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Abstract:
In biomedical research zebrafish (Danio
Rerio) serves as a model organism for
humans e.g. to test behavioural reac-
tions to various substances. To obtain
data for this research the behaviour
is observed by recording the motion
trajectories of the zebrafish. With
multiple zebrafish in an aquarium the
tracking of motion of each individual
can be complicated by the occurrence
of occlusions. The aim of this thesis
is to detect the zebrafish occlusions in
order to potentially optimise zebrafish
tracking.

To detect zebrafish occlusions two
solutions are proposed. The two
solutions applicability depend on the
level of user interaction necessary in a
tracking system in order to correct the
error caused by occlusions. The first
solution is an image classifier, which is
utilised to classify if an image contains
an occlusion. The second solution is
a Faster Region-based Convolutional
Neural Network (R-CNN) based object
detection, which is utilised to localise
and categorise occlusions, based on six
pre-defined categories, in the image.

A novel categorisation of zebrafish oc-
clusions is presented together with an
implementation of a proof of concept
multi-class object detection for detect-
ing multiple zebrafish occlusions.

The content of this report is freely available, but publication may only be pursued with reference.
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Preface

This report is composed by Niclas Hjorth Stjernholm as the final project of the Mas-
ter’s Programme in Vision, Graphics and Interactive Systems at Aalborg University.
The focus of the thesis is to design and implement af computer vision system able
to detect when zebrafish occlude each other in an image.
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Figures and tables are numbered sequentially within each chapter. All references in
the thesis is a hyperlink and can be followed to where it is referencing. For citation
the report employs the Harvard method. If citation is not present in tables or figures,
they are produced by the author.
This project is implemented in Python 3.6 using the Jupytor Notebook available on
Google Colaboraty.
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Niclas Hjorth Stjernholm
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Glossary

CNN Convolutional Neural Network.
COCO Common Objects in Context.

FC Fully Connected.
FPS Frames Per Second.

IoU Intersection over Union.

mAP mean Average Precision.

NIR Near Infra-Red.
NMS Non-Maximum Suppression.

R-CNN Region-based Convolutional Neural Network.
ReLU Rectified Linear Unit.
ROI Region of Interest.
RPN Region Proposal Network.

SVM support vector machines.
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Chapter 1

Introduction

In the world of biological and medical research, tests and experiments are performed
on animals before any applications to humans can be done. This is due to both
ethical aspects, feasibility, and potential harm and fatalities. The type of animals
used in research are known as model organisms, as they often model the biology of
humans. An example of a model organism is mice, which are often used to study
medical treatments for humans, as they share some genetic sequences with humans
[Perlman, 2016; Khan and Alhewairini, 2018]. In general, a model organism is not
just animals relatable to human genetics, but multiple different kinds of organisms,
such as fungi and plants. The requirement is them having a similarity to the organ-
ism they are modelling [Hedges, 2002].

Another example of an animal model is the zebrafish (Danio Rerio). Zebrafish and
humans share a lot of pathways which control development of the central nervous
system, and since the embryo of the zebrafish is clear, it enables observation of
the development in the early stages of life. Zebrafish also has a 70% disease gene
similarity to humans.

The zebrafish is often used as an animal model, not only due to the similarities to
humans, but also due to size and cost. The zebrafish is much smaller than a mouse
and the maintenance of the animal is lower due to this, and more zebrafish can be
kept on the same amount of space than mice. The adult zebrafish can lay up to 200
eggs each week if kept in optimal conditions, which means acquirement of new test
subjects will not present it self as an issue.

While being a good model organism for humans, the zebrafish is also used as a
model organism for aquaculture species in areas such as, development, diseases, and
behavioural tendencies among aquaculture [Khan and Alhewairini, 2018].

When testing or experimenting on zebrafish they are often video recorded to be
able to observe them. To automate the process of recording the zebrafish, computer
vision is often employed to obtain as much data from the recordings as possible, as
doing this manually is a demanding task.
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Chapter 2

Analysis

2.1 Behavioural Analysis of Zebrafish

Zebrafish are very social animals and have tendencies to form groups [Khan and
Alhewairini, 2018]. An aggregation of zebrafish can be either a shoal or a school
depending on whether the zebrafish are interacting socially or not. When an aggre-
gation of zebrafish is due to social interaction, the zebrafish are shoaling and the
swimming pattern is chaotic, but when zebrafish are schooling, the swimming pat-
tern is tightly coordinated and organised [Miller and Gerlai, 2012]. Identification
of the swimming pattern can thereby be studied to investigate social phenotypes
and behavioural patterns when affected by a certain drug or pheromone [Khan and
Alhewairini, 2018].

Kalueff et al. [2013] describes multiple scenarios in which the zebrafish is prone
to sudden changes in both speed and direction. Depending on the situation, the
zebrafish can move very erratic often reflecting a state of anxiety or fear. Further-
more, sudden bursts can also occur in an attempt to attack another zebrafish, often
connected to social dominance [Kalueff et al., 2013].

As mentioned, the zebrafish is also used to test the general behaviour when af-
fected by a drug. This is done by having a control group of zebrafish and recording
the normal behaviour in an aquarium and then comparing this behaviour with a
drug affected behaviour [Stewart et al., 2015]. Figure 2.1 shows an example of swim-
ming patterns of zebrafish, under influence of different drugs, made by Stewart et al.
[2015]. It is clear how the drugs changes the swimming patterns of a zebrafish, which
may be transferable to how it will affect humans as well.

