnings or brick and grout layout may be
calculated, with only change needed being the modification of the Dynamo script. If the auditor has
certain Dynamo VPL skills, it should not be challenging to alter the script, as the granularity of Dynamo
scripting is high, while inputs and outputs clearly visible.

Additionally, the Python-based Element Tree XPATH may require alteration if other LCCbyg software
categories were altered, beyond internal cleaning. This can again, follow the same approach and overall
structure of the script, only changing names of placeholder values of children and sub-children.

To further test the applicability of the proposed approach for data transfer, as well as data displaying
using PowerBI and further benefits the approach can have during the operations and maintenance phase
of the building, various stakeholders were questioned to analyze how they could benefit from the object-
oriented approach.

9.4 Stakeholder interviews and testing

For three months, various stakeholder meetings were arranged to find out how would object-oriented
costing could affect their workflows. The stakeholders were presented with a PowerPoint presentation,
relevant for their trade and interests, followed by a prototype presentation ended by an open discussion.
The results from those meetings are summarized in Table 3 and Table 4.

The full transcription summary can be found in chapter 14.12 - Appendix | — Summarized results of
stakeholder meetings. Chapter 14.13 - Appendix J — Key benefits and challenges is a chapter describing

43

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

the authors' take on the benefits and threats of the approach. It has been removed from the main section
to keep the page count reasonable.

Table 3. Stakeholder opinions summary — object-oriented cleaning

STAKEHOLDER MAIN CONCERN MAIN BENEFIT INTEREST
BUILD TO SELL | Extra costs of design DGNB certificate. Not
OWNERS analysis interested
BUILD TO USE | Extra costs of design Long-term savings, FM cost tracking, Interested
OWNERS analysis detailed Service Agreement, Material

choice help, DGNB certificate.

ARCHITECTS Complexity, Lack of Long-lasting design, DGNB Partially
early design info, extra certificate, Extra fees. interested
workload

FM SOFTWARE | Relying on geometry, sensor integration, relatively easy Interested

DEVS. updating models, implementation, value creation.
proprietary software

LCCBYG Lack of early design KPIs visualization, FM integration, Partially

SOFTWARE info, too specific, rigid increased reliability interested

DEVS. transfer, deviation from
DGNB, Lack of cost
databases.

HOSPITAL FM Must be integrated into Integrated issue reporting, design Interested

TEAM the same software option support, location-based object
already used. Older ID, 10T potential, Quality Control.
hospitals lack BIM
models.

CLEANING Expensive software and ~ work scheduling, route optimization, Interested

MANAGEMENT | hardware. pay per object, tacit knowledge

transfer, performance tracking.
Accurate tendering. Quality control.
OPERATIONAL | Undercosting of objects, work schedule, more accurate pay, Interested

CLEANERS

reliance on technology,
IT competences.

relaxed working time, reduced
surveillance.

Architects and BIM managers were also queried about the Revit-LCCbyg automation workflow. A
summary of the interview and testing meetings is visible in Table 4 below.

Table 4 Stakeholder opinions summary — data transfer proposal

STAKEHOLDER MAIN CONCERN MAIN BENEFIT INTEREST
ARCHITECTS Not every project requires LCC, Increased efficiency, reduced Interested
troubleshooting. auditing costs. Increased utility,
dRofus integration.
BIM Dynamo interaction, Simplified auditing process, Interested
MANAGERS Coordinating modeling standardized workflow, dRofus

techniques, updating the

integration.

database, challenging existing
methods, Issues with grouped

objects.

44

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

10 Results

In this chapter, cost approaches, applications, and complexity will be analyzed in detail to present the
reader with convincing reasons as to why a more detailed analysis can find application not only in the
correct cost estimation but preliminarily for decision making.

10.1 Comparison of cost

The two quantity takeout approaches were compared. The existing, DGNB approach, which uses an m2
basis, against the proposed approach using a combination of metrics explained in chapter 4.2 on page
10.

Cost deviation between DGNB approach and the proposed approach

What is apparent is that the existing cost approach proposed by the DGNB template has a high potential
for undercosting the actual cost of cleaning, mainly because of excluding objects. It may, at the same
time, overvalue the cost, as a result of taking generic values for cost estimation. That said, to
appropriately compare the two approaches, a trustworthy object costing database would be required. It
is possible to compare costs using two price points to visualize how small price changes multiply due to
the frequency of tasks.

To compare “apples to apples,” the frequencies on all components are set to be the same for both the
existing template and the proposed work template. The pricing based on areas is taken directly from the
existing template. Prices for cleaning furniture and other unit-based objects are derived from cleaning
time calculations presented in the appendix 14.2.

It can be observed that the cost deviation on the same frequencies and quantities is quite considerable,
as depicted in the figure below. This was, however, a single test, and the prices were estimated with an
unvalidated method. The thesis aims to create the tool, and further analysis is subject to separate
research.

Conditions:

Frequency from DGMB template = Constant

Frequency for object cleaning = based on case study furniture 2x a week, Bathrooms 5x a week
Cost priced from DGNB template = Constant

Cost for object cleaning = average cleaning time

LCC Period: 50 years. Constant.

LCC Price development = Constant

Total LCC Costs

Light Average Demanding
Method: DGNB template cleaning parameters 7 861 964,00 DKK 13 054 053.00 DKK 15543 383.00 DKK
Method: Object-based cleaning 12570 532,00 DKK 17388 978.00 DKK 25999 257.00 DKK
Increase 4 708 568.00 DKK 4334 925.00 DKK 10 455 874.00 DKK
% increase 59.89% 37.04% 67.27%

Figure 10.1 Cost comparison variables and constants

The sample results are here to showcase the potential applications and the data that can be generated
from the models, once the cost databases are accurate and available.

