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1 Introduction

In recent decades, the European electricity market has become liberalised, transitioning from
an industry in which regulators fixed the price based on costs to a competitive market in which
prices are determined from supply and demand.

The supply curve can be considered as a step function, where each step corresponds to a
type of generation. These upwards jumps reflect the nature of the providers’ preferences: if
the spot market price is higher than the marginal costs of production, the provider turns their
generators on and produce as much as possible, and if the prices are lower than the costs, they
keep the generators off.1 At the same time, the demand for electricity is fairly inelastic. The
end consumer does in general not care about spot prices, as they will have price agreements
with their distributor, and the same is the case for most industrial consumers. This makes the
price very sensitive to the quantity produced by the generators with the lowest production
costs, since the price is set by the market to ensure enough production to match the demand.

Renewables such as solar and wind power generally are always running, and have very
small marginal costs, but the quantity fluctuates with the weather. In the other end of the
curve, fossil fuel based generators are associated with large costs, but their production quantity
is easily controlled. Therefore, when the renewables are not producing a lot, the power from
low-cost generator types are not enough to cover the consumption, so the price goes up to
meet the cost for more expensive types of production. When renewables produce a lot of
electricity, it suffices to run low-cost plants to meet demand, and the price will therefore be
lower.

A sketch of the situation is shown on Figure 1.1. Here, the supply curve is drawn for two
different scenarios: one in which the wind power production is low (with dashed lines) and
one in which it is high (the solid line). The arrows indicate the right shift of the supply curve,
when the size of the renewable production grows, which moves the intersection with the
demand curve down a step—from the high price level P1 to the lower P2.

The European Union is right now in the process of transforming its economy, aiming to
minimise its emission of greenhouse gases, and as the system transitions towards a low-carbon
economy, the role of renewable energy sources is increasing. The share of total energy used
comprised by electricity is also expected to grow, with e.g. the focus on switching to electricity
based transportation.

1This is of course a simplification of the real choices the providers face. Due to large costs associated with
turning on or ramping up production or physical limitations on uptime on certain types of generators, such
providers will have to take into account more factors than just the difference between spot and cost.
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CHAPTER 1. INTRODUCTION

€/MWh

MWh
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Nuclear
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Figure 1.1: Sketch of the supply and demand curves on the electricity market for a low wind
scenario (the dashed line) and a high wind scenario (the solid line). Renewables comprise
solar, wind, and hydro power; CHP (combined heat and power) are heat engines that generate
electricity and useful heat simultaneously; gas, coal, and oil represent combustion based turbines
based on the respective fuels.

As a larger and larger part of the available power production capacity is comprising variable
generators such as photovoltaic panels and wind turbines, the dependence between spot
prices and generation of renewable energy is also increasing, and agents trading on the market
are increasingly exposed to variations in the weather.

In this project, we seek to describe the relationship between a small subset of the energy
market variables—namely the day-ahead spot prices, the consumption of electricity (also
called load, and representing demand), the quantity of electricity produced with solar power
generators, and the quantity produced by wind turbines—for Germany, as it is a country for
which a sizeable part of its energy generation comes from renewables.

To this end, we employ the copula of [Sklar, 1959], who showed that any joint distribution
can be expressed in terms of its marginal distributions and a copula, effectively allowing us
to model marginal and joint behaviour separately. The copula is a flexible tool for modelling
multivariate distributions, and it has seen much use in financial mathematics in recent years.
We present the parts of copula theory necessary to prove the main theorem, and use it to
develop a model for the joint distribution of the four variables. We then use this model to
simulate payoff distributions for portfolios consisting of instruments with the four variables as
the underlying.
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CHAPTER 1. INTRODUCTION 1.1. THESIS STRUCTURE

1.1 Thesis Structure

The thesis is split into two parts, with the first part focusing on developing the theoretical
foundations and the second part focusing on applying the results to real data. The theoretical
part is further subdivided into two chapters:

• Chapter 2 starts from the basics of probability theory and introduces concepts and
results about copulas and their properties, building up to the statement and proof of
Sklar’s Theorem. Then, a handful of specific types of copulas and dependence measures,
which will be used in the second part, are given.

• Chapter 3 introduces the concept of vines, making use of the copulas defined in Chap-
ter 2, and describes how parameters of such constructions are estimated and how to
simulate realisations of the distributions they represent.

The second part takes the theoretical results and puts them to practical use through the joint
analysis of data from the German energy market. This analysis is described in three separate
chapters:

• Chapter 4 presents the data and goes into details about how it is preprocessed and
aggregated prior to modelling.

• Chapter 5 describes the modelling steps. First, the marginal models are described and
fitted to each variable separately, with considerations specific to the variable given along
the way. Then, the variables are tied together with a vine copula model, and the structure
and parameters are interpreted.

• Chapter 6 imagines a trading scenario in which the joint model could be useful, present-
ing a portfolio setup for which payoff distributions are simulated. Risks associated with
these distributions are assessed, and a portfolio with minimal risk is found.

Finally, the results and considerations are summarised in Chapter 7, where also some ideas for
further research that arose during the project are presented. An appendix with overview tables
for Chapter 5 is included in the backmatter, along with a list of references.
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Theoretical Foundation
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2 Copula Theory

The main object of interest in this project is the copula (pl. copulas or copulae), a multivariate
distribution function with uniform marginals. The name comes from the Latin for “link”, and
the reason for this name comes from an important result by [Sklar, 1959], who showed that
any multivariate distribution can be represented in terms of its marginals and a copula.

This result is known as Sklar’s Theorem, included in this project as Theorem 2.20, and in
this chapter, a selection of basic results and definitions needed to prove it are given. These
results are largely based on [Durante and Sempi, 2016], a textbook in copula theory that
collects results from various sources. Where not specified, the proofs given are adapted from
that book.

2.1 Notation

The following is a list of conventions and informal definitions that are used as a basis for other
results and definitions throughout the project.

• In addition to the usual, well-known sets of numbers,N= {
1,2, . . .

}
, Z= {

. . . ,−1,0,1, . . .
}

,
Z+ =N∪ {0}, R= (−∞,+∞)

, and R+ = [
0,+∞)

, we also make use of shorthand notation
for the unit interval, I := [

0,1
]
.

• Rd is the cartesian product of d ∈N copies of R,

Rd :=R×R×·· ·R︸ ︷︷ ︸
d times

, (2.1)

and similarly for other sets. A vector belonging to such a product is said to be d-
dimensional, and the scalar d will always be used to denote a general number of dimen-
sions.

• The vectors 0 and 1 are d-dimensional vectors of all zeros or ones, respectively. Note
that d is not specified in the notation for these, as it is usually clear enough from the
context in which they are used.

• Let x be some d-dimensional vector. For shorthand notation, we define x j (t ), where
j ∈ {

1, . . . ,d
}
, to be the vector obtained by swapping x j in xwith t ,

x j (t ) := (
x1, . . . , x j−1, t , x j+1, . . . , xd

)
. (2.2)

7



2.1. NOTATION CHAPTER 2. COPULA THEORY

• For two vectors x,y ∈Rd where x j ≤ y j for every j = 1, . . . ,d , then we write x≤y (and
similarly for x≥y, x>y, and x<y).

• If x,y ∈Rd and x≤y, then the (left-open) d-box
(
x,y

]
is defined by(

x,y
]

:= (
x1, y1

]× (
x2, y2

]×·· ·× (
xd , yd

]
, (2.3)

and similarly for closed, open, and right-open d-boxes.

• 1A(x) denotes the indicator function of a set A ⊆Rd ,

1A(x) =1(
x ∈ A

)
:=

1, if x ∈ A

0, otherwise
(2.4)

• The left and right limits of a univariate function φ :R→R at t are defined as

`−φ(t ) := lim
s↑t

φ(s) and `+φ(t ) := lim
s↓t

φ(s) , (2.5)

respectively, where such limits exist.

• When referring to the monotone properties of a univariate function, f , we use the
following terms to avoid any ambiguity:

– f is non-decreasing if ∀x, y ∈ dom f such that x ≤ y , one has f (x) ≤ f
(
y
)
.

– f is non-increasing if ∀x, y ∈ dom f such that x ≤ y , one has f (x) ≥ f
(
y
)
.

– f is strictly increasing if ∀x, y ∈ dom f such that x < y , one has f (x) < f
(
y
)
.

– f is strictly decreasing if ∀x, y ∈ dom f such that x < y , one has f (x) > f
(
y
)
.

• A probability space is a triple
(
Ω,F ,P

)
, where

– Ω is an arbitrary set of elements called outcomes.

– F is a σ-algebra over Ω, i.e. F ⊆ 2Ω such that Ω ∈ F , and F is closed under
complements and countable unions. Elements of F are referred to as events.

– P : F → I is a countably additive measure with P
(
Ω

) = 1 called the probability
measure, i.e. it assigns a non-negative probability to each event in F .

• When considering events on a probability space in the context of some random variable
X :Ω→R, we denote such a set as{

some condition about X
}

:= {
ω ∈Ω : some condition about X (ω)

}
.

In general, we omit ω everywhere, as it is never considered by itself, and we will use the
shorthand notation X ∈R to mean ran X ⊆R.

8



CHAPTER 2. COPULA THEORY 2.2. BASIC DEFINITIONS AND RESULTS

• When evaluating a multivariate function H of d arguments, this can be denoted as e.g.
H

(
x1, . . . , xd

)
or H(x), where x is a d-dimensional vector. In this project, we use both

forms — the former usually in low dimensions (e.g. d = 2), the latter usually for general
dimensions.

A mix of notation may also be used if the arguments logically belong in different groups,
e.g. H

(
y;θ

)
, where d arguments, y1, . . . , yd belong to some “data” domain, and k argu-

ments, θ1, . . . ,θk belong to some “parameter” domain.

• For a vector x ∈Rd , given a subset of indices J ⊆ {
1, . . . ,d

}
, we use the notation xJ for

the subvector
(
x j : j ∈J )

and x−J for
(
x j : j ∉J )

.

2.2 Basic Definitions and Results

We begin this section by recalling some fundamental definitions and results of probability
theory. Note that some of the proofs draws from the wider area of measure theory, which we
will not be covering in details here.

