
Big Data Cloud Computing
Infrastructure Framework

A framework for developing reproducible cloud computing
infrastructures suitable for big data processing jobs

Project Report

Group dt905e18
Charles Robert McCall

Cristian Viorel Buda

Aalborg University
Computer Science

Copyright © Aalborg University 2019

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Big data cloud computing infrastructure
framework

Theme:
Scientific Theme

Project Period:
Spring Semester 2018

Project Group:
dt905e18

Participant(s):
Charles Robert McCall
Cristian Viorel Buda

Supervisor(s):
Christian Thomsen

Copies: 1

Page Numbers: 98

Date of Completion:
September 14, 2019

Abstract:

Building an environment suitable to
handle big data workloads involves
using multiple software together to
form the end result. We define a soft-
ware framework as containing a suite
of software packages to be used to-
gether to form a reproducible environ-
ment to run big data tasks on. Each
choice of software is justified and its
corresponding code is explained, as
well as the resulting environment is
demonstrated by running experimen-
tal big data tasks. The infrastructure is
built by leveraging the Google Cloud
Platform cloud computing provider
to build the hardware. Terraform,
an infrastructure manager, is used to
communicate with the Google Cloud
Platform API in order to programat-
ically build the hardware infrastruc-
ture, while the Nix package manager
is used to download, setup and config-
ure the software packages. This frame-
work can be used to build similar envi-
ronments or adapt and further expand
the code presented in this paper.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Overview . 2

2 Related Work 5

3 Background Knowledge 7
3.1 Distributed Computing . 7
3.2 Infrastructure . 8

3.2.1 Cloud computing . 8
3.2.2 Infrastructure as code . 9

3.3 Infrastructure as Code with Terraform 13
3.3.1 How Terraform works . 13
3.3.2 IAC tools: Declarative vs procedural 15

3.4 NixOS: A Configuration Based OS . 16
3.4.1 Drawbacks of imperative package management 17
3.4.2 Nix: a purely functional package manager 18
3.4.3 The Nix store: storing packages the purely functional way . . 20

3.5 Performance Evaluations through Benchmarking 22
3.5.1 Big data benchmarking creation and approach 23
3.5.2 Planning . 23
3.5.3 Generating suitable data . 23
3.5.4 Generating tests . 24
3.5.5 Execution + Analysis and evaluation 24
3.5.6 Summary of the findings on benchmarks 25

3.6 Selecting a Benchmarking Tool . 25
3.6.1 TPC . 25
3.6.2 Deciding on a benchmark suite 27

v

vi Contents

4 Framework 29
4.1 Cloud Computing with Google Cloud Platform 30
4.2 Setting up the Infrastructure with Terraform 31
4.3 Package Management with Nix . 39

5 TPC-DS Theory and Decisions 53
5.1 TPC-DS Partial Implementation . 53

5.1.1 TPC-DS Setup . 54
5.1.2 Summary of our process . 60

6 Benchmark Setup 61

7 Performance Evaluation 65
7.1 Result Analysis . 66

8 Conclusion 67
8.1 Discussion . 67
8.2 Future Work . 68
8.3 Project conclusion . 69

Bibliography 71

A transform.py 75

B benchmark.py 79

Preface

Aalborg University, September 14, 2019

Charles Robert McCall
cmccal16@student.aau.dk

Cristian Viorel Buda
cbuda17@student.aau.dk

vii

Chapter 1

Introduction

Big data is is a field that analyzes and processes large amounts of data that cannot
be handled by traditional software due to its size. Data is becoming increasingly
important for businesses to make good decisions in order to gain a competitive
edge in their respective market they operate on. Modern data sets, however, are
becoming larger and more detailed, causing new challenges to arise such as storing
and making sense of it. Big data can be very large, to the degree of several exabyte,
and come in various formats and types of information stored. This data needs
to be ingested and stored into a system, analyzed, processed, queried, properly
visualized, all relatively fast. The key action being the analysis of the data, with
the intention of gaining valuable insights from it, such as trends or being able to
predict certain events. Any modern company could potentially benefit from having
a big data framework and a culture of analyzing their past records [2].

Setting up the technological environment to handle big data tasks can be dif-
ficult. Many tools exist on the market today to make the building of the required
technological infrastructure easier, but developers are daunted with the task of
choosing the most appropriate software tools. The concept of a software frame-
work is central to large-scale software systems. Frameworks promise developers
to be more productive, have shorter development times and higher quality appli-
cations. A software framework is defined as an abstraction of some software that
can be easily changed to obtain different functionality. Such a software framework
provides a streamlined, reusable and standard method of developing software ap-
plications. A software framework can contain any type of software to be brought
together in order to create a larger application [13].

1.1 Motivation

Big data processing requires computing power greater than that of a single com-
puter’s limited hardware resources. Thus arises the need for a more complex

1

2 Chapter 1. Introduction

solution to solving this problem with a distributed computing approach. Thus, we
made use of cloud computing, which allowed us to have a more ambitious hard-
ware infrastructure, with the option for scaling up or out with relative ease. We
designed a software framework suitable for building a reproducible environment
fit to handle big data tasks.

1.2 Problem statement

Such an environment is built by using multiple software packages to be used to-
gether. There exist many such packages, and such arises the problem of which
to choose, some may be incompatible with each other. We set out to solve this
problem by designing a software framework containing multiple software com-
ponents working together to form the overall environment required by big data
tasks. Moreover, our goal was to make our proposed environment reproducible to
another machine easy. The framework should be extensible, with the ability to add
new software tools to be installed on the resulting environment. This environment
and the chosen packages then need to be validated, with standardized benchmarks
proving reliable performance results.

We can formulate three problem statements we want to address with this re-
port:

• Can we create a software framework to form a reproducible environment to
run big data performance tests on?

• Can we extend the framework to include alternative software tools to enhance
our performance tests by comparing results across software tools

• Can we run a standardized benchmark for reliable performance tests of soft-
ware

1.3 Overview

This project aims to answer these questions, by presenting a suite of different soft-
ware that can be used together to form an environment for big data processing to
handle large workloads that leverages cloud computing services. This paper goes
into explaining the challenges more in-depth, such as the concept of cloud com-
puting and distributed systems and the appropriate software used to develop such
a framework and run the tools necessary to perform performance tests.

Chapter 2 introduces papers covering relevant Computer Science literature
done by other groups which influenced our decisions. Chapter 3 lays down the
knowledge base necessary to understand the project. This includes the concepts
and essential information behind the software and services used, as well as theory

1.3. Overview 3

behind running benchmarks on big data processing software. Chapter 4 presents
the software and services used and their corresponding implementation details
and development methodologies. Chapter 5 explains the TPC-DS specification and
the decisions made on what parts of it to use. Chapter 6 covers our implementa-
tion and execution of the benchmark. Chapter 7 Briefly discusses the results of the
limited benchmark test. Finally, Chapter 8 is where our experience is discussed
and reflected upon, and concluded, and the possibilities of extending the project
into the future.

Chapter 2

Related Work

This chapter introduces the papers which were influential in choosing and devel-
oping our project.

The paper titled "SQL-on-Hadoop: full circle back to shared-nothing database
architectures" by Avrilia Floratou et. al (2014) [6] presents different SQL query
processing software and compares their performance. This was done through stan-
dardized benchmarks found in the TPC-H toolkit. They go in detail on how they
used two data processing tools, namely Hive and Impala. They also focus on the
two different file formats, namely ORC and Parquet. This paper gave some in-
sight into what our project may be, but the paper falls short on several factors.
They say they are TPC-H inspired, but they do not state how they deviate from a
valid TPC-H run, or how they implemented the software and scripts to perform
the tests. They do state however that they used a scale factor of 1000 (the smallest
valid scale factor), and they were unable to use bigger scale factors due to software
limitations of their tools which turns out to be quite relevant for us given we have
some resource troubles of our own related to our cloud environment, covered in
chapter 4.

The paper titled "On Big Data Benchmarking" [8] talks about the challenges
of big data and how to design benchmarks for it. The methodology presented in
the paper helped us better understand how benchmarking big data better in order
to design our proposed software framework, by choosing the appropriate tools,
designing test and data with suitable attributes and testing criteria.

"Why you should run TPC-DS: A Workload Analysis" (Poess, Nambiar and
Walrath, 2007) [11] presents the benefits of using the Transaction Processing Per-
formance Council’s (TPC) standardized support benchmark specialized in support
decision systems. The TPC-DS benchmark is widely used by companies to demon-
strate the capabilities of their decision support systems. It goes in detail to ex-
plain the three main models, namely related to the data, workload and execution
model. It helped us understand the characteristics of the benchmark and its dif-

5

6 Chapter 2. Related Work

ferent phases and their impact. The paper also argues that it will replace TPC-H,
which was the benchmark used in [6]. Thus, this paper helped us choose TPC-DS
as our toolkit to generate data and queries.

Dolstra el. al’s 2008 paper titled "NixOS: A purely functional Linux distri-
bution" introduced us to the concept of purely functional operating system and
package manager. It helped us achieve the reproducibility within our project we
needed by using NixOS as the operating system running on all of our cluster’s
nodes, as well the Nix purely functional package manager. This paper goes into
detail explaining the benefits of such a setup, which include easily configurable
and reproducible systems.

Chapter 3

Background Knowledge

This chapter explains the suite of software and services used in developing the
project’s infrastructure and the comparison to some of their respective alternatives.
Section 3.1 introduces the concept of distributed computing and its benefits in
the context of big data processing. Section 3.2 covers all the topics related to the
project’s infrastructure. It presents the concepts of cloud computing and managing
infrastructure programatically through an approach called infrastructure as code.
Two important components in our project are Terraform and NixOS. Terraform,
our chosen infrastructure manager is covered in Section 3.3. NixOS and the Nix
package manager are explained in Section 3.4.

In order to make meaningful tests and be able to conclude the project with
trusted information, Section 3.5 researches and explores existing benchmarking
practices/performance evaluation tools, and explores tools to carry out the exper-
iments. This chapter uses information from the "On Big Data Benchmarking" [18]
paper, in regards to how benchmarks should be done and how benchmark gener-
ators should be created and configured for use in general. Section 3.6 details the
process of choosing the right tool for running benchmarks.

3.1 Distributed Computing

Data is being generated worldwide at an increasingly higher rate. This accumu-
lated data eventually needs to be analyzed in order to learn something valuable
from it, and do so quickly enough to be a useful pursuit. The benefits of accumu-
lating and analyzing big data is the valuable insights obtained through convert-
ing seemingly unhelpful data into knowledge, thus helping with the intelligent
decision-making process. Big data is defined by its high volume, velocity and va-
riety that requires specialized software and analytical approaches to successfully
convert it into valuable knowledge [9].

A modern solution to this problem is using distributed computing. Distributed

7

8 Chapter 3. Background Knowledge

computing entails having a network of computers connected to each other in order
to pool their resources into solving a common task. It does come with additional
setup overhead to distribute the tasks to the network, but the overall benefits make
it a viable option. A single computer is limited to its hardware’s capabilities, be
it memory, processor or disk. Modern computers offer power at a low cost, com-
paratively to even a decade ago, thus making distributed computing a reasonable
solution. In this case, commodity hardware-built computers can be added to the
network as another resource, adding to the power of the overall cluster of comput-
ers, resulting in power that far exceeds any single computer can generate. This is
relatively cheaper than just replacing one computer’s hardware components with
better ones, also known as scaling up [10].

Distributing and executing data analysis tasks over a network of computers
requires a lot of computational resources. Even with the best network connection
between the nodes, the transfer rate is still inferior to that of RAM. However, it’s
performance can be comparable with that of disks, making distributing the data
storage across many computers viable for big data tasks. Once the large data set
has been distributed across the network, it is viable to distribute the processing of
tasks as well. Another benefit to having a cluster of computers is that it prevents
having a single point of failure. If one of the computers were to fail, the rest of the
network can still continue working. This usually requires one node’s data to be
replicated on more than one node, in order to save a copy, if one were to be faulty
[10].

3.2 Infrastructure

The infrastructure is the foundation to any large scale software-based project, but
especially in big data projects where lots of computation and storage resources are
required. As specified by Jacobs [10], the complexity can increase tenfold when
talking about a distributed computing environment. Requirement gathering was
the foundation of making a decision on our project’s infrastructure. We needed to
answer the question of what software and hardware our experiments will run on,
thus choosing the suitable software tools in order to build an infrastructure fit for
running all our required big data tasks efficiently, and even taking the possibility of
scalability and expanding the project’s resource requirements for potential future
work. Due to lack of hardware and resources, we decided to opt for a cloud
computing infrastructure.

3.2.1 Cloud computing

Modern companies, especially technology based ones, need flexible, scalable and
cost effective computer systems. Cloud computing fulfill these needs through the

3.2. Infrastructure 9

delivery of on-demand computing services to fit the needs of different kinds of
companies, especially small to medium sized ones that do not have the capital to
sustain the traditional hardware infrastructure and specialized operations devel-
opment team of employees, commonly found in large technology companies. This
broadened accessibility is due to the fact that it adopts a "pay-as-you-go" revenue
model, allowing for smaller companies to compete in their respective markets with-
out the need to commit to the upfront costs of hardware infrastructure acquisition.
Cloud computing resources are remotely available computing resources where the
user can make use of it with minimal or no hardware expertise. The cloud refers to
the total hardware and software resources made available by a vendor’s data cen-
ter. Most vendors rent out their cloud computing resources to customers in small
increments for a time, allowing the user to pay only for the resources they used,
usually by the hour [19].

There are three major benefits to cloud computing:

• Available hardware variety: users being able to easily rent out a lot of dif-
ferent hardware with various power and price [1].

• Renting system on-demand: users can use and change the hardware as
needed, without needing to commit to big hardware purchases up-front or
even need to have the technical expertise to setup and maintain the hard-
ware infrastructure. The benefit is ease of scalability of the users’ hardware
infrastructure [1].

• Pay-as-you-go payment model: users pay only for what hardware they use
and how much they use it. The benefit is lower overall costs for both client
and vendor providing the cloud computing solutions. When a client decides
they want to stop using a certain cloud computing resource, the hardware
gets freed to be rented out to another client [1].

3.2.2 Infrastructure as code

Tech companies used to have different types of technical specialized teams, one
type handling development of applications and the other handling the operations of
the hardware required for the software to run on. A typical development team
would write code, build a working software application, then pass it to the op-
erations team for them to handle the deployment side of the process. Much of
the operations’ team work was done manually, physically buying and setting up
hardware, then installing the software the development team created to ensure
it works properly. This usually involved installing its software dependencies as
well. The more the company grows, the more complex and human error-prone
this organizational structure is [3].

10 Chapter 3. Background Knowledge

An infrastructure as code (IAC) approach entails defining, deploying and updat-
ing infrastructure through code. This can be anything such as servers, databases,
configurations, automated testing, deployment processes etc. This programatic ap-
proach allows users to consider aspects of operations as pieces of software to be
developed, including the ones representing hardware [3].

IAC tools can be split into four categories:

• Ad hoc scripts: code written with the purpose of automating some tasks
requiring multiple steps (e.g. installing dependencies and starting up some
service or server). The script can be then executed on a server. Since writing
such scripts in programming languages, such as Bash or Python, can be easy
if the tasks are simple, when it comes to more complex ones, special IAC
tools should be used that make it easier to write such complex scripts.

• Configuration management tools: distribute, install and manage software on
existing servers. Such specialized tools, such as Ansible, enforce a consistent
structure that help developers stick to code conventions in order to improve
readability.

• Server templating tools: An alternative to configuration management where
an image of a server is created. This image contains everything in a server:
operating system, installed software packages, existing files etc. A popular
example of such a tool is Docker. There are two types of tools that work with
images: Virtual Machines, where an entire computer’s hardware is emulated
by a host computer. Any software running on the virtual machine is isolated
from the host machine. The second type is containers, where a user space is
emulated on the same machine, by using a container engine such as Docker.
Software running in a container is isolated to this user space, but shares the
same hardware as other user spaces, making startup of a container way faster
than that of a virtual machine.

• Server provisioning tools: actually create the servers, databases, queues,
load balancers and the rest of the infrastructure components. Example of
such a tool is Terraform [3]. Such tools work well with a cloud provider’s
API.

Using an infrastructure as code approach improves the software delivery pro-
cess and offers multiple benefits:

• Self-service: developers can handle their own deployments. Relying on one
system administrator is no longer needed.

• Speed and safety: Since the deployment process is automated, it will be faster,
safer and easier to repeat as many times as needed than executing the whole
process manually.

3.2. Infrastructure 11

• Documentation: the state of the infrastructure can be represented in source
files that anyone can read, without needing specialized system administra-
tion knowledge.

• Version control: committing the IAC source files to version control system
such as GitHub can make it easy to keep track of the history of changes to
the infrastructure, which can be a great benefit when debugging problems
caused by the added changes.

• Validation: since the infrastructure state is all code, code reviews sessions
and automate tests can be implemented to prevent bugs.

• Reusability: tested infrastructure code can be packaged and reused [3].

Configuration management versus provisioning

Tools such as Ansible handle configuration management, while Terraform is a pro-
visioning tool. They are not entirely different from each other, as a configuration
management tool can do some provisioning and vice versa. Both Ansible and Ter-
raform can be used to deploy servers and run configuration scripts on them. An
alternative is to create an image with Docker, a server templating tool, then provi-
sion the required infrastructure that the image needs to run on by using Terraform.
In our case, we use Terraform for provisioning and Nix to configure each machine
and setup software packages [3].

Immutable infrastructure

There are two different paradigms when it comes to infrastructure: immutable and
mutable. Configuration management tools such as Ansible [3] adopt the mutable
infrastructure paradigm. When a change is made to the infrastructure, such a tool
will schedule an update on the servers in order to apply said change. Updating
servers frequently can lead to configuration bugs and inconsistencies, leading to
differences between servers. In such a case, worker nodes would no longer be
clones of each other [3].

Terraform solves this problem by adopting the immutable infrastructure paradigm.
If machines are deployed as Docker images via Terraform, changes are not updates,
but completely new instances of servers. Each change means a new immutable im-
age file deployed on a new server. The benefit to this approach is a decrease in
bugs and inconsistencies, and overall easier deployment of different versions of
software. Since the changes are not updates, there is no update history. This helps
with automated testing, as a test environment will be no different than a produc-
tion environment with a long history of updates that is hard to replicate. The
downside of this paradigm is that rebuilding an image then redeploying servers

12 Chapter 3. Background Knowledge

with this new image can take a long time, although it is done automatically, with-
out the need for developer input after the process has started [3].

Declarative programming paradigm

A programming language adopting the procedural programming paradigm, such
as Ansible’s, requires specifying step by step instructions until an end state is
reached. Terraform adopts the declarative programming paradigm. The the de-
veloper specifies the end state through code, then leaving Terraform to create the
optimized plan containing the step by step instructions. The benefit is the reduced
complexity in developing infrastructure and increased productivity [3].

The difference between the initial code does not differ that much. The following
code snippet declares 10 machines to be created in the langauges pertaining to each
IAC tool.

Terraform:
resource "google_compute_instance" "worker" {

count = 10
name = "${var.env}-gcespark-worker-${count.index}"
machine_type = "n1-standard-2"
zone = "europe-west1-b"
}

Ansible:
-gcp_compute_disk:

count: 10
name: "${var.env}-gcespark-worker-${count.index}"
machine_type:"n1-standard-2"
zone:"europe-west1-b"

They are very similar and will do the same thing, as it is the initial task to
be executed. Things differ greatly when attempting to make changes. To give a
simple example, if the infrastructure needs change and additional worker nodes
need to be added, the way this change needs to be implemented differs between
the two IAC tools. More complex cases would become even harder to develop and
maintain with Ansible, as the developer needs to be aware of the already existing
infrastructure components, their past history, version, availability, dependencies
etc. Terraform is a much more viable alternative in keeping the code complexity to
a minimum, as we did in our project.

In Ansible, if the count variable were to be changed to take the value 15 then
the code executed once more, it would deploy 15 new servers on top of the already
existing ones. This adds to the complexity of development, as the user must keep

3.3. Infrastructure as Code with Terraform 13

track of already existing infrastructure before running code. Thus, the variable
should be changed to 5 in order to have 15 nodes [3].

In Terraform, the changes can be done on the original code, changing the vari-
able to 15 then executing terraform apply. Terraform then evaluates the specified
end state then figures out how to get there. This is possible because Terraform
is aware of previous states it created, forming a plan to execute tasks in order to
reach the desired end state based on the current state. This has the benefit of being
much easier to develop and maintain, saving both time and effort to the developer
[3].

