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Abstract
This thesis will cover the creation of a model
for terahertz response of a 2D semicon-
ducting structure. The first part of the
thesis contains the theoretical basis upon
which the model will be built. After this
the guided mode for a similar structure
is calculated. Primarily to help in find-
ing suitable initial conditions for the more
advanced model. Following this a model
based upon Green’s functions is derived.
Though the final model seem to produce
usable results, the results should only be
used as a guideline. It is not possible to
increase the resolution of the discretisation
to a point where it produces stable results
due to memory usage.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.
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1 Introduction

Until recently there were only a few sources of terahertz radiation[1]. With an increasing
number of sources available researching possible applications becomes easier. Some
application are explosives detection[2], communications [3], medical imagining [4] etc.
The safety of therahertz radiation is also being researched [5, 6]

With all the research into therahertz and its effect we need theoretical model for how
media responds to it. In this report I will attempt to create a model for the terahertz
response of a semiconductor. This will be achieved by implementing Green’s function for
a scatterer placed on a layered semi-conduction structure. To achieve a expectation of
how the material might behave, and to help set boundary conditions for the calculations,
the guided modes of a similar structure will be explored.

Chapter 2 lays a theoretical basis for the calculations. It contains a short introduction
to Maxwell’s equations, a derivation of Fresnel reflection and transmission, and an
overview of the used Green’s function.

Chapter 3 describes how the guided modes is found, and presents the results.
Chapter 4 describes how the terahertz response is calculated, and presents the results.
In chapter 5 the result of the thesis will be evaluated.
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2 Theory

This chapter will set a theoretical basis for calculation of the terahertz response. First
there will be a short overwiev of the Maxwell equations. Secondly the Fresnel equations
for reflection and transmission will be derived. Lastly greens function will be descrideb.
Since the calculations of the terahertz respone is made for p-polarised light, s-polarised
light is not included in this chapter. This chapter is based upon [7–9].

2.1 Maxwell equations

Starting with the differential form of Maxwell’s equations

∇ × 𝐄(𝐫, 𝑡) = −𝜕𝐁(𝐫, 𝑡)
𝜕𝑡

, (2.1)

∇ ⋅ 𝐃(𝐫, 𝑡) = 𝜌(𝐫, 𝑡) , (2.2)

∇ × 𝐇(𝐫, 𝑡) = 𝐉(𝐫, 𝑡) + 𝜕𝐃(𝐫, 𝑡)
𝜕𝑡

, (2.3)

∇ ⋅ 𝐁(𝐫, 𝑡) = 0 , (2.4)

where 𝐄 is the electric field, 𝐁 is the magnetic induction field, 𝐃 is the electric dis-
placement filed, 𝜌 is the free charge density, 𝐉 is the free current density, and 𝐇 is the
magnetic field, all at position 𝐫 at time 𝑡.

In isotropic linear media

𝐁(𝐫, 𝑡) = 𝜇0(𝐇(𝐫, 𝑡) + 𝐌(𝐫, 𝑡)) , (2.5)
𝐃(𝐫, 𝑡) = 𝜖0𝐄(𝐫, 𝑡) + 𝐏(𝐫, 𝑡) , (2.6)

where 𝐌(𝐫, 𝑡) is the magnetisation, and 𝐏(𝐫, 𝑡) is the polarisation density given by

𝐏(𝐫, 𝑡) = 𝜖0 ∫
𝑡

−∞
𝜒𝑒(𝐫, 𝑡 − 𝑡′)𝐄(𝐫, 𝑡) d𝑡′ , (2.7)

𝐌(𝐫, 𝑡) = 𝜒𝑚𝐄(𝐫, 𝑡) , (2.8)

where 𝜒 is the susceptibility of the media. In this thesis the magnetisation will be
considered negligible, giving 𝐁 = 𝜇0𝐇 The current density can be given as the sum of
source currents 𝐉𝑠, and current generated by the electric field (Ohms law).

𝐉(𝐫, 𝑡) = 𝐉𝑠(𝐫, 𝑡) + ∫
𝑡

−∞
𝜎(𝐫, 𝑡 − 𝑡′)𝐄(𝐫, 𝑡) d𝑡′ . (2.9)
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2.1 Maxwell equations

By Fourier Transform[10] it is possible to move from time domain 𝑡 to frequency domain
𝜔 as

𝐉(𝐫, 𝑡) = 1√
2𝜋

∫
∞

−∞
𝐉(𝐫, 𝜔) e− i𝜔𝑡 d𝜔 , (2.10)

𝐉(𝐫, 𝜔) = 1√
2𝜋

∫
∞

−∞
𝐉(𝐫, 𝑡) ei𝜔𝑡 d𝑡 . (2.11)

A similar relation can be derive for 𝐄, 𝐁, 𝐃, 𝜌, 𝐇, 𝐏, 𝜒, and 𝜎.
By the convolution theorem[10] the integrals eqs. (2.7) and (2.9) is simplified to

products in the frequency domain to

𝐏(𝐫, 𝜔) = 𝜖0𝜒(𝐫, 𝜔)𝐄(𝐫, 𝜔) , (2.12)
𝐉(𝐫, 𝜔) = 𝐉𝑠(𝐫, 𝜔) + 𝜎(𝐫, 𝜔)𝐄(𝐫, 𝜔) (2.13)

Calculating the Fourier transform of eq. (2.3) gives

∇ × 𝐇(𝐫, 𝜔) = 𝐉𝑠(𝐫, 𝜔) + 𝜎(𝐫, 𝜔)𝐄(𝐫, 𝜔) − i𝜔𝜖0(1 + 𝜒(𝐫, 𝜔))𝐄(𝐫, 𝜔) . (2.14)

Treating the induced currents as polarisation eq. (2.6) can be redefined to

𝐃(𝐫, 𝜔) = 𝜖0𝜖(𝐫, 𝜔)𝐄(𝐫, 𝜔) , (2.15)

where
𝜖(𝐫, 𝜔) ≡ (1 + 𝜒(𝐫, 𝜔) + i𝜎(𝐫, 𝜔)

𝜔𝜖0
) . (2.16)

With this it is possible to transform the differential Maxwell equations

∇ × 𝐄(𝐫, 𝜔) = i𝜔𝜇0𝐇(𝐫, 𝜔) , (2.17)
∇ ⋅ 𝐃(𝐫, 𝜔) = 𝜌(𝐫, 𝜔) , (2.18)

∇ × 𝐇(𝐫, 𝜔) = 𝐉𝑠(𝐫, 𝜔) − i𝜔𝜖0𝜖(𝐫, 𝜔)𝐄(𝐫, 𝜔) , (2.19)
∇ ⋅ 𝐁(𝐫, 𝜔) = 0 , (2.20)

From these equations it is possible to derive a set of equations for the electric field and
the magnetic field that is only dependant itself and source current.