Definition 2.1. Let X be a random variable on the probability space
(
Ω,F ,P

)
. Then its

corresponding distribution function, F :R→ I is defined by

F (x) :=P(
X ≤ x

)
. (2.6)

A random variable is fully characterised by its distribution function, and we use the no-
tation X ∼ F to mean “X has the distribution function F ”. Such a function has the following
analytical properties:

Theorem 2.2. A function F : R→ I is a distribution function for a random variable X on a
probability space

(
Ω,F ,P

)
if and only if

(a) F is right-continuous on R.

(b) F is non-decreasing.

(c) F satisfies the limits
lim

x→−∞F (x) = 0, lim
x→+∞F (x) = 1. (2.7)

Proof. Theorem 2.2 is not proven in [Durante and Sempi, 2016], but it can proven by using
properties of measures. Let Ax = {

X ≤ x
}
, and note that F can equivalently be written as

F (x) =P(
X ≤ x

)=P(
Ax

)
. (2.8)

(a): A function F is right-continuous at x if `+F (x) = F (x). Let x ∈R and let
{

xn
}∞

n=1 be an
arbitrary, non-increasing sequence such that limn→∞ xn = x. Then, by definition, Ax ⊆ Axn for
all n ∈N, and

∞⋂
n=1

Axn = Ax , (2.9)

9



2.2. BASIC DEFINITIONS AND RESULTS CHAPTER 2. COPULA THEORY

and, since P is a measure, we have

`+F (x) = lim
n→∞F

(
xn

)= lim
n→∞P

(
Axn

)=P( ∞⋂
n=1

Axn

)
=P(

Ax
)= F (x) . (2.10)

(b): For any x, y ∈R such that x < y , we have that Ax ⊆ Ay , and therefore

P
(

Ax
)≤P(

Ay
) =⇒ F (x) ≤ F

(
y
)

. (2.11)

(c): Let
{

xn
}∞

n=1 be an arbitrary, non-increasing sequence such that limn→∞ xn = −∞.
Then, for every n ∈N, xn ≥ xn+1 and Axn ⊇ Axn+1 , and thus

∞⋂
n=1

Axn =;, (2.12)

which implies

lim
x→−∞F (x) = lim

n→∞F
(
xn

)= lim
n→∞P

(
Axn

)=P( ∞⋂
n=1

Axn

)
=P(;) = 0. (2.13)

A similar argument can be made for limx→+∞ F (x).
To show the converse assertion, we need to use F : R→ I with the above properties to

construct a probability space
(
Ω,F ,P

)
on which a mapping X :Ω→R is defined. In order to

do this, define the following events:

• Ax := {
X ≤ x

}
for all x ∈R

• Bx,y := Ax \ Ay for all x, y ∈R such that y < x

• Cx,y :=⋃
x∈x
y∈y Bx,y for all x,y ∈Rd such that y <x and Bx,y ∩Bx ′,y ′ =; for all x 6= x ′ and

y 6= y ′ for all d ∈N
Let F be set of all such Ax ,Bx,y , and Cx,y. Clearly, this set is a σ-algebra. Define P : F → I by
assigning to the events the following values:

P
(

Ax
)

:= F (x)

P
(
Bx,y

)
:= F (x)−F

(
y
)

P
(
Cx,y

)
:= ∑

x∈x
F (x)−

∑
y∈y

F
(
y
)

.

By construction, P this function satisfies the countable additivity property; i.e. for all countable

collections
{
En

}∞
n=1 of pairwise disjoint events in F , P

(⋃∞
n=1 En

)
=∑∞

n=1P
(
En

)
. Using property

(c) of F , we see that

1 = lim
x→+∞F (x) = lim

x→+∞P
(

Ax
)=P(

lim
x→+∞ Ax

)
=P(

Ω
)

0 = lim
x→−∞F (x) = lim

x→−∞P
(

Ax
)=P(

lim
x→−∞ Ax

)
=P(;) ,

10
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and using property (b) of F , it’s easy to see that P
(
E

)≥ 0 for all E ∈F . Finally, property (a) of F
implies that P is continuous under countable intersections, since for any non-increasing, real
sequence

{
xn

}∞
n=1 such that limn→∞ xn = x, we have

`+F (x) = lim
n→∞F

(
xn

)= lim
n→∞P

(
Axn

)
,

F (x) =P(
Ax

)=P( ∞⋂
n=1

Axn

)
,

and since F is right-continuous, `+F (x) = F (x), and thus
⋂∞

n=1 Axn = limn→∞P
(

Axn

)
. All this

together implies that P is a probability measure, and we have thus specified a probability
space on which X lives in terms of F . ■

The concept of a distribution function naturally extends to the d-dimensional case,

H(x) :=P(
X ≤x)

, (2.14)

where X is a random variable on
(
Ω,F ,P

)
, x ∈ Rd , and H : Rd → I. Likewise, Theorem 2.2

can be generalised to d dimensions, as shown in e.g. [Billingsley, 1995]. A d-dimensional
distribution function has the nice property that it’s variation is bounded by the variation of its
univariate margins, as stated in the below lemma:

Lemma 2.3. Let H :Rd → I be a d-dimensional distribution function with marginals F1, . . . ,Fd .
Then, for every pair of points v x,y ∈Rd ,∣∣∣H(x)−H

(
y

)∣∣∣≤ d∑
j=1

∣∣∣F j
(
x j

)−F j
(
y j

)∣∣∣ . (2.15)

Proof. Since H is a distribution function for some random variableX , we have that for every
j ∈ {

1, . . . ,d
}
, every t , t ′ ∈R such that t < t ′, and every x ∈Rd ,

H
(
x j

(
t ′

))−H
(
x j (t )

)=P(
X ≤x j

(
t ′

))−P(
X ≤x j (t )

)
=P(

X1 ≤ x1, . . . , t < X j ≤ t ′, . . . , Xd ≤ xd
)≤ F j

(
t ′

)−F j (t ) . ■
Another nice property of distribution functions is that under certain conditions, it is

possible to transform any random variable into one that’s uniform on I. This result is stated in
Theorem 2.6 below and requires the following definition:

Definition 2.4 (Quasi-inverse). Let F : R→ I be a distribution function. The quasi-inverse,
F (−1) : I→R, of F is defined as

F (−1)(t ) :=
inf

{
x ∈R : F (x) ≥ t

}
, t ∈ (

0,1
]

inf
{

x ∈R : F (x) > 0
}

, t = 0
(2.16)

The quasi-inverse of a distribution function, F , is also sometimes called a quantile or
percentile function, and it allows us to assign a meaningful notion of an “inverse” function
to a distribution function which is not bijective. Note that when F is continuous and strictly
increasing, F (−1) coincides with F−1, the standard inverse.

11



2.2. BASIC DEFINITIONS AND RESULTS CHAPTER 2. COPULA THEORY

Theorem 2.5. Let F :R→ I be a distribution function with quasi-inverse F (−1). Then

(a) F (−1) is non-decreasing, and if F is continuous on R, strictly increasing.

(b) F (−1) is left-continuous on I.

(c) If t ∈ ranF , then F
(
F (−1)(t )

)= t , and if F is continuous, then it holds for all t ∈ I.
(d) F (−1)

(
F (x)

)≤ x for all x ∈ R, with equality if F is strictly increasing.

(e) For every t ∈ I and x ∈R, F (x) ≥ t if and only if x ≥ F (−1)(t ).

Proof. (a): Let At =
{

x ∈R : F (x) ≥ t
}

and t1, t2 ∈ I such that t1 < t2. Then At2 ⊆ At1 , making
inf At1 ≤ inf At2 which by Definition 2.4 makes F (−1)

(
t1

)≤ F (−1)
(
t2

)
, i.e. non-decreasing. Now

assume furthermore that F is continuous in some x ∈ R and that F (−1)
(
t1

) = F (−1)
(
t2

) = x.
Then for every ε> 0, we have that

F (x −ε) < t1 < t2 ≤ F (x +ε), (2.17)

but since this means that `−F (x) < `+F (x), which is a contradiction due to the continuity of F ,
F (−1) must hence be strictly increasing.

(b): Let t0 ∈
(
0,1

]
and

(
tn

)
n∈N an arbitrary, monotonically increasing sequence with tn → t0

as n →∞. Let y0 = F (−1)
(
t0

)
and yn = F (−1)

(
tn

)
for all n ∈ N. We have from (a) that yn is a

non-decreasing sequence bounded above by y0. Suppose that its limit y = limn→∞ yn < y0.
Then, for every ε> 0, Definition 2.4 gives us that

F
(
yn −ε)< tn ≤ F

(
yn +ε) (2.18)

But if we choose ε< (
y0 − yn

)
/2, then yn +ε< y0 −ε, which implies that

t0 = lim
n→∞ tn ≤ lim

n→∞F
(
yn +ε)= F

(
y +ε)≤ F

(
y0 −ε

)< t0, (2.19)

which is a contradiction, and hence y = y0 and F (−1) is left-continuous.
(c): Since we have that t ∈ ranF , ∃y such that F

(
y
)= t . This y is not necessarily unique, so

let ỹ = inf
{

y ∈R : F
(
y
)= t

}
. From Theorem 2.2 we have that F is right-continuous, so F

(
ỹ
)= t ,

and we have
F

(
F (−1)(t )

)= F
(
inf

{
y ∈R : F

(
y
)≥ t

})= F
(
ỹ
)= t . (2.20)

(d): For every x ∈R,

F (−1)(F (x)
)= inf

{
y ∈R : F

(
y
)≥ F (x)

}≤ x, (2.21)

and if one further assumes that F is strictly increasing, then there is no x̃ < x such that
F (x̃) ≥ F (x), and thus F (−1)

(
F (x)

)= x.
(e): If F (x) ≥ t , then x ≥ F (−1)(t ) by Definition 2.4. Conversely, if x ≥ F (−1)(t ), then it follows

from the right-continuity of F that F
(
F (−1)(t )

)≥ t . ■
With those properties, the following important result can be shown:

12
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Theorem 2.6 (Probability integral transformation). Let X be a random variable on
(
Ω,F ,P

)
with the distribution function F . Then,

(a) If F is continuous, then F ◦X ∼ Unif
(
0,1

)
.

(b) If U ∼ Unif
(
0,1

)
then F (−1) ◦U ∼ F .