5



6 Chapter 2. Analysis

Figure 2.1: Zebrafish swimming behaviour under influence of drugs, by Stewart et al. [2015]

2.2 Tracking of Zebrafish
To investigate the difference in behavioural patterns, i.e. due to drugs, each zebrafish
must be detected individually over time. Detection of the zebrafish is often done with
an automated tracking system, as done by Stewart et al. [2015], as manual annotation
of the data often proves infeasible.

2.2.1 Tracking Requirements

In order to be able to track zebrafish, collection of data is firstly necessary. Recording
of the zebrafish is done using one or more cameras either from the top of the aquarium
or looking into the aquarium from the side.

Due to the erratic movement of the zebrafish, the higher the Frames Per Second
(FPS) the camera is able to capture video at, the better, as this will increase the
probability of the camera capturing every movement of the zebrafish. Bengtson and
Pedersen [2017] states, that even at 240 FPS the zebrafish is still somewhat blurred
when accelerating, which can lead to a lower detection rate.

The top down view of the aquarium when recording, is often used when using a
single camera setup. The top view takes advantage of the uniform and rigid head
physiology of the zebrafish. Even though the zebrafish is able to contort its body,
the head most often remains the same, when using the top view. Examples of the
rigid head is shown in Figure 2.2.
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Figure 2.2: Examples of the rigid head of the zebrafish in different grades og contortions of the
body

The data shown in Figure 2.2, is captured from above the aquarium with a Near
Infra-Red (NIR) backlight beneath the aquarium.

When recording from the side of the aquarium more details of the zebrafish is
available, as the zebrafish has uniquely coloured stripes on both sides, which can be
used to identify the zebrafish [Karpova and Haurum, 2018].

According to Qian and Chen [2017], due to the shape of the zebrafish, it generally
takes up more space when filmed from the side than from a top view. Furthermore,
when the zebrafish turns towards or away from the camera, the shape will be very
different than when looking at the side of the zebrafish [Bengtson and Pedersen,
2017]. Examples of both a regular side view and some issues from the view is shown
in Figure 2.3.

Figure 2.3: Examples of positions of zebrafish in the side view. Image from Bengtson and Pedersen
[2017]

When data is acquired, it will need to be prepared before tracking or annotating
is done.

2.2.2 Annotating Data

Annotating data is understood as manually marking each zebrafish/object in every
frame of a video, whereas, when using an automated solution it can also be referred
to as tracking system.

A tracking system can be split into multiple steps:

• Pre processing
• Detection
• Create trajectories
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Pre Processing

When making operations on a video, the file is split into individual frames, and every
frame is treated as an individual image. Before locating of the zebrafish in the image
is done, some pre processing of the image is often performed. This often includes
removing the background and noise from the image.

This is done to ease the process of locating the zebrafish as it will be isolated in
the image.

Detection

Detection of the zebrafish is done in multiple ways. A detection will ultimately
produce a single point in the image.

Head detection of the zebrafish is an often used approach due to the rigid head
of the zebrafish. This means the head will keep the same shape while swimming,
whereas the rest of the body may change shape, which will make it harder to detect
if focus is on the entire zebrafish.

Other examples of detection, are centre of mass of the zebrafish or extracting a
skeleton of the zebrafish, representing the shape of the object with a line. Finding
the centre of mass of the zebrafish, if not being limited, may end up outside of the
object if it is bending into a shape looking like a C.

Examples of extracted points from detections are shown in Figure 2.4.

Figure 2.4: Examples of extracted points from detections. The first zebrafish is head detection,
the second is centre of mass, and the third is skeletonisation

Create Trajectories

When the desired point in the zebrafish is extracted, the point needs to be linked
together with points in other images to create a trajectory. If only a single zebrafish
is present in the aquarium no identification is necessary, as every point found belongs
to one individual.

As soon as multiple zebrafish are present in the aquarium at the same time, a
decision needs to be made to connect the previous frame’s detections to the new ones
in the current frame. This can be done by predicting where each individual will be
in the following frame based on a state vector and experience from previous frames
as input to a Kalman filter, which then makes a qualified guess based on statistics
of the new positions. Besides a Kalman filter, a simple cost function such as the
Hungarian algorithm can be applied to link detections.
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An issue occurring when multiple zebrafish are in the same aquarium, is when
two or more individuals lie close enough together or on top of each other, which may
confuse or trick the prediction and cost algorithm.

2.2.3 Occlusions

An occlusion is when one object is hidden or overlapped by another object from a
specific point of view e.g. from the camera view. When a zebrafish occlude another
there is a risk of losing the detection and thereby the position of the occluded ze-
brafish in one or more concurrent frames. According to Green et al. [2012] the use
of automated tracking systems perform with same accuracy as manual annotations
but in a faster manner. However, they state that automated tracking systems have
complications with occlusions.

When a detection is lost due to an occlusion, the identity of the zebrafish may
be lost as well. If no re-identification is employed in a tracking system, a new ID
may be assigned to the object which was lost due to an occlusion. This scenario is
visualised in Figure 2.5

#1

#3
#1

#2

#2
#2

Figure 2.5: Re-ID scenario due to occlusion

Not all occlusions will cause the same types of complications, and some occlusions
do not cause any disruption of the trajectory. This is determined by the detection
system deployed to track the zebrafish. If the detection of a zebrafish is centred at
the head, no occlusion will be detected when only the bodies of two zebrafish overlap,
however, if detection is done by either skeletonisation or centre of mass, an occlusion
will most likely occur [Feijó et al., 2018]. An example of this scenario is shown in
Figure 2.6.
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#1

#2

#1

#1

#2 #2

#1

#2

No Occlusion

Occlusion

Figure 2.6: Different types of detection leads to different types of occlusion

Missing detections and wrong identifications are undesirable, as this will require
a user of the tracking system to intervene and correct the errors, which will prolong
the process. Therefore, solutions to either handling the occlusions or automatically
solving the wrong identification are often implemented in a tracking solution.