Cost deviations using the proposed approach
A case study is examined to illustrate the potential application better. The case study model has 106
laminated and 23 rough-surfaced desks. By changing the current desk mix to either 129 laminated or

45

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

129 rough-surfaced desks, an experiment can be run checking the difference in cost resulting from the
change in the cleaning effort needed. Multiplying the tasks by 50 years will definitely generate
significant results. This is taken as a demonstrative example. Of course, having so many levers to press,
the optimization possibilities are quite diverse, and desks are treated as an illustrative example. A more
realistic example will look at a decade period, rather than 50 years, as desks' lifespan is rarely this long.
However, as the general calculations are performed on a 50 years period, an assumption is made that the
desks are replaced without affecting the desk replacement cost.

A B C 1] E F G H I
Family and Type Count Family Cost_Av.: Cost D :Cost L:Average_Freq:Demanding_Freq Light_Freq
Cleaning_Desk_Standard: 1525 x 762mm 106 Cleaning_Desk_5Sta {5 2 3 100 50 100
Cleaning_Desk_Standard: w1525 x d762mm_Rough_Surface {23 Cleaning_Desk_Sta {10 14 1 100 50 100

Figure 10.2 A table is showing two exemplary desks of two varied finish materials

The rough-surfaced desks are more expensive to clean at an average cost of 10dkk
per object. The smooth-surfaced desks are less expensive to clean at an average

cost of 5dkk per object.
In this case, the above Figure 10.2 showcases the pre-optimization setup, where some of the desks had

been replaced from the standard smoothly laminated desks to desks covered with a rough rubber anti-
skid surface, which is perhaps convenient for a mouse tracker, but not so much when it comes to
cleaning.

Figure 10.3 Model representation of smooth surface desks

White and yellow desk surfaces will be changed to black antiskid surfaces,
resulting in need of an increased effort to maintain its cleanliness.

Due to its surface properties, the cleaning process of such surface requires the iterative application of
cloth, as the human skin cells struck between the porous surface, form stripes of skin which, with every
motion, only move a few centimeters. For the laminated desks, a cloth has a stickier surface, so all the
human skin and dust sticks to it. This is not the case for the rough desks; hence, they tend to take 2-3
times longer to clean than the standard desks.

Properties X | Properties x
Cle?mng_Desk_Standard b Cleaning_Desk_Standard
w323 x T e 1525 x 762mm T
d762mm_Rough_Surface '

Furniture (129) «| B3 EditType | Furniture {129) « | g Edit Type

Figure 10.4 Changing the type of desks from rough to smooth-surfaced

Note that the image for the rough-surfaced desk has been altered for demonstrative
purposes. Revit keeps the same image for all instances of the family by default.

46

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

As a result, the costs associated per item are almost doubled. In the scenarios below, all desks are either
smooth or rough. For 129 desks of smooth surface, the cost of maintenance cleaning is reduced by
3,250,000DKK over 50 years (see Figure 10.6). The cleaning intensity and frequency are the same, and
the only difference is the time it takes to clean a single desk, therefore the cost.

Figure 10.5 129 Rough surface desks (notice the desk color change in the BIM model)

It can be argued that the desks will not remain the same for 50 years’ time, which is most likely correct.
The same calculation can be assessed in 10 years, and the results show a difference of 1.1m DKK. The
real difference may be less significant; however, the vital point here is twofold. One, the difference
clearly exists, and two, the scale factor of frequency and price make every single second count.

Conditions:

Cost for object cleaning =Variable
Frequency for object cleaning = Constant
LCC Period: 50 years.

Cost per object

Light Averoge Demanding
Design Option: Laminated desks 3.00 DKEK 5.00 DEK 2.00 DEEK
Design Option: Anti-skid desks 6.00 DEK 10.00 DKK 14.00 DKK
Increase 3.00 DKK 5.00 DKK 5.00 DKK

%increase . 10000% 100.00% 75.00%

Frequency per ohject

Light Average Demanding
Design Option: Anti-skid desks 100 times/year 100 times/year 50 times,year
Design Option: Laminated desks 100 times/year 100 times/year 50 times,year
Increase 0 timesfyear 0O times/year 0 timesfyear
% increase

LCC Cost Difference
Total LCC cost

Laminated desks 25 6507 741.00 DKK
Anti-skid desks 23 B58 267.00 DKK
Increase 3 250 525.00 DKEK
% increase 12.69%

Figure 10.6 LCC cost difference resulting from the material finish for 129 desks

47

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

10.2 Beyond LCC — Operational Use Cases

The proposed software applications vary — from lifecycle costing, which formed the central theme of
this thesis, to future applications concerning Facility Management and cleaning operations. The primary
purpose of this report was to automate the data transfer between a BIM model and an LCC calculation
tool. Furthermore, a proposal for the costing approach was envisioned. Future applications were then
stemming from the voices of stakeholders, as well as the data gathered from the case studies.

Basement Ground Floor First Floor Area by Floor Finish

924 Floor Finish
(0% 95%%) @ Carpet

® Wood

00 BASEMENTro ¥ il 00LEVELOroom ¥ [l [l Gallery O1LEVEL1room v [l [Ga) Gallery
FalGalley 4 — X + - X + - X
\ Polished Conc.
Tiles
@ Tile antiskid
(0%) Linoleum

(0%)
Ferforated Me

Cost Per Room Type

19K
goi(1:69%).

Name
Office

@ Toilet

(7,56%)
Area Floor Finish ~ Name Level Number Total Floor-cleaning Name @ Toilet 101K Hall