Proof. Theorem 2.6 is proven differently in [Durante and Sempi, 2016], but the continuity of F
allows a very simply proof of (a): by direct calculation, for all u ∈ ranF = I, we have

FF◦X (u) =P(
F ◦X ≤ u

)
=P

(
F

(
X

)≤ u
)

=P
(

X ≤ F (−1)(u)
)

,

due to F being non-decreasing and continuous, and

= F
(
F (−1)(u)

)
= u,

which exactly characterises a uniformly distributed variable on I.
(b): For every t ∈ I, part (e) of Theorem 2.2 gives us that

P
(
F (−1) ◦U ≤ t

)=P(
U ≤ F (t )

)= F (t ) . (2.22)
■

In other words, transforming a (continuous) random variable by its distribution function
will always result in a standard uniform variable. This theorem is an important result, not
just in the theory of copulas, which deals with modelling of uniform variables, but also in
simulation in general, as it describes a way to generate arbitrarily distributed variables, given
uniformly distributed ones, as long as the distribution function is known.

Definition 2.7 (H-volume). Let A be a d-box in Rd . For a function H : A →R, the H-volume,
VH , of the d-box

(
a,b

]⊆ A is defined by

VH

((
a,b

])
:= ∑

v∈ver(a,b]
sign(v) H(v) , (2.23)

where

sign(v) :=
1, if v j = a j for en even number of indices,

−1, otherwise,
(2.24)

and ver
((
a,b

])= {
a1,b1

}×{
a2,b2

}×·· ·×{
ad ,bd

}
is the set of vertices of

(
a,b

]
.

Another way to consider this quantity is (under certain circumstances, see the remark after
Lemma 2.9) as

VH
(

A
)= ∫

A
dH(v) , v ∈ A, (2.25)

13
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which is just simplified in Definition 2.7 due to A being specifically a d-box. In particular, if H
is the distribution function of a random vectorX , then VH

(
A

)=P(
X ∈ A

)
.

An example of this concept is shown for d = 2 on Figure 2.1, where the 2-box
(
a1,b1

]×(
a2,b2

]
is drawn with bold lines. Here, the H-volume of the box is calculated by adding the

values of H evaluated in the points marked with a + sign and subtract the values of H evaluated
in the points marked with a − sign. In other words,

VH

((
a,b

])= H
(
a1,b1

)−H
(
a1,b2

)−H
(
a2,b1

)+H
(
a2,b2

)
. (2.26)

0

1

1

b2

a2

b1a1

+

+ −

−

Figure 2.1: Visualisation of H-volume in two dimensions

Definition 2.8 (d-increasing). Let A be a d-box in Rd . A function H : A → R is said to be
d-increasing if

VH

((
a,b

])≥ 0, ∀(
a,b

]⊆ A. (2.27)

This property can be thought of as a generalisation of the non-decreasing property for
univariate functions to multivariate functions, and it is also sometimes known as the ∆-
monotone property when defined in terms of a finite difference operator (see e.g. [Durante
and Sempi, 2016, Remark 1.2.12]).

Later, we will need to show some properties involving H-volumes, where the lemma below
can be used to greatly simplify calculations:

Lemma 2.9. Let F,G : Id → I be two functions, and let A = (
a,b

]
be a d-box in Id . Then we have

(a) VF+G
(

A
)=VF

(
A

)+VG
(

A
)

(b) VαF
(

A
)=αVF

(
A

)
,∀α> 0

14
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(c) If A =⋃
j∈J A j , where J is a finite index set, and all A j are disjoint left-open d-boxes in

Id , then
VF

(
A

)= ∑
j∈J

VF

(
A j

)
. (2.28)

Proof. The proof for Lemma 2.9 is not given in [Durante and Sempi, 2016], but it is easy to see
that the first two statements (a) and (b) readily follow from Definition 2.7:

VF+G
(

A
)= ∑

v∈ver A
sign(v)

(
F (v)+G(v)

)= ∑
v∈ver A

sign(v)F (v)+
∑

v∈ver A
sign(v)G(v)

=VF
(

A
)+VG

(
A

)
(2.29)

VαF
(

A
)= ∑

v∈ver A
sign(v)

(
αF (v)

)=α ∑
v∈ver A

sign(v)F (v) =αVF
(

A
)

(2.30)

For statement (c), with inspiration from [Billingsley, 1995], suppose that each side
(
ai ,bi

]
of

A is partitioned into ni subintervals Ii , j =
(
ti , j−1, ti , j

]
, j = 1, . . . ,ni such that ai = ti ,0 < ti ,1 <

·· · < ti ,ni = bi . Then, A is partitioned by the n1n2 · · ·nd d-boxes

B j1,..., jd = I1, j1 ×·· ·× Id , jd , 1 ≤ j1 ≤ n1, . . . ,1 ≤ jk ≤ nk . (2.31)

Let P be the set of these d-boxes and let V be the set of all points v that is a vertex of one or
more of the boxes in P . Consider the sum of their F -volumes:∑

B∈P

∑
v∈verB

signB (v)F (v) =
∑
v∈V

F (v)
∑

B∈P :
v∈verB

signB (v) , (2.32)

where signB denotes the sign function in the context of the d-box B . Suppose that v is a vertex
of one or more B ∈ P , but is not a vertex of A itself. Then there must be an index i ∈ {

1, · · · ,d
}

such that vi is neither ai nor bi . Without loss of generality, assume that i = 1. Then v1 = t1, j

with 0 < j < n1. The boxes of which v is a vertex come in pairs B ′,B ′′, such that B ′ = B j , j2,..., jd

and B ′′ = B j+1, j2,..., jd and signB ′(v) = −signB ′′(v), and therefore, the inner sum in (2.32) is 0
whenever v ∉ ver A.

Suppose now that v ∈ ver A and v ∈ verB for at least one B ∈ P . Then for each index
i ∈ {

1, . . . ,d
}
, either vi = ai or vi = bi , and v is a vertex of only the B ∈ P for which ji = 1 or

ji = ni , accordingly. Then we have that signB (v) = signA(v), and we can conclude∑
B∈P

∑
v∈verB

signB (v)F (v) =
∑

v∈ver A
signA(v)F (v) =VF

(
A

)
. (2.33)

Note that this only shows that (c) holds for a so-called regular (i.e. grid-like) partition, but it is
easy to see that it also holds for an irregular partition, as each B in such a partition can itself
be partitioned into a set of d-boxes B̃ such that the set of all B̃ ’s is a regular partition of A. ■

It turns out that if F is d-increasing and continuous, then VF corresponds to a unique
measure [Billingsley, 1995, Theorem 12.5], which for distribution functions is the probability
measure, as noted underneath (2.25).
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2.3 The Copula

We now arrive at the definition of a copula, the main object of interest in this project. In the
literature, there are several different definitions of it, but here we follow [Sklar, 1996] and define
it in terms of a related concept:

Definition 2.10 (Subcopula). Let A1, . . . , Ad be subsets of I containing both 0 and 1. Then a
d-dimensional subcopula (or simply d-subcopula) is a function C ′ : A1 ×·· ·× Ad → I such that

(a) C ′(u) =C ′(u1, . . . ,ud
)= 0 if u j = 0 for at least one j ∈ {

1, . . . ,d
}

(b) C ′(1 j
(
u j

))=C ′(1, . . . ,1,u j ,1, . . . ,1
)= u j for all j ∈ {

1, . . . ,d
}

(c) VC ′
((
a,b

])≥ 0 for every d-box
(
a,b

]⊆ A1 ×·· ·× Ad

Definition 2.11 (Copula). A copula, C , is a subcopula whose domain is the entire unit d-box,
Id . The space of d-copulas is denoted Cd .

By this definition, a d-copula is a d-dimensional distribution function on Id with uniform
marginals on I; for a copula, C , property (a) and (b) of Definition 2.10 are called the boundary
conditions, where by (a) it is said to be grounded and by (b) the functions C j : I→ I, obtained
by setting all arguments except for the j ’th to 1, correspond to distribution functions for
onedimensional, uniform variables. Property (c) corresponds to a copula being d-increasing,
and if the function c(u) = ∂dC (u)/

(
∂u1 . . .∂ud

)
exists, then

C (u) =
∫

[0,u]
c(t)dt, (2.34)

and property (c) is equivalent to ∫
(a,b]

c(u)du≥ 0. (2.35)

The function c is called the copula density.
Some fundamental examples of copulas are given below.

Example 2.12 (The comonotonicity copula). Let U ∼ Unif
(
0,1

)
and consider the random

vector consisting of d copies of U ,

U :=
(
U , . . . ,U︸ ︷︷ ︸

d times

)
. (2.36)

Then, for every u ∈ Id ,

P
(
U ≤u)=P(

U ≤ min
{
u1, . . . ,ud

})= min
{
u1, . . . ,ud

}
, (2.37)

and the distribution function Md : Id → I defined by

Md := min
{
u1, . . . ,ud

}
, (2.38)

is a copula in Cd called the comonotonicity copula.
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Example 2.13 (The independence copula). Let U1, . . . ,Ud be i.i.d Unif
(
0,1

)
and consider the

random vectorU = (
U1, . . . ,Ud

)
. Then, for every u ∈ Id ,

P
(
U ≤u)=P(

U1 ≤ u1
) · · ·P(

Ud ≤ ud
)= d∏

j=1
u j , (2.39)

and the distribution functionΠd : Id → I defined by

Πd (u) :=
d∏

j=1
u j (2.40)

is a copula in Cd called the independence copula.

Example 2.14 (The countermonotonicity copula). Let U ∼ Unif
(
0,1

)
and consider the random

vectorU = (
U ,1−U

)
. Then for every u ∈ I× I,

P
(
U ≤u)=P(

U1 ≤ u1,1−U1 ≤ u2
)= max

{
0,u1 +u2 −1

}
, (2.41)

and the distribution function W2 : I× I→ I defined by

W2(u) := max
{
0,u1 +u2 −1

}
(2.42)

is a copula in C2 called the countermonotonicity copula.

Notice that W2 is explicitly only defined as a 2-copula, not a d-copula. There is an analogu-
ous function, Wd : Id → I defined by

Wd (u) := max

{
0,

d∑
j=1

u j − (d −1)

}
, (2.43)

but it is not generally a copula for d > 2, as it is not necessarily d-increasing.
Examples for the above copulas in d = 2 are visualised as 3D plots on Figure 2.2 and as

contour plots on Figure 2.3.

x

y

z

(a) M2

x

y

z

(b)Π2

x

y

z

(c) W2

Figure 2.2: 3D plots of the 2-copulas M2,Π2, and W2
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Figure 2.3: Contour plots of the 2-copulas M2,Π2, and W2

2.3.1 Properties of Copulas

Here follows some properties of copulas that either we need in order to prove the main result
in the next section, or that are interesting in and of themselves.

