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Abstract:

Hydrogels are insoluble three-dimensional polymer
networks that swell in aqueous solutions. They
are sensitive to environmental factors such as pH,
temperature, ionic strength and can respond to
the presence of specific antigens, drugs, peptides,
proteins, enzymes and small molecules. They can be
therefore used to design a drug delivery system where
a slow or triggered release of a hydrophilic drug is
achieved. Since many drugs are hydrophobic, an
additional ingredient can be required – a nanocarrier,
e.g. a polymeric micelle – to produce a universal
drug release/delivery system. Alginate hydrogels
are of particular interest for this task due to their
biocompatibility and biodegradability. Furthermore,
the alginate molecules are cross-linked ionically (non-
covalently) by divalent cations (e.g. Ca2+) which
allows for dynamic re-arrangement of their structures
and also makes the crosslinking process non-toxic
and biocompatible as well. In this project, a
composite drug delivery system (micelle/hydrogel)
will be fabricated through microfluidic channels by a
single emulsion technique. The final microparticles
will be characterized for their morphology, size and
be studied for their drug release.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.
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1. Introduction

Drug delivery systems (DDS) are carrier systems that can transport and deliver drug
cargos to sites in the body of clinical relevance. DDSs apply to drug carriers, composed
primarily of lipids and polymers, processes, preparations, techniques and systems for
distributing the drugs in the body as necessary to ensure the therapeutic effects needed
are controlled [1, 2, 3]. It has been calculated that approximately 40% of licensed drugs
on the market and approximately 90% still in production are poorly water-soluble [4].
Since the human body consists of 65% water, this often leads to poor biodistribution
and rapid GI removal of the drug [5, 2]. Most APIs directly swallowed or injected
intravenously are destroyed by the body, either by the harsh pH of the stomach or
by endocrine action before reaching the target site. Some drugs may also persist in
specific organs and destroy healthy tissue, leading to severe harmful side effects in
patients [6]. The main objective in the field of drug delivery is to develop targeted
delivery and formulations for sustainable release. In particular, the drug would only
be active in the target region of the body (e.g. tumours) through targeted DDS, and
the drug would be released over time under regulation, through the sustained DDS [7].
Nanotechnology has made a major contribution to the production of DDSs in the last
decade. Since then, it is understood that size and shape of nanoparticles (NPs) could help
navigate biological carriers, the application of nanofabrication technologies has motivated
to develop more effective particulate DDS, both top-down and bottom-up. The NPs
size and shape of regulates their bio-distribution. Particles smaller than 20 nm will be
removed from circulation via the reticuloendothelial system (RES) within a few hours of
administration intravenously, whilst larger ones will be lodged within minutes in organs
such as liver and spleen [8, 9]. Researchers found that polymeric micelles(<30nm) could
effectively infiltrate poorly permeable tumour cells [10]. Manufacturing techniques such
as microfluidic self-assembly, nano-precipitation, emulsion-based phase inversion, layer-
by-layer synthesis and nano-imprinting were used to produce specialized DDS to carry
a wide range of drugs. With a complete understanding of the prospects of particulate
DDS in the necessary configurations and forms, nano-manufacturing and nanofabrication
will play an ever more important role in the future [11]. Hydrogels contain 3D-network
structures with unique properties such as porosity, mechanical strength and reversible
swelling in aqueous environments, that can be tailored to a broad range of parameters,
making them ideal for DDS applications [12]. Nonetheless, for biological and drug delivery
uses, the scope of natural and synthetic hydrophilic polymers is constrained depending on
their biocompatibility and biodegradability. Alginate is a natural polymer with several
desirable properties including excellent biocompatibility, low costs, fast gelation, inert
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Group 5.230 1. Introduction

nature, chemical compatibles, easy availability and viable synthesis methods that makes
it an excellent polymer for engineering drug delivery and tissue engineering systems [13].
Polymeric micelles are self-assembling colloidal particles. Polymeric micelle-based DDS is
clearly stable insoluble states and has well established hydrophobic and hydrophilic areas
that significantly improve the dissolution of hydrophobic drugs and also allow for a high
drug load capability. Limitations include overall stability of the micelles, dosage regulation,
long-term release and site-specific delivery of drugs [14, 15].

Microfluidic systems show great versatility in preparing shape-controlled microdroplets
with specialized chemical compositions due to excellent handling efficiency, good
laminar flow and microfluidic interfacial characteristics such as interfacial polymerization,
interfacial separation and droplet/ multi-emulsion fusion [16]. Droplet microfluidics
is a new technology introduced in recent years for the production, processing and
applicability of droplets, with sizes usually spanning from several micrometres to hundreds
of micrometres in diameter [17, 18, 19]. Based on the droplet generation, alginate
microspheres can be generated and gelled inside or outside the microchannels. The average
size of microsphères so formed may range from 50 to 200 m [20].

