Winter Gritting Routes with
Multiple Visits

A heuristic for a capacitated arc routing problem with
heterogenous vehicles with different covering widths.

Master’s thesis

Lasse Damtoft Nielsen

Aalborg University
Mathematics-Economics

Copyright © Aalborg University 2019

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Winter Gritting Routes with Multiple
Visits

Subtitle:

A heuristic for a capacitated arc rout-
ing problem with heterogenous vehicles
with different covering widths.

Project Period:
Fall Semester 2019

Student:
Lasse Damtoft Nielsen

Supervisor:
Peter Nielsen
Inkyung Sung

Page Count:

Date of Completion:
December 19, 2019

Mathematics-Economics
Aalborg University
http://www.aau.dk

Abstract:

In this project we address the practi-
cal aspects of solving the problem of
winter gritting, as a Capacitated Arc
Routing Problem (CARP). Specifically,
based on discussions with COWI, and
a literature review we find two main
gaps in the current literature, and fo-
cus on the most important of these.
That is the fact that the number of
times a vehicle needs to visit a road
to service it depends on the specific
vehicle. We then proceed to propose
a solution heuristic which can handle
this type of problem, i.e. determin-
ing which roads should be serviced by
which vehicles. The proposed solu-
tion utilizes existing methods for the
sub-problems that are well researched,
while introducing a method for the
multiple visits. The parameters of the
proposed solution are tuned and we
test our heuristic on test instances from
literature. We find that the proposed
solution works and while there are no
existing solutions in the literature to
compare our results to, we find po-
tential for improvement which we ad-
dress at the end.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

[Prefacel

(I _Introduction|

O

Ol

[3 Proposed solution|

4 Analysis

4.1 Parameter tuning| o oL

Bibliograp

Y

vii

N

13

21
21
22

25
26

27

Preface

This project has been carried out in the final semester of the Mathematics-Economics
Masters degree with specialization in operational research.

I want to thank my supervisors, Peter Nielsen and Inkyung Sung, for their devoted
help on this project. I would also like to thank COWI for the cooperation, espe-
cially, a thanks to Ulla L. Serensen and René Carlsbaek Gundersen for their help
through the project.

Aalborg University, December 19, 2019

Lasse Damtoft Nielsen
<ldnil4@student.aau.dk>

vii

Chapter 1

Introduction

To set the scene of this project lets go back in time to the city of Konigsberg (now
Kaliningrad) which in the 18th century had seven bridges, joining four landmasses
as shown in Figure[I.1} The people of Kénigsberg wanted to find a route that would
cross each bridge exactly one time. This problem was formalised by Leonhard
Euler in [1], which laid the foundation for graph theory. Euler proved that the
problem could not be solved as each landmass had an odd number of bridges. His
work in this field inspired the terms Eulerian path and Eulerian cycle or circuit, for
when it is possible to traverse each arc of a graph exactly one time. Eulerian path
for when it is not possible to start and end in the same node and cycle or circuit
when it is possible.

Many years later, in 1962 this problem was further elaborated into the Chinese
Postman Problem (CPP) by Mei-Ko Kwan [2]. The problem got its name from
the problem faced by postmen who needed to cover all roads in a given region
while travelling the minimum total distance. Similarly to the Konigberg bridge
problem, the problem is to cover all arcs in a graph, however, accepting that some
must be traversed more than once and this extra distance is sought minimized. In
1974 C.S. Orloff further suggested the Rural Postman Problem (RPP) where only

Figure 1.1: The bridges of Ktnigsberg

2 Chapter 1. Introduction

a subset of the arcs needs to be visited [3]. Since then a number of variations has
been suggested including the Windy Postman Problem (WPP) where the cost of
arcs are different depending on the direction it is traversed in. Finally, we arrive
at the focus of this project namely the Capacitated Arc Routing Problem (CARP),
which was introduced in 1981 by Bruce L. Golden and Richard T. Wong, which
is the larger problem of the RPP where multiple routes should be constructed (in
the postman setting representing multiple postmen sharing the job) and include
a capacity for each route (in the postman setting a maximum load of mail each
postman can carry on the route) [4].

1.1 Problem description

Today the CARP remains relevant to describe problems faced in many aspects
of both public and private businesses, where street segments rather than specific
points need service, e.g. waste collection, street sweeping, snow ploughing, or as
is the case in this project salt spreading, which is also known as the Winter Gritting
problem. In the winter of countries where snow is common, a problem faced by
municipalities is that of winter gritting. That is the need to spread salt or sand
on the roads to ensure traffic safety. This problem is for example faced by many
municipalities in Denmark to construct routes for contractors who then does the
winter gritting using a number of gritting vehicles starting from a central depot.
The winter gritting problem is typically formulated as a CARP. The objective is
to minimize the total routing cost or time consumption and the CARP has been
proven to be A'P-hard [5].

One company that is faced with this problem is COWI, which "is a leading con-
sulting group" [6] who does this planning for some municipalities in Denmark.
In the beginning of this project we had a meeting with COWI where we gained
some insights into the practical aspects of winter gritting they were facing. Even
though winter gritting is a fairly well researched problem, we believe the real-life
problem has some aspects that has not been researched thoroughly. The situation
that must be addressed by COWI is highly complex. It is primarily constrained
on the following factors. The problem is that of winter gritting a set of roads in a
municipality. The roads are sorted into several categories as for the type of road,
as well as the priority of having it gritted. For simplicity we will stick with one
naming convention namely categories, but it should be noted that there is an im-
plied prioritization in this term. This should be done with a heterogeneous set of
vehicles, where some vehicles may need to service a given road more than once,
depending on the particular equipment (width with which it can spread salt) and
the width of the road. Furthermore, some vehicles may need to only travel the
roads they have been classified for servicing (for example, tractors should never

1.2. Literature Review 3

use the highway), while others may use other category roads. This is called the
vehicle road segment dependency. This last part is both due to the nature of each
vehicle but also the number of complaints the municipality receives from citizens
when they see a gritting vehicle traversing a road that is not yet serviced (or being
serviced at all). Finally the time it takes to deadhead (traverse but not service) a
road may change when it has already been serviced. However one thing that it
does not need to handle is directed arcs, as these are not commonly seen in the
same areas where the rest of these problems occur. We can therefore focus only on
the setting where roads can be traversed and serviced in both directions. To sum
up, we think that a practical real-life solution to the winter gritting problem should
be able to handle:

o Different categories of roads.

e Differences in road width and spreading width of the vehicles, and thus
the number of times a vehicle needs to traverse a road in order for it to be
serviced.

e Deadheading time change when serviced.
e Heterogeneous fleet including the vehicle road segment dependency.