Theorem 2.15 (Fréchet-Hoeffding bounds). Let Wd and Md be defined as in (2.43) and (2.38),
respectively. For every d-copula C and every point u ∈ Id ,

Wd (u) ≤C (u) ≤ Md (u) . (2.44)

Proof. Since C is a distribution function with univariate margins on I, we have for every u ∈ Id
that

d⋂
k=1

{
Uk ≤ uk

}⊆ {
U j ≤ u j

}
, j = 1, . . . ,d , (2.45)

implying that

C (u) =P
(

d⋂
k=1

{
Uk ≤ uk

})≤ min
j∈{1,...,d}

P
(
U j ≤ u j

)
= Md (u) , (2.46)

and conversely, we have

C (u) =P
(

d⋂
j=1

{
U j ≤ u j

})
= 1−P

(
d⋃

j=1

{
U j > u j

})

≥ 1−
d∑

j=1
P
(
U j > u j

)
= 1−

d∑
j=1

(
1−u j

)
=

d∑
j=1

u j − (d −1). ■

The functions Wd and Md are referred to as the lower and upper Fréchet-Hoeffding bound,
respectively. Visually, one can think of Theorem 2.15 as stating that the surface of any copula
lies between those shown (in 2 dimensions) on Figure 2.2c and Figure 2.2a.

Theorem 2.16. The set of copulas, Cd is a convex set, i.e. ∀α ∈ I and C0,C1 ∈Cd ,

C =αC0 + (1−α)C1 ∈Cd (2.47)
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Proof. This proof is largely skipped in [Durante and Sempi, 2016], but it follows by direct
application of Lemma 2.9. Since C0,C1 ∈Cd , their domain (and therefore C ’s domain) is Id , so
to prove that C is a d-copula, we show that it satisfies each condition of Definition 2.10:

(a): Let u ∈ Id have u j = 0 for at least one index j ∈ {
1, . . . ,d

}
. Then we have

C (u) =αC0(u)+ (1−α)C1(u)

=α ·0+ (1−α) ·0 = 0,

since C0,C1 ∈Cd and thus satisfy the condition themselves.
(b): Let 1 j be a vector of ones, except with u j in j ’th entry. Then we have

C
(
1 j

(
u j

))=αC0
(
1 j

(
u j

))+ (1−α)C1
(
1 j

(
u j

))
and since C0,C1 ∈Cd , they have uniform marginals, and thus

=αu j + (1−α)u j

= u j .

(c): By Lemma 2.9, we have for every d-box A = (
a,b

]⊆ Id that

VC
(

A
)=VαC0+(1−α)C1

(
A

)
,

then property (a) and (b) of the lemma gives us that

=αVC0

(
A

)+ (1−α)VC1

(
A

)
,

and since C0,C1 ∈Cd and are thus d-increasing, we have

≥ 0,

which makes C d-increasing as well, and thus a copula. ■

Theorem 2.16 ensures convex combinations of existing copulas also are copulas, which
may be useful for constructing new forms of copulas. An example of such copulas are Fréchet
copulas, defined for d = 2 as

C Fre
α,β

(
u1,u2

)
:=αM2

(
u1,u2

)+ (1−α−β)Π2
(
u1,u2

)+βW2
(
u1,u2

)
. (2.48)

Theorem 2.17. Let C be a d-copula. Then for all u,v ∈ Id the following inequality holds:

∣∣C (u)−C (v)
∣∣≤ d∑

j=1

∣∣u j − v j
∣∣ . (2.49)

Proof. The proof follows from Lemma 2.3 since C is a distribution function and its marginals
are univariate on I. ■
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The inequality (2.49) is equivalent with saying that C is Lipschitz continuous with constant
1, since it can be written as ∣∣C (u)−C (v)

∣∣≤∥∥u−v∥∥
1 , (2.50)

where‖·‖1 is the `1-norm on Rd .
We will also need certain metric properties of copulas for the proof in section 2.4. For

this, let
(
C

(
Id

)
,δ∞

)
be the space of continuous, real-valued functions on Id with the distance

measure δ∞ : C
(
Id

)×C
(
Id

)→R defined by

δ∞
(

f1, f2
)=∥∥ f1 − f2

∥∥∞ = sup
u∈Id

∣∣ f1(u)− f2(u)
∣∣= max

u∈Id
∣∣ f1(u)− f2(u)

∣∣ . (2.51)

Theorem 2.18. If a sequence
{
Cn

}∞
n=1 ⊆ Cd converges pointwise to C , i.e. limn→∞Cn(u) =

C (u) ,∀u ∈ Id , then C is a copula.

Proof. It’s easy to see that C has uniform marginals on I. To see that it is also d-increasing,

note that for all d-boxes A ⊆ Id , VC
(

A
)

can be expressed as the pointwise limit of
{

VCn

(
A

)}∞
n=1

,

and hence
VC

(
A

)= lim
n→∞VCn

(
A

)≥ 0, (2.52)

which makes C a copula. ■

Theorem 2.19. The space of d-copulas, Cd , is a compact subspace in

(
C

(
Id

)
,d∞

)
.

Proof. Because
(
C

(
Id

)
,δ∞

)
is complete and, by Theorem 2.18, Cd is closed in C

(
Id

)
, Cd is also

complete. Since
sup
u∈Id ,
C∈Cd

|C (u)| ≤ 1, (2.53)

Cd is uniformly bounded, and since every copula is 1-Lipschitz by Theorem 2.17, it is equi-
continuous. As a result of this, the Arzelà-Ascoli Theorem [Arzelà, 1895] makes Cd totally
bounded w.r.t δ∞, which together with its completeness makes it compact. ■

We now have all the definitions and properties we need in order to state and prove the
main result, which is done in detail in the following section.

2.4 Sklar’s Theorem

The main result of copula theory is Sklar’s Theorem from [Sklar, 1959], which states that
any multivariate distribution function can be represented as a composition of its univariate
margins and a copula. This fact makes copulas a very flexible tool for statistical analysis, as one
need not specify a complete joint model for all variables at once, but rather, one can model
each (univariate) variable individually and then model their dependence with a copula after
the fact, which we will make heavy use of in the applied part of this project.

The contents of the theorem is given in the following.
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Theorem 2.20 (Sklar’s Theorem). LetX ∈Rd be a d-dimensional random vector on the proba-
bility space

(
Ω,F ,P

)
with the joint distribution function H(x) =P(

X1 ≤ x1, . . . , Xd ≤ xd
)
, and

let F j

(
x j

)
=P

(
X j ≤ x j

)
for j = 1, . . . ,d be its marginals. Then there exists a d-copula C such that

∀x= (
x1, . . . , xd

) ∈Rd ,

H(x) =C
(
F1

(
x1

)
, . . . ,Fd

(
xd

))
. (2.54)

Furthermore, if the marginals F1, . . . ,Fd are continuous, the copula C is uniquely defined.

Corollary 2.21. Under the same assumptions as in Theorem 2.20, assume furthermore that the
joint distribution ofX has the density function h and the marginal distribution of X j has the
density f j for j = 1, . . . ,d. Then the full joint density h can be expressed as

h(x) = ∂d H(x)

∂x1 . . .∂xd
= ∂dC

(
F1

(
x1

)
, . . . ,Fd

(
xd

))
∂x1 . . .∂xd

= c
(
F1

(
x1

)
, . . . ,Fd

(
xd

))
f1

(
x1

) · · · fd
(
xd

)
, (2.55)

and the conditional density hJ |−J of
(
x j : j ∈J )

conditioned on
(
xk : k ∉J )

as

hJ |−J
(
xJ |x−J

)= c
(
F1

(
x1

)
, . . . ,Fd

(
xd

)) ∏
j∈J

f j
(
x j

)
, (2.56)

where c is the copula density, J ⊆ {
1, . . . ,d

}
is a subset of indices.

In the above corollary, (2.55) follows from the chain rule of probability, and (2.56) follows
from (2.55) by simply dividing by the densities of the marginals conditioned on.

In the case of continuous margins, the proof of Theorem 2.20 follows directly from The-
orem 2.6, and since this result has practically useful consequences, it is stated as a lemma
below.

Lemma 2.22 (Sklar’s Theorem for continuous margins). Under the same assumptions as in
Theorem 2.20, assume furthermore that the margins F1, . . . ,Fd are continuous. Then, there exists
a unique copula C associated withX that is the distribution function of the random vector(
F1 ◦X1, . . . ,Fd ◦Xd

)
, and for every u ∈ Id it is specified by

C (u) = H
(
F (−1)

1

(
u1

)
, . . . ,F (−1)

d

(
u1

))
. (2.57)

Proof. By Theorem 2.6, since F j is continuous, then F j ◦ X j ∼ Unif
(
0,1

)
, j = 1, . . . ,d . Hence,

the random vector
(
F1 ◦X1, . . . ,Fd ◦Xd

)
has uniform univariate margins and its distribution

function is thus a copula, and for every x ∈Rd , we have

H(x) =P(
X1 ≤ x1, . . . , Xd ≤ xd

)
=P

(
F1

(
X1

)≤ F1
(
x1

)
, . . . ,Fd

(
Xd

)≤ Fd
(
xd

))
=C

(
F1

(
x1

)
, . . . ,Fd

(
xd

))
. ■
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Lemma 2.22 provides a method for constructing a copula, when you know the joint distri-
bution. This method of constructing copulas is called the inversion method, and it will be used
later in section 2.6 to define certain types of copulas.

When one or more margins are not continuous, the copula is not uniquely defined on all
of Id and one needs a suitable constraint for referring to a single copula as “the” copula ofX .
In the following section, a proof of Theorem 2.20 that allows for margins with discontinuities
is presented.

2.4.1 Proof of Sklar’s Theorem

Because of both its simplicity and its relevance in the field of statistical analysis, Theorem 2.20
has been rediscovered in the literature by many different authors, and as such, several proofs
exist that base their argument in different properties of copulas.