3.3 Infrastructure as Code with Terraform

The solution to making the technical infrastructure easier to manage is using Ter-
raform while opting for a cloud computing solution. It is an infrastructure man-
ager, which takes an infrastructure as code approach, letting the developer manage
their technical infrastructure, or in our case the entire cloud cluster, programmati-
cally. This powerful tool allows for both easy infrastructure setup and automating
building or destruction of any cloud component. Since an organization’s techno-
logical infrastructure can quickly become complex over any period of time, thus
the need for such a tool arose.

Terraform lets the developers declaratively define configuration files. As com-
mon with the declarative programming paradigm, the programmer writes code
that specifies what they want and the compiler handles how to get there. In Ter-
raform’s case, the configuration files specify the programmer’s desired resulting
cloud infrastructure. With such modern tools, the term DevOps came to be, which
refers to the set of processes, ideas and technologies to improve the operation side
of software development. Terraform aims to solve the problem of automation in
the DevOps space [3].

Terraform is compatible with many cloud computing providers, such as Google
Cloud Platform (GCP), which we chose for this project. As GCP offers a variety of
hardware and services, Terraform offers the option to manage all of them program-
matically, thus allowing a small team of developers, such as ours, to orchestrate our
project’s cloud infrastructure with relative ease, compared to if we had to do ev-
erything manually through GCP’s web interface every time we wanted to make a
change [3].

3.3.1 How Terraform works

Terraform, which is an open-source tool, is designed for infrastructure deploy-
ment. Even a single developer can be productive and use it to build complex
infrastructure from a single machine, like a laptop, without requiring additional

14 Chapter 3. Background Knowledge

infrastructure. That is because, behind the scenes, Terraform communicates with
different cloud computing providers via their API. In this project’s case, Terraform
makes API calls to GCP on our behalf, by having access to the project’s GCP secret
key for authentication [3].

Terraform calls the APIs specified in text files named Terraform configurations.
The code within these configuration files specify the desired infrastructure, hence
the term infrastructure as code [3].

The following code snippet shows a basic API call within our project via Ter-
raform code.

resource "google_compute_instance" "master" {
name = "${var.env}-gcespark-master"
machine_type = "n1-standard-2"
zone = "europe-west1-b"

boot_disk {
initialize_params {

image = google_compute_image.nixos_1809.self_link
size = 40

}}}

Terraform code is user readable. In this snippet above, Google Compute In-
stance is defined with the name master. It is a Terraform resource, which acts as a
singular component. It communicates with GCP’s API, more specifically declaring
that the desired machine should have the specified name (with the resource name
interpolated as a substring), machine type (GCP offers many different types) and
its zone. A separate boot disk is declared with the image, which is the NixOS
Linux operating system, and the size in gigabytes of said disk. This code declares
the machine that is the master node, which is unique [3].

resource "google_compute_instance" "worker" {
count = 10
name = "${var.env}-gcespark-worker-${count.index}"
machine_type = "n1-standard-2"
zone = "europe-west1-b"

boot_disk {
initialize_params {

image = google_compute_image.nixos_1809.self_link
size = 30

}}}

3.3. Infrastructure as Code with Terraform 15

This code snippet above handles the creation of the worker nodes. In this
case, an additional variable, count, can be used to specify how many worker
nodes should Terraform build. Since it is only configuration files that Terraform
needs, these instance configurations are split into two different files: master.tf and
worker.tf, where .tf is as Terraform’s file extension. When attempting to create the
build plan, Terraform will parse the configuration files. Upon parsing the worker
configuration file, it will create the declared number of clones of machines con-
figured according to this file. Thus, scaling is made easy, reducing adding new
identically configured worker nodes to the cluster as trivial as changing one line of
code before executing the rebuilding process. Some changes require drastic code
refactoring, such as switching to a different cloud computing provider. Not all
providers offer the same resources or services. In this case, Terraform’s documen-
tation must be read in order to refactor the configuration files to be compatible
with Terraform’s API syntax corresponding to the new provider. Terraform will
analyze what current the infrastructure is and compare it with the newly added
changes, form a plan of tasks it needs to execute then build or destroy resources
until the newly added changes are implemented. Configuration files contain many
different resources, with dependencies between them, as well as order they must be
built, all of which Terraform manages behind the scenes. This lowers complexity
and enables increased productivity when developing software products. To de-
ploy the programmatically specified infrastructure, the terraform apply command
is executed. This prompts Terraform to parse the code then form a plan containing
executable API calls to the specified cloud computing provider [3].

Team collaboration is made easier by committing Terraform source files to ver-
sion control. When a team member wants to change some aspect of the infras-
tructure, they must only modify the code within the infrastructure’s source files,
rather than needing to manually update through the cloud provider’s web inter-
face. These changes can be treated like any other newly developed feature, vali-
dating them through code reviews, automated tests then committing the updated
code to the appropriate version control, then finally executing terraform apply to
have Terraform deploy the changes [3].

3.3.2 IAC tools: Declarative vs procedural

The previous example of increasing complexity due to procedural paradigm ap-
proach of an IAC tool such as Ansible, highlights the major drawbacks of proce-
dural code when working with infrastructure as code:

• Procedural code does not specify the entire state of the infrastructure. The
user must know the correct order in which Ansible templates are applied, as
a different order would cause errors or a different infrastructure to be built.
This is not apparent from reading procedural code alone. Handling such a

16 Chapter 3. Background Knowledge

codebase requires knowledge of past change history.

• Limited reusability. It is harder to reuse procedural code, as knowledge about
the current state of the infrastructure is required, which is changing con-
stantly. This causes previously used code to become unusable on a newer
version of the infrastructure. This adds lots of development overhead, as the
codebase grows, it needs to be refactored and tested after every infrastructure
change [3].

Terraform solves these problems by adopting the declarative programming
paradigm. Thus, the code always shows the state the infrastructure is in at that
time and knowledge of its history is not required. By simply observing the code,
it is relatively easy to understand the infrastructure’s deployed components and
their respective configuration, being able to disregard its past changes. Reusable
code is easier to write, as the current state of the infrastructure does not need to
be taken into account. When developing with Terraform, the user must only write
declarative code that describes the desired state of the infrastructure, thus reducing
knowledge overhead and complexity. Terraform codebases remain relatively small
and simple to understand even after lots of changes and adding new infrastructure
components. The declarative programming paradigm, however, lacks the procedu-
ral paradigm’s expressive power. An example of this is the lack of basic logic
structures such as if-statements or loops, which could pose problems when writ-
ing reusable code. However, Terraform does provide some useful primitives such
as input and output variables, modules, count and interpolation functions. These
components aid the developer in writing easily configurable and modular code
while still using a declarative programming paradigm.

3.4 NixOS: A Configuration Based OS

Once the hardware part of the infrastructure is set up, the next question is what
software should the machines run? This includes the operating system, system
configurations and software packages installed.

System configuration tools usually adopt an imperative model. This approach
implies stateful system administration actions. When upgrading software pack-
ages or making changes to the system’s configuration files, the state of the system
changes, destroying the previous state. This can cause several problems, explained
in the following subsection [5].

This section presents a solution to these problems, namely adopting a purely
functional system configuration model. This model handles the building of static
parts of a system such as its configuration files and software packages through
immutable pure functions. This model was implemented by Dolstra and Löh [5] as
a purely functional Linux distribution called NixOS. Its package manager, Nix, is

3.4. NixOS: A Configuration Based OS 17

used to build system configurations from code written in a functional program-
ming paradigm. In our project, we made use of both NixOS and Nix in building
our framework and setup our infrastructure to be reproducible.

The purely functional model has several benefits:

• Immutability: The static parts of a system are immutable. After they get
built, they never change, but the system configuration does. The system
then gets rebuilt based on the new configuration. Thus, the system is built
deterministically.

• Reproducibility: Due to the deterministic build process, such a system can
be reproduced on another computer.

• Rollback to a previous configuration is easy, as past configurations are not
overwritten and are still available.

• Statelessness: configuration actions are predictable and easier to manage, as
they won’t fail or introduce bugs due to the state the system was in, as it is
possible in stateful systems [5].

3.4.1 Drawbacks of imperative package management

Imperative Unix package management tools such as Debian’s apt adopt an imper-
ative model. This model implies that such tools change the state of the system,
thus having stateful actions. The apt package manager stores each package’s files
in file system hierarchies typical of Unix-based systems (e.g. directory such as
/bin). When these packages would be updated, the previous version would be
overwritten with the new one. Such an overwriting update of one package could
cause dependency problems. If another package depends on the previous version,
updating to a new version will break the second package. Thus, in an imperative
Unix system, the file system and registry are used similarly to how a programming
language would use mutable global variables [5].

The stateful nature of such systems make it difficult to have different versions
of a package installed at the same time. Having two packages that depend on
different version of some other third package would require manually installing
separate versions of said package in separate locations with different names. This
creates a lot of management overhead for the system user [5].

Building packages are also stateful actions. When building a binary package
using an imperative package manager, the process is described by a specification
file. This file contains the build actions to be executed, in a specific order, in
order to successfully construct the package. The specification file must also contain
information regarding the package’s dependencies, which cause two problems to
arise:

18 Chapter 3. Background Knowledge

• If the specified dependencies are incomplete and does not mention one de-
pendency, a machine with that package will be able to build the package bi-
nary. However, another machine without this "hidden" dependency installed
won’t be able to build the package, and will not return any descriptive error,
thus failing the process unexpectedly without further information to the user.

• Nominal dependency specifications make reproducibility harder to achieve.
Thus, dependencies are specified just by their names. The package manager
can successfully build the package binary if the required minimum version of
some package it depends on is installed, however, it has no knowledge of the
exact version it used. For example, if the dependency specification document
mentions a version of Python 2.7 and above is required to build some pack-
age binary and the package manager succeeds, it has no knowledge of the
exact Python version used. Therefore, the building package building process
cannot be deterministically reproduced [5].

General system configuration files fall outside the scope of imperative package
managers such as Red Hat’s RPM. When upgrading a package, these configuration
files cannot be overwritten according to the new version, as the user could have
change it themselves manually. The package manager is not aware of this change.
Ignoring these files upon package changing or merging the user’s changes with
the package manager’s changes aren’t the most optimal solutions. Some packages
contain post-install scripts, with stateful actions, that attempt to handle this prob-
lem. The result of executing many of these ad hoc is a system configuration that is
hard to rollback to a previous one or reproduce on another machine. Nix, a purely
functional package manager, is a viable solution to these drawbacks [5].

3.4.2 Nix: a purely functional package manager

NixOS’s uses a purely functional package manager named Nix, researched and
developed by Dolstra et. al in 2004 [4], four years prior to the NixOS project [5]
in 2008. The concept of purely functional package management implies the use of
a functional programming paradigm when building packages. In this case, such
a function’s output depends purely on its input, the function arguments. Once a
package is built this way, it will never change [5].

At Nix’s foundation lie Nix expressions, a purely functional language, with lazy
evaluation and dynamic typing. These Nix expressions are used to describe graphs
of build actions, also named derivations. A typical derivation contains three com-
ponents: a build script, a collection of environment variables and a collection of
dependencies, which are just other derivations that it depends on. When building
a package, the first step of the process is recursively building all of its dependent
derivations before proceeding with executing its build script with its correspond-
ing environment variables [5].

3.4. NixOS: A Configuration Based OS 19

The following code snippet represents an example of a Nix expression. The
package described is xmonad, a Haskell-based tiling X11 window manager. At the
physical level, it is a file named "xmonad.nix".

1 {stenv, fetchurl, ghc, X11, xmessage}:
2 let version = "0.5"; in
3 stenv.mkDerivation (rec {
4 name = "xmonad-${version}";
5 src = fetchurl {
6 url="http://....org/.../${name}.tar.gz";
7 sha256="cfcc4501b000fa740ed35a5be87dc012...";
8 };
9 buildInputs = [ghc X11];
10 configurePhase = ''
11 substituteInPlace XMonad/Core.hs --replace\
12 '"xmessage"' '"${xmessage}/bin/xmessage"'
13 ghc --make Setup.lhs ./Setup configure --prefix="${out}" '';
14 buildPhase = '' ./Setup build '';
15 installPhase = '' ./Setup copy
16 ./Setup register --get-script '';
17 meta = { description = "A tiling window manager for X"; }
18 })

The entire Nix expression acts as a function. The very first line describes the set
of arguments it takes as input, while the third one specifies the resulting output,
namely a derivation. Name/value pairs are named attributes. A set of attributes
is surrounded by braces. In Nix expressions, they are the most important part of
specifying the derivation details. In the example above, lines 3-18 form the Nix
expression’s attribute set. The rec keyword defines it as recursive, thus allowing an
attribute inside the set to refer to another attribute. The first line defines the Nix
expression as an anonymous function. The specified packages within the braces
are the required attributes when calling this function, also known as its dependen-
cies. These packages will be used in the writing of the Nix expression’s attribute
set. The function stenv.mkDerivation at line 3 acts as a helper function that sim-
plifies the process of specifying build actions by handling boiler plate code which
would normally be required when writing build actions. Such boiler plate code in-
clude simple actions such as unpacking archives, generating makefiles, compiling
packages, installing them in specific directories etc. mkDerivation allows different
phases of the package building process to be overwritten with shell commands.
The configurePhase on lines 10-13 configure the package with Bash commands. The
double single quote allows for multi-line commands. When calling mkDerivation,
every attribute but meta is passed as an environment variable to the build script.

20 Chapter 3. Background Knowledge

Line 2 defines the environment variable version to take the value "0.5", which is
then used by mkDerivation to name the derivation "xmonad-0.5" through interpo-
lation. On line 9, the buildInputs environment variable contain the paths to ghc and
X11, which are dependencies to the whole function, as specified in line 1. The out
variable in line 13 signifies the location in the filesystem where the package will be
installed in [5].

Thus, the expression describing how to build xmonad is a function that, when
called with the same values for its arguments, will return the exact same instance
of the xmonad package. Changing anything about the expression will result in a
different instance. Different calls to this function will not interfere with each other
[5].

Another expression can make use of this xmonad build function, as demon-
strated in the following expression named "all-packages.nix":

rec {
xmonad = import .../xmonad.nix {

inherit stenv fetchurl ghc X11 xmessage;
};
...

}

This code snippet specifies an attribute set containing the attribute named
xmonad that is bound to the result of calling "xmonad.nix" as a function. The
xmonad package can be now installed through the terminal by running the follow-
ing command:

$ nix-env -f all-packages.nix -i -A xmonad

The xmonad derivation will be built, along with all its dependencies then finally
putting the package’s binary file in the user’s filesystem path [5]. To uninstall this
package, the following command is to be run:

$ nix-env -e xmonad

3.4.3 The Nix store: storing packages the purely functional way

The build scripts from Nix expressions install packages wherever the path that the
out environment variable points to. Nix then stores these packages in a purely
functional fashion. This implies that packages must be separated by their different
instances as to not interfere with each other [5].

Nix uses a specific file hierarchy to store all of its packages as immutable chil-
dren of its store. At the physical level, this means storing each package in their
specific directory under /nix/store. The packages’ directory names contain 160-bit

3.4. NixOS: A Configuration Based OS 21

cryptographic hashes generated from the inputs (attributes of the derivation) used
to build the corresponding packages. For example, after Nix computes this unique
hash for the package previously mentioned, xmonad, it will be store the package’s
binary files in out’s new value, /nix/store/8dpf3wcgkv1ixghzjhljj9xbcd9k6z9r-xmonad-
0.5/.

Packages are managed by each user, through the concept of user profiles. Each
user has their own packages managed by the Nix store, separate from other users.
This allows for atomic package upgrading and easy change rollbacks. At the phys-
ical level, these profiles are stored in /nix/var/nix/profiles [5].

Figure 3.1: Example of a Nix store and Nix profiles [5]

Figure 3.1 illustrates a partial version of an example Nix store. It contains
the xmonad package and its dependencies. The solid arrows signify the refer-
ences between files. Slanted names represent symlinks and dotted arrows their
targets. In this example, the filesystem path of the user "Alice" would reside
in /nix/var/nix/profiles/alice/bin. Upon installing a package, a user environ-
ment is built via the package user-env. This user environment contains the sym-
links to all the corresponding user’s installed packages. For example, the symlink
/nix/var/nix/profiles/alice-15 (or some other number after the user’s name) is
created, which simply points to that specific user environment. /nix/var/nix/profiles/alice
then is updated in order to point to the latest user environment’s symlink (alice-
15). Rollbacks simply require the user profile to change the symlink to a previous
one (e.g. alice-14) [5].

Such a purely functional package manager has several benefits:

22 Chapter 3. Background Knowledge

• The Nix store prevents incomplete dependency specifications. Packages are
stored outside any default search paths where they can be found by the sys-
tem attempting to build a package. If the building process of a package has
an undeclared dependency, it will always fail.

• References are scanned, thus allowing Nix to detect runtime dependencies.
This means all dependencies are known, and it is possible to deploy packages
to other machines and have them work.

• The immutability of packages allow for multiple version of the same pack-
age to be installed. If one package requires glibc-2.7 and a new package is
installed, which requires glibc-2.8, the first package will keep using version
2.7, while version 2.8 is installed for the other package to use. This prevents
"dependency hell".

• Since all runtime dependencies are known, the garbage collector can delete
any remaining unused packages to be deleted automatically.

• Upgrading packages to newer versions leave the previous intact. This means
that rolling back to a previous version, given that it was not intentionally
deleted, a simple operation [5].

3.5 Performance Evaluations through Benchmarking

This project needs to compare the performance of Parquet and ORC fairly to con-
clude some meaningful and trusted insight into which file format to use for some
non-arbitrary use cases. This makes using industry standards in performance eval-
uation essential.

Evaluating the performance of big data systems, gives information about the
expected performance of an execution of a specific instance of hardware and soft-
ware. The performance metrics evaluated, cover a wide range of measurable fac-
tors, some of which are: execution time, scalability, resource utilization and energy
efficiency.

Frameworks exist to perform these performance evaluations, which are called
benchmarking frameworks. The purpose of these frameworks is to create a struc-
tured and standardized suite to perform tests fairly on a range of big data tools
with various configurations in order to compare performance. Different frame-
works specialise in providing different insight into the various aspects of big data.
Some of the main factors of big data that are benchmarked include: data processing
engine, file system, disk technology, network interconnects and memory manage-
ment. Specifically, this project is focusing primarily on the file formats as part of
the file system factor, namely Parquet and ORC.

3.5. Performance Evaluations through Benchmarking 23

3.5.1 Big data benchmarking creation and approach

In order to utilize a benchmarking suite effectively, it is important to understand
the process of benchmarking, and what the important criteria is, in order to make
effective use of it.

The benchmarking process explained in [8], categorises benchmarking into five
steps as seen in Figure 3.2.

Figure 3.2: The 5 steps in the benchmarking process [8]

3.5.2 Planning

The planning step determines the high levels aspects of what the benchmark tests
will do. The objects to be tested and compared are decided, the appropriate do-
main and use cases are identified, and the evaluation metrics applied to the results
are set.

3.5.3 Generating suitable data

Big data is categorised into four dimensions called the 4V’s, which are: volume,
velocity, variety and veracity.

Volume is the size of the data, such as terabytes, petabytes, ect. Given different
workloads of a system, it could mean different things. If the system processes
plain/flat data, only the size of the data is important, however if the system has
alot of connectivity between its data like a social network, then the volume also
includes the number of connections between the data.

Velocity represents the speed of generating more data, updating the data, and
processing the data. Generation is measured through a data generation rate, such
that you divide the size of the data by the time taken to generate it to determine
the hourly rate to produce the data. Real time updating is required by dynamic
systems with many users making changes to content, a data updating frequency
rate is used to benchmark the update velocity. Systems can also receive constant
streams of data that need to be processed for ingestion in real time, velocity is
measured as the processing speed for that data.

Variety is the range of data types, and the sources containing them. Data can
be structured, semi-structured or unstructed, and the various sources may contain
many different data types, nesting and the ability to evolve the schema and update
data. Therefore benchmarking data generators are required to support the entire
spectrum of sources and data types to enable generation of synthetic data that
closely resembles real data, and emulates its behaviour.

24 Chapter 3. Background Knowledge

Veracity is how closely the data reflects real raw data to be used in a production
system. A benchmark is as credible as the veracity of its data, and therefore it is
important to understand the data that needs to be created to satisfy a credible
benchmark. The paper continues to explain that while some benchmarks use real
data, it is often problematic to acquire suitable data to satisfy benchmarking data
requirements (veracity) due to the scarcity of suitable public big datasets. The
consensus is to generate synthetic data to match real data as closely as possible in
order to satisfy the 4V’s.

3.5.4 Generating tests

Big data is a diverse and rapidly evolving domain that is composed of many non-
trivial parts. Designing and choosing meaningful tests to benchmark a specific
application can be challenging given various workload cases for a typical system.
The approach is to select the most general use cases, but they must cover the variety
of workloads the system can experience. Workloads and their tests are generated
from a functional and system view of the systems.