A practical real-life solution to the winter gritting problem should be able to handle
these different additions to the CARP, as well as being reasonable in computational
speed. The reason that computational speed is a factor is both that a set of roads
which needs service, may be subject to day-to-day change, as the whether changes,
and that the results should be available within a reasonable time in order to "proto-
type" long-term changes, for example moving the depot, expanding or decreasing
the fleet or up- or downgrading the equipment on vehicles or changing the cate-
gory of certain roads. We believe that these additions to the CARP has not been
researched fully and we will now briefly introduce some of the literature in order
to back up this belief.

1.2 Literature Review

Several methods dealing with the CARP already exist. In [5] and [7] many of these
are presented and discussed. In this section I will limit my review to those methods
designed for a variation of the winter gritting problem similar to the problem we
seek to research.

The problem of having several categories of roads is well known and a number
of ways to handle this has been proposed [8]. One common way of handling this
problem is called linear precedence relation, which means that the most important
roads must be serviced before any of the next category and so on. This is a hard

4 Chapter 1. Introduction

constraint and the slightly weaker version where the high priority must be serviced
before any of the low priority, but where medium can be done at any time is called
the general precedence relation, and several algorithms has been proposed in the
case of each type of constraint. A factor which plays an important role in the
ability to solve these types of problems efficiently is that of connectivity. When
splitting the network of roads into sub-graphs there is no guarantee that these
sub-graphs are connected (while we expect the whole network to be connected). If
all the sub-graphs induced by the categories are connected there exist polynomial
time solutions, however this is not generally the case in real-life [8]. As this type of
problem is well researched, and the winter gritting problem has a linear precedence
relation, we will disregard this part of the problem in our solution and state that it
should be made in a way that allows it to solve the problem on each of the distinct
categories of roads, while allowing for some deadheading on other categories in
order to ensure connectedness of the sub-graphs induced by each category.

The aspect that deadheading an arc may not take a fixed amount of time, but may
vary if the arc has been serviced beforehand (it should be faster to deadhead it
later on), is presented in [9], where they also present a solution heuristic that is
able to handle this variation. They also include having different cost for different
travel directions to account for ploughing uphill or downhill, and even though our
problem is not that of ploughing there may be some cases where this property
applies to salt trucks as well. However [9] only considers a single vehicle does
not include having different categories of the given roads, as well as not having a
limited capacity on the vehicle.

Thirdly the problem of the heterogeneous fleet is described in [10] that also consid-
ers having multiple depots, which could also be the case in the problem in real-life.
The vehicles would usually be largely decentralized as they are often owned by
private contractors who then do the servicing for the municipality, however this
can be disregarded as the vehicles would need to start at the depot in order to be
loaded with salt. While they fail to consider different categories of roads this could
be fixed by solving the different priority classes separately, which is equivalent to
solving the problem using linear precedence relation and assigning the vehicles
to the highest priority class they can service. However [10] (as all of the above)
consider the cost of the road to be fixed as a mapping of the length, and this is not
the case if the heterogeneous fleet of vehicles travels at different speeds (tractors
being slower than trucks) which means that the cost of a road in practice can not
be considered constant. In [11] they introduce different costs for different types
of trucks, as well as a matrix to indicate whether some types of trucks can service
other classes than their own. This is very similar to the problem that we address
(for the heterogeneous fleet part) however this model is made with waste collection
in mind and it thus do not include changes in deadheading time or categories of

1.2. Literature Review 5

roads.

Furthermore the heterogeneity of the vehicles in practical cases also introduces
the need for some vehicles to do several passes of a road, in order to consider
it serviced, where other vehicles may be able to service it in one pass. This is
touched on in [12] for Arc Routing Problems (ARP) where they include two types
of vehicles, where one may need to service an arc twice, however as it is for ARP
they do not include capacities for the vehicles and only include two types of vehicle
for snow grooming. In our case, the capacity is an important part of the problem
and we cannot limit it to a pre fixed number of vehicle types. Thus this is not a
type of problem that we have been able to find similar in the literature.

With this review, which is summed up in Table we have identified some of
the remaining problems in solving the winter gritting problem. While some of the
problems has been addressed in the literature there do not exist a single solution
for this type of problem. We therefore seek to combine what has already been ad-
dressed in a new way, to fit this problem, along with solving some of the remaining
problems, that has not yet been addressed. While both the multiple visits and the
change in deadheading speed parts of the problem deserve to be researched fur-
ther, doing both would be outside the scope of this project. From our meeting with
COWI, we found out that the speed change does not impact their routes as often
and therefore, the most important of the two is allowing for multiple visits. We
thus limit the scope of this project to solving the problem of having multiple visits
to a given road segment, if the allocated vehicle cannot service it in a single visit.

. Multiple Speed Heterogeneous .