New advances in engineering complex DDS, suggest the potential for developing a system
with programmable release and with a better load capacity in the water medium.
Consequently, this project aims to design a system capable of having hydrogel integrity
while also providing better manageability over drug release through drug entrapment in
micellar nano-carriers. The amphiphilic Polyvinylpyrrolidone-based micelle – hydrogel18
composite described here integrates these two schemes (hydrogels and micelle) into one
entity towards a smart drug delivery system.

1.1 Hydrogels

Hydrogels are insoluble three-dimensional polymer chain networks that swell in aqueous
solutions. They are sensitive to environmental factors such as pH, temperature, ions,
antigens, drugs, peptides, proteins, and enzymes. Hence, hydrogels are an excellent
candidate for engineering an intelligent system that can improve therapeutic efficacy.
Hydrogels can swell and de-swell reversibly and, therefore, can retain large quantities
of water. This hydrophilic character arises from the presence of functional groups such
as hydroxyl (-OH), carboxyl (-COOH), amine (-NH2), and sulfate (SO3H) which make it
possible to absorb water by the hydrogel. The crosslinks between the network chains make
the hydrogel water-insoluble and give it proper geometrical dimensions. Hydrogel’s swelling
properties are mainly dependent on external environments such as temperature, pH, ionic
concentration, which in turn, can help the hydrogel to transition its volume (collapse
or phase transition) [21, 22, 23]. Hydrogels can be produced using different natural
and synthetic polymeric materials. Natural polymers feature a high porosity biological
degradability, biocompatibility, and non-toxicity [24]. Therefore, for the delivery of drugs,
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hydrogels made of natural polymers have become a research focus [25]. The commonly
employed natural polymers include collagen, gelatin, hyaluronate, fibrin, chitosan, agarose,
and alginate [26, 27]. Out of these polymers, alginate is unique because they will ionically
crosslink in the presence of divalent cations such as Calcium (Ca2+), resulting in a
straightforward synthesis process. Hence, alginate is one of the most common biomaterials
used for drug delivery and tissue engineering.

1.1.1 Alginate

Alginate is a natural anionic polymer harvested from brown algae. The crude polymer
from the algae is treated with sodium hydroxide and purified to yield sodium alginate
[28]. Alginate is a linear copolymer family comprising blocks of residues of (1,4)-linked
β-d-mannuronate (M) and α-l-guluronate (G). The blocks contain consecutive residues of
G, M, and alternating G-M residues. Depending on the source of the alginates, the ratio
of the M and G content varies [29]. (Figure 3.5)

Figure 1.1: G block, M block and alternating block structures in alginate [30]

Commercially available sodium alginates weigh between 32,000 and 400,000 g/mol.
Manipulation of molecular weight and its distribution in alginate polymers will significantly
increase gels ’ elastic moduli [31]. Alginate solutions ’ viscosity increases as pH decreases
and reaches a peak of around pH 3–3.5, as alginate backbone carboxylate groups protonate
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and form hydrogen bonds. Alginate polymers have several superior characteristics over
other polymers. This includes biocompatibility, ease of gelation, inert nature, natural
origins, ease of availability, low cost and feasible method of synthesis, making it an
ideal choice of a polymer of applications in drug delivery and tissue engineering [13].
Various drug molecules, from small chemical drugs to macromolecular proteins, can be
trapped and released from alginate matrices in a programmed approach, using different
cross-linking methods and cross-linking agents. Furthermore, alginate gels can be orally
administrated or injected into the body in a minimally invasive manner, which allows
extensive applications in the pharmaceutical sector.

1.1.2 Fabrication of alginate hydrogels

Alginate hydrogels are prepared through different synthesis routes. Chemical and physical
cross-linking of the polymers are typical approaches to form hydrogels. In addition to the
molecular weight and chemical composition of polymers, physicochemical properties are
highly dependent on the cross-linking type and cross-linking density [32, 15].

Ionic crosslinking

The most common method of preparing hydrogels from an aqueous alginate solution is
cross-linking with ionic cross-linkers such as divalent cations. The affinities of alginate
towards the divalent ion vary in the descending order of Pb > Cu > Cd> Ba > Sr > Ca
> Co, Ni, Zn > Mn [33]. Due to its non-toxicity in contrast to the other cations, Ca2+ is
the most widely used in alginate gelation. M monomer blocks form weak junctions with
divalent cations in an alginate solution. The interactions between blocks of G monomers
and divalent cations, however, form tightly held junctions. The mechanism is through
the formation of an egg-box structure through the coordination of divalent ions with four-
carboxy groups as depicted in figure 1.2 [34].

