
Y-STR:
Haplotype Frequency

Estimation
and

Evidence Calculation

Master of Science Thesis

Mikkel Meyer Andersen

June 2010

Department of Mathematical Sciences, Aalborg University,
Denmark

3

Department of Mathematical Sciences
Fredrik Bajers Vej 7G
9220 Aalborg East

Denmark
Phone: +45 99 40 88 04
http://www.math.aau.dk

Title: Y-STR: Haplotype Frequency Estimation and Evidence Calculation

Semester: MAT6, from February 1, 2010 to June 1, 2010

Author: Mikkel Meyer Andersen

Supervisor: Poul Svante Eriksen

Circulation: 6

Pages: 138

Summary: Y-STR haplotype frequency estimation is important because it
is required in order to calculate evidence. The loci on the Y-chromosome
cannot be assumed to be independent as with on the autosomal STR,
so the simultaneous probability does not factor to the product of the
marginal probabilities. This means that a statistical model incorporat-
ing proper dependence must be created.

First an existing method, the frequency surveying approach, is de-
scribed, and afterwards new models are developed. The new models
considered are a new method called ancestral awareness and models
based on existing methods such as kernel smoothing and model based
clustering. Also a class of models, classification models, are developed.
Examples of such models are classification trees, support vector ma-
chines, and ordered logistic regression.

Methods to assess the performance of the methods are developed and
afterwards used to compare the models. It is found that classification
trees is a good model, but it has the disadvantage of not using the prior
knowledge such as the single step mutation model.

Besides frequency estimation, evidence calculations is also considered
in this thesis.

http://www.math.aau.dk

Preface

Outline

Chapter 1 describes how Y-STR differs from autosomal STR on both the
biological and statistical level. On the biological level, Y-STR has the
clear advantage over autosomal STR that only male DNA is detected.
This makes Y-STR applicable in e.g. rape cases where the large amounts
of victim DNA does not pollute the smaller amounts of offender DNA
when using Y-STR. On the statistical level, Y-STR differs from auto-
somal STR in the sense that the loci are not independent. The causes
the frequency and evidence estimation to be non-trivial.

Chapter 2 analyses the data in an exploratory manner using factor analysis
and principal component analysis. These methods do not give rise to
usable dimension reduction, hence they are not pursued further in the
rest of this thesis.

Chapter 3 describes several models to estimate Y-STR haplotype frequen-
cies. In the beginning of this chapter, some desirable properties of such
models are stated, e.g. model consistency. Then the frequency survey-
ing approach from [Roewer et al., 2000] are described critically and
some problems with the approach are pointed out. Afterwards it is
argued that the the framework of graphical models is not sufficient if
using Pearson’s χ2 to test for conditional independence, so other test
of conditional independence are needed. In the last part of the chapter,
three new models and a class of models are developed. The class of
models are classification models where classification trees, support vec-

6

tor machines, and ordered logistic regression are examples of instances
of this class. The three models developed are ancestral awareness, ker-
nel smoothing, and model based clustering.

Chapter 4 describes methods for comparing the models. It is also argued
that it is difficult to perform proper model control if the method is not
a statistical model. The comparison methods used are how much unob-
served probability mass the models predict based on [Robbins, 1968],
comparing single and pairwise marginals using deviance, and compar-
ing predicted and relative frequencies using deviance. The estimator
introduced in [Robbins, 1968] are assessed through a simulation study.

Chapter 5 contains the results of the comparisons. The focus is on classifi-
cation models because they exhibit such nice theoretical structure, and
the marginals are investigated for the classification models only. The
classification trees seem to be the best model, although they do not
use a priori knowledge such as the single step mutation model. The
support vector machines perform bad, but it is most likely due to a
wrong kernel and parameters.

Chapter 6 describes how to calculate evidence and gives a couple of ex-
amples within this area as well. The articles [Wolf et al., 2005] and
[Brenner, 2010] are considered. It is emphasised why it is so crucial to
be able to estimate Y-STR haplotype frequencies.

Chapter 7 recapitulates the thesis and proposes several areas for further
work.

Acknowledgements

This thesis is intended for readers having statistical knowledge corresponding
to master’s level. The forensic terms will to a great extent be explained when
they are used for the first time. Only little prior biological knowledge is
expected.

I wish to thank and express my deepest gratitude to my supervisor, Poul
Svante Eriksen, associate professor at the Department of Mathematical Sci-
ences at Aalborg University, Denmark, for providing invaluable feedback and
always being very helpful and ready to discuss all sorts of issues and ideas.
It has been a pleasure and truely rewarding to work with such a friendly and
accomplished person.

I also wish to thank Niels Morling, director and head of The Department of
Forensic Medicine, University of Copenhagen, for providing data and unrav-
elling issues regarding forensics.

7

Appreciation also goes to Torben Tvedebrink, PhD student at the Depart-
ment of Mathematical Sciences at Aalborg University, Denmark, for always
being helpful, willing to explain all sorts of stuff, and contribute with valuable
ideas during discussions.

A part of this thesis has been to attend and give a talk at 7th International Y
Chromosome User Workshop in Berlin, Germany, from April 22 to April 24,
2010. The slides for the talk is available with the supplementary material of
this thesis (the location can be found in section 1.5). Thanks to both Svante
and Torben for helping me prepare the talk.

In this thesis the statistical package [R Development Core Team, 2010] has
been used. It will be referred to simply as R. Thanks to all the contributors
for making this great software.

Lastly, I want to thank the Oticon Foundation, Denmark, for supporting this
thesis with a scholarship.

Mikkel Meyer Andersen,
mikl@math.aau.dk

mikl@math.aau.dk

Resumé på Dansk (Abstract in Danish)

Autosomalt STR har gennem flere år været anvendt til DNA-analyser. Y-
STR, STR foretaget på Y-kromosomet (som kun mænd har), er dog i visse
sammenhænge på grund af nogle fordele i forhold til autosomalt STR blevet
mere og mere populært de seneste år. Det kan eksempelvis være fordelagtigt
at anvende Y-STR i voldtægtssager, hvor mængden af forbryder-DNA (fra
mænd) er markant mindre end mængden af offer-DNA (fra kvinden). Ved at
anvende Y-STR vil overrepræsentationen af offerets DNA ikke forstyrre de
små mængder forbryder DNA.

Hvor en autosomalt STR DNA-type består af loci, der statistisk er uafhængige,
er loci i en Y-STR DNA-type statistisk afhængige. Dette giver anledning til
udfordringer, blandt andet i forbindelse med at estimere frekvensen af en Y-
STR DNA-type i en befolkning, hvilket blandt andet anvendes til udregning
af bevismæssig vægt under retssager. Intuitivt kan det motiveres ved føl-
gende eksempel: hvis Y-STR DNA-typen fundet på et gerningssted stemmer
overens med den mistænktes, er den mistænkte så skyldig? Hvis hver anden
mand har den pågældende Y-STR DNA-type er det ikke stærkt bevis, men
hvis derimod kun 1 ud af 10 milliarder mænd har Y-STR DNA-typen, er
det derimod stærkt bevis. Derfor er det vigtigt at kunne estimere Y-STR
DNA-typers frekvenser.

I tilfældet med autosomalt STR udnyttes den statistiske uafhængighed blandt
loci, så den simultane sandsynlighed blot bliver produktet af marginalerne.
For Y-STR kan dette ikke gøres, da loci ikke er uafhængige. Derfor skal der
udvikles metoder til at estimere sandsynlighederne for Y-STR DNA-typer –
også de Y-STR DNA-typer, man endnu ikke har observeret.

10

Hovedvægten af dette speciale er udvikling af sådanne metoder, hvilket sker i
kapitel 3, med efterfølgende udvikling af metoder til at sammenligne modeller
i kapitel 4 og resultaterne i kapitel 5.

Først kommer en kritisk gennemgang af metoden introduceret i [Roewer et al.,
2000]. Herefter udvikles tre andre metoder og en klasse af metoder. De tre
metoder er fælles forfader-metoden (afsnit 3.4), kerneudglatning (afsnit 3.6)
og modelbaseret klyngedannelse (afsnit 3.7). Klassen af modeller er klassi-
fikationsmodeller (afsnit 3.5) med hovedvægt på klassifikationstræer (afsnit
3.5.1).

Der afsluttes med introduktion til en teori omkring udregning af bevismæssig
vægt (ofte blot kaldt likelihood ratio både på dansk og engelsk) i kapitel 6
baseret på bl.a. [Wolf et al., 2005].

I almindelighed giver klassifikationsmodellerne anledning til teoretiske attrak-
tive modeller, der bl.a. muliggør effektiv og alsidig modelkontrol (bl.a. fordi
man let kan simulere haplotyper efter deres sandsynlighed under modellen)
og hvis struktur muligvis kan udnyttes til en mere effektiv udregning af be-
vismæssig vægt. Klassifikationstræer ser ud til at være et godt bud på et
eksempel af klassifikationsmodelklassen med hensyn til enkelthed, ydelse og
hastighed. En af manglerne ved klassifikationstræerne (og andre af klassi-
fikationsmodellerne) er dog, at de ikke inkorporerer a priori viden om emnet
(eksempelvis i form af single step mutation-modellen).

Som en del af afrundingen i kapitel 7 beskrives mulige emner, man kan arbe-
jde videre med. Et af disse emner er, hvordan kvantitativt data kan anvendes
til analyse af Y-STR miksturer. Et andet emne er at konstruere en statis-
tisk model, der i højere grad aktivt anvender a priori viden; et forslag til
en sådan er at udglatte kontingenstabeller ved at anvende single step mu-
tation-modellen, og derefter anvende PC-algoritmen, hvor test for betinget
uafhængighed eksempelvis kan foretages med Spearmans korrelationskoeffi-
cient for at udnytte ordningen i data i stedet for den traditionelle Pearsons
χ2-test for nominelle data.

Contents

1 Introduction 15

1.1 Biological Framework . 15

1.2 Motivation . 17

1.3 Data . 19

1.3.1 Subpopulations . 20

1.4 Notation . 20

1.5 Supplementary Material . 21

2 Exploratory Data Analysis 23

2.1 Principal Component Analysis 23

2.2 Factor Analysis . 24

2.3 Remark . 28

3 Estimating Haplotype Frequencies 33

3.1 Desired Properties . 33

3.1.1 Consistent Models . 34

11

12 CONTENTS

3.1.2 Requirements . 34

3.2 Frequency Surveying . 34

3.2.1 Bayesian Inference . 35

3.2.2 Estimating Prior Parameters 36

3.2.3 Model Control . 36

3.2.4 Verifying the Method 37

3.2.5 Comments on the Method 39

3.2.6 Improvement . 44

3.2.7 Generalising the Method 44

3.3 Graphical Models . 45

3.4 Ancestral Awareness . 47

3.4.1 How to Choose the Ancestral Set 48

3.4.2 Fixed Size of the Ancestral Set 48

3.4.3 Threshold of the Proportion of Haplotypes Left Given
the Ancestral Set . 52

3.4.4 Mutation . 53

3.5 Classification . 53

3.5.1 Classification Trees . 55

3.5.2 Ordered Logistic Regression 59

3.5.3 Support Vector Machines 64

3.6 Kernel Smoothing . 70

3.7 Model-Based Clustering . 71

4 Methods for Comparison of the Models 75

4.1 Observed Probability Mass 75

4.1.1 Verification Through Simulation 78

4.2 Marginals . 84

CONTENTS 13

4.2.1 Deviance . 84

4.2.2 How to Find Marginals 86

4.2.3 Normalised Marginal Approximation 89

4.2.4 Bootstrapping . 90

4.3 Deviance Comparing Predicted with Relative Frequencies . . 91

4.4 Multinomial Distribution . 92

5 Results for Comparison of the Models 93

5.1 Implementation . 93

5.1.1 Classification Models 94

5.1.2 Kernel Smoothing . 96

5.2 Properties of the Datasets . 96

5.3 Classification Models . 97

5.3.1 Unobserved Probability Mass 97

5.3.2 Single Marginals . 97

5.3.3 Pairwise Marginals . 102

5.3.4 Assessing Validity of Normalising Predicted Marginals 103

5.3.5 Deviance Comparing Predicted with Relative Frequencies106

5.4 Frequency Surveying . 106

5.5 Ancestral Awareness . 107

5.6 Kernel Smoothing . 107

5.7 Model Based Clustering . 108

5.8 Comparing Models . 111

6 Evidence 115

6.1 Two Contributors . 115

6.2 n Contributors . 119

14 CONTENTS

6.2.1 Approximation with Known Error Bound 122

6.3 The κ-model . 124

7 Recapitulation 127

7.1 Further Work . 129

7.1.1 Statistical Model Incorporating Genetic Knowledge . . 129

7.1.2 Y-STR Mixtures . 129

7.1.3 Subpopulations . 129

7.1.4 Extended Models . 130

7.1.5 Signal Processing . 130

A Correlation Matrices 135

CHAPTER 1

Introduction

This chapter introduces some fundamental terms, both biologically and sta-
tistically. In addition to this, practical things such as where to find supple-
mentary material, e.g. R-code, is placed in this chapter.

First some basic biology will be explained, and afterwards a section about
why the problems investigated in this thesis arise and why it is important to
solve these problems.

1.1 Biological Framework

This thesis is set within the field of forensic statistics, more specifically the
application of Y-STR, which is only a small branch of the area. This sec-
tion will only explain the biological parts briefly, please see [Butler, 2005] or
[Butler, 2009] for an elaborate reference in this area.

Y-STR has a ”sibling“ called (just) STR which is an abbreviation for short
tandem repeat. STR is a standardised way to extract a DNA-profile from
biological material such as blood. Often, like in most crime cases, the amount
of DNA-material is limited, and if so, the DNA-material is first amplified us-
ing PCR (polymerase chain reaction). This is a complicated chemical process
and gives rise to some interesting problems that can also be treated statisti-

15

16 Chapter 1: Introduction

cally, e.g. estimating allelic drop-in/-out rate and modelling artefacts of the
PCR-process. One parameter to set in the PCR-process is how many cycles
to use, because it has impact on the phenomena just mentioned. This topic
is outside the scope of this thesis, and will not be treated further.

When the PCR-process is done, hopefully there is enough DNA-material to
perform the next step. At predefined positions called the loci (one locus)
on the 22 autosomes (autosomale chromosomes) pairs, i.e. the chromosomes
not having anything to do with the gender, the number of times a pattern
of adjacent nucleotides (the nucleotides are A, T, G, and C and they make
up the basepairs A-T and G-C) – normally a sequence of four basepairs –
repeats itself are counted. This number is called the allele. In principle the
length of the pattern can vary from two and upwards, but often a length of
four is used. To clarify, a locus is one certain position on a chromosome. For
example, if the DNA-sequence on a locus is

A G T T
| | | |
T C A A︸ ︷︷ ︸

pattern

A G T T
| | | |
T C A A︸ ︷︷ ︸

pattern

A G T T
| | | |
T C A A︸ ︷︷ ︸

pattern

the allele on this locus is 3. A lot of the biology on how this works in practice
is omitted. Please refer to the literature given in the beginning of this section
for further details.

Because each autosomal chromosome pair consists of two chromosomes, there
are two alleles for each locus. If these alleles are the same, the person is said
to be homozygot on that particular locus, and if the alleles are different
the person is said to be heterozygot on that particular locus. Some of the
problems arising are that an allele can drop-out such that a person looks
like a homozygot on a locus, but is in fact a heterozygot. Similarly, noise
– also amplified during the PCR-reaction – can cause drop-ins such that a
homozygot person suddenly looks like a heterozygot. These problems are not
treated in this thesis, but merely mentioned. Please refer to the literature
given in the beginning of this section for details.

Y-STR is a bit different: instead of typing the autosomal chromosome pairs,
only the Y-chromosome is typed. Remember that besides the 22 chromosome
pairs, humans have two sex chromosomes. A female has two X-chromosomes
and a male has one X-chromosome and one Y-chromosome. This means that
Y-STR can only be done for males, but this can be used in some interesting
situations. These will be discussed in section 1.2. Because only one of the
chromosomes is typed, there is only one allele for each locus. Since only
men have Y-chromosomes, it has also other advantages, because DNA from
women does not interfere with Y-STR. More on this topic will come in section
1.2. Because there is only one allele at each locus, DNA-types based on Y-
STR are often referred to as Y-STR haplotypes or simply haplotypes from

Section 1.2: Motivation 17

the Greek prefix ”haplo“ meaning one-fold or single.

The number of loci used is different depending on, among other things, which
kit is used in the process and what (inter)national standards dictate. A
minimal haplotype is often defined to contain 9 loci in order to be able to
discriminate properly, and the number of loci is increasing as new loci are
identified and included. An example of a 10 loci Y-STR haplotype is

DYS19 = 13, DYS389I = 13, DYS389II = 29, DYS390 = 22, DYS391 = 10,

DYS392 = 6, DYS393 = 13, DYS437 = 14, DYS438 = 11, DYS439 = 12

where DYS∗ is the loci and the numbers are the alleles. Normally haplotypes
are written

(13, 13, 29, 22, 10, 6, 13, 14, 11, 12)

such that it is defined that the first component (or dimension) is DYS19, the
second DYS389I, and so on.

In the rest of this thesis, the focus will be on Y-STR unless otherwise men-
tioned.

1.2 Motivation

In crime cases where the victim is a female and the attackers are males, as
for example with rapes, the amount of male DNA is limited compared to
the amount of female DNA. This type of cases are difficult to analyse using
traditional STR, but using Y-STR instead makes the analysis easier and more
reliable. But it also introduces a need for slightly different statistical theory
than developed for STR.

The general setup of the use of Y-STR statistics in a court room is similar
to the one for autosomal STR. Often the hypothesis in a trial is

Hp : The suspect left the crime stain (prosecutor’s hypothesis).
Hd : Some other person left the crime stain (defender’s hypothesis).

or more generally,

Hp : The suspect left the crime stain
together with n additional contributors.

Hd : Some other person left the crime stain
together with n additional contributors.

If E is the evidence found at the crime scene, the likelihood ratio is

LR =
P (E|Hp)

P (E|Hd)
.

18 Chapter 1: Introduction

From here the similarities of evidential handling between Y-STR and au-
tosomal STR end. A short and specific example for Y-STR will now be
presented. Say that the evidence consists of the trace T = ({1, 2}, {2}) (sim-
plified to point out the principle) and that the suspect’s Y-STR haplotype is
hs = (1, 2). Then if one additional contributor is assumed, the contributor’s
Y-STR haplotype has to be h1 = (2, 2) in order to explain the trace. Let
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) and define

a⊕ b = ({a1, b1}, {a2, b2}, . . . , {a1, bn})
T 	 a = ({b1}, {b2}, . . . , {bn})

such that T = hs⊕h1 and h1 = T 	hs. Say that (h1,h2) is consistent with
the trace T if h1 ⊕ h2 = T , which is denoted (h1,h2) ≡ T . In this example,
T = ({1, 2}, {2}) is shorthand notation for T = ({1, 2}, {2, 2}).

Then

LR =
P (E|Hp)

P (E|Hd)

=
P (hs, T 	 hs)∑

(h1,h2)≡T P (hs,h1,h2)

=
P (hs)P (T 	 hs)

P (hs)
∑

(h1,h2)≡T P (h1)P (h2)

=
P (T 	 hs)∑

(h1,h2)≡T P (h1)P (h2)

=
P (h1 = (2, 2))

P (h1 = (1, 2))P (h2 = (2, 2)) + P (h1 = (2, 2))P (h2 = (1, 2))

by assuming that haplotypes are independent.

To calculate this LR a method of calculating haplotype probabilities is needed.

Because traditional STR uses loci spread out on the 22 autosomale chromo-
some pairs, it is generally accepted, see e.g. [Roewer et al., 2000], to assume
statistical independence between the loci. This makes it quite easy to esti-
mate the frequency of a DNA-type because the simultaneous probability is
just the product of the marginal probabilities.

This is however not the case with Y-STR because the loci are on the same
chromosome. So it is no longer appropriate to assume independence between
the loci. This is easily shown by considering the correlation matrices for
three datasets in appendix A. The datasets will be introduced in section 1.3.
This immediately creates the problem of how to estimate Y-STR haplotype
frequencies, which is used for e.g. calculating LR as mentioned.

Section 1.3: Data 19

1.3 Data

In this thesis, three datasets with Y-STR haplotypes have been used:

• berlin contains 7 loci haplotypes from citizens in Berlin, Germany
(excluding DYS385a/b, please see below for explanation), provided by
Lutz Roewer, lutz.roewer@charite.de

• dane contains 10 loci haplotypes from Danes (excluding DYS385a/b,
please see below for explanation), published in [Hallenberg et al., 2004]

• somali contains 10 loci haplotypes from Somalis (excluding DYS385a/b,
please see below for explanation), published in [Hallenberg et al., 2005]

Please refer to table 1.1 for number of observations, haplotypes, and sin-
gletons (haplotypes only observed once). In table 1.2, table 1.3, and table
1.4 a count table is presented for the datasets berlin , dane , and somali ,
respectively.

A common locus called DYS385a/b is present in all of the datasets. It is ac-
tually two loci, DYS385a and DYS385b, which is why it has two alleles instead
of one. The problem with this locus (or these loci) is that it is not possi-
ble to distinguish between the two. So if DYS385a/b = (11, 12) then either
(DYS385a, DYS385b) = (11, 12) or (DYS385a, DYS385b) = (12, 11). This means
that these loci cannot be treated as the other loci in the dataset. Because of
this, DYS385a/b is often simply ignored like in [Roewer et al., 2000]. In this
thesis, DYS385a/b is also ignored. One could argue that valuable information
is thrown away, and maybe instead just use the sum of the alleles, but then
the same sum does not necessarily correspond to the same alleles. So because
no straightforward solution seems to solve the problem of identification, the
locus (or loci) is ignored.

In berlin , five observations (row 551 to 555) have been removed because
they had multiple alleles on one or several loci without any explanation of
why.

In dane the allele 10.2 is observed only once in the entire dataset, so this is
changed to 10 because neither somali nor berlin has such decimal alleles.
The decimal means that the pattern did not repeat itself 11 times entirely,
which is why it has been changed to 10.

The correlation matrices for berlin , dane , and somali can be found in
appendix A. Here it is seen that there is a significant correlation between
several pairs of loci.

lutz.roewer@charite.de

20 Chapter 1: Introduction

Observations Haplotypes Singletons
berlin 652 333 238
dane 185 136 112
somali 201 70 56

Table 1.1: Information about the datasets berlin , dane , and somali .

1 2 3 4 5 7 8 9 10 13 14 20 21 26 27
238 51 20 4 4 2 4 2 1 1 1 1 2 1 1

Table 1.2: How many times haplotypes have been observed in the dataset berlin . The
first column indicates how many haplotypes have only been observed once. The second
column indicates how many haplotypes have only been observed twice. And so on.

Omitted columns means that no haplotype has been observed that particular number of
times.

1.3.1 Subpopulations

Some haplotypes are more common in some parts of the world than in the
rest; there is a geographical variation of which haplotypes are frequent. Ac-
tually there is quite a huge difference among different populations, see e.g.
[Andersen, 2009a, p. 17] where a dendogram of pairwise AMOVA-distances
(as defined in [Excoffier et al., 1992]) is presented.

In this thesis subpopulation effects are disregarded by using datasets from
the same subpopulation. This is not necessarily a large limitation, because it
is often – but not always – known which population an offender stems from.

1.4 Notation

It is assumed that the database is complete without missing data such that
all the haplotypes consist of the same loci. If our haplotypes consists of loci
L1, L2, . . . , Lr each taking values in L1,L2, . . . ,Lr, respectively, then the set
of all possible haplotypes is assumed to be

H = L1 × L2 × · · · × Lr,

where × denotes the Cartesian product.

An immediate consequence of this is that an allele has to be observed before
we know it exists. So if we on DYS19 has observed alleles 13, 14, . . . , 17, then
in that particular dimension our set is those alleles only and it is not possible
to estimate a probability of observing another allele.

Normally a database of haplotypes are represented as a matrix where each
row is a haplotype and each column corresponds to a locus. When we have

Section 1.5: Supplementary Material 21

1 2 3 4 5 8 9
112 15 4 1 2 1 1

Table 1.3: How many times haplotypes have been observed in the dataset dane . Please
refer to explanation in table 1.2.