Reference Categories Visits Change Fleet Capacity
[9] No No Yes No No

[x0] No No No Yes Yes

[31] No No No Yes Yes

[12] Yes Two No Yes No
COWI's Yes Any number Yes Yes Yes
problem

Prop9sed Any number No Yes Yes
solution

Table 1.1: Overview of reviewed references

The remainder of this project will be structured as follows: In Chapter [2| we will
give a more detailed and mathematical description of the introduced problem. In
Chapter 3| we will propose a solution algorithm able to handle the CARP with
potential multiple visits. In Chapter 4| we tune the algorithm as well as analyse
results from using it. Finally we will conclude on our findings in Chapter 5, Please

6 Chapter 1. Introduction

note that we assume that the reader is familiar with basic graph theory and the
terminology of this.

Chapter 2

Modelling

In order to solve the problem addressed in this project, we would first need to have
a proper model for it, so that we are clear what the constraints are and what needs
to be optimised.

Let the graph G = (V, A) represent the road network, where V is the vertices
(traffic junctions) and A is the arcs (roads), now let Ax C A represent the arcs in
G that require service. Now let p € P be the possible arc sets and k € K be the
vehicles. Then each set of arcs p can be allocated to a vehicle k from which we can
calculate the cost C'If7 of servicing route p with vehicle k. This C’;, is the time it takes
to service all the arcs in set p with vehicle k including any necessary deadheading
time, however not including the time to return to the depot, this cost can be found
by solving a RPP. Let Z]; be the binary decision variable, that is 1 when arc set p is
allocated to vehicle k, and 0 otherwise:

7k _ 1, if arc set p € P is allocated to vehicle k € K 2.1)
P 0, if arcset p € P is not allocated to vehicle k € K. '
This allows us to do a set-partition formulation of the problem as:
min Z (2.2)
s.t.
Z> chzk (2.3)
Y)Y aiZ p—l V(i,j) € Ar (2.4)
K P

8 Chapter 2. Modelling

dpz’; <Qp VkeK (2.5)
Y 7y <1 VkeK (2.6)
P

Zy€{0,1} VkeK VpeP 2.7)

Where d, is the total demand of arc set p, Qy is the capacity of vehicle k, and a;; an
indicator variable that there is an arc connecting nodes i and j. First we have the
objective function in (2.2), which is directly constrained by (2.3). This formulation
states that we seek to minimize the time it takes for the last vehicle to finish its
job. This objective is chosen because we need all the required arcs to be serviced,
however we do not gain any additional value from being faster back at the depot
and thus there is no reason to include this travel time in the minimization. This
objective is also what is used by COWI, where their contract is to make sure that
the roads are gritted in a certain time-frame, but does not include that the vehicles
have to return to the depot in this time. A Figure of the chosen objective is shown
in Figure We refer to this as makespan optimization. In (2.4) we make sure
that a solution needs to service all roads in Ag. In we ensure that no route
needs more salt than the capacity of the given vehicle. In we ensure that no
more than one set of arcs are allocated to a single vehicle, and is just that Z;‘,
is a binary variable.

We now have a formal description of the problem we seek to solve and are ready
to propose a solution method.

Travel to rout%>< Service route > Return to the depot >
1
Travel to route> Service route Return to the depot

Return to the depol>

®
o

®
[o

Travel to route Service route

®
(o

VA

)\
Make-span

Figure 2.1: Decomposition of vehicle routes, our objective is the dotted line

Chapter 3

Proposed solution

When looking to solve a problem as the one proposed in this project which is N'P-
hard we typically look towards algorithms. Three types of algorithmic methods
dominate the field, they are, exact solutions, meta-heuristics and classical heuris-
tics. Exact solutions however only work for small problem instances of the problem
and thus we disregard this type, as we seek a solution that works for large-scale
problems. Meta-heuristics most often require a large number of iterations to obtain
high quality solutions and are thus time consuming for large problem instances
[13]. However we cannot say whether the type of solution we are aiming for in this
project is reachable with metaheuristics as the computational speed vs quality of
solution trade-off, in a decision support system has less emphasis on the speed.

The way (meta)heuristics works is that we start with some solution which is eval-
uated and updated, usually with some predefined way of ensuring convergence
but sometimes also with some randomness to allow for exploration of the solution
space. This is repeated until some pre-defined convergence criterion is reached
or a time limit is met. Our goal is to reach the best allocation of arcs to specific
vehicles as well as the routes going through the graph that covers these arcs in the
least amount of time. We will do this with a genetics inspired algorithm.

The way we propose to solve this problem is to start with some (initially random)
arc allocation, i.e. a set of arcs is allocated to each vehicle in accordance with their
compatibility. Then from this allocation a route for each vehicle is found, which
is then evaluated with our objective function (2.2). Then the arc allocation is up-
dated and the process is repeated. The way we update our solution is to perform a
neighbourhood search and at each step a population of the best solutions are kept
and used in the next iteration, this process is repeated until there are no improve-
ment is found. A flowchart of this procedure is shown in Figure Because of
the implied prioritization in the classification of roads, higher classification roads

10 Chapter 3. Proposed solution

. o . Return arc
{Arc allocation HRoute fmdmgH Evaluation H allocation }

kﬂepeat,//

Figure 3.1: Flowchart of proposed solution

will be serviced with all available vehicles before allocating vehicles to lower clas-
sification roads. This means that the algorithm should simply run isolated on the
distinct categories with the vehicles available, and thus there is no algorithmic
need to incorporate categories into the solution. However note that one may need
to add arcs to the graphs induced by the different categories to ensure connected-
ness. This is how it is handled in much of the literature, and COWI confirms this
method, as higher categories of roads are much more important. We will now go
through the steps of the algorithm to further give an understanding of the proce-
dure, a pseudo-code of the algorithm is included in Algorithm (I, note that this is
the whole proposed solution and that which part of the pseudo-code belongs to
which parts of the solution, is shown in the caption.