Room Cost ®.) Meeting Room
Cost g 20K ' Canteen
692 Tiles Tollet O1LEVEL1 T202 9903 1453 § Seirense
469 Tiles Toilet O00LEVELO T101 16085 985 £ 10k 167K
4412 Tiles Tollet 00LEVELO T1.02 9316 866 3 (1462%) . enen
412 Tiles Tollet O1LEVEL1 T201 11616 866 oK ' v
350 Tiles Toilet 00 BASEMENT T0.01 4735 735 2 4 6 8
340 Tiles Toilet 00 BASEMENT T0.02 4714 714 Area Total Room Cost by Zone ID
336 Tileantiskid Toilet OOLEVELO T1.03 14956 706 Floor Finish Zone 1D @ Blank) @A OC OL
333 Tileantiskid Toilet OOLEVELO T1.04 14949 699 Carpet
317 Tileantiskid Toilet O0LEVELO T1.05 11515 665 Linoleum .
297 Tileantiskid Toilet O0LEVELO T1.06 11473 623 Perforated Metal B
254 Linoleum Tollet O1LEVEL1 — T204 15532 532 Polished Concrete
249 Linoleum Tollet O1LEVEL1 T203 15522 522 Tile antiskid ,§
2412 Linoleum Tollet O1LEVEL1 T206 11195 445 Tiles 5
2,09 Linoleum Toilet 01 LEVEL1 T2.05 15538 438 Wood ©
48,82 167049 10249 []

o
o
=

Figure 10.7 PowerBI User Interface

An interactive user interface showcases an executive view at the costing data.
Bathrooms are highlighted and all diagrams adjust accordingly to showcase the
bathroom data subset, on the background of the overall dataset.

The applications from there on are manifold. Costing, tendering, calendars, training, feedback, change
management, user engagement, is certainly worth investigating. Chapter 14.13 discusses the potential
risks and benefits of object-oriented cleaning, while a summary of stakeholder opinions can be found in
Table 3 on page 44.

Tools such as PowerBI best showcase how easily the data gathered from the models can be digestible
by the end-users and how it can potentially inform FM operations. The two simple KPIs investigated in
this report are one; the floor cleaning cost per room, and two; the total cleaning cost per room.

The sample dashboard from Figure 10.7 PowerBI User Interface permits some assumptions to be drawn
from the graphical interface. The bottom right graph calculates the Total Room cost by Zone ID,
enabling splitting the bills of cleaning amongst different building users. In the case study, two companies
occupied one building and shared the canteen.

For one, Figure 10.8 Cost of cleaning relative to the room area shows how room size does not necessarily
scale linearly with the cost, and therefore poses an interesting problem with the way the current
calculations approach estimate cleaning tenders. Having area data is better than no data at all, but that
said, having object data is better than area data, and the figure below demonstrates it.

48

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Name @Canteen @Depot ® Hall ® Kitchen @ Meeting... © Office © Server @ Staircase @ Technical ® Toilet
100K

80K
60K

40K

Total Room Cost

20K

0K

60 80 100 120 140 160
Area

Figure 10.8 Cost of cleaning relative to the room area

The room area does not ideally scale with cost, therefore assuming only area
metric presents inaccuracies.

The cost of cleaning offices increases linearly in some cases, yet for some other cases, bigger does not
mean more expensive. This is in the case of the attic rooms, as well as executive offices, where the floor
area is far higher per desk than in the other spaces. Were the costs corresponding to areas, the functions’
lines would be perfectly straight.

Cost Per Room Type
17K "
63K (549%) (+:47%) am?
86K @ Office
(7.56%) @ Toilet
Hall
101K
(881%) @ Meeting Room
@ Canteen
Staircase
Kitchen
@ Technical
167K
o
(14,62%) Depot
665K (58,17%) Server

Figure 10.9 PowerBI dashboard - an overview of cleaning cost allocation

The hallways, kitchens, and bathrooms also show varying costs. It can be observed that the bathrooms,
despite its small areas, are significantly more expensive to clean than any other spaces — which is valid
from personal experience. The results of different versions can be compared against each other, showing
the distribution of the cost. This would be even better showcased if the .SVG maps transferred object
geometry. KPIs at object geometry would be ultimately desirable.

49

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

11 Discussion

The current approach of estimating the lifecycle Cost proposed by the DGNB is insufficiently detailed
to inform the design and further operations adequately. The assumption is that object data-driven
cleaning information takeout from a BIM model will increase the accuracy of cost prediction and will
enable more detailed optimization of the design.

Q1. Is there a possibility the current approach of estimating cleaning lifecycle costs is inaccurate?

All models can be flawed due to the boundary critique condition (Ulrich, 2005) but some can be more
accurate than others. It can be seen from the resulting test runs, that a seemingly insignificant price
change of 5DKK a day, per cleaning of a single desk, can result in over 3,250,000DKK in savings over
50 years period, considering a three times a week cleaning frequency and 130 desks in the office. This
change would not be picked up by the traditional, aera based approach.

Furthermore, not only changing costs impacts the results, including the objects at all seems to have the
most impact. The DGNB status quo approach does not consider the cleaning costs of furniture or other
interior fitting equipment, thereby, in the opinion of the author, greatly under-costs its LCC assumptions.
Most stakeholders agree that there is a big potential in object-oriented costing.

Practical observations lead to conclusions that certain material finishes and object designs lead to a more
tedious or demanding cleaning. Furthermore, the increase of frequency greatly affects the price, yet it is
vital to keep objects in the usable state so that the assumptions about the economic lifespan can be
sustained.

Q2. Will the proposed approach increase the complexity of calculations experienced by the DGNB
auditor?

An honest answer to this question is yes, and no. The complexity will stem from rigid model checks
consisting of checking if objects are modeled, whether they contain the parameters, and whether the
parameters are populated correctly. There will be no extra complexity in calculating per se, as the
LCCbyg software will remain the same tool to calculate the costs; however, the auditor will likely need
to be able to understand at least the basics of Dynamo, to troubleshoot any issues that may arise during
the quantity transfer. One of the frequent issues is that the console can get stuck after one calculation
and may require restarting for a quick refresh. However, given the auditor must perform the transfer
regardless of the approach, and that there will be multiple transfers following each design iteration, the
complexity encountered is solely initial. The repeated optimization iterations will be straight forward
and take under a minute to run, as presented in the analysis chapter on accuracy and time taken. Once a
rigid workflow process is established, the complexity has the potential to be significantly reduced, as
the models will consist of rigid and standardized information and geometry.

Q3. Can the lifecycle cost data transfers be automated to prevent extracurricular tasks
experienced by the DGNB auditor?