∇ × ∇ × 𝐄(𝐫, 𝜔) − 𝜔2𝜖0𝜇0𝜖(𝐫, 𝜔)𝐄(𝐫, 𝜔) = i𝜔𝜇0𝐉𝑠(𝐫, 𝜔) , (2.21)
i

𝜔𝜖0
∇ × 1

𝜖(𝐫, 𝜔)
∇ × 𝐇(𝐫, 𝜔) − i𝜔𝜇0𝐇(𝐫, 𝜔) = − i

𝜔𝜖0𝜖(𝐫, 𝜔)
∇ × 𝐉𝑠(𝐫, 𝜔) , (2.22)

In a regions where the dielectric constant is independent of position and frequency
(𝜖(𝐫, 𝜔) = 𝜖), and the source current density vanishes these become

(∇2 + 𝑘2
0𝜖)𝐄(𝐫, 𝜔) = 𝟎 , ∇ ⋅ 𝐄(𝐫, 𝜔) = 0 , (2.23)

(∇2 + 𝑘2
0𝜖)𝐇(𝐫, 𝜔) = 𝟎 , ∇ ⋅ 𝐇(𝐫, 𝜔) = 0 , (2.24)

Using the free-space wave-number 𝑘0 = 𝜔𝑐−1, where 𝑐−1 = √𝜖0𝜇0.
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2 Theory Aalborg University

2.1.1 Poynting Vector

The time averaged Poynting vector is defined as

⟨𝐒⟩ ≡ 1
2

|𝐄 × 𝐇∗| . (2.25)

It is the scattered magnetic field that will be calculated. Therefore a solution to eq. (2.25)
that is only dependant of the magnetic field will be derived. Using eq. (2.19), assuming
that the source current density vanishes and 𝜖(𝐫, 𝜔) = 𝜖 eq. (2.25) gives

⟨𝐒⟩ = 1
2

∣ i
𝜔𝜖0𝜖

(∇ × 𝐇) × 𝐇∗∣ . (2.26)

The product ∇ × 𝐇 can be derived to

∇ × 𝐇 = i𝐤 × 𝐇 , (2.27)

where 𝐤 is the wave-vector. Additionally the refractive index 𝑛 = 𝑐𝑘𝜔−1 = √(𝜖),
assuming that 𝑚𝑢 = 1 simplifying the Poynting vector to

⟨𝐒⟩ = 1
2𝑐𝜖0𝑛

∣(�̂� × 𝐇) × 𝐇∗∣ = �̂�|𝐻|2

2𝑐𝜖0𝑛
. (2.28)

2.1.2 Cross Section

The scattering cross-section is defined as

𝜎scat ≡ 𝑃scat
𝐼𝑖

, (2.29)

where 𝑃scat is the total scattered power, and 𝐼𝑖 is the power per unit area. 𝐼𝑖 can be
found as

𝐼𝑖 = |𝐻0|2

2𝑐𝜖0𝑛𝑖
, (2.30)

where 𝑛𝑖 is the refractive index of the incident material. The total scattered power can
be found from the Poynting vector as

𝑃scat = ∫
𝜃
|⟨𝐒scat(𝐫, 𝜽)⟩|𝑟 d𝜃 . (2.31)

2.2 Fresnel Reflection and Transmission
In this section the coefficients for reflection and transmission for p-polarised light will de
derived. First the coefficients (𝑟12, 𝑡12) will be derived for a single interface. 𝑟12, 𝑡12 will
then be used to derive the coefficients (𝑟1𝑀, 𝑡1𝑀), for a structue consisting of 𝑀 layers.
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2.2 Fresnel Reflection and Transmission

Layer 1

Layer 2
𝐴𝑛 ↑, 𝐵𝑛 ↓

Figure 2.1: Illustration of reflection and transmission at single interface.

2.2.1 Single Interface

In fig. 2.1 the interface for which 𝑟12, 𝑡12 will be derived is shown. This interface has the
following boundary conditions:

𝐻1 = 𝐻2 , (2.32)
1
𝜖1

𝜕𝐻1
𝜕𝑦

= 1
𝜖2

𝜕𝐻2
𝜕𝑦

, (2.33)

when 𝑦 = 0. The magnetic field used is

𝐻𝑛 = (𝐴𝑛 e− i𝑘𝑦𝑦 + 𝐵𝑛 ei𝑘𝑦𝑦)𝑓(𝑥, 𝜔) , (2.34)

where 𝑓(𝑥, 𝜔) is the time and 𝑥 dependency of the field. This does not contribute to the
coefficients, nor to the derivation, and will be neglected. The incident wave propagates
downwards with amplitude 𝐵1. The reflected wave propagates upwards with amplitude
𝐴1. The transmitted wave propagates downwards with amplitude 𝐵2. There is no wave
associated with 𝐴2, so 𝐴2 = 0 With this the boundary conditions becomes

𝐵1 + 𝐴1 = 𝐵2 , (2.35)
𝑘𝑦1

𝜖1
(𝐵1 − 𝐴1) =

𝑘𝑦2

𝜖2
𝐵2 . (2.36)

The reflection coefficient is given as

𝑟12 = 𝐴1
𝐵1

. (2.37)

𝑟12 can be calculated by isolating 𝐵2 in the boundary conditions, setting them equal to
each other, and isolating for 𝑟12

𝐵1 + 𝐴1 =
𝑘𝑦1𝜖2

𝑘𝑦2𝜖1
(𝐵1 − 𝐴1) , (2.38)

𝐵1(1 −
𝑘𝑦1𝜖2

𝑘𝑦2𝜖1
) = 𝐴1(1 +

𝑘𝑦1𝜖2

𝑘𝑦2𝜖1
) , (2.39)

𝐴1
𝐵1

=
1 − 𝑘𝑦1𝜖2

𝑘𝑦2𝜖1

1 + 𝑘𝑦1𝜖2
𝑘𝑦2𝜖1

=
𝑘𝑦1𝜖2 − 𝑘𝑦2𝜖1

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
. (2.40)
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2 Theory Aalborg University

The transmission coefficient is given as

𝑡12 = 𝐵2
𝐵1

. (2.41)

𝑡12 can be calculated by isolating 𝐴1 in the boundary conditions, setting them equal to
each other, and isolating for 𝑡12

𝐵2 − 𝐵1 = 𝐵1 −
𝑘𝑦2𝜖1

𝑘𝑦1𝜖2
𝐵2 , (2.42)

2𝐵1 = 𝐵2(1 +
𝑘𝑦2𝜖1

𝑘𝑦1𝜖2
) , (2.43)

𝐵2
𝐵1

= 2
1 + 𝑘𝑦2𝜖1

𝑘𝑦1𝜖2

=
2𝑘𝑦1𝜖2

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
. (2.44)

Similarly it is possible to derive expressions for 𝑟21, and 𝑡21

𝑟12 =
𝑘𝑦1𝜖2 − 𝑘𝑦2𝜖1

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
, (2.45)

𝑟21 =
𝑘𝑦2𝜖1 − 𝑘𝑦1𝜖2

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
, (2.46)

𝑡12 =
2𝑘𝑦1𝜖2

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
, (2.47)

𝑡21 =
2𝑘𝑦2𝜖1

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
. (2.48)

2.2.2 Multilayer stucture

𝑑𝑁+2

Layer 1

N Layers

Layer N+2

Layer N+3

Figure 2.2: Illustration of reflection and transmission for a multilayer structure.

It is assumed that the reflection 𝑟1,𝑁+2, 𝑟𝑁+2,𝑁+3 and transmission 𝑡1,𝑁+2, 𝑡𝑁+2,𝑁+3
coefficients are known. Figure 2.2 illustrates the structure used to calculate 𝑟1,𝑁+3 and
𝑡1,𝑁+3. Between layers 𝑁 + 1 and 𝑁 + 3 the wave will oscillate transmitting a part each
time it reaches an interface. Additionally there is a loss of ei𝑘𝑦,𝑁+2𝑑𝑁+2 travelling both up
and down layer 𝑁 + 2. 𝑟1,𝑁+3 is calculated as

𝑟1,𝑁+3 = 𝑟1,𝑁+1 + 𝑡1,𝑁+1𝑟𝑁+1,𝑁+2𝑡𝑁+1,1 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2+ (2.49)

7



2.3 Greens Function

𝑡1,𝑁+1𝑟2
𝑁+1,𝑁+2𝑟𝑁+1,1𝑡𝑁+1,1 e4 i𝑘𝑦,𝑁+2𝑑𝑁+2 ⋯

= 𝑟1,𝑁+2 + 𝑡1,𝑁+2𝑡𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2

∞
∑
𝑛=0

(𝑟𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2)𝑛

(2.50)

