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Chapter 1

Introduction

Some semesters before the start of this project, the members of Neurocenter Øster-
skoven received a game made by students from Aalborg University. This game
had the purpose of reinforcing learning for people with cognitive and physical
disabilities by including gamification of concepts such as pattern recognition and
name - image association. The game was based on a radio control car system with
two robots (Turtlebot-2 model) which acted as the cars, a joystick with a screen
attached for controlling each of them, three poles with screens acting as targets
and a computer connecting the whole system (See Figure 1.1).

A problem was detected when the users played against their relatives, who
didn’t have disabilities of any kind. This generated an imbalance in the game,
where some players had direct advantage over others because of their conditions.
For this reason, the engagement factor of the game was endangered, and with it,
the educational part of the game.

For solving this problem we proposed to create an AI that supported one of the
users (the one with the disability) and hindered the control of the other, balancing
the experience for both groups and improving their engagement, allowing them to
focus on the learning aspect of the game.

The solution proposed was a form of shared / hybrid control.

1



2 Chapter 1. Introduction

Figure 1.1: A scheme of the game. Both users control an RC car each with a joystick, that they have
to drive to one out of three poles.



Chapter 2

Background research

2.0.1 Reference work

The main articles consulted for this project are the H-metaphor written by NASA
in 2003 [12] and the posterior study of its application in 2011 by Damböck et al.
[10], and the sources that inspired both articles to their conclusions.

2.0.2 Artificial Intelligence

What is an AI?

"AI", stands for "Artificial Intelligence". As defined by Poole et al, AI research is
the study of "intelligent agents", which are considered "any device that perceives
its environment and takes actions that maximize its chance of successfully achiev-
ing its goals" [21]. Russel et al. [30] prefer the terminology "rational agent" for
it, but the definition stays quite similar, by stating "any device that perceives its
environment and takes actions that maximize its chance of success at some goal".

Machine Learning

We call Machine Learning to the subset of artificial intelligence where the algo-
rithms build mathematical models based on sample data (known as "training data)
in order to make predictions or decisions without being explicitly programmed to
perform the task [16].

The result of running a machine learning algorithm can be expressed as a func-
tion y(x) which takes a new digit image x as input and generates an output vector
y, encoded in the same way as the target vectors. The precise form of the function
y(x) is determined during the training phase, also known as the learning phase, on
the basis of the training data. Once the model is trained it can determine the iden-
tity of new digit images, which comprise a test set (see Figure 2.1). The ability to
categorize correctly new examples that differ from those used for training is known

3



4 Chapter 2. Background research

Figure 2.1: Machine learning algorithms workflow.
https://2s7gjr373w3x22jf92z99mgm5w-wpengine.netdna-ssl.com/wp-content/uploads/2018/
09/WD_3.png

as generalization. In practical applications, the variability of the input vectors will
be such that the training data can comprise only a tiny fraction of all possible input
vectors, and so generalization is a central goal in pattern recognition[7].

2.0.3 What is Shared / Hybrid control?

An advanced vehicle driver assistance system (ADAS) is a vehicle control system
that aims to improve driving comfort and traffic safety by utilizing various envi-
ronment perceptive sensors, such as lasers, cameras, and radars, to monitor driving
surroundings and then assist the driver in recognizing and reacting to potentially
dangerous traffic situations [35] [9] [31]. An ADAS aims to achieve better con-
trol effects of vehicles through the combination of assistance control systems and
drivers, sharing the control authorities of manoeuvring with the human driver,
rather than taking over the driver’s authorities [17]. An ADAS can be seen as a
two player game [34], with the controller, who can only issue controllable tran-
sitions, on one side, and the environment, that can choose the trajectory of the
variables and can take uncontrollable transition whenever they are enabled, on the
other [6]. A central element of shared control is the allocation of control authority,
i.e. the perception of which one of the two elements of the shared control is the one
in charge of the driving in a certain moment[4].However, estimating the authority
intention in shared control is not a trivial task, due to the vagueness and the lack

https://2s7gjr373w3x22jf92z99mgm5w-wpengine.netdna-ssl.com/wp-content/uploads/2018/09/WD_3.png
https://2s7gjr373w3x22jf92z99mgm5w-wpengine.netdna-ssl.com/wp-content/uploads/2018/09/WD_3.png
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of knowledge of how it shapes the driver’s behaviour [11].
From all the theories about shared control, the one this project was the most

influenced by was "The H-Metaphor as a Guideline for Vehicle Automation and
Interaction" [12], in paper published by NASA on December 2003.

2.0.4 Why hybrid control instead of automated systems?

As stated by Bainbridge [2], fully automated systems can create what is defined in
his work as "the irony of automation". By this, Bainbridge meant that "by taking
away the easy parts of a task, automation can make the difficult parts more diffi-
cult". Therefore, a hybrid control system should be focused on the hardest parts of
the process rather than the easy ones, allowing the user to have authority during
the interaction but facilitating the general manoeuvring of the vehicle.

More complex systems require more complex communication solutions, as ex-
plained by Norman [20]: "The solution will require higher levels of automation,
some forms of intelligence in the controls, and appreciation for the proper form
of human communication". Due to our system focus on its learning possibilities
through gamification, it would make sense to make the driving, which is the gam-
ification part of the project, as simple as possible. This would allow the users to
focus on the learning part of the experience. A hybrid control system is suitable
for this task since it does not eliminate the users’ driving authority completely but
assists them in the process. While the hindering AI complicates the driving of the
vehicle.

2.0.5 Control in hybrid vehicles

It has been observed that experienced operators are able to reduce the required
effort of driving by developing precognitive [18] or skill-based routines [23]. How-
ever, their sensory and processing resources are still limited [36]. Strategic tasks
such as monitoring the remaining fuel on the display have to be kept to a mini-
mum in order not to break the actual control loop [3]. In our problem the users are
required to monitor the information displayed oh the screens of their controllers,
and matching it with the correct screen in one of the three poles, making them
deviate the attention from the actual control of the vehicle. Because the goal of this
project is to keep the learning part of the game present, the vehicle control must be
assisted in order to allow the users to turn away the attention from it when needed.
On top of that, due to the users’ only occasional usage of the driving system, pre-
cognitive and skill-based routines are difficulty to acquire, making the learning
period for driving the vehicles a necessity, and therefore allowing the learning part
to be focused on the educational part of it.

However, the hybrid control system should still allow the users to feel author-
ity over the driving. Flight Management Systems (FMS) are commonly used for
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the control of diverse tasks related to plane traffic, from flying complete routes to
automated landings [12]. However, other automated systems can intervene in the
FMS input, appearing unpredictable to the operator and subsequently prone to
cause "human error" [37] [32]. If the role of the pilot becomes one of supervising
and monitoring the automation without direct involvement, the automation leaves
her/him ill-prepared to both recognize an issue and to intervene [33], taking the
pilot out of the control loop. Therefore, when coming to our problem formulation,
the solution should help the users to control the vehicle and reach the pole, but
always on a simple, communicative way. The assistance system should be individ-
ual, in order to prevent interference between automation systems as in FMS [12],
and allow the users to feel driving authority during the whole experience.

2.0.6 A simile through the horse metaphor

The horse metaphor is a widely spread theory used to explain the inner workings
of hybrid control systems. As in the original work published by NASA [12], we will
begin by explaining what a metaphor is. Norman [19] gives a detailed description
of what a "system image" is, a concept that is needed to fully understand the Horse
metaphor:

"The user’s model is the mental model developed through interaction with
the system. The system image results from the physical structure that has been
built (including documentation, instructions, and labels). The designer expects the
user’s model to be identical to the design model. But the designer doesn’t talk
directly with the user – all communication takes place through the system image.
If the system image does not make the design model clear and consistent, then the
user will end up with the wrong mental model."