1 2 3 4 5 9 16 18 28 42
56 4 2 1 1 2 1 1 1 1

Table 1.4: How many times haplotypes have been observed in the dataset somali .
Please refer to explanation in table 1.2.

a database of observations, the idea is basically the same, but it can happen
that some males have the same haplotype. This can be dealt with either by
adding the haplotype several times (one row for each person) such that some
rows are equal. This is called extended representation. Another way is to add
an extra column representing the number of times each haplotype has been
observed. This is called compact representation. Note that the haplotype
database corresponds to either deleting the column with observation count
from the compact observation database or by removing duplicate rows in the
extended observation database.

Assume that we have observed n haplotypes x1,x2, . . . ,xn ∈ H. Now denote
our observations y1,y2, . . . ,yN+

∈ H where N+ =
∑n
i=1Ni and Ni denotes

how many times the i’th haplotype xi has been observed.

Let M be the number of singletons, i.e. the number of haplotypes observed
only once.

1.5 Supplementary Material

Supplementary material like R-scripts (approximately 4000 lines in total) etc.
can be found at

http://people.math.aau.dk/~mikl/thesis

where also links to [Andersen, 2009a] and its supplementary material together
with [Andersen, 2009b] can be found.

A mirror has been set up at

http://www.mikl.dk/math/thesis

just in case the other one is unavailable.

http://people.math.aau.dk/~mikl/thesis
http://www.mikl.dk/math/thesis

CHAPTER 2

Exploratory Data Analysis

In this chapter an exploratory analysis of the data is made. This is done
via dimension reduction because the data is high-dimensional. Two types of
dimension reduction are introduced.

In section 2.1 principal component analysis is described, and in section 2.2
factor analysis is described. These areas will not get that much attention but
are described briefly because they are two important techniques. Another
technique of dimension reduction is principal Hessian directions, but this will
not be described any further.

2.1 Principal Component Analysis

This section is based on [Venables and Ripley, 1997] and [Prendergast and
Kabaila, 2009]. The latter is lecture notes where the multivariate analysis-
part is based on [Johnson and Wichern, 2001].

PCA (principal component analysis) is a method to find linear combinations
of the variables causing the greatest variance under the constraint that the
length of the linear projection vector must be one.

Let x = (x1, x2, . . . , xp)
> be the variables with mean µ. PCA can either be

23

24 Chapter 2: Exploratory Data Analysis

done on the covariance matrix or correlation matrix. Let

λ1 ≥ λ2 ≥ · · · ≥ λp > 0

denote the eigenvalues of either matrix. Now consider p linear combinations
of the original p variables where the i’th is given by

yi = a>i x =

p∑
j=1

aijxj

where ‖ai‖ = 1 for all i.

The idea is to choose the a1 such that y1 has the greatest variance (this
makes sense because ‖ai‖ = 1). Afterwards a2 should be chosen such that
y2 has the greatest variance and is uncorrelated with y1. Continuing we get
that ai is chosen such that Var [yi] is maximised and

Cov [y1, yi] = Cov [y2, yi] = · · · = Cov [yi−i, yi] = 0.

The yi’s are called the principal components.

It can be shown that ai = ei where ei is the normalised i’th eigenvector with
the corresponding eigenvalue λi. Note that the covariance and correlation
matrix are both square and symmetric with real entries, so they are self-
adjoint, hence the eigenvalues are real and the eigenvectors are orthogonal.

When the covariance or correlation matrix is estimated from data, then ei
is estimated by êi, and the i’th principal component yi is estimated by the
sample principal component, denoted by ŷi or SPCi.

A scree plot is often used to decide how many principal components to use.
A scree plot can either be based on the eigenvalues or how much variance of
the total variance each component contributes with.

The scree plots for the PCA on berlin can be seen in figure 2.1, for dane
in figure 2.2, and for somali in figure 2.3.

Plots of the first SPC (sample principal component) against the second can
for berlin be seen in figure 2.4, for dane in figure 2.5, and for somali in
figure 2.6.

Especially dane looks interesting with the three groups. On the other hand,
the PCA on berlin and somali do not seem relevant.

2.2 Factor Analysis

This section is based on [Venables and Ripley, 1997, section 13.5] and the
help for the factanal-function in R.

Section 2.2: Factor Analysis 25

●

●

●

●

●

●

●

1 2 3 4 5 6 7

5
10

15
20

25
30

Principal component analysis of berlin − scree plot

Component

P
er

ce
nt

ag
e

of
 to

ta
l v

ar
ia

nc
e

29.03 %

22.67 %

15.79 %

12.37 %

8.98 %

7.17 %

3.99 %

Figure 2.1: Scree plot of the principal component analysis of berlin .

Just like PCA (principal component analysis), FA (factor analysis) finds lin-
ear combinations of the data. These linear combinations are called factors.
The two methods, PCA and FA, resemble each other, but they are build on
different statistical models. Another difference is that in FA the desired num-
ber of factors must be specified in advance, whereas in PCA one often uses
scree plots after analysis has been performed to select a certain – reduced –
number of variables to use. An explanatory approach can avoid specifying
the exact number of factors in advance and instead start by choosing to have
one factor and test for sufficiency. If sufficiency is rejected, then use two
factors and so on.

The factors often correspond to some underlying properties, e.g. is FA used
in psychology where studies try to determine underlying factors such as in-
telligence (and often several other factors) by a number of variables. FA can
for example be used to analyse surveys designed to identify certain properties
of persons.

Let x = (x1, x2, . . . , xp)
> be the variables with covariance matrix Σ. For

k < p factors f = (f1, f2, . . . , fk)
>, the FA-model assumes that

x = Λf + e,

where Λ is a k × p-matrix of factor loadings, the components of f have
variance one and are uncorrelated, and e are independent with unknown

26 Chapter 2: Exploratory Data Analysis

●

●

●

●

●

●
●

●
● ●

2 4 6 8 10

0
5

10
15

20
25

30
35

Principal component analysis of dane − scree plot

Component

P
er

ce
nt

ag
e

of
 to

ta
l v

ar
ia

nc
e

35.69 %

23.92 %

11 %

8.59 %

6.39 %

4.65 % 4.24 %

2.55 %
1.67 % 1.31 %

Figure 2.2: Scree plot of the principal component analysis of dane .

diagonal covariance matrix Ψ. The variances of the components in e is called
uniquenesses.

The conditions stated are equivalent to assuming that the covariance matrix
Σ can be expressed as

Σ = ΛΛ> + Ψ.

If G is an arbitrary orthogonal k × k matrix, then the factors G>f with
loadings matrix ΛG does not change the model for Σ, because

(ΛG) (ΛG)
>

+ Ψ = ΛGG>Λ> + Ψ = ΛIΛ> + Ψ = Σ.

Choosing a G corresponds to choosing a basis for the subspace Λf , and is
referred to as rotation. Choosing a rotation is often done in order to interpret
the data in the best possible way.

The matrix G does not necessarily have to be orthogonal, but then the model
changes and so does the interpretation. As an example, the rotation promax
in the factanal-function in R can cause the factors to be correlated (this
may be sensible in the case where factors is a person’s different skills, but
in general one has to be careful). Interpretation is often done by looking at
the loadings matrix. The default rotation in the factanal-function in R is
varimax.

Section 2.2: Factor Analysis 27

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
5

10
15

20
25

30

Principal component analysis of somali − scree plot

Component

P
er

ce
nt

ag
e

of
 to

ta
l v

ar
ia

nc
e

32.03 %

16.06 %

13.09 %

11.13 %

8.2 %

6.9 %
5.69 %

3.57 %

2.26 %
1.07 %

Figure 2.3: Scree plot of the principal component analysis of somali .

The degrees of freedom in the model is in [Venables and Ripley, 1997, p. 405]
found to be

s =
(p− k)2 − (p+ k)

2

In order to ensure that only one solution to the problem exists, we need to
have s > 0, or equivalently

(p− k)2 > p+ k.

Solving this quadratic equation shows that given data dimension p, a certain
maximum of factors

kmax =

⌊
1

2
+ p−

√
1 + 8p

2

⌋
(2.1)

can be chosen in order to ensure uniqueness, where b·c is the operation taking
the closest integer smaller than or equal to the expression.

For each of the datasets, a FA is tried with a number of factors from 1 to the
equation given in (2.1). The factanal-function computes a p-value of the
null hypothesis that the given number of factors is sufficient. Because the
factor analysis here is used as exploratory, a model is automatically rejected
if the p-value is smaller than 0.05. A model is also automatically rejected if
the degrees of freedom equals 0.

28 Chapter 2: Exploratory Data Analysis

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●●●

●●●

●●

●●●●●●●●●

●●

●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●

●●●●●
●

●

●●●

●

●●●●●●●●●●●●●●●

●●●● ●

●

●

●●●●●●●●●●●●

●●●●●●●●●

●●●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●

●●●

−4 −2 0 2 4

−
2

0
2

4

Principal component analysis of berlin

SPC1

S
P

C
2

Figure 2.4: SPC1 vs. SPC2 of the principal component analysis of berlin .

The result of this exploratory approach is that no model can be fitted for
berlin . Two models with 4 and 5 factors can be fitted for dane . Only one
model with 5 factors can be fitted for somali .

Factor 1 vs. factor 2 is plotted for the different fits. For dane , these plots
can be seen in figure 2.7 for 4 factors and figure 2.8 for 5 factors. For somali ,
the plot for 5 factors is in figure 2.9.

2.3 Remark

Because of the poor performance of the methods on the data, they will not
be used further.

Section 2.3: Remark 29

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●
●●●●

●

●

●

●

●●●●

●●●●●●●●

●●●

●●●●●●●

●

●

●

●●

●

●
●

●●

●

−3 −2 −1 0 1 2 3 4

−
2

0
2

Principal component analysis of dane

SPC1

S
P

C
2

Figure 2.5: SPC1 vs. SPC2 of the principal component analysis of dane .

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●●

●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●●●●

●

●

●●●●●●●●

●●●
●●

●●

●●●●●●●●●●●●●●●

−4 −3 −2 −1 0 1 2

−
10

−
8

−
6

−
4

−
2

0
2

Principal component analysis of somali

SPC1

S
P

C
2

Figure 2.6: SPC1 vs. SPC2 of the principal component analysis of somali .

30 Chapter 2: Exploratory Data Analysis

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−
0.

5
0.

0
0.

5
1.

0

Factor analysis of dane with 4 factors

Factor 1

Fa
ct

or
 2

DYS19

DYS389I

DYS389II

DYS390

DYS391
DYS392

DYS393

DYS437

DYS438

DYS439

Figure 2.7: Factor analysis of dane with 4 factors

−0.2 0.0 0.2 0.4 0.6 0.8

−
0.

5
0.

0
0.

5
1.

0

Factor analysis of dane with 5 factors

Factor 1

Fa
ct

or
 2

DYS19

DYS389I

DYS389II

DYS390

DYS391

DYS392

DYS393

DYS437

DYS438

DYS439

Figure 2.8: Factor analysis of dane with 4 factors

Section 2.3: Remark 31

−0.5 0.0 0.5

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Factor analysis of somali with 5 factors

Factor 1

Fa
ct

or
 2

DYS19

DYS389I

DYS389II
DYS390

DYS391

DYS392

DYS393

DYS437

DYS438

DYS439

Figure 2.9: Factor analysis of somali with 5 factors

CHAPTER 3

Estimating Haplotype Frequencies

In this chapter different methods of how to estimate haplotype frequencies,
including unobserved haplotypes, will be presented.

The focus will be on haplotypes from the same subpopulation, because then
the subpopulation effect does not have to be taken into account. See section
1.3.1 for further info on subpopulations.

Being able to estimate haplotype frequencies is crucial in several cases, e.g.
when calculating evidence which was shortly introduced in section 1.2 and
will be further investigated in chapter 6.

Because a haplotype as such can be viewed as a multinomial sample, it would
be tempting to use a multinomial model. But by doing so, a lot of information
about the ordering between variables is thrown away because the multinomial
distribution does not consider how the variables are ordered. Because of this,
a multinomial model approach is not further pursued.

3.1 Desired Properties

Before starting to develop models, some desired properties of such a model
are described.

33

34 Chapter 3: Estimating Haplotype Frequencies

3.1.1 Consistent Models

Models for estimating haplotype frequencies can be divided into two groups:
consistent and inconsistent models.

Let H be a set of different haplotypes (refer to section 1.4 for the definition
of H). Given a modelM (H) and a haplotype h ∈ H, denote by PM(H) (h)
the probability of a haplotype calculated under the model M (H). Then a
modelM (H) is said to be consistent if∑

h∈H

PM(H) (h) = 1.

If a model is not consistent it is said to be inconsistent. Whether a model is
consistent or not should be verified theoretically.

3.1.2 Requirements

Estimation should be based on a statistical model with the following proper-
ties:

1. The structure of the model should not depend on the data. This ensures
that the structure is essentially the same no matter of the data. Only
parameters to the model can change with the data.

2. The model should be consistent. Please refer to section 3.1.1 for details.

One way of doing this is to model the simultaneous probability mass function
directly.

3.2 Frequency Surveying

In [Roewer et al., 2000] a new method for estimating haplotype frequencies is
presented. First this method will be outlined, and afterwards some comments
will be made.

The notation in [Roewer et al., 2000] is slightly different than the one used
in this thesis. To be consistent with [Roewer et al., 2000], their notation will
be adopted for this section only.

Let N be the total number of observations in the Y-STR database, M the
number of different haplotypes, and Ni the number of times haplotype i is
observed (noting that i = 1, 2, . . . ,M). So N correspond to N+ and M to n
in our notation.

Section 3.2: Frequency Surveying 35

3.2.1 Bayesian Inference

[Roewer et al., 2000] states (referring to a classical population genetics theory)
that if fi denotes the frequency of a haplotype, and it is considered as a
random variable, then it can be assumed a priori that

fi ∼ Beta (ui, vi) ,

i.e. fi is Beta-distributed with first shape parameter ui and second shape
parameter vi.

The parameters ui and vi depend on a number of unknown factors in the
case with Y-STR (mutation rates, population size etc.), so [Roewer et al.,
2000] estimates these parameters through an exponential regression model.
This will be described in section 3.2.2, but first the general idea of [Roewer
et al., 2000] will be described.

If we assume a likelihood model given by

Ni − 1|fi ∼ Binomial (N − 1, fi)

where the −1 is from the fact that [Roewer et al., 2000] takes the first obser-
vation of a haplotype merely as an indication of existence. A posteriori we
by Bayes Theorem then have that

P (fi|Ni − 1) =
P (Ni − 1|fi)P (fi)

P (Ni − 1)

=
P (Ni − 1|fi)P (fi)∫ 1

0
P (Ni − 1|f)P (f) df

(continuous Law of Total Probability)

for f ∼ β(u, v) for some u and v. It can be shown that

fi|Ni − 1 ∼ Beta (ui +Ni − 1, vi +N −Ni)

i.e. the posterior distribution of fi|Ni − 1 is also Beta with parameters ui +
Ni − 1 and vi +N −Ni.

In [Krawczak, 2001], the case where the requested haplotype has not been
observed earlier, is discussed. The conclusion is to adjust the parameters in
the posterior distribution slightly. This is caused by assuming the likeliheed
Ni|fi ∼ Binomial (N, fi) such that fi|Ni ∼ Beta (ui +Ni, vi +N −Ni) a
posteriori.

If a suspect has a known haplotype i and has not been included in the
database count, then this extra information should be used to adjust the
posterior to fi|Ni ∼ Beta (ui +Ni + 1, vi +N −Ni) as argued by [Krawczak,
2001].

36 Chapter 3: Estimating Haplotype Frequencies

3.2.2 Estimating Prior Parameters

To estimate ui and vi for the prior

fi ∼ Beta (ui, vi) ,

let dij denote the molecular distance (the L1 or Manhattan norm) between
the i’th and j’th haplotype. This distance corresponds to the number of
single step mutations necessary to get from one haplotype to another. First
the weighted distance for the i’th haplotype is calculated as

Wi =
1

N

∑
i 6=j

Nj
dij

(3.1)

for i = 1, 2, . . .M . Note that
∑
i 6=j Nj = N − Ni 6= N , but according

to [Veldman, 2007], who also mentions this, the implementation in http:
//www.yhrd.org has been changed to use 1

N−Ni instead of 1
N .

Now these Wi’s are sorted by their numerical value and divided into G = 15
groups based on the value of Wi. For each group, the mean of the Wi’s in
the group is calculated. Also, for each group, the mean and variance of the
f̂i = Ni−1

N−M corresponding to the Wi’s in the group is calculated. Now two
exponential regression models are fitted, namely

µ(W) = β1 + exp (β2W + β3) and σ2(W) = β4 + exp (β5W + β6) .

This is easily done in R as shown in listing 3.1 using the non-linear least
squares fitting implemented in the nls-function.�

1 mu.model <− nls(mu ~ beta1 + exp(beta2 ∗ W + beta3), start=list(beta1 =
0.005, beta2 = 15, beta3 = -10), trace = TRUE)� �

Listing 3.1: Exponential regression in R

When the parameters have been fitted, a µ and σ2 can be found for all
M different haplotypes using Wi for i = 1, 2, . . . ,M . These µi and σ2

i can
be transformed to the ui and vi parameters by using [Roewer et al., 2000,
Equation (1), p. 35], namely

ui =
µ2
i (1− µi)
σ2
i

and vi = ui

(
1− µi
µi

)
.

Hence we know the distribution of fi a priori.

3.2.3 Model Control

Given the database, let Kj denote the number of haplotypes observed j + 1
times, such that K0 denotes the number of singletons etc.

http://www.yhrd.org
http://www.yhrd.org

Section 3.2: Frequency Surveying 37

Then [Roewer et al., 2000, p. 36] states that

E [Kj] =

M∑
i=1

∫ 1

0

P (Ni − 1 = j|fj)ϕ(fi) df

with ϕ(fi) = P (fi) with parameters ui and vi.

To make this clear, let ϕi(f) denote the density for a Beta distribution with
parameters ui and vi evaluated in f . Then

E [Kj] =

M∑
i=1

∫ 1

0

P (Ni − 1 = j|f)ϕi(f) df.

3.2.4 Verifying the Method

Unfortunately the data used in [Roewer et al., 2000] is not available, so
berlin , dane , and somali have been used to verify the method. The defi-
nition of Wi from (3.1) has been used.

In the process of implementing the described method, it became clear that
the exponential regression models

µ(W) = β1 + exp (β2W + β3) and σ2(W) = β4 + exp (β5W + β6)(3.2)

carried some trouble along. With these datasets it happened that either
β1 < 0 or β4 < 0, implying that some of the estimated µ and σ became
negative. So the procedure to test this method is to first use the regression
models from (3.2) (which might fail), and then afterwards with β1 = β4 = 0,
e.g. only with parameters β2, β3, β5, β6:

1. Calculate Wi for all i

2. Divide the Wi’s into 15 groups

3. Estimate µ and σ2 for the fi’s in each group to build the regression
model

4. Build suitable regression model

5. If β1 < 0 or β4 < 0, stop

6. Estimate a µi and σ2
i for each Wi using the regression models

7. If any µi < 0 or σ2
i < 0, stop

8. Finalise the analysis

38 Chapter 3: Estimating Haplotype Frequencies

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

0.10 0.12 0.14 0.16 0.18 0.20 0.22

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

dane divided into 15 groups

µ(W) = 0.002 + exp(81.389 * W − 21.454)
W

µ

Figure 3.1: Estimated mean for dane using the model µ(W) = β1 + exp (β2W + β3).

● ● ●

●

●
●

● ●

●
● ● ●

●

●

●

0.10 0.12 0.14 0.16 0.18 0.20 0.22

0.
00

0
0.

00
1

0.
00

2
0.

00
3

dane divided into 15 groups

σ2(W) = 0 + exp(114.043 * W − 31.492)
W

σ2

Figure 3.2: Estimated variance for dane using the model
σ2(W) = β4 + exp (β5W + β6).

Section 3.2: Frequency Surveying 39

β1 β2 β3 β4 β5 β6
dane 0.002 81.389 −21.454 5.194 · 10−5 114 −31.49

Table 3.1: Parameters for the full regression model

β2 β3 β5 β6
berlin 34.442 −12.972 21.217 −13.662

dane 66.503 −18.039 107.286 −29.945
somali 14.328 −9.286 10.290 −9.328

Table 3.2: Parameters for the reduced regression model

This procedure resulted in the conclusion that only dane could be fitted using
the regression model stated in (3.2). And the fit does not seem comforting,
refer to figure 3.1 and figure 3.2 for the fitted models for µ and σ2, respectively.

When setting β1 = β4 = 0, all the datasets could make a fit, and the re-
sults are almost similar, but berlin made the best fit, so only the plots for
berlin in figure 3.3 and figure 3.4 for µ and σ2, respectively, is included. It
looks okay for µ and – without exaggerating – less okay for σ2. The other
plots are automatically generated by running the R-code surveying.R in the
supplementary material (refer to section 1.5), and it is encouraged to have a
look at them.

The parameters for the full regression model and the reduced regression mod-
els can be found in table 3.1 and table 3.2, respectively.

In regards to model control, the expected counts versus the observed counts
can for dane using the reduced regression model with β1 = β4 = 0 be found in
figure 3.5, and for berlin using the full regression model in figure 3.6. Again,
the other cases are quite similar and is automatically generated running the
surveying.R as mentioned earlier.

3.2.5 Comments on the Method

In regards to model control, not much was done in the article. They only
compared the observed and expected Kj ’s like described. For other ways
of comparing models to estimate haplotype frequencies, refer to chapter 4,
although a lot of these methods require a true statistical model which this
is not. For the results of the relevant comparison methods introduced in
chapter 4, see section 5.4.

In order to actually perform model checks, a posterior estimate for the hap-
lotype frequency would often be needed. An evident choice for this would be

40 Chapter 3: Estimating Haplotype Frequencies

●
●

● ●
● ●

● ●

●

●
●

●
●

●

●

●

0.15 0.20 0.25

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

berlin divided into 16 groups

µ(W) = 0 + exp(34.442 * W − 12.972)
W

µ

Figure 3.3: Estimated mean for berlin using the model µ(W) = exp (β2W + β3).

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

0.15 0.20 0.25

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

berlin divided into 16 groups

σ2(W) = 0 + exp(21.217 * W − 13.662)
W

σ2

Figure 3.4: Estimated variance for berlin using the model σ2(W) = exp (β5W + β6).

Section 3.2: Frequency Surveying 41

0 1 2 3 4 5 6 7 8 9

Observed count
Expected count

dane based on 15 groups

Using regression with beta1 and beta4
j

N
um

be
r

of
 h

ap
lo

ty
pe

s
ob

se
rv

ed
 j+

1
tim

es

0
20

40
60

80
10

0

112
100.38

15
11.96

4
5.97

1
3.72 2
2.55

0
1.85 0

1.4 1
1.09 1
0.87 0
0.71

Figure 3.5: Expected vs. observed counts of singletons, doubletons etc. for dane using
the reduced regression model µ(W) = exp (β2W + β3) and similar for σ2(W).

0 1 2 3 4 5 6 7 8 9

Observed count
Expected count

berlin based on 16 groups

Using regression without beta1 and beta4
j

N
um

be
r

of
 h

ap
lo

ty
pe

s
ob

se
rv

ed
 j+

1
tim

es

0
50

10
0

15
0

20
0

25
0 238

264.34

51
13.65

20 8.06 4
5.85 4
4.62 0
3.81 2
3.23 4
2.79 2
2.45 1
2.16

Figure 3.6: Expected vs. observed counts of singletons, doubletons etc. for berlin
using the full regression model.

42 Chapter 3: Estimating Haplotype Frequencies

●●●●●●

●

●

●
●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

●●
●●
●

●●●●●●

●
●●●●

●

●
●

●

●●
●

●●●●●●●

●
●●
●●
●●
●●●

●

●●●●●
●●●

0.2 0.4 0.6 0.8 1.0

10
20

30
40

50

fitted u vs. fitted v for dane based on 15 groups

Using regression with beta1 and beta4
u

v

Figure 3.7: The connection between the estimated u’s and v’s using the full regression
model. It is clear that the connection is very systematic.

the mean value for the posterior distribution

fi|Ni − 1 ∼ Beta (ui +Ni − 1, vi +N −Ni) ,

hence

f̃i =
ui +Ni − 1

ui +Ni − 1 + vi +N −Ni
=

ui +Ni − 1

ui + vi +N − 1

because the mean value for a Beta(α, β) is α
α+β .

One could also argue that the method is more like an ad-hoc method than
a general statistical model. Especially because the estimation of µ and σ2

based on Wi seems somewhat artificial and the model structure changes for
different datasets. Also notice that the correlation structure of this approach
is very complex. Furthermore, only one value, Wi, is used to estimate the
parameters, ui and vi, so certain dependency must be expected, but this im-
plicit assumption is not accounted for. This is quite clear from the regression
formulas and is also obvious when plotting the ui’s against the vi’s as seen
in figure 3.7 for dane using the full model and in figure 3.8 for the reduced
model with β1 = β4 = 0. The other datasets give similar plots, which can be
verified running the R-code surveying.R as mentioned earlier. Running this
code generates the plots automatically.