= 𝑟1,𝑁+2 +
𝑡1,𝑁+2𝑡𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2

1 − 𝑟𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2
. (2.51)

The sum is solved by[11]

𝑖𝑛𝑓

∑
𝑛=0

𝑥𝑛 = 1
1 − 𝑥

, −1 < 𝑥 < 1 . (2.52)

𝑡1,𝑁+3 is calculated as

𝑡1,𝑁+3 = 𝑡1,𝑁+2𝑡𝑁+2,𝑁+3 ei𝑘𝑦,𝑁+2𝑑𝑁+2+ (2.53)
𝑡1,𝑁+2𝑡𝑁+2,𝑁+3𝑟𝑁+2,𝑁+3𝑟𝑁+2,1 e3 i𝑘𝑦,𝑁+2𝑑𝑁+2 ⋯

= 𝑡1,𝑁+2𝑡𝑁+2,𝑁+3 ei𝑘𝑦,𝑁+2𝑑𝑁+2

∞
∑
𝑛=0

(𝑟𝑁+2,𝑁+3𝑟𝑁+2,1 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2)𝑛 (2.54)

=
𝑡1,𝑁+2𝑡𝑁+2,𝑁+3 ei𝑘𝑦,𝑁+2𝑑𝑁+2

1 − 𝑟𝑁+2,𝑁+3𝑟𝑁+2,1 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2
. (2.55)

Similar derivations can be made for 𝑟𝑁+3,1 and 𝑡𝑁+3,1

𝑟1,𝑁+3 = 𝑟1,𝑁+2 +
𝑡1,𝑁+2𝑡𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2

1 − 𝑟𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2
, (2.56)

𝑟𝑁+3,1 = 𝑟𝑁+3,𝑁+2 +
𝑡1,𝑁+2𝑡𝑁+3,𝑁+2𝑟𝑁+3,𝑁+2 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2

1 − 𝑟𝑁+2,1𝑟𝑁+2,𝑁+3 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2
, (2.57)

𝑡1,𝑁+3 =
𝑡1,𝑁+2𝑡𝑁+2,𝑁+3 ei𝑘𝑦,𝑁+2𝑑𝑁+2

1 − 𝑟𝑁+2,𝑁+3𝑟𝑁+2,1 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2
, (2.58)

𝑡𝑁+3,1 =
𝑡𝑁+3,𝑁+2𝑡𝑁+2,1 ei𝑘𝑦,𝑁+2𝑑𝑁+2

1 − 𝑟𝑁+2,𝑁+3𝑟𝑁+2,1 e2 i𝑘𝑦,𝑁+2𝑑𝑁+2
. (2.59)

The initial assumption of know 𝑟1,𝑁+2, 𝑟𝑁+2,𝑁+3, 𝑡1,𝑁+2, and 𝑡𝑁+2,𝑁+3 can be fulfilled
by setting 𝑁 = 0, where these coefficients are for a single interface. The found coefficients
can then be used to calculate coefficients for 𝑁 = 1 and so on.

2.3 Greens Function
In a layered structure Green’s function may be split up into a direct part, and an indirect
part. The direct part 𝑔(𝑑) is identical to a structure consisting of one homogeneous
material. The indirect part 𝑔(𝑖) occurs as a result reflections from the layered structure.
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𝑔(𝑑)

𝑔(𝑖)
𝐫′ 𝐫

Layer 1

Layer 2

Layer 3

Layer 4

Figure 2.3: Illustration of Green’s function with contributions directly from the source and
indirectly reflected on a layered structure.

2.3.1 Direct Green’s function

At any point the magnetic field must be a solution to eq. (2.24). Choosing a Green’s
function that satisfies

(∇2 + 𝑘2
0𝜖𝑢)𝐠(𝑑)

𝑢 (𝐫, 𝐫′) = −𝛿(𝐫, 𝐫′) , (2.60)

the magnetic field at any point 𝐫 ∈ Ω𝑖 can be found as

𝐻(𝐫) = 𝐻0(𝐫) − ∮
𝐶1

(𝐠(𝑑)
1 (𝐫, 𝐫′)�̂�′ ⋅ ∇′𝐻(𝐫′) − 𝐻(𝐫′)�̂�′ ⋅ ∇𝐠(𝑑)

1 (𝐫, 𝐫′)) d𝑙′ 𝐫 ∈ Ω1 ,

(2.61)

𝐻(𝐫) = ∮
𝐶𝑠

(𝐠(𝑑)
𝑠 (𝐫, 𝐫′)�̂�′ ⋅ ∇′𝐻(𝐫′) − 𝐻(𝐫′)�̂�′ ⋅ ∇𝐠(𝑑)

𝑠 (𝐫, 𝐫′)) d𝑙′ 𝐫 ∈ Ω𝑠 , (2.62)

outside 1 the scatterer, and inside 𝑠 the scatterer respectively. 𝐶𝑢 is a curve following
the surface on the scatter just outside 1, or inside 𝑠.

Green’s function is chosen to be

𝑔(𝑑)
𝑢 = i

4
𝐻(1)

0 (𝑘0𝑛𝑢|𝐫 − 𝐫′|) , (2.63)

where 𝐻(
01) a zero’th order Hankel function of type 1.

2.3.2 Indirect Green’s function

The sum of 𝑔 = 𝑔(𝑑) + 𝑔(𝑖) must satisfy

(∇2 + 𝑘2
0𝜖𝑢)𝐠(𝐫, 𝐫′) = −𝛿(𝐫, 𝐫′) , (2.64)

The chosen direct Green’s function does not satisfy boundary conditions at the interfaces
between layers. To remedy this the indirect Green’s function must be chosen such that
the boundary conditions are satisfied. Expressing 𝑔(𝑑) as plane waves

𝑔(𝑑) = 𝑖
2𝜋

∫
∞

0

cos(𝑘𝑥|𝑥 − 𝑥′| ei𝑘𝑦,1(𝑦−𝑦′))
𝑘𝑦,1

d𝑘𝑥 , (2.65)
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2.3 Greens Function

where 𝑘𝑦,𝑖 = √𝑘2
0𝑛2

𝑖 − 𝑘2
𝑥, show that when 𝑦 > 𝑦′ there are upwards propagating

components, and when 𝑦 < 𝑦′ there are downwards propagating components. The
downward plane waves will be partially reflected, and transmitted. With this in mind it
is possible to construct the indirect Green’ function

𝑔(𝑖)(𝐫, 𝐫′) = 𝑖
2𝜋

∫
∞

0

cos(𝑘𝑥|𝑥 − 𝑥′|𝑟(𝑘𝑥) ei𝑘𝑦,1(𝑦+𝑦′))
𝑘𝑦,1

d𝑘𝑥 , (2.66)

for 𝐫 above the interface between layers 1 and 2.