Figure 1.2: The egg-box model [35]
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Calcium chloride (CaCl2 ) is one of the most frequently used agents to crosslink alginate
ionically. Though, due to its high aqueous solubility, it causes rapid gelation and results in a
gel with undesirable properties. In combination with CaCl2, a retardant agent containing
phosphate groups can be used to slow the gelation cycle. The phosphate groups will
interact with the alginate’s carboxylate groups during reaction with Ca2+ ions. The
gelation temperature affects the gelation rate and the final mechanical properties of the
gels. At lower temperatures, ionic cross-linker reactivity (e.g., Ca2+) is decreased, and
the crosslinking becomes slow. So, the resulting crosslinked network structure is more
structured and improves mechanical properties [36] The poor physiological stability is a
critical drawback of an ionically crosslinked hydrogel. When the surrounding media is rich
in monovalent cations anions, these hydrogels gels get dissolved by exchange divalent ions
[37, 38]. Yet, this process may be positive or negative, depending on the target application.
Calcium alginate hydrogels can be made to remain stable by inducing sufficiently higher
concentrations of calcium in the medium [39]. Ionic crosslinking of alginate can be carried
out by two routes, namely external or internal gelation.

Figure 1.3: Gelling mechanisms in ionic gelation of alginate particles. [35]

Alginate gelled using external gelation is a straightforward method. As illustrated in
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figure 1.3, Ca2+ ions are introduced into alginate droplets by addition to the surrounding
medium. This allows the diffusion of Ca2+ ions into the spaces produced between the
alginate polymer chains, leading to the cross-linkage formation. Once the alginate polymer
chains come into contact with Ca2+ ions, cross-links start to develop at the alginate droplet
peripheries, forming semi-solid membranes containing liquid cores [10]. Prolonging the
incubation time of droplets in a Ca2+ ion bath allows the diffusion of more Ca2+ ions
across the membranes due to changing concentration gradient and in effect allowing the
alginate gel cores to gelate [40].

When the crosslinking and gelation step initiated from within the alginate droplets, it is
known as internal gelation. Using a divalent cationic salt with low solubility allows for
controlled gelation at neutral pH; following this, an acidification step will allow for the
release of cations for better control of gelation kinetics and forming homogeneous gels.
Insoluble salts mainly rely on pH for better solubility [41]. Low-soluble calcium salts such
as Calcium sulfate (CaSO4), Calcium carbonate (CaCO3), Calcium lactate, and calcium
gluconate have been used for controlled gelation approaches. Gelation rate is a critical
parameter in regulating gel uniformity and strength when divalent cations are used, and
slower gelation results in more uniform structures and greater mechanical integrity [42].
Figure 1.3 shows an example of this internal gelation, where an alginate solution containing
insoluble calcium carbonate particles mixed into an oil phase. Lowering the pH using acetic
acid led to the dissolution of calcium carbonate into Ca2+, carbon dioxide, and water [43].
This method has allowed for the production of alginate gel microbeads with different sizes
ranging from 20-1000 m [41, 44, 45].

Covalent crosslinking

Other approaches base upon covalently cross-linking the hydrogels, to create strong and
irreversible chemical bonds. Covalent cross-linking has been found to improve physical
properties. When stress is applied to ionically cross-linked alginate, eventually losing
water from the gel, causing plastic deformation. Though water movement occurs in
covalently cross-linked gels, leading to stress relaxation, the inability to dissociate and
reform bonds leads to significant elastic deformation [46]. The issue in this method is that
it employs toxic reagents, and the unreacted reactant residues may need to be thoroughly
eliminated from gels. Photo cross-linking is an exciting approach to in situ gelations
that utilizes covalent cross-linking. Photo cross-linking can be achieved by incorporating
reactive groups like methacrylates, even in direct contact with drugs and cells. A high
energy light source such as laser excites the photoinitiators and triggers production of free
radicals. Then these reactive species spread in solution across the alginate prepolymer
medium, thereby generating new free radicals and parallelly making cross-links between
the polymer chains. As the reaction progresses, the number of cross-links in the process
grows, and a network structure is achieved through a chain-growth mechanism [47]. Photo
cross-linking reactions characteristically involve the use of a light sensitizer or acid release,
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which could be dangerous to live cells and the body [48, 49].

1.1.3 Swelling and deswelling mechanism

Hydrogels display a sponge-like behavior by absorbing large quantities of water and
biological fluids through hydrophilic groups present in their structure. Control of kinetics
and degree of hydrogel swelling is possible by tuning of parameters such as charge,
concentration, pKa of ionizable groups, hydrophilic to hydrophobic balance, cross-link
density, degree of ionization, interaction with the counter ion in the medium and pH [49].
The flexibility of monomers in the structure enables hydrogels to react in a short space of
time to changes in pH, temperature, salt, light, biomolecules, ion strength, and magnetic
fields [50, 51]. The following equation describes the swelling ratio [52, 53, 54]:

Swelling ratio =
ms −md

md
∗ 100 (1.1)

in where, ms is the mass of swollen hydrogel in equilibrium at a given temperature and md

is the dry mass of sample.