Based on the facts just presented, the method must be said to be doubtful. A
lot of the problems arise because the estimation is not based on a statistical

Section 3.2: Frequency Surveying 43

●

●

●

●

●

●

●

●

●●●

●

●
●

● ●●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●●
●

●

●
●●

● ●
●●●

●
●● ●

●

●

●
●

●

●

●●

●

●●
●

● ●

●
●

●●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0
10

00
20

00
30

00
40

00
50

00

fitted u vs. fitted v for dane based on 15 groups

Using regression without beta1 and beta4
u

v

Figure 3.8: The connection between the estimated u’s and v’s using the regression
model with β1 = β4 = 0. It is clear that the connection is very systematic.

model as described in section 3.1.2. On the other hand, the method should
be acknowledged for incorporating generic prior knowledge.

Implementation Details of http://www.yhrd.org

At the 7th International Y Chromosome User Workshop in Berlin, Germany,
April 2010, Sascha Willuweit (one of the persons behind http://www.yhrd.
org) mentioned a couple of changes between their implementation at http:
//www.yhrd.org and the original article:

• They also only use the reduced regression models, i.e. without inter-
cepts β1 and β4

• The number of groups are determined by fitting several regressions and
choosing the one with the lowest coefficient of determination

Further details for selecting the minimum number of groups was however not
mentioned.

http://www.yhrd.org
http://www.yhrd.org
http://www.yhrd.org
http://www.yhrd.org
http://www.yhrd.org

44 Chapter 3: Estimating Haplotype Frequencies

3.2.6 Improvement

As mentioned in section 3.2.5, only the Wi has been used to fit two parame-
ters. Using Wi is an obvious choice because it incorporates the first moment
of the allele differences on each locus, but maybe it would be beneficial to
also use the second moment. Recall that dij is the Manhattan distance, i.e.

dij =

r∑
k=1

dijk for dijk = |xik − xjk|

where xik is the k’th locus at the i’th haplotype. Then

Wi =
1

N

∑
i 6=j

Nj
dij

=
1

N

∑
i 6=j

Nj∑r
k=1 dijk

.

Similar, one could introduce

Zi =
1

N

∑
i 6=j

Nj∑r
k=1

(
dijk − dij

r

)2
and then try to fit µi’s and σi’s by multiple regression using a grid of Wi

and Zi values. In order for this to work, a lot of observations are required,
because the 15 groups of the Wi’s only correspond to a 4 × 4-grid, which is
way too coarse. If requiring 15 groups of each Wi and Zi, the grid would
have size 15 · 15 = 225, so in order to just get ten observations in each, at
least 2250 observations are needed.

Because the requirement for the number of observations cannot be fulfilled
for the datasets berlin , dane , nor somali , this improvement has not been
tried in practice, although it would be interesting to see how it would perform
compared to just using the Wi’s.

3.2.7 Generalising the Method

Some of the problems mentioned might be solved by formulating the method
a bit more generally.

Let f = (f1, f2, . . . , fk) be the vector of frequencies for all possible haplo-
types, and use similar notation for other vectors.

Assume a priori, that

f ∼ Dirichlet (α)

and that the likelihood is

N |f ∼ Multinomial (N+,f) .

Section 3.3: Graphical Models 45

Then the posterior becomes

f |N ∼ Dirichlet (α1 +N1, . . . , αk +Nk)

= Dirichlet (α1 +N1, . . . , αn +Nn, αn+1, . . . , αk)

such that, without loss of generality, the indices 1, 2, . . . , n are the observed
haplotypes and n+ 1, n+ 2, . . . , k are the unobserved haplotypes.

The marginal posterior distribution for the i’th haplotype is

fi|Ni ∼ Beta

αi +Ni,

k∑
j=1

(αj +Nj)− (αi +Ni)


= Beta (αi +Ni, α+ − αi +N+ −Ni)

where α+ =
∑k
i=1 αi.

To obtain actual frequency estimates, one possibility is to use the mean

E [fi|Ni] =
αi +Ni∑k

j=1 (αj +Nj)− (αi +Ni) + (αi +Ni)
=

αi +Ni
α+ +N+

of the marginal posterior distribution. Doing so gives

k∑
i=1

E [fi|Ni] = (α+ +N+)
−1

k∑
i=1

(αi +Ni) = 1

i.e. a consistent model.

If we want to incorporate prior knowledge for all possible haplotypes, such
as choosing prior parameters αi’s based on molecular distances, α+ might be
problematic to calculate for large k.

Sampling haplotypes according to their probabilities under this generalised
formulation is still not straightforward.

3.3 Graphical Models

The framework of graphical models would be an obvious choice for a model to
estimate haplotype frequencies. A lot of theory exists and graphical models
fulfil the requirements described in section 3.1. In an earlier project, [An-
dersen, 2009a], this approach was investigated further by learning the model
based on data. The learning approaches were both score based (BIC and
AIC) and structure based (the PC algorithm). For references on the learning
algorithms, refer to [Jensen and Nielsen, 2007], but be aware of the errors

46 Chapter 3: Estimating Haplotype Frequencies

in the description of the PC algorithm as described in [Andersen, 2009a].
Another reference for the PC algorithm is [Kalisch and Buhlmann, 2007].

The learning algorithms did however not perform satisfactory because of the
many zeros in the datasets we are dealing with. In the PC algorithm one
reason for this is that Pearson’s χ2-tests was used to test for conditional
independence (the term d-separation is sometimes used), and this test is un-
reliable for tables with many zeros. Another problem with this test is that it
does not exploit the ordering of the data. To use the PC algorithm on haplo-
type data, other kinds of tests must be used. Exact tests – both exhaustive
tests and MCMC-approaches – are computational infeasible because the size
of the set of possible contingency tables, with the given marginals, is simply
too large. But tests such as Spearman’s rank-order correlation coefficient
[Hollander, 2006] would maybe be applicable, because it takes ordering into
account. [Hollander, 2006] also mentions other dependence tests.

The PC algorithm finds the skeleton iteratively. Another approach, called
the RAI algorithm, has been proposed by [Yehezkel and Lerner, 2009], which
resembles a recursive version of the PC algorithm:

While other [constraint-based] algorithms d-separate structures and
then direct the resulted undirected graph, the RAI algorithm com-
bines the two processes from the outset and along the procedure.
By this means and due to structure decomposition, learning a
structure using RAI requires a smaller number of CI tests of
high orders. This reduces the complexity and run-time of the
algorithm and increases the accuracy by diminishing the curse-
of-dimensionality.

[Yehezkel and Lerner, 2009]

Both the PC algorithm and the RAI algorithm allows testing for indepen-
dence by whatever test the user wants, so it would definitely be interesting
to try both the PC algorithm and the RAI algorithm with more reasonable
tests for the data at hand.

An attempt to implement the RAI in R was made, but some implementation
issues came up. E.g. in step 3 of the algorithm, ”C. Ancestor sub-structure
decomposition“ the algorithm is ”For i = 1 to k, call RAI[n+ 1, GAi , Gex ,
Gall].“ but it is not specified how to use the result of the call like e.g. GAi
= RAI[n+ 1, GAi, Gex, Gall].

Because of this, one of the authors, Raanan Yehezkel, was contacted and
asked about this problematic step of the algorithm and to obtain the ref-
erence implementation (unfortunately it was not publicly available) based
on The Bayes Net Toolbox for Matlab [Murphy, 2001] which could be used

Section 3.4: Ancestral Awareness 47

to resolve other implementation issues. A good dialogue was initiated, and
Raanan acknowledged the problem and the proposed solution with step 3
in the algorithm mentioned above and offered to both run the algorithm on
the data and send the reference implementation. Both proposals were ac-
cepted. Unfortunately Raanan could not find the reference implementation,
but instead explained how to run the algorithm manually only doing the
conditional independence tests on the computer. This approach was however
not pursued.

In conclusion, none of the standard learning algorithms yielded a satisfactory
model.

3.4 Ancestral Awareness

In this section a new method for estimating Y-STR haplotype frequencies
will be introduced.

First the basic idea will be introduced. Recall the notation from section 1.4,
such that the loci is L1, L2, . . . , Lr, taking values in L1,L2, . . . ,Lr, respec-
tively.

Let I ⊆ {1, 2, . . . , r} and note that

P (L1 = a1, L2 = a2, . . . , Lr = ar) = P

⋂
j 6∈I

Lj = aj

∣∣∣∣∣ ⋂
i∈I

Li = ai

×
P

(⋂
i∈I

Li = ai

)
.

The basic idea is to find I = {i1, i2, . . . , iq} such that

P

⋂
j 6∈I

Lj = aj

∣∣∣∣∣ ⋂
i∈I

Li = ai

 ≈∏
j 6∈I

P

(
Lj = aj

∣∣∣∣∣ ⋂
i∈I

Li = ai

)
(3.3)

is a good approximation.

The set I is called an ancestral set, because it can be interpreted as a set of
alleles that is common with one’s ancestors.

Note that the method is not consistent.

48 Chapter 3: Estimating Haplotype Frequencies

3.4.1 How to Choose the Ancestral Set

A straightforward way to find the ancestral set is to use a greedy algorithm
that, conditional on already chosen ancestors (initially the empty set), finds
at which loci the probability for the allele in question is the greatest.

Formally, the algorithm can be expressed like shown in Algorithm 1 where
the stop condition in the while-loop is left unspecified for now, but will get
attention in section 3.4.2 and section 3.4.3.

Algorithm 1 A greedy approach to find ancestors. The stop condition is
left unspecified for now.

Require: Haplotype h = (a1, a2, . . . , ar) and table P
I ← ∅
p← 1
while stop condition is false do
J ← IC = {1, 2, . . . , r} \ I
imax ← arg maxj∈J {P (Lj = aj | ∩i∈I Li = ai)}
p← p · P (Limax = aimax | ∩i∈I Li = ai)
I ← I ∪ {imax}
check if stop condition should be set to true

end while
p← p ·

∏
j∈IC P

(
Lj = aj

∣∣∣ ⋂i∈I Li = ai

)

3.4.2 Fixed Size of the Ancestral Set

One way to stop is when a predefined number of ancestors, i.e. the number
of elements in the ancestral set, is reached. In a case with r = 10, i.e.
a haplotype consisting of 10 loci, this number could maybe be 5. Which
number to take must of course be checked afterwards, e.g. by thinking of the
different parameters as resulting in different models which can be compared
like done later in chapter 4.

The implementation of this method can be found in the supplementary ma-
terial, refer to section 1.5.

For the purpose of illustration, an example of the method will be given in
the following.

Example 3.1 (Example of choosing ancestral set of fixed size). This
example is based on an execution of the implementation found in the supple-
mentary material which is described in section 1.5, hence it is easy to output
some extra information, e.g. how many observations are left at each step.

Section 3.4: Ancestral Awareness 49

This example uses the dataset provided by dane with the loci

L1 = DYS19, L2 = DYS389I, L3 = DYS389II,
L4 = DYS390, L5 = DYS391, L6 = DYS392,
L7 = DYS393, L8 = DYS437, L9 = DYS438, L10 = DYS439.

First assume that we want to estimate the frequency of the haplotype

h = (DYS19 = 13, DYS389I = 13, DYS389II = 29,

DYS390 = 22, DYS391 = 10, DYS392 = 6,

DYS393 = 13, DYS437 = 14, DYS438 = 11, DYS439 = 12)

using the described method with 5 as the fixed size of the ancestral set.

First the unconditional marginal probabilities are found based on the original
185 observations, namely

P (DYS19 = 13) = 0.032,

P (DYS389I = 13) = 0.481,

P (DYS389II = 29) = 0.308,

P (DYS390 = 22) = 0.254,

P (DYS391 = 10) = 0.632,

P (DYS392 = 6) = 0.011,

P (DYS393 = 13) = 0.795,

P (DYS437 = 14) = 0.259,

P (DYS438 = 11) = 0.178,

P (DYS439 = 12) = 0.324.

Now i1 = 7, DYS393, is chosen as an ancestor because P (DYS393 = 13) =
0.795 has the highest probability. This means that I = {7}.

Next step is to calculate the probabilities of the remaining loci conditional
on DYS393 = 13, now based on 147 observations, i.e.

P (DYS19 = 13 | DYS393 = 13) = 0.041,

P (DYS389I = 13 | DYS393 = 13) = 0.517,

P (DYS389II = 29 | DYS393 = 13) = 0.327,

P (DYS390 = 22 | DYS393 = 13) = 0.218,

P (DYS391 = 10 | DYS393 = 13) = 0.592,

P (DYS392 = 6 | DYS393 = 13) = 0.014,

P (DYS437 = 14 | DYS393 = 13) = 0.265,

P (DYS438 = 11 | DYS393 = 13) = 0.218,

P (DYS439 = 12 | DYS393 = 13) = 0.367.

50 Chapter 3: Estimating Haplotype Frequencies

Now i2 = 5, DYS391, is chosen as an ancestor because P (DYS391 = 10 |
DYS393 = 13) = 0.592 has the highest probability. Now I = {7, 5}.

Next step is to calculate the probabilities of the remaining loci conditional
on DYS393 = 13 and DYS391 = 10, now based on 87 observations, i.e.

P (DYS19 = 13 | DYS393 = 13, DYS391 = 10) = 0.057,

P (DYS389I = 13 | DYS393 = 13, DYS391 = 10) = 0.414,

P (DYS389II = 29 | DYS393 = 13, DYS391 = 10) = 0.299,

P (DYS390 = 22 | DYS393 = 13, DYS391 = 10) = 0.368,

P (DYS392 = 6 | DYS393 = 13, DYS391 = 10) = 0.023,

P (DYS437 = 14 | DYS393 = 13, DYS391 = 10) = 0.264,

P (DYS438 = 11 | DYS393 = 13, DYS391 = 10) = 0.230,

P (DYS439 = 12 | DYS393 = 13, DYS391 = 10) = 0.322.

Now i3 = 2, DYS389I, is chosen as an ancestor because P (DYS389I = 13 |
DYS393 = 13, DYS391 = 10) = 0.414 has the highest probability, yielding
I = {7, 5, 2}.

Next step is to calculate the probabilities of the remaining loci conditional on
DYS393 = 13, DYS391 = 10, and DYS389I = 13, now based on 36 observations,
i.e.

P (DYS19 = 13 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.111,

P (DYS389II = 29 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.556,

P (DYS390 = 22 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.194,

P (DYS392 = 6 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.056,

P (DYS437 = 14 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.417,

P (DYS438 = 11 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.389,

P (DYS439 = 12 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.444.

Now i4 = 3, DYS389II, is chosen as an ancestor because P (DYS389II =
29 | DYS393 = 13, DYS391 = 10, DYS389I = 13) = 0.556 has the highest
probability, yielding I = {7, 5, 2, 3}.

Next step is to calculate the probabilities of the remaining loci conditional on
DYS393 = 13, DYS391 = 10, DYS389I = 13, and DYS389II = 29, now based

Section 3.4: Ancestral Awareness 51

on 20 observations, i.e.

P (DYS19 = 13 | I) = 0.050,

P (DYS390 = 22 | I) = 0.350,

P (DYS392 = 6 | I) = 0.100,

P (DYS437 = 14 | I) = 0.050,

P (DYS438 = 11 | I) = 0.100,

P (DYS439 = 12 | I) = 0.550.

Now i5 = 10, DYS439, is chosen as an ancestor because P (DYS439 = 12 |
DYS393 = 13, DYS391 = 10, DYS389I = 13, DYS389II = 29) = 0.550 has the
highest probability, yielding I = {7, 5, 2, 3, 10}.

Now 5 ancestors have been found, hence the algorithm stops searching for
any more ancestors. Define the event

C = {DYS393 = 13, DYS391 = 10, DYS389I = 13, DYS389II = 29, DYS439 = 12}.

If we believe that (3.3) is a good approximation, then by calculating

P (DYS19 = 13 | C) = 0.091,

P (DYS390 = 22 | C) = 0.091,

P (DYS392 = 6 | C) = 0.182,

P (DYS437 = 14 | C) = 0.091,

P (DYS438 = 11 | C) = 0.091,

52 Chapter 3: Estimating Haplotype Frequencies

based on the 11 observations that have the ancestral set, we get that

P (h) = P (DYS19 = 13, DYS390 = 22, DYS392 = 6, DYS437 = 14, DYS438 = 11 | C)

P (DYS393 = 13)

P (DYS391 = 10 | DYS393 = 13)

P (DYS389I = 13 | DYS393 = 13, DYS391 = 10)

P (DYS389II = 29 | DYS393 = 13, DYS391 = 10, DYS389I = 13)

P (DYS439 = 12 | DYS393 = 13, DYS391 = 10, DYS389I = 13, DYS389II = 29)

≈ P (DYS19 = 13 | C)

P (DYS390 = 22 | C)

P (DYS392 = 6 | C)

P (DYS437 = 14 | C)

P (DYS438 = 11 | C)

P (DYS393 = 13)

P (DYS391 = 10 | DYS393 = 13)

P (DYS389I = 13 | DYS393 = 13, DYS391 = 10)

P (DYS389II = 29 | DYS393 = 13, DYS391 = 10, DYS389I = 13)

P (DYS439 = 12 | DYS393 = 13, DYS391 = 10, DYS389I = 13, DYS389II = 29)

= 0.091 · 0.091 · 0.182 · 0.091 · 0.091

· 0.795

· 0.592

· 0.414

· 0.556

· 0.550

= 7.384 · 10−7

This is merely an example, and it is not clear whether 5 would be a clever
fixed size for the ancestral set, neither if the idea of finding an ancestral set
in this way gives good results. �

3.4.3 Threshold of the Proportion of Haplotypes Left
Given the Ancestral Set

Instead of stopping at a fixed size of the ancestral set, another approach could
be to stop when then ancestral set is such that less than a given proportion

Section 3.5: Classification 53

of the observations satisfies the constraints set by the ancestral set. This can
also be interpreted as to only continue as long as the ancestor is common.

A slightly modified version is to have a look-ahead to determine how many
observations would be left in the next iteration. This is however not further
pursued.

3.4.4 Mutation

Now because Li are ordered sets, we can implement a single-step mutation
model. When the probability of a haplotype has to be found, we find that as
described earlier. When this is done, we create a single-step mutation, such
that the allele on one locus is mutated. Then the probability is found for this
mutated haplotype. This is done for all possible mutations corresponding
to calculating the probabilities for all haplotypes with distance 1 (using the
L1/Manhattan norm). Then the haplotype is assigned the probability of the
(possible mutated) haplotype with the highest probability.

3.5 Classification

The process of linking a response variable Y with several explanatory vari-
ables, X1, X2, . . . , Xp is called regression, when the response is continuous,
and classification, when the response is discrete. Classification is also re-
ferred to as supervised learning (whereas clustering – which will be used in
section 3.7 – and methods such as principal component analysis and factor
analysis introduced in section 2.1 and section 2.2, respectively, are referred
to as unsupervised learning). These terms are used because often classifica-
tion is a two-step-process: first a training set with known categories (known
response variable) is used to train the model, and then the second step is to
classify the category (the response variable) for some additional data where
only the explanatory variables are known. Some classification techniques also
provide a probability model such that probabilities for each possible classifi-
cation category can be found; the observation is often classified as belonging
to the category with the greatest probability, but misclassification costs are
also sometimes taken into account.

Normally regression and classification is used when having one response vari-
able, Y , and several explanatory variables, X1, X2, . . . , Xp.

Thinking of the loci as the variables, we do not have this clear-cut setup.
This does not mean that we cannot use some of the available classification
and regression techniques, but we have to create a slightly different setup.

54 Chapter 3: Estimating Haplotype Frequencies

Because we are dealing with discrete values (alleles), from now on we focus
on classification and disregard regression as such, but it is worth mentioning
that some of the techniques to perform classification also has a regression
counterpart, e.g. the techniques presented later on in this section can also be
used as regression models if changed slightly.

Let L1, L2, . . . , Lr be the r different loci available in the haplotype. Now
since none of the loci is naturally neither a response nor an explanatory
variable, we can fix Li, say, as the response variable and then regard the rest,
L1, . . . , Li−1, Li+1, . . . , Lr as explanatory variables. How to make the choice
of which variable to regard as a response will be addressed later. We can
then perform classification using the rest as explanatory variables. We can
continue like this and choose a new response variable among the remaining
Li’s and use the rest as explanatory variables, but in this step, Li cannot be
used because it has already been classified.

It is a very important conceptual difference to use classification in this way
than in the traditional way!

This procedure can be formalised as follows. Choose a variable Li1 , say, to
use as a response according to some criteria. Then the model (using the
formula notation of R)

Li1 ∼
∑
k 6∈{i1}

Lk

is fitted. The next step is now to find a new response, and the rest – except
for the one already used in the first step – as explanatory variables. This is
repeated r − 1 times. In total the algorithm fits the models given by (using
the formula notation of R)

Li1 ∼
∑
k 6∈{i1}

Lk

Li2 ∼
∑

k 6∈{i1,i2}

Lk

...

Lir−2
∼

∑
k 6∈{i1,i2,...,ir−2}

Lk

Lir−1
∼

∑
k 6∈{i1,i2,...,ir−1}

Lk = Lir

After these r− 1 steps, the distribution for Lir is simply the marginal distri-
bution based on the observations.

Another approach is to find the models by searching forward, i.e. to find

Lir−1
∼ Lir

Section 3.5: Classification 55

first amongst the r(r − 1) possible choices of (ir−1, ir), and then to find

Lir−2 ∼ Lir−1 + Lir

afterwards. This approach is however not pursued any further.

One of the main issues is how to chose the ij ’s. A vital prior issue is how to
make the actual classification because the issue of choosing ij ’s depends on
this. The next sections will focus on these subjects.

When using this classification approach to estimate haplotype frequencies, we
are not only interested in the result of the classification, i.e. which category
the data belongs to. In order to estimate a haplotype frequency by calculating
probabilities, we need to get a classification distribution p1, p2, . . . , pm such
that the probability of the data belonging to category i is pi assuming m
different categories. To estimate a probability of a haplotype we simply take
the product of the classification probabilities under the models for the actual
values of the chosen response variables.

3.5.1 Classification Trees

This section is based on [Venables and Ripley, 1997, chapter 14].

A classification tree is a tree used to classify an observation based on the
explanatory variables. (Similarly, a regression tree is when then response
variable is continuous.) It is constructed in such a way that it only uses one
of the explanatory variables at a time and splits into children nodes depending
on the value of the explanatory variable.

First example 3.2 will show how classification trees work in practice, and then
the theory will be described afterwards.

Example 3.2 (Example of a classification tree). Using the data in [Hal-
lenberg et al., 2004], a classification tree for the model (using the formula
notation of R)

DYS390 ∼ .

where . is the rest of the loci, i.e. DYS19, DYS389I, DYS389II, DYS391, DYS392,
DYS393, DYS437, DYS438, and DYS439, can be found by the following R-
code (the exact R-code used is in the file classification-trees-example.R
which can be found in the supplementary material, section 1.5):�

1 library(rpart)
2 rpart(DYS390 ~ .)� �

provided that DYS390 is a factor (or else a regression tree will be created).
The output of the R-code is:

56 Chapter 3: Estimating Haplotype Frequencies

1) root 185 131 23 (0.0054 0.22 0.29 0.29 0.16 0.038)
2) DYS437>=15.5 62 25 22 (0.016 0.6 0.32 0.065 0 0) *
3) DYS437< 15.5 123 73 24 (0 0.024 0.28 0.41 0.24 0.057)

6) DYS392>=11.5 82 43 24 (0 0.037 0.37 0.48 0.085 0.037)
12) DYS437< 14.5 16 5 23 (0 0.12 0.69 0.12 0.062 0) *
13) DYS437>=14.5 66 29 24 (0 0.015 0.29 0.56 0.091 0.045) *

7) DYS392< 11.5 41 19 25 (0 0 0.098 0.27 0.54 0.098)
14) DYS438< 10.5 11 5 24 (0 0 0.36 0.55 0.091 0) *
15) DYS438>=10.5 30 9 25 (0 0 0 0.17 0.7 0.13) *

The numbers in parentheses are the probability of DYS390 taking the val-
ues 21, 22, . . . , 26, respectively (those are the possible values of DYS390 in
the data). Notice that no configuration of the explanatory variables re-
sults in the classification DYS390 = 26, but it does of course not mean that
P (DYS390 = 26 | the rest) = 0 for all configurations of the explanatory vari-
ables.