Given there is no direct link between Revit and LCCbyg, automation proposed here should reduce the
effort needed to calculate lifecycle costs. In short, the transfer can be automated to a high degree. The
transfer of information from Revit parameters can be fully grouped and organized using Dynamo-Python
workflow. However, not without issues, to the least encountered using the proposed prototype. The more
important question is what will be transferred. The proposed solution offers to transfer objects by type,
not instance. Creating a Dynamo mapping to list instances is possible, but by the author, and backed by
the auditor, deemed not worth the effort. The issue of grouping by instances is that every single case
will require its data transfer. This can be not only quite tedious to replicate but may also be hard on the
hardware. The solution may be split into parts to solve this problem. For example, when dealing with

50

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

surface finishes of floors within rooms, instantiating rooms is generally a good idea. In Revit, the project
is built in a way that rooms are considered unique and may only use instance parameters. However,
when using objects, such as desks or toilets, those are families of a specific type. Therefore, it is possible
to use type parameters when quantifying them. This means that their base unit will relate to unit count,
not area, or running meters. Furthermore, instead of instantiating every single object of precisely the
same attributes, those can be grouped by type. If there is a need to create a unique case, the object type
may be duplicated, and data may be added to facilitate quantity takeout correctly.

There are not many additional tasks that the auditor must perform to facilitate the transfer. Once the
database is populated, and template costing and object data is available, filling in Revit models with
already data-rich objects is simple. The auditors' tasks are to solely press a couple of “run” buttons and
analyze the results, given the data is populated in the model, and the model is correctly made. All it
comes down to is creating a reliable database of objects, which include LCC information and updating
the costs of object cleaning if necessary.

Q4. Do the stakeholders agree that object-oriented approach generates value?

The critical observation is that each stakeholder values something different. The beneficiaries of the
results generated by the workflow are the building owners, the architects, the auditors, the FM teams,
the cleaning companies, the cleaning operators, and finally, the building users.

The building owners value having a DGNB certificate as the entire reason for it, is to ensure the building
will be a profitably running asset over time. It is unclear whether the building owners would value
knowing the cleaning costs, as no building owners were questioned, however, according to the
architects, the building developers, those who build to sell, do not trouble themselves with finding out
operational costs; however, the building owners who later own the property, such as the state - pay great
attention to it. The author finds good examples to be hospitals and daycare institutions, hotels, airports
and other buildings that have high operational costs and are often publicly owned.

The architects seem to value operational estimations, as it can be a tool for them to explain to clients
why some fittings or materials may be a better option, despite the high initial purchase cost. Furthermore,
having an automated LCC data transfer will allow checking for multiple configurations and offer a true
data-driven design process. This, in turn, will likely create a longer-lasting design, and indirectly, the
careful analysis of cleaning may reap in the prolonged economic lifespan of the building and its
components.

The auditors, people directly responsible for the calculation process, will find automating the transfer
improving their workflows. They should find using Dynamo relatively easy, and in the long run, use a
direct plug-in with a user-friendly interface. Perhaps, in the future, the task will be automatic and
incorporated in the software, or so easy to make that a general BIM modeler, or the architect, will be
running the process along as the design progresses.

The key value for FM teams is information. Having the right information and the right tools to view the
information effectively can make or break the FM personnel to use it with delight. As we see more
benefits to the use of BIM models and the use of standards such as IFC becomes more widespread, there
must be a standardized way of passing the costing design information forward to the FM teams.
However, further research must be carried out to check to what extent could the initial early design cost
calculation, benefit future use during operations. The author foresees the development of object-oriented
cleaning software, which will benefit the cleaning operations and users. Having interviewed Dalux
software consultant, integrating cleaning costs to the existing Dalux FM platform should be relatively
straight forward, and indeed be valuable to the customers. This was confirmed by the FM BIM
consultants at the state hospital in Aalborg. They wish that cleaning operations would be integrated with
Dalux, as they do not want to use a separate system for cleaning personnel.

51

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

The author finds the hospital as a perfect future research facility to test the object-oriented cleaning
during the operations phase, as the Aalborg hospital is owned publicly, the cleaning personnel is
insourced, they are implementing Dalux FM software, and their BIM adoption is at a high level.

The potential benefits of placing costs on objects for cleaning companies, cleaners, and users may be
thoroughly investigated in future research. A vision seen by the author sees a benefit in pay-per-object
pricing and salary calculation. Such a technique will likely soften the frictions encountered by the
cleaning operators by being inadequately paid to the effort required or the cleaning companies
overpaying for jobs that require much less time. The same is true for overpaying for work where the
employees are spending idle time, or clean objects too frequently.

Lastly, the users will also benefit from detailed information about the building they are situated in and
a possibility to report issues as they arise directly to the cleaning personnel, skipping unnecessary
attention of the help desk, administration, and operational managers in the process.

Q5. Can a prototype include the functionality of a working software product?

When it comes to functionality, the Dynamo prototype can well transfer any information that can be
derived from the parametric model. The question is how much of the code will be needed to be re-
developed in the case of an anomaly. The other question is whether there is a capable person nearby that
can do it. Therefore, the prototype will always be somewhat inaccessible to the crowd of users, reliant
on an intuitive user interface and a bug-free software solution.

Presentations and user testing had shown that the tool is versatile and flexible. It carries over data
transfers for multiple types of families, including Revit built-in families. Furthermore, the Dynamo
script distinguishes differences between area-type objects, unit type objects, and running meter objects.
The author did not create a volume-based transfer, as none were deemed necessary for cleaning.
However, it is possible, and applications are present, such as in gardening when exchanging plant soil.

The prototype lacks integration with IFC and other software. The prototype is also contained within the
Autodesk environment; therefore, it cannot be considered an interoperable solution. The transfers still
require partially manual operations, for example, due to the two-step data transfer process.

Furthermore, the databases needed to inform the model information are not there, and the links were not
fully integrated with the scripts. More work will be needed to create a standard for calculating costs
based on objects, and more testing will be needed to validate the anticipated prices.