Arc allocation

Arc allocation is the procedure of assigning each arc to a vehicle, which is in terms
of our optimization problem to determine the which Z';; should be 1. This can
be done in a number of ways, but for an initial population we will simply do it
randomly, while making sure that the capacity constraint of each vehicle is satis-
fied, as well as the vehicle road segment dependency. The way we update in this
algorithm is a neighbourhood search, specifically for each solution in the popula-
tion we try assigning each arc to each of the other vehicles available. This forms a
rather large tree which is then pruned based on a number of checks that are much
computationally cheaper than to find the routes. First of course is whether it is
feasible, so if it keeps the capacity constraint and is not using vehicles that are not
classified for specific arcs. Second is the fixed cost, as it is possible at the point of
arc allocation to know some of the value of the objective function. Namely how
much time is spent servicing these arcs plus the time spent on connecting them,
but without counting the time to get to the route and the deadheading encoun-
tered on the route. If the fixed cost is already higher than the best known solution
then we do not need to determine the routes of this allocation to know that it is
inferior. Third we have included an index to grasp the dispersion of the graph, i.e.
how connected it is and thus serve as a measure of how efficiently it makes use
of resources. This is the number of disconnected sub-graphs in an arc allocation,
divided by the number of arcs that needs to be served. This is the reciprocal of the
number of arcs per sub-graph, and in our implementation the limit is set to 0.5.

11

Input: graph, vehicles, pop_size, N_mutations
1 population = random allocation x pop_size ;
2 best = best of population;
3 old = best+1;
4 while best < old do

5 old = best;
6 | neighbourhood = neighbours(population);
7 for i <— 1 to N_mutations do
8 ‘ add random solution to neighbourhood;
9 end
10 for solution in neighbourhood do
1 if pruning_checks(solution) then
12 ‘ delete from neighbourhood;
13 else
14 ‘ keep in neighbourhood;
15 end
16 end
17 for solution in neighbourhood do
18 for vehicle in vehicles do
19 route_vehicle = solve RPP;
20 value_vehicle = evaluate route_vehicle;
21 end
22 value_solution = max(value_vehicle);
23 end
24 if any(value_solution < population) then
25 update population;
26 if any(population < best) then
27 ‘ update best;
28 end
29 end
30 end

Algorithm 1: Pseudocode for proposed solution. Lines 1-3 is the initializa-
tion, lines 6-16 is the arc allocation, lines 17-23 is the route finding and lines
24-29 is the evaluation.

12 Chapter 3. Proposed solution

Thus meaning that if each disconnected sub-graph on average contains less than
two arcs then the solution is not efficient. It may be reasonable to set this number
even lower for large problems, however as we are mainly interested in pruning we
keep this at 0.5 to not cut too many potential solutions. Furthermore, a number of
random potential solutions are added at each step in an attempt to explore more
of the solution set.

Route finding

The process of route finding is to solve a RPP, which is in general N'P-hard [14],
for each vehicle, i.e. to find the route covering the specific arcs allocated to each
vehicle, with the shortest total travel-distance. To solve this RPP we use two heuris-
tic solutions and pick the better of their two results. The first heuristic is the so
called Frederickson heuristic [15] and the second heuristic is one that is inspired
by Frederickson but which does not form an entire Eulerian cycle but only a path,
as our objective is to minimize the time until the job is done, not including the
time to return to the depot. The Frederickson is well explained in [14]. The pro-
cess of the other heuristic is to first make the graph of the required arcs into a
connected graph. The is done iteratively by first looking at one of the connected
sub-graphs and from this find the shortest path from any node in this sub-graph to
any node in any other connected sub-graph. When this is found, the shortest path
is included into the required arcs and the two connected sub-graphs now form
one connected sub-graph, these steps are then repeated until all of the required
arcs are connected. Of course if the sub-graph from an arc allocation was already
connected then this step is skipped.

Once a connected graph is acquired the next step is to make it have Eulerian paths
or cycles. This is again done iteratively by looking at the nodes with odd degree
and determining the shortest path between all of these, then the minimum of these
shortest paths is duplicated and the two nodes it goes from and to are now even
degree. This process is repeated until only two nodes have odd degree. Now we
have a connected graph with no more than two nodes having odd degree and thus
there exists a Eulerian path [16].

At this point we can find the Eulerian paths, however it may not be optimal, as the
two endpoints are fixed since we have two nodes with odd degree, we therefore
compare the cost of travelling from the depot to the nearest of these endpoints to
the cost of adding the shortest path between them to the graph and then instead
going to the node nearest to the depot and starting the route from there. Once this
step is done we have a route for the RPP and the cost of this is compared to the
outcome of the Frederickson algorithm and the better route is used. We note that if
some of the road segments allocated to a given vehicle leads to the need of multiple
visits, we would simply duplicate this road segment and require all duplicates of it

3.1. Example 13

to be serviced, and thus still have a RPP. Of course many other heuristics than the
Frederickson algorithm has been developed through the years, however the main
focus of this project is not to provide a solution to the RPP and thus we use the
Frederickson algorithm and note that some of the many other algorithms could
readily be used in its place.

Evaluation

Given now a set of routes we know the C’;’s and can thus determine the value
of the current solution from . At this step we further evaluate which part of
the neighbourhood should replace part of the current population and if updates
should be made to the best known solution. If no better solution is found in
the neighbourhood, then the loop breaks and we return the currently best known
allocation.

Note that we have two parameters in this process, namely the population size and
the number of mutations.

3.1 Example

I will now go through a simple example of how the mechanics of the described
heuristic works. The example graph is shown in Figure The arcs of this graph
are also represented in Table 3.1| in order to better explain the steps. Lets say we
have two vehicles as described in Table Both vehicles are classified to grit all
road segments, which is of the same classification. The capacity of the vehicles are
far greater than what is spent in this example so this is not included, however it
is a fairly simple check to calculate the salt usage vs the capacity of the particular
truck. I will start with a single arc allocation and go through route finding and
evaluation for this, and then go back to arc allocation to show how it is updated.