The theorem was first stated without proof in [Sklar, 1959] and later proved in detail for
d = 2 in [Schweizer and Sklar, 1974] and for the general case in [Sklar, 1996]. Both proofs
involves an extension argument, in which one shows that a similar result holds for a subcopula
and that such a subcopula can be extended to a copula. This strategy was also used in [Carley
and Taylor, 2003], who showed that the extension amounts to a multiliniar interpolation of the
subcopula.

A proof based on probabilistic arguments was given in [Moore and Spruill, 1975], who used
a generalised version of the probability integral transform to extend the result to margins with
possible discontinuities in their distribution functions.

[Durante et al., 2012] gave a proof showing the existence of a copula, but not its form, in
which the authors approximated a distribution function H by a sequence of such functions,{

Hn
}∞

n=1 and used it to construct a copula associated with H via a sequence of copulas
{
Cn

}∞
n=1,

each associated with Hn .
In this project, we follow the method of [Sklar, 1996] and present a proof by extension,

divided into the following lemmas:

Lemma 2.23. For every d-dimensional distribution function H with marginals F1, . . . ,Fd there
exists a unique subcopula, C ′ : ranF1 ×·· ·× ranFd → I, such that for all x ∈Rd ,

H(x) =C ′
(
F1

(
x1

)
, . . . ,Fd

(
xd

))
, (2.58)

and it is given by

C ′(u) = H
(
F (−1)

1

(
u1

)
, . . . ,F (−1)

d

(
ud

))
, (2.59)

for all u ∈ ranF1 ×·· ·×Fd .

Proof. For all x,y ∈ Rd , Lemma 2.3 implies that of F j
(
x j

) = F j
(
y j

)
for all j = 1, . . . ,d , then

H(x) = H
(
y

)
. This means that for all x ∈Rd , the value of H(x) only depends on the numbers

F j
(
x j

)
, j = 1, . . . ,d , which implies that there exists a unique function C ′ : ranF1×·· ·×ranFd → I

that satisfies (2.54). The properties of H directly imply that C ′ is a subcopula; (a) and (b) of
Definition 2.10 follow by direct calculation, and (c) follows from the fact that H is d-increasing.
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Next, for every u j ∈ ranF j , j = 1, . . . ,d , we have from Theorem 2.5 that F j ◦F (−1)
j

(
u j

)= u j , so
that

H
(
F (−1)

1

(
u1

)
, . . . ,F (−1)

d

(
ud

))=C ′
(
F1 ◦F (−1)

1

(
u1

)
, . . . ,Fd ◦F (−1)

d

(
ud

))=C ′(u) , (2.60)

for all u ∈ ranF1 ×·· ·× ranFd . ■
Lemma 2.24. For every supcopula, C ′ : A1 ×·· · Ad → I, where A j ⊆ I for j = 1, . . . ,d, there exists
a copula, C , that extends it, i.e. for all u ∈ A1 ×·· ·× Ad ,

C (u) =C ′(u) . (2.61)

Proof. Since every subcopula is uniformly continuous on its domain by Lemma 2.3, it is
possible to extend C ′ to a function C ′′ : A1 ×·· ·× Ad → I, where A j denotes the closure of A j .
For each of these A j , one can find a sequence of finite sets,

{
A j ,n

}
n∈N, such that A j ,1 ⊆ A j ,2 ⊆

·· · ⊆ A j , with 0,1 ∈ A j ,n for all n ∈N and ⋃
n∈N

A j ,n = A j . (2.62)

Define Sn : A1,n ×·· ·×Ad ,n → I by Sn(u) :=C ′′(u). For all n ∈N, Sn is a subcopula, since it is the
restriction of a subcopula, and has 0 and 1 in its domain, and thus we now have a sequence{
Sn

}
n∈N such that for all n ∈N,

• domSn is finite,

• Sn is a restriction of C ′′,

• domSn ⊆ domSk+1,

• the countable union of domSn ,n ∈N is a countable, dense subset of domC ′′.

For all n ∈ N, construct a copula Cn by extending the domain of each Sn to Id ; in [Durante
and Sempi, 2016], this extension is only demonstrated for d = 2, but [Sklar, 1996] showed
how it can be done in general dimensions as follows: If a point x ∉ domC ′′, then x lies in a
unique d-box B such that verB ⊆ domC ′′, and it contains no smaller such d-box. Then x can
be uniquely represented as

x= ∑
v∈verB

β(v)v, (2.63)

where β(v) is a non-negative number such that
∑

v∈verB β(v) = 1. Now, define each Cn(x) by

Cn(x) =
∑

v∈verB
β(v)Sn(v) , (2.64)

and set Cn(x) = Sn(x) for all x ∈ domSn .
Since Cd is compact by Theorem 2.19, there exists a subsequence

{
Cn(k)

}
k∈N of

{
Cn

}
n∈N

that converges to a copula C cf. Theorem 2.18. It follows that C (x) =C ′′(x) at every point of⋃
n∈N

domSn ⊆ ⋃
n∈N

domSn = domC ′′, (2.65)

which concludes the proof. ■
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Given Lemma 2.23 and 2.24, Theorem 2.20 can then be proved as follows:

Proof of Sklar’s Theorem. Let H :Rd → I be an arbitrary d-dimensional distribution function.
By Lemma 2.23, there exists a unique subcopula C ′ such that for every x ∈Rd ,

H(x) =C ′
(
F1

(
x1

)
, . . . ,Fd

(
xd

))
, (2.66)

and by Lemma 2.24, this subcopula can be extended to a copula C . For every x ∈Rd , F j
(
x j

) ∈
ranF j , and therefore, (2.54) holds. ■

2.5 Measures of Association

When selecting copulas for modelling real data, where in general, the true copula is seldom
known, we of couse wish to select one that closely captures the joint behaviour of the data.
In this section, we introduce some measures of association, which can be used to describe
aspects of such behaviour, and which differ from copula to copula.

Definition 2.25 (Pearson’s correlation coefficient). For two random variables X ,Y ∈Rwhose
second moments exist, Pearson’s correlation coefficient (named after Karl Pearson) is defined
as

r
(
X ,Y

)
:= cov

(
X ,Y

)
σXσY

=
E
((

X −E(X
))(

Y −E(Y
)))

√
E
(
X 2

)−E(X
)2

√
E
(
Y 2

)−E(Y
)2

, (2.67)

where E is the expectation operator, cov
(
X ,Y

)
denotes the covariance of X and Y , and σX and

σY are the standard deviations of X and Y , respectively.

For a sample, x,y ∈Rn , the coefficient can be calculated as

r̂
(
x,y

)= ∑n
j=1

(
x j − x̄

)(
y j − ȳ

)
√∑n

j=1

(
x j − x̄

)2
√∑n

j=1

(
y j − ȳ

)2
, (2.68)

where x̄ = 1
n

∑n
j=1 x j is the sample mean, and likewise for ȳ .

Pearson’s correlation coefficient is also commonly known as linear correlation, as it is
invariant under linear transformations of the variables, but not in general under strictly
increasing transformations. While this measure is commonly in e.g. linear normal models, it’s
not commonly used in copula modelling due to this missing property. The below two other
measures are used instead.

Definition 2.26 (Spearman’s rank correlation coefficient). For two random variables X ,Y ∈R
whose copula is given by C , Spearman’s rank correlation coefficient (or Spearman’s rho, named
after Charles Spearman) is defined as

ρ
(
X ,Y

)
:= 12

∫
I2

C
(
u, v

)
du dv −3 (2.69)
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This quantity is related (2.67), since because E
(
FX ◦X

)= E(FY ◦Y
)= 1

2 (where FX and FY

are the distribution functions for X and Y , respectively), and var
(
FX ◦X

)= var
(
FY ◦Y

)= 1
12 by

the uniformity of FX ◦X and FY ◦Y , one can write

ρ
(
X ,Y

)= cov
(
FX ◦X ,FY ◦Y

)√
var

(
FX ◦X

)
var

(
FY ◦Y

) = r
(
FX ◦X ,FY ◦Y

)
. (2.70)

For a sample, x,y ∈Rn , the coefficient ρ̂
(
x,y

)
is the Pearson correlation of the rank scores

of x and y. The rank score of a set of observations, rg(x), is an assignment of the numbers 1
through n to the observations, such that rg(x)i > rg(x) j if xi > x j , and thus

ρ̂
(
x,y

)= r̂
(
rg(x) , rg(y)

)
. (2.71)

Definition 2.27 (Kendall’s tau). For two random variables X ,Y ∈Rwhose copula is given by
C , Kendall’s tau (named after Maurice G. Kendall) is defined as

τ
(
X ,Y

)
:= 4

∫
I2

C
(
u, v

)
dC

(
u, v

)−1. (2.72)

The above expression is the value of the difference in probability between concordance
and discordance, and can be written as

ρ
(
X ,Y

)=P((
X1 −X2

)(
Y1 −Y2

)> 0︸ ︷︷ ︸
concordance

)−P((
X1 −X2

)(
Y1 −Y2

)< 0︸ ︷︷ ︸
discordance

)
, (2.73)

where
(
X1,Y1

)
and

(
X2,Y2

)
are two independent pairs drawn from the joint distribution of X

and Y . In other words, the pairs are said to be concordant if the sort order of X and Y agree.
For a sample, x,y ∈Rd , this coefficient can be calculated by simply counting the number

of concordant and discordant pairs, i.e.

τ̂
(
x,y

)= #
(
concordant pairs

)−#
(
discordant pairs

)(n
2

) , (2.74)

where

#
(
concordant pairs

)= n∑
j=2

j∑
i=1

(
1
(
xi > x j

)
1
(
yi > y j

)+1(
xi < x j

)
1
(
yi < y j

))
(2.75)

#
(
discordant pairs

)= n∑
j=2

j∑
i=1

(
1
(
xi > x j

)
1
(
yi < y j

)+1(
xi < x j

)
1
(
yi > y j

))
(2.76)

Due to these definitions, Spearman’s rho and Kendall’s tau are both called rank correlation
measures, and in contrast to linear correlation, these measures are invariant under strictly
increasing transformations. They are both fully specified by the copula C of X and Y , if it is
known, and as such will often be denoted as ρ

(
C

)
and τ

(
C

)
.
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Definition 2.28 (Tail dependence coefficients). Let X ,Y ∈R be random variables with distri-
bution functions FX and FY , respectively. The upper tail dependence coefficient λU of X and Y
is defined by

λU
(
X ,Y

)
:= lim

t↑1
P
(
Y > F (−1)

Y (t ) |X > F (−1)
X (t )

)
, (2.77)

and the lower tail dependence coefficient λL of X and Y is defined by

λL
(
X ,Y

)
:= lim

t↓0
P
(
Y ≤ F (−1)

Y (t ) |X ≤ F (−1)
X (t )

)
, (2.78)

when those limits exist.