11.1 Evaluation

Comparing an existing factor-based approach with the proposed object-oriented approach is difficult to
delimit. According to W. Ulrich, (2005), “both the meaning and the validity of professional propositions
always depend on boundary judgments as to what ‘facts' (observation) and 'norms' are to be considered
relevant” or not. It is referred to as systems thinking and it concerns an underlying issue of accuracy of
data and approximations. Due to the lack of cleaning object cost data, the detail of the cost calculations
method is difficult to properly assess and clearly state, whether it is better or worse than the factor-based
approach.

Furthermore, as developing an interoperable, end-user software is often a considerable feat, a glitch-
free, rigid, and holistic solution was deemed impracticable due to restricted time frames. Developing a
rigid framework for object-oriented costing would require longitudinal research analyzing the time it
takes to clean specific objects over many months, measuring various people with varying ages and
abilities. The methods would then need to be cross-validated by multiple industry professionals before
they can be deemed reliable.

52

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

As a result, a proposal was made for an approach for calculating the costs; however, the statistical data
for actual figures do not exceed measurements during limited sample trial tests, thereby the costs shall
be deemed as sample values. Missing the inclusion of entire categories in the existing approach will
account for changes to price, regardless of the actual cost data. Accurate cost data will be down to the
users to develop.

Due to the spread of analysis and research goals, sometimes the material may seem inconsistent, as some
parts are detailed and some quite generic. The generic parts will require further research. Reasons for
this approach are justified, as two approaches are merged, one 1T-based, and the other discussion and
function-based.

As a result, the LCC data transfer automation is paired with methods for creating cleaning calendars,
calculating wages for future operational employees, and user feedback reporting systems. The latter
considerations had been moved to the appendices, as to ensure a consistent flow of the main thesis
content.

The limitation should strictly specify that the main application of this thesis is to create a prototype
capable of transferring and analyzing cost data, but not necessarily providing a rigid, and bug-free
solution. The prototype aims to prove its feasibility and maintain a stable reference point for further
usability discussions with various stakeholders that may potentially find use in the tool.

The end-user application should be developed using a structured database such as MySQL or a Labelled
Property Graph database (LPG) utilizing IFC data or other non-proprietary solutions, enabling direct
mapping to a standard property set transfer. Furthermore, the software should be coded using an lccXML
schema, flexible enough to accommodate schema updates and new software versions in the future. The
transfer should also account for remaining lifecycle costs, including procurement, maintenance, and
demolition.

The User Interface application must be developed, likely using a .NET or .net core framework.
Furthermore, the application should have full documentation provided on a dedicated website and be
connected with cost databases commonly used in Denmark, such as V&S Price books.

11.2 Future Development

The short term goal will be to figure a Python code capable of directly appending the LCChyg XML
schema, without using a rigid code solution. Ideally, such code would transfer data from all LCC stages,
as opposed to cleaning only. This could be easily expanded to other LCC categories, following the
principles of coding established in this report.

A connection with IFC transfer is deemed an essential subject for future research, as it is hard to expect
FM teams to have access to the Revit models and update them accordingly. IFC will facilitate
interoperability with the common FM platforms such as Dalux FM or Mdoc FM. For this to happen, an
ontology must be developed.

There is a range of potential benefits of object orientation described in A vision of key benefits of object-
oriented LCC, appendix 14.13, and each benefit could be a research subject on its own. It would be a
good idea to use the tool envisioned in this report to conduct data-driven researching and see if object-
oriented costing optimization is worth the initial effort. Utilizing the application in a rigid form will
require IT software engineers and further investigation.

During the writing of this thesis, a beta version of LCCbyg 3.0 came out; however, the data transfer is
made to work for LCChyg 2.2.52 version. The reason the transfer was not updated was that the
documentation of the new lccXML schema was not available before the submission of this thesis. It will
be a future task to update the schema to version 3.0 accordingly.

53

«

AALBORG UNIVERSITET

STUDENTERRAPPORT

12 Conclusion

Object-oriented Lifecycle Costing has been researched before, for example, for bridge structures (Ugwu
et al., 2005). Costing at object level is a popular method for calculating construction costs, widely used
by software such as Vico Office. Due to the high cost of operational costs, there seem to be good reasons
to calculate cleaning costs at an object level. There are tools available to quantify objects, and there are
tools available to calculate the lifecycle cost. Furthermore, the stakeholders agree that having cost
databases on upkeep costs, along with usable lifespans, would bring value when making design
decisions.

What is missing, besides the operational object cost databases, is a method to quickly assess the overall
building cost of operational maintenance during its lifespan. This gap is bridged in this report by
providing an approach to quantifying, sorting, and mapping data to software capable of such
calculations. Moreover, to ease the design decision making, a supplementary solution is proposed and
prototyped to extract information to visualization software. The contribution of this thesis is the
workflow process necessary to optimize operational costs using a Revit model, Dynamo and Python
scripting, and a Lifecycle Costing tool LCCbyg. Supplementary processes of database attachment and
data visualization, along with future benefits, are investigated. The diagram summarizes the process.

[D 2;?:& }———[BIM Mooi} } ,:c A:::::\} } LO(;I [::TA\/} l(LCCbyg } l(PowerBl ‘
dRrofus - 1|]

L a — Ll

7 B Dynamo
e # python l 1.

'n.§ SIGMA
B EsTimaTES
[Ti.ow“gn%} {VASE MODE,_J } S 1‘ } orace]_#‘;/mwmnon]——o[\/lw;aunnon\}

The prototype emerged as a result of the available software and user environment. The chosen software
solutions were either commonly used, or being implemented in the Danish AEC industry. The resulting
workflow has emerged from the industry needs and personal insights in both BIM and cleaning
operations.

The workflow, along with the prototype proposed, is capable of transferring LCC data to the LCChyg
from the Revit model. The process of data transfer can be obtained in under one minute per design
option, so long the data is correctly assigned from the template database. The coding of data transfer is
flexible and can carry information about a variety of object types, grouping them accordingly by types
or instances, and by measurement units.