Metaphors, on the other hand, are meant to transfer meaning from one thing
(the source) to another thing (target) [12]. Thus, the horse metaphor is meant to
create a proper system image of how a hybrid vehicle works. The authors of the
original NASA work describe it as follows:, "If you were riding a horse, you would
be able to read your map and be confident that you would not hit any trees or
run into people because horses instinctively avoid obstacles. And, using physical
feedback through the seat of your pants and your reins, you are constantly aware
of what your horse is doing, even while focusing your attention elsewhere. If the
horse is unsure about where to go, it may slow down, and seek a new obstacle
free path while trying to get the rider back into the loop. The horse might also be
aware of how engaged you are and adjust its behavior. If a dangerous situation
suddenly pops up, it will try to react before it is too late. You can let your horse
choose its path without being completely out-of-the-loop or you can take it on tight
reign to reassert a more direct command." "Now apply this image to a new kind of
vehicle. Imagine that you could drive or fly through an environment with obstacles
and other vehicles, and would be able to focus on other tasks like navigation,
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communication, or even enjoying the scenery. You could be confident that your
vehicle would not hit anything because it senses and avoids obstacles. Through
the physical feedback from your haptic interface, an active joystick for example,
you are constantly aware of what your vehicle is doing. If your vehicle senses
any danger or is unsure about where to go, it will assume a more cautious and
stable configuration, and you can feel where the vehicle is trying to lead you. The
vehicle might also be aware of how engaged you are and will adjust its behavior.
An extreme example would be if the operator is incapacitated and the vehicle
maneuvers to a safe state. If some sudden danger pops up, it will react before it is
too late."

Comparing the Tight Rein and Loose Rein modes of controlling horses [5] hy-
brid systems could operate on a mode continuum, in which the human and the
machine would contribute equally to the control of the driving, but in which con-
trol would also be delegated mutually between both depending on the situation
(tight reins for human control, and loose reins for vehicle control). Therefore, in
this project a Tight Reins control should be used whenever the users want to de-
cide to which pole to drive their vehicle (the strategic decision) and the Loose Reins
when approaching it so that the vehicle helps the user to reach the pole.

2.0.7 Feedback systems

Damböck et al. [10] explain that on shared control systems both the driver and the
automation are simultaneously involved in the driving task, acting parallel to each
other (Figure 2.2). Both perceive the environment separately, generate an intention
based on their perception and try to put that intention into practice by affecting
the vehicle, the driver or accordingly the automation [10]. This communication
and negotiation is carried out via the manual haptic channel using active control
elements, but can also be supplemented by the presence of acoustic and visual
information.

Damböck et al. mention three different kinds of scenarios for a side stick-
controlled vehicle in their example:

• In the first scenario, the side stick doesn’t support any kind of feedback sys-
tem (Fig2.3). The operator creates forces on the stick, which adjusts the set
point settings of the vehicle. Thus, the dynamics of the stick are autonomous
and don’t allow conclusions about the state of the vehicle. Therefore the user
has no knowledge about its actual state.

• In the second scenario there are position reflective control elements (Fig
2.4), in which, as opposed to the force reflective system (that uses a spring-
centered stick), the position point for the vehicle results from the balance
of forces in the stick. "The feedback information is returned as position of



8 Chapter 2. Background research

Figure 2.2: Schematic of the communication between driver and automation system. The summation
of the parallel work of both is transmitted to the vehicle.

{Dambock2011}

Figure 2.3: A force reflective control element.

{Dambock2011}

{Dambock2011}
{Dambock2011}
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Figure 2.4: A position reflective control element.

{Dambock2011}

Figure 2.5: A position reflective control element.

{Dambock2011}

the element which thereby represents the actual state while its movement
represents the dynamic of the system itself". Thus, the operator senses the
behaviour of the system/vehicle.

• The third scenario presents the ideal situation for hybrid control systems. In
this, both driver and automation system have influence on a position reflec-
tive control element. That way the driver has direct feedback of any action
taken by the automation system over the vehicle (By the force exerted by the
stick on any direction) and can have direct influence on the control of the
vehicle by exerting force on the stick ??.

2.0.8 Conclussion

From the insights that were made in hybrid / shared control the following points
can be seen as given for our scenario:

{Dambock2011}
{Dambock2011}
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The automation would be minimal, trying to create a hybrid control, not an
automated one. This will prevent the driver from being "out of the loop" [2]. This
is also supported by the educational aspect of the game, in which a high amount
of automation would suppose a detriment on the challenge, and thus a lost in the
educational value. To follow Norman [20],a system as simple as possible will be
designed to minimize the amount of feedback that has to be given to the users, as
the final users may not pay that much attention to visual or sound feedback.

The control will be done by a force reflective control element (figure 2.3), which
is the one already implemented in the physical solution at the start of this project.
Ideally, in future steps of the project the control could be adapted to an assisted
position reflective control element (figure 2.5).

Due to the nature of this project, in which an AI is designed to hinder one
group of users and to help the other group, a simile with the horse metaphor can
be made[12], having two different kind of horses: An obedient horse (the helper)
and a wild horse (the hinder). Therefore, the control for those users with the
helper AI should obey them and assist them in the driving of the vehicle, while the
control for the users with the hinder should feel disobedient and opposed to the
user intention.

2.0.9 Problem formulation

With the knowledge the background research and by transferring the information
to the case this thesis, the problem of the project was reformulated as follows:

What are the challenges of implementing a hybrid control system to an
educational RC car game, in which two different AIs are needed that work at
the same time, one helping one user, and another hindering the other, while

maintaining the educational factor for both of them?



Chapter 3

Design

3.0.1 The game

The game is based on a radio control car system (RC car system from now on) with
two robots working as vehicles and three poles working as the possible targets.
Each of the robots is controlled by a player, and each player uses a controller for
doing so. The controller consists is a force reflective 8 axis joystick with a screen
attached to it.

The poles also count with screens attached to them. The objective of each player
is to drive their robot to the right pole, which displays the same image on its screen
as screen than the one displayed on the on the player’s controller screen. The first
player who hits the right pole scores a point, and the player with the most points
after some rounds (defined by the facilitator) wins the game. Hitting a pole that is
not the right one doesn’t have any negative effects on the score.

All the elements in the game (the two joysticks, the three poles and the two
robots) are connected by a central computer that coordinates all the operations
and communications. The game runs on an instance of ROS (see section 3.0.3)
supported in Python code (see section 3.0.4)

3.0.2 The robots

The main robots used for the project are TurtleBots Burger. TurtleBot is a low-cost,
personal robot kit with open-source software. These TurtleBots were used as the
RC cars in the game. The TurtleBots of this project counted with a laser 360 degree
sensor, and two small engines for facilitating its movement, one on each wheel.
The system was operated by a Raspberry PI attached to it.

The poles where independent robots themselves. They counted with a Rasp-
berry PI inside to coordinate their system, a small display on top to show the goal
image that the users had to aim for, and collision sensors on the bottom that were
triggered when hitting one of the robots.

11
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The robots were navigated by controller each, made with an 8 axis joystick, a
Raspberry PI and a display. The joystick was a switch rather than a continuous
system, meaning that the inputs transmitted by it varied from 0 to 1, rather than
a progressive value, therefore having a set speed. The display on the joystick
was used to show the user to what point the robot had to be driven to, and the
Raspberry PI coordinated both systems.