The tail dependence coefficient measures the degree of dependence in the tails, e.g. how
likely it is for extreme events to occur together. These quantities can also be expressed in terms
of a copula: let C be the copula of X and Y ; then

λU
(
X ,Y

)= lim
t↑1

1−2t +C
(
t , t

)
1− t

, and λL
(
X ,Y

)= lim
t↓0

C
(
t , t

)
t

. (2.79)

Copulas for which either λU or λL is nonzero are said to be tail dependent.

2.6 Families of Copulas

Theorem 2.20 gives us the ability to separate the analysis of marginals from the analysis of
dependence, but if the joint distribution is unknown—which it generally is—one will need to
choose an appropriate copula in some way when doing emperical work.

When considering a family of copulas, we are dealing with functions that, given some
parameters, are copulas, and the functional form is different for each valid set of parameters.
Formally put, we define a family of copulas as follows:

Definition 2.29. LetΘ be some set. A mapping θ ∈Θ 7→Cθ ∈Cd is called a family of copulas.

A family of copulas is, in other words, some subset
{
Cθ

}
θ∈Θ ⊆ Cd that’s indexed by a

suitable setΘ, which is often referred to as the parameter space. In some cases, we will further
group families of copulas together into classes of copula families, which are similarly defined.
Some properties that make a family of copulas appealing from a practical viewpoint are as
follows:

• Identifiability: A family of copulas
{
Cθ

}
θ∈Θ is said to be identifiable if a copula in it

cannot be parameterised in two different ways, i.e. if θ 7→Cθ is injective.

• Interpretability: Members of a family of copulas may have natural, probabilistic inter-
pretations, which can suggest what kind of situations they are appropriate for.

• Flexibility: Another desirable property is that a family of copula covers the space between
the Fréchet-Hoeffding bounds, and even includes the bounds (possibly as limiting cases).
A family of copulas that includes bothΠd , Wd , and Md is said to be comprehensive.
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• Ease of use: Much desirable is that members of a family of copulas can be expressed on
closed form, or at least are analytically tractable.

Many parametric families of copulas have been proposed in the literature, each of which
imposes a different dependence structure on the data. Below, the ones we will be using in the
application are specified.

2.6.1 Elliptical Copulas

A random vectorX ∈Rd is said to have an elliptical distribution, if it can be represented as an
affine transformation of a random vectorZ ∈Rd with a spherical distribution. Such a vector
is said to have a d-dimensional spherical distribution, if its characteristic function is on the
form

ψZ(t) =φ(
t>t

)
, (2.80)

where φ is some scalar function. This is often denoted asZ ∼Sd
(
φ

)
. Given such aZ,X can

be written as

X =µ+AZ, (2.81)

where µ ∈ Rd ,A ∈ Rd×k with Σ :=AA> ∈ Rd×d and rankΣ= k ≤ d . If Σ is nonsingular, then
the density ofX has the form

f (x) =|Σ|1/2φ
((
x−µ)>

Σ−1 (
x−µ))

, (2.82)

for all x ∈Rd .

Definition 2.30. An elliptical copula is any copula C that can be obtained from an elliptical
distribution with the inversion method of Lemma 2.22.

The most used variants of such families of copulas are given below.

Example 2.31 (Gaussian copula). A Gaussian copula is the elliptical d-copula C Ga
R of a random

vectorX ∼ Nd
(
0,R

)
, i.e. for u ∈ Id ,

C Ga
R (u) =ΦR

(
Φ−1(u1

)
, . . . ,Φ−1(ud

))
, (2.83)

where Φ−1 is the inverse distribution function for a standard normal variable, R ∈ Rd×d is a
correlation matrix, andΦR is the distribution function of a d-dimensional normal distribution
with zero mean and coveriance matrix equal to R.

When R = Id this becomes the independence copulaΠd . In the bivariate case, the correla-
tion matrix R reduces to a single number ρ ∈ (−1,1

)
and the copula has the form

C Ga
ρ

(
u, v

)= ∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

(
2π

√
1−ρ2

)−1

exp

(
− s2 −2ρst + t 2

2
(
1−ρ2

) )
dt ds, (2.84)
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(a) 3D plot of the copula density
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(b) Contour plot of the joint distribution with
standard normal margins

Figure 2.4: Example of a Gaussian copula in two dimensions with ρ = 1
2

and its association measures are given by

ρ
(
C Ga
ρ

)
= 6

π
arcsin

ρ

2
(2.85)

τ
(
C Ga
ρ

)
= 2

π
arcsinρ (2.86)

λU

(
C Ga
ρ

)
=λL

(
C Ga
ρ

)
= 0. (2.87)

An example of a Gaussian copula is plotted on Figure 2.4.

Example 2.32 (Student’s t-copula). A Student’s t-copula (or simply t-copula) is the elliptical
d-copula C t

R,ν of a random vectorX ∼ td
(
ν,0,R

)
, i.e. for all u ∈ Id ,

C t
R,ν(u) = tR,ν

(
t−1
ν

(
u1

)
, . . . , t−1

ν

(
ud

))
, (2.88)

where tR,ν is the distribution function of a d-dimensional t-distributed variable with ν degrees
of freedom and the correlation matrix R, and tν is the distribution function for a univariate
standard t-distribution with ν degrees of freedom.

The t-copula has the Gaussian copula as a limiting case for ν→∞. The rank correlation
measures of C t

ρ,ν do not depend on the degrees of freedom ν, and they are identical to those of
the Gaussian copula. Its tail dependence coefficients are identical due to the radial symmetry
of the copula, and they are given by

λU

(
C t
ρ,ν

)
=λL

(
C t
ρ,ν

)
= 2tν+1

−√
(ν+1)(1−ρ)

1+ρ

 . (2.89)

An example of a bivariate Student’s t-copula is plotted on Figure 2.5.

28



CHAPTER 2. COPULA THEORY 2.6. FAMILIES OF COPULAS

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0

1

2

3

4

5

6

u1

u2

(a) 3D plot of the copula density
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Figure 2.5: Example of a t-copula in two dimensions with ρ = 1
2 and ν= 3

2.6.2 Archimedian Copulas

The Archimedian class of copulas comprises families that are parameterised via a univariate
generator function of the following type:

Definition 2.33. A function φ :R+ → I is called an additive generator, if

(a) it is continuous,

(b) it is non-increasing,

(c) φ(0) = 1 and limt→∞φ(t ) = 0

(d) it is strictly decreasing on
[
0, t0

]
, where t0 := inf

{
t > 0 :φ(t ) = 0

}
,

and its pseudo-inverse is defined by

φ(−1)(t ) :=
φ−1(t ) , t ∈ (

0,1
]

t0, t = 0.
(2.90)

Using any such function, one can construct a copula belonging to the class of Archimedian
copulas, defined below.

Definition 2.34. A d-copula C is said to be Archimedian if ∃φ :R+ → I such that ∀u ∈ Id ,

C (u) =φ
(
φ(−1)(u1

)+·· ·+φ(−1)(ud
))

. (2.91)
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Example 2.35 (Clayton copulas). The Clayton family of d-copulas are parameterised by α≥
−1/(d −1),α 6= 0 and have the form

C Clay
α (u) = max


 d∑

j=1
u−α

i − (d −1)

−1/α

,0

 , (2.92)

and its generator is given by

φα(t ) =
(
max

{
1+αt ,0

})−1/α
. (2.93)

The Kendall’s tau of this copula in its bivariate form is given by

τ
(
C Clay
α

)
= α

α+2
, (2.94)

and its tail dependence measures are

λL

(
C Clay
α

)
=

2−1/α, α> 0,

0, α ∈ [−1,0
]

,
λU

(
C Clay
α

)
= 0, (2.95)

meaning that Clayton copulas only capture lower tail dependence. Spearman’s rho is not
given for this family, since in contrast to the simple form of the Kendall’s tau, however, the
association between the copula parameter and the Spearman’s rho is very complicated. The
limiting case α→ 0 is the independence copula Πd . An example of a Clayon copula is plotted
on Figure 2.6.
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Figure 2.6: Example of a Clayton copula in two dimensions with α= 3
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Example 2.36 (Gumbel copulas). The Gumbel family of copulas are parameterised by α≥ 1
and have the functional form

C Gum
α (u) = exp

−
 d∑

j=1

(
− logu j

)α1/α
 , (2.96)

and its generator function is given by

φα(t ) = exp
(
−t 1/α

)
. (2.97)

The bivariate Gumbel family of copulas has the Kendall’s tau

τ
(
C Gum
α

)
= 1−α−1, (2.98)

but its Spearman’s rho does not have a closed form. Its tail dependence measures are given by

λL

(
C Gum
α

)
= 0, λU

(
C Gum
α

)
= 2−21/α, (2.99)

meaning that Gumbel copulas exhibits upper tail dependence, but no lower tail dependence.
When α= 1, the copula reduces to the independence copulaΠd , and in the limiting case for
α→∞, one obtains the comonotonicity copula Md . An example of a bivariate Gumbel copula
is plotted on Figure 2.7.
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(a) 3D plot of the copula density
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Figure 2.7: Example of a Gumbel copula in two dimensions with α= 3
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Example 2.37 (Frank copulas). The Frank family of d-copulas is parameterised by α> 0 and
has the functional form

C Frank
α (u) =− 1

α
log

1+
∏d

j=1

(
e−αu j −1

)
(e−α−1)d−1

 , (2.100)

and its generator is given by

φα(t ) = 1

α
log

(
1− (

1−e−α
)

e−t
)

. (2.101)

Like the elliptical copulas, Frank copulas are radially symmetric, and it has no tail depen-

dence, i.e. λL

(
C Frank
α

)
=λU

(
C Frank
α

)
= 0. In contrast to the Clayton and Gumbel copulas, the

Spearman’s rho of Frank copulas does have a closed form,

ρ
(
C Frank
α

)
= 1− 12

α

(
D1(α)−D2(α)

)
, (2.102)

where Dn is the Debye function defined by

Dn(x) := n

xn

∫ x

0

t n

e t −1
dt , (2.103)

for any n ∈Z. Likewise, the Kendall’s tau is given by

τ
(
C Frank
α

)
= 1− 4

α

(
1−D1(α)

)
. (2.104)

An example of a bivariate Frank copula is plotted on Figure 2.8.
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Figure 2.8: Example of a Frank copula in two dimensions with α= 5
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2.6.3 Rotations of Copulas

The archimedian families of copulas described above all have positive dependence, i.e. de-
pendence structures with positive correlation measures, but we would like to have variants
of them with negative dependence. The following result from [Durante and Sempi, 2016] is
helpful in that regard:

Definition 2.38. A symmetry of Id is a bijection ξ : Id → Id on the form ξ
(
u1, . . . ,ud

)= (
v1, . . . , vd

)
,

where for each j = 1, . . . ,d and each permutation
(
k1, . . . ,kd

)
of

(
1, . . . ,d

)
, either

v j = uk j or v j = 1−uk j . (2.105)

Theorem 2.39. LetU be a d-dimensional random vector whose distribution function is given
by a copula C ∈Cd . Let ξ be a symmetry in Id and consider the random vector V = ξ◦U . Then
the distribution function Cξ of V is a copula.