3.1.1 Arc allocation (i)

We start with a random arc allocation, lets say that vehicle one grits arc, 1,3,6,8,9,11,
and 13, and vehicle two does the rest of them. This gets us two sub-graphs that
should be covered by the two vehicles. These sub-graphs are shown in red in

Figure 3.3}

3.1.2 Route finding

Step two is to determine a route for each of these sub-graphs that starts in the
depot. It is clear that even at this relatively simple example there is no clear route
that is the best for each of the vehicles. Given this arc allocation we see that vehicle
one has three disconnected sub-graphs, i.e. in terms of arcs (1,3), (6), (8,9,11,13),

14 Chapter 3. Proposed solution

Figure 3.2: Example graph, note that the width of the arcs are different, the numbers on the arcs
represent the lengths, this graph is further illustrated in Table

Arc Nodes Length Width

1 1-2 2 3
2 1-3 1.5 3
3 1-4 3 3
4 2-8 4 6
5 3-6 7 6
6 39 5 6
7 4-6 1 6
8 5-6 0.5 6
9 5-7 0.25 3
10 6-7 1 6
11 6-10 1.5 3
12 79 3 3
13 7-10 0.5 6
14 89 6 3

Table 3.1: Table representation of arc in graph from Figure

3.1. Example 15

ID Spreading Width Service Speed Deadhead Speed
1 3 15 30
2 6 30 60

Table 3.2: Vehicle list.

wat)

2
S e @ 7@\5
£ \/@ @@% 6

Figure 3.3: Sub-graphs formed by arc allocation

1.5
3
;1

looking at the sub-graph (1,3) we see that it can either be connected to (6), at a
cost of 1.5 or to (8,9,11,13) at a cost of 1 and thus it is connected to (8,9,11,13)
by adding arc number 7. Next is now to connect (1,3,7,8,9,11,13) to (6) which is
done cheapest at 1.5 by adding arc 2, and thus the connected sub-graph now spans
(1,2,3,7,8,9,11,13).

Next we need to make this sub-graph Eulerian, note that every arc with a width
of 6 is included twice to ensure that is it serviced twice as vehicle one only has
a width of 3. The degrees of the nodes are shown leftmost in Table So to
make the graph Eulerian we will go through the process of the heuristic that is not
Fredericksons, as Fredericksons has been explained thoroughly, through the years.
We start by looking at the shortest paths between each of the odd degree nodes,
this is shown at the top in Table and pick the minimum value. In this example
we first add a path from 5 to 7, and in this case that is the specific arc, however it
could be multiple arcs and it would not have to be from the set of arc that needs
service. This gives us a new node table shown in the middle of Table [3.3|and new
table of shortest paths between odd degree nodes in the bottom of Table Here
the shortest path is from 1 to 3 and thus this is added giving us another new node
table where we can see that there now is exactly two nodes with odd degree and
since this graph is connected, there must exist a Eulerian path.

Next we must determine whether to use the Eulerian path or to add the final

Chapter 3. Proposed solution

Node Degree Node Degree Node Degree

1 3 1 3 1 4
2 1 2 1 2 1
3 3 3 3 3 4
4 2 . 4 2 . 4 2
5 3 5 4 5 4
6 4 6 4 6 4
7 3 7 4 7 4
9 2 9 2 9 2
10 3 10 3 10 3

Table 3.3: The degrees of nodes in the connected sub-graph for vehicle one.

Nodes | 1 2 3 5 7 10

1 0 2 1.5 45 475 525
2 2 0 35 65 675 7.25
3 15 35 0 6 6.25 6.75
5

7

45 65 6 0 25 75
475 675 625 25 0 5

10 525 725 675 75 5 0
i
Nodes ‘ 1 2 3 10
1 0 2 1.5 | 525
2 2 0 3.5 7.25
3 15 35 0 6.75
10 525 725 675 0

Table 3.4: Shortest paths between odd degree nodes.

3.1. Example 17

connection between 2 and 10 and thus having Eulerian cycles. First we determine
the point in the sub-graph closest to the depot, in this case it would be 1, and check
if a Eulerian path starts here, if it does then this is used as the route. If no Eulerian
path starts in 1, as in this case where the endpoints are 2 and 10, then we first
check the minimum distance from the depot to either of these points, in our case
this is node 2 which adds a distance of 2 to the route. This is compared to the cost
of connecting 2 and 10 which is 7.25 (as the connection of nodes (2-1-4-6-5-7-10),
has a total length of 7.25) and since it is shorter to go to 2 and start from there, that
is what we do. From this we can get the following route (1-2-1-3-9-3-1-4-6-5-7-10-
7-5-6-10) which is the route for vehicle one given this arc allocation.

The arcs for vehicle two are already connected, so that step is skipped, furthermore
it is fairly trivial to see that by duplicating the arc from 4 to 6 a Eulerian path is
readily available starting in 1 and ending in 2 so this gives us the route for vehicle
two (1-3-6-4-6-7-9-8-2).

That way all road segments are served (some are served twice by vehicle one)
and every subsequent visit after servicing a road segment will be at deadheading
speed.

3.1.3 Evaluation

With these routes in hand it is a simple calculation of dividing the length of each
segment by the speed at which is it done to get the time consumption of each
segment which is then summed for each vehicle to determine the total time of each
vehicle. The routes and speed at which the road segments is carried out is shown
in Tables B.5land B.6l Total time of vehicle one is 87.5 minutes and for vehicle two
it is 48 minutes, thus for our objective function the value of this solution is 87.5
minutes, as we seek to minimize the time spent until the last job is done. Since no
previous best solution exists at this point we repeat.