The transfer is a two-step process requiring a Python script to run outside of the Dynamo environment,
which can be hopefully fixed in the future. The Python script is a working proof of a concept, and a long
term solution would be to use the full LCCbyg XML schema. Therefore, it is worth noting the next step
in the development may take a different shape, yet schematically, be derived from the proposed
approach. A possible further development may well encapsulate other areas of lifecycle costing,
following the same object-oriented principles as a basis for calculation and data transfer applications.

The function-based approach proposed by the existing transfer is lacking in detail and poses a threat that
the real costs of operational maintenance are much more significant than initially considered. Having in
mind an object-based approach, design decisions that consider operations costs can be made before
construction. The results from such analyses can showcase how changes as small as 5DKK can have

54

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

significant impacts on the lifecycle costs. The economies of scale, resulting from dense frequency and
vast object areas and counts, add up to astronomical sums.

The case study shows that a surface material change can alter the LCC cost by DKK3.25 million, given
129 desks require more attention over 50 years. The attention as a result of this is calculated by a 5DKK
cost increase in the cleaning cost of a single desk, a single time. The stakeholder analysis and user testing
verify the general interest expressed by the stakeholders from the informative results generated by the
proposed tool and the case study used.

The concluding results can be analyzed further using data analytics tools such as PowerBlI.
Supplementary scripts were developed, which present cost data for future stakeholders, on a yearly basis.
The graph from Figure 10.8 clearly indicates that the relationship between a room area and its cleaning
cost is not linear. Visible discrepancies occur at an object level, and the detail is clearly necessary to
evaluate the viability of one design option over another properly.

The architects may have found an excellent way to justify the higher upfront cost associated with high-
quality materials, thus prolonging the cycle of use and contributing to the sustainability of building use.
Having in mind finding an easy way to calculate such detailed costs, the architect should be encouraged
to use the tool and be able to share its benefits contagiously with related stakeholders. However, until
object costing database is made commonly available, the architects have no choice but to stick to the
standard approach proposed by the DGNB, to calculate LCC based on aerial costs.

The hospital FM team had found the subject of cleaning very relevant. The interviewees concerned
themselves with a cleaning strategy for the hospital building. Having an object-oriented approach for
cleaning costing would optimize design choices, cleaning strategies, and staff training to a great extent.
Due to the sheer size of a hospital and the governance of its cleaning operations, due to insourcing, the
environment would be ideal for further testing of this solution on a real case example.

The adoption of Dalux FM as a Facility Management Software, along with testable time allocations for
object cleaning, will allow for establishing fully-functional workflows. Evaluating cleaning time is
necessary for object costing while appending models with cleaning data will facilitate quantity takeout
and cost optimization.

Furthermore, the information attached can inform FM systems necessary to run the operations
scheduling and prompt user feedback smoothly. Further longitudinal research and practical
implementation are deemed a desirable method to validate the thesis proposal.

The future approaches were investigated to pave the way for a set of user-friendly applications for
lifecycle costing, tendering, training, and communication. The future development will require
significant programming efforts, and the stakeholder feedback indicates that those who will have access
to this information will reap benefits outstanding the costs of the initial setup.

One potential application admired by the cleaning companies and the operational staff themselves was
to develop object-oriented colored calendars, where the cleaning operations team would know who is
cleaning what, and when. Furthermore, estimating the time could well inform the calculation proposals
for the tender bids and inform wages.

It will be down to functional integration of the proposed workflow with an existing FM tool to fully reap
the benefits of object-orientation for cleaning and having interviewed FM software companies, and it
seems like a reasonably straight forward task to append existing models with the proposed parameters
for object-oriented costing. The hospitals may well be the first potential integrated users, both benefiting
from informed design decisions, and operational benefits the object orientation brings.

55

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

13 Bibliography

Aish, R. (2017). DesignScript User Manual, (October 2016). Retrieved from
https://www.researchgate.net/publication/320346998

Akcamete, A., Akinci, B., & Garrett, J. H. (2019). Potential utilization of building information models
for planning maintenance activities. EG-ICE 2010 - 17th International Workshop on Intelligent
Computing in Engineering, (January).

Andydandy74. (2019). andydandy74/ClockworkForDynamo: A collection of 400+ custom nodes for
the Dynamo visual programming environment. Retrieved December 4, 2019, from
https://github.com/andydandy74/ClockworkForDynamo

Autodesk. (2018). Revit IFC manual. Detailed instructions for handling IFC files, 1-52. Retrieved
from www.buildingsmart.org/compliance/certified-

Barazzetti, L., Banfi, F., Brumana, R., & Previtali, M. (2015). Creation of Parametric BIM Objects
from Point Clouds Using Nurbs. The Photogrammetric Record, 30(152), 339-362.
https://doi.org/10.1111/phor.12122

Bear, A. (2019). Amoursol/dynamoPython: Python Modules for Dynamo. Retrieved December 4,
2019, from https://github.com/Amoursol/dynamoPython

Beyer, H., & Holtzblatt, K. (1998). Contextual design : defining customer-centered systems. Morgan
Kaufmann.

BIM7AA. (2018). Bim7Aa Typekodning. Europaplads 2, 11. sal, 8000 Aarhus C. Retrieved from
BIM7AA.dk

BIPS. (2015). CCS. Retrieved from https://bips.dk/verktejsemne/ccs#0

Building smart. (2010). Information Delivery Manual Guide to Components and Development
Methods. BuildingSMART, 1-84. Retrieved from
http://idm.buildingsmart.comhttp//idm.buildingsmart.comashttp://idm.buildingsmart.com

Christian Koch. (2018). BIM Handbook. (J. B. E. Konig Markus, André Borrmann, Christian Koch,
Ed.). Springer International Publishing AG.