More details can be found by getting the summary of a rpart-object, that is�
1 library(rpart)
2 fit <− rpart(DYS390 ~ .)
3 summary(fit)� �

gives a verbose output. �

Theory

In general classification trees can by any type of trees, but in practice it is
easier to allow only binary trees because then comparing splits is avoided,
and multiway splits can be made by several binary splits. Taking a closer
look at example 3.2 one can also see that only binary splits are made. This
is because the rpart-package by [Therneau and Atkinson, 2009] in R is based
on [Breiman et al., 1984] which only allows binary splits.

Let i = 1, 2, . . . , I denote the nodes in the tree and k = 1, 2, . . . ,K the possi-
ble values of the response variable. Then at each node we have a probability
distribution {pik}Kk=1 and observed counts {nik}Kk=1. Each node has deviance
given by

Di = −2

K∑
k=1

nik log (pik)

and the total deviance in the tree is simply

D =

I∑
i=1

Di.

Section
3.5:C

lassification
57

If we are to split a node s into nodes t and u, this changes the probability distribution at s causing a reduction of deviance
giving by

Ds − (Dt +Du) = −2

K∑
k=1

nsk log (psk)−

(
−2

K∑
k=1

ntk log (ptk)− 2

K∑
k=1

nuk log (puk)

)

= 2

K∑
k=1

(ntk log (ptk) + nuk log (puk)− nsk log (psk))

= 2

K∑
k=1

(ntk log (ptk) + nuk log (puk)− (ntk + nuk) log (psk))

= 2

K∑
k=1

(ntk log (ptk) + nuk log (puk)− ntk log (psk)− nuk log (psk))

= 2

K∑
k=1

(
ntk log

(
ptk
psk

)
+ nuk log

(
puk
psk

))
.

58 Chapter 3: Estimating Haplotype Frequencies

The probabilities are estimated as usual by

p̂tk =
ntk
nt+

,

p̂uk =
nuk
nu+

,

p̂sk =
nsk
ns+

=
ntk + nuk
ns+

=
p̂tknt+ + p̂uknu+

ns+
.

Then the reduction in deviance is estimated to

2

K∑
k=1

(
ntk log

(
ntkns+
nsknt+

)
+ nuk log

(
nukns+
nsknu+

))
which can easily be rewritten to use expressions of the form n log n.

According to [Venables and Ripley, 1997, p. 416] and [Therneau and Atkin-
son, 2009] several other methods use a one-step look-ahead. So to choose the
next split, the algorithm calculates the reduction in deviance of all allowed
splits of all leaves and chooses the split causing the greatest reduction in
deviance and stop if none. This is a greedy approach that only finds a local
maximum and not the global one (if such exists). Instead of just looking at
the deviance, following approaches as AIC and BIC, a punishment

c log (number of leaves in model)

is actually added according to how complex a model is. The c-parameter can
be adjusted through the rpart-function.

One way to stop splitting is when the reduction in deviance is below some
threshold. According to [Breiman et al., 1984] this is however seldom a
successfully approach, and no great stopping rules were ever found. Instead,
the splitting is continued until all the leaves are either pure (all the cases in
the leaf is of the same class) or contains a (specified) small number of cases,
and then the tree is pruned afterwards. Refer to [Breiman et al., 1984] for
details on how to prune.

Modelling

The choice of the ij ’s (see to the introduction of this chapter for details) is the
main issue for now. One straightforward choice would be to use the model
with the minimal sum of all the deviances in the model. A punishment could
also be introduced. Another approach would be to use the model with the
minimal entropy

∑
i pik log (pik), but this is not pursued any further because

according to [Venables and Ripley, 1997, p. 418] this is equivalent to using
the total deviance of the tree; they only differ by a constant so in comparison
between models it does not change anything.

Section 3.5: Classification 59

3.5.2 Ordered Logistic Regression

First logistic regression will be described based on [Azzalini, 1996, p. 41,
p. 231], and afterwards the ordered counterpart will be described based on
[Agresti, 2002] and [Norušis, 2000].

Logistic Regression

Recall that the probability of an event occurring as opposed to it not occur-
ring if often modelled by logistic regression when the occurrence of the event
depends on some other explanatory variables.

First let

Ui ∼ Bin (mi, pi) for i = 1, 2, . . . , n

where mi is known and pi is unknown for all i.

Logistic regression can be stated in (at least) two ways. First a straightfor-
ward approach will be introduced, and afterward a formulation within the
GLM-framework (generalised linear models) will be made. GLM is imple-
mented in R via the glm-function.

The straightforward approach is to model the logit probability (also called
log-odds) as a linear function of the explanatory variables x1,i, x2,i, . . . , xk,i
such that

logit (pi) = log

(
pi

1− pi

)
= β0 + β1x1,i + · · ·+ βkxk,i.

This reduces to a linear regression with logit (pi) as the response instead of
just pi.

Solving for pi means that

p̂ =
1

1 + exp (− (β0 + β1x1 + · · ·+ βkxk))
(3.4)

=
exp (β0 + β1x1 + · · ·+ βkxk)

exp (β0 + β1x1 + · · ·+ βkxk) + 1

is an estimated probability based on the explanatory variables x1, x2, . . . , xk.

For the GLM-approach, consider

Yi =
Ui
mi

60 Chapter 3: Estimating Haplotype Frequencies

as the response, such that the probability mass function is

fYi (yi) = fUi (ui)

=

(
mi

ui

)
puii (1− pi)mi−ui

=

(
mi

miyi

)
pmiyii (1− pi)mi−miyi

= exp

(
log

((
mi

miyi

)
pmiyii (1− pi)mi−miyi

))
= exp

(
log

(
mi

miyi

)
+miyi log (pi) +mi (1− yi) log (1− pi)

)
= exp

(
mi (yi log (pi) + (1− yi) log (1− pi)) + log

(
mi

miyi

))

for yi = 0, 1
mi
, . . . , 1 equivalent to ui = 0, 1, . . . ,mi.

Now introduce

µi = E [Yi] = pi,

θi = logitµi = log

(
µi

1− µi

)
,

b (θ) = log (1 + exp θ) ,

ψi = 1,

wi = mi,

c(yi, ψi) = log

(
mi

miyi

)

Section 3.5: Classification 61

then

fYi (yi) = exp

(
mi (yi log (pi) + (1− yi) log (1− pi)) + log

(
mi

miyi

))
= exp (mi (yi log (pi) + log (1− pi)− yi log (1− pi)) + c(yi, ψi))

= exp (mi (yi log (µi) + log (1− µi)− yi log (1− µi)) + c(yi, ψi))

= exp (mi (yi (log (µi)− log (1− µi)) + log (1− µi)) + c(yi, ψi))

= exp

(
mi

(
yi log

(
µi

1− µi

)
+ log (1− µi)

)
+ c(yi, ψi)

)
= exp

(
mi

(
yi log

(
µi

1− µi

)
− log

(
1

1− µi

))
+ c(yi, ψi)

)
= exp

(
mi

(
yi log

(
µi

1− µi

)
− log

(
1− µi + µi

1− µi

))
+ c(yi, ψi)

)
= exp

(
mi

(
yi log

(
µi

1− µi

)
− log

(
1 +

µi
1− µi

))
+ c(yi, ψi)

)
= exp (mi (yiθi − log (1 + exp θi)) + c(yi, ψi))

= exp

(
wi
ψi

(yiθi − b (θi)) + c(yi, ψi)

)

which according to [Azzalini, 1996, p. 226] means that it is indeed a GLM,
for which very neat theory exist, e.g [Azzalini, 1996, chap. 6].

Notice that the inverse of θi = logitµi is given by (1 + exp (−θi))−1, just like
in (3.4).

Because θi = logitµi, the canonical link is the logit-function, which is why
logistic regression is also referred to as the logit model.

It has to be noted, that instead of the logit-link, other link functions l(p) give
rise to a regression model for probabilities, namely

l (pi) = β0 + β1x1,i + · · ·+ βkxk,i,

where table 3.3 shows some different link functions (logit is included for
completeness).

It is also possible to make a multinomial regression model if several outcomes
are possible. This is a generalisation of the logistic regression in the same
way that the multinomial distribution generalises the binomial distribution.
However, this will not be investigated further because it is not going to be
used.

62 Chapter 3: Estimating Haplotype Frequencies

Name Function Note
Logit l(p) = logit(p)
Probit l(p) = Φ−1(p) Φ−1 is the inverse cumula-

tive distribution function
for the standard Gaus-
sian distribution, i.e. with
mean zero and variance 1

Complementary
log-log

l(p) = log(− log(1− p))

Negative log-log l(p) = − log(− log(p))
Cauchit l(p) = tan(π(p− 0.5)) The link is the inverse

cumulative distribution
function for the Cauchy
distribution with location
parameter equal to 0 and
scale parameter equal to 1

Table 3.3: Different link functions to perform logistic regression. The table is similar to
the one in [Norušis, 2000, p. 84].

Odds Ratio Logistic Regression

A lot of data have an ordered response instead of just a nominal one. Gen-
erally, if using logistic (or multinomial) regression on data with ordinal re-
sponses, a lot of information are not used.

What to do instead is to make ordinal regression. One way to do this is to
use what [Agresti, 2002] refers to as a cumulative link model. Now this model
will be described based on [Agresti, 2002] and [Norušis, 2000].

The starting point is to define probabilities differently. In the logistic regres-
sion we modelled the probability of the event happening given the explanatory
variables. In this ordinal regression, we instead model the probability that
some event or the events ordered before it has happened, i.e. the cumulative
probability. This means that instead of model P (Yi = 1 | xi) like in the lo-
gistic regression case, we model P (Yi ≤ j | xi) for Y having levels 1, 2, . . . , J
given k for explanatory variables xi = (x1,i, x2,i, . . . , xk,i).

Section 3.5: Classification 63

In other words, we model the odds given by

Θ1 =
P (Y ≤ 1)

1− P (Y ≤ 1)
=
P (Y ≤ 1)

P (Y > 1)

Θ2 =
P (Y ≤ 2)

1− P (Y ≤ 2)
=
P (Y ≤ 2)

P (Y > 2)

...

ΘJ−1 =
P (Y ≤ J − 1)

1− P (Y ≤ J − 1)
=
P (Y ≤ J − 1)

P (Y > J − 1)

omitting the explanatory variables for easier reading.

This leads to the model

logitP (Y ≤ j | xi) = ζi,j − ηi

where ηi = x>i β = x1,iβ1 + · · · + xk,iβk is the linear predictor and ζi,j is
the threshold value (corresponding to the intercept). Notice that the linear
predictor ηi does not depend on the level being modelled.

Notice that this model gives the same results if adjacent levels are collapsed,
of course as long as the collapsed levels are not the ones involved in the
current odds modelling.

Again, different link functions than logit can be chosen.

In R, ordinal regression is implemented in the function polr from the MASS-
package. It supports all the different links given in table 3.3 except the
negative log-log. The function is based on the cumulative link model just
described, and refers to [Agresti, 2002] in the help file.

The links in table 3.3 are often used in different applications according to
[Norušis, 2000, p. 84]. They mention that

• Logit is usually used for evenly distributed categories

• Probit is usually used in analyses with explicit normally distributed
latent variable

• Complementary log-log is usually used when higher categories is more
probable

• Negative log-log is usually used when lower categories is more probable

• Cauchit is usually used on outcomes with many extreme values

64 Chapter 3: Estimating Haplotype Frequencies

Modelling

Now, if we go back to our haplotype setup with notation as introduced in
section 1.4, we can use this ordinal regression as a classification model.

Let X be some event, e.g. other loci take certain allelic values. Using ordinal
regressions, we can calculate

P (Li = ai | X) = P (Li ≤ ai | X)− P (Li ≤ ai − 1 | X)

where P (Li ≤ ai | X) = P (Li = ai | X) = 0 for ai 6∈ Li. The ordinal regres-
sion is used to model P (Li ≤ ai | X) and P (Li ≤ ai − 1 | X).

3.5.3 Support Vector Machines

This section is based on [Vapnik, 1998], [Cristianini and Shawe-Taylor, 2000],
and [Moguerza and Muñoz, 2006].

SVMs (support vector machines) will not be exhaustively covered. This is a
huge area that could easily serve as a subject for a thesis on its own. Instead
some history, interesting aspects of SVMs, and the theory they are build
upon will be described.

SVMs is a development in statistical machine learning theory built both upon
basic, yet important, concepts like Rosenblatt’s perceptron, refer to [Vapnik,
1998, p. 375] and [Cristianini and Shawe-Taylor, 2000, section 2.1.1], and
upon complicated and powerful theories, e.g. within optimization theory and
functional analysis. The first small steps of SVMs was according to [Vapnik,
1998, p. 711] taken in 1963 when a method corresponding to constructing
an optimal hyperplane in the separable case – which is described in [Vapnik,
1998, section 10.1] – was published (by Vapnik et al.). The optimal hyper-
plane is the hyperplane that has the greatest distance to all the categories.
The vectors closest to the optimal hyperplane are called the support vectors.
To obtain the theory of SVMs we have today, 30 years almost passed. To
quote:

To construct a hyperplane in high-dimensional feature space, we
use a general representation of the inner product in Hilbert spaces.
According to Mercer’s theorem, an inner product in Hilbert spaces
has an equivalent representation in kernel form. This fact was es-
tablished by Mercer in 1909 [...]. Since then the Mercer theorem,
the related theory of positive definite functions, and the theory of
reproducing kernels Hilbert spaces have become important topics
of research [...]. In particular, this theorem was used to prove the

Section 3.5: Classification 65

equivalence between the method of potential functions and Rosen-
blatt’s perceptron [...].
Therefore by the mid-1960s, two main elements of the SV ma-
chine (the expansion of the optimal hyperplane on support vectors
and the constructing hyperplane in feature space using Mercer ker-
nels) were known. It needed only one step to combine these two
elements. This step, however, was done almost 30 years later in
an article by Boser, Guyon, and Vapnik (1992).
After combining the SV expansion with kernel representation of
the inner product, the main idea of the SV machine was realized:
One could construct linear indicator functions in high-dimensional
space that had a low capacity. However, one could construct these
hyperplanes (or corresponding kernel representation in the input
space) only for the separable case.
The extension of the SV techniques for the non-separable cases
was obtained in an article by Cores and Vapnik (1995).

[Vapnik, 1998, p. 713]

SVMs have been shown to perform better than – or at least as good as
– domain specific methods in a lot of different applications, refer e.g. to
[Cristianini and Shawe-Taylor, 2000, p. 7] and [Vapnik, 1998, p. 567].

Before introducing what support vector machines (called SVMs) actually are,
a short introduction to learning machines is made.

Notation

Let X ⊆ Rn be the set where observations are from, and Y be the set of
categories. The aim is to find a classification function (also called classifier)
with domain X and co-domain Y such that observations can be classified
using this function.

If Y = {1, 2, . . . ,m} the classification is called m-class classification with
binary classification for m = 2 as a special case which sometimes use Y =
{−1, 1} (referred to as the negative and positive class, respectively). If Y ⊆ R
the classification is called regression, but – as mentioned earlier – this case
will not be treated further, it is just mentioned that this is also possible with
SVMs.

Normally a classifier is build based on a l-case training set

S = {(x1, y1) , (x2, y2) , . . . , (xl, yl)} ⊆ (X × Y)
l
,

i.e. where the correct categories for the l observations are provided.

66 Chapter 3: Estimating Haplotype Frequencies

When the classifier has been built, it can be used to classify cases x.

Learning Machines

Usually one restricts the set of classifiers to choose from. The classifiers left
in this restricted set are also referred to as hypotheses. Learning machines
using hypotheses forming linear combinations of the input variables are called
linear learning machines. This type of learning machines has the advantage
that developing an elaborate theory is actually possible.

As a simple example, first consider a simple binary classifier based on f :
X ⊆ Rn → R such that x ∈ X is classified to the positive class if f(x) ≥ 0
and to the negative class otherwise.

If f is a linear function, then f for x ∈ Rn can be written as

f(x) = 〈w · x〉+ b =

n∑
i=1

wixi + b (3.5)

where w ∈ Rn, the weight vector, and b ∈ R, the bias, are the parameters
that control the classification. These parameters must be learned from a
training set. One way to do that is with The Perceptron Algorithm, which
can be found in [Cristianini and Shawe-Taylor, 2000, Table 2.1, p. 12].

An important interpretation of this kind of linear classification is thatX ⊆ Rn
is split into two by the hyperplane defined by 〈w · x〉+ b = 0.

If we instead have m-classes, then a weight vector wj and a bias bj are
associated to each class for j = 1, 2, . . . ,m.

Feature Spaces and Dual Forms

First the term linear separable is introduced. Training data are said to be lin-
ear separable if there exists a hyperplane that correctly classifies the training
data. The definition can be extended to a linear δ-separable dataset, where
the distance from the hyperplane to the closest vector is less than δ.

Not all data are linear separable in their original form. Consider a short ex-
ample from [Andersen, 2009b]. The data in figure 3.9 is not linear separable.
It is not possible to create a hyperplane that separates the data from the
different classes.

If we transform the data from R2 to R3 with the transformation

ϕ (x1, x2) =
(
x1, x2, x

2
1 + x22

)

Section 3.5: Classification 67

Figure 3.9: Lineary non-separable data. The classes are marked with different colors.

we get figure 3.10. As we see it is now possible to separate the data with a
hyperplane.

So even if data are not linear separable in their original form, they can some-
times be mapped to a higher dimensional space by some transformation so
that the data indeed are linear separable so that the linear learning machines
can be used. This is very desirable because a lot can be proved in general
about linear learning machines. Mapping into a higher dimensional space is
a very important concept that is used in SVM. The higher dimensional space
is called the feature space. One of the questions that immediately pops up is
how to choose this feature space. This question is treated a little later.

Another question that pops up is how to deal with the curse of dimensionality
when one purposely introduces a higher dimensional space. Among other
things, higher dimensional spaces often make the computations heavier. But
it can actually be avoided making computations in the feature space.

The reason for this is that many linear learning machines can be expressed
in a so-called dual form. This kind of representation is very important in the
development of SVMs, because it is a form where data only appear through
entries in the Gram matrix, when the machine is learned and does not depend
on the dimension of the space. When classification has to be made (on a new
data), the only thing needed is the inner product of this new data with the
training set. So we just have to perform computations in the feature space
implicitly. In the primary representation it is often necessary to e.g. sum
over all dimensions of the feature space, and if a Hilbert space is used as the

68 Chapter 3: Estimating Haplotype Frequencies

Figure 3.10: Points in figure 3.9 mapped to R3 in order to make the data linear
separable.

feature space, it can be difficult to show convergence of the series.

As an example, the dual form of the learning machine in (3.5) gives by [Vap-
nik, 1998, p. 406] and [Cristianini and Shawe-Taylor, 2000, p. 18] the decision
function

f(z) =

〈
l∑
i=1

αiyixi, z

〉
+ b =

l∑
i=1

αiyi〈xi, z〉+ b

where l denotes the number of training cases and yi is the category of xi.

The fact that learning machines often can be expressed in dual form makes
feature spaces attractive.

Kernels

Now another important concept called kernels are described. Let X denote
the space the data lives in and let F be a feature space with an inner product.
A kernel is a function K such that for all x, z, it is true that

K (x, z) = 〈ϕ (x) , ϕ (z)〉

where 〈·, ·〉 denotes the inner product of F . The transformation ϕ is often
called the feature map. The key is to choose a kernel that can be evaluated
efficiently such that the dimension of the feature space does not affect the
computational complexity.

Section 3.5: Classification 69

Kernels can be created in different ways. There is even a way to characterise
if a function is a kernel. By [Cristianini and Shawe-Taylor, 2000, Proposition
3.5] we get that if X = {x1,x2, . . . ,xn} is finite and K(x, z) is symmetric –
such that K(x, z) = K(z,x) – then K is a kernel if and only if the matrix
(K (xi,xj))

n
i,j=1 is positive semi-definite.

This gives a complete characterisation for finite input spaces. If K(x, z)
is continuous and symmetric, then Mercer’s theorem (1909) from functional
analysis gives a complete characterisation of valid kernels. Mercer’s theorem
is stated in [Vapnik, 1998, p. 423] and [Cristianini and Shawe-Taylor, 2000,
p. 35]. Actually Mercer’s theorem ensures that K(x, z) can be expanded as
a absolutely and uniformly convergent series, which by using a dual form of
a linear learning machine can be rewritten as a finite sum over the test cases.

A kernel algebra is also available from [Cristianini and Shawe-Taylor, 2000,
p. 42], e.g. if K1 and K2 are kernels, then K1 +K2 is also a kernel.

There is no such thing as a free lunch. The use of high dimensional feature
spaces introduces the problem of over-fitting. The theory of avoiding this
is called generalisation theory, see e.g. [Cristianini and Shawe-Taylor, 2000,
chapter 4]. It describes how to make sound generalisations so that over-fitting
is avoided, and it is quite complicated.

Problems

As mentioned earlier, a problem with the SVM-method is how to choose
the kernel (and thereby a feature space) and kernel parameters. This is
also addressed in [Moguerza and Muñoz, 2006] as an open problem in which
research is being done. Some kernels are used in a lot of situations, e.g. the
Gaussian kernel. But it is also possible to incorporate prior knowledge and
create a kernel for a specific problem.

Final Remarks

A lot of the theory have not even been mentioned in this brief introduction to
SVMs. Among the ignored areas are optimisation, theory which plays a vital
role in learning in order to find the optimal hyperplanes. A lot of important
inequalities used come from optimisation theory. Other ignored areas are
regression and how to handle linear non-separable datasets.

70 Chapter 3: Estimating Haplotype Frequencies

3.6 Kernel Smoothing

To assign probability mass to unobserved haplotypes (in general called den-
sity estimation), one approach is to take some of the relative probability mass
and smooth to the haplotype neighbours according to some distribution. One
apparent way to do this, is to create a r-dimensional Gaussian distribution
around each haplotype, i.e. one for each haplotype with the haplotype as the
mean. Because it is a continuous density, it might give rise to problems.

Recall that we have n different haplotypes x1,x2, . . . ,xn ∈ H, the observa-
tions y1,y2, . . . ,yN+

∈ H where N+ =
∑n
i=1Ni and Ni denotes how many

times the i’th haplotype has been observed. Please refer to section 1.4 for an
elaborate explanation of the notation.

As a starting point for the development of the kernel smoothing model, as-
sign to each haplotype xi its relative frequency Ni

N+
. Now only observed

haplotypes have a positive probability. In order to assign probability mass to
unobserved haplotypes we want to smooth out some of the probability mass
all the observed haplotypes have. There are of course no right and simple way
to do this, but one approach is to put a scaled Gaussian density around each
haplotype. The density has to be scaled such that it only contains the same
probability mass as the relative frequency, Ni

N+
. By doing this, unobserved

haplotypes also get a positive probability.

In [Seber, 1984] the Gaussian kernel

K (z|xi, λ) =
(
2πλ2

)− r2 det (Σ)
− 1

2 exp

(
− 1

2λ2
(xi − z)Σ−1(xi − z)>

)
is proposed, where λ is called a smoothing parameter. A straightforward
choice for Σ is the empirical covariance matrix, say S. Now the smoothened
density for any given haplotype z ∈ H (observed as well as unobserved) is

g(z) =
1

N+

N+∑
j=1

K (z|yj , λ)︸ ︷︷ ︸
Summing over observations

=
1

N+

n∑
i=1

NiK (z|xi, λ)︸ ︷︷ ︸
Summing over haplotypes

,

i.e. we sum the contributions to the smoothened density from all the haplo-
types.

Now if ∑
z∈H

K (z|xi, λ) ≈ 1 (3.6)

Section 3.7: Model-Based Clustering 71

for all i = 1, 2, . . . , n, we have that

∑
z∈H

g(z) =
∑
z∈H

1

N+

n∑
i=1

NiK (z|xi, λ)

=
1

N+

n∑
i=1

Ni
∑
z∈H

K (z|xi, λ)

≈ 1

N+

n∑
i=1

Ni

= 1.

The assumption (3.6) is fulfilled if each density has a fairly large variance,
such that the evaluations over the grid H gives a good approximation of
the continuous density. Note that

∫
Rr g(z)dz = 1. If (3.6) is not fulfilled,

numerical integration could be used, but it would easily get too computational
inefficient to be practically possible. Another approach is to use a discrete
kernel.