All the robots were coordinated by a central terminal, a stationary computer,
that acted as server and coordinator of all the IPs and the game. The terminal kept
the score of each player as well as initiated and finished the game. The server sent
a signal to both the joystick and the target pole . The joystick received the IP of the
target pole, and the pole received the IP of the player’s vehicle. On collision, the
poles detected the IP of the robot. If the IP of the robot collided against the IP of
the target pole, the player scored a point.

3.0.3 ROS

What is ROS?

"ROS" stands for "Robot Operating System", an open-source programming frame-
work developed in the late 2000’s at Standford University. As explained by Brian
Gerkey [13] ROS can be described in the following equation:

ROS = Plumbing + Tools + Capabilities + Ecosystem (3.1)

Where each of the variables refer to:

• Plumbing: ROS provides publish-subscribe messaging infrastructure designed
to support the quick and easy construction of distributed computing systems.

• Tools: ROS provides an extensive set of tools for configuring, starting, intro-
specting, debugging, visualizing, logging, testing, and stopping distributed
computing systems.

• Capabilities: ROS provides a broad collection of libraries that implement
useful robot functionality, with a focus on mobility, manipulation, and per-
ception.

• Ecosystem: ROS is supported and improved by a large community, with a
strong focus on integration and documentation. www.ros.org is a one-stop-
shop for finding and learning about the thousands of ROS packages that are
available from developers around the world.

Gerkey further explain: "In the early days, the plumbing, tools, and capabilities
were tightly coupled, which has both advantages and disadvantages. On the one
hand, by making strong assumptions about how a particular component will be
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used, developers are able to quickly and easily build and test complex integrated
systems. On the other hand, users are given an "all or nothing" choice: to use an
interesting ROS component, you pretty much had to jump in to using all of ROS."

The main advantage that ROS provides for the robotic industry is the standard-
ization of the "nodes" or groups of functions, which can be shared via internet and
used for commercial purposes due to its open software nature [24] [26]

Topics, Services and Actions

The communication in ROS is mainly done through three different kind of pub-
lishers: Topics, Services and Actions[1]:

-Topics: In Topics a publisher runs a series of actions on the background for an
indefinite period of time. Robots can call and stop the call to topics at any given
point, using the information provided by them for different purposes. An example
for a Topic would be the publisher that tracks the position of one of the robot cars,
which sends the information twice per second.

-Services: Services are synchronous publishers. Once a robot call a Service it
runs the action of the Service until the service itself stops, not running anything
else in the meantime. Services are mainly used for blocking every action of the
robot until the current action is completed, for example, requesting for user input
to start the game and maintaining all the robots on hold until then.

-Actions: Actions are asynchronous calls to Services. Actions can be called at
any point by a robot, and other actions can be taken during the normal execution
of the first one. An example for this would be the system that moves the robots in
real time while the sensor is still active.

Programming in ROS

Independently of the coding language used for the development of the apps in
ROS, all the systems created on the platform work in the same structure: By ini-
tializing, running and stopping different nodes[1].

A node, as defined in ROS wiki [29], is "an executable file within a ROS pack-
age. ROS nodes use a ROS client library to communicate with other nodes (See
Figure 3.1). Nodes can publish or subscribe to a Topic. Nodes can also provide or
use a Service." Because the language that was used for programming the original
game was Python. For this project we used the corresponding library for Python
implementation in ROS, "rospy". [28]

The code for both functionalities of the project (the helper and the hinder) was
developed as different executable files, and thus, as independent nodes.
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Figure 3.1: Basic node communication structure in ROS.

https:
//www.clearpathrobotics.com/assets/guides/ros/_images/ros101one.png

https://www.clearpathrobotics.com/assets/guides/ros/_images/ros101one.png
https://www.clearpathrobotics.com/assets/guides/ros/_images/ros101one.png
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ROS Development Studio

One of the main disadvantages of ROS is that it requires to be run on an Ubuntu
machine, forcing developers to either use a computer with Ubuntu integrated as
the operative system (OS) or through virtual machines. During this project "ROS
Development Studio", one of the online solutions for ROS simulation, was used.

As stated on their webpage [8] ROS Development Studio (ROSDS from now on)
is an online platform for both learning and development in ROS. Instead of having
to install Ubuntu on a computer or run a virtual machine version of the OS, ROSDS
allows the users to run an online instance of Ubuntu and ROS for developing
directly in the web browser. The only limitation comes with the installation of
specific libraries for python, which were limited due to the online nature of the
instantiate of ROS.

Robot Ignite Academy

The online learning materials provided by ROSDS is called Robot Ignite Academy.
Its content was used during the project for learning the basics of ROS, especially
of Topics, Services and Actions, the ROS navigation stack, and the use of ROS
debugging tools.

3.0.4 Python

What is Python?

On Python’s official website it is stated site[22]: "Python is an interpreted, object-
oriented, high-level programming language with dynamic semantics. Its high-level
built in data structures, combined with dynamic typing and dynamic binding,
help to connect existing components together. Python’s (...) reduces the cost of
program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive
standard library are available in source or binary form without charge for all major
platforms, and can be freely distributed." Using Python, an open source coding
language, combined with ROS, an open source programming framework, allowed
this project to be used without commercial licenses.

Python integration in ROS

The Python integration in ROS is handled by the rospy library [28]. The library
favours implementation speed over runtime performance, allowing to quickly pro-
totype simple algorithms. ROS also offers the "roscpp" library to use C++ for the
development, which is slower to prototype but has a better performance [27].
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3.0.5 Initial proposal

For the initial proposal an AI with two main functionalities was defined: Discern-
ing where the users were trying to go and helping them to go there. If the AI was
applied to non-disabled users, it should also be able to discern where they were
trying to go and make it harder for them to drive the vehicle there. The follow-
ing proposals focused in one of the three functionalities of this AI (detecting the
players intention, helping players and hindering players):

Detecting the player’s intention - proposal 1: Creating a virtual grid

This option was based in a machine learning approach, combined with reinforce-
ment learning. If the field are the robots were in play could be divided in a grid of
some kind, the behaviour of the player should be traceable by a machine learning
algorithm after observing the players behaviours enough times. Therefore, an AI
should be able to be implemented with a training set large enough to allow it to
approximately predict where the users were trying to go just by the inputs of their
controllers (See Figure 3.2). After this the AI would be trained using a Reinforce-
ment learning approach, where it would be rewarded when reaching the target
with the minimal number of steps, or punished when exceeding them.

Figure 3.2: A brief explanation of how the machine learning algorithm would work. The training
set would include different routes taken by the players with the robot to reach the objective. Those
routes (In red and green) would be taken as a training set to develop a model which could predict
new routes once the player started playing (in blue) in order to "guide" the robot through it.

However, this option would have generated a "driver out of the loop" kind
of situation [3], and thus generate "human error" [37] [32]. Apart from that, this
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option could have failed due to the overspecialization of the AI, meaning the as-
sistance system would only be able to help the users in rooms similar to the ones
where the training set information was gathered. Furthermore, the original game
is of the nature o an educational project, therefore being focused on teaching the
users by their interaction with the system. By creating a system with too much
automation and no feedback the educational element would have been taken out
of it.

Detecting player intention -proposal 2: Using computer vision to detect the tra-
jectory

In the second option a computer vision system proposed, in which the poles an
the robots are recognized by a camera. The robot’s trajectory would be estimated
by the algorithm and modified to face the poles (See Figure 3.3).