𝑔(𝑖)(𝐫, 𝐫′) = 𝑖
2𝜋

∫
∞

0

cos(𝑘𝑥|𝑥 − 𝑥′|𝑡(𝑘𝑥) ei𝑘𝑦,1𝑦′ ei𝑘𝑦,1−𝑖𝑘𝑦,4(𝑦+𝑑))
𝑘𝑦,1

d𝑘𝑥 , (2.67)

for 𝐫 below the interface between layers 3 and 4. 𝑟(𝑘𝑥), 𝑡(𝑘𝑥) is the Fresnel reflection
coefficient described in section 2.2. 𝑑 is the total thickness of layers 2 and 3. It is not
possible to solve these integrals analytically, they must therefore be solved numerically.
This is complicated by the reflection coefficient

𝑟12 =
𝑘𝑦1𝜖2 − 𝑘𝑦2𝜖1

𝑘𝑦1𝜖2 + 𝑘𝑦2𝜖1
≈ 𝜖2 − 𝜖1

𝜖2 + 𝜖1
+ 𝑘2

0𝜖1𝜖2(𝜖2 − 𝜖1)
𝑘𝑥2(𝜖2 + 𝜖1)2 , (2.68)

approaching a constant value as 𝑘𝑥 increases. Though with 𝑔(𝑖) can be approximated to

𝑔(𝑖)(𝐫, 𝐫′) ≈ 𝜖2 − 𝜖1
𝜖2 + 𝜖1

𝑖
2𝜋

∫
∞

0

cos(𝑘𝑥|𝑥 − 𝑥′| ei𝑘𝑦,1(𝑦+𝑦′))
𝑘𝑦,1

d𝑘𝑥 , (2.69)

as 𝑥 − 𝑥′ → 0 and 𝑦 + 𝑦′ → 0. This is similar to eq. (2.65) giving

𝑔(𝑖)(𝐫, 𝐫′) ≈ 𝜖2 − 𝜖1
𝜖2 + 𝜖1

i
4

𝐻(1)
0 (𝑘0𝑛1| ̃𝐫 − 𝐫′|) , (2.70)

where ̃𝐫 = 𝐫 ⋅ ( ̂𝑥 − ̂𝑦) is the mirror point of 𝐫. Inserting this approximation into eq. (2.66)

𝑔(𝑖)(𝐫, 𝐫′) = 𝜖2 − 𝜖1
𝜖2 + 𝜖1

i
4

𝐻(1)
0 (𝑘0𝑛1| ̃𝐫 − 𝐫′|)+ (2.71)

𝑖
2𝜋

∫
∞

0

cos(𝑘𝑥|𝑥 − 𝑥′|(𝑟(𝑘𝑥) − 𝜖2−𝜖1
𝜖2+𝜖1

) ei𝑘𝑦,1(𝑦+𝑦′))
𝑘𝑦,1

d𝑘𝑥

In this integral the integrand goes toward zero, as 𝑘𝑥 increases making it easier to solve
numerically. There are two sources for potential poles when solving this integral. First
there is 𝑘𝑦,1 secondly there is the reflection coefficient. These poles can be avoided by
integrating parts of the integral in for complex 𝑘𝑥.
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2 Theory Aalborg University

2.3.3 Field Near Scatterer

This section will focus on calculating the field on both sides of the scatterer surface. For
convenience the following notation is introduced

𝜙(𝐫) ≡ �̂� ⋅ ∇𝐻𝑢(𝐫) (2.72)

as the normal derivative of the field.
The surface of the scatterer is partitioned into 𝑁 segments. It is assumed that the field

is constant within each segment. Using 𝐩(𝑡), where 𝑡 is the distance travelled along the
scatterer surface, as the position on the scatterer, the magnetic field and its derivative
can be approximated as

𝐻𝑢(𝐩(𝑡)) ≈
𝑁

∑
𝑖=1

𝐻𝑢,𝑖𝑓𝑖(𝑡) , (2.73)

𝜙𝑢(𝐩(𝑡)) ≈
𝑁

∑
𝑖=1

𝜙𝑢𝑢, 𝑖𝑓𝑖(𝑡) , (2.74)

where

𝑓𝑖(𝑡) = {
1, 𝑡start,𝑖 < 𝑡 < 𝑡end,𝑖

0, otherwise
. (2.75)

Inserting these into eqs. (2.61) and (2.62), with point matching applied results in

𝐻1,𝑖 = 𝐻0,1 −
𝑁

∑
𝑗=1

(𝐴(1)
𝑖𝑗 𝜙1, 𝑗 − 𝐵(1)

𝑖𝑗 𝐻1, 𝑗) , (2.76)

𝐻2,𝑖 =
𝑁

∑
𝑗=1

(𝐴(2)
𝑖𝑗 𝜙2, 𝑗 − 𝐵(2)

𝑖𝑗 𝐻2, 𝑗) , (2.77)

where 𝐻0,𝑖 = 𝐻0(𝐬𝑖), and

𝐴(𝑢)
𝑖𝑗 = lim

𝐫→𝐬
∫ 𝑔𝑢(𝐫, 𝐬(𝑡))𝑓𝑗(𝑡) d𝑡 , (2.78)

𝐵(𝑢)
𝑖𝑗 = lim

𝐫→𝐬
∫(�̂�′ ⋅ ∇′𝑔𝑢(𝐫, 𝐬(𝑡)))𝑓𝑗(𝑡) d𝑡 . (2.79)

are elements in matrices 𝐴(𝑢) and 𝐵(𝑢). Defining

𝐻𝑢 ≡ [𝐻𝑢,1; 𝐻𝑢,2; ⋯ 𝐻𝑢,𝑁] , (2.80)
𝜙𝑢 ≡ [𝜙𝑢,1; 𝜙𝑢,2; ⋯ 𝜙𝑢,𝑁] , (2.81)

as column-vector describing 𝐻 and 𝜙 at the segment positions on the scatterer. Using
these it is possible to reform eqs. (2.76) and (2.77) into matrix form

(𝐼 − 𝐵(1))𝐻1 + 𝐴(1)𝜙1 = 𝐻0 , (2.82)
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2.3 Greens Function

(𝐼 + 𝐵(𝑠))𝐻𝑠 + 𝐴(𝑠)𝜙𝑠 = 0 . (2.83)

By the boundary conditions

𝐻1 = 𝐻𝑠 ,
𝜖−1

1 𝜙1 = 𝜖−1
𝑠 𝜙𝑠 ,

it is possible to formulate the matrix equation

⎡⎢
⎣

(𝐼 − 𝐵(1)) 𝐴(1)

(𝐼 + 𝐵(𝑠)) − 𝜖𝑠
𝜖1

𝐴(𝑠)
⎤⎥
⎦

[𝐻
𝜙1

] = [𝐻0
0 ] . (2.84)

Solving this equation for 𝐻 and 𝜙 makes it possible to calculate the field at any point
with eqs. (2.61) and (2.62).
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3 Guided Mode

This chapter focuses on calculation of Guided mods in a 2-dimensional structure. It
is intended to give an approximate idea of how the terahertz response changes when
changing the structure, as well as guiding the choice of initial conditions for the slower
calculations using Green’s function.

3.1 Calculation

In a four layer structure as illustrated in fig. 3.1 the magnitude of the magnetic field can
be expressed as

𝐻𝑛(𝑥, 𝑦, 𝑡) = (𝐴𝑛 e𝑖𝑘𝑦(𝑦−𝑦𝑛) + 𝐵𝑛 e−𝑖𝑘𝑦(𝑦−𝑦𝑛)) e−𝑖𝑘𝑥𝑥 e𝑖𝜔𝑡 (3.1)

For layer one and two 𝑦𝑛 = 0, for layer three 𝑦3 = −𝑑2, for layer four 𝑦4 = −(𝑑2 + 𝑑3),

Layer 1

Layer 2

Layer 3

Layer 4

𝐴𝑛 ↑, 𝐵𝑛 ↓

Figure 3.1: Structure used in calculation of guided modes..

where 𝑑𝑛 is the thickens of layer 𝑛
At the interface between two layers 𝑛 and 𝑛 + 1 the field is continuous so

𝐻𝑛 = 𝐻𝑛+1 (3.2)
1
𝜖𝑛

𝜕𝐻𝑛
𝜕𝑦

= 1
𝜖𝑛+1

𝜕𝐻𝑛+1
𝜕𝑦

. (3.3)

In an isolated system 𝐵1 = 0 and 𝐴4 = 0 Using 𝐴1 as a fixed values it is possible to
calculate the other coefficients as