2.2.4 Object Detection

In order to be able to detect the zebrafish occlusions in every frame, object detection
is necessary. Object detection is defined as an employment of computer vision which
recognises unique features of objects in an image.

Object detection consists of two main tasks; classification and localisation. It can
furthermore be split into two categories depending on the amount of classes which
must be detected. If it is only one class, such as detecting humans in an image
or detecting any kind of zebrafish occlusion, it is known as class-specific detection.
Whereas detecting multiple different kinds of objects is known as multi-class detection
[Zhang et al., 2013].

The main objective of an object detector is to generate a label list of predefined
objects detected in an image. The list should specify which classes are present and
where in the image they are located.

Deep Learning

When using deep learning and a Convolutional Neural Network (CNN) for object
detection one of the earliest implementations was the R-CNN. As the name sug-
gests, the method is based upon a region proposal based CNN instead of using the
often previously used sliding window technique which some times can lead to a large
amount of testing windows.
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The CNN used in the R-CNN is utilised for feature extraction feeding into a
class-specific support vector machines (SVM) to categorise each object. The CNN
is pre-trained on the ImageNet database and then trained on the PASCAL VOC
dataset. An overview of the R-CNN pipeline is shown in Figure 2.7. More in-depth
of deep learning is found in chapter 5.

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

Figure 2.7: Simple flow diagram of the R-CNN by Girshick et al. [2014]

As shown in Figure 2.7 the R-CNN is split into 3 individual steps consisting of;
region proposals, feature extraction, and SVM classification.

The region proposals are extracted using SelectiveSearch which initialises regions
in the image and then merge these with a hierarchical grouping [Uijlings et al., 2013].
The final grouping is then a box containing the entire image. The regions are grouped
in relation to colour space and similarity [Girshick et al., 2014].

The next step in the solution is warping the proposed regions to fit the CNN
input size and extracting features from these and produce a 4096-dimensional feature
vector. The feature vectors consist of both positive and negative proposals found with
the SelectiveSearch. These vectors are used to train the class specific SVMs, one SVM
per class in which a background class is included [Girshick et al., 2014]. When testing
a given image, the SelectiveSearch generates approximately 2000 proposals, which
each are propagated through the CNN to extract feature vectors. Each feature vector
is tested against every class-specific SVM. To remove overlapping detections a greedy
Non-maximum Suppression is applied [Girshick et al., 2014].

At the time of publication, the R-CNN achieves state of the art performance in
object detection, with a 13% increase in precision compared to the previously best
method [Girshick et al., 2014].

The R-CNN does leave room for improvements as it is a slow solution when test-
ing on an image. Furthermore, as the solution is split into multiple modules, the loss
calculations for training the SVMs is not used to update the CNN.

An improvement on both speed and accuracy of the R-CNN was published a year
later, called Fast R-CNN. Instead of using the multi module pipeline, as illustrated
in Figure 2.7, training is now done end-to-end. The solution takes an image and a
set of pre-computed object proposals, like the R-CNN [Girshick, 2015].
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Instead of individual proposals as in the original R-CNN, the new iteration prop-
agates the entire image forward through multiple convolutional and max-pooling
layers to produce a feature map. The features are extracted from each proposal us-
ing a Region of Interest (ROI) pooling layer. After the ROI pooling layer follows two
fully connected layers leading to two different outputs; a softmax classification layer
and a bounding box regression layer [Girshick, 2015]. This pipeline is also shown in
Figure 2.8.

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 2.8: Fast R-CNN pipeline overview, by Girshick [2015]

Just like the R-CNN, the Fast R-CNN is pre-trained using the ImageNet database
fine tuned for object detection, but instead of being based on AlexNet, as R-CNN is,
the best performing solution of Fast R-CNN is based on the deeper VGG16 network
[Girshick, 2015]. When comparing to the previous iteration, R-CNN, it is done while
both solutions are using the VGG16 network layout instead of the AlexNet for the R-
CNN. This is done to have a common ground for comparison. Fast R-CNN improves
precision with 4% [Girshick, 2015].

The main improvement of the new model is more in speed both in training and
testing due to the computing of a convolutional feature map for the entire image.
The speed increase is only in relation to the actual detection, as the region proposals
are slow and create a bottleneck for the system [Girshick, 2015].

To combat the slow region proposals of Fast R-CNN, Ren et al. [2017] created a
third iteration of the R-CNN network called Faster R-CNN. Here a network named
Region Proposal Network (RPN) is implemented to compute region proposals as part
of a network. The RPN shares the convolutional layers and the feature map with
the ROI pooling in the Fast R-CNN. Due to the layers being computed on the entire
image, the time used for proposals generated using the RPN is much lower than of a
method such as SelectiveSearch. The RPN, computing region proposals, is the only
new part of the Faster R-CNN compared to Fast R-CNN.

The results of the Faster R-CNN in precision are rather small, but the entire com-
puting time of the solution has been significantly minimised, from about 2 seconds
per image to 0.2 seconds, including region proposals for both timings.
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Multiple solutions on the Common Objects in Context (COCO) dataset object
detection leader board are still employing the framework of R-CNN and its prede-
cessors, which shows why the R-CNN is still a state of the art solution.