The functional view abstracts the behaviour of a workload, into a general set
of instructions which can be applied to the applications being benchmarked to
allow for a fair comparison. The abstraction is system independant like pseudo
code, such that different systems like a DBMS and a MapReduce system, can un-
derstand what is required of them to execute in their own syntax to perform the
same instructions respectfully. This is achieved by identifying and abstracting op-
erations of a system, like select from a DBMS, and the equivalent "select" operation
from MapReduce into a new abstract function that can be applied to both sys-
tems to cause the same behaviour. Then abstracting workload patterns which are
combinations of those abstracted operations to achieve complex data processing
functions, which are basically a ordered set of abstracted operations.

The system view is then applying the abstracted operations or patterns across
multiple systems to allow for a comparison on their respective outcomes as they
will have performed the same test.

3.5.5 Execution + Analysis and evaluation

Execution involves performing fair benchmarking tests to meet all the varied ex-
ecution requirements that are experienced across the different tools used in big
data. A benchmark generator must be able to adapt to different data sources, such
as providing format conversion to transform source data into the required format
for the tests. A big data benchmark test may require an entire software stack of
tools to compare different software pipelines, therefore benchmark tools must be
portable to enable efficient use of all the tools in combination to constitute specific
software stacks for testing and comparison. Extensibily of a becnhmark tool is

3.6. Selecting a Benchmarking Tool 25

imperative to stay fair and useful as tools develop and new tools and techniques
become available requiring support of new use cases. Usability is required for a
good user experience for ease of configuration and deployment. Finally, usable
benchmark tool that meets these prior requirements promote ease of analysis and
evaluation through metric information made available after the tests have been
completed.

3.5.6 Summary of the findings on benchmarks

Various benchmarking suites exist, which support data and test generation, exe-
cution, evaluation and analysis for big data tests. We have already identified the
software tools we want to use, which are Parquet, ORC, Spark, Hive and Impala,
within containers on GCP. Going forward, we still need to decide on: the use cases
of the system, metrics to be applied for evaluation, how the data will be structured,
and their appropriate tests, and the specific configurations for execution.

3.6 Selecting a Benchmarking Tool

Many benchmark suites exist, with the variety of choices typically designed to fill
some niche. The niche option catered to this project would be Spark Bench as it is
designed for benchmarking specifically on Spark. However, even Databricks when
benchmarking Spark, uses TPC benchmarks as opposed to the benchmark project
they worked on, Spark Bench; as the TPC benchmarks are industry standard, due
to collaboration of many big companies and extensive suites capabilities. Therefore
Transaction Processing Performance Council (TPC) is an obvious first choice when
deciding on a benchmarking suite.

3.6.1 TPC

TPC is a non-profit corporation composed of many big companies like Cisco and
Microsoft[17]. They have standardised benchmarking, and created many differ-
ent and specialised tools throughout the years to measure the different aspects of
database and transaction processing systems. Their benchmarks are designed on
the most general cases of real world setups to ensure the results fit the majority of
real world use cases, and allow for reliable result comparison for real systems.

Three benchmarks from TPC are being evaluated in this report as they are the
only three that deal with big data and may be suitable for the project. All three
use a retail supplier as their use case for generating data, with a few differences in
their schema and the data generated. The benchmarks are designed to transform
operational and external data into intelligence, and thus the data is a snowflake
schema of normalised tables like an OLTP system. The data generated is given a

26 Chapter 3. Background Knowledge

scale factor value which generates all fact and dimension table data to fit within
the corresponding data size which is roughly: 1TB, 3TB, 10TB, 30TB or 100TB[14].

The data generated is designed to be as close to a real production system as
possible, and fit for the use cases of the particular benchmark, e.g. TPC-DS gen-
erates all structured data, whereas TPCx-BB generates a mix of structured, semi-
structured and unstructured data. Data is generated as a flat text file which is
either generated directly into the System Under Test (SUT) which becomes part of
the benchmarking progress, or it can be generated outside the SUT, in which a ETL
like process moves the data into the SUT and becomes part of the benchmarking
process. The data generated does not contain a header, as it is intended to be
loaded into a system prepared with the appropriate schema.

The SUT is the collection of configured components you want to benchmark,
e.g. HDFS and Spark. Each TPC benchmark contains a driver which interfaces with
the SUT to perform the benchmark. The driver submits queries to the SUT within a
session and measures their execution times. The driver may have multiple sessions
running on a SUT, and a session is the full benchmark process to be applied to
the SUT; which is a load test, followed by two performance tests. The load test is
is performed to get the SUT ready to perform the performance test. It consists of
data generation and an ETL like process (defined in 5.1.1). The Performance Test
consists of two Throughput Tests, each executing the queries as a query stream
(which is running all the queries for that benchmark sequentially), and finally
producing the results of the session.

TPC-DS

The TPC-DS is for Decision Support. This benchmark is primarily used on big data
workloads to turn data into business intelligence[14]. The data generated by this
benchmark suite uses a tool within the specification folder called ’dsdgen’ (DS -
data - generator). The data is structured as it is emulating a relational database,
which is to be Transformed and Loaded into the SUT. The generated data contains
redundancy to emulate a schema that has evolved over the years, and it also con-
tains NULL values in the majority of its columns. There are seven fact tables, and
many dimension tables.

A decision support system (DSS) exhibits multiple types of queries for various
reasons such as reporting or data mining. TPC-DS has 99 query templates, which
fit into one of four categories: Reporting queries, Ad hoc queries, Iterative OLAP
queries, and Data mining queries.

TPC-DS uses three primary metrics to benchmark a system: A Performance
Metric which evaluates the throughput time of the 99 queries in the query stream,
a Price-Performance metric which determines the cost of owning and running the
system (all the individual components in the entire SUT such as hardware price,
license costs, costs of running hardware/software and maintenance costs), and

3.6. Selecting a Benchmarking Tool 27

system availability date in order to ensure the system is commercially available,
and not some custom implementation.

TPCx-BB

TPCx-BB is a benchmark created based on the paper “BigBench: Towards an In-
dustry Standard Benchmark for Big Data Analytics”[15]. It uses a schema inspired
by TCP-DS (retail snowflake schema), which consists of five fact tables and many
dimension tables.

TPCx-BB has 30 queries, ten of which are based on TPC-DS query templates.
All the queries are big data analytic use cases, though it differs from TPC-DS in that
the data in the various tables can be structured, semi-structured and unstructured
data.

Data in TPCX-BB is generated by PDGF based on the scale factor, directly into
the SUT and is timed as part of the benchmark process / load test. Like TPC-DS,
the majority of the columns can contain null values. TPCx-BB uses the same three
metrics as TPC-DS, however it has an optional metric that measures the energy
performance of the SUT as throughput divided by energy.

TPCx-HS

TPCx-HS (Hadoop Sort) is a benchmark focused on the execution engines MapRe-
duce and Spark[tpcxh]. The benchmark has a data generation tool called HSGen
that uses the same scale factor as the other benchmark suites covered, however,
there is not a documented schema. This is because the benchmark is intended to
sort a dataset in a total order, and does not include any queries.

There is only a performance test, unlike the other two with a load test. Data
is first generated with HSGen, and then compliance checked with HSDataCheck
(which is not part of the performance test). The performance test is carried out on
HSSort, which sorts the generated data into total order based on a another bench-
mark called TeraSort (TeraSort is a benchmark that sorts randomly distributed data,
measuring metrics like time of execution). Finally HSValidate is used to validate
the output is correct.

The same metrics are used as explained in TPCx-BB, including the optional
energy metric. The query throughput metric in DS and BB is of course adapted to
sorting and measures the effective sort throughput in HS.

3.6.2 Deciding on a benchmark suite

It is easy to rule out TPCx-HS on the basis that it does not fit a big data use case
for comparing file formats performance.

Both TPC-DS and TPCx-BB are viable options which cater to slightly different
use cases. TPC-DS generates only structured data and has redundancy, whereas

28 Chapter 3. Background Knowledge

TPCx-BB generates structured, semi-structured and unstructed data. DS has 99
queries in four different query categories to simulate different query approaches,
whereas BB has just 20 queries in one category partially based on DS’s queries.

The combination of the variety provided by TPC-DS and much better documen-
tation has lead us to chose TPC-DS. Given our selection we will break down the
TPC-DS specification and make decisions on our implementation of it in chapter
5.

Chapter 4

Framework

This chapter gives an overview of all the software packages we used together to
form our framework, from setting up our infrastructure to displaying the experi-
ment’s final results. We introduce these software packages as components in the
larger environment. Our goal was to choose certain software packages and lever-
age their functionalities when used together to result in an environment containing
an entire cluster of virtual machines running on the cloud, all setup programati-
cally according to our specification. The framework is extensible which can be
adapted to fit different needs.

We leverage the Google Cloud Platform cloud computing provider and use
Terraform, an infrastructure manager, to communicate with Google’s API on our
behalf in order to programatically build the hardware infrastructure in the cloud
needed to form our cluster of computers. The Nix package manager is then used
on each of the worker nodes. Each node runs on the NixOS Linux operating
system. The packages required by our experiments are Hadoop and HDFS [20],
Spark [21], Hive [16] and TPC-DS [17]. The following sections will give detailed
explanations of how we setup and used each component in the framework. Our
environment is developed in such a way as to be easily reproducible by other
users easily, automating nearly every step of the building process. The big data
processing experiments we chose to run are not automated. The Google Cloud
Compute Engine service enforces quotas on the power and size of some of its
resources. The free trial we used has limited quotas, namely our virtual machines’
resources in total cannot exceed 8 virtual CPUs and 10 TB of disk storage [12].
Thus, our experiment scale was as large as these limitations allowed us. With
available funds, anyone using our framework could modify parts of the code to
easily both scale up and scale out the cluster, allowing for larger scale big data
workloads.

29

30 Chapter 4. Framework

4.1 Cloud Computing with Google Cloud Platform

Google Cloud Platform (GCP) offers a wide variety of cloud computing solutions.
This section will focus on only the components relevant to the project, as Google
Cloud Platform offers a multitude of hardware and services. Explaining all of them
is out of scope of this paper.

The resources used for this project were instances of the Google Compute Engine
(GCE) service, which are virtual machine instances with attached disks, acting as
our cluster. The machines are complete computers, with processors, memory and
hard disks to be used as needed. A Google Compute Engine instance contains
three components [7]:

• Virtual machines: are virtual representations of hardware. Different hard-
ware configurations are available through GCE, with different level of hard-
ware performance and price, allowing the user to choose the one most suit-
able for their computational needs. GCE supports different operating sys-
tems, including distributions of Linux, UNIX or Windows. A GCE instance
is a resource that is part of a geographical zone, which is chosen at build time
[7].

• Persistent disks: are network-based block storage devices, either hard disk
or solid state disk. They are attached to one or more virtual machines and
act as an additional storage device. They remain persistent when their cor-
responding virtual machines are destroyed, preserving data. These disks can
be up to 64 terabytes in size [7]. The fact that they are external resources to
the virtual machine does not affect our experiments. They are used only to
generate mock data on, before moving it into HDFS.

• Networks: are the ways which virtual machines can communicate with the
world, including the persistent disk, which is hosted separately. Network
bandwidth is given to virtual machines according to the number of CPU cores
they have. The higher the number of CPU cores, the greater the bandwidth
allocated to the corresponding virtual machine [7].

In an academic project such as this one, where a lot of learning was involved,
we took in consideration all of GCP’s benefits, along with resource reusability and
ease of infrastructure management when developing it. We chose to use GCP,
as the abstraction of hardware infrastructure that it provides would allow us to
develop, test and run our experiments in Google’s cloud without needing much
hardware expertise or any financial upfront costs, as they offer a limited 300 dol-
lars in their free trial package, which was the most out of any cloud computing
providers offered.

4.2. Setting up the Infrastructure with Terraform 31

We used Terraform [3] to setup our infrastructure programatically, as explained
in the following section .

4.2 Setting up the Infrastructure with Terraform

This section explains our Terraform codebase, containing code snippets of the most
important parts, along with their explanations. Some parts will be directly tied to
Nix expressions, which are explained in greater detail in Section 4.3. This section
will focus on the the code related to Terraform and the overall project artifact files.

Our entire project’s codebase can be divided into three types of components:
Terraform files with the .tf extension, Nix expression files with the .nix expression
and the rest being artifact text files containing various information.

The most important artifact file is account.json, which contains service account
keys corresponding to the Google Cloud Platform account that owns the entire
project. This file has sensitive information, including the project’s id, private key,
authentication token etc. This file is necessary for Terraform to have access to, as
it is the authentication mechanism to grant it administrator priviledges, allowing
it to communicate with the GCP API on our behalf and create, destroy or make
changes to any of our cloud resources. After making an account, creating our
project, generating and downloading the account private key file, very little use of
the GCP web portal was needed, as Terraform code handled the resources for us
programatically, allowing us to have a better overview of our infrastructure and
control over our development process.

Our project contains three Terraform files: main.tf, master.tf and worker.tf.
Main.tf contains code relating to the overall GCP project, while master.tf and
worker.tf have code related to the type of virtual machine instance it will be de-
ployed to.

Main Terraform file

This subsection will explain the code found in the main.tf file, necessary for the
foundation of the GCP project.

variable "env" {
description = "Deployment environment name, used to prefix resource names."
default = "dev"

}

The variable "env" is an input parameter, to be used in customizing the other
resource’s attribute through interpolation. We chose the simple name "dev", but it
can be anything.

32 Chapter 4. Framework

The primary construct of the Terraform language is the resource, and their be-
havior rely on their corresponding types, which in turn are defined by the cloud
provider. Providers offer different types of resources, each with their own defini-
tions. These definitions include what arguments they accept, attributes they export
and how to interact with them via the provider’s API. In this case, we made use of
the Google Cloud Platform provider, which needed to be configured. The follow-
ing code snippet configures the GCP project and adds the secret key as a resource.

provider "google" {
project = "symmetric-stage-242608"
region = "europe-west1"

}

resource "tls_private_key" "root_key" {
algorithm = "RSA"

}

resource "local_file" "private_key" {
filename = "${path.module}/SECRET_private_key"
content = tls_private_key.root_key.private_key_pem

}

The provider has a name, given in the block header, signifying the provider
to be used. It is configured through its body, which contains attributes relating
to its corresponding project, which must be created manually through the GCP
portal, along with the region it resides in. Terraform uses this code block to then
initialize the provider. The user, upon running the terraform init command, will
cause Terraform to initialize the provider, which then downloads and installs the
plugin corresponding to the chosen provider.

The second code block, tls_private_key will generate a secure private key re-
source, using the RSA algorithm to encrypt it. root_key signifies the resource’s
name.

The following resource, local_file, will generate a file in the given path with
the newly generated private key as its content. The actual content is an attribute
called private_key_pem of a resource of type tls_private_key named root_key Here,
$path.module is interpolated inside the filename attribute in order to dynamically
create the path to the local project’s root directory at compile time and put the
secret private key file there.

The operating system we chose to run on our virtual machines was the NixOS
Linux distribution [5], a purely functional operating system with a purely func-
tional package manager, Nix. Since GCP does not provide the option of setting

4.2. Setting up the Infrastructure with Terraform 33

up the Google compute instances with NixOS, we define the following custom
resource with the its installation image for Terraform to download manually.

resource "google_compute_image" "nixos_1809" {
name = "nixos-1809"

raw_disk {
source =
"https://storage.googleapis.com/nixos-cloud-images
/nixos-image-18.09.1228.a4c4cbb613c-x86_64-linux.raw.tar.gz"

}
}

Terraform will ensure that NixOS version 18.09 will be downloaded and in-
stalled as the operating system of our virtual machines.

The following resource declares the firewall within the Google compute in-
stances. Access between GCE instances is controlled by each of their firewalls.

resource "google_compute_firewall" "default" {
name = "${var.env}-default-allow-ssh-and-spark"
network = "default"

allow {
protocol = "tcp"
ports = [22, 7077, 8042, 8044, 8080, 9000, 50070]

}
}

Network traffic to or from these instances must be explicitly allowed by the
firewall via creating its rules. The name resource contains the variable name, env,
interpolated within its full string name. allow contains the rule that, using the
TCP protocol, the specified ports should be allowed as permitted connections. In
our case, these ports are being used by various software packages we use, such as
Hadoop, Spark etc.

The following resource declares a persistent disk, acting as an external data
storage device that will be attached to the master node of the cluster.

resource "google_compute_disk" "data_storage" {
name = "${var.env}-test-disk"
type = "pd-standard"
size = 1000

34 Chapter 4. Framework

zone = "europe-west1-b"
physical_block_size_bytes = 4096

lifecycle {
prevent_destroy = true

}
}

The type pd-standard signifies that is a hard drive, as opposed to a solid state
disk. We chose this option as it is the cheaper option in GCP. The size is measured
in gigabytes. The size also affects the price. When developing, we chose smaller
sizes for testing purposes and to save money, as it was easy to change to a larger
size later on. The benefit of such a persistent disk is its ability to be attached and
detached from different virtual machines. The prevent_destroy attribute will prevent
this resource from being destroyed when running the terraform destroy command
on the virtual machines. This allows the data stored to not be deleted. This proved
useful in our project, as we were experimenting with different virtual machine con-
figurations, while keeping the data intact. The physical_block_size attribute declares
the block size of the disk.

data "template_file" "configuration_json" {
template = <<EOF

{
"master_ip": "${google_compute_instance.master.network_interface.0.network_ip}",
"worker_ips": ${jsonencode(google_compute_instance.worker.*.network_interface
.0.network_ip)}

}
EOF
}

template_file will create a template file in encoded in the JSON file format,
named "configuration_json" containing all the nodes’ internal IP addresses. The
string values are retrieved from their respective node type configuration files after
they have been built, namely master.tf and worker.tf.

locals {
public_ip = google_compute_instance.master.network_interface.0
.access_config.0.nat_ip

}

resource "local_file" "public_ip" {
filename = "${path.module}/OUTPUT_public_ip"

4.2. Setting up the Infrastructure with Terraform 35

content = local.public_ip
}

output "public_ip" {
value = local.public_ip

}

locals declares local variables, to be used only within the current Terraform file.
In this case, nat_ip is the external, public IP address of the node. The rest of the
code will generate a file containing the external, public IP address of the master
node and put it in the project’s root directory at build time.

Master and worker Terraform files

This subsection covers the code within master.tf and worker.tf. As their name
suggests, their roles are deploying their respective virtual machine instance types.
In our project’s cluster, there is only one master node to multiple worker nodes.

The following code snippet declares the GCE instance’s configuration corre-
sponding to the cluster’s master node.

resource "google_compute_instance" "master" {
name = "${var.env}-gcespark-master"
machine_type = "n1-standard-2"
zone = "europe-west1-b"

boot_disk {
initialize_params {

image = google_compute_image.nixos_1809.self_link
size = 40

}
}

network_interface {
network = "default"
access_config {

nat_ip = google_compute_address.gcespark.address
}

}

metadata = {
sshKeys = "root:${tls_private_key.root_key.public_key_openssh}"

}

36 Chapter 4. Framework

connection {
user = "root"
host = self.network_interface.0.access_config.0.nat_ip
private_key = tls_private_key.root_key.private_key_pem

}

provisioner "remote-exec" {
inline = [

"nix-channel --remove nixos",
"nix-channel --add https://nixos.org/channels/nixos-19.03 nixos",
"nix-channel --update"

]
}

}

The machine_type signifies the type of virtual machine to be deployed. Several
different types exist on GCP, with different strengths, and we chose a standard one
with two CPU cores and 7.5 GB memory due to its low price and decent perfor-
mance, especially for the developing and testing phase of the project which did
not demand a lot of computing power. When needing more power, we chose to
scale out the cluster, by adding more worker nodes with this type 2 machine hard-
ware, rather than choose machines of type 4, with twice the power and memory
but more costly. However, by using Terraform to manage the cloud infrastructure,
changing the machine types is trivial, with only minimal code changes required
before rebuilding. If needed, much more powerful virtual machine instances can
be built at a moments notice and set up programatically via Terraform code.

The boot_disk attribute declares the main storage device of the machine. The
persistent disk, which was previously defined in main.tf, is attached to the master
node’s virtual machine as a boot disk, with a size of 40 GB. This is the master node’s
main storage device, storing the operating system and various installed packages,
but not our testing data, thus not a lot of storage space was required. This helped
us keep costs down by only creating hardware that fits our computational needs
and avoid overpaying. We needed this separate disk in order to generate our
mock data locally before moving it to the cluster’s HDFS. This is due to TPC-DS
(explained in section 3.6.1) needing a local disk to generate data in.

The network_interface attribute specifies the network to be attached to the virtual
machine. In our case, the default option with the machine’s external public IP
is sufficient. nat_ip within the access_config attribute will be bound to this value
at build time. This allows this machine to be accessible from anywhere on the
internet.