In this forensic setup, we have some prior knowledge. One could ask the
reasonable question: is it fair to smooth out the probability mass from hap-
lotypes observed e.g. 9 times as much as for singletons? Instead of a given
singleton, we could just as well have observed another singleton, but when a
certain haplotype is observed quite often, then the relative frequency must be
close to the true probability. To use this prior knowledge, one could choose
to adjust the variance accordingly so that haplotypes observed a lot of times
get less variance. This can be incorporated in the kernel by adjusting the
variance, such that if Ni denotes the number of times haplotype number i is
observed, then the kernel

K (z|xi, Ni, λ) =

(
2π
λ2

Ni

)− r2
det (Σ)

− 1
2 exp

(
− 1

2 λ
2

Ni

(xi − z)Σ−1(xi − z)>

)

could be used.

3.7 Model-Based Clustering

Kernel smoothing was introduced in section 3.6. In order to calculate the
density at a point z, all the observations have to be used. In other words,
the complexity of calculating a density grows with the number of observed
haplotypes.

Instead of having a number of densities equal to the number of haplotypes,
clustering can be used to create G groups of observations so that each group

72 Chapter 3: Estimating Haplotype Frequencies

has a density associated. In this way, in order to calculate the density at a
point, only the G different densities have to be calculated instead of one at
each observation. This technique is by [Fraley and Raftery, 2006] referred to
as model-based clustering.

Define

h(z) =
G∑
g=1

pgfg(z)

for G clusters where pg is the a priori probability of an observation being in
the g’th cluster with

∑G
g=1 pg = 1 and fg is the density for the g’th cluster.

Similar to (3.6), if ∑
z∈H

fg(z) ≈ 1,

for all g = 1, 2, . . . , G, then

∑
z∈H

h(z) =
∑
z∈H

G∑
g=1

pgfg(z) =

G∑
g=1

pg
∑
z∈H

fg(z) ≈
G∑
g=1

pg = 1.

Actual implementation of this method both require a way to make the clus-
tering and a specification of the densities used. In this thesis the R-package
mclust by [Fraley and Raftery, 2006] has been used. Some of the available
models (different kinds of multivariate Gaussian densities) are listed in the
help-file mclustModelNames as:

• Spherical: equal volume / unequal volume

• Diagonal: equal volume and shape / varying volume, equal shape /
equal volume, varying shape / varying volume and shape

• Ellipsoidal: equal volume, shape, and orientation / equal volume and
equal shape / equal shape / varying volume, shape, and orientation

In a multivariate Gaussian distribution, the covariance matrix controls the
shape of the density. Using this, the theoretical background for the possible
models can be explained by eigenvalue decomposition of the covariance matrix
Σg for the g’th group. We can write

Σg = λgDgAgD
>
g ,

where Dg is an orthogonal matrix (such that DgD
>
g = I making D>g = D−1g)

of the normalised eigenvectors (this does not affect the corresponding eigen-
value), Ag is a diagonal matrix with elements proportional to the eigenvalues
(with proportionality factor λg). Because the orientation is determined by

Section 3.7: Model-Based Clustering 73

Dg, the shape is determined by Ag, and the volume of the corresponding ellip-
soid is determined by λg, mclust uses identifiers for identifying each model,
where the first character concerns the volume, the second the shape, and the
third the orientation. The models together with the identifiers, properties,
and assumed covariance decomposition forms can be found in table 3.4.

Type Volume Shape Orientation Identifier Covariance
Spherical Equal Equal EII λI
Spherical Variable Equal VII λgI
Diagonal Equal Equal EEI λA
Diagonal Variable Equal VEI λgA
Diagonal Equal Variable EVI λAg
Diagonal Variable Variable VVI λgAg
Ellipsoidal Equal Equal Equal EEE λDAD>

Ellipsoidal Equal Equal Variable EEV λDgAD
>
g

Ellipsoidal Variable Equal Variable VEV λgDgAD
>
g

Ellipsoidal Variable Variable Variable VVV λgDgAgD
>
g

Table 3.4: Multivariate models available in the R-package mclust

The number of clusters to use, G, and the model (which restrictions to put on
the density) is chosen via BIC by specifying a vector of possible choices. The
package also has a lot of other options, please refer to [Fraley and Raftery,
2006] for details.

Compared to kernel smoothing, described in section 3.6, model based clus-
tering has the advantage of being quicker computational-wise, but at the cost
of some flexibility.

In some sense, this method identifies subpopulations – although there is no
such thing as clearly distinct subpopulations; the limit is vague and overlap-
ping occurs – in the dataset.

CHAPTER 4

Methods for Comparison of the Models

In this chapter, different ways to compare the methods to estimate haplotype
frequencies will be presented.

One way is to calculate how much probability mass a model assigns to the
observations, and thereby says something about how much probability mass
we have not yet observed. This is motivated by [Robbins, 1968].

Another method is to compare the marginals for each locus, i.e. how the
marginal distribution under the model is compared to what has been ob-
served.

The results of the actual comparisons will be presented in chapter 5.

4.1 Observed Probability Mass

Often a reasonable assumption is that more haplotypes than the observed
exist. So how much of the probability mass have we observed? And how
much is still ”left“ to be observed? Besides being partly a philosophical
question, this is an interesting statistical question where the answer provides
very important information. The statistical setup is as follows and is based
on the one made by [Robbins, 1968].

75

76 Chapter 4: Methods for Comparison of the Models

Let E1, E2, . . . be the types in a population with corresponding probabilities
p1, p2, . . . of being sampled with

∑
i pi = 1. Now assume that we take N

independent observations from the population with replacement such that
Ei occurs xi times meaning that

∑
i xi = N . Define

ϕi =

{
1 if xi = 0,
0 if xi > 0.

Then the unobserved probability mass is

U =
∑
i

piϕi.

The number of singletons, doubletons etc., in this context are haplotypes
only observed once, twice etc., are defined to be

Mj =
∑
i

[xi = j]I

such thatM1 is singletons,M2 doubletons etc., and [A]I is the Iverson bracket
defined as

[A]I =

{
1 if A is true,
0 if A is false.

One interesting estimate of U is proposed by [Robbins, 1968], who motivates
the following estimate by supposing an additional observation is made. He
shows that for

V =
M1

N + 1
and W = U − V

then

E [W] = 0 and Var [W] <
1

N + 1
. (4.1)

Note that the probability of not observing Ei, because of independence, is
P (ϕi = 1) = (1− pi)N , hence

E [U] = E

[∑
i

piϕi

]
=
∑
i

piE [ϕi] =
∑
i

pi (1− pi)N . (4.2)

Under some regularity conditions, a limiting consistent estimate of Var [U]
is found in [Bickel and Yahav, 1986], such that

√
N (V −E [U])√

Nσ̂
→ N(0, 1)

Section 4.1: Observed Probability Mass 77

for

σ̂2 =
M1

N2
− (M1 − 2M2)

2

N3
.

This can be used to create an (1− α)100% approximate confidence interval.

Because it is a probability, it might be a bit artificial to assume normal-
ity. To acknowledge this fact, we can transform the probability via a logit-
transformation and construct a symmetric interval on the logit-scale. This
can be done by the δ-method.

First define
Y = h(V).

Then by the (informal) δ-method, we have that

E [Y] ≈ h (E [V]) +
h′′ (E [V])

2
Var [V]

Var [Y] ≈ (h′ (E [V]))
2
Var [V] .

And then an (1− α)100% approximate confidence interval for Y = h(V) is

E [Y]± zα
2
Var [Y] .

In our case, choose h = logit, such that

p = h−1 (x) = logit−1 (x) =
1

1 + exp (−x)
.

Then an (1− α)100% approximate confidence interval for V is

1

1 + exp
(
−E [Y]± zα

2
Var [Y]

)
where estimates of E [Y] and Var [Y] is obtained by using V and σ̂2.

78 Chapter 4: Methods for Comparison of the Models

4.1.1 Verification Through Simulation

To check this estimate, several simulations have been made using a script
conceptually equal to the R-script in listing 4.1, where all probabilities are
equal.�

1 # (Unknown) population size
2 Q <− 1000
3

4 # (Unknown) sampling probabilities
5 probs <− rep(1 / Q, Q)
6

7 # (Known) number of observations
8 N <− 100
9

10 # (Known) sample
11 observed <− sample.int(Q, N, replace = TRUE, prob = probs)
12 observed.unique <− unique(observed)
13 observed.counts <− table(observed)
14

15 # (Known) number of observed singletons
16 singletons <− which(observed.counts == 1)
17 M1 <− length(singletons)
18

19 # Robbins, 1968
20 estimated.unobserved.mass <− M1 / (N + 1)
21

22 # Because this is a simulation, we can calculate the true mass
23 true.unobserved.mass <− 1 - sum(probs[observed.unique])
24

25 deviation <− (estimated.unobserved.mass - true.unobserved.mass) /
sqrt(true.unobserved.mass)� �

Listing 4.1: R-script to simulate the estimate given in [Robbins, 1968]

The script in listing 4.1 only makes one estimate. In order to evaluate the
method, several estimates have to be simulated. The parameters are also
varied in order to see how robust the estimate is.

The measures used to evaluate the estimate are the deviation depicted in a
boxplot and sample quantiles compared to theoretical quantiles depicted in
a QQ-plot.

The deviation is calculated as showed in the last line of the R-code in listing
4.1.

To calculate the sample quantiles, the expected value of the estimate is be-
cause of (4.1) equal to (4.2). The empirical variance is used.

Now let Vk denote the estimated unobserved probability masses for k =
1, 2, . . . ,K where K is the number of simulations. Then by the Central

Section 4.1: Observed Probability Mass 79

Limit Theorem, we have that

V̂k −E [V]√
Var [V]

are the sample quantiles.

Four different probability schemes for probs = p1, p2, . . . , pQ, the (unknown)
sampling probabilities, are used (with subsequent normalization):

1. equal: All equal

2. uniform: Sampled from a uniform distribution

3. normal: Sampled from a normal distribution with mean 1000 and vari-
ance 102, and afterwards all values below 0 are changed to 10−5

4. 10-90: The first 10% are 10 times as likely as the last 90%, in this
setup this corresponds to the first 100 gets unnormalized ”probability“
10 and the last 900 gets unnormalized ”probability“ 1 – note that this
assignment actually makes sense because the probabilities are normal-
ized afterwards

Now the deviation depicted and sample quantiles are simulated as follows:

1. For each of the four probability schemes, then for Q = 1000, i.e. the
(unknown) true population size, the deviation is found 10, 000 times for
each N = N+ from 100 to 1000 by 100, i.e. the values 100, 200, . . . , 1000.

2. For each of the four probability schemes, then for Q = 10000, i.e. the
(unknown) true population size, the deviation is found 10, 000 times for
each N from 10 to 1000 by 100, i.e. the values 10, 110, . . . , 910.

This setup is implemented in the R-file unobserved-simulations.R in the
supplementary material (refer to section 1.5).

It turns out that all the probability schemes give very similar results – and
they are all impressive. Because of this, only plots for one probability scheme,
uniform, are included (the others are in the supplementary material and are
automatically generated when executing unobserved-simulations.R). The
boxplots can be seen in figure 4.1 and figure 4.2. The QQ-plot can be found
in figure 4.3.

In order to asses the confidence intervals found both with the asymptotic
variance estimate and the logit-transformed, the confidence interval coverage
have been simulated.

80 Chapter 4: Methods for Comparison of the Models

●

●
●●

●

●

●

●
●

●
●●
●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●
●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●
●

●

●●

●●

●

●
●

●

●●●

●

●

●●

●

●

●●

●

●●

●
●
●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●
●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●
●

●
●

●
●
●
●
●●

●

●●●

●

●
●●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●●●

●
●●

●

●
●

●

●

●

●

●

●●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

100 200 300 400 500 600 700 800 900 1000

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Deviation in unobserved mass for true population size 1000

Based on 10000 simulations for each N and uniform probabilities
N

de
vi

at
io

n
=

 (
es

tim
at

ed
 −

 tr
ue

)
/ s

qr
t(

tr
ue

)

−0.01 −0.00 −0.00 −0.00 0.00 0.00 −0.00 0.00 0.00 0.00

Figure 4.1: Deviation in estimate by [Robbins, 1968] for unobserved probability mass
for uniformly distributed unknown probabilities.

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●●●

●●

●

●

●

●●●●

●●

●●●

●●

●

●●

●

●●●

●

●●●●

●●

●●

●●●

●

●●●●●●

●

●●

●

●

●●

●●●●

●●●

●

●

●

●

●●●●●●●●●●

●

●●●

●●●

●●

●

●●●●

●●●●

●

●●

●

●●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●●
●
●●●●●●●●●
●

●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●●

●●●●●●●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●

●

●●●●●●●●●

●

●

●●●

●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●
●
●●●●

●●

●●●

●

●●●●●●

●

●●●●

●

●

●●●

●●●

●

●●●●●●●
●

●

●
●
●●●●
●

●●

●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●
●●●●●
●

●

●●

●

●

●●

●●●●●●
●●●

●

●

●

●

●●●●●●
●
●

●
●●●
●
●

●

●●●●
●

●●
●●●
●

●

●

●●●

●

●●●

●
●●

●

●

●
●
●

●

●
●●
●●
●●●●

●

●
●●●●●●
●●

●
●
●●
●

●

●●●

●●

●
●●

●

●
●

●●

●

●
●

●

●
●●●●
●

●

●
●

●●

●

●

●
●

●

●
●

●
●

●●●
●

●

●●

●

●

●

●
●

●
●

●

●●

●

●
●

●●

●●
●

●

●●

●
●●
●●●

●

●
●

●

●
●●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●●
●●

●
●

●
●●
●●

●
●●●

●

●
●
●

●

●●●

●

●●
●
●●●

●

●

●●
●

●

●

●

●
●

●

●

●
●●●

●●●

●●●●
●
●

●

●

●●
●

●

●●
●●

●●

●●
●●

●

●
●●

●
●

●

●●

●

●

●

●
●

●●
●
●
●●

●

●
●●●●
●

●

●
●●

●

●●

●

●●●●●

●●

●●●

●●

●●●●

●

●
●

●
●
●

●●

●

●
●

●

●●

●

●
●●

●

●
●
●●
●●●

●

●

●●

●
●
●
●●●

●
●

●

●

●●
●
●
●●●

●●

●
●●
●●
●
●●●
●

●

●●

●
●

●●●

●

●
●●

●

●
●●
●

●

●
●

●●
●

●
●

●●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●●

●●

●●●●●●
●
●●●●●

●●●

●

●
●

●

●●
●
●

●

●
●

●

●●

●
●
●●
●
●
●●

●

●
●

●

●●●
●●

●

●
●●
●●

●

●●

●
●

●

●●

●●

●
●

●●

●
●

●

●

●

●
●

●●

●

●

●
●●●

●

●
●●

●●●
●
●
●

●●

●

●

●

●
●

●●

●

●

●
●●●

●

●

●
●

●

●

●

● ●●●

●●

●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●●
●
●
●

●

●●

●

●

●
●

●

●

●●

●

●●●●

●

●●
●

●

●

●

●●

10 110 210 310 410 510 610 710 810 910

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

Deviation in unobserved mass for true population size 10000

Based on 10000 simulations for each N and uniform probabilities
N

de
vi

at
io

n
=

 (
es

tim
at

ed
 −

 tr
ue

)
/ s

qr
t(

tr
ue

)

−0.09

−0.01 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

Figure 4.2: Deviation in estimate by [Robbins, 1968] for unobserved probability mass
for uniformly distributed unknown probabilities.

Section 4.1: Observed Probability Mass 81

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−4 −2 0 2 4

−
4

−
2

0
2

4

QQ−plot for N = 600 observations with true population size 1000

Based on 10000 simulations and uniform probabilities
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.3: QQ-plot of estimate by [Robbins, 1968] for unobserved probability mass for
uniformly distributed unknown probabilities.

Using the same setup (with the same choices for Q, N’s etc.) as calculating the
deviance, then V and the corresponding confidence intervals are calculated at
each simulation. The coverage is how often the confidence interval contained
U .

Again, the results were quite similar for all the probability schemes. Because
of this, only plots for one probability scheme, uniform, are included (the
others are in the supplementary material and are automatically generated
when executing unobserved-simulations.R) in figure 4.4 and figure 4.5.
As seen, there is no need to use the δ-method because the estimate of the
coefficient of variation V

σ̂ is very small, hence the logit-transformation is
almost linear in the confidence interval. This is also why the two confidence
intervals are so similar.

It is quite amazing how well the estimate performs, and it is definitely a
measure worth using to either evaluate a haplotype frequency estimation
model or to fit parameters in such a model (e.g. the smoothing parameter in
kernel smoothing introduced in section 3.6).

82 Chapter 4: Methods for Comparison of the Models

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Confidence interval coverage for true population size Q = 1000

Based on 10000 simulations and uniform probabilities. Line at 0.95.
N

C
ov

er
ag

e

Symmetric standard confidence interval
logit−transformed confidence interval

100 200 300 400 500 600 700 800 900 1000

S 0.947 S 0.961 S 0.953 S 0.938 S 0.930 S 0.915 S 0.895 S 0.886 S 0.864 S 0.858

T 0.967 T 0.963 T 0.955 T 0.938 T 0.931 T 0.916 T 0.897 T 0.885 T 0.865 T 0.858

C 0.062 C 0.061 C 0.060 C 0.060 C 0.059 C 0.059 C 0.058 C 0.058 C 0.058 C 0.058

S 0.207 S 0.183 S 0.159 S 0.139 S 0.122 S 0.107 S 0.095 S 0.084 S 0.075 S 0.067

T 0.204 T 0.181 T 0.158 T 0.138 T 0.121 T 0.107 T 0.094 T 0.084 T 0.075 T 0.067

Figure 4.4: Confidence interval coverage for unobserved probability mass for uniformly
distributed unknown probabilities. The number at the top is the value of N. The one just
below with a preceding ”S“ is the coverage for the traditional confidence interval. The one
below that, with the preceding ”T“ is the coverage for the logit-transformed confidence
interval. The numbers in the bottom is the average width of the ”S“ and ”T“ intervals

and the ”C“ number is an estimate of the coefficient of variation σ̂
V

Section 4.1: Observed Probability Mass 83

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Confidence interval coverage for true population size Q = 10000

Based on 10000 simulations and uniform probabilities. Line at 0.95.
N

C
ov

er
ag

e

Symmetric standard confidence interval
logit−transformed confidence interval

10 110 210 310 410 510 610 710 810 910

S 0.008 S 0.548 S 0.949 S 0.952 S 0.964 S 0.971 S 0.973 S 0.975 S 0.975 S 0.975

T 0.000 T 0.502 T 0.926 T 0.970 T 0.977 T 0.977 T 0.974 T 0.978 T 0.977 T 0.975

C 0.002 C 0.015 C 0.019 C 0.019 C 0.020 C 0.020 C 0.020 C 0.020 C 0.020 C 0.020

S 0.007 S 0.055 S 0.071 S 0.073 S 0.073 S 0.072 S 0.071 S 0.070 S 0.069 S 0.068

T 0.005 T 0.056 T 0.073 T 0.074 T 0.073 T 0.072 T 0.071 T 0.070 T 0.069 T 0.068

Figure 4.5: Confidence interval coverage for unobserved probability mass for uniformly
distributed unknown probabilities. Please refer to the caption of figure 4.4 for further

explanation of the plot.

84 Chapter 4: Methods for Comparison of the Models

4.2 Marginals

As stated in the introduction to this chapter, it is important that a model
predicts marginals close to the observed. In this thesis the focus will only
be on the single and pairwise marginals, because the marginals of higher
dimension contains a lot of zeros.

A deviance measure to assess how close the predicted and observed marginals
are, has been calculated.

4.2.1 Deviance

The deviance can be used to measure the difference between the table of
observed counts and predicted counts under some modelM0, say. This can
be used both with one-way-tables (single locus marginal distributions), two-
way-tables (pairwise loci marginal distributions) etc.

Because only the single and pairwise marginals will be checked, the focus will
be on these, but the idea generalizes quite naturally.

Let {u}ij be the two-way table with the observations, {p̃}ij the table of
predicted probabilities under a model M0, {p̂}ij the relative probabilities
such that p̂ij =

uij
u++

.

Assume for now that ∑
i,j

p̃ij = 1. (4.3)

For the pairwise marginal tables, the deviance difference is

d = −2 log

(
L ({p̃}ij)
L ({p̂}ij)

)

where

L ({p}ij) =
∏
i,j

p
uij
ij

is proportional to the likelihood with the constant u++!∏
i,j uij

, see e.g. [Edwards,
2000, p. 15], cancelled out in the fraction, hence unnecessary to include. With

Section 4.2: Marginals 85

this, the deviance difference can be rewritten as

d = −2 log

(∏
i,j p̃

uij
ij∏

i,j p̂
uij
ij

)

= −2 log

∏
i,j

(
p̃ij
p̂ij

)uij
= −2

∑
i,j

uij log

(
p̃ij
p̂ij

)
.

IfM0 is true, then a reasonable approximation is that

d ∼ χ2
ν

where the degrees of freedom ν = rc − 1 when the deviance is based on a
two-way-table with r rows and c columns, i.e. the degrees of freedom equals
the number of cells minus one. If the deviances is based on a one-way-table
with r cells, then ν = r − 1. If our assumption in (4.3) is not fulfilled, one
can use ν = rc and ν = r, respectively.

When the deviance is calculated for one table, then we can check if the model
M0 can explain the data. That is, if

d− ν√
2ν

< 1.96,

by the central limit theorem, then we have no reason to think thatM0 cannot
explain the data – corresponding to a one-side hypothesis disregarding over-
fitting, i.e. if d−ν√

2ν
< 0.

To compare different models M1
0,M2

0, . . . ,M
Q
0 , we can sum the deviances

for the one-way-tables and compare them. Equally with the two-way tables.
The one with the smallest sum of deviance can then be chosen as the best
model. It would of course be preferable if it is the same model having the
lowest sum of deviance for both the one- and two-way tables. This approach
is in no sense standard: assuming M0 is true, then if the deviances for the
different tables were independent, the sum of the deviances would also be
χ2-distributed with the sum of the degrees of freedom as degrees of freedom,
but the deviances are in no way independent. This means that we do not
know anything about how the sum of deviances is distributed, but as a naive
and relative comparison between the models, the approach seems reasonable.

As mentioned earlier, the idea generalizes quite naturally for tables of higher
dimension. Also, if the pairwise marginals are acceptable, then the single
marginals are acceptable, too.

86 Chapter 4: Methods for Comparison of the Models

4.2.2 How to Find Marginals

In section 4.2.1 deviance is introduced as a measure of how well marginals
under a model fits the observed marginals.

Now, one could ask how the predicted marginals under a model M0 are
found? A very reasonable question, indeed.

We could of course base the marginals on the observed haplotypes only. But
the non-trivial case, where the sum of the probabilities for the observed hap-
lotypes under a model does not add up to one, creates some quite interesting
problems. When this sum does not add up to one, the marginal tables (both
single marginals, pairwise marginals etc.) does not have the same count sum
(count sum is found by multiplying the cell probabilities with the number
of observations, N+, and adding all these counts together) as the observed
tables.

So how should this problem be dealt with? Should we normalise the proba-
bilities? This would solve the technical problems at hand, but the rhetorical
question would of course be: Do other problems than the technical ones
exist? Indeed they do. Would it not be more correct to actually get the
marginals based on all possible haplotypes? This would solve the technical
problems about whether to normalise or not, but it also introduces a signifi-
cant practical problem of computational power because the set of all possible
haplotypes is huge. Before addressing it, let us examine how marginals are
actually found.

Recall the notation introduced in section 1.4, e.g. a haplotype consisting of
loci L1, L2, . . . , Lr each taking values in L1,L2, . . . ,Lr, respectively. Then
the set of all possible haplotypes is H = L1 ×L2 × · · · × Lr where × denotes
the Cartesian product.

Single marginals (one-way-tables) for a locus Li is then P (Li = a) for all
a ∈ Li, and pairwise marginals is P (Li = a, Lj = b) for all a ∈ Li and
b ∈ Lj . The marginals can be found in different ways. The next sections will
give examples of this.

Only classification models as the ones introduced in section 3.5 will be dealt
with.

Exact

In this section it is shown how the marginals can be found using classification
models as the ones introduced in section 3.5.

Recall that the concept of considering one locus at a time as the response

Section 4.2: Marginals 87

variable gave the following algorithm that fits the models given by (using the
formula notation of R)

Li1 ∼
∑
k 6∈{i1}

Lk

Li2 ∼
∑

k 6∈{i1,i2}

Lk

...