Figure 3.3: The camera system would have an overview of the playground where the robots would
move around. The actual trajectory of the robot is represented in red, while the optimal one to the
target is represented in green. When the AI is activated, it would modify the route of the TurtleBot
to follow the blue trajectory, a mix of both of them.

This option, however, included a series of problems: The use of a computer
vision algorithm would mean a new field of study for the project that was not
tackled during the background research. Furthermore the presence of the camera
would require a set-up of some kind for the functionality of the AI, necessitating
the presence of a facilitator during game sessions who had knowledge about the
structure. On top of that, if the camera had to be able to have control over the field,
a support structure would have had to be developed, restricting where the camera
could be used due to the size of the installation, and reducing the application
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possibilities of the system. Therefore, the idea was discarded.

Detecting player intention -proposal 3: Detecting the correct pole

In the third solution, the following reasoning was made: Assuming that the educa-
tional part of the game was understood, and therefore, that the users were driving
their robots to the right pole, an algorithm could be designed that help the users
move towards the target (See Figure 3.4.

Figure 3.4: A simple scheme of the behaviour of the algorithm. Independently of the trajectory of
the robot, the AI would always help the user move towards the pole

However, this option had the same problem as the first proposal: If the users
were helped to go towards the right pole, the educational factor of the game would
have been completely eliminated.

Detecting player intention - proposal 4: Detecting the closest pole

Therefore, instead of detecting the target pole and helping the users go there, it
was decided to take an intermediate step: When the users vehicles entered an area
around a pole, the AI would help them reach it, whether the pole was the correct
one or not, but always giving margin to the users to change the trajectory at will
(See Figure 3.5).

• Area of detection: All the poles have an area of detection around them where
the AI started operating. As stated before the influence of the AI must not be
stronger than the influence of the controller, thus allowing the users to turn
the robot around and face another pole. In area intersections between poles
the AI should only help the users go towards the closest one.
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Figure 3.5: Each pole has around an area set by a common threshold. Once the robot enters one of
the areas the AI starts working, guiding the robot towards the pole. However, the work of the AI
needs to also allow the robot to escape the area of influence of a pole. Only one pole is chosen at a
time by the AI, so there are no conflicts in the area in between poles.

• AI free area: As a possible option it was proposed to also have a small area
free of AI around the poles, making it more challenging for the users once
their vehicles were close enough to them. Although it was an interesting
option, it was decided to keep it as a possibility instead of implementing it
because of not being interesting enough for the problem, building the code
while having this in mind to easily update it in the future.

3.0.6 Helping the players to reach the point

In ROS< there are many different was to reach a point. The system includes differ-
ent tools for the control of robots, from automated navigation via ROS Navigation
Stack to modifications in the trajectory of the robot with the cmd_vel topic.

ROSNavigationStack

ROS includes a module (Stack) for automated navigation called ROS Navigation
[25]. There are numerous elements that need to work at the same time for ROS
Navigation to operate:

• Mapping of the environment around the robot: This can be done via the
sensors attached to the robot or to an external device that sends information
to the machine. In order to activate the Navigation, stack a robot needs
mapping of its surroundings.
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• Localization of the robot inside the environment: Once the mapping has
been done the robot can proceed to try to locate itself inside of it. The loca-
tion of the robot can be modified manually through input of its coordinates
towards a point of reference, but normally it is the robot that locates itself by
detecting derivations on the information acquired via its different sensors or
by comparing its own map to the other robot’s map.

• Path planning: Once the robot has finished mapping and provides informa-
tion about its own location in its environment it can begin the path planning.
The points to which the robot has to travel can be imputed manually or sent
by a script located in an external source (or the robot itself, depending on its
purpose). If indicated, once received a point the robot starts doing the path
planning to avoid obstacles and also calculates the best route through its map
towards the target.

The robots of this project only had a laser sensor on top of them. Through
it, the robot registered an array with numbers representing distances, knowing
which object was further and which one was closer. Through enough recognition
around the playground the robot could have been able to recognize the position of
the poles on it, but differentiating between poles and other objects was not doable
through such a sensor. Therefore, we opted to use another solution.

ROS cmd_vel

ROS includes a Topic called cmd_vel, where the information about the linear and
angular velocity of the robot is published. With this Topic the robot can have a
velocity applied to it, in order to make it rotate towards a target, or move towards
it. Thus, by applying the adequate speeds on the robot, both linear and angular, it
can be ordered to face a certain objective, in our case, the closest pole.

The idea was to send an angular velocity to the robot so it faced the closest
pole at any given time (Always only when inside its area of influence). This speed
would only be implemented when the robot was stationary, allowing players to
rotate the robot and face a new goal at will. Since the target group of this game
was not re-active to feedback it was decided to keep it to a minimum, showing the
robot intention only by its movement.

3.0.7 Hindering non-disabled player’s control of the robot

The same way the AI could help the robots to face the pole by cmd_vel, it could
hinder them by applying random angular velocities on activation. To assure that
this didn’t happen at all times, we decided to design the hinder AI to trigger only
when the "forward" inputs from the 8 direction stick were received, allowing the
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users to redirection the robot when stationary, but still making it harder to control
when advancing.





Chapter 4

Development

The scripts used in ROSDS for activating the functions of the robot were separated
in two: Helper.py and Hinder.py. The first one was in charge of the main functions
of the AI (detecting the proximity of the pole, rotating the robot, etc.) while the
second one had to hinder the actions of the users once triggered. Both scripts were
separated in individual elements to be able to trigger each of the functionalities on
and off separately. This allowed us to test the behaviour of participants in three
conditions: With the hinder, with the helper, and without any of them.

4.0.1 Helper.py

What is a quaternion?

Quaternions were first described by William Rowan Hamilton in 1843. According
to his definition, a quaternion is the quotient of two directed lines in a three-
dimensional space, or equivalently, the quotient of two vectors [15][14]

A quaternion is generally represented in the form:

a + bi + cj + dk (4.1)

Where:

• a,b,c and d are real numbers .

• i,j and k are imaginary numbers which represent the fundamental quaternion
units.

– i rotates in the wx and yz planes

– j rotates in the wy and zx planes

– k rotates in the wz and xy planes

23
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Quaternions were used in this project because of their ability to represent three-
dimensional rotations. On a quaternion, the three components with imaginary
numbers represent the vector around which the 3D body rotates (being i, j and k
representatives of the three coordinates that define the distance of the point from
the origin). The scalar a represents the summation of the sinus and the cosine of
the angle that the body is rotating.

Figure 4.1: The image represents a sphere which rotates around a vector. The grey arrow is the vector
that is defined by i, j and k, and around which the sphere rotates. The summation of the sinus and
cosine at the beginning of the equation is the same as the scalar a

https://2s7gjr373w3x22jf92z99mgm5w-wpengine.netdna-ssl.com/wp-content/
uploads/2018/09/WD_3.png

On applied quaternions the following formula comes in play:

f (p) = q.p.q−1 (4.2)

Quaternions are "double covered" when it comes to rotations in 3D, which
means that any given rotation belongs to two separate points on opposite sides of
a hypersphere in four dimensions that we can’t see. The first quaternion multi-
plies the sphere p from the left, and the second (Which is the inverse of the first)
multiplies the sphere from the right.

How is the distance between two points calculated?