3.1.4 Arc allocation (ii)

While what we have just illustrated was just for a single arc allocation this proce-
dure should be carried out for a population and the neighbourhood of this popu-
lation. To illustrate this neighbourhood lets say the arc allocation used above is the
population and thus this is with a population size of one, which is a configuration
one could use in the algorithm. The neighbourhood is found by allocating each arc
in each of the members of the population to each of the other available vehicles.
In this case with two vehicles it would simply mean moving each arc from one
vehicle to the other, but with more vehicles comes alot more neighbours. In Table
the current population is shown, along with all of the neighbours.

18

Chapter 3. Proposed solution

Arc Length [Km] Speed [Kph] Time [minutes]
1 2 15 8

1 2 30 4

2 1.5 30 3

6 5 15 20

6 5 15 20

2 1.5 30 3

3 3 15 12

7 1 30 2

8 0.5 15 2

9 0.25 15 1

13 05 15 2

13 05 15 2

9 0.25 30 0.5
8 0.5 15 2

1 15 15 6

Table 3.5: The routes of vehicle one.

Arc Length [Km] Speed [Kph] Time [minutes]
2 1.5 30 3

5 7 30 14

7 1 30 2

7 1 60 1

10 1 30 2

12 3 30 6

14 6 30 12

4 4 30 8

Table 3.6: The routes of vehicle two.

3.1. Example 19

Now each of these neighbours are checked to see if they keep the capacity con-
straint, as well as the vehicle road segment dependency, as it would not make
sense to keep them otherwise. Then we check if they violate any of the early signs
that they wont be better than the current. That is the size of their fixed cost, i.e.
the time it would take to service all arcs after connecting the sub-graphs, assuming
that one can always go directly from one required arc to the next, without any
deadheading. If this time expenditure exceeds that of the best currently known
solution, then this arc allocation will be inferior as the time usage of the route will
always be greater than or equal to this fixed cost, and there is thus no need to find
the route if we already know it will be worse. Another early sign we use is this
index of the connectedness or dispersion of the graphs, specifically it is the number
of disconnected sub-graphs divided by the number of arc, so for vehicle one in the
above for example this number would be % and thus it would survive as our limit
is 0.5. Neighbours in violation of any of these limits are pruned away. Then we
draw a number of random solutions (these are also checked for feasibility, fixed
cost and dispertion) which are not bound by the current population and these are
added to the neighbourhood list. The neighbourhood is then put through the pro-
cess of route finding and evaluated, after which the population is updated along
with the best known solution.

Allocation \ Arc 123 45 6 7 8 9 10 11 12 13 14
Current population 1 2 1 2 2 1 2 1 1 2 1 2 1 2
Neighbour 1 2212212112 1 2 1 2
Neighbour 2 1112212112 1 2 1 2
Neighbour 3 1222212112 1 2 1 2
Neighbour 4 1211212112 1 2 1 2
Neighbour 5 1212112112 1 2 1 2
Neighbour 6 1212222112 1 2 1 2
Neighbour 7 1212211112 1 2 1 2
Neighbour 8 1212212212 1 2 1 2
Neighbour 9 1212212122 1 2 1 2
Neighbour 10 1212212111 1 2 1 2
Neighbour 11 1212212112 2 2 1 2
Neighbour 12 1212212112 1 1 1 2
Neighbour 13 1212212112 1 2 2 2
Neighbour 14 1212212112 1 2 1 1

Table 3.7: Neighbourhood of the arc allocation in the example.

With this proposed solution we hope to be able to handle the more practical aspects
of winter gritting introduced in Chapter [II However to further understand our
proposed solution and find potential for further development of the algorithm we

20 Chapter 3. Proposed solution

need to analyse the performance.

Chapter 4

Analysis

We start the analysis with a parameter tuning test, where we try population sizes
and number of mutations ranging from 1 to 10 and for each do 100 runs of the
proposed algorithm which has been implemented in R. From these tests we will
chose a parameter setup which we will use on data from [17]. However this data is
from waste collection and thus we will disregard the waste-properties in the data
and as road width is not something that has previously been included in models
we will use randomized widths, drawn from a uniform distribution between 6 and
12 meters. We will then compare results from the algorithm descriped in Chapter
vs one only running the greedy RPP heuristic, for a range of problem instances,
as there are no existing solutions to compare our results to.

4.1 Parameter tuning

The median objective values of the 100 runs of each parameter setup is shown in
Table We choose to compare medians to get a more robust choice of parame-
ters. We clearly see a tendency towards larger populations giving better objective
values. We also see that above a certain number of mutations the value of addi-
tional mutations diminishes. Similarly the median computational time is shown
in Table Here we note that the computational time is roughly multiplied by
6 from having a population of only one, to having a population size of 10. How-
ever there is no clear picture that adding more mutations has significant impact on
computational time. We are now faced with a trade-off, it seems that the compu-
tational time has a level of less than a minute with population sizes below seven,
after which it increases to more than 1.5 minutes, while the objective value stops
decreasing as much when the population size is above five. We therefore choose
a population size of six, as it seems enough to get a good objective value, while

21

22 Chapter 4. Analysis

keeping computational time at a reasonable level, we choose five mutations as no
gain seems to come with more mutations than that.

1 2 3 4 5 6 7 8 9 10
56.12 55,50 56.00 56.00 56.00 5550 5575 55.62 55.75 56.00
56.00 55.50 5550 5475 5525 5538 5475 5525 55.00 54.75
55.38 5525 55.00 5525 5425 54.00 5475 5475 54.00 54.75
55.25 5475 54.00 54.00 54.12 54.00 53.62 54.75 54.00
55.25 5475 55.00 54.00

5425 54.00 54.12
54.25 54.50
54.00

O 0 NI O U1 = WO IN -

53.62

—_
e}

Table 4.1: Median objective values, rows are population size and columns show number of muta-
tions. We highlight values < 53.25, and know from brute force that optimal objective is 52.5.