𝐴2 = 𝐴1
2

(1 + 𝜅21) (3.4)

𝐵2 = 𝐴1
2

(1 − 𝜅21) (3.5)
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3.2 Found Modes

𝐴3 = 𝐴2
2

e−𝑖𝑘𝑦2𝑑2(1 + 𝜅32) + 𝐵2
2

e𝑖𝑘𝑦2𝑑2(1 − 𝜅32) (3.6)

𝐵3 = 𝐴2
2

e−𝑖𝑘𝑦2𝑑2(1 − 𝜅32) + 𝐵2
2

e𝑖𝑘𝑦2𝑑2(1 + 𝜅32) (3.7)

𝐵4 = 𝐴3 e−𝑖𝑘𝑦3𝑑3 + 𝐵3 e𝑖𝑘𝑦3𝑑3 , (3.8)

the constants used is defined as

𝜅𝑚𝑛 ∶=
𝜖𝑀𝑘𝑦𝑛

𝜖𝑁𝑘𝑦𝑚
(3.9)

𝑘𝑦𝑛 ∶= √𝑘2
0𝜖𝑛 − 𝑘2

𝑥 . (3.10)

The guided modes is found by calculating

𝑓(𝑘𝑥) = e−𝑖𝑘𝑦2𝑑2 e−𝑖𝑘𝑦3𝑑3(1 + 𝜅21)(1 + 𝜅32)(1 + 𝜅43)+ (3.11)
e𝑖𝑘𝑦2𝑑2 e−𝑖𝑘𝑦3𝑑3(1 − 𝜅21)(1 − 𝜅32)(1 + 𝜅43)+
e−𝑖𝑘𝑦2𝑑2 e𝑖𝑘𝑦3𝑑3(1 + 𝜅21)(1 − 𝜅32)(1 − 𝜅43)+
e𝑖𝑘𝑦2𝑑2 e𝑖𝑘𝑦3𝑑3(1 − 𝜅21)(1 + 𝜅32)(1 − 𝜅43) ,

for values of 𝑘𝑥 and finding solutions to 𝑓(𝑘𝑥) = 0.
𝑓(𝑘𝑥) is calculated for 1001 values along each of the real and imaginary axis. The

values are chosen on a logarithmic scale in the ranges:

1.00001𝑘0 ≤ Re(𝑘𝑥) ≤ 2500𝑘0

0.00001𝑘0 ≤ Im(𝑘𝑥) ≤ 250𝑘0 .

The calculated matrix containing results is then evaluated to find potential for 𝑓(𝑘𝑥) = 0.
Where this is possible another matrix of values is calculated with this smaller range. The
found value of 𝑘𝑥 is then further refined with the Newton–Raphson method.

3.2 Found Modes

3.2.1 Dielectric Constant

Solving eq. (3.11) for zero values requires the dielectric constant of each layer. For layers
one, two, and four a constant dielectric constant is used. A Drude model[12] is used to
calculate the dielectric constant for layer three.

𝜎 = 𝑒2𝑁𝜏
𝑚∗(1 − 𝑖𝜔𝜏)

(3.12)

𝜖 = 𝜖𝑟 + 𝑖𝜎
𝜖0𝜔𝑑

, (3.13)

where 𝑁 is the density of electrons, 𝑚∗ is the effective mass, 𝜏 is the mean free time, 𝜖𝑟
is the high frequency dielectric constant, and 𝑑 is the thickness. The electron density
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and the thickness is variable, the rest are the constants 𝑚∗ = 0.2𝑚𝑒, 𝜖GaN = 5.35, and
𝜏 = 1.14 × 10−12 s. Figures 3.2 and 3.3 show the calculated dielectric constant. For
each figure the calcluations is performed over a range of either wavelength, thickness, or
electron density, with the other values chosen as 𝑙𝑎𝑚𝑏𝑑𝑎 = 3 × 105 nm, 𝑑 = 8 nm, and
𝑁 = 7.5 × 1012 cm−2.
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from 1 nm to 100 nm.
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Electron density [nm−2]

(c) Varied density of electrons,
ranging from 1 × 1012 cm−2

to 15 × 1012 cm−2.

Figure 3.2: Real dielectric constant of a thin layer of GaN carrying a current. The dielectric
constant is calculated using a Drude model [12] Unless otherwise noted the
wavelength is 3 × 105 nm, the layer is 8 nm thick, and the electron density is
7.5 × 1012 cm−2.

In figs. 3.2a and 3.3a 𝜖 is calculated over a range of wavelengths from 3 × 104 nm to
3 × 106 nm (10 THz to 0.1 THz), figs. 3.2b and 3.3b is calculated for thickness from 1 nm
to 100 nm, and figs. 3.2c and 3.3c is calculaer for electron densities from 1 × 1012 cm−2

to 15 × 1012 cm−2.
The material becomes increasingly metal like with increased electron density. A thin

layer is also metal like, though it quickly becomes like a semi conductor. Increasing
the wavelength also results in an increased real and imaginary part magnitude of the
dielectric constant. Though unlike with electron density and thickness, the magnitude of
the imaginary part increases faster than the real part.

3.2.2 Air in Layer One

The calculated dielectric constant can be used to find solutions to 𝑓(𝑘𝑥) = 0 (eq. (3.11)),
as described in section 3.1. In this section modes will be found for a structure where layer
one is air, where 𝜖1 = 1, layer two is AlGaN, where 𝜖2 = 5, layer three is the doped layer
of GaN with 𝜖3 calculated in section 3.2.1, and layer four is neutral GaN, with 𝜖4 = 5.35.

Figures 3.4 to 3.11 shows the found modes. The modes is found over a range of
either wavelength (3 × 104 nm to 3 × 106 nm), thickness of layer two (1 nm to 1000 nm),
layer three (1 nm to 100 nm), or electron density (1 × 1012 cm−2 to 15 × 1012 cm−2). A
”standard” value is used for the other coefficients. These are 𝜆 = 3 × 105 nm, 𝑑2 = 10 nm,
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Figure 3.3: Imaginary dielectric constant of a thin layer of GaN carrying a current. The
dielectric constant is calculated using a Drude model [12] Unless otherwise noted
the wavelength is 3 × 105 nm, the layer is 8 nm thick, and the electron density is
7.5 × 1012 cm−2.

𝑑3 = 8 nm, and 𝑁 = 7.5 × 1012 cm−2. For each range the modes is additionally calculated
for three different values of either 𝜆 (6 × 104 nm, 3 × 105 nm, and 6 × 105 nm), 𝑑2 (4 nm,
10 nm, and 25 nm, 𝑑3 (2 nm, 8 nm, and 32 nm), and 𝑁 (3.75 × 1012 cm−2, 7.5 × 1012 cm−2,
and 1.125 × 1013 cm−2)

As shown in figs. 3.4 and 3.5 long wavelength results in two possible modes are found,
though for the secondary modes, the real part of the modes is lower than the dielectric
constants of the surrounding material, making these mode unusable for guided modes.
The imaginary parts of the found modes is much lower than real parts, resulting in a
potentially low loss. It is worth noting that short wavelengths results in the highest real
mode, and is for most of the calculations. The only part where changing on of the other
parameters results in a significant change in mode. The only deviation from this is the
imaginary part with different electron densities, which is to be expected, since increasing
𝑁 results in a more metal like structure, which in turn is expected to result in a lower
loss.

Figures 3.6 and 3.7 illustrates that for the most part a change in thickness of layer
two only results in a small variation in mode. The change is most prominent for low
wavelength and a thin layer, or for low electron densities. It is also evident that the
thickness of layer three only has a minor impact on the mode when compared to the
thickness of layer two.