In other words, one can consider symmetric transformations of marginals, and the result-
ing joint distribution will still be a copula. As it turns out, one can express such a copula in
terms of the original copula. For simplicity in notation, and because we later only use bivariate
copulas, we present the rotations of copulas in two dimensions:

Definition 2.40. Rotated copulas Let C ∈C2 be a 2-dimensional copula. Then the 90, 180, and
270 degree rotations of C are given as, respectively,

C 90(u1,u2
)= u2 −C

(
1−u1,u2

)
(2.106)

C 180(u1,u2
)= u1 +u2 −1+C

(
1−u1,1−u2

)
(2.107)

C 270(u1,u2
)= u1 −C

(
u1,1−u2

)
. (2.108)

An example is shown on Figure 2.9.
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Figure 2.9: Sketch of contours of rotations of a Clayon copula with α= 3
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3 Vines

Bivariate copulas (i.e. 2-copulas) have been studied extensively in the literature, whereas their
multivariate versions have seen more limited treatment, due to analytical and computational
complexity. As a result, a construction called a vine copula, a graphical model which use
2-copulas as building blocks for multivariate ones, was introduced.

Vines were first introduced by [Joe, 1994], in which the author sought to extend bivariate
copula families to higher dimensions, and to do this, he introduced what would later be
called the D-vine. The term vine, however, was coined by [Bedford and Cooke, 2002], who
were motivated by uncertainty analysis of risk models and who introduced a more systematic
decomposition. Vines of Gaussian pair copulas were analysed in [Kurowicka and Cooke, 2006],
and maximum likelihood estimation for non-Gaussian vines was first studied in [Aas et al.,
2009]. To formally define vine copulas, we need some basic definitions from graph theory:

Definition 3.1 (Graph). A graph is an ordered triple G = (V ,E ,λ) where

(a) V is a non-empty set of arbitrary elements called nodes

(b) E is a set of arbitrary elements called edges

(c) λ : E → {
{u, v} : (u, v) ∈V ×V , x 6= y

}
is an injective label function that associates each

edge in E with a pair of nodes

For a graph G = (
V ,E ,λ

)
, a node v ∈V and an edge e ∈ E are said to be incident if v ∈λ(e),

and two nodes u, v ∈V are said to be neighbours if there is an e ∈ E such that λ(e) = {
u, v

}
. A

node is said to have degree k if it is incident with k edges. If all distinct pairs of nodes in a
graph are connected by a unique edge, the graph is said to be complete.

Definition 3.2 (Path). Let G = (V ,E ,λ) be a graph and u0, . . . ,un ∈ V be nodes in G . A path
from u0 to un of length n ∈N in G is an ordered sequence of edges

(
e j

)n
j=1 such that λ

(
e j

)=
{u j−1,u j } for j = 1, . . . ,n.

Definition 3.3 (Tree). A tree is a graph T = (V ,E ,λ) such that for any two nodes u, v ∈ V , a
path of distinct edges from u to v exists and is uniquely determined.

The vine can now be defined.

Definition 3.4 (Regular vine). A sequence of m trees, V = (
T j

)m
j=1, is called a d-dimensional

vine if
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(a) For the first tree T1 =
(
V1,E1,λ1

)
,
∣∣V1

∣∣= d

(b) For j = 2, . . . ,m, the tree T j =
(
V j ,E j ,λ j

)
has nodes V j ⊆V1 ∪E1,∪·· ·∪E j−1

A vine V is furthermore called a regular vine (R-vine for short) on n elements if

(c) m = d

(d) For j = 2, . . . ,d , V j = E j−1 with
∣∣V j

∣∣= d − ( j −1)

(e) For j = 2, . . . ,d −1, if u j , v j ∈ V j are two nodes connected by an edge, i.e. ∃e ∈ E j such
that λ j (e) = {

u j , v j
}
, then

∣∣λ j+1
(
u j

)∩λ j+1
(
v j

)∣∣= 1

In other words, an R-vine on n elements is a sequence of trees nested in such a way that
the edges in one tree becomes the nodes of the next. Condition (e) is commonly referred to
as the proximity condition, and it ensures that two nodes in a tree only share an edge, if the
corresponding edges in the previous tree are incident with a common node.

Below are given definitions for some sets needed to characterise R-vines and to express

the main result about vine copulas. In all three of them, let V = (
T j

)d
j=1 be a d-dimensional

R-vine, i.e. T j =
(
V j ,E j ,λ j

)
is a tree for j = 1, . . . ,d .

Definition 3.5. The complete union of an edge e j ∈ E j , j = 1, . . . ,d , is the set

Ue j
:=

{
v ∈V1 : ∃ek ∈ Ek ,k = 1, . . . , j −1 : v ∈λ1

(
e1

)
,e1 ∈λ2

(
e2

)
, . . . ,e j−1 ∈λ j

(
e j

)}
. (3.1)

Definition 3.6. For an edge e j ∈ E j , j = 1, . . . ,d , with λ j
(
e j

) = {
u, v

}
, where u, v ∈ V j , the

conditioning set of e j is De j
:=Uu ∩Uv .

Definition 3.7. For an edge e j as in Definition 3.6, the conditioned sets of e j are

Ce j ,u :=Uu \ De j (3.2)

Ce j ,v :=Uv \ De j (3.3)

Ce j
:=Uu ⊕Uv , (3.4)

where ⊕ denotes the symmetric difference, i.e. A⊕B = (
A \ B

)∪ (
B \ A

)
.

These sets contain the information necessary to fully identify an R-vine. When drawing
R-vines, it is convenient to label the nodes and edges by their respective conditioned and
conditioning sets. For the purpose of brevity, we will shorten the notation by identifying
the members of these sets simply by their indicies, so that, for example, a conditioning set
comprising two nodes v j , vk ∈V1 is denoted as

{
j ,k

}
. In this labelling scheme, an edge e j ∈ E j

is labelled as “Ce j |De j ”. An example of an R-vine with such a labelling scheme is shown on
Figure 3.1.

We can now define the vine copula as an R-vine in which the elements of the first tree
correspond to the d marginal distributions of the variables examined. To construct such a
d-dimensional vine copula, one needs to first specify d −1 unconditional 2-copulas between
variables, indexed by the variables they link, and then recursively specify conditional 2-copulas
between variables obtained by transforming variables from the previous tree.
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(T1)

(T2)

(T3)

(T4)
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5
1,2

2,3

2,4 4,5

1,2

2,3

2,4

4,51,4|2 3,4|2

2,5|4

1,4|2 3,4|2 2,5|4
1,3|2,4 3,5|2,4

1,3|2,4 3,5|2,4
1,5|2,3,4

Figure 3.1: Example of a 5-dimensional R-vine, with node and edge labels given by the indices
in their respective conditioned and conditioning sets
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Definition 3.8. An R-vine copula specification is a triple
(
F ,V ,B

)
, where F = (

F1, . . . ,Fd
)

is a

vector of distribution functions, V = ((
V j ,E j ,λ j

))d
j=1 is a d-dimensional R-vine, and B is a set

of pair-copulas Be , that is B = {
Be ∈C2 : e ∈ E j , j = 1, . . . ,d −1

}
.

With this definition, a joint distribution H :Rd → I of a random vectorX is said to realise
an R-vine copula specification if for each e ∈ E j , j = 1, . . . ,d −1 with λ j (e) = {

u, v
}
, Be is the

2-copula of XCe,u |XDe and XCe,v |XDe , and such a distribution is called an R-vine distribution.
The density of such a distribution was shown to be a product of unconditional and conditional
2-copula densities in [Bedford and Cooke, 2002], and this result is repeated below.

Theorem 3.9. Let
(
F ,V ,B

)
be a d-dimensional R-vine specification, with F = (

F1, . . . ,Fd
)
,

V = ((
V j ,E j ,λ j

))d
j=1, and let cCe,u ,Ce,v |De be the copula density for the 2-copula Be , e ∈ E j with

λ j (e) = {
u, v

}
, j = 1, . . . ,d −1. Then there exists a unique, d-dimensional distribution H that

realises this R-vine copula specification with the density

f1,...,d (x) =
d∏

k=1
fk

(
xk

)d−1∏
j=1

∏
e∈E j

cCe,u ,Ce,v |De

(
FCe,u |De

(
xCe,u |xDe

)
,FCe,v |De

(
xCe,v |xDe

))
, (3.5)

where f j denotes the density of F j for j = 1, . . . ,d, and FCe,u |De is the conditional distribution of
XCe,u |XDe .

We skip the formal proof for Theorem 3.9 here (see [Bedford and Cooke, 2002]) and instead
provide an intuitive demonstration of such an R-vine copula construction. LetX = (

X1, . . . , Xd
)

be a random vector on the probability space
(
Ω,F ,P

)
with the joint density function f :Rd →R.