The distance between two points P(x1,y1) and Q(x2,y2) results from the following
formula: √

(x2 − x1)2 + (y2 − y1)2 < R (4.3)

The proof for this comes as following: Let’s define d as the distance between the
point A(x1,y1) and the point B(x2,y2). L equals to (x1,0), M to (x2,0) and C(x2,y1)

https://2s7gjr373w3x22jf92z99mgm5w-wpengine.netdna-ssl.com/wp-content/uploads/2018/09/WD_3.png
https://2s7gjr373w3x22jf92z99mgm5w-wpengine.netdna-ssl.com/wp-content/uploads/2018/09/WD_3.png
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Figure 4.2: Above this lines the graphic with the poins A(x1,y1), B(x2,y2), L(x1,0), M(x2,0) and
C(x2,y1).

https://math.tutorvista.com/geometry/distance-formula.html

(This last one forming the triangle ABC with A and B). With the origin in O(0,0), if
OL = x1 and OM = x2, it can be said that the length of AC equals the one of LM,
and thus:

AC = AL = OM − OL = x2 − x1 (4.4)

If MB = y2 and MC = LA = y1, then:

CB = MB − MC = y2y1 (4.5)

Then, with Pythagoras theorem:

a2 + b2 = c2 (4.6)

We can apply to the right-angled triangle ABC:

AB2 = AC2 + CB2d2 = (x2 − x1)
2 + (y2 − y1)

2d = sqrt((x2 − x1)
2 + (y2 − y1)

2)

(4.7)

What is a quadrant?

Any of the four areas in which a plane is divided by an x and y axis, as shown in
Figure 4.3, are called a quadrant.

https://math.tutorvista.com/geometry/distance-formula.html
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Figure 4.3: In each one of the quadrants the values of x and y change. Therefore, in the first quadrant
both values are positive (+,+), for the second x is negative and y is positive (-,+), for the third both
are negative (-,-) and for the fourth x is positive and y is negative (+,-).

https://d2jmvrsizmvf4x.cloudfront.net/1qkPaeoESVuB1YQo3ezM_
coordinate-system.png

Intersection between lines

Although the robots exist in a 3D space, the intersection between the orientation
vector of the robot and any line having the pole as origin will happen in the x
and y axis, therefore, the intersections of vectors are only thought in a 2D space.
Different solutions for detecting said intersections were developed.

Option 1: "Long enough vector" intersection system

The first proposal was to calculate the intersection between the orientation vector
coming out of the robot and an imaginary line traced diagonally from the pole to
one out of the four quadrants of the circle around the pole.

After some time of implementing this option the behaviour in ROSDS showed
several instabilities. The intersection point was not always detected (i.e. when
the orientation vector and the imaginary lines were parallel). On top of that, the
intersection algorithm forced to create an imaginary line between the origin of the
robot and a far point on its orientation to create "long enough vectors" to allow
intersection, creating another margin for error. In the end, the solution proofed
itself to be too complicated for what it was tried to be achieved. This is why the
calculations were revised resulting in a much more simple solution.

https://d2jmvrsizmvf4x.cloudfront.net/1qkPaeoESVuB1YQo3ezM_coordinate-system.png
https://d2jmvrsizmvf4x.cloudfront.net/1qkPaeoESVuB1YQo3ezM_coordinate-system.png
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Figure 4.4: The red line represents the trajectory vector of the robot. The green lines are imaginary
segments made between two points: The pole(x1,y1) and a distant position (i.e. (x1-400. y1+400) in
order to make sure that there is an intersection for the quadrant were the robot is. The angle alpha is
calculated through trigonometry, and shows the rotation that the robot need to take in order to face
the pole

Option 2: Quadrant system

Knowing the coordinates of the robot on its position point R(xr,yr) and the coor-
dinates of the pole on its position C(xp,yp), it was also known in which quadrant
around the pole the robot was by comparing the coordinates of both, as explained
in Figure 4.3, such as in:

i f (xr > xp, yr > yp) : quadrant = 1

i f (xr < xp, yr > yp) : quadrant = 2

i f (xr < xp, yr < yp) : quadrant = 3

i f (xr > xp, yr < yp) : quadrant = 4

Therefore, the robot’s position to the triangle position could always be con-
nected by a right-angled triangle, with the hypotenuse connecting the robot and
the pole, and a pivot point between both with the same x coordinate as the robot
and the same y coordinate as the pole (see Figure 4.5). This method could be used
because the cmd_vel message "Twist()" rotates the robot in a certain angle, from
the origin orientation of the robot if the yaw is subtracted. Therefore, knowing the
target angle TA the robot could be rotated at any given point to face towards the
pole.

After some testing of this code it was discovered that the orientation for "yaw =
0" in the robot corresponded to a parallel line with the x axis instead of a parallel
line with the y axis, changing the system to the one seen in Figure 4.6
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Figure 4.5: On the image the Target Angle (TA) varies depending on the quadrant were the robot
stands respecting to the triangle. Therefore, on the 1st quadrant TA equals to 180 degrees minus
alpha, in the second one, to 180 degrees + alpha, in the third one to -alpha and in the fourth one
to alpha, being alpha the angle that separates the vertical of the robot position to the line formed
between the pole position and the robot position. The angle in this model is only dependant on the
position of the robot in the quadrant, and not on its orientation.

4.0.2 The Helper algorithm

The algorithm used by the helper can be explained by a flowchart (Figure 4.7).
After the start of the script, the positions of the pole and the robot are detected.
Then the AI checks if the robot is inside the trigger area of one of the poles. If not,
it applies a 5Hz delay and goes back to the beginning of the script, updating the
position of the robot checking again.

If the robot is inside the trigger area the AI will calculate the quadrant around
the pole in which the robot is. Once that is done, the AI will obtain the target
angle, and rotate the robot to face the pole. After these actions have been taken the
AI checks if the robot has reached the pole. If not, a 5Hz delay is applied and the
position of the robot around the pole is calculated again. If the robot has reached
the pole, the script ends.

4.0.3 The Hinder algorithm

The Hinder.py script was created for generating problems in the control. Its ba-
sic behaviour was achieved through the use of a random rotation applied to the
robot when moving it forwards, by the use of the ’random’ Python library and the
’cmd_vel’ topic with a Twist() message. The algorithm in Figure 4.8 depicts the
working of the Hinder algorithm.

Right after the beginning of the script a 5Hz delay is implemented to give a
small advantage to the player aided by the Helper script. The AI then checks if
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Figure 4.6: The same model as shown in 4.5, but with the x and y fixed to correspond to the real
orientation given by the yaw in the /Odom topic.

the robot is making any movement in the Y axis (the equivalent of ROS for going
frontwards / backwards). If the answer is negative, another delay is applied, and
the check is performed again.

If there is a movement applied to the robot on its Y axis, a random rotation is
calculated. After this, the rotation is applied to the robot. The system then checks
if the robot has reached the right pole. If the answer is affirmative, the script ends.
If negative, a 5Hz delay is applied. After that, the system checks again if the robot
is moving on the Y axis, and the script continues.
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Figure 4.7: Flowchart explaining the helper algorithm
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Figure 4.8: A flowchart explaining the working of the Hinder algorithm





Chapter 5

Experiment

5.1 Design

In the experiment the users were asked to complete a simple driving task inside
the simulation. This tasks would be performed in three different scenarios: Having
the helper active, having the hinder active, and having the AI deactivated. Our
dependent variable was the time of completion (in seconds), and our independent
variable was the AI mode (1, 2 or 3 depending on which one of the scenarios).

Due to the impossibility of testing with the final users of the RC cars (the mem-
bers of Neurocenter Østerskoven), it was decided to test on other participants. We
couldn’t obtain people mentally impaired, so we decided to simulate the impair-
ment by having both Hinder and Helper activated at the same time. This led us
to three different, new scenarios: AI deactivated, hinder activated, and hinder and
helper activated at the same time.