In figs. 3.8 and 3.9 it can be seen that the only secondary parameter radically influenced
by the thickness oflayer three is wavelenegth. There is a drastic increase in the mode for
a short wavelength (6 × 104 nm) when the thickness of layer three is increased. This is
most prominent in the imaginary value. The figures also show that for other than low
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Figure 3.4: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying wavelengths over a logarithmic scale from 3 × 104 nm
to 3 × 106 nm (10 THz to 0.1 THz). Layer one is air, layer two is AlGaN, layer
three is GaN with additional free electrons, and layer four is neutral GaN. Unless
otherwise noted the thickness of layer two is 10 nm, layer three is 8 nm thick,
and the electron density of layer three is 7.5 × 1012 cm−2.
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(a) Varied thickness of layer two.
Red=4 nm, Green=10 nm,
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105 106
0

10

20

30

Wavelength [nm]

(b) Varied thickness of
layer three. Red=2 nm,
Green=8 nm, Blue=32 nm.

105 106
0

5

10

Wavelength [nm]

(c) Varied density of elec-
trons in layer three.
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Figure 3.5: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying wavelengths over a logarithmic scale from 3 × 104 nm
to 3 × 106 nm (10 THz to 0.1 THz). Layer one is air, layer two is AlGaN, layer
three is GaN with additional free electrons, and layer four is neutral GaN. Unless
otherwise noted the thickness of layer two is 10 nm, layer three is 8 nm thick,
and the electron density of layer three is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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Figure 3.6: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer two from 1 nm to 1000 nm. Layer
one is air, layer two is AlGaN, layer three is GaN with additional free elec-
trons, and layer four is neutral GaN. Unless otherwise noted the wavelength is
3 × 105 nm and layer three is 8 nm thick, and the electron density of layer three
is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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Figure 3.7: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer two from 1 nm to 1000 nm. Layer one
is air, layer two is AlGaN, layer three is GaN with additional free electrons, and
layer four is neutral GaN. Unless otherwise noted the wavelength is 3 × 105 nm,
layer three is 8 nm thick, and the electron density of layer three is 7.5 × 1012 cm−2.

18



3 Guided Mode Aalborg University

0 50 100
0

50

100

Thickness [nm]

R
ea

lm
od

e
in

de
x

(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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trons in layer three.
Red=3.75 × 1012 cm−2,
Green=7.5 × 1012 cm−2,
Blue=1.125 × 1013 cm−2.

Figure 3.8: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer three from 1 nm to 100 nm. Layer one
is air, layer two is AlGaN, layer three is GaN with additional free electrons, and
layer four is neutral GaN. Unless otherwise noted the wavelength is 3 × 105 nm,
layer two is 10 nm thick, and the electron density of layer three is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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trons in layer three.
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Blue=1.125 × 1013 cm−2.

Figure 3.9: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer three from 1 nm to 100 nm. Layer one
is air, layer two is AlGaN, layer three is GaN with additional free electrons, and
layer four is neutral GaN. Unless otherwise noted the wavelength is 3 × 105 nm,
layer two is 10 nm thick, and the electron density of layer three is 7.5 × 1012 cm−2.
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wavelengths, that increasing the thickness of layer two only results in a minor increase in
the mode
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
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(c) Varied thickness of
layer three. Red=2 nm,
Green=8 nm, Blue=32 nm.

Figure 3.10: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying electron densities in layer three from 1 × 1012 cm−2

to 15 × 1012 cm−2. Layer one is air, layer two is AlGaN, layer three is GaN
with additional free electrons, and layer four is neutral GaN. Unless otherwise
noted the wavelength is 3 × 105 nm, layer two is 10 nm thick, and layer three
is 8 nm thick.

Figures 3.10 and 3.11 illustrates a clear connection between the electron density and
the mode. They also show that the structure is most sensetive for wavelengths at low
electron denseties. It is also clear that changing the thickness of either layer two or three
only has a small effect on the mode.

In summary The thickness of each layer only seem to make a minor contribution to
the possible modes. Though it is preferable that layer two is relatively thin to reduce the
loss at low wavelengths. It is possible to tune the resonance frequency of the structure
by varying the electron density. This coupled with the fact that a change in wavelength
results in a change of mode, indicates that it is possible to create a structure that is
sensitive to specific wavelengths.

3.2.3 Perfect Conductor as Layer One

This sections covers a caculation for a structure simmilar to the one described in sec-
tion 3.2.2. The difference is that in this section layer one is a perfect conductor with
𝜖1 = −∞

Figures 3.12 to 3.19 shows the result of the calculation under the same constraints as
in section 3.2.2.

As shown in figs. 3.12 and 3.13 the mode is depentant on the wavelength. The real
part is nearly linear and flat in the range of wavelengths from 1 × 105 nm to 1 × 106 nm,
with an seemingly exponential increase outside this range. Whereas the imaginary part
for the most part exhibit an exponential increase with wavelength, nearing the real value
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
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Figure 3.11: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes
is calculated with varying electron densities in layer three from 1 × 1012 cm−2

to 15 × 1012 cm−2. Layer one is air, layer two is AlGaN, layer three is GaN
with additional free electrons, and layer four is neutral GaN. Unless otherwise
noted the wavelength is 3 × 105 nm, layer two is 10 nm thick, and layer three
is 8 nm thick.
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(a) Varied thickness of layer two.
Red=4 nm, Green=10 nm,
Blue=25 nm.
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Figure 3.12: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying wavelengths over a logarithmic scale from 3 × 104 nm
to 3 × 106 nm (10 THz to 0.1 THz). Layer one is a perfect conductor, layer two
is AlGaN, layer three is GaN with additional free electrons, and layer four is
neutral GaN. Unless otherwise noted the thickness of layer two is 10 nm, layer
three is 8 nm thick, and the electron density of layer three is 7.5 × 1012 cm−2.
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(a) Varied thickness of layer two.
Red=4 nm, Green=10 nm,
Blue=25 nm.
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Figure 3.13: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying wavelengths over a logarithmic scale from 3 × 104 nm
to 3 × 106 nm (10 THz to 0.1 THz). Layer one is a perfect conductor, layer two
is AlGaN, layer three is GaN with additional free electrons, and layer four is
neutral GaN. Unless otherwise noted the thickness of layer two is 10 nm, layer
three is 8 nm thick, and the electron density of layer three is 7.5 × 1012 cm−2.

for high wavelengths. For a low electron density, or a thick third layer, which incidently
also lowers the electron density, the imaginary part of the mode also seem to increase.

Figures 3.14 and 3.15 Show that increasing the thicknees of layer two results in a
decreased mode, both real and imaginary. There is one exception, when the wavelength
is low, the real part becomes constant when the layer becomes thicker, and the imaginary
part show a slight increase, before leveling off. This indicates that the magnetic wave is
contained within layer two.

From figs. 3.16 and 3.17 it can be derived that the thickness of layer three only has a
small influence over the mode. There is one notable exception, this is when the wavelength
is low (6 × 104 nm). Here both the real and imaginary mode increases with thickness,
but most notably, for a thick layer two modes is found. In this mode the imaginary part
dominates, resulting in a high loss. Which makes this mode unusable for a detector based
on resonance.

Figures 3.18 and 3.19 show a clear correlation between the electron density and mode,
regardless of the other parameters. As the electron density increases, the mode becomes
lower.

3.2.4 Magnetic Field

In figs. 3.20 and 3.21 the magnetic field is plotted for a structure with air as the first
layer. The mode used in the calcualtions is 𝑛𝑚 = 1.027 116 × 101 + 1.376 384𝑖.