"Metadata" contains the SSH keys to be saved as key value pairs and made

4.2. Setting up the Infrastructure with Terraform 37

available in the virtual machine instance. This is necessary because they will not
be stored in the Google Cloud, so it is important to attach them to the instance. The
metadata.sshKeys variable will contain a mapping of the users to public keys. Those
keys will be copied to the user’s home directory: /.ssh/authorized_keys file/. The
SSH server looks it up on connection attempt then verifies the key against the
client’s signature. connection will then allow the user root to be accessed remotely
and securely, due to the private keys bound to the connection. We use this to
connect to the any of the nodes remotely via SSH from our personal laptops.

The remote_exec provisioner runs the specified script on the virtual machine it
corresponds to after its creation. In our case, Bash commands are executed in order
to update the package manager’s channel to the newer one.

resource "null_resource" "deploy_master" {
count = 1
triggers = {

instance = google_compute_instance.master.id
always = uuid()

}

connection {
user = "root"
host = google_compute_instance.master.network_interface
.0.access_config.0.nat_ip
private_key = tls_private_key.root_key.private_key_pem

}

provisioner "file" {
source = "./nixos/"
destination = "/etc/nixos/"

}

provisioner "file" {
content = "{ imports = [profiles/master.nix]; }"
destination = "/etc/nixos/configuration.nix"

}

provisioner "file" {
content = data.template_file.configuration_json.rendered
destination = "/etc/nixos/configuration.json"

}

provisioner "remote-exec" {

38 Chapter 4. Framework

inline = [
"nixos-rebuild switch --show-trace"

]
}

}

The rest of master.tf’s code handles the actual deployment of the master node.
The null_resource resource will actually move the specified files, present in the
project directory, into the master node’s file system. For example, the entire "nixos"
folder, containing modules, packages and profiles will be moved into the master
node’s /etc/nixos directory. The appropriate master.nix profile configuration file is
imported and then bounded to Nix’s configuration profile. Applying these changes
then require a rebuild of the configuration. This is done with the nixos-rebuild switch
–show-trace command.

The worker.tf file has a lot of the same code, with slight differences.

resource "google_compute_instance" "worker" {
count = 4
name = "${var.env}-gcespark-worker-${count.index}"
machine_type = "n1-standard-2"
zone = "europe-west1-b"

...
resource "null_resource" "deploy_master" {
count = 4
triggers = {

instance = google_compute_instance.master.id
always = uuid()

}
...

For example, an additional count key value pairs are present, signifying the
amount of clones of this configuration of virtual machine to be created and de-
ployments of files to be executed on. Both count values need to be equal, as all
files to be deployed are needed on all of the cluster’s nodes.

These lines of Terraform code corresponding to our configuration and desired
infrastructure are an important part of the software framework we designed. It
handled our cluster’s infrastructure, building it up from scratch many times on
command, as we kept developing it and making changes. The declarative pro-
gramming paradigm proved to be crucial when dealing with a lot of trial and
error, saving us lots of time and effort throughout the process.

After the infrastructure is built, the next step is to setup the needed packages
and configuration files automatically through the Nix package manager. The next

4.3. Package Management with Nix 39

section will explain the code within our Nix expressions.

4.3 Package Management with Nix

This section explains the most important parts of the Nix expressions we used
in setting up our packages and configuration files in the cluster. Each node in
the cluster runs the NixOS operating system [5], which contains the Nix package
manager [4]. Thus, the Nix expressions are responsible for setting up the entire
system of any given machine, not just install packages.

In order to execute large-scale queries, we use Spark, a big data processing
engine that supports querying large datasets. Moreover, it works in a distributed
fashion, using the master/worker architecture [21]. We also use Hadoop to store
our mock data. It has its own Map Reduce distributed data processing engine,
however we do not make use of it. The distributed version of Hadoop is named
Hadoop Distributed File System (HDFS) and is used to distribute large data sets
across computer clusters. This means that the HDFS storage space is that of the
sum of all the cluster nodes’ storage devices [20]. We set up our HDFS cluster to
use all the worker nodes’ disks as our distributed data store. We also installed
and set up Hive. It is a Hadoop manager, compiling queries written in its specific
HiveQL language into MapReduce jobs to be executed by Hadoop [16]. However,
technical issues prevented us from setting up Hive to process our test queries in
a distributed fashion. Thus, only Spark was used for this project. TPC-DS [17] is
the software that we setup and use in order to generate mock data and queries,
explained in subsection 3.6.1.

There are several Nix files within our project with their specific roles. Their
functionality will be explained in this section, but for brevity, will not go into
detail regarding the Nix expression language syntax. The following code snippet
represents the directory tree containing the Nix files from our project.

/nixos/modules/
|--hadoop_cluster.nix

/nixos/packages
|--hadoop.nix
|--tpcds.nix

/nixos/profiles
|--common.nix
|--master.nix
|--worker.nix

/nixpkgs-pinned.nix
/shell.nix

The first step when building the infrastructure from scratch is done through the

40 Chapter 4. Framework

Nix shell. The project files and the Nix package manager are on a local machine,
such as a laptop, which allows us to start a Nix shell based on the configuration
based off of a Nix expression. This Nix expression is named shell.nix and is used
by the nix-shell command to build the dependencies of the derivation then start
the Nix shell. In this shell, the environment variables are defined by the shell.nix
derivation.

{pkgs ? import nixos/nixpkgs-pinned.nix {}, ...} :
let

terraform = (pkgs.terraform_0_12.withPlugins (p: with p; [
p.null local template tls google

]));
in
pkgs.stdenv.mkDerivation {

name = "gcespark-env";
buildInputs = [terraform];
shellHook = ''

[-z $GOOGLE_CREDENTIALS] && export GOOGLE_CREDENTIALS=account.json
terraform init

'';
}

The let expression gives names to values. pkgs.terraform_0_12.withPlugins is a
function which takes another function that takes all plugins and returns a list of
them to load. In this case, only few Terraform plugins are necessary. A derivation is
made from these plugins bounded to the name "Terraform". The commands within
shellHook are executed when the Nix shell is entered. "GOOGLE_CREDENTIALS=account.json"
is an example of one of the environment varaibles available in the Nix shell. By
adding it to the shellHook, the user does not have to add it manually when run-
ning Terraform commands. terraform init initializes the Terraform plan. Thus, the
user, once in this Nix shell, must only run terraform apply in order to execute the
build scripts that builds the entire infrastructure in GCP and sets up every package
and configuration as specified in the Nix expressions and Terraform files. pkgs is
the set of Nix packages, imported from the nixpkgs-pinned.nix expression:

{ pkgs ? import <nixpkgs> {}, ...} :
let

pinned_pkgs_path = pkgs.fetchFromGitHub {
owner = "NixOS";
repo = "nixpkgs";
rev = "8669561bde00b4039cda2b662f9f726db8385069";
sha256 = "157a5h1vcfj892b20c90n7i6rfr5k61242ylgz6i21m8sbcxfry6";

4.3. Package Management with Nix 41

};
in

import pinned_pkgs_path {}

Nixpkgs-pinned.nix is used to pin packages to a certain Nix packages (nixp-
kgs) repository commit with the id "8669561bde00b4039cda2b662f9f726db8385069".
This ensures that the exact files from the exact repository commit will be retrieved
every time they are needed. The list of available Nix packages and their paths are
retrieved, which are then bounded as the variable "pkgs" and available in the other
Nix expressions to be used.

The next step for Nix is to build the full system configuration. This is done
by using modules containing Nix expressions. In our case, the hadoop_cluster.nix is
responsible for our systems’ configurations. Options are declared in the module
to be given values by other modules, which in turn are other Nix expressions
[5]. Our node cluster has two types of nodes: one master node and multiple
worker nodes. This corresponds to the master/worker architecture adopted by
the Hadoop Distributed File System, further explained in Tom White’s "Hadoop:
The Definitive Guide" [20]. This Nix expression handles the configuration for both
types of nodes, setting up different system options to enable different deployments
of package configurations, based on what type of node it is.

{ config, pkgs, lib, ... }:
let

cfg = config.services.hadoopCluster;
in {

options.services.hadoopCluster = with lib.types; {
enable = lib.mkEnableOption "Hadoop node";

master = lib.mkOption {
type = bool;
description = "Whether it is a master node";

};

master_ip = lib.mkOption {
type = string;
description = "IP address of master node";

};

worker_ips = lib.mkOption {
type = listOf string;
default = [];

42 Chapter 4. Framework

description = "List of IP addresses of worker nodes";
};

};

The config function argument, which contains the complete system configu-
ration, is used to access configuration values from within other modules’s code.
Inside the let expression, the hadoopCluster system service is bound to the cfg value
to be used in the body of the Nix expression to improve code readability. The
hadoopCluster system service is then defined with several options. These options
have variables with different types declared, and are to be used in config. These
options will be interpreted as configurable NixOS options. For example, master
will act as a switch with "true" or "false" values. When defining the master node’s
profile as a Nix expression (master.nix), inside the body the following line will be
added to signify it is the master node: services.hadoopCluster.master = true; while
the worker node’s profile Nix expression will contain the same configuration with
the "false" value bound to it. The other data structures are master_ip, which will
be used to bound it to the master node’s IP address. As there are multiple worker
nodes, worker_ips is declared as a list of elements, each element being a string con-
taining one worker IP address. The flexibility of the structure allowed us to easily
scale out, adding multiple worker nodes without needing to change any parts of
the Nix code.

The following code snippet shows most of the remaining hadoop_cluster.nix ex-
pression.

config = lib.mkIf cfg.enable {
environment.systemPackages = [config.services.hadoop.package];

users.groups.hadoop = {};
users.users.hadoop = {

group = "hadoop";
createHome = true;
home = "/home/hadoop";

};

system.activationScripts = {
hadoopGroupRWX = {

text = "chmod -R g+rwx ${config.users.users.hadoop.home}";
deps = [];

};

tmpRWX = {
text = "mkdir -p /tmp/hive && chmod -R a+rwx /tmp/hive";

4.3. Package Management with Nix 43

deps = [];
};

};
services.hadoop = {

hdfs.namenode.enabled = cfg.master;
hdfs.datanode.enabled = !cfg.master;
yarn.nodemanager.enabled = cfg.master;
yarn.resourcemanager.enabled = cfg.master;
coreSite = {

"fs.defaultFS" = "hdfs://${cfg.master_ip}:9000";
};
...

A configuration is declared to be activated only if the hadoopCluster service is
enabled. The Hadoop package is added to the system’s packages, which causes
Hadoop to be installed on any machines with this configuration enabled. This
is a pre-made module from the Nix packages repository in order to easily setup
Hadoop in a distributed fashion, which forms the Hadoop Distributed File Sys-
tem (HDFS) as defined in [20], which has specific requirements when it comes to
its configuration within the system it operates in. NixOS modules are merged on
system activation to form the whole system configuration. This includes creat-
ing a system user group, specific Linux user and home directory, giving admin-
istrator permissions to directories which Hadoop needs to access. Scripts within
system.activationScripts will be executed after every package is installed and the ser-
vice started. By being able to interpolate variables into string values, writing such
scrips is made easy. For example, the Hadoop home folder’s path will be bound to
"config.users.users.hadoop.home" when running the Nix expression, which is not
known beforehand and cannot be hard-coded.

Other Hadoop-specific configuration files and services are easily changeable
through several values. services.hadoop denotes the services that it will launch,
namely HDFS and Yarn. Different daemons run on different machines, depending
if they are master or worker nodes. For example Hadoop master node daemon
is called the namenode, while its worker nodes are datanodes. In the example code
shown corresponding to the master node, the options defined previously are used
as configuration attributes to be bounded to Hadoop configuration settings such
as "hdfs.namenode.enabled = cfg.master". This setting will be set to "true" if the
corresponding node is defined as a master node, and the opposite case is true if
the node is defined as a worker (!cfg.master). The coreSite corresponds to the core-
site.xml file that is part of Hadoop and needs configured. Normally this is done
manually, but through Nix packages, it has to be configured programmatically, as
shown above. Interpolation lets keys to be bounded with values that are dynami-
cally decided at build time. In the case of "coreSite", "fs.defaultFS" will be bounded

44 Chapter 4. Framework

to the HDFS address, which is the master node’s IP address. The cfg.master_ip
value will be replaced with the actual IP address string at build time. IP addresses
are retrieved from the "configuration.json" file, which is created in "main.tf". Sev-
eral of these Hadoop configuration files are changed by Nix programmatically,
which not shown for brevity. These include the HDFS specific configuration files:
core-site.xml, yarn-site.xml, hdfs-site.xml and mapred-site.xml which HDFS needs
[20]. Nix will create these XML configuration files and put them in the appropri-
ate directories. The HDFS configurations are easily changeable through Nix code
if needed, adding to the further flexibility offered by using Nix. The modified
hadoop.nix package is imported at the end of this file:

package = import ../packages/hadoop.nix
{ inherit pkgs; inherit (cfg) worker_ips; };

It refers to the result of the hadoop.nix expression and it is then passed as an
environment system variable in the resulting machine. This package variable is the
one referenced in environment.SystemPackages above.

We needed to make a small adjustment to Hadoop package’s code in order to
prevent a warning message to appear every time a Hadoop command was exe-
cuted. This is possible in Nix with few lines of code:

{ pkgs ? import <nixpkgs> {}, worker_ips? ["localhost"], ... }:
pkgs.hadoop_3_1.overrideAttrs (oldAttrs: {

installPhase = builtins.replaceStrings ["HADOOP_PREFIX"]
["HADOOP_HOME"] oldAttrs.installPhase + ''

echo "${pkgs.lib.concatStringsSep "\n" worker_ips}\n" > $out/etc/hadoop/workers
'' ;

})

The hadoop.nix expression overrides the Hadoop package’s configuration file
and adds the worker node IP addresses in Hadoop’s "workers" file. By using the
installPhase function in Nix, it is possible execute some commands and override
code at the package’s install phase. In our case, two commands were needed: the
string "HADOOP_PREFIX" should be replaced with "HADOOP_HOME", due to
the latest version of Hadoop needing the name change of the system environment
variable in order to not show a warning every time a Hadoop command is exe-
cuted. "HADOOP_HOME" points to the path where Hadoop is installed on the
system. The second task required was to automatically populate the "workers"
configuration file with all of the worker nodes’ IP addresses. Developing small
changes and scrips like these reduce setup overhead when it comes to reproducing
the whole system on other machines. Instead of needing to write instructions for

4.3. Package Management with Nix 45

another developer to follow in order to have the same configuration as us, the Nix
expressions will handle all these changes automatically.

Another package we needed was TPC-DS (presented in section 3.6.1). It re-
quired creating a Nix derivation for, as there was no pre-made Nix package avail-
able from the official repository. Nix is versatile, allowing for custom derivations
such as the following:

{ pkgs ? import <nixpkgs> {}, ... }:
pkgs.stdenv.mkDerivation rec {

pname = "tpcds-kit";
version = "unstable-2019-06-14";
src = pkgs.fetchFromGitHub {

owner = "gregrahn";
repo = pname;
rev = "9d01e73403c32d8e3d89a987d096b98cbfae3c62";
sha256 = "0l1jn2k4n9cyvf3i4bjkirqpz77d42jv13yzwg34rwlzckrvybx5";

};
buildInputs = with pkgs;
[makeWrapper bison byacc (writeScriptBin "lex" "exec ${flex}/bin/flex $@")];
hardeningDisable = ["all"];

preBuild = ''
cd tools

'';
installPhase = ''

mkdir -p $out/bin
cp -r dsdgen dsqgen distcomp mkheader checksum .ctags_updated $out/bin
mkdir -p $out/share
cp -r tpcds.idx ../query_templates $out/share

'';
postFixup = ''

wrapProgram $out/bin/dsdgen --run "cd $out/share"
wrapProgram $out/bin/dsqgen --add-flags "-directory query_templates"
--run "cd $out/share"

'';
}

It is a basic derivation that downloads the TPC-DS source from a GitHub repos-
itory, sets up the build inputs and then executes commands. The "buildInputs"
function is bounded to the list of packages required to build TPC-DS. We discov-
ered a small issue with the TPC-DS package, namely that attempted to call the Lex
package, which was not available. The solution to this is using the "writeScriptBin"

46 Chapter 4. Framework

Nix function to create a Lex binary that, when called by TPC-DS build process,
simply uses Flex instead. Other useful functions such as "preBuild", "installPhase"
and "postFixup" allow for shell commands to be injected in various phases of the
TPC-DS package creation lifecycle. Thus, by setting up these commands to run au-
tomatically before, after or during the build process, the TPC-DS package will be
properly setup for the end user. Learning how TPC-DS package works and what
setup it requires involved lots of trying and testing, but the result is a reproducible
script to be ran as many times as we need to rebuild the whole system.

The remaining parts of the Nix codebase involve the Nix profiles, stored in the
directory with the same name.

/nixos/profiles
|--common.nix
|--master.nix
|--worker.nix

Profiles are used to distinguish the difference between deployments for differ-
ent node types. For example, configuration files and services defined in common.nix
are to be deployed to all nodes, as to not have repeated code in both the master.nix
and the worker.nix Nix expression files.

The following code snippet is part of common.nix:

{ config, pkgs, lib, ...}:
let

configurationJson =
if builtins.pathExists ../configuration.json then

builtins.fromJSON (builtins.readFile ../configuration.json)
else

lib.warn "../configuration.json not found" {};
in{
....

The configuration JSON file is first created in main.tf. It contains the nodes’ IP
addresses. This file is then read by the builtins.readFile Nix function and bounded
to the configuationJson variable.

imports = [
<nixpkgs/nixos/modules/virtualisation/google-compute-config.nix>
../modules/hadoop_cluster.nix

];

Two Nix modules are then imported: the one necessary for configuring the
Google Compute Engine instance, which is premade, and the hadoop_cluster one

4.3. Package Management with Nix 47

modified by us. The hadoop_cluster.nix expression file is imported to the this profile
because all the nodes will be part of the Hadoop cluster, master and workers, thus
needing the common Hadoop specific configuration files and services running on
them.

The rest of the code handles the common configurations:

config = {
networking.firewall.enable = false;
networking.hosts =

builtins.listToAttrs (lib.imap0 (i: x: {
name=x;
value=[("worker" + builtins.toString i)];
}) configurationJson.worker_ips)
// {"${configurationJson.master_ip}" = ["master"];
};

users.groups.spark = {};
users.users.spark = {

group = "spark";
createHome = true;
home = "/home/spark";

};

services.hadoopCluster = {
enable = true;
master_ip = configurationJson.master_ip;
worker_ips = configurationJson.worker_ips;

};

};

There is no need for the machines’ builtin Linux firewall, they already have
the firewall from GCP, thus we disable it. The system hosts file will be mapped to
the master and worker nodes IP addresses, along with a unique name for each of
them. An example resulting hosts file would look like:

0.0.0.0 worker0
0.0.0.1 worker1
0.0.0.2 master

The spark user and usergroup is created for Spark to use. The Hadoop cluster
service is then declared to be enabled, and the master_ip and worker_ips values

48 Chapter 4. Framework

are bounded ot their respective IP addresses. These values will be usable in the
master.nix and worker.nix Nix expressions for further configurations.

The following code snippets will explain the master.nix expression and its func-
tionality:

{ config, pkgs, lib, ... } :
let

pinnedPkgs = import ../nixpkgs-pinned.nix {};
hive = fetchTarball {

url =
http://dk.mirrors.quenda.co/apache/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz;
sha256 = "1g4y3378y2mwwlmk5hs1695ax154alnq648hn60zi81i83hbxy5q";

};
spark = pinnedPkgs.spark;
tcpds = import ../packages/tpcds.nix { inherit pkgs; };

in
...

The actual packages are imported to be then deployed on the master node. The
Nix package list from its repository is retrieved and bounded to pinnedPkgs. Spark
is an existing Nixpkgs module which we did not modify at all, like we did with
Hadoop, thus importing it via pinnedPkgs.spark is straightforward. There is no
Hive Nixpkgs module, therefore we needed to invoke the fetchTarball Nix function
in order to download its source archive. This function handles the extraction of the
archive automatically and deletion once it is done extracting. TPC-DS is imported
from the the Nix expression we defined previously.

imports = [./common.nix];

fileSystems."/data" = {
device = "/dev/sdb";
autoFormat = true;
fsType = "ext4";

};

environment.systemPackages = [
tcpds
hive
spark

];

users.groups.hive = {};

4.3. Package Management with Nix 49

users.users.hive = {
group = "hive";
createHome = true;
home = "/home/hive";

};

services.hadoopCluster.master = true;

The common.nix profile is then imported. This is done in both master and
worker profiles. The separately created persistent disk in GCP is attached to the
master node: "/dev/sdb" is the device the operating system sees, which will then
be mounted in path "/data"/. We use this device to generate TPC-DS data on
before moving it to HDFS.