1.1.4 Drug entrapment and release

Hydrogels can be loaded with drug cargos and programmed to intelligently deliver the
drug in a sustained manner for clinical applications. Such abilities emerge from adjustable
hydrogel porosity or by using physical and chemical approaches [55]. Modifying the degree
of cross-linking in the hydrogel structure allows for an appropriate increase or decrease
in the release of the drug. Higher the degree of cross-linking between polymer chains
reduces the molecular space through which the drug could travel, thus increasing the time
to diffuse out of the gel matrix. This diffusion is also dependent on the nature and size
of the drug used [56]. Apart from the pore size of the gel, the physiological conditions
like temperature, pH, ionic concentration also play a role in drug release. For example,
anti-cancer drug doxorubicin had been successfully loaded in alginate microspheres subject
to pH-triggered release [57].

1.1.5 Biodegradation and biocompatibility

While alginate comes from natural sources, various impurities such as heavy metals,
endotoxins, proteins, and polyphenolic compounds might still present. Notably, alginate
processed to a very high purity through a multi-step extraction procedure did not cause
unusual foreign body reactions when administered in animals [58]. Commercially produced
high purity alginate did not cause any severe inflammatory reaction after subcutaneous
injection into mice [59]. The average molecular weight of alginate is higher than the
kidney’s renal clearance threshold, so it likely to be not completely removed from the
body [60]. An effective strategy to counter this problem would be to oxidize the alginate
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chains partially. Partially oxidized alginate can degrade in aqueous environments. The
degradation rate is further influenced by the degree of oxidation, pH, and temperature
[61]. Alginate is essentially non-degradable in mammals due to the absence of alginase
enzyme that cleaves the polymer chains; however, ionically cross-linked alginate hydrogels
can still be dissolved by exchanging the divalent ions present in the gel cross-links with
monovalent cations such as sodium ions present in surrounding media.

1.2 The microfluidic approach

Microfluidics is a technique that involves injecting non-miscible fluids through intercon-
nected micron-scaled channels. This immiscibility of the fluids promotes the formation of
a liquid microstructure inside the dispersing phase; followed by gelation in the presence of
external sources like light or through interaction between ionic polymers with multivalent
ions. Thus, the yielded microstructures are known as microgels [62]. Different types of
shapes can be produced based on variables such as the relative position of microchannels,
injection speed, number of liquids used, and their viscosity. Furthermore, cells can be
encapsulated by suspending them into the desired precursor solution that will form a mi-
crostructure, before they are injected into the microfluidic channel [63, 64]. More complex
microfluidic systems can be used to obtain structures such as core-shell spheres, hollow
tubes, and Janus particles (particles including two assigned and new surfaces) for drug
delivery and multi-layered cell scaffolding applications [65, 66, 67, 68]. Microfluidics has
gained popularity due to several advantages of this technique, including small sample vol-
umes and minimal quantities of reagents used for testing, the ability to sort and classify
specimens at high-resolution and sensitivity and rapid analysis [69].

1.2.1 Materials for fabrication of microfluidic devices

First microfluidic devices were commonly constructed of transparent polymers, glass,
stainless steel, silicon, and ceramics. The first microfluidic chips were commonly fabricated
using transparent polymers, glass, stainless steel, silicon, and ceramics. Silicon was the first
material used to fabricate microsensors in the early 1970s. Non-silicon based materials were
developed as technology progressed; however, which led to the creation of a new field called
microelectromechanical systems (MEMS). The rapid development in this field had led, for
example, to the introduction of new technology among researchers: microfluidics and lab-
on-a-chip (LOC) [70]. The choice of silicon as the material made it possible for reactions
requiring high temperatures, and strong solvents. Glass, a material with properties similar
to that of silicon and robust optical properties, was the next choice for making the
microchips. Nevertheless, these materials proved to be disadvantageous as fabricating
the chips was laborious, the chips were brittle, and production costs were expensive. So a
better candidate material was sought, and hence polymers were implemented for making
the microchips [17]. Polymers like polydimethylsiloxane (PDMS), polymethyl methacrylate
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(PMMA), and polycarbonate (PC) showed better characteristics than silicon and glass
such gas permeability, chemical resistance, optical properties and inexpensive moulding
techniques for large scale production [71]. The microfluidic chip used in this project is
made from Cyclo-olefin-copolymer (COC), a plastic material having outstanding optical
characteristics, very low water uptake, and extremely low permeability for water vapour.
It was bought from microfluidic ChipShop.

1.2.2 Physical considerations in microfluidics

Microfluidics involves manipulation and analysis of fluids in microscale structures. To
understand and work with microfluidics, its necessary to understand the physical
phenomena at the microscale. Different forces rule at the microscale in comparison to
those present in the macro-world [72]. For instance, the capillary forces dominate the
microfluidic system over gravity. While miniaturizing existing large devices, the chips
must be designed to take advantage of forces that work on the microscale.