Lir−2
∼

∑
k 6∈{i1,i2,...,ir−2}

Lk

Lir−1
∼

∑
k 6∈{i1,i2,...,ir−1}

Lk = Lir

After these r− 1 steps, the distribution for Lir is simply the marginal distri-
bution based on the observations.

This means, that the single marginals under a modelM is found by exploiting
that P (Lir = air) for all air ∈ Lir is simply the marginal distribution based
on the observations.

88
C
hapter

4:M
ethods

for
C
om

parison
of

the
M
odels

The next step for all air−1
∈ Lir−1

is to find

P
(
Lir−1 = air−1

)
=

∑
air∈Lir

P
(
Lir−1 = air−1 | Lir = air

)
P (Lir = air)

where P
(
Lir−1

= air−1
| Lir = air

)
is provided by our classification model and P (Lir = air) is found in the first step.

Then for all air−2
∈ Lir−2

we have that

P
(
Lir−2

= air−2

)
=

∑
air−1

∈Lir−1

P
(
Lir−2

= air−2
| Lir−1

= air−1

)
P
(
Lir−1

= air−1

)
=
∑
air−1

∑
air

P
(
Lir−2

= air−2
| Lir−1

= air−1
, Lir = air

)
P
(
Lir−1

= air−1
, Lir = air

)
=
∑
air−1

∑
air

P
(
Lir−2

= air−2
| Lir−1

= air−1
, Lir = air

)
P
(
Lir−1

= air−1
| Lir = air

)
P (Lir = air)

where P
(
Lir−2 = air−2 | Lir−1 = air−1 , Lir = air

)
and P

(
Lir−1 = air−1 | Lir = air

)
is provided by the corresponding two clas-

sification models and P (Lir = air) is found in the first step.

Section 4.2: Marginals 89

We continue like this all the way until the last step, where we for all ai1 ∈ Li1
have that

P (Li1 = ai1) =
∑
ai2

· · ·
∑
air−1

∑
air

P (Li1 = ai1 | Li2 = ai2 , . . . , Lir = air)×

P (Li2 = ai2 | Li3 = ai3 , . . . , Lir = air)×
P (Li3 = ai3 | Li4 = ai4 , . . . , Lir = air)×
...

P
(
Lir−1

= air−1
| Lir = air

)
×

P (Lir = air)

where all the probabilities are provided by the classification models.

As can be seen this is practically impossible for even small r.

Simulation

Assuming that we have a modelM, then sample a number of haplotypes, K,
say. Then the marginals are the relative frequencies of these K samples.

A haplotype is sampled as follows:

1. Sample an air according to P (Lir = air), the marginal distribution of
Lir based on the observations.

2. Sample an air−1 according to P (Lir−1 = air−1 | Lir = air)

3. Sample an air−2
according to P (Lir−2

= air−2
| Lir−1

= air−1
, Lir =

air)

4. Continue doing this for air−3
, . . . , ai1

Instead of finding the marginals by the exact method, this simulation ap-
proach can be used as an approximation.

4.2.3 Normalised Marginal Approximation

Please notice that it is not possible to simulate marginals for all methods
described in this thesis. The method described in section 3.2 is not build
upon a statistical model and there is no straightforward way to simulate
marginals under this model. What can be done instead, is to normalise the
probabilities and use those instead. Whether that is a feasible approach or
not, will be assessed in section 5.3.4.

90 Chapter 4: Methods for Comparison of the Models

For h = (h1, h2, . . . , hr) ∈ H the single marginals are

P (Li = j) =
∑

h∈H:hi=j

P (h) .

For the normalised estimated k single marginals P (Li = j), we then calculate
the estimated counts

Fij = N+P (Li = j) for j = 1, 2, . . . , k

which can be compared to the observed counts by using Pearson’s χ2-statistic
given by

k∑
j=1

(Fij −Ni)2

Fij
∼ χ2

k−1.

The validity of this approach is investigated by using it for the classification
models and comparing with the simulated results. This is done later on in
section 5.3.

4.2.4 Bootstrapping

Deviance was introduced in section 4.2.1. To calculate a deviance, all the
observations were used. One can ask the relevant question: How do we
estimate the standard deviation of the calculated deviance? One way of
doing this is to use bootstrapping.

First assume that we have a test statistic based on the entire dataset. This
could be the deviance.

Bootstrapping is a method to obtain several samples from only one sample
as described in [Venables and Ripley, 1997, p. 186]. Assume that our sam-
ple consists of N+ observations, then bootstrapping is done by drawing N+

observations with replacement from the sample. Now the test statistic can
be calculated for these N+ observations. Repeating this a number of times
yields a sample of test statistics, such that the standard deviation can be
estimated.

This gives us a way of estimating how precise the calculated deviance is.

A way to validate a model is called in-bag training. First obtain a bootstrap-
ping sample. Because bootstrapping has been used, some of the original
observations have not been used – these are placed in a bag. Now the model
is build based on a bootstrapping sample. The observations in the bag is now
used to estimate a prediction error.

Section 4.3: Deviance Comparing Predicted with Relative Frequencies 91

Bootstrapping requires a lot of observations, so the technique will not be
used, although it might be good to keep in mind for larger datasets.

4.3 Deviance Comparing Predicted with Rel-
ative Frequencies

To evaluate how well a model performs, a Brier score can be calculated.
In [Andersen, 2009a] a short introduction to the Brier score is given. It is
simply a sum of squared deviations between the relative frequencies and the
predicted probabilities.

As introduced in section 1.4, let N+ be the number of observations, n the
number of haplotypes, Ni the number of times the i’th haplotype has been
observed, and pi the probability of the i’th haplotype estimated under a
model.

Then the Brier score is∑
all haplotypes

(
Ni
N+
− pi

)2

=
∑

observed

(
Ni
N+
− pi

)2

+
∑

unobserved

p2i .

We can possibly estimate
∑

unobserved p
2
i using doubletons as done in section

4.1. The problem is to estimate the expected value and the variance in order
to standardise the score to be standard normal distributed.

Instead the deviance difference between the predicted probabilities and the
observed is used. Similar to the description in section 4.2, we have

L (N ,p) ∝
∏

all haplotypes

pNii(
Ni
N+

)Ni =
∏

all haplotypes

pNii(
Ni
N+

)Ni =
∏

all haplotypes

(
pi
Ni
N+

)Ni

and then the deviance is

−2 log (L (N ,p)) = −2
∑

all haplotypes

Ni log

(
pi
Ni
N+

)
(4.4)

= −2
∑

observed

Ni log

(
pi
Ni
N+

)

following a χ2-distribution. Note that log 1 = 0 because

p0i(
0
N

)0 = 1

92 Chapter 4: Methods for Comparison of the Models

such that the terms with the unobserved haplotypes vanish.

This means that we actually only have to sum over the predicted probabilities
for the observed haplotypes.

4.4 Multinomial Distribution

Assume that
H = {x1,x2, . . . ,xn}︸ ︷︷ ︸

Observed

∪{h1,h2, . . . ,hq}︸ ︷︷ ︸
Unobserved

with {x1,x2, . . . ,xn} ∩ {h1,h2, . . . ,hq} = ∅. This partitioning of H will
become clear in a moment. As described in section 1.4, xi has been observed
Ni times and N+ =

∑n
j=1Ni. Notice that hj has been observed 0 times for

all j = 1, 2, . . . , q.

Now under a model M calculate px1 = PM (x1) , . . . , pxn = PM (xn) and
ph1 = PM (h1) , . . . , phq = PM (hq). Let ẋi be a random variable of the
number of times xi is observed, and similar ḣj the number of times hj is
observed. Then assuming that(

ẋ1, . . . , ẋn, ḣ1, . . . , ḣq

)
∼ Multinomial (N+, (px1, . . . , pxn, ph1, . . . , phq))

we have by [Ratnaparkhi, 2006] that the probability of the observed under
the modelM is

P
(
∩ni=1{ẋi = Ni},∩qj=1{ḣj = 0}

)
=

N+!∏n
i=1Ni!

∏q
j=1 0!

n∏
i=1

pNixi

q∏
j=1

p0hj

=
N+!∏n
i=1Ni!

n∏
i=1

pNixi .

This can be used for comparing models but referring to (4.4), we can see that
these two methods are equivalent for relative comparisons.

CHAPTER 5

Results for Comparison of the Models

In this chapter the models for estimating Y-STR haplotype frequencies will
be evaluated using the methods introduced in chapter 4.

The main focus has been on the classification models, where the predicted
marginals under the model have been found using simulation. Because of this,
the results for this class of models are the ones presented first. The other
methods have mainly been assessed by the unobserved probability mass and
the deviance between the predicted probabilities and relative frequencies as
described in section 4.3.

Before describing the actual results, a section about implementation notes
will come.

5.1 Implementation

This section gives some comments on different aspects of implementing the
models described earlier. It is in general highly recommended to refer to the
actual implementations in the supplementary material found as described in
section 1.5.

All implementations are made such that it is easy to add extra datasets be-

93

94 Chapter 5: Results for Comparison of the Models

sides berlin , dane , and somali as used here. Basically, two files are needed:
one of the dataset in the compact format and one in the extended format.
They are of course equivalent (and the conversion is made automatically by
logic in the file include-transform-data.R), but it is made in this way to
avoid computing either format every time.

When the data exists in the correct formats (refer to the datasets R/data/*.csv
in the supplementary material, section 1.5, for the exact format), the file
include-datasets.R can be changed to include that particular dataset as
seen in listing 5.1. The vector dataset.names solely specifies the datasets
to be analysed, i.e. a dataset is analysed if and only if it is included in the
vector dataset.names. This is achieved by using a loop for each analysis as
exemplified in listing 5.2.�

1 dataset.names <− c("berlin", "dane", "somali")� �
Listing 5.1: The names of the datasets to include in the analyses.�

1 for (i in 1:length(dataset.names)) {
2 dataset.name <− dataset.names[i]
3

4 # Load dataset with logic from include-dataset-logic.R, basically:
5 dataset.compact <− get.compact.dataset(dataset.name)
6

7 # Perform analysis
8 }� �

Listing 5.2: Automatically running analyses on the specified datasets.

5.1.1 Classification Models

The classification models described in section 3.5 all have the same form, and
in R this can be exploited by making a generic classification implementation,
where the specific function, e.g. rpart, ksvm, or polr, is just an argument.

Such a generic framework has been implemented. Specification of a classifica-
tion model is done by specifying a modelling, score, and prediction function
in include-classification-model-specification.R. In listing 5.3 this is
done for the classification trees, and it is also shown how to choose which
models to actually use, such that it is possible to leave some out for some
reason.

The loop in listing 5.2 for classification methods is then expanded to the one
seen on listing 5.4.

Section 5.1: Implementation 95

�
1 rpart.classification.model.function <− function(formula, dataset) {
2 return(rpart(formula, data=dataset))
3 }
4

5 generic.classification.model.score.iterator <− function(fit.list,
score.function) {

6 list.length <− length(fit.list)
7 scores <− numeric(list.length)
8

9 for (i in 1:list.length) {
10 fit <− fit.list[[i]]
11 scores[i] <− score.function(fit)
12 }
13

14 return(scores)
15 }
16

17 rpart.classification.model.score <− function(fit.list) {
18 return(generic.classification.model.score.iterator(fit.list,
19 function(fit) {
20 # Also checks for NULL
21 if (!is(fit, "rpart")) stop("fit is not a rpart object")
22

23 leaves <− which(fit$frame$var == "<leaf>")
24 devar <− fit$frame$dev[leaves]
25 return(sum(devar))
26 }))
27 }
28

29 rpart.classification.model.prediction <− function(fit, dataset) {
30 if (!is(fit, "rpart")) stop("fit is not a rpart object")
31 return(predict(fit, dataset))
32 }
33

34 classification.model.names <− c("rpart")
35 classification.model.functions <− c(rpart.classification.model.function)
36 classification.model.scores <− c(rpart.classification.model.score)
37 classification.model.predictions <− c(rpart.classification.model.prediction)
38

39 # This controls which models to use, similar to the dataset.names-vector
40 classification.model.use <− c(1)� �

Listing 5.3: Specification of classification models.

96 Chapter 5: Results for Comparison of the Models

�
1 for (i in 1:length(dataset.names)) {
2 dataset.name <− dataset.names[i]
3

4 # Load dataset with logic from include-dataset-logic.R, basically:
5 dataset.compact <− get.compact.dataset(dataset.name)
6

7 for (j in 1:length(classification.model.use)) {
8 m <− classification.model.use[j]
9 classification.model.name <− classification.model.names[m]

10 classification.model.function <− classification.model.functions[[m]]
11 classification.model.score <− classification.model.scores[[m]]
12 classification.model.prediction <− classification.model.predictions[[m]]
13

14 # Perform analysis
15 }
16 }� �

Listing 5.4: Automatically running classification analyses on the specified datasets.

Based on [Karatzoglou et al., 2006], the primary choice of packages for sup-
port vector machines was kernlab. Because of some problems (of technical
nature, sometimes it could fit and other times not, which was reported to the
maintainer of the package), the package e1071 was used instead.

The tuning functionality from the e1071-library has been used to specify
some additional models. It tunes hyperparameters by using a grid of possible
parameter values, e.g. the cp-parameter (complexity) in rpart. The different
classification models used can be seen in table 5.1 and for exact specification,
please refer to the file include-classification-model-specification.R.

5.1.2 Kernel Smoothing

Kernel smoothing is described in section 3.6. Here a smoothing parameter λ is
mentioned several times, but it is not mentioned how to choose an appropriate
one. The way λ is found, is to find one such that the model covers the
probability predicted by [Robbins, 1968] as described in section 4.1. This
is done by setting two values of λ, one causing covering too much and one
causing covering too little, and then use the uniroot-function in R to find
a λ between the two initial values causing coverage sufficiently close to the
estimated.

5.2 Properties of the Datasets

In table 5.2 the properties associated to unobserved probability mass dis-
cussed in section 4.1 are shown.

Section 5.3: Classification Models 97

rpart Classification trees as specified in listing 5.3.
rpart-tun-dev As rpart, but with tuning each model to find

the best cp-value among 0.0001, 0.001, 0.01.
svm Support vector machine functionality from

the e1071-library using C-classification,
with radial kernel using cost = 10, gamma
= 0.1. The score is ‖ap − ao‖, where ‖ · ‖
denotes a norm, ap is the predicted alleles for
locus serving as the response, and ao is the
observed alleles.

svm-tun-perf As svm, but with tuning each model
to find the best gamma from the values
10−6, 10−5, 10−4, 10−3 and the best cost
from the values 10, 100, and using the
performance-value (classification error) from
the tuning as score.

svm-tun-n As svm-tun-perf, but using the norm score
as svm.

polr Ordered logistic regression using polr from
the MASS-library with the logistic link.

lrm Ordered logistic regression using lrm from the
Design-library.

Table 5.1: The classification models described. For exact specification, please refer to
the file include-classification-model-specification.R in the supplementary material.

5.3 Classification Models

The classification models approach was introduced in section 3.5. Refer to
table 5.1 for explanation of the different models.

5.3.1 Unobserved Probability Mass

The amount of unobserved probability mass (refer to section 4.1 for details)
predicted by the different classification methods can be seen in table 5.3.

5.3.2 Single Marginals

These results are based on the method described in section 4.2.

By sampling 100,000 haplotypes under each of the classification models, the
marginals predicted by a model can be estimated as described in section 4.2.2.

98 Chapter 5: Results for Comparison of the Models

Estimate CV 95% confidence interval
berlin 0.364 0.061 [0.321; 0.408]
dane 0.602 0.078 [0.510; 0.694]
somali 0.277 0.120 [0.212; 0.342]

Table 5.2: Table of estimates of unobserved probability mass. The coefficient of
variation, CV, is calculated using estimates. The confidence interval is approximate and

found using an asymptotic normality. Please refer to section 4.1 for further details.

berlin dane somali
Estimate 0.364 0.602 0.277
CI [0.321; 0.408] [0.510; 0.694] [0.212; 0.342]
rpart 0.478 0.71 0.42
rpart-tun-dev 0.451 0.71 0.42
svm 0.526 0.792 0.43
svm-tun-perf 0.633 0.873 0.578
svm-tun-n 0.617 0.847 0.513
polr 0.639 0.886
lrm 0.637 0.887

Table 5.3: Unobserved probabilities using classification methods. The missing values
indicate that the method did not succeed for some reason.

The deviances of such a simulation can be seen in table 5.6 for berlin , and
the corresponding p-values can be seen in table 5.4. The deviances for dane
can be seen in table 5.5 and for somali in table 5.7. These tables and the
p-values for all three datasets can be found in the supplementary material in
the file results-classification.pdf.

Section
5.3:C

lassification
M
odels

99

rpart rpart-tun-dev svm svm-tun-perf svm-tun-n polr lrm
DYS19 1.000 1.000 2.192e-05 0.000 0.934 0.545
DYS389I 0.909 0.968 0.000 0.000e+00 0.000 0.797 0.752
DYS389II 1.000 1.000 0.000 0.000e+00 0.000 1.000 1.000
DYS390 0.000 0.998
DYS391 0.984 0.999 0.000 0.000e+00 0.000 0.995 0.995
DYS392 1.000 1.000 0.000 0.000e+00 0.000 1.000 1.000
DYS393 1.000 1.000 0.000 0.000e+00 0.000 1.000

Table 5.4: P-values for each loci for berlin dataset for observed single marginals vs. simulated single marginals for the classification method
specified in each row. The missing value is for the locus where the observed marginal distribution has been used.

100
C
hapter

5:R
esults

for
C
om

parison
of

the
M
odels

rpart rpart-tun-dev svm svm-tun-perf svm-tun-n polr lrm
DYS19 0.346 0.298 45.324 2.842 1.719 0.930 0.276
DYS389I 0.001 0.011 429.444 324.124 265.818 0.050 0.111
DYS389II 0.003 0.016 361.196 361.559 0.052
DYS390 99.076 112.374 0.206 1.180
DYS391 0.067 0.059 343.926 368.196 442.527 0.625 0.006
DYS392 0.362 0.280 427.035 452.997 0.119 0.704
DYS393 0.053 0.050 386.076 488.271 573.695 0.131
DYS437 0.413 0.438 18.896 5.096 9.121 0.695 1.061
DYS438 0.186 0.198 369.918 289.744 369.075 1.844 6.609
DYS439 0.017 0.059 244.164 232.435 236.350 0.024 0.028

Table 5.5: Deviances for each loci for dane dataset for observed single marginals vs. simulated single marginals for the classification method
specified in each row. The missing value is for the locus where the observed marginal distribution has been used.

rpart rpart-tun-dev svm svm-tun-perf svm-tun-n polr lrm
DYS19 0.004 0.034 29.124 990.758 1.306 4.031
DYS389I 0.545 0.255 125.077 2441.356 1697.606 1.016 1.206
DYS389II 0.049 0.025 1845.990 1861.456 1192.436 0.471 0.215
DYS390 800.304 0.275
DYS391 0.158 0.015 2321.402 1752.595 3779.290 0.073 0.068
DYS392 0.431 0.233 6184.992 6477.672 5626.380 0.114 0.048
DYS393 0.048 0.088 2156.867 2530.527 2280.330 0.135

Table 5.6: Deviances for each loci for berlin dataset for observed single marginals vs. simulated single marginals for the classification method
specified in each row. The missing value is for the locus where the observed marginal distribution has been used.

Section
5.3:C

lassification
M
odels

101

rpart rpart-tun-dev svm svm-tun-perf svm-tun-n polr lrm
DYS19 3.522e-02 0.072 71.795
DYS389I 1.424e-02 0.004 1265.321 1276.953 1129.937
DYS389II 806.328 775.947
DYS390 3.447e-03 0.014 600.665 351.185 1225.655
DYS391 1.811e-01 0.251 1046.742 951.723 839.583
DYS392 1.188e-02 0.033 44.416 86.231 70.017
DYS393 6.674e-03 0.004 977.487 966.367 510.341
DYS437 5.596e-04 0.003 1.753 13.765 22.098
DYS438 1.417e-02 0.036 671.610 1086.726 552.016
DYS439 4.272e-04 0.007 249.942 380.558 347.514

Table 5.7: Deviances for each loci for somali dataset for observed single marginals vs. simulated single marginals for the classification method
specified in each row. The missing value is for the locus where the observed marginal distribution has been used.

102 Chapter 5: Results for Comparison of the Models

berlin dane somali
rpart 1.236 1.449 0.268
rpart-tun-dev 0.650 1.408 0.425
svm 13434.632 2363.861 5664.264
svm-tun-perf 15092.731 2524.901 5185.304
svm-tun-n 15566.800 2372.237 5473.109
polr 3.114 4.623
lrm 5.842 10.025

Table 5.8: Sum of deviances for observed single marginals vs. simulated single
marginals for the classification method specified in each row.

The sum of the deviances for all datasets can be seen in table 5.8.

5.3.3 Pairwise Marginals

berlin dane somali
rpart Inf 768.444 772.936
rpart-tun-dev 458.284 770.766 779.840
svm Inf 24971.264 53797.852
svm-tun-perf Inf Inf Inf
svm-tun-n Inf Inf Inf
polr 1761.153 Inf
lrm 1778.344 2126.960

Table 5.9: Sum of deviances for observed pairwise marginals vs. simulated pairwise
marginals for the classification method specified in each row.

Similar as for the single marginals, the pairwise marginals have been inves-
tigated through simulation. The sum of the deviances for all datasets can
be seen in table 5.9, and in table 5.10 the number of loci rejected for each
method and dataset is shown. In the latter table, the row labled ”Maximum“
is the number of pairs of loci, i.e.

(r − 1) + (r − 2) + · · ·+ 1 =

r−1∑
i=1

i =
r(r − 1)

2
=

r!

2!(r − 2)!
=

(
r

2

)
,

which can also be deducted easily if counting the times the for-loop creating
the tables as shown in listing 5.5 is ran through, namely

∑r−1
i=1

∑r
j=i+1 1.

Section 5.3: Classification Models 103

berlin dane somali
Maximum 21 45 45
rpart 18 35 34
rpart-tun-dev 17 34 36
svm 21 45 45
svm-tun-perf 21 45 45
svm-tun-n 21 45 45
polr 21 45
lrm 21 45

Table 5.10: Number of loci rejected for observed pairwise marginals vs. simulated
pairwise marginals for the classification method specified in each row.

�
1 for (i in 1:(r-1)) {
2 for (j in (i+1):r) {
3 # create pairwise marginals between i and j
4 }
5 }� �

Listing 5.5: An example of a for-loop to create pairwise marginals

5.3.4 Assessing Validity of Normalising Predicted Marginals

berlin dane somali
rpart Inf Inf Inf
rpart-tun-dev Inf Inf Inf
svm Inf Inf Inf
svm-tun-perf Inf Inf Inf
svm-tun-n Inf Inf Inf
polr Inf Inf
lrm Inf Inf

Table 5.11: Sum of deviances for simulated pairwise marginals vs. predicted pairwise
marginals for the classification method specified in each row.

As described in section 4.2.3, it is not possible to sample haplotypes ac-
cording to their predicted probabilities under all models, e.g. the surveying
frequency method introduced in section 3.2. One way to get marginals under
a model instead of using simulation, is to normalise the probabilities and get
predicted counts of the observed haplotypes, which are then used to create
the single and pairwise marginals. Whether that is a feasible approach or
not, can be investigated using the classification methods, and then compare
such predicted marginals with the simulated marginals. The result of this for

104 Chapter 5: Results for Comparison of the Models

berlin dane somali
Maximum 21 45 45
rpart 21 45 45
rpart-tun-dev 21 45 45
svm 21 45 45
svm-tun-perf 21 45 45
svm-tun-n 21 45 45
polr 21 45
lrm 21 45

Table 5.12: Number of loci rejected for simulated pairwise marginals vs. predicted
pairwise marginals for the classification method specified in each row.

single marginals using berlin can be seen in table 5.13. The other datasets
give similar results, which can be found in the supplementary material in
the file results-classification.pdf. As it can be seen, it really gives no
meaning to use such approximation to the predicted marginals, neither to
compare with the observed marginals. This is supported by the results in
table 5.11 and table 5.12.

Section
5.3:C

lassification
M
odels

105

rpart rpart-tun-dev svm svm-tun-perf svm-tun-n polr lrm
DYS19 6146.435 3613.047 2427.304 6056.612 101496.550 11626.910 11333.339
DYS389I 6800.568 6003.647 47391.265 284175.694 213863.411 15433.152 15224.203
DYS389II 10305.569 10280.674 957939.025 1025902.574 950110.699 19670.806 19607.415
DYS390 4819.944 3644.867 183202.984 3174.681 7256.472 7926.205 7156.653
DYS391 7247.513 6387.390 792277.877 608403.021 1071823.289 8984.748 9093.375
DYS392 9781.260 10381.544 1759601.916 1723088.658 1796827.694 27489.492 28663.305
DYS393 17173.738 18181.792 570667.028 596488.035 588687.332 28473.844 26948.848

Table 5.13: Deviances for each loci for berlin dataset for simulated single marginals vs. predicted single marginals for the classification method
specified in each row.