Conradie, D. C. U., & Roux, E. (2008). QUALITY MANAGEMENT IN CONSTRUCTION
PROJECT DESIGN AND MANAGEMENT. Gazette, 16-18. Retrieved from
https://www.researchgate.net/publication/30511316_Quality_management_in_construction_proj
ect_design_and_management/figures

Dansk standard DS/INSTA 800 Rengoringskvalitet-System til fastlaeggelse og bedommelse af
rengoringskvalitet Cleaning quality-System for establishing and assessing cleaning quality.
(2010). Retrieved from https://webshop.ds.dk/da-dk/standard/ds-insta-8002011

DGNB.de. (2019). DGNB Lifecycle cost. Retrieved September 29, 2019, from https://www.dgnb-
system.de/en/system/version2018/criteria/life-cycle-cost/

Dieter Vermuelen. (2017). (63) Fire Exit Risk Assessment - Automated creation of evacuation -
YouTube. Retrieved from https://www.youtube.com/watch?v=nHKrxw-FsRE&t=143s

DiKon. (2017). DiKon Building part specification- for selected building parts in building models.
Retrieved from https://www.dikon.info/en/publications/

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2018). BIM Handbook. BIM Handbook. Hoboken,
NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470261309

Goldstein, B. P., Herbel, M., & Figueroa, M. J. (2013). Gaps in tools assessing the energy implications

56

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

of renovation versus rebuilding decisions. Current Opinion in Environmental Sustainability,
5(2), 244-250. https://doi.org/10.1016/j.cosust.2013.03.005

Green Building Council. (2013). 4n introduction to DGNB : Ensure the quality of your sustainable
buildings in planning, construction, and operation. The DGNB system helps you get there.
Retrieved from https://www.dk-gbc.dk/media/2292/dgnb_dk-gbc_oct 2012.pdf

Green Building Council Denmark. (2017). DGNB System Denmark manual for kontorbygninger 2016
(Vol. 1.1). Retrieved from http://www.dk-gbc.dk

Guillen, A. T, Crespo, A., Gémez, J., Gonzalez-Prida, V., Kobbacy, K., & Shariff, S. (2016). Building
Information Modeling as Assest Management Tool. IFAC-PapersOnLine, 49(28), 191-196.
https://doi.org/10.1016/j.ifacol.2016.11.033

Harold, E. R., & Means, W. S. (2001). XML in a Nutshell : A Desktop Quick Reference (Nutshell
Handbook). Retrieved from https://kbdk-
aub.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma9920672192905762&context=L
&vid=45KBDK_AUB:AUB&lang=da&search_scope=MyInst_and_Cl&adaptor=Local Search
Engine&tab=Everything&query=any,contains, XML in a Nutshell&offset=0

Haugbelle, K., Scheutz, P., Saridaki, M., & Serensen, N. L. (2017). Installation Guide and User’s
Guide LCChyg version 2.2. Retrieved from https://sbi.dk/Pages/Installation-Guide-and-User-s-
Guide-LCCbyg-version-2-2.aspx

Huizenga, C., Hui, Z., Duan, T., & Arens, E. (2001). An improved multinode model of human
physiology and thermal comfort. Building and Environment, 36(July), 691-699.
https://doi.org/10.1111/j.1600-0668.2011.00745.x

IBM. (2019). Creating maps from COBie attributes. Retrieved November 27, 2019, from
https://www.ibm.com/support/knowledgecenter/en/SSLKT6_7.6.1/com.ibm.mbs.doc/bim/t_map
_cobie_attrib.html

ISO. (2013). ISO 16739. (2013). Industry Foundation Classes (IFC) for data sharing in the
construction and facility management industries.

ISO 16739-1:2018. (2018). 1ISO 16739-1:2018 Preview Industry Foundation Classes (IFC) for data
sharing in the construction and facility management industries -- Part 1: Data schema.
International Organization for Standardization, 2018, 70303. Retrieved from
https://www.iso.org/standard/70303.html

Johnson, L. (2019). Bakery Dynamo Package. Retrieved December 4, 2019, from
https://dynamopackages.com/#

Kaewunruen, S., & Lian, Q. (2019). Digital twin aided sustainability-based lifecycle management for
railway turnout systems. Journal of Cleaner Production, 228, 1537-1551.
https://doi.org/10.1016/j.jclepro.2019.04.156

Kang, T.-W., & Choi, H.-S. (2015). BIM perspective definition metadata for interworking facility
management data. https://doi.org/10.1016/j.aei.2015.09.004

Kensek, K. M. (2014). Integration of Environmental Sensors with BIM: Case studies using Arduino,
Dynamo, and the Revit API. Informes de La Construccion, 66(536).
https://doi.org/10.3989/ic.13.151

Kim, K., Kim, H., Kim, W., Kim, C., Kim, J., & Yu, J. (2017). Integration of ifc objects and facility
management work information using Semantic Web.
https://doi.org/10.1016/j.autcon.2017.12.019

Kirk, S.J., & Dell’Isola, A. J. (1995). Lifecycle Costing for Design Professionals. Proceedings of
Joint International Symposium of CIB Working Commissions W55/W65/W107 in Knowledge

57

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

Construction. Retrieved from http://www.sciepub.com/reference/174753

Kiviniemi, A., Tarandi, V., Karlshgj, J., Bell, H., & Karud, O. J. (2008). Review of the Development
and Implementation of IFC compatible BIM Executive Summary. ERA Build, 1-2.

Lawrence, M., Pottinger, R., Staub-French, S., & Nepal, M. P. (2014). Creating flexible mappings
between Building Information Models and cost information.
https://doi.org/10.1016/j.autcon.2014.05.006

Lichtenvort, K., Rebitzer, G., Huppes, G., Ciroth, A., Seuring, S., Schmidt, W. P., ... Hunkeler, D.
(2008). Introduction history of lifecycle costing, its categorization, and its basic framework. In
Environmental Lifecycle Costing (pp. 1-16). CRC Press. https://doi.org/10.1201/9781420054736

LunchBox — PROVING GROUND. (2019). Retrieved December 4, 2019, from
https://provingground.io/tools/lunchbox/

Mccrone, C. (2010). Dynamo Language Manual, 1-57. Retrieved from https://dynamobim.org/wp-
content/uploads/forum-assets/colin-mccroneautodesk-
com/07/10/Dynamo_language_guide_version_1.pdf