2.2.5 Handling Occlusions

According to a study by Qian and Chen [2017], occlusions will occur both while
recording from above and from the side of an aquarium, but with greater occurrence
from the side of the aquarium due to the shape of the zebrafish. As previously men-
tioned, occlusions can cause errors, resulting in missing data for an individual due
to a new ID [Feijó et al., 2018].

A solution to missing tracking data due to occlusions, is to re-link parts of the tra-
jectories (tracklets) to create complete trajectories. This can be done by computing
a state vector for each zebrafish and using a Kalman filter which makes predictions
of the zebrafish’s position, and thereby estimate what ID belongs to the different
zebrafish after an occlusion [Feijó et al., 2018; Qian et al., 2014].

To avoid patching in missing data, another more feasible solution could be made
to solve occlusions before they occur by detecting the zebrafish in each frame. Both
Romero-Ferrero et al. [2019] and Dolado et al. [2014] propose solutions which detect
occlusions in an effort to solve them using computer vision. Dolado et al. [2014] has
categorised occlusion types by how the zebrafish overlap each other in an effort to
specify the solution. However, the only way they solve the occlusions are through
a two-step trial and error process i.e. if the first step does not solve the solution,
the second step is applied, without factoring in the occlusion type. However, a novel
approach could be to recognise an occlusion type in order to apply a predefined
optimal solution.

2.3 System Dependencies
Different types of tracking systems may vary in requirement of user interaction
throughout the tracking. The ability of the solution may require the user to in-
teract with the system when occlusions occur in the video data in order to pick the
correct path for each zebrafish and thereby solve or fix the data.

If a solution has a high level of user interaction, localisation of an occlusion may
not be a requirement due to the necessary interactions of a user, but recognition of
an occlusion occurring in the image may be sufficient.

With this analysis a specification of the problem, sought out to solve, is presented
in the following chapter.





Chapter 3

Problem Statement

Based on chapter 1 and chapter 2, a problem statement is made:
How can a zebrafish occlusion detection solution be implemented in

order to potentially optimise zebrafish tracking?

As stated in section 2.3 the kind of detection necessary is dependent on the
system. Therefore some specifications of the problem statement are defined with the
following questions:

• How can zebrafish occlusions be categorised if necessary?
• How can occlusions be detected in a sequence of images of zebrafish using

computer vision?
• What kind of detection is required based on user interaction level?
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Chapter 4

Data Analysis

To be able to develop a solution which is able to detect which type of occlusion occurs
and the location of it, some analysis of the data is necessary. This is also done to
determine how many and which kind of categories of occlusions there are.

4.1 Video Capture
The video used is recorded from above the aquarium with a NIR backlight which
makes the dark zebrafish stand out in contrast to the background. The video is 60
seconds long with three zebrafish recorded at 50 FPS yielding a total of 3000 frames
to be processed. An overview of the recording setup is shown in Figure 4.1

Figure 4.1: Video recording setup

4.1.1 Annotating Data

The data is annotated with bounding boxes for object detection. Annotations are
made using the labelme Python annotation tool [Ketaro, 2016]. A snapshot of the
UI of the software is shown in Figure 4.2.

17



18 Chapter 4. Data Analysis

Figure 4.2: Snapshot of labelme annotation tool while annotating data

The software is able to export annotations in formats matching both VOC PAS-
CAL and COCO, which is either an XML-file for each image using the VOC PASCAL
annotation style or a json file using the COCO annotation style. The file-type chosen
is the PASCAL VOC XML-files, with individual files for each image annotated.

The annotations are made up of both no occlusions and different types of occlu-
sions presented in the following section.

4.2 Fish Shapes
Even a single zebrafish is able to twist into many different shapes, according to
Kalueff et al. [2013] zebrafish has an extensive catalogue of behavioural patterns,
which are also based on different contortions of the body. The main shapes of a
single zebrafish are shown in Figure 4.3. The shapes shown are only the ones seen
from the top view of an aquarium.

(a) Zebrafish lying com-
pletely straight

(b) Zebrafish creating a C
shape

(c) Zebrafish creating an S
shape

Figure 4.3: Different shapes a zebrafish makes from a top view, also described by Kalueff et al.
[2013]

Kalueff et al. [2013] states that the C-shape is made as starting movement to pro-
pel itself forward, often in order to escape or because the zebrafish is startled. The
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bending into a C-shape, can also be caused by the zebrafish turning. The S-shape is
made for the same reasons as the C-shape, to propel the zebrafish forward.

When two zebrafish are touching or crossing each other in any way, they create
multiple new shapes.

4.2.1 Touching

When two zebrafish are touching they in general create three different kind of shapes.
They will either be elongating one another, creating one single long object. This
can be either head-to-head, tail-to-tail, or head-to-tail. Two examples are shown in
Figure 4.4. When touching head-to-tail it is most often seen as courtship between a
male and a female zebrafish [Kalueff et al., 2013].

(a) Head-to-head elongation (b) Head-to-tail elongation

Figure 4.4: The two touching possibilities creating an elongation

Two zebrafish touching is done in all kinds of positions and angles. When touching
end-to-end but at a tighter angle, two zebrafish tend to create a V-shape. In the
beginning and end of a crossing or when touching the head or tail to the middle of
the body of another zebrafish, a T-shape is created. Examples of both shapes are
shown in Figure 4.5.