The system environment packages are defined and added to the system path.
The list bound to environment.systemPackages point to several packages, which at
build time will point to their local paths where they are installed.

The "services.hadoopCluster.master = true;" line defines this node as being the
master node within the Hadoop cluster configuration, thus triggering the deploy-
ment of services and configuration files needed by the Hadoop name node (mas-
ter).

The Hive service is then defined, with its required configurations:

systemd.services.hive = {
wantedBy = ["multi-user.target"];
path = with pkgs; [config.services.hadoop.package hive bash gawk procps which];
environment = {

HIVE_HOME = hive;
HADOOP_HOME = config.services.hadoop.package;
HADOOP_HEAPSIZE = "2048";

};
serviceConfig.User = "hive";
script = ''

hdfs dfs -mkdir -p hdfs://master:9000/tmp/hive
hdfs dfs -mkdir -p hdfs://master:9000/user/hive/warehouse
cd
schematool -initSchema -dbType derby || true
hiveserver2\

--hiveconf hive.metastore.schema.verification=false\
--hiveconf hive.server2.enable.doAs=false\
--hiveconf fs.defaultFS=hdfs://master:9000/\
--hiveconf org.jpox.autoCreateSchema=true

'';

50 Chapter 4. Framework

after = ["hdfs-namenode.service"];
};

The "wantedBy = ["multi-user.target"]" line triggers the services to be launched.
Hadoop, Hive and other packages are added to the path to be used by the Hive
service. Hive required environment variables are declared such as HIVE_HOME
and HADOOP_HOME easily through the environment configuration attribute. Shell
commands to initialize the Hive service and have it be ready for use on system
bootup are executed, saving us time when building the whole environment from
scratch, thus not needing to manually start the Hive service and its related initial-
izations every time. The "after = ["hdfs-namenode.service"];" line specifies after
which service should this service start. In this case, Hive service should start after
the Hdfs-namenode service has started.

systemd.services.spark-master = {
wantedBy = ["multi-user.target"];
environment = {

SPARK_MASTER_HOST = config.services.hadoopCluster.master_ip;
SPARK_LOG_DIR = "${config.users.users.spark.home}/logs";
SPARK_NO_DAEMONIZE = "true";

};
serviceConfig.User = "spark";
path = [pkgs.procps];
script = ''

${spark}/lib/spark-2.4.3-bin-without-hadoop/sbin/start-master.sh
'';

};

Similar code is written to handle the Spark service and start it at system bootup
by executing Spark’s start-master.sh binary executable.

The worker.nix profile contains less code than the master, as its role is only to
store files and execute commands got from the master. It is declared as a non-
master, thus Nix knowing not to deploy master-specific services and files to it.

{ config, pkgs, lib, ... } :
let

master_ip = config.services.hadoopCluster.master_ip;
spark = (import ../nixpkgs-pinned.nix {}).spark;

in
{

imports = [./common.nix];

services.hadoopCluster.master = false;

4.3. Package Management with Nix 51

systemd.services.spark-worker = {
wantedBy = ["multi-user.target"];
serviceConfig.User = "spark";
path = [pkgs.procps];
environment = {

SPARK_MASTER_HOST = master_ip;
SPARK_LOG_DIR = "${config.users.users.spark.home}/logs";
SPARK_WORKER_DIR = "${config.users.users.spark.home}/work";
SPARK_NO_DAEMONIZE = "true";

};
script = ''

${spark}/lib/spark-2.4.3-bin-without-hadoop/
sbin/start-slave.sh spark://${master_ip}:7077

'';
};

}

Thus, the Nix language has enough expressive power to handle such specific
package setups and various configurations as highlighted in this section. These
Nix expressions are crucial in making the whole environment reproducible with
as few manual steps as possible.

Chapter 5

TPC-DS Theory and Decisions

5.1 TPC-DS Partial Implementation

The specification and guidelines outlined by the TPC-DS specification explicitly
details how a valid benchmark is meant to be performed, along with valid substitu-
tions, alterations, and guidelines on how to validate configurations and operations
that stray a little from the expected implementation and use.

Given the limitation of our resources, we have decided to implement a sub-set
of the TPC-DS benchmark, using it more as a guideline. This of course invalidates
our benchmarks in terms of successful TPC-DS benchmark results, however the
results of our benchmarks are performed as fairly as possible adhering to the prin-
ciples of TPC-DS and the benchmarking theory covered in this report to deliver
trustworthy results, as detailed in Section 3.5, the information detailing TPC-DS
in this section, and as summarised in subsection 5.1.2. Given that the tool created
through this report can be easily scaled up, and the correct tools can be utilised as
specified in the TPC-DS specification, future work can be done to enable successful
TPC benchmarks as discussed in Future Work in Section 8.2.

The general implementation guidelines state that benchmarks using TPC-DS
must use products that are available to users, are relevant, would actually be im-
plemented and used by a significant amount of users, and queries must be executed
from a SQL interface[14], which our project implementation abides by, as we are
using Spark to submit our SQL like queries, onto Parquet and ORC files. Prohibited
by the TPC-DS benchmark are specialised/customer systems that are not widely
available, or designed specifically to optimise performance on the benchmark re-
sults. Our project is neither of these as we are using the latest public versions of
our chosen software without any specialised configurations, however given the na-
ture of infrastructure as code, the project could be manipulated into a prohibited
implementation.

53

54 Chapter 5. TPC-DS Theory and Decisions

5.1.1 TPC-DS Setup

A summary of our setup is explained in Section 5.1.2 without all the TPC-DS
theory, for a clearer understanding of all the decisions we have made.

The retail use case the benchmark imitates, can be broadly understood from
the figure 5.1. The simulated business model uses five components which are sales
channels (Store, WEB, Catalog), inventory and promotions.

Figure 5.1: Components of the benchmark [14, p 16]

The components are composed of seven fact tables, which are linked to 17
dimension tables in a snowflake schema. The seven fact tables are: store_sales,
store_returns, catalog_sales, catalogue_returns, web_sales, web_returns and inventory.
All the fact tables are linked to the same 17 dimension tables through the dimen-
sions tables surrogate key, so the fact tables are often joined and unioned to each
other through the dimension tables.

Both the fact tables, and the dimension tables are generated as text files by a tool
within the suite called dsdgen (DS - data - generator). It is typically called with
a few parameters, such as directory to generate data into, delimiter to generate
between the fields of data, a suffix for the file names, and a scale factor. The scale
factor determines the total size of all the file combined, as one of the values seen in

5.1. TPC-DS Partial Implementation 55

Scale Factor SF
1GB 1 (qualification database)
1TB 1000
3TB 3000
10TB 10000
30TB 30000
100TB 100000

Table 5.1: dsdgen scale factor [14, p. 39]

the table 5.1. The 1GB is not a valid scale factor for the benchmark, as it is merely
used to validate a dataset if some modifications have been made to the data; TPC-
DS specifics allowable modifications in its document specification, and also details
guidelines on how to validate that data to be accepted as a valid benchmark using
the 1GB scale factor. The values in the SF column in table 5.1, roughly translate
to the number of GB that will be generated. An example execution of dsdgen
executed independently is:

dsdgen -dir /data -scale 1 -verbose Y -delimiter "," -suffix .csv

As previously mentioned in Section 3.6.1, there are 99 queries which fit into
four categories of query behaviour. It is explained in the TPC-DS specification [14]
that the catalog_sales fact table is dedicated for the reporting queries, while the store
and web fact tables use ad-hoc queries. The query distribution is: Reporting Class
41, Ad Hoc Class 59, Iterative Class 4, Data Mining Class 23. We have verified this
by looking into each of the queries and searching for the catalog_sales fact table,
which was found in exactly 41 queries (presumably all reporting queries): 2, 4, 5,
10, 14a, 14b, 15, 16, 17, 18, 20, 23a, 23b, 25, 26, 29, 32, 33, 35, 37, 38, 40, 49, 54, 56, 57,
58, 60, 64, 66, 69, 71, 72, 75, 76, 77, 78, 80, 87, 97 and 99.

The TPC-DS specification does not provide a mapping of query number to
query category, nor can a mapping be found online. An assumption must be made
that the 41 queries involving catalog_sales must all be reporting queries in essence,
but given the numbers of the query categorisation do not total to 99 (it totals to
127), then some of the queries must have multiple query behaviours defined, such
as reporting also including data mining, and thus not much else can be ascertained
about the other queries.

The reporting queries are defined as queries executed periodically, answering
well known business questions. Ad-hoc queries are dynamic in nature, as they are
constructed to answer specific and immediate questions about the business. The
iterative queries are used to explore the data to find new relationships and trends
within the data. Data mining queries are used to predict future trends and produce
data content relationships.

56 Chapter 5. TPC-DS Theory and Decisions

We have chosen to model our use case after the catalog_sales fact table as its
data makes up 40% of the entire dataset generated [14, p. 18], and it is likely that,
most, if not all the queries involving it are reporting queries, which are guaranteed
to handle big data sets, and return big data sets.

Of the 41 reporting queries, we have selected five of them to perform our bench-
marking tests. We first wanted two relatively simple queries, without too many
different operations being called to serve as a starting point.

The first query selected was number 15, as can be seen in Appendix B, line
438-452, as it selects a few fields across four tables, grouping and ordering the
results. The business question the query seeks to answer, is defined in the TPC-
DS specification as: "Report the total catalog sales for customers in selected geographical
regions or who made large purchases for a given year and quarter." [14, p. 108]

38, as can be seen in Appendix B, line 461-490, was chosen next as it adds just a
little more complexity, as it contains multiple selects which are combined with an
intersect. The business question is: "For the groups of customers living in the same state,
having the same gender and marital status who have purchased from stores and from either
the catalog or the web during a given year, display the following: • state, gender, marital
status, count of customers • min, max, avg, count distinct of the customer’s dependent
count • min, max, avg, count distinct of the customer’s employed dependent count • min,
max, avg, count distinct of the customer’s dependents in college count" [14, p. 114]

Our next query is 56, as can be seen in Appendix B, line 639-703, and it has
been chosen as it combines all the operations from the previous two queries, into a
much bigger query spanning many more tables; it does however use union instead
of intersect. The business question : "Compute the monthly sales amount for a specific
month in a specific year, for items with three specific colors across all sales channels. Only
consider sales of customers residing in a specific time zone. Group sales by item and sort
output by sales amount. " [14, p. 119]

Query 49, as can be seen in Appendix B, line 499-630, was chosen next as it add
more complexity on top of 56 by adding functions into the query. The business
question: "Report the worst return ratios (sales to returns) of all items for each channel
by quantity and currency sorted by ratio. Quantity ratio is defined as total number of sales
to total number of returns. Currency ratio is defined as sum of return amount to sum of
net paid." [14, p. 118]

Finally, the last query is 60, as can be seen in Appendix B, line 712-773, It selects
across the three sales fact tables, and uses a sum function. The business question:
"What is the monthly sales amount for a specific month in a specific year, for items in a
specific category, purchased by customers residing in a specific time zone. Group sales by
item and sort output by sales amount." [14, p. 120]

Many queries have been left out which could have been good additions, and
even queries in the other query classes, like data mining and ad-hoc contain very
interesting queries. We think these queries should be explored in future work.

5.1. TPC-DS Partial Implementation 57

To completely compare Parquet and ORC in certainty, various query behaviours
would need to be performed to get an extensive understanding of which be-
haviours each file format excels in, rather than which operations and degree of
joins/unions, number of columns selected, etc.

The 99 queries are in "Query Templates". A query template is a language inde-
pendent format, that is translated into a language specific format by a TPC-DS tool
called dsqgen (DS - query - generator), as explained previously in Section 3.5.4. The
dsqgen tool is executed by the driver, which was explained in Section 3.6.1, and
then the translated templates can be executed in the query stream. Our implemen-
tation in this report does not use the driver, as we are partially implementing the
TPC-DS specification, and therefore we would be unable to successfully pass the
validation measures executed by the driver. We therefore must be able to translate
the templates, into PySpark code. This is actually accepted by the TPC-DS specifi-
cation: "The application of all minor query modifications must result in queries that have
equivalent ISO SQL semantic behavior as the queries generated from the TPC-supplied
query templates"[14, p. 46]. The specification continues to explain in [14, p. 44]
Chapter 4.2.3 "Minor Query Modifications", what constitutes valid modification of
query templates that do not mirror the original functionality.

We are not modifying the five queries we have selected, however they are in a
format we can not use. In order to execute the queries, we have found a Git-Hub
project that offers the same 99 queries as Hive SQL statements, instead of the TPC-
DS templates. This posed a new challenge that we would have to execute pure
SQL statements that are intended to run on SQL tables; and given that the data
generated by dsdgen does not contain headers, and we don’t have tables to load
the data into, we needed to simulate SQL tables in PySpark.

The schema for the catalog_sales can be seen in Figure 5.2, and the catalog_sales
column definitions can be seen in Table 5.2. The schema for each fact table is
relatively similar, with the difference being the selection of dimension tables e.g.
all link to the Date_Dim dimension, only the ’Returns’ fact tables link to the ’Reason’
dimension (Web_Returns, Catalog_Returns, Store_Returns).

The column definitions table for Catalog_Sales seen here 5.2, has five columns
and 34 rows. The first column is the column name, then the datatype for the data,
then whether or not the column allows nullability, in which they all implicitly are
nullable, except for the rows that specify ’N’ in the ’NULLs’ field, the next column
indicates if a column is a primary key or not, and lastly Foreign keys show the
surrogate keys to the other dimensions. The value ’decimal(7,2)’ in the datatype
field means that it is a decimal value, that holds a maximum of seven numbers,
with a precision of two numbers on the right hand side of the decimal point, e.g.
12345.67.

58 Chapter 5. TPC-DS Theory and Decisions

Column Datatype NULLs Primary Key Foreign Key
cs_sold_date_sk identifier d_date_sk
cs_sold_time_sk identifier t_time_sk
cs_ship_date_sk identifier d_date_sk
cs_bill_customer_sk identifier c_customer_sk
cs_bill_cdemo_sk identifier cd_demo_sk
cs_bill_hdemo_sk identifier hd_demo_sk
cs_bill_addr_sk identifier ca_address_sk
cs_ship_customer_sk identifier c_customer_sk
cs_ship_cdemo_sk identifier cd_demo_sk
cs_ship_hdemo_sk identifier hd_demo_sk
cs_ship_addr_sk identifier ca_address_sk
cs_call_center_sk identifier cc_call_center_sk
cs_catalog_page_sk identifier cp_catalog_page_sk
cs_ship_mode_sk identifier sm_ship_mode_sk
cs_warehouse_sk identifier sm_ship_mode_sk
cs_item_sk (1) identifier N Y i_item_sk
cs_promo_sk identifier p_promo_sk
cs_order_number (2) identifier N Y
cs_quantity integer
cs_wholesale_cost decimal(7,2)
cs_list_price decimal(7,2)
cs_sales_price decimal(7,2)
cs_ext_discount_amt decimal(7,2)
cs_ext_sales_price decimal(7,2)
cs_ext_wholesale_cost decimal(7,2)
cs_ext_list_price decimal(7,2)
cs_ext_tax decimal(7,2)
cs_coupon_amt decimal(7,2)
cs_ext_ship_cost decimal(7,2)
cs_net_paid decimal(7,2)
cs_net_paid_inc_tax decimal(7,2)
cs_net_paid_inc_ship decimal(7,2)
cs_net_paid_inc_ship_tax decimal(7,2)
cs_net_profit decimal(7,2)

Table 5.2: catalog_sales column definitions [14, p. 24]

5.1. TPC-DS Partial Implementation 59

Figure 5.2: catalog_sales schema[14, p. 24]

Data Maintenance / Data Refresh / ETL

TPC-DS defines the process of ETL as something called data maintenance or data
refresh. It is called data maintenance/data refresh as it lacks the "extract" part of
ETL, as the data is generated; therefore it is focused on the "transformation" and
"load" parts of ETL. A generated dataset is referred to as a refresh data set, and each
refresh dataset must only have one query stream applied to it. In our case, that
would mean we would need to generate the data twice, once to be transformed
into Parquet and queried with our selection of queries, and then once again for
ORC. However, we generate the data once using dsdgen, and create Parquet and
ORC files from the generated CSV files, and then run two performance tests; one
test for Parquet, then a separate run for ORC. Our chosen scale factor is 1. Scale
factor 1 is only used by TPC-DS for verify data is being generated correctly and
compliant. We have resorted to using this scale factor due to technical issues in
generating and performing larger scale benchmarks due to free tier limitations on
resources. As previously mentioned in section 4.1, our GCP account was limited
by the free trial quotas, meaning that using a larger scale factor was out of our
scope due to time resource and time constraints. However, given enough financial
resources to upgrade the account, scaling up would be a trivial process, and large

60 Chapter 5. TPC-DS Theory and Decisions

scale factor experiments would be possible.
The data can be loaded directly into the SUT as it is (in its normalised form),

or it can be denormalised or mapped across multiple tables; however, a specialised
loading tool may not be used, only generic loading processes may be used. In our
case, we will be directly loading the file as they are into HDFS.

5.1.2 Summary of our process

We have decided not to use the driver process from TCP-DS because: We don’t
want to use all 99 queries which would cause TPC-DS validation check failures,
and we are going to use an invalid scale factor (1).

Since we are not using the driver process, we are adapting the TPC-DS process.
A bash call, will call dsdgen to generate data as a text file with a comma specified
as the delimiter, and ".csv" specified as the suffix, meaning we generate CSV files
which we can transform into Parquet and ORC respectively using Spark. The CSV
files will be generated onto the local file system in the /data/ directory, transformed
into Parquet/ORC, and then -put into HDFS, where a PyScript will perform the
benchmark on them.

We selected five queries from the 99 queries available: 15, 38, 49, 56 and 60.
We have chosen an invalid scale factor 1 due to GCP free tier limiting the size of
our cluster to 2TB which is not sufficient for generating the first valid scale factor
at 1TB, given we need an external disk and a local disk, each capable of holding
the generated data, in addition the some space reserved by the master (it is worth
noting that the 1TB scale factor generates a little more than 1TB, so it does not just
fit nicely in our 2TB cap). Future experiments need to be carried out on a non-free
tier to execute the first valid scale factor.

A PySpark script will run separately for both Parquet and ORC to adhere to
the TPC-DS specification. The benchmark is run twice per SUT, so we will run the
queries twice for Parquet and ORC. However given we are currently using a scale
factor of 1, we are just executing the queries once per file format as the performance
metrics aren’t too interesting on such a small size of data.

Chapter 6

Benchmark Setup

To begin the Benchmarking process, the virtual machine was launched, the termi-
nal was opened in the project folder, and the terminal commands to build and ssh
into the GCP box were executed, as explained in Chapter 4, and shown in listing 1.

1 Nix-shell
2 terraform apply -auto-approve
3 ssh -i SECRET_private_key root@<output ip here>

Listing 1: GCP build and ssh bash commands

Once in the GCP box, the data for the benchmark is generated from any location
on the terminal using the command seen in listing 2.

1 dsdgen -dir /data -scale 1 -verbose Y -delimiter "," -suffix .csv

Listing 2: data generation using TPC-DS dsdgen

As explained in subsection 5.1.2, the scale factor is set to 1, roughly translating
into 1GB of data, and the data is written out as a text file without a header.

It is in the external disk that the CSV files are converted into Parquet and ORC
files using a PySpark script that loads the CSVs into dataframes, and writes out
Parquet and ORC as seen in listing 3. The PySpark script called transform.py is
located in the /data/pythonscripts/ directory, and can be seen in Appendix A.

1 df=spark.read.format("csv").load("/data/catalog_sales.csv")
2 df.write.parquet("/data/parquet_catalog_sales")

Listing 3: Snippet showing a CSV to Parquet transformation

61

62 Chapter 6. Benchmark Setup

To execute the transform.py, you must first navigate to the folder spark is con-
tained in, and then using spark-submit, in conjunction with the path to the script,
Spark executes the script. Example in listing 4.

1 cd /nix/store/s4f9b100j97s172s41av7szgfjcnmmbs-spark-2.4.3/
2 ./bin/spark-submit /data/pythonscripts/transform.py

Listing 4: Bash commands to execute PySpark scripts

As this data is generated onto an external disk, for reasons explained in section
4.3, we must put the Parquet and ORC files into HDFS with these commands seen
in listing 5.