The experiment was within-subjects since all of the subjects tried all of the
three scenarios. To eliminate the systematic effects of behaviour, we decided to
randomize the order in which the three scenarios were tested, making sure to
have each combination at least three times. This prevented users from learning
how to be proficient with the controls during the simulation . Therefore, the six
combinations were:

• Normal - Hinder - Hinder + Helper

• Normal - Hinder + Helper - Hinder

• Hinder - Normal - Hinder + Helper

• Hinder - Hinder + Helper - Normal

• Hinder + Helper - Normal - Hinder

• Hinder + Helper - Hinder - Normal

33
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Hypothesis

There should be a difference in the time of completion of the task depending on
which one of the three scenarios we are on:

• H1: The hinder condition leads to a decrease in performance compared to
the "No AI" condition. Performance is measured in time of completion.

• H2a: The hinder + helper condition leads to an increase in performance com-
pared to the hinder condition.

• H2b: The hinder + helper condition leads to a decrease in performance com-
pared to the "No AI" condition.

Apart from this, it is expected that the users react somehow to the AI control.
The sudden moves of the robot in the simulation should be enough to communicate
that the AI is also controlling the direction.

5.2 Participants

The participants were 30 university students from Aalborg University, Denmark.
All of them were inhabitants of a university dorm.

The participants were equally distributed between females and males. All of
them were around 24 years old. They had different nationalities, with participants
from Denmark, Spain, Vietnam, China, Netherlands, Kenya, etc. The participants
were students of diverse programmes. All of them were computer literates, but
only a minority had experience playing computer games or controlling virtual
environments.

5.3 Aparatus

For the experiment a laptop running an online simulation in ROS Development
Studio was used. For measuring the time a digital stopwatch was used, and for
annotating the time and participants information an online spreadsheet was used.

5.4 Procedure

The test was carried out on an isolated room of a university dorm where only the
participant and a facilitator were present. Each user was given an explanation of
the control scheme at the beginning of the test and answered any questions about
the structure of the test or the control of the software. Their completion times were
measured by the temporizer and written down by the facilitator in the spreadsheet.
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The participants were asked to use only one finger to press the keys, in order
to create only one kind of input at a time, emulating the 8-way joystick that the
original RC car game had. The simulation consisted of controlling the robot via
keyboard controls and making it reach a pole (virtually represented by a cylinder).
The pole to reach was pole 1 (as described in the previous chapter, with coordinates
[3,3,0]), while the robot started at world origin coordinates, [0,0,0]. The time of
completion was registered for each one of the users, and the tasks were done in
three different ways:

• Normal controls: The robot with the normal controls active, ’i’ key for mov-
ing forward, ’k’ for stopping, ’m’ for moving backwards, ’j’ for rotating to the
left, ’l’ for rotating to the right, ’o’ for rotating to the right with forward mo-
tion at the same time, ’u’ for rotating left with forward motion, ’n’ to rotate
left with backward motion and ’,’ to rotate right with backward motion. This
controls are the ones given by the "teleop" ROS module for TurtleBot.

• Hinder: The normal controls, but with the hinder implemented.

• Hinder and helper: The version with the hinder and the helper activated.

After completing the full test the facilitator explained in detail what each one
of the AIs did.

5.5 Results

The average times of the users gave results different from the expected ones, as
seen in Figure 5.1. Despite the average time of completion with the Hinder being
higher than the time for completing the task in normal conditions, the time with
the Hinder and the Helper was by far worse than just with the Hinder alone.

It was observed during the testing that when both scripts were activated the
movement of the robot showed an aberrant behaviour, most likely because of hav-
ing two different angular velocities being applied to the cmd_vel topic at the same
time, one by the Hinder and one by the Helper. This caused the controls to be
unresponsive, which generated confusion in the participants because they thought
that the controls were defective, having a "driver out of the loop" kind of problem.

On a further analysis through linear regression R2 showed a value of 0.132,
thus showing that the variance generated by the different modes didn’t have a
significant influence on the general variance of the data (Figure 5.3. Further testing
would be needed to discern if the low value of R2 was due to a lack of significance
or a lack of data.

The P-value (0.02) was under 0.05 when running ANOVA, and the F value (3.9)
was bigger than our F critical (3), which allows to assume that the null hypothesis
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Figure 5.1: The results of the testing with the users. As described in this section, the hinder shows
a detriment in the performance of the participants, and the helper together with the hinder show an
even greater detriment (Due to the technical complications mentioned in the discussion).

could be rejected (Figure 5.4). Thus, the difference between cases was statistically
significant.

After running the ANOVA the data was processed with a Tukey post-hoc test
to find out where the difference between the three cases lied (Figure 5.5). As seen
in the figure, only the value comparing the Hinder + Helper condition with the
No AI condition was higher than the Tukey critical value. Therefore, it can be
confirmed that there is a statistically significant difference in the means of both
conditions between each other, but more data would be required to make the same
assumption about the other two combinations.

5.6 Discussion

More data would be needed to make assumptions about the relation between the
three conditions, but a statistically significant difference between them was de-
tected. The results were not overall positive toward the helper script, and its ef-
fectiveness was hard to test without the real users. That, added to the problems
that the hinder and the helper running at the same time generated, reduced the
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Figure 5.2: Comparison between the group means

testing success. The hinder, however, showed itself to be successful when making
it harder for the users to complete the task.

5.6.1 The ideal testing situation

One of the main problems encountered during the testing was the reaction between
the helper and hinder scripts. While one of the scripts was trying to help the
users face the pole, the other one was trying to make the robot rotate in a random
direction. Due to both scripts operating in the cmd_vel topic to do so, in the
moments when the robot was receiving input from both scripts at the same time
(receiving two angular speeds in opposite directions), its movement stopped. This,
added to some kind of interference with the movement of the robot when two keys
were pressed at the same time by the participants (which happened sometimes
even though the facilitator had told the participants to only use one at a time)
made the test conditions not ideal.

However, in the ideal testing situation (In which the members of Neurocenter
Østerskoven would be by the helper AI and their relatives would be stopped by the
hinder AI) both scripts would never coexist, therefore eliminating the problem of
the interference between both of them. On top of that, in an ideal testing situation
(once the code is implemented in the already existing physical system) the control
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Figure 5.3: The results of the linear regression ran over the data, being 1 the mode without AI, 2 the
mode with the Hinder, and 3 the mode with the Hinder+Helper combination.

of the TurtleBots would be done through 8-ways joysticks, whic, in contrast to the
keyboard, would prevent having two inputs at the same time.

5.6.2 Implementing a feedback system

One point that generated confusion during the testing was the lack of feedback
given by the robot towards the participants when the AI decided to implement
a rotation. This affected the performance during the Hinder + Helper scenario.
This scenario would not happen with the real users of the game, because of the
reasons explained in the previous section, but a physical feedback system could
be implemented to reduce confusion. An example of this would be a position
reflective control element aided by the AI (Figure 2.5).

This would require a new version of the Helper algorithm, that with a feed-
back system included would look similar to Figure 5.6. After every time the robot
calculates the rotation, a signal would be sent to the joystick that communicates
the robot’s intention to rotate to the user through its movement. If the users were
trying to rotate the robot in another direction, a stronger signal would be sent via
the joystick to express the AI intention, but the loop would go back to the initial
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Figure 5.4: The ANOVA results

Figure 5.5: The Tukey results

calculation. This would ensure that even with the help of the AI the user is free to
move the robot in another direction, allowing to keep the educational part of the
game.