Reynolds number

Reynolds number (Re) describes the ratio of fluid momentum to frictional forces occurring
in contact with channel walls. The Reynolds number can be calculated by [73, 74]:

Re =
ρυDh

µ
(1.2)

Where ρ is the fluid density, υ is the characteristic velocity of the fluid, µ is the fluid
viscosity, and Dh is the hydraulic diameter [75]. The hydraulic diameter is a measured
value depending on the cross-sectional geometry of the channel. From Reynold’s number,
fluid flow can be classified as two central systems: Laminar flow and turbulent flow. Fluid
flow is assumed to be laminar if Re is low, typically Re < 2300. As the Re values approach,
the fluid may show signs of turbulence, and the flow is said to be turbulent at Re >2300.

Laminar flow

In a Laminar flow, all the particles in a fluid stream follow a path in layers, with each
layer moving smoothly along the other with little or no mixing. The small dimension of
microchannels allows the flow to be almost always laminar [76]. Therefore two or more
streams in a laminar flow will not mix on contact except through a diffusion process.
Laminar flow also can be used to generate fluid packets that can withhold their integrity,
with diffusion occurring in the terminals. Such packets can be transferred in a controlled
way, thereby allowing for various opportunities in cellular and molecular analysis.
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Diffusion

Diffusion is a phenomenon in which the particles move from a higher concentration region
to lower concentration until the concentration reaches an equilibrium. Brownian motion is
responsible for this particle movement. Diffusion can be defined in one dimension by the
following equation:

d2 = 2Dt (1.3)

Where d is the distance, a particle moves in a time t, and D is the diffusion coefficient of
the particle. As the distance is changed by square power, microchannels allow for shorter
diffusion times compared to diffusion in macro-systems for the same particle [75].

Surface area to volume ratio

The surface area is an essential factor influencing processes taking place at the microscale.
As we scale down from the macroscale to the microscale, the volume is reduced. At
lower volumes, surface-related force becomes dominant over the volume-related force.
Consequently, the surface area to volume (SAV) ratio increases by large magnitudes. The
large SAV ratio allows for molecules to quickly diffuse between the fluid streams or droplets
formed inside the microchannels [77].

1.3 Polymeric Drug Delivery System

Controlled drug delivery is among the most challenging and rapidly-growing scientific
areas. Drug delivery systems (DDS) based on nanoparticles were known to help improve
bioavailability and extend the circulation of clinically relevant drugs. DDS using polymer-
based nanostructures such as dendrimers, micelles, nanoparticles, or nanogels have been
investigated, with sizes ranging from 1 to 1000 nm [78, 79, 80, 81, 82, 83]. It can deliver
many advantages compared to traditional dosage forms such as improved absorption rates
and diminished immunogenicity, targeted delivery, drug protection from cellular enzymes,
enhanced biodistribution when controlling drug release [84].

1.3.1 Polymeric micelles

Polymeric micelles feature unique properties such as high molecular weight, significantly
low CMC, higher stability, slower dissociation rate, more excellent retention of
encapsulated drugs and higher site-specific deposition of drugs at the target site [8].
Amphiphilic blocks or copolymers are identical to the behaviour of traditional amphiphiles.
A significant difference between the micelles of conventional surfactant monomers and
polymeric surfactants is the presence of covalent linkage in individual polymeric surfactant
molecules within the hydrophobic core. Hence monomers are not dynamically exchanged
between free solution and the micellar pseudo-phase [85]. Due to this, polymeric micelles
possess conformational rigidity and stability [86]. Polymeric micelles can range 10 to
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200 nm in diameter. The factors that control the size of the polymeric micelles include
the molecular weight of the block copolymer, aggregation number, the relative fraction
of the hydrophilic and hydrophobic chain, the amount of solvent trapped in the micellar
core and the preparation method [87, 88]. Amphiphilic block copolymers may mainly
assemble themselves into spherical micelles, worm-like or cylindrical micelles, and polymer
vesicles or polymers. Main factor regulating micellar morphology is the hydrophilic-
hydrophobic copolymer block equilibrium determined by the hydrophilic volume fraction,
f. For amphiphilic block copolymers with a value of f = 35%, polymer vesicles form
although, at a value of f > 45%, spherical micelles are observed. Other experimental
variables in micelle formation are concentration, temperature, pH, ionic strength, degree
of swelling of the corona and sample preparation [89, 90, 91]. Many hydrophilic
polymers have been researched which include biodegradable and non-biodegradable
copolymers, namely poly(amino acid)s, polyglycerol, poly(2-oxazoline)s, polyacrylamide,
poly[N-(2-hydroxypropyl) methacrylamide and polyvinylpyrrolidone (PVP) [92]. PVP is
a biocompatible, non-ionic, water-soluble polymer that can interact with a wide range of
hydrophilic and hydrophobic drugs [93]. PVP is attractive with its cryoprotective and
lyoprotective properties while freeze-drying, thereby preventing nanoparticle aggregation
[94, 95, 96].