(a) V-shape created by two zebrafish touch-
ing tails (b) T-shape example

Figure 4.5: Examples of V- and T-shape
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4.2.2 Above and Below

More complex occlusions often happen when one zebrafish is above the other. The
water depth of the aquarium affect this as the zebrafish are more likely to swim above
each other if the water depth allows for it. There is mainly two different occlusions
happening in this instance; two zebrafish creating a cross or one zebrafish almost
completely occluding the other.

The crossing can happen in multiple angles. A crossing occlusion is defined as two
zebrafish creating an X-shape. Examples of different crosses are shown in Figure 4.6.

Figure 4.6a shows a crossing occlusion, which is close to being an on-top occlusion,
but will be defined as a cross due to the head and tails being separated.

(a) Cross occlusion at a
wide angle

(b) Cross occlusion at a
semi-wide angle

(c) Cross occlusion at an al-
most right angle

Figure 4.6: Different cross occlusions

The on-top occlusions is when one zebrafish is somewhat straight on top of an-
other zebrafish. This kind of occlusions can, at times, be a shorter kind of elongation
e.g. when the head of the top zebrafish is further in on the body of the bottom
zebrafish. Examples of op-top occlusion are shown in Figure 4.7.

(a) Straight on top occlusion of two ze-
brafish

(b) Head on top of middle of bottom ze-
brafish

Figure 4.7: On-top occlusions by two zebrafish
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4.2.3 Other Occlusions

Besides the five previously mentioned types of occlusions, several other occlusions
occur which are harder to classify as they do not fall into any specific category. Due
to this, a category named other is created as well. Some examples of these kinds of
occlusions are shown in Figure 4.8.

(a) Example of occlusion
categorised as other

(b) Example of occlusion
categorised as other

(c) Example of occlusion
categorised as other

Figure 4.8: Different other occlusions

Occlusions occurring with all three zebrafish are also categorised as other, as none
of these fall into the defined categories, but are still occlusions.

The more zebrafish included in an occlusion the higher the complexity of the
occlusion is prone to be. This includes both the type of occlusion occurring between
each pair of the zebrafish but also possible occlusions and crossings of multiple ze-
brafish occurring at the same time. At some occasions, a three zebrafish occlusion
is easily split into two different types of occlusions and all three zebrafish are very
distinguishable from one another, as in Figure 4.9a, but at other times three zebrafish
will stack upon each other as in Figure 4.9b.

(a) Three zebrafish in distinguishable oc-
clusions (b) Three zebrafish in a stacking occlusion

Figure 4.9: Occlusions amde by three zebrafish

As can be seen in Figure 4.9, the occlusions occurring are either combinations of
the occlusions with only two zebrafish or the same type of occlusion multiple times.
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Due to this it is chosen to focus on the occlusions occurring between two zebrafish
and prove feasibility of this to be able to, later, expand a solution to handle occlusions
with more than two zebrafish.

4.3 Occlusion Frequency
In the data set the occlusions happen with different frequencies. The frequencies are
displayed in a bar chart in Figure 4.10.
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Figure 4.10: Frequency of the different types of occlusions

Figure 4.10 shows that elongation is the most frequently occurring occlusion,
together with the T-shape and other types of occlusions. In total 411 occlusions
occur out of 3000 frames, which is a frequency of 13.7%.



Chapter 5

Design

Based on the acquired knowledge from chapter 2 and chapter 4, a design of occlusion
detection solutions are made. This is implemented using Python3 with the Keras
API working with Tensorflow.

This chapter gives an in-depth description of how the implementations are made
and the theory behind them.

As stated in chapter 2 the use of CNNs in object detection is the highest per-
forming solution in different benchmarks. Due to this it is chosen to utilise CNNs to
perform the occlusion detection of zebrafish. In the following, a description of CNNs
in general and of the implementation for occlusion detection is presented.

5.1 Convolutional Neural Networks (CNN)
As regular neural networks, CNNs are made up of neurons which have learnable
weights and biases. Each neuron in the network receives inputs, performs an opera-
tion on the input and passes the output on, either linearly or non-linearly, dependent
on the design.

A CNN receives an input image and then transforms this through a series of
hidden layers in the network. Each hidden layer consist of a set of neurons, and
each neuron is fully connected to the neurons in the previous layer, but does not
share any connections inside the layer. The last layer, the output layer, is a fully
connected layer and represents the class scores. A CNN has neurons arranged in
three dimensions, namely: width, height, and depth. Already in the input an RGB
image will have a depth of three due to the three colour channels [Karpathy, 2016].
A small example of the CNN architecture is shown in Figure 5.1.
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Input

ConvLayer ConvLayer

FC Layer

Figure 5.1: Example of a CNN architecture

5.1.1 Layers

A simple CNN will often consist of a sequence of layers, in which each layer transforms
one volume of activations to another through differentiable functions. The main
layers used are; convolutional layer, pooling layer, and fully connected layer. These
layers are presented in the following.

Convolutional Layers

The convolutional layer is the main layer of operations in a CNN, hence the name of
the network type.

A convolutional layer operates using a filter also known as a kernel to compute an
output by iterating through the input image. This filter convolutes the input using
the kernel weights to calculate a dot product of the input. Each filter produces a
2-dimensional activation map. If multiple filters are applied, the 2D activation maps
will be stacked along the depth dimension in the output .

Besides being able to control the width and height of the kernel, most often a
square, it is also possible to control the depth. Depth is a hyper parameter and
corresponds to the amount of filters applied to the input. The neurons along the
depth dimension may activate on different edges or colours, but are still focusing on
the same region as the rest of the depth column.