This implementation would require the design of a new joystick that integrates
both the position reflective control element and the screen for the users.

5.6.3 Detecting the poles by their odometry

One of the clear milestones that should come in future development is the detection
of the other poles in the system by their odometry. In the current state of the project
the poles positions were hardcoded in the script, in other words, they were defined
at the beginning, thus not being real, physical positions.

A good first step would be to reach the ability to detect objects in the virtual
environment of ROSDS. If the transform of another object could be detected at the
beginning (an object existing when the simulation starts), the robot would be able
to detect at all points where that object was, just by filling the information about
the pole position with the information about that object position.

In a next iteration the robot should be able to detect the object by its position
in the map relative to the robot position. This would include the participation
of the ROS Navigation Stack, thus including mapping of the surroundings of the
robot (done by the laser of the robot, and by extra sensors if needed, like the camera
commented on the initial proposals) and understanding where the robot in relation
to this positions.

The final iteration would be telling the robot were the poles are by their odom-
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etry. Due to all the systems (poles, controllers and robots) being connected to the
same server the poles should have an odometry of some kind. If that was the case,
it should be fairly easy to fill the information of the pole position with the odome-
try information about those poles. This would require a full research in multi-robot
systems in ROS.

5.6.4 Data gathering with the users for creating a hinder

The hinder proved itself to work during the testing, but its functionality and the
degree of hindering it exerted over the controller was selected as a rule of thumb.
A proper way of creating a hinder would be to test with the members of Neurocen-
ter Østerskoven until obtaining a proper amount of data, then using that data as
a training set for a machine learning algorithm that controlled the robot, and then
activating spontaneously that algorithm when the relatives used the robot, mim-
icking the behaviour of the original users, hindering their use with more similar
conditions.

This project could be fairly complex, especially because of the amount of data
that would be needed. It would require intense sessions of game play and a proper
recording model to guarantee that the behaviour was properly registered and that
there was enough information in the data set to train the algorithm.
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Figure 5.6: Flowchart explaining the helper algorithm with a feedback system integrated





Chapter 6

Conclusions

Further development would be required to obtain a more communicative hybrid
control system, including different feedback systems that would have to be tested
to select the most efficient mean of communication for the final users. The current
solution should be tested on the members of Neurocenter Østerskoven to get a
better knowledge of the areas of improvement for the Helper algorithm. At the
same time, the data gathered during these testing sessions could be used to im-
prove the Hinder algorithm and knowing how it would replicate the handicap for
not-handicapped users. This project, despite not being a final solution, served to
set the foundations for future development of a solution, proving that there is an
influence of the AI on the driving of the game, and taking a first step towards
balancing the game at Neurocenter Østerskoven.
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Appendix A

Helper and Hinder code

The following pages contain the Hinder and Helper scripts.
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C:\Users\Villa\Downloads\hinder.py 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22

23

24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#!/usr/bin/env python

import random  # module for generating random numbers
import math
import rospy
import math  # importing the math module for calculating square roots
import pdb
# importing the module for knowing the odometry of the robot
from nav_msgs.msg import Odometry
from geometry_msgs.msg import Twist
from tf.transformations import euler_from_quaternion

speed = 0  # Declaration of the variable that will read the linear speed

def readOdometry(msg):
    global roll, pitch, yaw
    # declaring of the variables that will be override by the script to track 

the position of the robot
    x_robot = msg.pose.pose.position.x
    y_robot = msg.pose.pose.position.y
    z_robot = msg.pose.pose.position.z
    # Creating a list with the 4 values that compose the orientation quaternion 

of the position message
    orientation_list = [msg.pose.pose.orientation.x, 

msg.pose.pose.orientation.y,
                        msg.pose.pose.orientation.z, 

msg.pose.pose.orientation.w]
    # Assigning their values to roll, pitch and yaw variables through the 

euler_from_quaternion conversion
    (roll, pitch, yaw) = euler_from_quaternion(orientation_list)
    print yaw

def main(geometry_msgs):
    global speed
    speed = geometry_msgs.linear.x

rospy.init_node('hinder')

odom_sub = rospy.Subscriber('/odom', Odometry, readOdometry)
odom_sub = rospy.Subscriber('cmd_vel', Twist, main)
pub = rospy.Publisher('cmd_vel', Twist, queue_size=1)
r = rospy.Rate(5)
command = Twist()

while not rospy.is_shutdown():  # making a loop
    if speed != 0.0:
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45
46
47
48
49
50
51

        print('You Pressed A Key!')
        target_rad = yaw + random.uniform(-0.4,0.4)
        command.angular.z = target_rad
        pub.publish(command)
        print ("target={} current:{}", target_rad)
        r.sleep()
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1
2
3
4
5
6
7
8
9

10
11

12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#!/usr/bin/env python

# importing math package for square roots, sinus and other calculations.
import math
# importing the rospy module to initialize the node.
import rospy
# importing the module for knowing the odometry of the robot.
from nav_msgs.msg import Odometry
# importing the transform converter between eulers and quaternions
from tf.transformations import euler_from_quaternion, quaternion_from_euler
# Import Twist() function to make the robot rotate once obtained the proper 
angle.

from geometry_msgs.msg import Twist

# declaration of the hardcoded positions of both cones (z coordinate is not 
declared because of not being used by the script).

cone1_x = 3.0
cone1_y = 3.0
cone1_point = [cone1_x, cone1_y]
cone2_x = 3.0
cone2_y = -3.0
cone2_point = [cone2_x, cone2_y]
# threshold which points out the radius around the cones where the script 
starts having effect on the robot.

threshold = 3
# Initialization of the global variables
alpha = 0  # used in calculateAngle(...)
kp = 0.5  # variable to control rotation speed
yaw = 0  # Measuarement of the yaw component of the rotation of the robot
target_angle = 0  # Initialization of the target angle for the robot

def calculateAngle(robot_point, cone_point, pivot_point):
    global alpha
    CP = math.sqrt(abs((pivot_point[0]-cone_point[0]) **
                       2 - (pivot_point[1]-cone_point[1])**2))
    CR = math.sqrt(abs((robot_point[0]-cone_point[0]) **
                       2 - (robot_point[1]-cone_point[1])**2))
    if CR < 0.6:
        print "Target reached"
    if CP < CR:
        radAlpha = math.asin(CP/CR)
    else:
        radAlpha = math.asin(CR/CP)
    alpha = radAlpha * 180 / math.pi
    return alpha

def helper(msg):
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48
49

50
51
52

53
54

55

56

57

58
59
60
61

62
63

64
65

66
67
68
69

70
71
72
73
74

75
76
77
78
79
80
81
82

83

    global target_angle
    global yaw
    # declaring of the variables that will be override by the script to track 

the position of the robot
    x_robot = msg.pose.pose.position.x
    y_robot = msg.pose.pose.position.y
    # declaring of the Vector2 which stores the position of the robot as point 

on a 2D plane
    robot_point = [x_robot, y_robot]
    # Creating a list with the 4 values that compose the orientation quaternion

 of the position message
    orientation_list = [msg.pose.pose.orientation.x, 

msg.pose.pose.orientation.y,
                        msg.pose.pose.orientation.z, 

msg.pose.pose.orientation.w]
    # Assigning their values to roll, pitch and yaw variables through the 

euler_from_quaternion conversion
    (roll, pitch, yaw) = euler_from_quaternion(orientation_list)