Figure 1.4: Schematic illustration of amphiphilic polymers self-assembling into micelles [97]

1.3.2 Micellization

Micelle formation in aqueous solution is a result of active interaction between surfactants ’
hydrophobic regions. The main factor behind this self-interaction is the system’s reduction
in free energy. The free energy reduces as an outcome of removing hydrophobic moieties
from the aqueous environment and forming a micelle core reinforced with hydrophilic
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moieties exposed to water. Change in free energy for micellization is described as:

∆Go
mic = RTln(CMC) (1.4)

where R is the gas constant, T is the temperature of the system, and CMC is the critical
micelle concentration [98]. The amphiphilic blocks, assemble only when a specific minimum
concentration is reached, known as the critical micelle concentration. At low, medium
concentrations, amphiphilic molecules exist separately and tend to be sub-colloidal. Below
CMC, the amount of amphiphile adsorption at the air-water interfaces increases as the
amphiphile concentration rises. When the concentration is equal to CMC, Monomers
saturate the interface and bulk phase. Any additional amphiphilics added above CMC
trigger in the aggregation of monomers throughout the bulk phase, reducing the system’s
free energy [99, 100].

1.3.3 Drug loading of polymeric micelles

Polymer micelles can be used for solubilizing hydrophobic molecules in its core region by
hydrophobic interactions and ionic interactions. Badly water-soluble drugs could easily be
incorporated into polymeric micelles to solve issues of drug solubility in aqueous conditions
[84, 101]. The addition of the drug into the micellar core contributes to the in vitro
stabilization of the drug as it is secured from disrupting agents in the surrounding system.
The hydrophilic exterior and nanoscopic dimensions prohibit the physical elimination of
micelles by filtration or ion the spleen during application [102]. This property is helpful to
increase the circulation of the drug in the body. Nanoscopic size of micelles reduce the risk
of capillary embolism, as opposed to larger drug carriers [102]. This section summarizes,
some of the techniques for passive drug loading in micelles.

Solvent evaporation/thin-film formation

It is the commonly used micelle preparation process. In this method, the drug and polymer
are dissolved in an organic solvent, followed by the entrapment drug on thin polymer film
after the organic solvent is removed by evaporation(usually 12–24 h). The thin film is then
rehydrated in water to produce drug-loaded polymeric micelles. The non-trapped drug
is removed by dialysis [85, 103, 102]. Nonetheless, this approach is unsuitable when for
long-chain and higher hydrophobicity core-forming blocks [104].

Direct dissolution

It is the simplest method used when polymers have small chains and low molecular weight
blocks that are insoluble in water. In brief, amphiphilic polymers and drugs are solubilized
directly in water at or above CMC with stirring, thermal, and ultrasound treatments
[85, 105]. The main limitation here is reduced drug loading [102, 104].
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O/W emulsion

This process involves the dissolution of the copolymer in organic or the aqueous solvent
and the drug in a volatile organic phase miscible in water. The solvents used are mostly
acetone, tetrahydrofuran, ethyl acetate, chloroform and methylene chloride. Drug-loaded
polymer micelles are obtained by constantly stirring the aqueous phase as the organic
phase is steadily introduced. However, this method involves the usage of toxic solvents
which require complex purification steps [87, 106]

Direct dialysis

This approach is typically used if the core blocks are strongly hydrophobic and have
long sequences [104]. Here both the drug and the polymer are dissolved in a water-
miscible organic phase. The dialysis bag containing the drug solution is then submerged
several hours into the water and causes micelle formation by solvent exchange [105, 107].
While dialysis is commonly used, it is a time-consuming process and can lead to changing
morphology because of the incremental modification of solvent properties [85, 108].

Freeze drying/lyophilization method

Freeze drying is a simple, one-step and economical technique, where the drug is dissolved
together with the polymer in an organic phase and water mixture, and then lyophilised.
Reconstituting the freeze-dried product in water will yield micelles, and further dialysis
would remove the non-encapsulated drug [103, 107].

Cosolvent evaporation

Via cosolvent evaporation, the drug and the amphibolic copolymer blocks are dissolved
first in a water-miscible organic solvent. After this, water is gradually added until a point
where drug and polymer are still soluble. The mixture is allowed to evaporate until the
organic solvent is wholly eliminated. The slow removal of the organic solvent forces the
drug to go inside the micellar core as the water concentration increases [6].
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2. Materials and Methods

2.1 Materials and Chemicals

Material Manufacturer Description

1-Undecanol TCI >98%

Calcium iodide Sigma-Aldrich 99 %

Dye aye (DiI) Invitrogen λmax - 549 nm
EDTA Sigma-Aldrich >98.5 %

Ethanol Kemetyl Absolute
VWR 96 %

Fluorescin free acid Fluka λmax - 490 nm
Phostphate buffer saline Lonza
PVP
Rhodamine B Sigma-Aldrich λmax - 543 nm
Sodium alginate Sigma-Aldrich
Span – 80 (sorbitan oleate) Sigma-Aldrich