In figs. 3.22 and 3.23 the magnetic field is plotted for a structure with air as the first
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Figure 3.14: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer two from 1 nm to 1000 nm. Layer
one is a perfect conductor, layer two is AlGaN, layer three is GaN with
additional free electrons, and layer four is neutral GaN. Unless otherwise noted
the wavelength is 3 × 105 nm and layer three is 8 nm thick, and the electron
density of layer three is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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(c) Varied density of elec-
trons in layer three.
Red=3.75 × 1012 cm−2,
Green=7.5 × 1012 cm−2,
Blue=1.125 × 1013 cm−2.

Figure 3.15: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer two from 1 nm to 1000 nm. Layer one
is a perfect conductor, layer two is AlGaN, layer three is GaN with additional
free electrons, and layer four is neutral GaN. Unless otherwise noted the
wavelength is 3 × 105 nm, layer three is 8 nm thick, and the electron density of
layer three is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
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Figure 3.16: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer three from 1 nm to 100 nm. Layer one
is a perfect conductor, layer two is AlGaN, layer three is GaN with additional
free electrons, and layer four is neutral GaN. Unless otherwise noted the
wavelength is 3 × 105 nm, layer two is 10 nm thick, and the electron density of
layer three is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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Figure 3.17: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying thickness of layer three from 1 nm to 100 nm. Layer one
is a perfect conductor, layer two is AlGaN, layer three is GaN with additional
free electrons, and layer four is neutral GaN. Unless otherwise noted the
wavelength is 3 × 105 nm, layer two is 10 nm thick, and the electron density of
layer three is 7.5 × 1012 cm−2.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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(b) Varied thickness of layer two.
Red=4 nm, Green=10 nm,
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Figure 3.18: Real mode of a four layer structure as illustrated in fig. 3.1. The modes is
calculated with varying electron densities in layer three from 1 × 1012 cm−2 to
15 × 1012 cm−2. Layer one is a perfect conductor, layer two is AlGaN, layer
three is GaN with additional free electrons, and layer four is neutral GaN.
Unless otherwise noted the wavelength is 3 × 105 nm, layer two is 10 nm thick,
and layer three is 8 nm thick.
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(a) Varied wavelength.
Red=6 × 104 nm,
Green=3 × 105 nm,
Blue=6 × 105 nm.
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Figure 3.19: Imaginary mode of a four layer structure as illustrated in fig. 3.1. The modes
is calculated with varying electron densities in layer three from 1 × 1012 cm−2

to 15 × 1012 cm−2. Layer one is a perfect conductor, layer two is AlGaN, layer
three is GaN with additional free electrons, and layer four is neutral GaN.
Unless otherwise noted the wavelength is 3 × 105 nm, layer two is 10 nm thick,
and layer three is 8 nm thick.
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Figure 3.20: Magnetic field at 𝜆 = 3.000 000 × 105 nm with a thickness of layer two of 10 nm,
and layer three of 8 nm, and an electron density of 7.500 000 × 1012 cm−3, where
layer one is air. The mode found as a solution to 𝑓(𝑘𝑥) = 0 eq. (3.11) is
𝑛𝑚 = 1.027 116 × 101 + 1.376 384𝑖. The magnetic field is calculated 10 nm
inside the two infinite layers one and four.
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Figure 3.21: Magnetic field at 𝜆 = 3.000 000 × 105 nm with a thickness of layer two of 10 nm,
and layer three of 8 nm, and an electron density of 7.500 000 × 1012 cm−3, where
layer one is air. The mode found as a solution to 𝑓(𝑘𝑥) = 0 eq. (3.11) is
𝑛𝑚 = 1.027 116 × 101 + 1.376 384𝑖. The magnetic field is calculated in the
y-range from 20 000 nm to −30 000 nm.
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Figure 3.22: Magnetic field at 𝜆 = 3.000 000 × 105 nm with a thickness of layer two of 10 nm,
and layer three of 8 nm, and an electron density of 7.500 000 × 1012 cm−3, where
layer one is a perfect conductor. The mode found as a solution to 𝑓(𝑘𝑥) = 0
eq. (3.11) is 𝑛𝑚 = 1.990 243 × 102 + 1.416 889 × 101𝑖. The magnetic field is
calculated 10 nm inside the two infinite layers one and four.
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Figure 3.23: Magnetic field at 𝜆 = 3.000 000 × 105 nm with a thickness of layer two of 10 nm,
and layer three of 8 nm, and an electron density of 7.500 000 × 1012 cm−3, where
layer one is a perfect conductor. The mode found as a solution to 𝑓(𝑘𝑥) = 0
eq. (3.11) is 𝑛𝑚 = 1.990 243 × 102 + 1.416 889 × 101𝑖. The magnetic field is
calculated in the y-range from 100 nm to −1500 nm.
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layer. The mode used in the calcualtions is 𝑛𝑚 = 1.990 243 × 102 + 1.416 889 × 101𝑖.
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4 Terahertz Response

This chapter is focused on using Green’s function to calculate The magnetic field 𝐻
and its normal derivative 𝜙 on the scatterer, the Poynting vector (amplitude), and the
scattering cross section. The first section expands upon the calculations performed. The
second section presents the calculated data.

4.1 Calculation

Layer 1
Scatterer 𝑠

Layer 2

Layer 3

Layer 4

Figure 4.1: Structure used for calculation of terahertz respones..

Calculation of the response were performed in three steps. First the non-analytical
part of the indirect Green’s function is evaluated on a fixed grid at certain intervals. The
result is then stored in a matrix, and saved for later. This calculation is performed for
varying wavelengths, electron densities and thickness’s of layers. Secondly eq. (2.84) is
solved. Lastly the found filed 𝐻, and 𝜙 is used to calculate the response of the scatterer.

Figure 4.1 illustrates the structure for which the terahertz respones is calculated.
Layer one is vacuum. Layer two is comprised of AlGaN. Layer three and four are both
comprised of GaN. In layer three the electron density is increased. Calculation of the
dielectric constant for this layer is describes in section 3.2.1. The scatterer is calculated
as a very good conductor with a dielectric constant of 𝜖𝑠 = −1010. The distance along
the scatterer 𝑡 starts at the bottom of the left vertical section of scatterer, and goes
clockwise along the scatter.

The standard values used for calculation if the response is

𝜆 = 300 000 nm ,
Electrondensity = 7.5 × 1012 cm−2 ,

𝑑2 = 10 nm ,
𝑑3 = 8 nm ,
Δ𝑗 = 1 nm
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4.2 Result

and the scatterer is 10 nm high, 704 nm wide. The rounded corners are 3 nm in radius.
The size of the indirect matrix is decided by two factors. The dimensions and position

of the scatterer, and by the desired resolution. Here the scatterer rest on layer 2, with
the bottom at 𝑧 = 0, giving a possible range of 0 ≤ 𝑧 + 𝑧′ ≤ 2ℎ, where ℎ is the heigh
of the scatterer. The centre of the scatterer is placed at 𝑥 = 0, though this does not
influence the range of −𝑤 ≤ 𝑥 − 𝑥′ ≤ 𝑤 where 𝑤 is the width of the scatterer. The range
0 ≤ 𝑥 − 𝑥′ ≤ 𝑤 should work fine since the indirect function is symmetrical around the
x-axis. Experimentation revealed that a resolution of 1 nm to 2 nm yield nearly identical
matrices. With this result it was chosen to use a resolution of 2 nm for the calculations.
After choosing the values for which the indirect matrix will be calculated, Matlab was
used to perform the numerical evaluation of the integral

𝑔(𝑖) = 𝑖
2𝜋

∫
∞

0

cos(𝑘𝑥|𝑥 − 𝑥′|(𝑟(𝑘𝑥) − 𝜖2−𝜖1
𝜖2+𝜖1

) ei𝑘𝑦,1(𝑦+𝑦′))
𝑘𝑦,1

d𝑘𝑥 , (4.1)

and its derivatives with respect to 𝑥′ and 𝑦′

𝜕𝑔(𝑖)