    # Code for calculating which cone is the closest one
    if(math.sqrt((cone1_point[0]-robot_point[0])**2 + (cone1_point[1]-

robot_point[1])**2)) < threshold:
        pivot_point = [cone1_point[0], robot_point[1]]
        # Calculation of in which quadrant around the cone is the robot if the 

cone is cone number 1
        if x_robot > cone1_x and y_robot > cone1_y:
            # Definition of the line to cross diagonally through quadrant 

number 1
            alpha = calculateAngle(robot_point, cone1_point, pivot_point)
            target_angle = alpha - 180
        elif x_robot < cone1_x and y_robot > cone1_y:
            # Definition of the line to cross diagonally through quadrant 

number 2
            alpha = calculateAngle(robot_point, cone1_point, pivot_point)
            target_angle = -alpha

        elif x_robot < cone1_x and y_robot < cone1_y:
            # Definition of the line to cross diagonally through quadrant 

number 3
            alpha = calculateAngle(robot_point, cone1_point, pivot_point)
            target_angle = alpha

        elif x_robot > cone1_x and y_robot < cone1_y:
            alpha = calculateAngle(robot_point, cone1_point, pivot_point)
            target_angle = 180 - alpha

    elif(math.sqrt((cone2_point[0]-robot_point[0])**2 + (cone2_point[1]-
robot_point[1])**2)) < threshold:

            # Calculation of in which quadrant around the cone is the robot if 
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85
86
87
88
89

90
91
92
93

94
95
96
97

98
99

100
101
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103

104
105
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

the cone is cone number 2
        pivot_point = [cone2_point[0], robot_point[1]]
        if x_robot > cone2_x and y_robot > cone2_y:
            alpha = calculateAngle(robot_point, cone2_point, pivot_point)
            target_angle = alpha - 180
        elif x_robot < cone2_x and y_robot > cone2_y:
            # Definition of the line to cross diagonally through quadrant 

number 2
            alpha = calculateAngle(robot_point, cone2_point, pivot_point)
            target_angle = -alpha
        elif x_robot < cone2_x and y_robot < cone2_y:
            # Definition of the line to cross diagonally through quadrant 

number 3
            alpha = calculateAngle(robot_point, cone2_point, pivot_point)
            target_angle = alpha
        elif x_robot > cone2_x and y_robot < cone2_y:
            # Definition of the line to cross diagonally through quadrant 

number 4
            alpha = calculateAngle(robot_point, cone2_point, pivot_point)
            target_angle = 180 - alpha
    else:
        print ("No cone in range")

    
###############################################################################
##############

rospy.init_node('helper')

odom_sub = rospy.Subscriber('/odom', Odometry, helper)
pub = rospy.Publisher('cmd_vel', Twist, queue_size=1)
r = rospy.Rate(10)
command = Twist()

while not rospy.is_shutdown():
    target_rad = target_angle * math.pi/180
    #print command.angular.z
    command.angular.z = kp * (target_rad-yaw)
    pub.publish(command)
    #print ("target={} current:{}", target_angle, yaw)
    r.sleep()

'''
def testIntersection(pt1, pt2, ptA, ptB):
    """ prints out a test for checking by hand... """
    print "Line segment #1 runs from", pt1, "to", pt2
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    print "Line segment #2 runs from", ptA, "to", ptB

    result = intersectLines(pt1, pt2, ptA, ptB)
    print "    Intersection result =", result
    print

'''

'''

# Code for finding the intersection between two lines
def findslope(point1, point2):
    return (point2[1] - point1[1]) / (point2[0] - point1[0])

def calculateIntersection(point1, point2, pointA, pointB):
    # Calculating the slope of the line bebtween the robot and the pivot
    slope1 = findslope(point1, point2)
    # Calculating the slope of the line between the cone and the diagonal
    slope2 = findslope(pointA, pointB)
    x = (slope2 * pointA[0] - pointA[1] + point1[1] - slope1 * point1[0]
         ) / (slope2 - slope1)  # Calculating x of the intersection point
    y = point1[1] - slope1*point1[0] + slope1 * \
        x  # Calculating y of intersection point
    return [x, y]  # Returns the intersection point

'''

'''

def eulerToDegree(euler):
    return ((euler) / (2 * math.pi)) * 360

# Code for transforming the quaternion values of the orientation message from 
the /odom topic to euler angles

def get_rotation(msg):
    # Creating a list with the 4 values that compose the orientation quaternion

 of the position message
    global roll, pitch, yaw
    orientation_list = [msg.pose.pose.orientation.x, 

msg.pose.pose.orientation.y,
                        msg.pose.pose.orientation.z, 

msg.pose.pose.orientation.w]
    # Assigning their values to roll, pitch and yaw variables through the 

euler_from_quaternion conversion
    (roll, pitch, yaw) = euler_from_quaternion(orientation_list)
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    print yaw
    # Function made for getting to which quadrant the robot is looking to
    '''
'''
   if 0 > yaw and yaw >= -1.5:
      print ("The robot is looking to quadrant number 1")
   elif -1.5 > yaw and yaw >= -3.2:
      print ("The robot is looking to quadrant number 2")
   elif 1.5 < yaw and yaw <= 3.2:
      print ("The robot is looking to quadrant number 3")
   elif 0 < yaw and yaw <= 1.5:
      print ("The robot is looking to quadrant number 4")
      '''
'''

    # Conversion of the yaw to a rotation anglee in degrees
    rotation_angle = eulerToDegree(yaw)
    # Calculation of the y coordinate of the point for the line of the vector
    point_y = (((math.sin(180 - (math.radians(rotation_angle))*2))
                * (400 / math.radians(rotation_angle)))**2) / 800
    # Defining the points that we will use for creating a line in the 

orientation vector
    # Calculation of the x coordinate of the point for the line of the vector
    point_x = math.sqrt((((math.sin(180 - (math.radians(rotation_angle))*2))
                          * (400 / math.radians(rotation_angle)))**2) - 

(point_y) ** 2)
    # Defining the line with the point inside the orientation vector of the 

robot
    # orientation_line=LineString([(x_robot, y_robot), (point_x, point_y)])

# function called every frame that updates the values of the robot_point 
variables

def calculateRotation(robot_point, cone1_point, intersection_point):
    #wait = rospy.Rate(10)
    if cone == 1:
        PC = math.sqrt((intersection_point[0] - cone1_point[0])
                       ** 2 + (intersection_point[1] - cone1_point[1])**2)
        RC = math.sqrt((robot_point[0] - cone1_point[0])
                       ** 2 + (robot_point[1] - cone1_point[1])**2)
        PR = math.sqrt((intersection_point[0] - robot_point[0])
                       ** 2 + (intersection_point[1] - robot_point[1])**2)
        global target_angle
        target_angle = yaw + math.acos(
            (PR**2 + RC**2 - PC**2) / (2 * PR**2 * RC**2))
        # wait.sleep()
        #print target_angle / (math.pi/180)
    else:
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        PC = math.sqrt((intersection_point[0] - cone2_point[0])
                       ** 2 + (intersection_point[1] - cone2_point[1])**2)
        RC = math.sqrt((robot_point[0] - cone2_point[0])
                       ** 2 + (robot_point[1] - cone2_point[1])**2)
        PR = math.sqrt((intersection_point[0] - robot_point[0])
                       ** 2 + (intersection_point[1] - robot_point[1])**2)
        global target_angle
        target_angle = yaw + math.acos(
            (PR**2 + RC**2 - PC**2) / (2 * PR**2 * RC**2))
        # wait.sleep()
        #print target_angle / (math.pi/180)

'''
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