Mendes De Farias, T., Roxin, A., & Nicolle, C. (2018). A rule-based methodology to extract building
model views. https://doi.org/10.1016/j.autcon.2018.03.035

Molio. (2019). Molio prisdata : Renovering & drift. Retrieved November 29, 2019, from https://kbdk-
aub.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma9920661403005762&context=L
&vid=45KBDK_AUB:AUB&lang=da&search_scope=Mylnst_and_Cl&adaptor=Local Search
Engine&tab=Everything&query=any,contains,molio&offset=0

Olatunji, O. A., & Sher, W. D. (2010). The Applications of Building Information Modelling in
Facilities Management (pp. 239-253). https://doi.org/10.4018/978-1-60566-928-1.ch011

Patacas, J., Dawood, N., Vukovic, V., & Kassem, M. (2015). BIM for facilities management:
evaluating BIM standards in asset register creation and service life. Journal of Information
Technology in Construction (ITcon) (Vol. 20). Retrieved from http://www.itcon.org/2015/20

Piaskowski, AK, Petersons, R, Wyke, SCS, Petrova, EA & Svidt, K. (2019). Automation of data
transfer between a BIM model and an environmental quality assessment application. Cib
Proceedings. Retrieved from https://www.forskningsdatabasen.dk/en/catalog/2447076400

Pierson, J. (2019). johnpierson/RhythmForDynamo: A collection of nodes for use in Dynamo with
Revit. Retrieved December 4, 2019, from https://github.com/johnpierson/RhythmForDynamo

Rosendahls. Strategi for digitalt byggeri (2019). Retrieved from
https://www.trm.dk/da/publikationer/2019/strategi-for-digitalt-byggeri

Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). BIM Handbook Rafael Sacks (Vol. 25).
https://doi.org/10.1016/S0926-5805(02)00090-0

Samarbetskomitén for Byggnadsfragor. (2012). SfB-systemet, 316-320. Retrieved from https://byg-
erfa.dk/en/node/5278

Saridaki, Maria;, & Psarra, M. (2017). Integration of LCC into BIM concept, (DTU Byg, shared
internally.), 137.

Saridaki, Maria, Psarra, M., & Haugbelle, K. (2019). IMPLEMENTING LIFE-CYCLE COSTING:
DATA INTEGRATION BETWEEN DESIGN MODELS AND COST CALCULATIONS. Journal of
Information Technology in Construction (ITcon) (Vol. 24).

SBi. (2019). Retrieved September 29, 2019, from https://www.sbi.aau.dk/om/
Shan, X., Melina, A. N., & Yang, E. H. (2018). Impact of indoor environmental quality on students’

58

«

AALBORG UNIVERSITET
STUDENTERRAPPORT

wellbeing and performance in educational building through lifecycle costing perspective. Journal
of Cleaner Production, 204, 298-309. https://doi.org/10.1016/j.jclepro.2018.09.002

Smith, P. (2014). BIM implementation - Global strategies. In Procedia Engineering (\Vol. 85, pp. 482—
492). https://doi.org/10.1016/j.proeng.2014.10.575

Sobon, K. (2019). Dynamo | archi-lab. Retrieved December 4, 2019, from https://archi-
lab.net/category/dynamo/

Sullivan, G. P., Pugh, R., Melendez, A. P., & Hunt, W. D. (2010). Operations & Maintenance Best
Practices: A Guide to Achieving Operational Efficiency. Federal Energy Management Program,
(August 2010), 321. https://doi.org/10.2172/1034595

thenbs.com. (2016). What is COBie? | NBS. Retrieved November 27, 2019, from
https://www.thenbs.com/knowledge/what-is-cobie

Thiebat, F. (2019). Lifecycle Design, An Experimental Tool for Designers. Retrieved from
http://www.springer.com/series/13890

Toth, B., Janssen, P., Stouffs, R., Chaszar, A., & Boeykens, S. (2012). Custom Digital Workflows: A
New Framework for Design Analysis Integration. International Journal of Architectural
Computing, 10(4), 481-499. https://doi.org/10.1260/1478-0771.10.4.481

Ugwu, O. O., Kumaraswamy, M. M., Kung, F., & Ng, S. T. (2005). Object-oriented framework for
durability assessment and lifecycle costing of highway bridges. Automation in Construction,
14(5), 611-632. https://doi.org/10.1016/j.autcon.2005.01.002

Ulrich, W. (2005). A Mini-Primer of Boundary Critique. In The Informed Student Guide to
Management Science (p. 41f.).

Vigovskaya, A., Aleksandrova, O., & Bulgakov, B. (2017). Lifecycle Assessment (LCA) in building
materials industry. In MATEC Web of Conferences (Vol. 106).
https://doi.org/10.1051/matecconf/201710608059

What is Dynamo? | The Dynamo Primer. (2018). Retrieved May 8, 2019, from
https://primer.dynamobim.org/01_Introduction/1-2_what_is_dynamo.html

Wix, J., & Karlshgj, J. (2010). Information Delivery Manual Guide to Components and Development
Methods. BuildingSMART, 84. Retrieved from
http://idm.buildingsmart.comhttp//idm.buildingsmart.comashttp://idm.buildingsmart.com

XML. (2019). Retrieved September 29, 2019, from https://en.wikipedia.org/wiki/XML

XML Schema Tutorial. (2019). Retrieved November 29, 2019, from
https://www.w3schools.com/xml/schema_intro.asp

Yu, K., Froese, T., & Grobler, F. (1998). International Alliance for Interoperability: IFCs. In Congress
on Computing in Civil Engineering, Proceedings (pp. 395-406). Retrieved from
https://www.google.com/search?ei=LI-
_XNufleflrgSn_pnlAw&ag=international+alliance+for+interoperability&og=International+allian
ce+for+interop&gs_l=psy-
ab.1.0.0j0i22i30.3520.8687..10023...1.0..0.100.2882.34j1......0....1..gws-
wiz.....6..0i71j35i39j0i67.wJ4_M

59