106 Chapter 5: Results for Comparison of the Models

5.3.5 Deviance Comparing Predicted with Relative Fre-
quencies

The results in table 5.14 are based on the comparison method described in
section 4.3. As described in section 4.4, this comparison is equivalent to using
the probability under a multinomial model for relative comparisons, so the
latter has been omitted.

berlin dane somali
rpart 1730.27 1043.21 662.39
rpart-tun-dev 1616.90 1043.21 662.39
svm 1627.41 883.21 474.45
svm-tun-perf 2284.33 1302.00 802.80
svm-tun-n 2482.69 1235.06 786.74
polr 2589.24 1502.96
lrm 2592.33 1510.01

Table 5.14: Comparing deviance between relative frequencies and predicted
probabilities found using classification methods.

5.4 Frequency Surveying

The frequency surveying approach was introduced in section 3.2. This method
is only evaluated by the unobserved probability mass as described in section
4.1 and the deviance comparing the predicted probabilities with the relative
frequencies as described in section 4.3. The results can be seen in table 5.15
and table 5.16, respectively. Also refer to the model specific model control
made when describing the method in section 3.2.

berlin dane somali
Estimate 0.364 0.602 0.277
CI [0.321; 0.408] [0.510; 0.694] [0.212; 0.342]
Full regression model 0.643
Reduced regression model 0.479 0.703 0.335

Table 5.15: Unobserved probabilities using frequency surveying. The missing values
indicate that the method did not succeed for that particular model.

Section 5.5: Ancestral Awareness 107

berlin dane somali
Full regression model 549.40
Reduced regression model 2056.88 937.43 619.81

Table 5.16: Comparing deviance between relative frequencies and predicted
probabilities found using frequency surveying. The missing values indicate that the

method did not succeed for that particular model.

5.5 Ancestral Awareness

Ancestral awareness was introduced in section 3.4. The predicted unobserved
probability mass (refer to section 4.1) can be seen in table 5.17 and the
deviance comparing the predicted probabilities with the relative frequencies
(refer to section 4.3) can be seen in table 5.18.

Stop criteria Mutation berlin dane somali
4 ancestors Yes −3.364 −0.663 −2.533
5 ancestors Yes −5.984 −1.565 −4.759
6 ancestors Yes −6.002 −2.037 −5.082
0.1 threshold Yes −6.073 −3.134 −6.85
0.15 threshold Yes −3.635 −2.66 −7.1
0.2 threshold Yes −2.408 −1.34 −7.721
4 ancestors No 0.448 0.741 0.423
5 ancestors No 0.307 0.689 0.349
6 ancestors No 0 0.59 0.283
0.1 threshold No 0.39 0.589 0.182
0.15 threshold No 0.454 0.668 0.22
0.2 threshold No 0.466 0.713 0.246

Table 5.17: Table of unobserved probability mass using ancestral awareness. berlin
estimated to 0.364 (and with 95% probability within [0.321; 0.408]), dane estimated to
0.602 (and within 95% probability within [0.510; 0.694]), and somali estimated to 0.277

(and within 95% probability within [0.212; 0.342]). Also refer to table 5.2.

5.6 Kernel Smoothing

The kernel smoothing was introduced in section 3.6. In table 5.19 the λ
causing the estimated amount of unobserved probability mass (refer to section
4.1 for details) and the deviance comparing the predicted probabilities with
the relative frequencies (as described in section 4.3) is shown.

108 Chapter 5: Results for Comparison of the Models

Stop criteria Mutation berlin dane somali
4 ancestors Yes -1133.158 154.804 -115
5 ancestors Yes -1832.135 -147.204 -331.068
6 ancestors Yes -1904.99 -260.113 -385.526
0.1 threshold Yes -1714.93 -399.85 -526.29
0.15 threshold Yes -1037.173 -306.212 -515.36
0.2 threshold Yes -566.644 -70.764 -534.509
4 ancestors No 1681.957 1389.787 1340.967
5 ancestors No 796.162 989.062 747.293
6 ancestors No 0 639.172 400.191
0.1 threshold No 1498.875 811.1 345.078
0.15 threshold No 1965.47 1093.083 369.113
0.2 threshold No 2151.174 1221.66 555.189

Table 5.18: Comparing deviance between relative frequencies and predicted
probabilities found using ancestral awareness.

λ Deviance
berlin 1.12 2634.36
dane 0.86 801.19
somali 1.63 918.39

Table 5.19: Results for the kernel smoothing. The optimal λ’s found is in the λ-column.
The deviance-column is the deviance between relative frequencies and predicted

probabilities found using the kernel smoothing.

5.7 Model Based Clustering

The model based clustering was introduced in section 3.7. The R-library
mclust uses BIC to determine the number of clusters to use given a range of
allowable model choices. Here the allowable number of clusters was specified
to be between 1 and 20. The estimated amount of unobserved probability
mass (refer to section 4.1 for details) can be seen in table 5.20, the deviance
comparing the predicted probabilities with the relative frequencies (as de-
scribed in section 4.3) in table 5.21, the number of clusters in table 5.22, and
the BIC-scores in table 5.23.

For all the datasets and all the methods, several plots were made. Figure
5.1 shows the relative frequencies compared to the smoothed probabilities
using the first two sample principal components. Note that the smoothed
probabilities are not normalised. In figure 5.2 the clusters are shown. Similar
figures for the other datasets and models can be found in the supplementary
material.

Section 5.7: Model Based Clustering 109

−3 −2 −1 0 1 2 3 4

−
2

0
2

Model based clustering of dane using VII model

SPC1

S
P

C
1

●

●

Relative frequency
Normalised predicted prob.

Figure 5.1: Comparing the relative frequencies compared to the (non-normalised)
smoothed probabilities for dane using the VII-model.

110 Chapter 5: Results for Comparison of the Models

2
1

1

2

2

1

1

1

1111
1

1

1

3

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1
1

11

1
1

11

1

3

3
3

1

1
2

2

1

3

3

3

3

3

3
3

3
3

3

3

33

2 2

3

1

3
3

3
3

3
3

3

2

2
22

1
1

4

1
1

11

1

1

4

44
4

4

4

4
4

2

1

4

1

4

4

3

3

3
3

2

3

3

2 2

3

2

2
2

2

4

4

4

4

4

4

4
4

4

4

4

2

2

2

2

2

4

4 2

2

11111
1

11111

1

1

1

1

3333

33333333
333

3333333
3

2

3

44

3

3
3

44

4

−3 −2 −1 0 1 2 3 4

−
2

0
2

Model based clustering of dane using VII model

SPC1

S
P

C
1

Figure 5.2: The observations for dane marked by the number of the cluster to which
they belong using the VII-model. As seen in table 5.22 there are 4 clusters in this case.

Section 5.8: Comparing Models 111

berlin dane somali
Estimate 0.364 0.602 0.277
CI [0.321; 0.408] [0.510; 0.694] [0.212; 0.342]
EII 0.475 0.875 -73.752
VII 0.681 0.639 -1.27
EEI -5.543 -5.981 -1872.639
EVI 0.593
VEI 0.214 -4.379
VVI -1.255
EEE -3.875 -7.84 -992.039
EEV -49.342 -88.285 -499.667
VEV -5.515 -1.802
VVV -2.577

Table 5.20: Unobserved probabilities using model based clustering. The missing values
indicate that the method did not succeed for some reason.

5.8 Comparing Models

Out of the classification models, it seems like the classification trees out-
perform the other classification methods based on the marginals. Especially
support vector machines look poor in this regard, which is probably be-
cause of a wrong kernel and wrong kernel parameters. A grid search among
possible kernels and corresponding parameters could be made to get better
performance.

The frequency surveying also performs well in the comparisons made for that
one, but the important area of marginal deviance is not checked due to the
lack of underlying model.

Both these approaches overestimate the unobserved probability mass, corre-
sponding to underestimating the observed probability mass.

Besides the comparison methods for classification models used here, it is also
possible to approximate E [Kj], where Kj denotes the number of haplotypes
observed j+1 times, like done for frequency surveying in section 3.2.3 by using
simulation. If N+ denotes the number of observations in the dataset, then
N+ haplotypes can be simulated M times, and the average of the observed
Kj ’s in the simulated data approximate E [Kj] for large M . A prototype of
an implementation of this can be found in classification-count-tables.R
in the supplementary material (refer to section 1.5).

The idea behind kernel smoothing is worthy of a note, although more model
control has to be done for this model in order to validate it. The huge draw-
back for this model is the inefficiency of calculating a probability. This leads

112 Chapter 5: Results for Comparison of the Models

berlin dane somali
EII 2214.84 1630.88 -144.19
VII 3548.33 1505.86 1162.00
EEI -103.37 408.50 -1397.08
EVI 1329.43
VEI 2926.29 1069.19
VVI 1182.89
EEE 103.28 253.49 -1174.59
EEV -2796.34 -649.09 -1048.61
VEV 1593.86 1128.98
VVV 1105.19

Table 5.21: Comparing deviance between relative frequencies and predicted
probabilities found using model-based-clustering. The missing values indicate that the

method did not succeed for some reason.

berlin dane somali
EII 15 4 19
VII 3 4 2
EEI 16 17 19
EVI 3
VEI 3 4
VVI 3
EEE 16 17 16
EEV 13 7 5
VEV 3 2
VVV 2

Table 5.22: Number of clusters used. The missing values indicate that the method did
not succeed for some reason.

to the model based clustering where there is a huge difference between the
different models, and the performance in general is poor, probably because
of a bad discretization of the continuous density.

In conclusion, this chapter shows that it is really important to validate a
model control in a number of different ways. Because of this, the classifi-
cation models with classification trees as a worthy representative has to be
emphasised because of its appealing theoretical nature.

Section 5.8: Comparing Models 113

berlin dane somali
EII -9884.18 -3608.05 -2272.23
VII -10608.55 -3498.69 -2592.00
EEI -7656.69 -3179.17 -1067.07
EVI -3390.13
VEI -10025.38 -3109.00
VVI -3254.03
EEE -7999.42 -3259.07 -1353.19
EEV -6577.25 -3191.75 -1792.07
VEV -9101.20 -3513.34
VVV -3536.53

Table 5.23: The BIC-score for each model. The missing values indicate that the
method did not succeed for some reason.

CHAPTER 6

Evidence

In section 1.2 calculating statistical evidence was briefly discussed. Calcu-
lating statistical evidence is very important in e.g. crime cases, so good and
reliable methods have to be available. The actual calculations of the likeli-
hood ratio for Y-STR are more complex than for autosomal STR because of
the loci dependency. It also means that the methods developed for the auto-
somal case cannot be used with Y-STR haplotypes directly, although some
ideas and principles can be reused.

In this chapter, evidence for Y-STR haplotypes will be dealt with shortly in
order to further motivate why it is so important to have reliable methods of
estimating probabilities for Y-STR haplotypes.

6.1 Two Contributors

In section 1.2 a short example of a LR was given and the expression

LR =
P (T 	 hs)∑

(h1,h2)≡T P (h1)P (h2)

for one unknown contributor was deducted.

To assess the number of terms in the denominator, let r be the number of

115

116 Chapter 6: Evidence

loci, let T = (T1, T2, . . . , Tr) be the trace, where Ti is a set of alleles such that
|Ti| ∈ {1, 2}. As earlier, let hs denote the suspect’s haplotype and h1 denote
the one additional contributor’s haplotype. Also let HT = T1× T2× · · · × Tr
be the Cartesian product of T1, T2, . . . , Tr. In the non-trivial case, a j ∈
{1, 2, . . . , r} exists such that |Tj | = 2 with Tj = {a1, a2}, say. Let T ′j = {a1}
(such that one of the alleles is removed) and

H′T = T1 × · · · × Tj−1 × T ′j × Tj+1 × · · · × Tr

Now the denominator of LR can be written as∑
(h1,h2)≡T

P (h1)P (h2) =
∑

h1∈HT

P (h1)P (T 	 h1)

= 2
∑

h1∈H′T

P (h1)P (T 	 h1)

by exploiting the fact that the second contributor’s haplotype is uniquely
determined by the first contributor’s. Note that if k denotes the number
of loci in the trace with only one allele, and we assume that we have the
non-trivial case with 0 ≤ k < r, we have that

|HT | =
r∏
i=1

|Ti| = 2r−k

such that
|H′T | =

|HT |
2

= 2r−k−1 ≤ 2r−1.

This means that for r loci, a maximum of 2 ·2r−1 = 2r haplotype frequencies
have to be calculated, e.g. is 210 = 1024 and 217 = 131, 072.

If a trace has two contributors with no known suspects, the two most likely
contributers can be chosen to be

arg max
h1∈H′T

P (h1)P (T 	 h1) .

The same formulation can be used for a trace with a suspect and two ad-
ditional contributors by subtracting the suspect’s haplotype from the trace.
An example of this strategy will now be given.

Example 6.1 (Identifying two contributors to a trace). In this exam-
ple the dataset dane has been used together with the classification trees (refer
to section 3.5.1) for estimating haplotype frequencies.

Say that the contributors’ true (unknown) haplotypes are

h1 = (14, 12, 29, 25, 11, 13, 13, 14, 12, 11) and
h2 = (13, 14, 32, 22, 10, 11, 13, 14, 10, 11).

Section 6.1: Two Contributors 117

The names of the loci are not relevant for this example, so they have been
omitted. Then the known trace is

T = ({14, 13}, {12, 14}, {29, 32}, {25, 22}, {11, 10},
{13, 11}, {13}, {14}, {12, 10}, {11}).

Here the number of loci in the trace with only one allele is k = 3, so the
number of haplotype probabilities to calculate is 2 ·210−3−1 = 2 ·26 = 2 ·64 =
128. Iterating through these different possibilities gives a top-3, where the
contributors giving the highest probability are

h1 = (14, 12, 29, 25, 11, 13, 13, 14, 12, 11) and
h2 = (13, 14, 32, 22, 10, 11, 13, 14, 10, 11) results in

P (h1)P (h2) = 5.551 · 10−9,

the contributors giving the second highest probability are

h1 = (14, 12, 29, 22, 11, 13, 13, 14, 12, 11) and
h2 = (13, 14, 32, 25, 10, 11, 13, 14, 10, 11) results in

P (h1)P (h2) = 5.186 · 10−11,

and the contributors giving the third highest probability are

h1 = (14, 14, 32, 22, 11, 11, 13, 14, 10, 11) and
h2 = (13, 12, 29, 25, 10, 13, 13, 14, 12, 11) results in

P (h1)P (h2) = 5.359 · 10−13.

As seen, the true contributors are the ones giving the highest probabilities.�

4 5 6 7 8 9 10 11
0.0375 0.0181 0.0092 0.0091 0.0049 0.0035 0.0014 0.0018

12 13 14 15 16 17 18 19
0.0015 0.0011 0.0010 0.0009 0.0003 0.0002 0.0001 0.0003

20 21 22 23 24 25 27 29
0.0001 0.0004 0.0002 0.0002 0.0001 0.0002 0.0003 0.0001

30 31 40 42 45 49 58
0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001

Table 6.1: Number of simulations causing a rank greater than or equal to 4. The
integer in the odd numbered rows is the true contributors’ rank and the numbers in the
even numbered rows are how many times it happened in the simulations converted to a
frequency. E.g. in 3.75% of the simulations, the true contributors’ haplotype probabilities

were ranked 4. Notice that in general, the higher the rank, the lower the frequency.

In example 6.1 the true contributors gave the highest probability. To assess
whether this is always the case, a simulation study has been made.

118 Chapter 6: Evidence

Histogram of true contributors' rank

True contributors' rank

F
re

qu
en

cy

0 10 20 30 40 50 60

0
20

00
40

00
60

00
80

00
10

00
0

Figure 6.1: A histogram of the ranks of the true contributors haplotype probabilities in
the simulation study. The plot is auto-scaled by R, so the reason of the wide horizontal

axis is because of outliers.

Simulating 10, 000 experiments as the one in example 6.1, still with dane and
classification trees, the sample mean for the rank of the true contributors’
haplotype probabilities was 1.828 with a sample variance of 2.2032. So on
average the true contributors lie in top-2 based on this experiment.

A histogram of the ranks can be seen in figure 6.1. The plot is auto-scaled
by R, so the reason of the wide horizontal axis is because of outliers. A table
of number of simulations causing a rank greater than or equal to 4 can be
seen in table 6.1. Notice that in general, the higher the rank, the lower the
frequency. A table of sizes of H′T in the cases, where the true contributors’
haplotype probabilities where not in top-10, can be seen in table 6.2. Notice
that the probability does not increase with the size of H′T .

Lastly, figure 6.2 gives expressive statistics about how many of the cases
the true contributors appeared in top-x for x from 1 to 20. As seen, the
probability increases quickly and is over 90% already for top-3.

The file classification-evidence-2-contributors.R contains the code
used to perform the simulation study. Example 6.1 has also been made in
this way, actually it is just the result of one of the simulations with a verbose
output.

Section 6.2: n Contributors 119

16 32 64 128 256
0.125 0.135 0.260 0.333 0.146

Table 6.2: The frequencies of the size of H′
T in the 96 cases out of the 10, 000

simulations corresponding to a bit below 0.1% where the true contributors’ haplotype
probabilities were not in top-10, i.e. they had a rank strictly grater than 10. E.g. in 12.5%
of the times where the true contributors’ haplotype probabilities where not in top-10, the
size of H′

T was 16. Notice that the probability does not increase with the size of H′
T .

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
6

0.
7

0.
8

0.
9

1.
0

Cumulative probability

Top−x

P
ro

ba
bi

lit
y

th
at

 th
e

tr
ue

 c
on

tr
ib

ut
or

s'
 a

re
 in

 th
e

to
p−

x

0.
65

98

0.
84

27

0.
90

67

0.
94

42

0.
96

23

0.
97

15

0.
98

06

0.
98

55

0.
98

9

0.
99

04

0.
99

22

0.
99

37

0.
99

48

0.
99

58

0.
99

67

0.
99

7

0.
99

72

0.
99

73

0.
99

76

0.
99

77
1

2

3

4
5

6
7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6.2: The probability that the true contributors’ were in top-x for x from 1 to 20.

6.2 n Contributors

Instead of just having two contributors as described in section 6.1, a gener-
alised form for n contributors has been described in [Wolf et al., 2005]. This
approach will be discussed in this section.

To use the same notation as done in the article, let n be the number of
unknown contributors and m the number of loci. Let Et,i be the set of alleles
on the i’th locus in the trace and similar Es,i for the suspect and Ek,i for the
known contributors. Let An,i denote the set of alleles carried by n individuals
on the i’th locus.

120 Chapter 6: Evidence

Let

Pn

(
m⋂
i=1

{Vi;Wi}

)
= P

(
m⋂
i=1

{Wi ⊆ An,i ⊆ Vi}

)

denote the probability that An,i is included in Vi and contains Wi ⊆ Vi for
all i = 1, 2, . . . ,m. Then as [Wolf et al., 2005, equation (2)], we have that

LR =

Pn

(
m⋂
i=1

{Et,i;Et,i \ (Es,i ∪ Ek,i)}

)

Pn+1

(
m⋂
i=1

{Et,i;Et,i \ Ek,i}

) .

If the loci were independent, which we know they are not, we would get that

Pn

(
m⋂
i=1

{Vi;Wi}

)
=

m∏
i=1

Pn (Vi;Wi) .

Now, assume without loss of generality, that Wi = {1, 2, . . . , ki} and Vi =
{1, 2, . . . , si} with 0 ≤ ki ≤ si, such that

Pn

(
m⋂
i=1

{Vi;∅}

)
= P

(
m⋂
i=1

{An,i ⊆ Vi}

)

= P

([
m⋂
i=1

{An,i ⊆ Vi}

]
∩

[
m⋂
i=1

{Wi ⊆ An,i}

])
+

P

[m⋂
i=1

{An,i ⊆ Vi}

]
∩

[
m⋂
i=1

{Wi ⊆ An,i}

]C
= P

(
m⋂
i=1

{Vi;Wi}

)
+

P

([
m⋂
i=1

{An,i ⊆ Vi}

]
∩

[
m⋃
i=1

{Wi 6⊆ An,i}

])

Section 6.2: n Contributors 121

where

P

([
m⋂
i=1

{An,i ⊆ Vi}

]
∩

[
m⋃
i=1

{Wi 6⊆ An,i}

])

= P

[m⋂
i=1

{An,i ⊆ Vi}

]
∩

 m⋃
i=1

ki⋃
j=1

{{j} 6⊆ An,i}


= P

 m⋃
i=1

ki⋃
j=1

{
{j} 6⊆ An,i ∩

m⋂
r=1

{An,r ⊆ Vi}

}
= P

 m⋃
i=1

ki⋃
j=1

{
m⋂
r=1

{{j} 6⊆ An,r ⊆ Vi}

}
= P

 m⋃
i=1

ki⋃
j=1


m⋂
r=1

An,r ⊆

(Vi \ {j}) ∩
m⋂
r=1
r 6=i

Vr





such that

Pn

(
m⋂
i=1

{Vi;Wi}

)
= Pn

(
m⋂
i=1

{Vi;∅}

)
−

P

 m⋃
i=1

ki⋃
j=1


m⋂
r=1

An,r ⊆

(Vi \ {j}) ∩
m⋂
r=1
r 6=i

Vr





which can be interpreted as the probability that all An,i’s are included in the
respective Vi minus the probability that at least one allele from at least one
Wi is lacking.

To calculate this, the inclusion-exclusion principle will be used. From a prob-
ability theoretical point of view, it states that for events B1, B2, . . . , Bn it is
true that

P

(
n⋃
i=1

Bi

)
=

n∑
k=1

(−1)
k−1 ∑

I⊆{1,2,...,n}
|I|=k

P

(⋂
i∈I

Bi

)

giving the well known result P (B1 ∪B2) = P (B1) +P (B2)−P (B1 ∩B2) for
n = 2.

122 Chapter 6: Evidence

Now

Pn

(
m⋂
i=1

{Vi;Wi}

)
=

∑
T⊆{(i,j):1≤i≤m,1≤j≤ki}

(−1)
|T |×

Pn

(
m⋂
i=1

{Vi \ {j : (i, j) ∈ T};∅}

)
where T = ∅ gives the term Pn (

⋂m
i=1{Vi;∅}). Two ways of calculating this

are discussed by [Wolf et al., 2005], but here only the recursive method will
be described. Note that Pn (

⋂m
i=1{Vi;Wi}) = 0 if |Wi| > n for at least one i.

This corresponds to more alleles on at least one locus than can be explained
by the assumed n contributors. If this is not the case, the recursive formula
[Wolf et al., 2005, equation (5)] states that

Pn

(
m⋂
i=1

{Vi;Wi}

)
=

∑
j1∈D1

· · ·
∑

jm∈Dm

f(j1, . . . , jm)× (6.1)

Pn−1

(
m⋂
i=1

{Vi;Wi \ {ji}}

)
where P0 (·) = 1, f(j1, . . . , jm) denotes the frequency of the Y-STR haplotype
(j1, . . . , jm), and

Di =

{
Wi, if |Wi| = n, and
Vi, if |Wi| < n.

As seen, it is crucial to have good models to estimate all the f(j1, . . . , jm)’s.

The structure (factorisation of the simultaneous probability mass function)
of the classification models described in section 3.5 can be exploited to gain
efficiency when calculating (6.1) because not all factors depend on all the
loci. If the haplotypes are represented as a DAG (directed acyclic graph)
where each node is an allele on a specific locus, then the complexity of such
an optimisation can be found by moralising and triangulating the DAG.

The specific case, where the n males in question are assumed to be unrelated,
is discussed in [Wolf et al., 2005].

Please refer to [Wolf et al., 2005] for a discussion on the computational effi-
ciency of the two methods.

6.2.1 Approximation with Known Error Bound

In [Wolf et al., 2005] only the exact value of Pn (
⋂m
i=1{Vi;Wi}) is dealt with.

Because of elegant inequalities, it is actually possible to get approximations,
where the error can be bounded.