Table 2.1: Materials used in this project

Equipment Manufacturer Description

Axioskop 2 plus Zeiss Compound micro-
scope

Centrifuge Eppendorf 5804R
DP controller Olympus Software
Fluidic 537 Microfluidic-ChipShop Droplet generator

chip; Topas mate-
rial

NanoSight LM10 Malvern Sample chamber,
microscope and
camera

NanoSight NTA 3.0 Malvern Software
NE-300 New Era Pump Systems Inc. Syringe Pump
Olympus IX71 Olympus Inverted Micro-

scope System;
DP70 CCD
camera

Vibra Cell Sonics Sonication Probe

Table 2.2: Equipments and software employed in this project
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2.2 Methods

2.2.1 Production of micellar nanocarriers

The current section describes the synthesis of polymeric micelles through different
strategies: the co-solvent method and the sonication method. The micelles were loaded
with DiI as a hydrophobic model molecule.

DiI loaded PVP micelles using sonication method

100 mg of 12 kDa PVP polymer was weighed and dissolved in 8 mL of Milli-Q water,
heated up to 50 °C in a beaker. The polymer was mixed in the water rapidly, with the
assistance of a magnetic stirrer. Next, 5 mg of DiI was measured and dissolved in 1 mL
of acetone. The DiI solution was then added dropwise to the polymer. This mixture was
allowed to mix for 30 mins, after which it was transferred to Greiner tubes and sonicated
using sonication probe for 10 minutes with fixed parameters: pulse: 1 s on, 2 s off at
an amplitude of 40%. During the sonication procedure, the polymer solution remained
immersed in ice to prevent overheating. Then, the tubes were carefully immersed into
liquid nitrogen for 15 minutes approximately and lyophilised in vacuum freeze-drier for
two days. After lyophilisation ended, the tubes were carefully covered with paraffin film
and aluminium foil to protect the sample against moisture and light. The tubes remained
then stored at room temperature.

DiI loaded PVP micelles using Co-solvent method

30mg of 12 kDa PVP polymer was weighed and dissolved in 10 mL of Milli-Q water and
sonicated using sonication probe for 10 minutes with fixed parameters: pulse: 1 s on, 2 s
off at an amplitude of 40%. Also, 3mg of DiI was dissolved in 100 mL of 96% ethanol by
rapidly mixing using a magnetic stirrer for 2 hours. After this, the polymer solution was
slowly introduced into the ethanol solution along with rapid stirring. The solution was then
evaporated utilising a rotary evaporator for solvent removal. The rotary evaporator was
operated at 40 textdegree C and stopped when the solution was reduced to approximately 3
mL in volume. This solution was transferred to Greiner tubes and then carefully immersed
into liquid nitrogen for 15 minutes approximately, and lyophilised in vacuum freeze-drier
for two days. After lyophilisation ended, the tubes were carefully covered with paraffin film
and aluminium foil to protect the sample against moisture and light. The tubes remained
stored at room temperature.

2.2.2 Characterization of micellar nanocarriers

Nanoparticle tracking analysis of micelles

For the DiI loaded polymeric micelles, the size distribution analysis was performed using
the technique of Nanoparticle Tracking Analysis (NTA). The sample chamber used for the

16



2.2. Methods Aalborg University

experiment was bought from NanoSight (Malvern). The principle here is based on the
light scattering properties of molecules and their Brownian motion when suspended in a
liquid [109]. The micelle sample for analysis was prepared in many steps. The lyophilised
sample was dissolved in PBS to get a final concentration of 1mg/mL. The solution was
then sonicated using sonication probe for 5 minutes with fixed parameters: pulse: 1 s on,
2 s off at an amplitude of 40%. The sample solution was then filtered through a 0.45 µm
and 0.25 µm syringe connected in series to remove any debris and large agglomerates. The
sample was loaded in the sample chamber, and an averaged size distribution was obtained
from three measurements.

2.2.3 Production of alginate microgels

This section describes the steps in the fabrication of alginate microgels using a microfluidic
chip, its recovery and characterization.