1 hdfs dfs -put /data/parquet* hdfs://<ip>:9000/
2 hdfs dfs -put /data/orc* hdfs://<ip>:9000/

Listing 5: HDFS put commands to move files into HDFS

With the files on HDFS, spark can execute the benchmark script locally. The
benchmark script is called benchmark.py and is located in /data/pythonscripts/ with
the other PySpark script. It can be seen in Appendix B. The script is designed to
be run twice, once for benchmarking Parquet, and again for ORC. The files are
read into a dataframe, and then each column within the dataframe is selected and
renamed with an alias. This is required as the data is generated without a header,
so the columns are named _col0, _col1...; the columns must be named correctly
due to use using SQL queries that match the name of the columns seen in the
specification. Listing 6 shows an example of creating a temporary table from a
ORC file called orc_catalog_sales.

1 df = spark.read.orc("hdfs://<ip>:9000/orc_catalog_sales")
2 df = df.select(col("_c0").alias("cs_sold_date_sk")...
3 df.registerTempTable("catalog_sales")

Listing 6: Snippet for creating temporary tables

With the temporary tables created, the SQL queries can execute. As the script
is being run twice, the tables are named neutrally, e.g. catalog_sales, and not par-
quet_catalog_sales, allowing the queries to be run unmodified. In the current veri-
son of the script, only time is recorded for each query, but that can of course be
extended in future work. An example of a query being run can be seen in listing
7. The sql query is removed from this listing in order to save space; it however can
be seen in Appendix B on lines 438 to 452.

63

1 query_start_time = time.time()
2 query1 = sqlContext.sql("""SELECT...""")
3 query1.show()
4 query_end_time = time.time()
5 query_elapsed_time1 = (query_end_time - query_start_time)

Listing 7: Snippet for timing query1

Upon completion of all five queries, the execution times are returned to the
main function as a list, and conveniently printed as the last print to make clear the
execution times of the benchmark.

Chapter 7

Performance Evaluation

Given the tool created in this project was only executed on a dsdgen scale factor of
1, we can hardly give a performance evaluation of Parquet and ORC based on such
a small size of data. However the tests were still run for the purpose of proving it
does work, and all it requires is the appropriate resources to run on a sufficiently
large dsdgen scale factor.

Query 1 (TPC-DS query 15)

Query 1 can be seen in Appendix B on lines 438 to 452.

Parquet ORC
9.150 9.620

Table 7.1: Query 1 results

Query 2 (TPC-DS query 38)

Query 2 can be seen in Appendix B on lines 461 to 490.

Parquet ORC
23.356 23.951

Table 7.2: Query 2 results

Query 3 (TPC-DS query 49)

Query 3 can be seen in Appendix B on lines 499 to 630.

65

66 Chapter 7. Performance Evaluation

Parquet ORC
12.309 11.902

Table 7.3: Query 3 results

Query 4 (TPC-DS query 56)

Query 4 can be seen in Appendix B on lines 639 to 703.

Parquet ORC
10.423 10.257

Table 7.4: Query 4 results

Query 5 (TPC-DS query 60)

Query 5 can be seen in Appendix B on lines 712 to 773.

Parquet ORC
10.728 9.854

Table 7.5: Query 5 results

7.1 Result Analysis

While the dataset is not big enough to gain a deep understanding of the perfor-
mance of the file formats, at least one interesting observation can be made on query
2. Query 2 has 30 lines of code, which is exactly in between query 1 with which has
16 lines of code, and query 5 with 63 lines of code. What makes query 3 unique
from the other four queries is the use of DISTINCT and INTERSECT. This calls
for the addition of some new queries including them to explore the impact of that
statement/operator on the performance of Parquet and ORC.

The increased time on query 3 is likely due to the size of the query. Query 3 is
127 lines of code, and contains many functions.

Chapter 8

Conclusion

8.1 Discussion

This project was deceptively difficult. Our intention starting out on this project
was to gain a deep understanding of Parquet and ORC query performance given
various operators and functions, across different configurations of spark clusters
(e.g. various sizes of dsdgen data scale factors, various worker nodes, understand-
ing of the impact of number of CPU cores and memory, ect). However the project
became less about Parquet and ORC, and more about system configuration, auto-
matic scalable frameworks and benchmarking in general. This is likely due to us
vowing from the previous semester, to put much more emphasis on theory and
literature when conducting our next project.

Quickly into the project we had an environment in GCP, ready with TPC-DS
and Spark configured and running. However we took our time to explore the
theory of Terraform, Nix, benchmarking and TPC-DS without testing the system
on more than a scale factor of 1 with a single query to check it worked.

We took for granted that Spark was operating fine, and pursued a sub goal
of setting up Map Reduce in order to use Hive and Impala. We managed to get
Hive to work but only locally, meaning on the master node. Hive’s metastore was
successfully exported to a separate PostgreSQL database. This was an important
step in setting up Impala, as it needed an external metastore, since it doesn’t have
its own. More knowledge was needed to understand all the services running to
make the MapReduce engine work accross a cluster. This was a big drawback,
causing us to spend too much time debugging it without reaching a working state.

Parallel to figuring out the configuration to enable Map Reduce, we also wanted
to explore what a valid Parquet/ORC performance test would be, as we had stated
in our previous project that we had little confidence in our results, due to it not
being backed by any theory/literature. A considerable amount of time was used
in understanding the tools the TPC offered, and how to use the three relevant ones

67

68 Chapter 8. Conclusion

covered in this report, however we did not actually use those tools as the TPC
intends.

Due to the limitations of the free tier of GCP quotas, it progressively over the
course of the project whittled down the scale we wanted to operate at due to con-
sistent quota issues pertaining to running out of resources when trying to perform
a benchmark. This made apparent we needed to diverge from the specification,
and would not be able to use the TPC tools, but would rather have to use compo-
nents of it in our own inspired process. It became increasingly difficult to make
decisions as they were no longer backed by theory or the specification. This caused
alot of uncertainty that slowed down progression due to hesitation.

We had issues even running a scale factor of 100, as we encountered problems
with quotas that we could not figure out, as it claimed our name nodes were low
on resources, despite the console showing we had not reached or exceeded our
quotas.

So after a lot of battling with the configuration of Nix and Terraform, and pro-
gressively reducing complexity and size of the benchmark queries, Spark nodes
and external disk on our GCP environment, given time constraints we defaulted
to running a simple proof of concept. Looking back, despite the problems on our
9th semester project with Telenor grossly delaying access to our boxes to perform
the performance test, we took the resources and configuration on their system for
granted. Taking on Big Data architecture to be scalable and easily buildable along-
side the intention of running intricate performance tests was way to ambitious
for a masters project, as each are a masters project in their own right. So essen-
tially, despite our limited success with our delivered framework, our not so elegant
PyScripts, and our scaled down performance test, we are quite proud at what we
achieved, as it has layed a foundation that works and can definitely be improved
on as a tool with legitimate uses for the Big Data industry.

8.2 Future Work

Should we continue this project, there are many possibilities to focus on. A glaring
issue is to address the resource problems we had on our cluster preventing a larger
scale benchmark. We need to investigate our configuration and status of the nodes
to determine exactly where the problem lies. It is of course preferable that we attain
more resources than just the free tier, as more cores, memory and disk space would
certainly enable a larger scale of benchmark. Despite our trouble with running a
significantly large benchmark, we did actually manage to answer our first and
main problem statement, being that we have created a software framework that
makes a reproducible environment, that can run a big data performance test.

We intended to compare the Spark results for Parquet and ORC with results
of ORC on Hive and Parquet on Impala. This was to see if the file formats out

8.3. Project conclusion 69

perform themselves on Spark, when they are used by the tools they were designed
to run on. Future work into this idea requires us to finish the configuration of Map
Reduce.

Our PySpark code is messy, and not automated in the slightest which isn’t user
friendly and doesn’t abide to the general benchmark guidelines outlined in 3.5.
We want to include the scripts into the building of the GCP environment, and use
an aliases on the environment to automate the Bash commands and spark-submit
commands. We would allow like to redevelop the scripts to use a command line
interface to allow easy modification of certain parameters in the scripts making it
user friendly and easy to use and read.

Our query selection strategy was mainly focused on finding a diverse selection
of queries within the identified reporting queries. Moving forward in conjunction
of running a successful performance test, it would be desirable to expand on the
query selection to include the different query behaviours, and identify operators
that impact performance such as INTERSECT.

One of our problem statements was to run a standardized benchmark, which
we don’t quite attempt to do given we implement a subset of the TPC-DS bench-
mark. It would be interesting to perform a valid TPC-DS bench to prove this
framework does in fact make performing TPC benchmarks easier with the tool we
have created, constructing a sufficient environment to test.

8.3 Project conclusion

Overall, this project has been enjoyable, despite many frustrating goose chases to
implement various features. We intended to leave this project with a deep under-
standing of Parquet and ORC performance, their features and when to select one
over another. However we have instead emerged with an understanding of Big
Data architecture and configuration, infrastructure as code, benchmarking prac-
tices, and the frustrations of resource requirements. This has certainly gotten us
much closer to understanding what it means to be a data engineer / dev-ops,
though we are not quite satisfied with the outcome and want to pursue it even
further.

Bibliography

[1] Michael Armbrust et al. “A View of Cloud Computing”. In: Commun. ACM
53.4 (Apr. 2010), pp. 50–58. issn: 0001-0782. doi: 10.1145/1721654.1721672.
url: http://doi.acm.org/10.1145/1721654.1721672.

[2] Tom Breur. “Statistical Power Analysis and the contemporary “crisis” in so-
cial sciences”. In: Journal of Marketing Analytics 4.2 (2016), pp. 61–65. issn:
2050-3326. doi: 10.1057/s41270-016-0001-3. url: https://doi.org/10.
1057/s41270-016-0001-3.

[3] Y. Brikman. Terraform: Up and Running : Writing Infrastructure as Code. O’Reilly
Media, 2017. isbn: 9781491977088. url: https://books.google.dk/books?
id=MLkRMQAACAAJ.

[4] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. “Nix: A Safe and Policy-
Free System for Software Deployment”. In: Proceedings of the 18th USENIX
Conference on System Administration. LISA ’04. Atlanta, GA: USENIX Associa-
tion, 2004, pp. 79–92. url: http://dl.acm.org/citation.cfm?id=1052676.
1052686.

[5] Eelco Dolstra and Andres Löh. “NixOS: a purely functional Linux distribu-
tion”. In: ICFP. 2008.

[6] Avrilia Floratou, Umar Farooq Minhas, and Fatma Özcan. “SQL-on-Hadoop:
Full Circle Back to Shared-nothing Database Architectures”. In: Proc. VLDB
Endow. 7.12 (Aug. 2014), pp. 1295–1306. issn: 2150-8097. doi: 10 . 14778 /
2732977.2733002. url: http://dx.doi.org/10.14778/2732977.2733002.

[7] J.U. Gonzalez and S.P.T. Krishnan. Building Your Next Big Thing with Google
Cloud Platform: A Guide for Developers and Enterprise Architects. Apress, 2015.
isbn: 9781484210048. url: https://books.google.dk/books?id=BGYnCgAAQBAJ.

[8] Rui Han, Xiaoyi Lu, and Jiangtao Xu. “On big data benchmarking”. In: Work-
shop on Big Data Benchmarks, Performance Optimization, and Emerging Hardware.
Springer. 2014, pp. 3–18.

71

https://doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1057/s41270-016-0001-3
https://doi.org/10.1057/s41270-016-0001-3
https://doi.org/10.1057/s41270-016-0001-3
https://books.google.dk/books?id=MLkRMQAACAAJ
https://books.google.dk/books?id=MLkRMQAACAAJ
http://dl.acm.org/citation.cfm?id=1052676.1052686
http://dl.acm.org/citation.cfm?id=1052676.1052686
https://doi.org/10.14778/2732977.2733002
https://doi.org/10.14778/2732977.2733002
http://dx.doi.org/10.14778/2732977.2733002
https://books.google.dk/books?id=BGYnCgAAQBAJ

72 Bibliography

[9] Martin Hilbert. “Big Data for Development: A Review of Promises and Chal-
lenges”. In: Development Policy Review 34.1 (Jan. 2016), pp. 135–174. issn: 1467-
7679. doi: 10.1111/dpr.12142. url: https://doi.org/10.1111/dpr.12142.

[10] Adam Jacobs. “The Pathologies of Big Data”. In: Commun. ACM 52.8 (Aug.
2009), pp. 36–44. issn: 0001-0782. doi: 10.1145/1536616.1536632. url: http:
//doi.acm.org/10.1145/1536616.1536632.

[11] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. “Why You
Should Run TPC-DS: A Workload Analysis”. In: Proceedings of the 33rd In-
ternational Conference on Very Large Data Bases. VLDB ’07. Vienna, Austria:
VLDB Endowment, 2007, pp. 1138–1149. isbn: 978-1-59593-649-3. url: http:
//dl.acm.org/citation.cfm?id=1325851.1325979.

[12] Resource quotas. https://cloud.google.com/compute/quotas. Accessed:
2019-09-12.

[13] Dirk Riehle and Thomas Gross. “Role Model Based Framework Design and
Integration”. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. OOPSLA ’98. Van-
couver, British Columbia, Canada: ACM, 1998, pp. 117–133. isbn: 1-58113-
005-8. doi: 10.1145/286936.286951. url: http://doi.acm.org/10.1145/
286936.286951.

[14] Transaction Processing Performance Council (TCP). TPC BENCHMARK DS
- TCP DS Specificaiton V 1.0.0 L. Last accessed 05 September 2019. 2019. url:
www.tcp.org.

[15] Transaction Processing Performance Council (TCP). TPC Express Big Bench
TPCx BB - TCPx BB V1 3 1.3.0. Last accessed 05 September 2019. 2019. url:
www.tcp.org.

[16] Ashish Thusoo et al. “Hive: a warehousing solution over a map-reduce frame-
work”. In: Proceedings of the VLDB Endowment 2.2 (2009), pp. 1626–1629.

[17] tpc. TPC Benchmarks. http://www.tpc.org/information/benchmarks.asp.
2019.

[18] Jorge Veiga et al. “Performance evaluation of big data frameworks for large-
scale data analytics”. In: 2016 IEEE International Conference on Big Data (Big
Data). IEEE. 2016, pp. 424–431.

[19] Heyong Wang, Wu He, and Feng-Kwei Wang. “Enterprise cloud service ar-
chitectures”. In: Information Technology and Management 13.4 (2012), pp. 445–
454. issn: 1573-7667. doi: 10.1007/s10799-012-0139-4. url: https://doi.
org/10.1007/s10799-012-0139-4.

[20] Tom White. Hadoop: The Definitive Guide. 4th. O’Reilly Media, Inc., 2015. isbn:
1491901632, 9781491901632.

https://doi.org/10.1111/dpr.12142
https://doi.org/10.1111/dpr.12142
https://doi.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/1536616.1536632
http://doi.acm.org/10.1145/1536616.1536632
http://dl.acm.org/citation.cfm?id=1325851.1325979
http://dl.acm.org/citation.cfm?id=1325851.1325979
https://cloud.google.com/compute/quotas
https://doi.org/10.1145/286936.286951
http://doi.acm.org/10.1145/286936.286951
http://doi.acm.org/10.1145/286936.286951
www.tcp.org
www.tcp.org
http://www.tpc.org/information/benchmarks.asp
https://doi.org/10.1007/s10799-012-0139-4
https://doi.org/10.1007/s10799-012-0139-4
https://doi.org/10.1007/s10799-012-0139-4

Bibliography 73

[21] Matei Zaharia et al. “Spark: Cluster computing with working sets.” In: Hot-
Cloud 10.10-10 (2010), p. 95.

Appendix A

transform.py

1 from pyspark.context import SparkContext
2 from pyspark.sql.session import SparkSession
3 from pyspark.sql import SQLContext
4 from pyspark.sql.functions import col
5 sc = SparkContext('local')
6 spark = SparkSession(sc)
7

8

9 print("writing parquet files")
10 df = spark.read.format("csv").load("/data/catalog_sales.csv")
11 df.write.parquet("/data/parquet_catalog_sales")
12

13 df = spark.read.format("csv").load("/data/customer.csv")
14 df.write.parquet("/data/parquet_customer")
15

16 df = spark.read.format("csv").load("/data/customer_address.csv")
17 df.write.parquet("/data/parquet_customer_address")
18

19 df = spark.read.format("csv").load("/data/date_dim.csv")
20 df.write.parquet("/data/parquet_date_dim")
21

22 df = spark.read.format("csv").load("/data/store_sales.csv")
23 df.write.parquet("/data/parquet_store_sales")
24

25 df = spark.read.format("csv").load("/data/web_sales.csv")
26 df.write.parquet("/data/parquet_web_sales")
27

28 df = spark.read.format("csv").load("/data/item.csv")

75

76 Appendix A. transform.py

29 df.write.parquet("/data/parquet_item")
30

31 df = spark.read.format("csv").load("/data/web_returns.csv")
32 df.write.parquet("/data/parquet_web_returns")
33

34 df = spark.read.format("csv").load("/data/catalog_returns.csv")
35 df.write.parquet("/data/parquet_catalog_returns")
36

37 df = spark.read.format("csv").load("/data/store_returns.csv")
38 df.write.parquet("/data/parquet_store_returns")
39 print("parquet files wrote successfully")
40

41 print("writing orc files")
42 df = spark.read.format("csv").load("/data/catalog_sales.csv")
43 df.write.orc("/data/orc_catalog_sales")
44

45 df = spark.read.format("csv").load("/data/customer.csv")
46 df.write.orc("/data/orc_customer")
47

48 df = spark.read.format("csv").load("/data/customer_address.csv")
49 df.write.orc("/data/orc_customer_address")
50

51 df = spark.read.format("csv").load("/data/date_dim.csv")
52 df.write.orc("/data/orc_date_dim")
53

54 df = spark.read.format("csv").load("/data/store_sales.csv")
55 df.write.orc("/data/orc_store_sales")
56

57 df = spark.read.format("csv").load("/data/web_sales.csv")
58 df.write.orc("/data/orc_web_sales")
59

60 df = spark.read.format("csv").load("/data/item.csv")
61 df.write.orc("/data/orc_item")
62

63 df = spark.read.format("csv").load("/data/web_returns.csv")
64 df.write.orc("/data/orc_web_returns")
65

66 df = spark.read.format("csv").load("/data/catalog_returns.csv")
67 df.write.orc("/data/orc_catalog_returns")
68

69 df = spark.read.format("csv").load("/data/store_returns.csv")

77

70 df.write.orc("/data/orc_store_returns")
71

72 print("orc files wrote successfully")

Appendix B

benchmark.py

1 import os, sys, time
2 #from pyspark import SparkConf
3 from pyspark.context import SparkContext
4 from pyspark.sql.session import SparkSession
5 from pyspark.sql import SQLContext
6 from pyspark.sql.functions import col
7 sc = SparkContext('local')
8 spark = SparkSession(sc)
9 sqlContext = SQLContext(sc)

10

11

12 def set_tables():
13 """
14 print("registering parquet tables")
15 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_catalog_sales")
16 #df.show(1)
17 df = df.select(col("_c0").alias("cs_sold_date_sk"),
18 col("_c1").alias("cs_sold_time_sk"), col("_c2").alias("cs_ship_date_sk"), \
19 col("_c3").alias("cs_bill_customer_sk"), col("_c4").alias("cs_bill_cdemo_sk"), \
20 col("_c5").alias("cs_bill_hdemo_sk"), col("_c6").alias("cs_bill_addr_sk"), \
21 col("_c7").alias("cs_ship_customer_sk"), col("_c8").alias("cs_ship_cdemo_sk"), \
22 col("_c9").alias("cs_ship_hdemo_sk"), col("_c10").alias("cs_ship_addr_sk"), \
23 col("_c11").alias("cs_call_center_sk"), col("_c12").alias("cs_catalog_page_sk"), \
24 col("_c13").alias("cs_ship_mode_sk"), col("_c14").alias("cs_warehouse_sk"), \
25 col("_c15").alias("cs_item_sk"), col("_c16").alias("cs_promo_sk"), \
26 col("_c17").alias("cs_order_number"), col("_c18").alias("cs_quantity"), \
27 col("_c19").alias("cs_wholesale_cost"), col("_c20").alias("cs_list_price"), \
28 col("_c21").alias("cs_sales_price"), col("_c22").alias("cs_ext_discount_amt"), \

79

80 Appendix B. benchmark.py

29 col("_c23").alias("cs_ext_sales_price"), \
30 col("_c24").alias("cs_ext_wholesale_cost"), \
31 col("_c25").alias("cs_ext_list_price"), col("_c26").alias("cs_ext_tax"), \
32 col("_c27").alias("cs_coupon_amt"), col("_c28").alias("cs_ext_ship_cost"), \
33 col("_c29").alias("cs_net_paid"), col("_c30").alias("cs_net_paid_inc_tax"), \
34 col("_c31").alias("cs_net_paid_inc_ship"), \
35 col("_c32").alias("cs_net_paid_inc_ship_tax"), \
36 col("_c33").alias("cs_net_profit"))
37 df.registerTempTable("catalog_sales")
38