1
2
3
4
5
6
7 1.70 158 161 168 156 152 147 150 1.45
8§ 154 136 145 145 149 169 152 155 153 1.66
9 162 146 170 162 173 164 155 169 163 171
10 169 179 171 186 173 189 184 166 176 179

Table 4.2: Median computational time per run in minutes, rows are population size and columns
show number of mutations. We highlight times < 1minute.

4.2 Test results

The way we do the testing is that we have three different fleets which we will use on
a range of problem instances. The fleets are three subsets of an example fleet of 13
vehicles that COWI has provided. We chose these subsets to represent both trucks
and tractors, they are shown in Figure and are denoted fleet A, B, and C, for
simpler representation in test comparisons. We furthermore know from COWI that
the salt weighs approximately 1,200% and that there is used 17-5; when spread-
ing salt. Unfortunately, late in this project we discovered that there had been an

4.2. Test results 23

error in the implementation, which means that the capacity constraint has not been
evaluated properly, however we proceed with our analysis of the test results as we
do not believe that the capacity constraint would often be the deciding factor, as
the make-span objective seeks to split the workload evenly among the vehicles. We
choose to use COWT’s fleet data as it is readily available for us, however COWI
did not have the necessarily prepared data available. Preparing such data can be
a rather time consuming process and since this is not the focus of this project we
choose to use the data from [17], which is a rather new dataset from 2018 from 5
areas in Denmark and thus we believe that it is comparable to what COWI'’s data
would be like. Some of the properties of the test instances are listed in Table
For each combination of fleet, instance, and solution method we do 50 trials and
show the medians, to not be affected by outliers, and compare results.

spreadwidth capacity service speed deadhead speed

ID vehicle (] (3] [kph] [kph] Fleet(s)
1 Truck 12 6 30 60 ABC
5 Truck 8 5 30 60 ABC
8 Tractor 6 5 15 30 B,C
9 Tractor 6 5 15 30 C

Table 4.3: Fleets, A is the first two vehicles, B is the first three vehicles and C is all vehicles.

Instance Arcs Nodes Required arcs Required length

1 33 26 19 1859
2 35 28 26 2519
3 106 82 76 7561
4 110 80 72 7688

Table 4.4: Test instance properties.

Because of the computational speed of the two algorithms we compare. We are
unable to include massive tests, and since the one including the Frederickson algo-
rithm is slower than the purely greedy algorithm we have fewer results to present
for this algorithm. The test results are shown in Table

We recall that the fleets are increasing in the sense that more capacity and vehicles
are added from A to B to C, and thus we would expect the objective functions to
be strictly decreasing, however we see an increase in each instance when we use
fleet C. Similarly we would expect it to be slower, as more vehicles means a larger
neighbourhood to search through, however observe the opposite, this is the case
for both algorithms. These two things combined tells us that the algorithms may
converge too fast and not search the solution space thoroughly enough to find the
better solutions. This could be because of the random population that is generated

24 Chapter 4. Analysis

Median Median time Median Median time
Instance Fleet objective [minutes] objective [minutes]
greedy RPP greedy RPP proposed solution proposed solution

1 A 3541 3.23 3667 21.19

1 B 2970 2.53 2803.5 29.62

1 C 4128.5 1.18 4613 4.27

2 A 4834 6.66 4873.5 50.99

2 B 3543 13.5 3530.5 92.99

2 C 5807 1.74 5878 8.27

3 A 14709 242.2

3 B 10743.5 441.2

3 C 24649 9.02

4 A 15150.5 153.56

Table 4.5: Results from tests on CARP instances from [17], with randomized widths.

in the begining of the algorithms, but when this is seen in the median we cannot
explain it purely by randomness. This would argue that the neighbourhood search
is not too good at searching the solution space, and that our random mutations
are not enough to counter the effect of fast local convergence. Thus it serves as
an argument that more emphasis should be put into finding a searching algorithm
that can more thoroughly search the solution space, or be smarter at constructing
good guesses. Furthermore we would expect that the proposed solution would
be better than the purely greedy algorithm, but they are in-fact roughly equal in
objective value, with the proposed solution much slower. This is partly due to the
Frederickson heuristic being more time consuming, but since the search algorithm
has not been bound by a time-limit, this does not explain them having roughly
equal objective values. This serves as a second argument that the search of the
solution space should be prioritized further, and that computational time should
not be prioritized towards a good RPP solution if the time could instead be spent
on a better, or more thorough searching of the solution space.

As for whether these computational times are reasonable in a practical sense we
believe that they are. While the test instances we include here are not the most
extreme one could imagine, we see that for roughly 100 arcs connected by 80 nodes
with 75% of them requiring service, we compute a result in less than one day, which
should be sufficient to allow for prototyping changes in the overall system, though
it would not be fast enough for day-to-day changes in which roads require service,
which could often be the case for winter gritting. However we also note that these
tests are carried out on implementation in R which is not famous for its great
speed, so one would expect it to be implemented in C++ if used commercially.

Chapter 5

Conclusion

The aim of this project was to provide a solution to the real-life Capacitated Arc
Routing Problem (CARP), faced when winter gritting with a heterogeneous fleet
of gritting vehicles. We located a number of aspects that should be included in
cooperation with COWI who faces this type of problem every year. We found that
there was especially two gaps in the literature and chose to aim at closing one
of them. Namely the problem that some vehicles needs to service certain road
segments more than once in order to service it fully. We then went on to pro-
pose a solution algorithm which can handle this type of problem, without loosing
the ability to handle the other aspects that has already been covered in existing
research. The solution is a heuristic which does a neighbourhood search around
a population of best known solutions, which is iteratively updated and forms a
new neighbourhood, until no improvements are found. Furthermore, a number
of randomly mutated potential solutions are added to the neighbourhood at each
iteration to try to counter convergence towards poor quality local optima. It fa-
cilitates the use of well known heuristic, the Frederickson heuristic, to solve the
underlying Rural Postman Problems (RPP), which in turn enables an evaluation of
the objective function. The objective of the problem is the make-span, as it was de-
termined in collaboration with COWI to be the most realistic objective to minimize.
The algorithm has two parameters, the population size and the number of random
mutations, was tuned with an example case, and chosen to be five mutations and
a population of size six.