Section 6.2: n Contributors 123

The upper bound

P

(
n⋃
i=1

Bi

)
≤

n∑
i=1

P (Bi) .

is given by Boole’s inequality. Alternating upper and lower bounds can be
found using the more general Bonferroni inequalities. For odd m ≥ 1 we get

Um =

m∑
k=1

(−1)
k−1 ∑

I⊆{1,2,...,n}
|I|=k

P

(⋂
i∈I

Bi

)
≥ P

(
n⋃
i=1

Bi

)

and for even m ≥ 2 we get

Lm =

m∑
k=1

(−1)
k−1 ∑

I⊆{1,2,...,n}
|I|=k

P

(⋂
i∈I

Bi

)
≤ P

(
n⋃
i=1

Bi

)
.

Note that

Lm = Um−1 + (−1)
m−1 ∑

I⊆{1,2,...,n}
|I|=m

P

(⋂
i∈I

Bi

)

= Um−1 −
∑

I⊆{1,2,...,n}
|I|=m

P

(⋂
i∈I

Bi

)

Let

Tm =

{
Um, if m ≥ 1 is odd, and
Lm, if m ≥ 2 is even.

If ε is the maximum allowed approximation error, then algorithm 2 approxi-
mates P (

⋃n
i=1Bi) within ε of the true value.

This might be used in order to avoid calculating the entire sum as done in
[Wolf et al., 2005], although it is difficult to provide an estimate of the gain of
such an approximation because it depends on how quick the sum converges.

124 Chapter 6: Evidence

Algorithm 2 Approximating P (
⋃n
i=1Bi) with maximal error ε

Require: n ≥ 1, ε ∈ [0, 1]
if ε = 0 then
return Tn

end if
s←

∑n
i=1 P (Bi)

if ε = 1 then
return T1 = s

end if
k ← 2
δ ← 1
while δ ≥ ε do
δ =

∑
I⊆{1,2,...,n}
|I|=k

P
(⋂

i∈I Bi
)

s← s+ (−1)
k−1

δ
k ← k + 1

end while
return s

6.3 The κ-model

A quite new article, [Brenner, 2010], addresses the issues of how to deal
with singletons in calculating evidence. A key concept in the article is to
assume that all observed singletons are equally likely; this assumption will
be addressed in the end of this section.

Let α denote the number of singletons in a sample of n haplotypes, and
denote

κ =
α

n
.

Using this notation, they assume that the probability of the suspect’s hap-
lotype being a singleton if another observation is made, is equal to the pro-
portion of non-singletons in the current database given by 1− κ.

These concepts are used to derive that

n

1− κ
(6.2)

is the evidential strength for matching a previously unobserved haplotype.

Section 6.3: The κ-model 125

One key assumption made in the article, for among other things deriving
(6.2), is that the widely accepted single-step mutation model is not used. To
quote the article itself:

I take the DNA sequence of a haplotype as being no more than
an arbitrary name; in this respect my model differs from that of
Krawczak [8].

[Brenner, 2010, p. 2]

where Krawczak [8] refers to [Roewer et al., 2000]. This assumption violates
the general accepted view. In other words, assume that our database con-
sists only of 10 observations of the haplotype (1, 1). A consequence of the
assumptions in [Brenner, 2010], is that the probability of observing (1, 10) in
the next observation is as likely as observing (1, 2).

Because of this fact, the κ-model seems inadequate because it actively disre-
gards the single-step mutation model.

At the 7th International Y Chromosome User Workshop in Berlin, Germany,
April 2010, it was in general urged to try not to establish the point of view
that the single-step mutation model is false. It was also suggested that a
consensus paper was written in order to establish a united view of the statis-
ticians instead of giving the impression that statisticians in this area are
divided.

CHAPTER 7

Recapitulation

This chapter starts by recapping some of the aspects of estimating Y-STR
haplotype frequencies and calculating evidence. Afterwards some ideas for
further work is described.

In this thesis, calculating evidence as introduced by a simple example in sec-
tion 1.2 and later in a general form in chapter 6 has been used as motivation
as to why it is so crucial to be able to estimate Y-STR haplotype frequencies.

Several methods to estimate Y-STR haplotype frequencies have been de-
scribed in chapter 4. In the beginning of this chapter, some desirable prop-
erties of such models are stated, e.g. consistency. Then the frequency sur-
veying approach from [Roewer et al., 2000] is described and some problems
with the approach are pointed out. Afterwards, three new models and a class
of models are developed. The class of models is classification models where
classification trees, support vector machines, and ordered logistic regression
are examples of instances of this class. The three models developed besides
classification models are ancestral awareness, kernel smoothing, and model
based clustering.

Methods to compare the models are developed in chapter 4. One of the com-
parison methods are the amount of predicted unobserved probability mass,
based on an estimate given in [Robbins, 1968]. This estimate is verified
through a simulation study. Also, comparing single and pairwise marginals

127

128 Chapter 7: Recapitulation

using deviance and comparing predicted and relative frequencies using de-
viance are described.

The results of the comparisons are given in chapter 5. Not all the meth-
ods developed for estimating Y-STR haplotype frequencies in chapter 4 give
satisfying results, but the classification models (especially using classifica-
tion trees) described in section 3.5 seems like a reasonable model. Although
classification models exhibit a theoretically beautiful structure, not all of
them incorporate the prior knowledge we have (like the single step mutation
model), which is a point of criticism.

Besides having an accurate model, in practise it is also important to have a
model that can be explained to a judge by forensic geneticists in court. We
claim that the form of the classification models described in section 3.5 are at
least as easy to understand and explain as the frequency surveying approach
described in section 3.2.

The methods are build and verified upon small datasets, and it would of
course be valuable to have access to larger dataset similar to the one which
http://www.yhrd.org is based on. Unfortunately that dataset is not pub-
licly available due to some problems with the rights. A straightforward in-
termediate solution is to make the datasets already available as articles and
supplementary material available, so that the work done by http://www.
yhrd.org by gathering the data does not need to be done by every statisti-
cian with interest in this field.

http://www.yhrd.org
http://www.yhrd.org
http://www.yhrd.org

Section 7.1: Further Work 129

7.1 Further Work

In this section some proposals for further work are presented.

7.1.1 Statistical Model Incorporating Genetic Knowl-
edge

The surveying approach described in section 3.2 lacks an underlying statisti-
cal model, but incorporates prior knowledge. The classification trees model is
build on a statistical model and perform quite well, but does not incorporate
prior knowledge. Being able combine these to create a true statistical model
that incorporates genetic knowledge is desirable.

One direction to go to achieve this goal, is to try to smooth contingency
tables according to the single step mutation model. This might be usable
in both learning a graphical model with the PC-algorithm and subsequent
estimation using this model.

7.1.2 Y-STR Mixtures

In section 1.2 and section 6.1 evidence for Y-STR mixtures were dealt with
in a simple case of two contributors and in general for n contributors in a
qualitative way. Taking that as a starting point, there are several directions
to go.

One direction is to pursue an improvement in regards to computational run-
time of the generalised qualitative method described in section 6.2 based on
[Wolf et al., 2005]. One approach is briefly mentioned in section 6.2.1, where
the idea is to use approximations instead of exact values, and to top it all
off, the maximum error committed can be controlled.

Another important direction is to use quantitative information instead of
only the qualitative. If for example there is a lot more DNA material from
one contributor than the other, the EPG (electropherogram) reflects this, but
the qualitative data do not. This important information should be used to
perform a better separation of the profiles.

7.1.3 Subpopulations

Although there is no fixed boundary between subpopulations, there is a vague
partitioning of the humans such that some Y-STR haplotypes are more com-

130 Chapter 7: Recapitulation

mon in some part of the world than in the rest. An ambitious goal would be
to define subpopulation effects for Y-STR and maybe even include them in
models for Y-STR haplotype frequency estimation.

7.1.4 Extended Models

Problems such as mutations, drop-ins, and drop-outs were mentioned briefly
in section 1.1. In a perfect model for calculating evidence and separating
mixtures, these problems have to be addressed.

7.1.5 Signal Processing

Another interesting area is to try to model the signal in the EPG. This can
be used to estimate parameters for drop-outs and similar phenomena.

Bibliography

Alan Agresti. Categorical Data Analysis. Wiley, 2. edition, 2002. 59, 62, 63

Mikkel Meyer Andersen. Graphical Models – A MAT4-project in the use
of graphical models to estimate haplotype frequencies. An 8th Semester-
project at Department of Mathematical Sciences, Aalborg University, Den-
mark (available in Danish only), 2009a. URL http://people.math.aau.
dk/~mikl/mat4/projekt/. 20, 21, 45, 46, 91

Mikkel Meyer Andersen. Report on Stay Abroad at La Trobe University,
Melbourne, Australia. A Review of The Course Content, 2009b. 21, 66

Adelchi Azzalini. Statistical Inference – Based on the Likelihood. Chapman
& Hall, 1996. ISBN 0-412-60650-X. 59, 61

P. J. Bickel and J. A. Yahav. On estimating the Total Probability of the
Unobserved Outcomes of an Experiment. Lecture Notes-Monograph Series
– Adaptive Statistical Procedures and Related Topics, 8:332–337, 1986. URL
http://www.jstor.org/stable/4355542. 76

Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classi-
fication and Regression Trees. Chapman and Hall/CRC, 1. edition, 1984.
ISBN 978-0412048418. 56, 58

Charles H. Brenner. Fundamental problem of forensic mathematics – The evi-
dential value of a rare haplotype. Forensic Science International: Genetics,
In Press, Corrected Proof, 2010. ISSN 1872-4973. doi: 10.1016/j.fsigen.
2009.10.013. URL http://www.sciencedirect.com/science/article/
B8CX7-4Y4W3SD-1/2/b994679273cd0d16e7afa8e4e53e8907. 6, 124, 125

131

http://people.math.aau.dk/~mikl/mat4/projekt/
http://people.math.aau.dk/~mikl/mat4/projekt/
http://www.jstor.org/stable/4355542
http://www.sciencedirect.com/science/article/B8CX7-4Y4W3SD-1/2/b994679273cd0d16e7afa8e4e53e8907
http://www.sciencedirect.com/science/article/B8CX7-4Y4W3SD-1/2/b994679273cd0d16e7afa8e4e53e8907

132 BIBLIOGRAPHY

John M. Butler. Forensic DNA Typing: Biology, Technology, and Genetics
of STR Markers. Academic Press, 2005. ISBN 978-0121479527. 15

John M. Butler. Fundamentals of Forensic DNA Typing. Academic Press,
2009. ISBN 978-0123749994. 15

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, 1. edition, 2000. ISBN 0-521-
78019-5. 64, 65, 66, 68, 69

David Edwards. Introduction to Graphical Modelling. Springer, 2. edition,
2000. ISBN 0-387-95054-0. 84

L. Excoffier, P. E. Smouse, and J. M. Quattro. Analysis of molecular vari-
ance inferred from metric distances among dna haplotypes: Application to
human mitochondrial dna restriction data. Genetics, 131(2):479–491, June
1992. ISSN 0016-6731. URL http://view.ncbi.nlm.nih.gov/pubmed/
1644282. 20

C. Fraley and A. E. Raftery. MCLUST Version 3 for R: Normal Mix-
ture Modeling and Model-Based Clustering. Technical Report 504, De-
partment of Statistics, University of Washington, 2006. URL http:
//www.stat.washington.edu/mclust/. Revised: January 2007, Novem-
ber 2007, November 2009, December 2009. 72, 73

Charlotte Hallenberg, Karsten Nielsen, Bo Simonsen, Juan Sanchez, and
Niels Morling. Y-chromosome STR haplotypes in Danes. December 2004.
URL http://www.ncbi.nlm.nih.gov/pubmed/16226159. 19, 55

Charlotte Hallenberg, Bo Simonsen, Juan Sanchez, and Niels Morling. Y-
chromosome STR haplotypes in Somalis. January 2005. URL http://
www.ncbi.nlm.nih.gov/pubmed/15939170. 19

Myles Hollander. Dependence, Tests for. In Encyclopedia of Statistical Sci-
ences. John Wiley & Sons, Inc., 2006. doi: 10.1002/0471667196.ess0483.
pub2. 46

Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision
Graphs. Springer, 2. edition, 2007. ISBN 978-0-387-68281-5. 45

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis.
Prentice Hall, 5 edition, 2001. 23

Markus Kalisch and Peter Buhlmann. Estimating High-Dimensional Directed
Acyclic Graphs with the PC-Algorithm. Journal of Machine Learning
Research, 8:613–636, 2007. URL http://jmlr.csail.mit.edu/papers/
volume8/kalisch07a/kalisch07a.pdf. 46

Alexandros Karatzoglou, David Meyer, and Kurt Hornik. Support Vector
Machines in R. Journal of Statistical Software, 15, 2006. 96

http://view.ncbi.nlm.nih.gov/pubmed/1644282
http://view.ncbi.nlm.nih.gov/pubmed/1644282
http://www.stat.washington.edu/mclust/
http://www.stat.washington.edu/mclust/
http://www.ncbi.nlm.nih.gov/pubmed/16226159
http://www.ncbi.nlm.nih.gov/pubmed/15939170
http://www.ncbi.nlm.nih.gov/pubmed/15939170
http://jmlr.csail.mit.edu/papers/volume8/kalisch07a/kalisch07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/kalisch07a/kalisch07a.pdf

BIBLIOGRAPHY 133

M. Krawczak. Forensic evaluation of y-str haplotype matches: a comment.
Forensic Science International, 118(2–3):114–115, May 2001. URL http:
//dx.doi.org/10.1016/S0379-0738(00)00479-5. 35

Javier M. Moguerza and Alberto Muñoz. Support Vector Machines with
Applications. Statistical Science, 21:322–336, 2006. doi: 10.1214/
088342306000000493. 64, 69

Kevin Murphy. The Bayes Net Toolbox for Matlab. Computing Science and
Statistics, 33:331–350, 2001. URL http://people.cs.ubc.ca/~murphyk/
Papers/bnt.pdf. Can be downloaded at http://code.google.com/p/
bnt/. 46

Marija J. Norušis. PASW Statistics 18 Advanced Statistical Procedures. Pren-
tice Hall, 2000. ISBN 978-0-321-69057-9. 59, 62, 63

Luke Prendergast and Paul Kabaila. STA3AS Unit Text. La Trobe University,
Australia, 2009. 23

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2010. URL http://www.R-project.org. ISBN 3-900051-07-0. 7

M. V. Ratnaparkhi. Multinomial Distributions. In Encyclopedia of Statistical
Sciences. John Wiley & Sons, Inc., 2006. doi: 10.1002/0471667196.ess1697.
pub2. 92

Herbert E. Robbins. Estimating the Total Probability of the Unobserved
Outcomes of an Experiment. The Annals of Mathematical Statistics, 39
(1):256–257, 1968. URL http://www.jstor.org/stable/2238931. 6, 75,
76, 78, 80, 81, 96, 127

L. Roewer, M. Kayser, P. de Knijff, K. Anslinger, A. Betz, A. Caglià,
D. Corach, S. Füredi, L. Henke, M. Hidding, H.J. Kärgel, R. Lessig,
M. Nagy, V.L. Pascali, W. Parson, B. Rolf, C. Schmitt, R. Szibor, J. Teifel-
Greding, and M. Krawczak. A new method for the evaluation of matches
in non-recombining genomes: application to Y-chromosomal short tandem
repeat (STR) haplotypes in European males. Forensic Science Interna-
tional, 114(1):31–43, October 2000. URL http://linkinghub.elsevier.
com/retrieve/pii/S0379073800002875. 5, 10, 18, 19, 34, 35, 36, 37, 125,
127

G. A. F. Seber. Multivariate Observations. Wiley, 1984. ISBN 0-471-88104-X.
70

Terry M. Therneau and Beth Atkinson. rpart: Recursive Partitioning, 2009.
URL http://CRAN.R-project.org/package=rpart. R port by Brian Rip-
ley. 56, 58

http://dx.doi.org/10.1016/S0379-0738(00)00479-5
http://dx.doi.org/10.1016/S0379-0738(00)00479-5
http://people.cs.ubc.ca/~murphyk/Papers/bnt.pdf
http://people.cs.ubc.ca/~murphyk/Papers/bnt.pdf
http://code.google.com/p/bnt/
http://code.google.com/p/bnt/
http://www.R-project.org
http://www.jstor.org/stable/2238931
http://linkinghub.elsevier.com/retrieve/pii/S0379073800002875
http://linkinghub.elsevier.com/retrieve/pii/S0379073800002875
http://CRAN.R-project.org/package=rpart

134 BIBLIOGRAPHY

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998. ISBN 0-471-
03003-1. 64, 65, 68, 69

Allard Veldman. Evidential strength of Y-STR haplotype matches in forensic
DNA casework. Master’s thesis, Mathematisch Institut, Universiteit Leiden
and Nederlands Forensisch Instituut, 2007. 36

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-PLUS.
Springer, 2. edition, 1997. ISBN 0-387-98214-0. 23, 24, 27, 55, 58, 90

Andreas Wolf, Amke Caliebe, Olaf Junge, and Michael Krawczak. Forensic
interpretation of Y-chromosomal DNA mixtures. Forensic Science Inter-
national, 152(2-3):209 – 213, 2005. ISSN 0379-0738. doi: DOI:10.1016/
j.forsciint.2004.07.021. URL http://www.sciencedirect.com/science/
article/B6T6W-4DTKYKY-2/2/72c703e981d875eb3df776c67f5e3fea. 6,
10, 119, 120, 122, 123, 129

Raanan Yehezkel and Boaz Lerner. Bayesian Network Structure Learning
by Recursive Autonomy Identification. Journal of Machine Learning Re-
search, 10:1527–1570, 2009. URL http://jmlr.csail.mit.edu/papers/
volume10/yehezkel09a/yehezkel09a.pdf. 46

http://www.sciencedirect.com/science/article/B6T6W-4DTKYKY-2/2/72c703e981d875eb3df776c67f5e3fea
http://www.sciencedirect.com/science/article/B6T6W-4DTKYKY-2/2/72c703e981d875eb3df776c67f5e3fea
http://jmlr.csail.mit.edu/papers/volume10/yehezkel09a/yehezkel09a.pdf
http://jmlr.csail.mit.edu/papers/volume10/yehezkel09a/yehezkel09a.pdf

APPENDIX A

Correlation Matrices

Correlations matrices for berlin , dane , and somali have been calculated
using different methods.

Correlations matrices using Pearson’s correlation coefficient can be found in
table A.1, table A.2, and table A.3.

Correlations matrices using Kendall’s τ and Spearman’s ρ have been omitted,
because they were basically the same as with Pearson’s correlation coefficient.
They can be found in the supplementary material (refer to section 1.5), where
the code for generating the matrices also can be found.

135

136
C
hapter

A
:C

orrelation
M
atrices

DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393
DYS19 0.022 0.000 0.000 0.028 0.000 0.003

DYS389I 0.090 0.000 0.000 0.001 0.000 0.592
DYS389II 0.246 0.624 0.000 0.174 0.001 0.004

DYS390 0.353 0.317 0.323 0.004 0.020 0.001
DYS391 -0.086 0.128 0.053 0.111 0.000 0.047
DYS392 -0.350 0.221 -0.125 -0.091 0.319 0.709
DYS393 0.116 0.021 0.114 -0.130 -0.078 -0.015

Table A.1: Correlation matrix for berlin using Pearson’s correlation coefficient. The lower triangular matrix shows the actual correlations, and
the upper triangular matrix shows the two-sided p-values from testing if the correlations are equal against being different.

137

DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439
DYS19 0.001 0.000 0.000 0.303 0.000 0.049 0.000 0.079 0.000

DYS389I 0.249 0.000 0.000 0.001 0.000 0.012 0.000 0.000 0.963
DYS389II 0.341 0.784 0.000 0.066 0.733 0.011 0.000 0.094 0.290

DYS390 0.376 0.430 0.504 0.000 0.017 0.252 0.000 0.000 0.511
DYS391 -0.076 0.244 0.135 0.328 0.000 0.592 0.000 0.000 0.150
DYS392 -0.283 0.283 0.025 0.176 0.486 0.842 0.003 0.000 0.000
DYS393 0.145 0.184 0.188 -0.085 -0.040 -0.015 0.017 0.104 0.202
DYS437 -0.405 -0.640 -0.650 -0.659 -0.289 -0.221 -0.176 0.000 0.076
DYS438 -0.130 0.348 0.124 0.467 0.622 0.778 -0.120 -0.394 0.000
DYS439 -0.347 -0.003 -0.078 -0.049 0.106 0.432 -0.094 0.131 0.298

Table A.2: Correlation matrix for dane using Pearson’s correlation coefficient. The lower triangular matrix shows the actual correlations, and
the upper triangular matrix shows the two-sided p-values from testing if the correlations are equal against being different.

138
C
hapter

A
:C

orrelation
M
atrices

DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439
DYS19 0.000 0.000 0.000 0.141 0.000 0.614 0.004 0.000 0.528

DYS389I 0.361 0.334 0.000 0.067 0.000 0.337 0.886 0.000 0.375
DYS389II -0.543 0.069 0.000 0.760 0.000 0.285 0.496 0.000 0.304

DYS390 -0.621 -0.267 0.313 0.443 0.036 0.001 0.000 0.000 0.333
DYS391 -0.104 -0.129 -0.022 0.054 0.962 0.035 0.030 0.077 0.005
DYS392 0.260 0.500 -0.303 -0.148 0.003 0.479 0.052 0.000 0.124
DYS393 0.036 0.068 0.076 -0.241 -0.149 0.050 0.000 0.153 0.576
DYS437 0.204 -0.010 -0.048 -0.336 -0.153 -0.138 0.260 0.416 0.009
DYS438 -0.799 -0.464 0.623 0.469 0.125 -0.564 0.101 -0.058 0.274
DYS439 -0.045 -0.063 0.073 -0.069 0.199 -0.109 0.040 0.185 0.078

Table A.3: Correlation matrix for somali using Pearson’s correlation coefficient. The lower triangular matrix shows the actual correlations, and
the upper triangular matrix shows the two-sided p-values from testing if the correlations are equal against being different.

	1 Introduction
	1.1 Biological Framework
	1.2 Motivation
	1.3 Data
	1.3.1 Subpopulations

	1.4 Notation
	1.5 Supplementary Material

	2 Exploratory Data Analysis
	2.1 Principal Component Analysis
	2.2 Factor Analysis
	2.3 Remark

	3 Estimating Haplotype Frequencies
	3.1 Desired Properties
	3.1.1 Consistent Models
	3.1.2 Requirements

	3.2 Frequency Surveying
	3.2.1 Bayesian Inference
	3.2.2 Estimating Prior Parameters
	3.2.3 Model Control
	3.2.4 Verifying the Method
	3.2.5 Comments on the Method
	3.2.6 Improvement
	3.2.7 Generalising the Method

	3.3 Graphical Models
	3.4 Ancestral Awareness
	3.4.1 How to Choose the Ancestral Set
	3.4.2 Fixed Size of the Ancestral Set
	3.4.3 Threshold of the Proportion of Haplotypes Left Given the Ancestral Set
	3.4.4 Mutation

	3.5 Classification
	3.5.1 Classification Trees
	3.5.2 Ordered Logistic Regression
	3.5.3 Support Vector Machines

	3.6 Kernel Smoothing
	3.7 Model-Based Clustering

	4 Methods for Comparison of the Models
	4.1 Observed Probability Mass
	4.1.1 Verification Through Simulation

	4.2 Marginals
	4.2.1 Deviance
	4.2.2 How to Find Marginals
	4.2.3 Normalised Marginal Approximation
	4.2.4 Bootstrapping

	4.3 Deviance Comparing Predicted with Relative Frequencies
	4.4 Multinomial Distribution

	5 Results for Comparison of the Models
	5.1 Implementation
	5.1.1 Classification Models
	5.1.2 Kernel Smoothing

	5.2 Properties of the Datasets
	5.3 Classification Models
	5.3.1 Unobserved Probability Mass
	5.3.2 Single Marginals
	5.3.3 Pairwise Marginals
	5.3.4 Assessing Validity of Normalising Predicted Marginals
	5.3.5 Deviance Comparing Predicted with Relative Frequencies

	5.4 Frequency Surveying
	5.5 Ancestral Awareness
	5.6 Kernel Smoothing
	5.7 Model Based Clustering
	5.8 Comparing Models

	6 Evidence
	6.1 Two Contributors
	6.2 n Contributors
	6.2.1 Approximation with Known Error Bound

	6.3 The -model

	7 Recapitulation
	7.1 Further Work
	7.1.1 Statistical Model Incorporating Genetic Knowledge
	7.1.2 Y-STR Mixtures
	7.1.3 Subpopulations
	7.1.4 Extended Models
	7.1.5 Signal Processing

	A Correlation Matrices