2.2.4 Setup of microfluidic droplet generation system

Microfluidic droplet generation kit was purchased from microfluidic-ChipShop, Germany.
The chip used in this study was Fluidic-537; it is made from topas (cyclo-olefin copolymer)
material and consists of four parallel emulsion units on the same chip. The chip’s
dimensions are as described in the schematic drawing. (Figure-) The standard accessories
provided by the manufacturer were equipped on to the chips, which includes the Luer Fluid
Connectors, Luer Plugs, Silicone and PTFE Tubing. The tubings were then connected to
two syringes, each containing the oil phase and water phase. The syringes were then
mounted into their syringe pumps. After setting up, the chip was attached on to the stage
of an Olympus IX71 inverted microscope. The microscope is coupled to an Olympus D70
CCD camera for viewing and capturing the droplet generation process. After mounting
the loaded syringes, the flow rates are set in the syringe pumps. Starting off the pump
initiates fluid flow inside the chip. The flow inside the channel is observed through
the microscope’s camera software, DPcontroller. At a specially designed cross-junction
channel, the aqueous phase is hydrodynamically focussed by the two oil streams through
a narrow orifice of the outlet microchannel. This flow-focussing will form emulsions in
the form of spherical microdroplets inside the microchannel. The effect of flow rate and
concentration dependency of surfactant was also studied to determine the optimal setting
for microdroplet formation.

2.2.5 Preparation of emulsion fluids

For generating microdroplets, a two-phase oil/water system was utilized. Sodium alginate
was dissolved in PBS at different concentrations (1% - 2% w/v). Two dyes, namely
Fluorescin free acid and Rhodamine B, was added to the aqueous phase for real-time
monitoring of microdroplet formation. The alginate solution served as the aqueous phase.

17
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For the oil phase, 1-Undecanol was chosen as it is immiscible in water and negligibly
soluble. For the cross-linking experiments, Calcium iodide was dissolved in 1-Undecanol
and used as the cross-linker at a concentration range of 0.15 - 0.3% w/v. Span-80 was
added to the oil phase and used as the surfactant (1% v/v).Surfactants are used to reduce
the surface tension at the oil/water interface. Finally, the liquids were loaded into their
respective syringes and mounted to the syringe pumps.

2.2.6 Crosslinking of microdroplets

For the cross-linking reaction, 1 mL of 2% w/v alginate solution, 1 mL 1-Undecanol
containing 0.3 % w/v CaI2 and 1 % v/v surfactant was loaded into pump syringes. The
syringes were connected to appropriate channels on the microfluidic chip. When the flow
was started, microdroplets of alginate solution were formed at the cross-junction channel.
The droplets were collected in oil containing Ca2+. The droplets were allowed to gelate in
the oil phase for 1 hour and were recovered by washing three times in PBS.

2.2.7 Microdroplets size measurement

For the cross-linking reaction, 1 mL of 2% w/v alginate solution, 1 mL 1-Undecanol
containing 0.3 % w/v CaI2 and 1 % v/v surfactant was loaded into pump syringes. The
syringes were connected to appropriate channels on the microfluidic chip. When the flow
was started, microdroplets of alginate solution were formed at the cross-junction channel.
The droplets were collected in oil containing Ca2+. The droplets were allowed to gelate in
the oil phase for 1 hour and were recovered by washing three times in PBS.
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3. Results and discussion

3.1 Production of micelles

Ploymerics micelles were successfully synthesized using 12 kDa of PVP using co-solvent
evaporation and soication methods. The lyophilized micelles were reconstituted in PBS
and filtered using 0.2 µm filter syringe for further analysis.

3.2 Size distribuition of micelles

The size distribution of the micelles produced in the previous section was analyzed to
study any possible implication of the polymer, loading drug, and pretreatment used on
their size. For this assay, micelles in dehydrated powder were prepared following the
method described in Section 3.2 3.1: Dehydrated powder was dissolved in milli-Q water
up to a concentration of 1 mg / ml, later pre-treated with sonication. The solution was
analyzed in a NanoSight sample chamber and the recorded information was processed by
the software Origin Pro 8 to produce the different figures presented in this section.

Figure 3.1: DLS size distribution for 12 kDa PVP micelles loaded with DiI
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Figure 3.2: NTA distribution for 12 kDa PVP micelles loaded with DiI

3.3 Production of alginate microgels

3.4 Effect of surfactant concentration

Surfactant reduces the surface tension at the water/oil interface. Therefore, the effect of
surfactant concentration during flow-focusing and the consequent droplet formation was
studied. For this, Span 80 was solubilized at different concentrations in 1-Undecanol with
cross-linker absent. The concentration range was from 0 - 1% v/v.

Figure 3.3: Droplet generation relative to increasing concentration of surfactant a) to e)
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3.5 Effect of flow rate

To further optimise microdroplet formation, the relationship between flow rate and droplet
size was studied. The size of droplets is defined by the flow-rate ratio between continuous
and disperse phases (Qw/Qo).At a constant flow rate of the oil phase(Qo), the flow rate
of the aqueous phase(Qw) was varied.

Figure 3.4: Microdroplet generation relative to ratio of flow rate Qw/Qo

Figure 3.5: Plot of flow rate ratio versus diameter of microdroplet
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It has been possible to create emulsions of microdroplets using alginate solution and 1-
Undecanol. Although the gelation was not successful, the srudies indicate the possibilities
in manipulating and controlling droplet formation. This would allow for a future possibilty
in precise fabrication of monodisperse alginate microsphers.
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