39 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_customer")
40 df = df.select(col("_c0").alias("c_customer_sk"), \
41 col("_c1").alias("c_customer_id (B)"), \
42 col("_c2").alias("c_current_cdemo_sk"), \
43 col("_c3").alias("c_current_hdemo_sk"), \
44 col("_c4").alias("c_current_addr_sk"), \
45 col("_c5").alias("c_first_shipto_date_sk"), \
46 col("_c6").alias("c_first_sales_date_sk"), \
47 col("_c7").alias("c_salutation"), col("_c8").alias("c_first_name"), \
48 col("_c9").alias("c_last_name"), \
49 col("_c10").alias("c_preferred_cust_flag"), \
50 col("_c11").alias("c_birth_day"), col("_c12").alias("c_birth_month"), \
51 col("_c13").alias("c_birth_year"), \
52 col("_c14").alias("c_birth_country"), col("_c15").alias("c_login"), \
53 col("_c16").alias("c_email_address"), \
54 col("_c17").alias("c_last_review_date_sk"))
55 df.registerTempTable("customer")
56

57 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_customer_address")
58 df = df.select(col("_c0").alias("ca_address_sk"), \
59 col("_c1").alias("ca_address_id (B"), \
60 col("_c2").alias("ca_street_number"), \
61 col("_c3").alias("ca_street_name"), \
62 col("_c4").alias("ca_street_type"), \
63 col("_c5").alias("ca_suite_number"), \
64 col("_c6").alias("ca_city"), col("_c7").alias("ca_county"), \
65 col("_c8").alias("ca_state"), \
66 col("_c9").alias("ca_zip"), col("_c10").alias("ca_country"), \
67 col("_c11").alias("ca_gmt_offset"), \
68 col("_c12").alias("ca_location_type"))
69 df.registerTempTable("customer_address")

81

70

71 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_date_dim")
72 df = df.select(col("_c0").alias("d_date_sk"), \
73 col("_c1").alias("d_date_id (B)"), col("_c2").alias("d_date"), \
74 col("_c3").alias("d_month_seq"), col("_c4").alias("d_week_seq"), \
75 col("_c5").alias("d_quarter_seq"), col("_c6").alias("d_year"), \
76 col("_c7").alias("d_dow"), col("_c8").alias("d_moy"), \
77 col("_c9").alias("d_dom"), col("_c10").alias("d_qoy"), \
78 col("_c11").alias("d_fy_year"), col("_c12").alias("d_fy_quarter_seq"), \
79 col("_c13").alias("d_fy_week_seq"), col("_c14").alias("d_day_name"), \
80 col("_c15").alias("d_quarter_name"), col("_c16").alias("d_holiday"), \
81 col("_c17").alias("d_weekend"), col("_c18").alias("d_following_holiday"), \
82 col("_c19").alias("d_first_dom"), col("_c20").alias("d_last_dom"), \
83 col("_c21").alias("d_same_day_ly"), col("_c22").alias("d_same_day_lq"), \
84 col("_c23").alias("d1nt_day"), col("_c24").alias("d_current_week"), \
85 col("_c25").alias("d_current_month"), col("_c26").alias("d_current_quarter"), \
86 col("_c27").alias("d_current_year"))
87 df.registerTempTable("date_dim")
88

89 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_store_sales")
90 df = df.select(col("_c0").alias("ss_sold_date_sk"), \
91 col("_c1").alias("ss_sold_time_sk"), col("_c2").alias("ss_item_sk"), \
92 col("_c3").alias("ss_customer_sk"), col("_c4").alias("ss_cdemo_sk"), \
93 col("_c5").alias("ss_hdemo_sk"), col("_c6").alias("ss_addr_sk"), \
94 col("_c7").alias("ss_store_sk"), col("_c8").alias("ss_promo_sk"), \
95 col("_c9").alias("ss_ticket_number"), col("_c10").alias("ss_quantity"), \
96 col("_c11").alias("ss_wholesale_cost"), col("_c12").alias("ss_list_price"), \
97 col("_c13").alias("ss_sales_price"), \
98 col("_c14").alias("ss_ext_discount_amt"), \
99 col("_c15").alias("ss_ext_sales_price"), \

100 col("_c16").alias("ss_ext_wholesale_cost"), \
101 col("_c17").alias("ss_ext_list_price"), col("_c18").alias("ss_ext_tax"), \
102 col("_c19").alias("ss_coupon_amt"), col("_c20").alias("ss_net_paid"), \
103 col("_c21").alias("ss_net_paid_inc_tax"), col("_c22").alias("ss_net_profit"))
104 df.registerTempTable("store_sales")
105

106 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_web_sales")
107 df = df.select(col("_c0").alias("ws_sold_date_sk"), \
108 col("_c1").alias("ws_sold_time_sk"), col("_c2").alias("ws_ship_date_sk"), \
109 col("_c3").alias("ws_item_sk"), col("_c4").alias("ws_bill_customer_sk"), \
110 col("_c5").alias("ws_bill_cdemo_sk"), col("_c6").alias("ws_bill_hdemo_sk"), \

82 Appendix B. benchmark.py

111 col("_c7").alias("ws_bill_addr_sk"), \
112 col("_c8").alias("ws_ship_customer_sk"), \
113 col("_c9").alias("ws_ship_cdemo_sk"), \
114 col("_c10").alias("ws_ship_hdemo_sk"), \
115 col("_c11").alias("ws_ship_addr_sk"), \
116 col("_c12").alias("ws_web_page_sk"), \
117 col("_c13").alias("ws_web_site_sk"), \
118 col("_c14").alias("ws_ship_mode_sk"), \
119 col("_c15").alias("ws_warehouse_sk"), \
120 col("_c16").alias("ws_promo_sk"), \
121 col("_c17").alias("ws_order_number"), \
122 col("_c18").alias("ws_quantity"), \
123 col("_c19").alias("ws_wholesale_cost"), \
124 col("_c20").alias("ws_list_price"), \
125 col("_c21").alias("ws_sales_price"), \
126 col("_c22").alias("ws_ext_discount_amt"), \
127 col("_c23").alias("ws_ext_sales_price"), \
128 col("_c24").alias("ws_ext_wholesale_cost"), \
129 col("_c25").alias("ws_ext_list_price"), \
130 col("_c26").alias("ws_ext_tax"), \
131 col("_c27").alias("ws_coupon_amt"), \
132 col("_c28").alias("ws_ext_ship_cost"), \
133 col("_c29").alias("ws_net_paid"), \
134 col("_c30").alias("ws_net_paid_inc_tax"), \
135 col("_c31").alias("ws_net_paid_inc_ship"), \
136 col("_c32").alias("ws_net_paid_inc_ship_tax"), \
137 col("_c33").alias("ws_net_profit"))
138 df.registerTempTable("web_sales")
139

140 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_item")
141 df = df.select(col("_c0").alias("i_item_sk"), \
142 col("_c1").alias("i_item_id"), col("_c2").alias("i_rec_start_date"), \
143 col("_c3").alias("i_rec_end_date"), col("_c4").alias("i_item_desc"), \
144 col("_c5").alias("i_current_price"), col("_c6").alias("i_wholesale_cost"), \
145 col("_c7").alias("i_brand_id"), col("_c8").alias("i_brand"), \
146 col("_c9").alias("i_class_id"), col("_c10").alias("i_class"), \
147 col("_c11").alias("i_category_id"), col("_c12").alias("i_category"), \
148 col("_c13").alias("i_manufact_id"), col("_c14").alias("i_manufact"), \
149 col("_c15").alias("i_size"), col("_c16").alias("i_formulation"), \
150 col("_c17").alias("i_color"), col("_c18").alias("i_units"), \
151 col("_c19").alias("i_container"), col("_c20").alias("i_manager_id"), \

83

152 col("_c21").alias("i_product_name"))
153 df.registerTempTable("item")
154

155 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_web_returns")
156 df = df.select(col("_c0").alias("wr_returned_date_sk"), \
157 col("_c1").alias("wr_returned_time_sk"), col("_c2").alias("wr_item_sk"), \
158 col("_c3").alias("wr_refunded_customer_sk"), \
159 col("_c4").alias("wr_refunded_cdemo_sk"), \
160 col("_c5").alias("wr_refunded_hdemo_sk"), \
161 col("_c6").alias("wr_refunded_addr_sk"), \
162 col("_c7").alias("wr_returning_customer_sk"), \
163 col("_c8").alias("wr_returning_cdemo_sk"), \
164 col("_c9").alias("wr_returning_hdemo_sk"), \
165 col("_c10").alias("wr_returning_addr_sk"), \
166 col("_c11").alias("wr_web_page_sk"), \
167 col("_c12").alias("wr_reason_sk"), \
168 col("_c13").alias("wr_order_number"), \
169 col("_c14").alias("wr_return_quantity"), \
170 col("_c15").alias("wr_return_amt"), \
171 col("_c16").alias("wr_return_tax"), \
172 col("_c17").alias("wr_return_amt_inc_tax"), \
173 col("_c18").alias("wr_fee"), col("_c19").alias("wr_return_ship_cost"), \
174 col("_c20").alias("wr_refunded_cash"), \
175 col("_c21").alias("wr_reversed_charge"), \
176 col("_c22").alias("wr_account_credit"), \
177 col("_c23").alias("wr_net_loss"))
178 df.registerTempTable("web_returns")
179

180 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_catalog_returns")
181 df = df.select(col("_c0").alias("cr_returned_date_sk"), \
182 col("_c1").alias("cr_returned_time_sk"), col("_c2").alias("cr_item_sk"), \
183 col("_c3").alias("cr_refunded_customer_sk"), \
184 col("_c4").alias("cr_refunded_cdemo_sk"), \
185 col("_c5").alias("cr_refunded_hdemo_sk"), \
186 col("_c6").alias("cr_refunded_addr_sk"), \
187 col("_c7").alias("cr_returning_customer_sk"), \
188 col("_c8").alias("cr_returning_cdemo_sk"), \
189 col("_c9").alias("cr_returning_hdemo_sk"), \
190 col("_c10").alias("cr_returning_addr_sk"), \
191 col("_c11").alias("cr_call_center_sk"), \
192 col("_c12").alias("cr_catalog_page_sk"), \

84 Appendix B. benchmark.py

193 col("_c13").alias("cr_ship_mode_sk"), \
194 col("_c14").alias("cr_warehouse_sk"), \
195 col("_c15").alias("cr_reason_sk"), col("_c16").alias("cr_order_number"), \
196 col("_c17").alias("cr_return_quantity"), \
197 col("_c18").alias("cr_return_amount"), \
198 col("_c19").alias("cr_return_tax"), \
199 col("_c20").alias("cr_return_amt_inc_tax"), \
200 col("_c21").alias("cr_fee"), col("_c22").alias("cr_return_ship_cost"), \
201 col("_c23").alias("cr_refunded_cash"), \
202 col("_c24").alias("cr_reversed_charge"), \
203 col("_c25").alias("cr_store_credit"), \
204 col("_c26").alias("cr_net_loss"))
205 df.registerTempTable("catalog_returns")
206

207 df = spark.read.parquet("hdfs://34.76.28.34:9000/parquet_store_returns")
208 df = df.select(col("_c0").alias("sr_returned_date_sk"), \
209 col("_c1").alias("sr_return_time_sk"), col("_c2").alias("sr_item_sk"), \
210 col("_c3").alias("sr_customer_sk"), col("_c4").alias("sr_cdemo_sk"), \
211 col("_c5").alias("sr_hdemo_sk"), col("_c6").alias("sr_addr_sk"), \
212 col("_c7").alias("sr_store_sk"), col("_c8").alias("sr_reason_sk"), \
213 col("_c9").alias("sr_ticket_number"), \
214 col("_c10").alias("sr_return_quantity"), \
215 col("_c11").alias("sr_return_amt"), \
216 col("_c12").alias("sr_return_tax"), \
217 col("_c13").alias("sr_return_amt_inc_tax"), \
218 col("_c14").alias("sr_fee"), col("_c15").alias("sr_return_ship_cost"), \
219 col("_c16").alias("sr_refunded_cash"), \
220 col("_c17").alias("sr_reversed_charge"), \
221 col("_c18").alias("sr_store_credit"), \
222 col("_c19").alias("sr_net_loss"))
223 df.registerTempTable("store_returns")
224 print("parquet tables registered")
225 """
226 print("registering orc tables")
227 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_catalog_sales")
228 #df.show(1)
229 df = df.select(col("_c0").alias("cs_sold_date_sk"), \
230 col("_c1").alias("cs_sold_time_sk"), col("_c2").alias("cs_ship_date_sk"), \
231 col("_c3").alias("cs_bill_customer_sk"), \
232 col("_c4").alias("cs_bill_cdemo_sk"), \
233 col("_c5").alias("cs_bill_hdemo_sk"), col("_c6").alias("cs_bill_addr_sk"), \

85

234 col("_c7").alias("cs_ship_customer_sk"), \
235 col("_c8").alias("cs_ship_cdemo_sk"), col("_c9").alias("cs_ship_hdemo_sk"), \
236 col("_c10").alias("cs_ship_addr_sk"), \
237 col("_c11").alias("cs_call_center_sk"), \
238 col("_c12").alias("cs_catalog_page_sk"), \
239 col("_c13").alias("cs_ship_mode_sk"), \
240 col("_c14").alias("cs_warehouse_sk"), col("_c15").alias("cs_item_sk"), \
241 col("_c16").alias("cs_promo_sk"), col("_c17").alias("cs_order_number"), \
242 col("_c18").alias("cs_quantity"), col("_c19").alias("cs_wholesale_cost"), \
243 col("_c20").alias("cs_list_price"), col("_c21").alias("cs_sales_price"), \
244 col("_c22").alias("cs_ext_discount_amt"), \
245 col("_c23").alias("cs_ext_sales_price"), \
246 col("_c24").alias("cs_ext_wholesale_cost"), \
247 col("_c25").alias("cs_ext_list_price"), col("_c26").alias("cs_ext_tax"), \
248 col("_c27").alias("cs_coupon_amt"), col("_c28").alias("cs_ext_ship_cost"), \
249 col("_c29").alias("cs_net_paid"), col("_c30").alias("cs_net_paid_inc_tax"), \
250 col("_c31").alias("cs_net_paid_inc_ship"), \
251 col("_c32").alias("cs_net_paid_inc_ship_tax"), \
252 col("_c33").alias("cs_net_profit"))
253 df.registerTempTable("catalog_sales")
254

255 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_customer")
256 df = df.select(col("_c0").alias("c_customer_sk"), \
257 col("_c1").alias("c_customer_id (B)"), \
258 col("_c2").alias("c_current_cdemo_sk"), \
259 col("_c3").alias("c_current_hdemo_sk"), \
260 col("_c4").alias("c_current_addr_sk"), \
261 col("_c5").alias("c_first_shipto_date_sk"), \
262 col("_c6").alias("c_first_sales_date_sk"), \
263 col("_c7").alias("c_salutation"), \
264 col("_c8").alias("c_first_name"), \
265 col("_c9").alias("c_last_name"), \
266 col("_c10").alias("c_preferred_cust_flag"), \
267 col("_c11").alias("c_birth_day"), \
268 col("_c12").alias("c_birth_month"), \
269 col("_c13").alias("c_birth_year"), \
270 col("_c14").alias("c_birth_country"), \
271 col("_c15").alias("c_login"), \
272 col("_c16").alias("c_email_address"), \
273 col("_c17").alias("c_last_review_date_sk"))
274 df.registerTempTable("customer")

86 Appendix B. benchmark.py

275

276 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_customer_address")
277 df = df.select(col("_c0").alias("ca_address_sk"), \
278 col("_c1").alias("ca_address_id (B"), \
279 col("_c2").alias("ca_street_number"), \
280 col("_c3").alias("ca_street_name"), \
281 col("_c4").alias("ca_street_type"), \
282 col("_c5").alias("ca_suite_number"), \
283 col("_c6").alias("ca_city"), col("_c7").alias("ca_county"), \
284 col("_c8").alias("ca_state"), col("_c9").alias("ca_zip"), \
285 col("_c10").alias("ca_country"), col("_c11").alias("ca_gmt_offset"), \
286 col("_c12").alias("ca_location_type"))
287 df.registerTempTable("customer_address")
288

289 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_date_dim")
290 df = df.select(col("_c0").alias("d_date_sk"), \
291 col("_c1").alias("d_date_id (B)"), col("_c2").alias("d_date"), \
292 col("_c3").alias("d_month_seq"), col("_c4").alias("d_week_seq"), \
293 col("_c5").alias("d_quarter_seq"), col("_c6").alias("d_year"), \
294 col("_c7").alias("d_dow"), col("_c8").alias("d_moy"), \
295 col("_c9").alias("d_dom"), col("_c10").alias("d_qoy"), \
296 col("_c11").alias("d_fy_year"), col("_c12").alias("d_fy_quarter_seq"), \
297 col("_c13").alias("d_fy_week_seq"), col("_c14").alias("d_day_name"), \
298 col("_c15").alias("d_quarter_name"), col("_c16").alias("d_holiday"), \
299 col("_c17").alias("d_weekend"), col("_c18").alias("d_following_holiday"), \
300 col("_c19").alias("d_first_dom"), col("_c20").alias("d_last_dom"), \
301 col("_c21").alias("d_same_day_ly"), col("_c22").alias("d_same_day_lq"),\
302 col("_c23").alias("d1nt_day"), col("_c24").alias("d_current_week"), \
303 col("_c25").alias("d_current_month"), \
304 col("_c26").alias("d_current_quarter"), col("_c27").alias("d_current_year"))
305 df.registerTempTable("date_dim")
306

307 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_store_sales")
308 df = df.select(col("_c0").alias("ss_sold_date_sk"), \
309 col("_c1").alias("ss_sold_time_sk"), col("_c2").alias("ss_item_sk"), \
310 col("_c3").alias("ss_customer_sk"), col("_c4").alias("ss_cdemo_sk"), \
311 col("_c5").alias("ss_hdemo_sk"), col("_c6").alias("ss_addr_sk"), \
312 col("_c7").alias("ss_store_sk"), col("_c8").alias("ss_promo_sk"), \
313 col("_c9").alias("ss_ticket_number"), col("_c10").alias("ss_quantity"), \
314 col("_c11").alias("ss_wholesale_cost"), \
315 col("_c12").alias("ss_list_price"), \

87

316 col("_c13").alias("ss_sales_price"), \
317 col("_c14").alias("ss_ext_discount_amt"), \
318 col("_c15").alias("ss_ext_sales_price"), \
319 col("_c16").alias("ss_ext_wholesale_cost"), \
320 col("_c17").alias("ss_ext_list_price"), \
321 col("_c18").alias("ss_ext_tax"), \
322 col("_c19").alias("ss_coupon_amt"), \
323 col("_c20").alias("ss_net_paid"), \
324 col("_c21").alias("ss_net_paid_inc_tax"), \
325 col("_c22").alias("ss_net_profit"))
326 df.registerTempTable("store_sales")
327

328 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_web_sales")
329 df = df.select(col("_c0").alias("ws_sold_date_sk"), \
330 col("_c1").alias("ws_sold_time_sk"), col("_c2").alias("ws_ship_date_sk"), \
331 col("_c3").alias("ws_item_sk"), col("_c4").alias("ws_bill_customer_sk"), \
332 col("_c5").alias("ws_bill_cdemo_sk"), col("_c6").alias("ws_bill_hdemo_sk"), \
333 col("_c7").alias("ws_bill_addr_sk"), col("_c8").alias("ws_ship_customer_sk"), \
334 col("_c9").alias("ws_ship_cdemo_sk"), col("_c10").alias("ws_ship_hdemo_sk"), \
335 col("_c11").alias("ws_ship_addr_sk"), col("_c12").alias("ws_web_page_sk"), \
336 col("_c13").alias("ws_web_site_sk"), col("_c14").alias("ws_ship_mode_sk"), \
337 col("_c15").alias("ws_warehouse_sk"), col("_c16").alias("ws_promo_sk"), \
338 col("_c17").alias("ws_order_number"), col("_c18").alias("ws_quantity"), \
339 col("_c19").alias("ws_wholesale_cost"), col("_c20").alias("ws_list_price"), \
340 col("_c21").alias("ws_sales_price"), col("_c22").alias("ws_ext_discount_amt"), \
341 col("_c23").alias("ws_ext_sales_price"), \
342 col("_c24").alias("ws_ext_wholesale_cost"), \
343 col("_c25").alias("ws_ext_list_price"), col("_c26").alias("ws_ext_tax"), \
344 col("_c27").alias("ws_coupon_amt"), col("_c28").alias("ws_ext_ship_cost"), \
345 col("_c29").alias("ws_net_paid"), col("_c30").alias("ws_net_paid_inc_tax"), \
346 col("_c31").alias("ws_net_paid_inc_ship"), \
347 col("_c32").alias("ws_net_paid_inc_ship_tax"), col("_c33").alias("ws_net_profit"))
348 df.registerTempTable("web_sales")
349