When sliding a kernel over an input, a stride can be selected. With a stride of 1
the filter moves only one pixel at a time, while with a stride of 2 or higher the filter
will move multiple pixels before performing a convolution again.
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To enable a kernel to compute all pixels of an input, zero padding is necessary.
The size of the zero padding is another hyper parameter, and it allows for controlling
the size of the output, mostly for keeping the input size, in height and width, in the
output [Karpathy, 2016]. A one dimensional example of the influences the different
hyper parameters has is shown in Figure 5.2.

Figure 5.2: With a kernel of [1, 0, -1] the left example shows an input in the bottom with zero
padding of size 1 and stride of 1. The right convolution has changed to stride 2 [Karpathy, 2016]

Figure 5.2 shows that with a stride of one and employing zero padding, it is
possible to keep the dimensions of the input in the output.

The output of a kernel can be calculated using the Equation 5.1:

(W − F + 2P )/S + 1 (5.1)

Where W is the input volume size, F is the kernel size, P is the amount of zero
padding used on the border of the input and, S is the stride. Using the example in
Figure 5.2, the output can be calculated:

(5 − 3 + 2 ⋅ 1)/1 + 1 = 5 (5.2)

The application of stride has some limitations, as the result of Equation 5.1 has
to be an integer [Karpathy, 2016].

Pooling Layers

To be able to control overfitting and to reduce the amount of parameters thereby the
computations in a network, pooling layers are often periodically placed in-between
successive convolutional layers. A pooling layer reduces the spatial size of the input.

The size reduction is done using a filter in the same way as with a convolutional
filter, but no convolutions are performed, instead, dependent on the kind of pooling,
a value inside the filter is chosen to be passed on to the ooutput map. Using the most
common type of pooling, Maxpooling, often with a filter size of 2 × 2 and a stride of
2, the highest pixel value within the filter is chosen as the output [Karpathy, 2016].
An example of this is shown in Figure 5.3.
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Figure 5.3: Maxpooling example with a 2 × 2 kernel and stride 2 [Karpathy, 2016]

Classification

To be able to use the features extracted from input image in the convolutional layers
one or more Fully Connected (FC) layers are added in the end of a CNN. As the
name suggests, all the neurons in the previous layer are connected to the FC layer.

To classify N number of classes, the last FC layer has the same amount of neurons
as the amount of classes. The output of the last FC layer is then the probability of
the input image belonging to each class, with a sum of all output neurons being 1
[Karpathy, 2016].

5.2 Image Classification
A simple occlusion detection can be made without any localisation in order to notify a
system of an occlusion present in an image. This is done using an image classification
network, trained on two classes; occlusion or no occlusion.

The network chosen is the VGG16 network, as this is also what the R-CNN
classification network is based upon. An overview of the layers in the VGG16 network
is shown in Figure 5.4.
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Figure 5.4: VGG16 structure

The network is trained with the pre-trained weights from the ImageNet database.
The network can be split into five blocks of convolutions with a max pooling layer
after each block.

The images fed into the network are of size 224×224 and the last fully connected
layer has a depth of 2 due to the amount of classes. The structure of the network is
shown in Table 5.1. Table 5.1 also shows an extra dense layer has been added, and
the depth of the FC layers has been made smaller.



28 Chapter 5. Design

Table 5.1: Detailed description of VGG16 design. The input is 224 × 224 × 3 images

Layer Type Feature Map Size Kernel/Pool Size Activation
Block 1
Conv2D 64 3 × 3 ReLU
Conv2D 64 3 × 3 ReLU
MaxPooling2D 2 × 2
Block 2
Conv2D 128 3 × 3 ReLU
Conv2D 128 3 × 3 ReLU
MaxPooling2D 2 × 2 ReLU
Block 3
Conv2D 256 3 × 3 ReLU
Conv2D 256 3 × 3 ReLU
Conv2D 256 3 × 3 ReLU
MaxPooling2D 2 × 2
Block 4
Conv2D 512 3 × 3 ReLU
Conv2D 512 3 × 3 ReLU
Conv2D 512 3 × 3 ReLU
MaxPooling2D 2 × 2
Block 5
Conv2D 512 3 × 3 ReLU
Conv2D 512 3 × 3 ReLU
Conv2D 512 3 × 3 ReLU
MaxPooling2D 2 × 2 ReLU
Classification
Flatten
Dense 1024 ReLU
Dense 1024 ReLU
Dense 512 ReLU
Dense Amount of Classes Softmax

5.3 Faster R-CNN Object Detection
To be able to localise the occlusions in the image and mark them with bounding
boxes, an object detection solution is necessary. For this the Faster R-CNN presented
in chapter 2 is implemented. In the following the different objects in the pipeline are
described in more detail. An example overview of the pipeline is shown in Figure 5.5.
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Figure 5.5: Overview of the Faster R-CNN pipeline and its steps [Rey, 2018]

5.3.1 Region Proposal Network

As mentioned in section 2.2.4 Object Detection, the Faster R-CNN utilises a network
called Region Proposal Network (RPN) to produce region proposals. The RPN shares
some convolutional layers with the CNN. By sliding a small network over the feature
map produced by the last shared convolutional layer [Ren et al., 2017].