𝜕𝑥′ = 𝑖
2𝜋

∫
∞

0

𝑘𝑥 sin(𝑘𝑥|𝑥 − 𝑥′|(𝑟(𝑘𝑥) − 𝜖2−𝜖1
𝜖2+𝜖1

) ei𝑘𝑦,1(𝑦+𝑦′))
𝑘𝑦,1

d𝑘𝑥 , (4.2)

𝜕𝑔(𝑖)

𝜕𝑦′ = 𝑖
2𝜋

∫
∞

0
cos(𝑘𝑥|𝑥 − 𝑥′|(𝑟(𝑘𝑥) − 𝜖2 − 𝜖1

𝜖2 + 𝜖1
) i ei𝑘𝑦,1(𝑦+𝑦′)) d𝑘𝑥 . (4.3)

The initial range from 𝑘𝑥 = 0 to 𝑘𝑥 = 6𝑘0 were solved with an ellipse into the complex
plane. When 𝑧 + 𝑧′ = 0 Matlab’s inbuilt integral solver were unable to solve the integral
most of the time, this was circumvented by setting the value of 𝑧 + 𝑧′ = 1 × 10−5 instead.

The first step in generating the elements for eq. (2.84) is to discretise the surface of the
scatterer. First a desired length of each segment is chosen, this is then used to find the
number of segments in the corners and their actual length. With this length the number
of segments along the horizontal and vertical segments is calculated, trying to maintain
the smallest deviation in lengths. Then the postion and normal vectors for each segment
was found. Calculating the elements in 𝐴, 𝐵 is for the most part trivial, though both sets
of equations contain singularities. When 𝑖 ≠ 𝑗 it can be done by calculating eqs. (2.63)
and (2.71) and multiplying the result with the segment length Δ𝑗 directly. While keeping
in mind that 𝑔(𝑖)

𝑠 = 0 The integral part of eq. (2.71) is found by interpolating in the
indirect Green’s matrix calculated earlier.

Having solved the eq. (2.84) for 𝐻 and 𝜙1, the found values can be used with eqs. (2.61)
and (2.62) to calculate the scattered far field, which in turn can be used to calculate the
magnitude of the poynting vector eq. (2.28) and scattering cross section eq. (2.31).

4.2 Result
The first calculations performed was to determine the optimal length of the scatterer
with the given standard values given in section 4.1. In section 3.2.3 it was found that the
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(b) Scattering cross section as a
function of width 690 nm to
720 nm. 𝜃𝑖 is the incident
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(c) Scattering cross section
as a function of electron
density 7.5 × 1011 m−3 to
3.75 × 1013 m−3. 𝜃𝑖 is
the incident angle for the
radiation.

Figure 4.2: Scattering cross section as a function of the width of the scatterer 𝑤𝑠, or electron
density. The calculation is otherwise performed with standard values as given
in section 4.1.

used values results in a guided mode with 𝑛𝑚 ≈ 200. With this value the width of the
scatterer were approximated to

𝑤𝑠 = 𝜆
2𝑛𝑚

≈ 750 nm . (4.4)

The position of the peak in fig. 4.2a is used at the basis for the calculation of fig. 4.2b.
From fig. 4.2b the optimal width is found to be approximatly 704 nm. Figure 4.2a is
calculated up to 5000 nm. To achieve this the resolution of discretisation on the scatter
was reduced to avoid using excessive time on the computations. Comparing this with
fig. 4.2b it is clear that this compromise has changed the amplitude of the result drastically,
though the position of the peak are similar. In figs. 4.2b and 4.2c the scattering cross
section is calculated for radiation with a incident angle of 𝜃 = 0 and 𝜃 = 𝜋

4 as expected
the suboptimal incident angle reduced scattering cross section, while retaining its form.

Figure 4.2c shows a clear peak at around the expected electron density of 7.5 × 1012 cm−2.
At lower electron densities the scattering cross section reduces to 0. While increasing
the electron density reduces the scattering cross section, it seem to level of at about one
tenth of its peak value.

Figure 4.3 show the result of the calculations with varying heights. For all of the
figures it seem that the incident angle does not influence the response of the scatterer
beyond reducing the amplitude. It seem that using suboptimal incident angles results in
a constant factor difference. Figure 4.3a has a clearly defined peak at 9.5 nm This is a
bit lower than the expected 10 nm. Figure 4.3b shows that the height of layer three only
has a small influence on the optical response. Figure 4.3c Indicates that the optical cross
section is highly influenced by the height of the scatterer.
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(a) Scattering cross section as a
function of height of layer 2
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Figure 4.3: Scattering cross section as function of the height of Layer 2, layer 3, and the
scatterer respectively. 𝜃𝑖 is the incident angle for the radiation. The calculation
is otherwise performed with standard values as given in section 4.1.
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a function of wavelength
𝜆 50 000 nm to 600 000 nm.
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Figure 4.4: Unles otherwise noted the calculation is performed with standard values as given
in section 4.1.
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Figure 4.4c shows that the scattering is most prominent at the resonance frequency,
it also show a third, and a fifth harmonic. As with the other calculated at suboptimal
incident angles the difference in amplitude seem to be a constant factor. The Poynting
vector shown in fig. 4.4b shows that a small part of the radiation is reflected upwards.
Most of the transmitted radiation is focused in a centre cone and two ”wings”. The wings
appear as a result of the scattered radiation nearing the critical angle of the interface.
The real part of the magnetic field shown in fig. 4.4a for three different wavelength
corresponds to the three peaks in fig. 4.4. BLue to the rightmost peak, red to the centre
peak, and green to the leftmost peak. The first half of the graph corresponds roughly to
top of the scatterer, and the second half to the bottom. As expected the graph at the
resonance frequency is a half wave, at the third harmonic it is a three and a half wave,
and the fifth harmonic is a five and a half wave.
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5 Conclusion

From the data I can se that the thickness of layer 3 (the semiconducting layer) only has
a minor influence over the renascence og the media. Since the electron density of this
layer is easiest to control by applying a static current to the scatterer dragging electrons
from layer 4, the thickness of layer 3 is dynamic. This makes this a desirable observation.

From the data it is evident that it is possible to tune the frequency response of the
structure, by changing the electron density, the thickness of layer 2, and the width of the
scatterer. Response to varying the height of the scatterer puzzles me. While I expect
some response from changing the height I did not expect it to dominate so clearly.

As noted in chapter 4 the predicted width of the scatterer from chapter 3 is about
50 nm larger than the one found in chapter 4. This might be caused by the difference in
dielectric constant for the scatterer compared to the perfect conductor used in chapter 3.
Experimenting with changing the dielectric constant seem to support this hypothesis,
but since making the conductor better than it currently is results in Matlab warning me
about potential singular matrices, this can not currently be verified by me.

Another explanation could be that the data is not fully converged. While this by first
glance would be easy to confirm, it is not. Increasing the resolution on the scatterer
increases the memory usage, and the calculations already places a huge demand on
memory. I tried with to test for convergence with a less wide scatter. This showed that
while not fully converged, it did not change much by increasing the resolution. A curious
observation I made while testing for convergence, was that the result seemed to oscillate.
While increasing the density of segments the cross section decreases linearly until it jumps
up. This repeats with increasing distance between each jump. While the first few jumps
decreased in size, the following jumps were of about the same size.

As it is implemented in this thesis i would not recommend using Green’s function for
calculation of terahertz response of a semiconducting structure.

The next step would be to abandon the assumption that the magnetic field is constant
along each segment. Alternatively the discretisation of the scatterer could be changed, so
that density of segments where the magnetic field varies most rapidly is increase, while
decreasing the density elsewhere.
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