350 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_item")
351 df = df.select(col("_c0").alias("i_item_sk"), col("_c1").alias("i_item_id"), \
352 col("_c2").alias("i_rec_start_date"), col("_c3").alias("i_rec_end_date"), \
353 col("_c4").alias("i_item_desc"), col("_c5").alias("i_current_price"), \
354 col("_c6").alias("i_wholesale_cost"), col("_c7").alias("i_brand_id"), \
355 col("_c8").alias("i_brand"), col("_c9").alias("i_class_id"), \
356 col("_c10").alias("i_class"), col("_c11").alias("i_category_id"), \

88 Appendix B. benchmark.py

357 col("_c12").alias("i_category"), col("_c13").alias("i_manufact_id"), \
358 col("_c14").alias("i_manufact"), col("_c15").alias("i_size"), \
359 col("_c16").alias("i_formulation"), col("_c17").alias("i_color"), \
360 col("_c18").alias("i_units"), col("_c19").alias("i_container"), \
361 col("_c20").alias("i_manager_id"), col("_c21").alias("i_product_name"))
362 df.registerTempTable("item")
363

364 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_web_returns")
365 df = df.select(col("_c0").alias("wr_returned_date_sk"), \
366 col("_c1").alias("wr_returned_time_sk"), \
367 col("_c2").alias("wr_item_sk"), \
368 col("_c3").alias("wr_refunded_customer_sk"), \
369 col("_c4").alias("wr_refunded_cdemo_sk"), \
370 col("_c5").alias("wr_refunded_hdemo_sk"), \
371 col("_c6").alias("wr_refunded_addr_sk"), \
372 col("_c7").alias("wr_returning_customer_sk"), \
373 col("_c8").alias("wr_returning_cdemo_sk"), \
374 col("_c9").alias("wr_returning_hdemo_sk"), \
375 col("_c10").alias("wr_returning_addr_sk"), \
376 col("_c11").alias("wr_web_page_sk"), \
377 col("_c12").alias("wr_reason_sk"), \
378 col("_c13").alias("wr_order_number"), \
379 col("_c14").alias("wr_return_quantity"), \
380 col("_c15").alias("wr_return_amt"), \
381 col("_c16").alias("wr_return_tax"), \
382 col("_c17").alias("wr_return_amt_inc_tax"), \
383 col("_c18").alias("wr_fee"), \
384 col("_c19").alias("wr_return_ship_cost"), \
385 col("_c20").alias("wr_refunded_cash"), \
386 col("_c21").alias("wr_reversed_charge"), \
387 col("_c22").alias("wr_account_credit"), col("_c23").alias("wr_net_loss"))
388 df.registerTempTable("web_returns")
389

390 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_catalog_returns")
391 df = df.select(col("_c0").alias("cr_returned_date_sk"), \
392 col("_c1").alias("cr_returned_time_sk"), \
393 col("_c2").alias("cr_item_sk"), \
394 col("_c3").alias("cr_refunded_customer_sk"), \
395 col("_c4").alias("cr_refunded_cdemo_sk"), \
396 col("_c5").alias("cr_refunded_hdemo_sk"), \
397 col("_c6").alias("cr_refunded_addr_sk"), \

89

398 col("_c7").alias("cr_returning_customer_sk"), \
399 col("_c8").alias("cr_returning_cdemo_sk"), \
400 col("_c9").alias("cr_returning_hdemo_sk"), \
401 col("_c10").alias("cr_returning_addr_sk"), \
402 col("_c11").alias("cr_call_center_sk"), \
403 col("_c12").alias("cr_catalog_page_sk"), \
404 col("_c13").alias("cr_ship_mode_sk"), \
405 col("_c14").alias("cr_warehouse_sk"), \
406 col("_c15").alias("cr_reason_sk"), \
407 col("_c16").alias("cr_order_number"), \
408 col("_c17").alias("cr_return_quantity"), \
409 col("_c18").alias("cr_return_amount"), \
410 col("_c19").alias("cr_return_tax"), \
411 col("_c20").alias("cr_return_amt_inc_tax"), \
412 col("_c21").alias("cr_fee"), \
413 col("_c22").alias("cr_return_ship_cost"), \
414 col("_c23").alias("cr_refunded_cash"), \
415 col("_c24").alias("cr_reversed_charge"), \
416 col("_c25").alias("cr_store_credit"), col("_c26").alias("cr_net_loss"))
417 df.registerTempTable("catalog_returns")
418

419 df = spark.read.orc("hdfs://34.76.28.34:9000/orc_store_returns")
420 df = df.select(col("_c0").alias("sr_returned_date_sk"), \
421 col("_c1").alias("sr_return_time_sk"), col("_c2").alias("sr_item_sk"), \
422 col("_c3").alias("sr_customer_sk"), col("_c4").alias("sr_cdemo_sk"), \
423 col("_c5").alias("sr_hdemo_sk"), col("_c6").alias("sr_addr_sk"), \
424 col("_c7").alias("sr_store_sk"), col("_c8").alias("sr_reason_sk"), \
425 col("_c9").alias("sr_ticket_number"), col("_c10").alias("sr_return_quantity"), \
426 col("_c11").alias("sr_return_amt"), col("_c12").alias("sr_return_tax"), \
427 col("_c13").alias("sr_return_amt_inc_tax"), col("_c14").alias("sr_fee"), \
428 col("_c15").alias("sr_return_ship_cost"), col("_c16").alias("sr_refunded_cash"), \
429 col("_c17").alias("sr_reversed_charge"), col("_c18").alias("sr_store_credit"), \
430 col("_c19").alias("sr_net_loss"))
431 df.registerTempTable("store_returns")
432 print("orc tables registered")
433

434

435 def execute_queries():
436 print("starting query 1")
437 query_start_time = time.time()
438 query1 = sqlContext.sql("""SELECT

90 Appendix B. benchmark.py

439 ca_zip,
440 sum(cs_sales_price)
441 FROM catalog_sales, customer, customer_address, date_dim
442 WHERE cs_bill_customer_sk = c_customer_sk
443 AND c_current_addr_sk = ca_address_sk
444 AND (substr(ca_zip, 1, 5) IN ('85669', '86197', '88274', '83405', '86475',
445 '85392', '85460', '80348', '81792')
446 OR ca_state IN ('CA', 'WA', 'GA')
447 OR cs_sales_price > 500)
448 AND cs_sold_date_sk = d_date_sk
449 AND d_qoy = 2 AND d_year = 2001
450 GROUP BY ca_zip
451 ORDER BY ca_zip
452 LIMIT 100""")
453 query1.show()
454 query_end_time = time.time()
455 query_elapsed_time1 = (query_end_time - query_start_time)
456 print("query elapsed time: " + str(query_elapsed_time1))
457 print("\n")
458

459 print("starting query 2")
460 query_start_time = time.time()
461 query2 = sqlContext.sql("""SELECT count(*)
462 FROM (
463 SELECT DISTINCT
464 c_last_name,
465 c_first_name,
466 d_date
467 FROM store_sales, date_dim, customer
468 WHERE store_sales.ss_sold_date_sk = date_dim.d_date_sk
469 AND store_sales.ss_customer_sk = customer.c_customer_sk
470 AND d_month_seq BETWEEN 1200 AND 1200 + 11
471 INTERSECT
472 SELECT DISTINCT
473 c_last_name,
474 c_first_name,
475 d_date
476 FROM catalog_sales, date_dim, customer
477 WHERE catalog_sales.cs_sold_date_sk = date_dim.d_date_sk
478 AND catalog_sales.cs_bill_customer_sk = customer.c_customer_sk
479 AND d_month_seq BETWEEN 1200 AND 1200 + 11

91

480 INTERSECT
481 SELECT DISTINCT
482 c_last_name,
483 c_first_name,
484 d_date
485 FROM web_sales, date_dim, customer
486 WHERE web_sales.ws_sold_date_sk = date_dim.d_date_sk
487 AND web_sales.ws_bill_customer_sk = customer.c_customer_sk
488 AND d_month_seq BETWEEN 1200 AND 1200 + 11
489) hot_cust
490 LIMIT 100""")
491 query2.show()
492 query_end_time = time.time()
493 query_elapsed_time2 = (query_end_time - query_start_time)
494 print("query elapsed time: " + str(query_elapsed_time2))
495 print("\n")
496

497 print("starting query 3")
498 query_start_time = time.time()
499 query3 = sqlContext.sql("""SELECT
500 'web' AS channel,
501 web.item,
502 web.return_ratio,
503 web.return_rank,
504 web.currency_rank
505 FROM (
506 SELECT
507 item,
508 return_ratio,
509 currency_ratio,
510 rank()
511 OVER (
512 ORDER BY return_ratio) AS return_rank,
513 rank()
514 OVER (
515 ORDER BY currency_ratio) AS currency_rank
516 FROM
517 (SELECT
518 ws.ws_item_sk AS item,
519 (cast(sum(coalesce(wr.wr_return_quantity, 0)) AS DECIMAL(15, 4)) /
520 cast(sum(coalesce(ws.ws_quantity, 0)) AS DECIMAL(15, 4))) AS return_ratio,

92 Appendix B. benchmark.py

521 (cast(sum(coalesce(wr.wr_return_amt, 0)) AS DECIMAL(15, 4)) /
522 cast(sum(coalesce(ws.ws_net_paid, 0)) AS DECIMAL(15, 4))) \
523 AS currency_ratio
524 FROM
525 web_sales ws LEFT OUTER JOIN web_returns wr
526 ON (ws.ws_order_number = wr.wr_order_number AND
527 ws.ws_item_sk = wr.wr_item_sk)
528 , date_dim
529 WHERE
530 wr.wr_return_amt > 10000
531 AND ws.ws_net_profit > 1
532 AND ws.ws_net_paid > 0
533 AND ws.ws_quantity > 0
534 AND ws_sold_date_sk = d_date_sk
535 AND d_year = 2001
536 AND d_moy = 12
537 GROUP BY ws.ws_item_sk
538) in_web
539) web
540 WHERE (web.return_rank <= 10 OR web.currency_rank <= 10)
541 UNION
542 SELECT
543 'catalog' AS channel,
544 catalog.item,
545 catalog.return_ratio,
546 catalog.return_rank,
547 catalog.currency_rank
548 FROM (
549 SELECT
550 item,
551 return_ratio,
552 currency_ratio,
553 rank()
554 OVER (
555 ORDER BY return_ratio) AS return_rank,
556 rank()
557 OVER (
558 ORDER BY currency_ratio) AS currency_rank
559 FROM
560 (SELECT
561 cs.cs_item_sk AS item,

93

562 (cast(sum(coalesce(cr.cr_return_quantity, 0)) AS DECIMAL(15, 4)) /
563 cast(sum(coalesce(cs.cs_quantity, 0)) AS DECIMAL(15, 4))) \
564 AS return_ratio,
565 (cast(sum(coalesce(cr.cr_return_amount, 0)) AS DECIMAL(15, 4)) /
566 cast(sum(coalesce(cs.cs_net_paid, 0)) AS DECIMAL(15, 4))) \
567 AS currency_ratio
568 FROM
569 catalog_sales cs LEFT OUTER JOIN catalog_returns cr
570 ON (cs.cs_order_number = cr.cr_order_number AND
571 cs.cs_item_sk = cr.cr_item_sk)
572 , date_dim
573 WHERE
574 cr.cr_return_amount > 10000
575 AND cs.cs_net_profit > 1
576 AND cs.cs_net_paid > 0
577 AND cs.cs_quantity > 0
578 AND cs_sold_date_sk = d_date_sk
579 AND d_year = 2001
580 AND d_moy = 12
581 GROUP BY cs.cs_item_sk
582) in_cat
583) catalog
584 WHERE (catalog.return_rank <= 10 OR catalog.currency_rank <= 10)
585 UNION
586 SELECT
587 'store' AS channel,
588 store.item,
589 store.return_ratio,
590 store.return_rank,
591 store.currency_rank
592 FROM (
593 SELECT
594 item,
595 return_ratio,
596 currency_ratio,
597 rank()
598 OVER (
599 ORDER BY return_ratio) AS return_rank,
600 rank()
601 OVER (
602 ORDER BY currency_ratio) AS currency_rank

94 Appendix B. benchmark.py

603 FROM
604 (SELECT
605 sts.ss_item_sk AS item,
606 (cast(sum(coalesce(sr.sr_return_quantity, 0)) AS DECIMAL(15, 4)) /
607 cast(sum(coalesce(sts.ss_quantity, 0)) AS DECIMAL(15, 4))) \
608 AS return_ratio,
609 (cast(sum(coalesce(sr.sr_return_amt, 0)) AS DECIMAL(15, 4)) /
610 cast(sum(coalesce(sts.ss_net_paid, 0)) AS DECIMAL(15, 4))) \
611 AS currency_ratio
612 FROM
613 store_sales sts LEFT OUTER JOIN store_returns sr
614 ON (sts.ss_ticket_number = sr.sr_ticket_number AND \
615 sts.ss_item_sk = sr.sr_item_sk)
616 , date_dim
617 WHERE
618 sr.sr_return_amt > 10000
619 AND sts.ss_net_profit > 1
620 AND sts.ss_net_paid > 0
621 AND sts.ss_quantity > 0
622 AND ss_sold_date_sk = d_date_sk
623 AND d_year = 2001
624 AND d_moy = 12
625 GROUP BY sts.ss_item_sk
626) in_store
627) store
628 WHERE (store.return_rank <= 10 OR store.currency_rank <= 10)
629 ORDER BY 1, 4, 5
630 LIMIT 100""")
631 query3.show()
632 query_end_time = time.time()
633 query_elapsed_time3 = (query_end_time - query_start_time)
634 print("query elapsed time: " + str(query_elapsed_time3))
635 print("\n")
636

637 print("starting query 4")
638 query_start_time = time.time()
639 query4 = sqlContext.sql("""WITH ss AS (
640 SELECT
641 i_item_id,
642 sum(ss_ext_sales_price) total_sales
643 FROM

95

644 store_sales, date_dim, customer_address, item
645 WHERE
646 i_item_id IN (SELECT i_item_id
647 FROM item
648 WHERE i_color IN ('slate', 'blanched', 'burnished'))
649 AND ss_item_sk = i_item_sk
650 AND ss_sold_date_sk = d_date_sk
651 AND d_year = 2001
652 AND d_moy = 2
653 AND ss_addr_sk = ca_address_sk
654 AND ca_gmt_offset = -5
655 GROUP BY i_item_id),
656 cs AS (
657 SELECT
658 i_item_id,
659 sum(cs_ext_sales_price) total_sales
660 FROM
661 catalog_sales, date_dim, customer_address, item
662 WHERE
663 i_item_id IN (SELECT i_item_id
664 FROM item
665 WHERE i_color IN ('slate', 'blanched', 'burnished'))
666 AND cs_item_sk = i_item_sk
667 AND cs_sold_date_sk = d_date_sk
668 AND d_year = 2001
669 AND d_moy = 2
670 AND cs_bill_addr_sk = ca_address_sk
671 AND ca_gmt_offset = -5
672 GROUP BY i_item_id),
673 ws AS (
674 SELECT
675 i_item_id,
676 sum(ws_ext_sales_price) total_sales
677 FROM
678 web_sales, date_dim, customer_address, item
679 WHERE
680 i_item_id IN (SELECT i_item_id
681 FROM item
682 WHERE i_color IN ('slate', 'blanched', 'burnished'))
683 AND ws_item_sk = i_item_sk
684 AND ws_sold_date_sk = d_date_sk

96 Appendix B. benchmark.py

685 AND d_year = 2001
686 AND d_moy = 2
687 AND ws_bill_addr_sk = ca_address_sk
688 AND ca_gmt_offset = -5
689 GROUP BY i_item_id)
690 SELECT
691 i_item_id,
692 sum(total_sales) total_sales
693 FROM (SELECT *
694 FROM ss
695 UNION ALL
696 SELECT *
697 FROM cs
698 UNION ALL
699 SELECT *
700 FROM ws) tmp1
701 GROUP BY i_item_id
702 ORDER BY total_sales
703 LIMIT 100""")
704 query4.show()
705 query_end_time = time.time()
706 query_elapsed_time4 = (query_end_time - query_start_time)
707 print("query elapsed time: " + str(query_elapsed_time4))
708 print("\n")
709

710 print("starting query 5")
711 query_start_time = time.time()
712 query5 = sqlContext.sql("""WITH ss AS (
713 SELECT
714 i_item_id,
715 sum(ss_ext_sales_price) total_sales
716 FROM store_sales, date_dim, customer_address, item
717 WHERE
718 i_item_id IN (SELECT i_item_id
719 FROM item
720 WHERE i_category IN ('Music'))
721 AND ss_item_sk = i_item_sk
722 AND ss_sold_date_sk = d_date_sk
723 AND d_year = 1998
724 AND d_moy = 9
725 AND ss_addr_sk = ca_address_sk

97

726 AND ca_gmt_offset = -5
727 GROUP BY i_item_id),
728 cs AS (
729 SELECT
730 i_item_id,
731 sum(cs_ext_sales_price) total_sales
732 FROM catalog_sales, date_dim, customer_address, item
733 WHERE
734 i_item_id IN (SELECT i_item_id
735 FROM item
736 WHERE i_category IN ('Music'))
737 AND cs_item_sk = i_item_sk
738 AND cs_sold_date_sk = d_date_sk
739 AND d_year = 1998
740 AND d_moy = 9
741 AND cs_bill_addr_sk = ca_address_sk
742 AND ca_gmt_offset = -5
743 GROUP BY i_item_id),
744 ws AS (
745 SELECT
746 i_item_id,
747 sum(ws_ext_sales_price) total_sales
748 FROM web_sales, date_dim, customer_address, item
749 WHERE
750 i_item_id IN (SELECT i_item_id
751 FROM item
752 WHERE i_category IN ('Music'))
753 AND ws_item_sk = i_item_sk
754 AND ws_sold_date_sk = d_date_sk
755 AND d_year = 1998
756 AND d_moy = 9
757 AND ws_bill_addr_sk = ca_address_sk
758 AND ca_gmt_offset = -5
759 GROUP BY i_item_id)
760 SELECT
761 i_item_id,
762 sum(total_sales) total_sales
763 FROM (SELECT *
764 FROM ss
765 UNION ALL
766 SELECT *

98 Appendix B. benchmark.py

767 FROM cs
768 UNION ALL
769 SELECT *
770 FROM ws) tmp1
771 GROUP BY i_item_id
772 ORDER BY i_item_id, total_sales
773 LIMIT 100""")
774 query5.show()
775 query_end_time = time.time()
776 query_elapsed_time5 = (query_end_time - query_start_time)
777 print("query elapsed time: " + str(query_elapsed_time5))
778 print("\n")
779 query5.show(1)
780

781 query_list = [query_elapsed_time1, query_elapsed_time2, \
782 query_elapsed_time3, query_elapsed_time4, query_elapsed_time5]
783 return query_list
784

785 def main():
786 set_tables()
787 query_list = execute_queries()
788 print("query execution times")
789 print(query_list)
790

791 if __name__== "__main__":
792 main()

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Overview

	2 Related Work
	3 Background Knowledge
	3.1 Distributed Computing
	3.2 Infrastructure
	3.2.1 Cloud computing
	3.2.2 Infrastructure as code

	3.3 Infrastructure as Code with Terraform
	3.3.1 How Terraform works
	3.3.2 IAC tools: Declarative vs procedural

	3.4 NixOS: A Configuration Based OS
	3.4.1 Drawbacks of imperative package management
	3.4.2 Nix: a purely functional package manager
	3.4.3 The Nix store: storing packages the purely functional way

	3.5 Performance Evaluations through Benchmarking
	3.5.1 Big data benchmarking creation and approach
	3.5.2 Planning
	3.5.3 Generating suitable data
	3.5.4 Generating tests
	3.5.5 Execution + Analysis and evaluation
	3.5.6 Summary of the findings on benchmarks

	3.6 Selecting a Benchmarking Tool
	3.6.1 TPC
	3.6.2 Deciding on a benchmark suite

	4 Framework
	4.1 Cloud Computing with Google Cloud Platform
	4.2 Setting up the Infrastructure with Terraform
	4.3 Package Management with Nix

	5 TPC-DS Theory and Decisions
	5.1 TPC-DS Partial Implementation
	5.1.1 TPC-DS Setup
	5.1.2 Summary of our process

	6 Benchmark Setup
	7 Performance Evaluation
	7.1 Result Analysis

	8 Conclusion
	8.1 Discussion
	8.2 Future Work
	8.3 Project conclusion

	Bibliography
	A transform.py
	B benchmark.py