As the objective of the object detection is to find bounding boxes in the image,
anchors are used. Anchors are fixed bounding boxes of different sizes and ratios and
are placed throughout the image. They are used for reference when predicting object
locations. An anchor is created for each point in the produced feature map, but the
final anchors still reference the input image of the network. The RPN outputs a
set of good proposals based on the anchors, by having two outputs for each. The
first output is an object probability score, the second is bounding box regression for
adjusting the anchors to fit potential objects. An example of how anchors are placed
in an input image is shown in Figure 5.6.

Figure 5.6: Example of anchor centres placed in an input image [Rey, 2018]

For training the RPN, the anchors are split into two different categories; the first
are those which overlap a ground-truth object with an Intersection over Union (IoU)
of more than 0.7 which are considered foreground or an object. The second category
are those that do not overlap a ground-truth object or have less than 0.3 IoU, and are
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considered background. A batch of the anchors is sampled, maintaining a balance
between foreground and background anchors. This batch is used to calculate the
classification loss using binary cross entropy, and the foreground anchors, only, of
the batch to calculate regression loss [Ren et al., 2017].

In post processing, Non-Maximum Suppression (NMS) is applied to solve dupli-
cate proposals of one object by discarding the proposals with an IoU above a set
threshold with another proposal with a higher score. A too high IoU threshold may
lead to too many proposals, and too low can lead to missing proposals [Ren et al.,
2017].

5.3.2 Region of Interest Pooling

With the object proposals from the RPN, the next step is to classify the bounding
boxes. But before the classification is done, ROI pooling is performed. This is done
by extracting the fixed size feature maps for each proposal from the already existing
convolutional feature map shared [Ren et al., 2017].

5.3.3 Classification

In the classification step of the network the R-CNN network is employed. With a
FC layer as output the R-CNN has two goals; classifying the proposals into classes
and to fit the bounding boxes. It flattens the feature map of each proposal and then
uses two FC layers of size 4096 with Rectified Linear Unit (ReLU) activation. Then,
using two different FC layers for each of the objects, one for classification and one
for bounding box regression prediction [Ren et al., 2017]. An example of the flow of
a classification by the R-CNN is also shown in Figure 5.7. Here a bicycle is classified
and the bounding box is adjusted to fit the object.

Figure 5.7: Example of classification flow in the R-CNN classifying a bicycle and regressing a
bounding box [Rey, 2018]
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Results

The results presented are both training and testing results from the two solutions.
Both the image classification and the multi-class object detection are trained and
tested on the 60 seconds video with three zebrafish.

The solutions are trained on annotated data of 411 different occlusions in total
and a similar amount annotated occurrences of no occlusions.

6.1 Image Classification
The image classification solution is trained for 15 epochs, the results are shown in
Figure 6.1

(a) The image classification accuracy for
both training and testing

(b) The image classification loss for both
training and testing

Figure 6.1: Model accuracy and loss when trained for 15 epochs

As shown in Figure 6.1 the training accuracy is lower than the testing accuracy,
however, the training graph is in both functions more stable and seems closer to
converging than the testing graph. Meanwhile, the training loss is higher than the
test loss as well.

In general, the model is still unstable and needs more training for converging.
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Table 6.1 also shows that the test results are better than the training.

Table 6.1: End results achieved with 15 epochs.

Training Loss 0.4841
Training Accuracy 0.7738
Testing Loss 0.2487
Testing Accuracy 0.9318

The image detection model is also trained for 100 epochs, the results of this is
shown in Figure 6.2 and Table 6.2.
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Figure 6.2: Model accuracy and loss when trained for 100 epochs

There is still a high amount of instability, but in general the test results are better
than the training. It has tendencies towards converging, but it is uncertain due to
the instability.

Table 6.2: End results achieved with 100 epochs.

Training Loss 0.3831
Training Accuracy 0.8075
Testing Loss 0.2680
Testing Accuracy 0.8571

6.2 Object Detection

The Faster R-CNN object detection model is trained with a split of 85% for training
and 15% for testing.
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6.2.1 Training

Training is done at 42 and 152 epochs, as these points had an automatic stop. When
training, the best performing weights are saved.

42 Epochs

After the object detection model has been trained for 42 epochs, the training accuracy
is as shown in the following figures:

Figure 6.3: Mean of overlapping bounding boxes of ground truth and classification accuracy

Figure 6.3 shows the mean overlapping bounding boxes of the ground truth
bounding box, and the classification accuracy of the R-CNN classifier.

Figure 6.4: Loss in classification and general bounding box regression

Figure 6.4 shows the loss in the R-CNN classifier and bounding box regression.
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Figure 6.5: Loss in the RPN classification and general bounding box regression

Figure 6.5 shows the loss in the RPN classifier and bounding box regression.
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Figure 6.6: Total loss of the entire model

Figure 6.6 shows the total loss of the model during training. The R-CNN classi-
fication and regression steps show signs of instability, which is seen in the loss and
the accuracy of both overlapping bounding boxes and the classification accuracy.

When testing with these results, the test was stopped due to poor performance.

152 Epochs

After the object detection model has been trained for 152 epochs, the training accu-
racy is as shown in the following figures:
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Figure 6.7: Mean of overlapping bounding boxes of ground truth and classification accuracy

Figure 6.7 shows the mean overlapping bounding boxes of the ground truth
bounding box, and the classification accuracy of the R-CNN classifier.

Figure 6.8: Loss in classification and general bounding box regression

Figure 6.8 shows the loss in the R-CNN classifier and bounding box regression.

Figure 6.9: Loss in the RPN classification and general bounding box regression
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Figure 6.9 shows the loss in the RPN classifier and bounding box regression.
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Figure 6.10: Total loss of the entire model

Figure 6.10 shows the total loss of the model during training. There are still
signs of instability and again especially in the R-CNN classification and regression.
However, there are signs towards the model converging.