This setup of the proposed solution algorithm is then tested on a set of test in-
stances from the literature, with randomly simulated road widths, as this param-
eter has not yet been introduced to available test data for this type of problem.
This also means that we have no existing solution method to compare the quality
of our solution against, which is why we do tests for both the proposed solution

25

26 Chapter 5. Conclusion

and a greedy algorithm which does not include the Frederickson heuristic. We
note first that the method works however the results of the tests are not unambigu-
ous, as the objective value increases in some instances where resources are added.
Computational time decreases in the same instances, where you would expect the
problem to become more complex and thus take more time. There can be a num-
ber of explanations for this. It could be that there is some underlying quality of
our specific test instances that makes this happen, however this seems less likely
than the previous two explanations and further testing would be required to state
that this is the case. More likely it could be that there are not enough random
mutations added, in order to counter fast local convergence in complex cases, or
that the neighbourhood search is not very well suited to search through the type
of solution space presented in this problem.

We also see from the tests that the Frederickson heuristic does not add much qual-
ity when compared to the tests we do with only a greedy algorithm for the RPP.
So while the Frederickson heuristic is significantly slower than the greedy algo-
rithm, it provides roughly the same results. This indicates that further prioritiza-
tion should be placed on the searching part of the algorithm instead of improving
the solver for the underlying RPP, especially if the computational time is critical.
Finally the algorithm proves reasonable in computational time, however we note
that if it was to be used in a commercial setting where time is an important factor,
it should be implemented in a faster coding language than R, e.g. C++.

5.1 Further work

If the project was to continue, first step would be further testing to know more
about why we see the increase in objective value, when adding resources. With
these tests one should then try to improve the searching algorithm which allocates
the arcs to certain vehicles. We think this should be prioritized above finding
better (shorter) routes to cover the allocated arcs, as we have seen a simple greedy
algorithm do this part of the job in the algorithm as well as a well known and tested
heuristic. Furthermore of course if additional time was allocated to this project one
should also include the change of travelling speed that happens once an arc has
been gritted, as this will also have some affect on the optimality of a given solution.
However along with this being less impact-full in our minds, it is an immensely
complicated thing to evaluate, as some vehicles will deadhead road segments that
has been serviced by other vehicles, which makes for an inter-vehicle-dependant
evaluation, as no make-span for any vehicle can be calculated knowing only its
own route.

Bibliography

[1] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii
academiae scientiarum Petropolitanae (1741) 128-140.

[2] M. Kwan, Graphic programming using odd or even points, Chinese Math 1
(1962).

[3] C. Orloff, A fundamental problem in vehicle routing, Networks 4 (1) (1974)
35-64.

[4] B. L. Golden, R. T. Wong, Capacitated arc routing problems, Networks 11 (3)
(1981) 305-315.

[5] S. Wohlk, A decade of capacitated arc routing, in: The vehicle routing prob-
lem: latest advances and new challenges, Springer, 2008, pp. 29-48.

[6] |About COWI (accessed October 23rd, 2019).
URL https://wuw.cowi.com/about

[7] M. C. Mourdo, L. S. Pinto, An updated annotated bibliography on arc routing
problems, Networks 70 (3) (2017) 144-194.

[8] N. Perrier, A. Langevin, C.-A. Amaya, Vehicle routing for urban snow plowing
operations, Transportation Science 42 (1) (2008) 44-56.

[9] B. Dussault, B. Golden, C. Groér, E. Wasil, Plowing with precedence: A variant
of the windy postman problem, Computers & Operations Research 40 (4)
(2013) 1047-1059.

[10] T. Liu, Z. Jiang, N. Geng, A genetic local search algorithm for the multi-depot
heterogeneous fleet capacitated arc routing problem, Flexible Services and
Manufacturing Journal 26 (4) (2014) 540-564.

[11] A. M. Rodrigues, J. Soeiro Ferreira, Waste collection routing—limited multiple
landfills and heterogeneous fleet, Networks 65 (2) (2015) 155-165.

27

https://www.cowi.com/about
https://www.cowi.com/about

28 Bibliography

[12] S. Hoyland, J. A. Krogstad, The snow grooming routing problem with multi-
ple depots and heterogenous fleet-comparing an exact solution approach with
localsolver, Master’s thesis, NTNU (2019).

[13] S. Wehlk, G. Laporte, A fast heuristic for large-scale capacitated arc routing
problems, Journal of the Operational Research Society 69 (12) (2018) 1877—
1887.

[14] K. Holmberg, Heuristics for the rural postman problem, Computers & Oper-
ations Research 37 (5) (2010) 981-990.

[15] G. N. Frederickson, Approximation algorithms for some postman problems,
Journal of the ACM (JACM) 26 (3) (1979) 538-554.

[16] K. H. Rosen, K. Krithivasan, Discrete mathematics and its applications: with
combinatorics and graph theory, Tata McGraw-Hill Education, 2012.

[17] L. Kiilerich, S. Wohlk, New large-scale data instances for carp and new vari-
ations of carp, INFOR: Information Systems and Operational Research 56 (1)
(2018) 1-32.

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Problem description
	1.2 Literature Review

	2 Modelling
	3 Proposed solution
	3.1 Example

	4 Analysis
	4.1 Parameter tuning
	4.2 Test results

	5 Conclusion
	5.1 Further work

	Bibliography