6.2.2 Testing

The training and testing split is 85% for training and 15% for testing. With this
split the solution reaches a mean Average Precision (mAP) of 66.8%.

Figure 6.11, 6.12, and 6.13 show plots of predictions of three random testing
frames, with predictions and bounding box regressions. The predictions and the ac-
curacy is written in the image caption. Only detections with a confidence above 70%
are accepted.

Table 6.3 shows that the average precision is very different between classes, rang-
ing from 34.4% to 100%.



6.2. Object Detection 37

Table 6.3: Average precisions of the different occlusion types

Occlusion Type Average Precision
T Shape 74.6%
V Shape 53.9%
On Top 100%
Cross 78.2%
Elongation 91.9%
Other 37.6%
No Occlusion 34.6%

Figure 6.11 shows two zebrafish creating a T-shape occlusion, which is detected
with a confidence of 91.37% and single zebrafish detected as no occlusion with a
confidence of 99.48%.

Figure 6.11: Detection of the T-shape is with a confidence of 91.37% and of no occlusion with
99.48%

Figure 6.12 shows a crossing occlusion which is not being detected and a single
zebrafish detected as no occlusion with a confidence of 99.43%.
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Figure 6.12: Only detection of no occlusion with confidence of 99.43%

Figure 6.13 shows three zebrafish with no occlusions occurring in the image, but
only two of them are detected as no occlusions, with confidences of 99.48% and
98.73%. The last zebrafish does not have a detection confidence higher than 70%
and is therefore ignored.

Figure 6.13: Two detections of no occlusions with confidence of 99.48% and 98.73%
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Evaluation

The evaluation is done in regards to the final networks created and how the design
and results are able to answer the problem statement and the questions asked in the
extension of the problem statement in chapter 3.

In order to be able to answer these questions, data is collected and annotated to
be able to train and test the solutions. The data is a 60 seconds long video of three
zebrafish in an aquarium. The annotations made are bounding boxes, and are made
up of seven different classes; Elongation, On Top, T-shape, V-shape, Cross, Other,
and No Occlusion. The "No Occlusions" are also annotated in an effort to let the
model detect all occurrences in the aquarium, and being able to separate occlusions
and non-occlusions.

According to Dolado et al. [2014] different types of occlusions may require different
kinds of computer vision methods and chose to split occlusions into two groups. This
report splits the occlusions further into six different categories, in an effort to be able
to differentiate between categories as much as possible, should the categories require
different methods to separate the zebrafish in the data.

The different categories would only be necessary, if a complete tracking solution
aims to solve the occlusions automatically by applying solutions before tracking with
methods related to the category. Whereas if a tracking solution would aim to utilise
the user, solely being able to detect an occlusion in the image may suffice. In an
effort to detect the occlusions in the video, two different solutions has been created.

The first solution is an image classification network, which is trained and tested
on 400 images of the two classes each; occlusions and no occlusions. The results
presented are created training for 15 and 100 epochs separately. As the graphs show
in Figure 6.2a, testing is especially unstable, as the accuracy fluctuates between 0.75
up to almost 1.0 and without showing any sign of converging. This instability can
be caused by multiple issues; as both lack of data, learning-rate, and bad hyper
parameters can cause this. An attempt to fix this was to add two dropout layers
between the FC layers, but to no avail. Lowering the depth of the FC introduced
some stability, but not anything noteworthy.
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The second solution is an object detection solution utilising a Faster R-CNN
implementation, using the RPN to generate region proposals and VGG16 network
for extracting features. With a mAP of 66.8% there is clearly room for improvement.
This is also shown in the predictions in testing, neither all occlusions nor the "no
occlusions" are detected with a confidence above 70%. In Figure 6.12 the crossing
occlusion is not detected. This can be due to the shape the two zebrafish make is
also close to an Cross occlusion.

To improve precision, the first step would be to increase the data volume. As
shown in Figure 4.10 there is not even 40 occurrences of the on top occlusions in the
data, which may be a reason for the model not being able to detect this with a high
enough certainty.

The training plots also show some instability, which once again can be caused by
the low amount of data.



Chapter 8

Conclusion

Throughout the project, the aim has been to find a solution to the problem statement:
How can a zebrafish occlusion detection solution be implemented in order to po-

tentially optimise zebrafish tracking?

In order to be able to detect zebrafish occlusions two different solutions are made.
To be able to cater to different occlusion handling approaches a simple image classifi-
cation occlusion detection and a more complex multi-class object occlusion detection
were developed. The simple image classification would require a user to solve oc-
clusions in a tracking system. While the more complex object detection solution
system will enable application of fit solutions based on the category automatically
and thereby require no user interaction during tracking.

The image classification achieves a validation accuracy of 93% when trained for
15 epochs, but shows a lot of instability which can indicate a coincidence. When
training for longer, no convergence is achieved which may indicate the need of more
data or tweaking of the hyper parameters.

The object detection achieves a mean Average Precision (mAP) of 66.8%, and is
able to locate both occlusions and single zebrafish as no occlusion. It is not able to
detect all types of occlusions with some classes having a rather low average precision
in testing indicating the need for more data to increase performance.

The report proposes two different solutions on how a zebrafish occlusion detec-
tion solution can be made, and presents a novel categorisation of multiple zebrafish
occlusions. The multi-class object detection also serves as a proof of concept for the
implementation of this solution in a complete tracking system.
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