As is well known from probability theory, the law of total probability lets one factorise the
density into a product of conditional densities,

f1,...,d (x) = fd |d−1,...,1
(
xd |xd−1, . . . , x1

)
fd−1|d−2,...,1

(
xd−1|xd−2, . . . , x1

) · · · f2|1
(
x2|x1

)
f1

(
x1

)
,

(3.6)
where f j denotes the marginal density for X j , j = 1, . . . ,d , and f j |J denotes the conditional
density for X j |XJ . Notice that this factorisation is not unique, but is just given as a special
case here for illustrative purposes. By Corollary 2.21, the joint density of the subvector

(
X1, X2

)
can be expressed of a 2-copula density,

f1,2
(
x1, x2

)= c1,2

(
F1

(
x1

)
,F2

(
x2

))
f1

(
x1

)
f2

(
x2

)
, (3.7)

where F1 and F2 are the marginal distribution functions for X1 and X2, respectively, and thus,
the conditional density can be written as

f2|1
(
x2|x1

)= c1,2

(
F1

(
x1

)
,F2

(
x2

))
f2

(
x2

)
. (3.8)

Likewise, the conditional density f3|1,2 of the random variable X3|X2, X1 can be expressed as
e.g.

f3|1,2
(
x3|x1, x2

)= c1,3|2
(
F1|2

(
x1|x2

)
,F3|2

(
x3|x2

))
f3|2

(
x3|x2

)
, (3.9)
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where F1|2 and F3|2 are the conditional distribution functions of X1|X2 and X3|X2, respectively.
One can then further write conditional densities appearing as factoris in one expression in
terms of pair copulas, until all that is left are marginal densities and pair copulas. This is best
illustrated through a low-dimensional example:

Example 3.10. Let d = 4. The density f1,2,3,4 ofX = (
X1, . . . , X4

)
can be decomposed as

f1,2,3,4(x) = f4|1,2,3
(
x4|x1, x2, x3

)
f3|1,2

(
x3|x1, x2

)
f2|1

(
x2|x1

)
f1

(
x1

)
, (3.10)

where the resulting conditional densities appearing as factors (underlined) can in turn be
expressed using copulas;

f2|1
(
x2|x1

)= c1,2

(
F1

(
x1

)
,F2

(
x2

))
f2

(
x2

)
(3.11)

f3|1,2
(
x3|x1, x2

)= c1,3|2
(
F1|2

(
x1|x2

)
,F3|2

(
x3|x2

))
f3|2

(
x3|x2

)
(3.12)

f4|1,2,3
(
x4|x1, x2, x3

)= c1,4|2,3

(
F1|2,3

(
x1|x2, x3

)
,F4|2,3

(
x4|x2, x3

))
f4|2,3

(
x4|x2, x3

)
, (3.13)

and in turn, the conditional densities appearing in those expressions can further be rewritten;

f3|2
(
x3|x2

)= c2,3
(
F1

(
x2

)
,F3

(
x3

))
f3

(
x3

)
(3.14)

f4|2,3
(
x4|x2, x3

)= c2,4|3
(
F2|3

(
x2|x3

)
,F4|3

(
x4|x3

))
f4|3

(
x4|x3

)
, (3.15)

and finally, the conditional density appearing here can be rewritten;

f4|3
(
x4|x3

)= c3,4

(
F3

(
x3

)
,F4

(
x4

))
f4

(
x4

)
. (3.16)

Now, collecting similar terms, one sees

f1,2,3,4(x) = f1
(
x1

)
f2

(
x2

)
f3

(
x3

)
f4

(
x3

)
× c1,2

(
F1

(
x1

)
,F2

(
x2

))
c2,3

(
F1

(
x2

)
,F3

(
x3

))
c3,4

(
F3

(
x3

)
,F4

(
x4

))
× c1,3|2

(
F1|2

(
x1|x2

)
,F3|2

(
x3|x2

))
c2,4|3

(
F2|3

(
x2|x3

)
,F4|3

(
x4|x3

))
× c1,4|2,3

(
F1|2,3

(
x1|x2, x3

)
,F4|2,3

(
x4|x2, x3

))
, (3.17)

which is exactly the form of the density specified in Theorem 3.9, and on Figure 3.2 the
structure is shown (with labels slightly extented to make clear which nodes correspond to
marginal densities and which correspond to copulas).

There are two special cases of R-vines that are commonly used: C-vines and D-vines. A
C-vine (short for canonical vine) is regular vine in which a single node is selected as the root
node in each tree, and all pair-copulas in the given tree have that node as an edge, resulting
in a star-shaped structures. A D-vine (short for drawable vine) is a regular vine in which one
chooses a specific order of the variables, leading to a path structure in the trees. For example,
the vine on Figure 3.2 is a D-vine, and we will see examples of C-vines arising in the applied
part of this project.
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(T1)

(T2)

(T3)

(T4)

f1 f2 f3 f4

c1,2 c2,3 c3,4

c1,3|2 c2,4|3

c1,4|2,3

Figure 3.2: Visualisation of an R-vine distribution on four variables with marginal densities
f j , j = 1, . . . ,4. Here, an edge going from another edge to a node in the next tree just represents
that such nodes are treated as edges in the previous tree.

3.1 Estimation

The process of fitting an R-vine distribution to a real data set can be split into three separate
parts:

(a) Selection of the R-vine structure

(b) Choice of 2-copulas for each edge in this R-vine

(c) Estimation of the parameter(s) of each of these 2-copulas

Unsurprisingly, when moving from single copulas to vine copulas, the process becomes much
more complex. The number of possible structures for a d-dimensional vines grows very rapidly
in d , with this number being given by

∏d
j=1 i i−2 [Morales-Nápoles et al., 2010], so doing steps

(b) and (c) for all such structures quickly become an infeasible endeavour. In light of this, it’s
also infeasible to choose bivariate copula families by visual interpretation of plots of the data,
as such heuristic analyses would have to be made for every pair of every possible R-vine.

If at first, we assume that the R-vine structure and copula families are known beforehand,
then the parameters can be estimated using maximum likelihood estimation, if we can evaluate
the density of the R-vine distribution. A method for this was developed by [Dißmann et al.,
2013], in which an array representation of the R-vine is used to encode information about the
conditioned and conditioning sets. This method also makes use of Corollary 2.21, which was
used in the context of vines by [Joe, 1996], stating that for a vine copula

(
F ,V ,B

)
, e ∈ E j with

λ j (e) = {
u, v

}
, λ j−1(u) = {

u1,u2
}
, and λ j−1(v) = {

v1, v2
}
,

FCe,u |De

(
xCe,u |xDe

)= ∂CCu |Du

(
FCu,u1 |Du

(
xCu,u1

|xDu

)
,FCu,u2 |Du

(
xCu,u2

|xDu

))
∂FCu,u2 |Du

(
xCu,u2

|xDu

)
=: h

(
FCu,u1 |Du

(
xCu,u1

|xDu

)
,FCu,u2 |Du

(
xCu,u2

|xDu

))
, (3.18)
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and similarly for FCe,v |De . In other words, the conditional distributions can be obtained recur-
sively using copulas, and in the literature, this function is called the h-function, for notation
purposes.

3.1.1 Sequential Estimation

A method more typical in the literature, however, is taking advantage of the ordered tree
structure of the R-vine in so-called sequential estimation, which in short goes as follows

(1) Estimate parameter(s) for each 2-copula in E1

(2) Compute the transformed variables for V2 using h-functions

(3) Repeat the steps for j = 2, . . . ,d −1, using the transformed variables to estimate copula
parameters

Since this method only involves maximum likelihood estimation for 2-copulas, it’s rather fast,
and in terms of computing strategies, step (1) can be done in parallel. The estimated parame-
ters can then be used as starting values for the full joint maximum likelihood estimation.

Unless one has expert knowledge about how the vine should be structured beforehand,
however, we need some method to automatically select the “best” structure, in some sense
of the word. One such method was proposed by [Dißmann et al., 2013], in which empirical
Kendall’s taus are calculated and used for edge weights in a complete graph of the variables,
which is then pruned using a maximum spanning tree algorithm. This method is described in
Algorithm 3.1.

Algorithm 3.1 Algorithm for selecting an R-vine structure

1: procedure RVINECOPSELECT(xn,1, . . . , xn,d for n = 1, . . . , N ) . N realisations of a
d-dimensional random vector with marginals F1, . . . ,Fd

2: τ̂ j ,k ← τ̂
(
x j ,xk

)
for all possible pairs

{
j ,k

}
,1 ≤ j < k ≤ d

3: Select T1 =
(
V1,E1,λ1

)
to be the tree such that

T1 = arg max
T1

∑
e∈E1

λ1(e)=
{
x j ,xk

}
∣∣τ̂ j ,k

∣∣

4: For each edge e with λ1(e) = {
x j ,xk

}
, select a 2-copula and estimate the parameter(s)

5: x j |k ← F̂ j |k
(
xn, j |xn,k

)
and xk| j ← F̂k| j

(
xn,k |xn, j

)
for n = 1, . . . , N using the fitted copula

6: for j = 2, . . . ,d −1 do
7: τ̂ j ,k|D ← τ̂

(
x j |D ,xk|D

)
for all conditional variable pairs

{
j ,k|D}

such that all edges
fulfil the proximity condition

8: For each edge e with λ j (e) = {
x j |D ,xk|D

}
, select and estimate a conditional 2-copula

9: x j |k,D ← F̂ j |k,D
(
xn, j |xn,k ,xn,D

)
and xk| j ,D ← F̂k| j ,D

(
xn,k |xn, j ,xn,D

)
using the fitted

copula
return R-vine copula specifiction,

(
F ,V ,B

)
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Note that this method still requires one to choose the copula families used for each edge.
A commonly used method is to have a set of candidate families and choose between them for
each edge using a selection criterion. The Akaike’s Information Criterion [Akaike, 1973] (AIC)
is commonly used for this, and has been demonstrated to be a reliable criterion for copulas by
[Brechmann, 2010] and [Manner, 2007].

3.2 Simulation

Parts of the analysis in later sections will involve estimating quantities using simulation, and as
part of the pipeline, we need to be able to simulate observations coming from an R-vine copula
distribution. Sklar’s theorem also proves useful here, as it implies that in order to simulate a
random sample from a d-copula C , one just needs to

1. Simulate u= (
u1, . . . ,ud

)
from C

2. Transform each u j by the inverse of the respective marginal distribution functions, i.e.
set x= (

F−1
1

(
u1

)
, . . . ,F−1

d

(
ud

))
Step 2 is straightforward, given the marginal distributions F1, . . . ,Fd and a sample from the
copula from step 1, but drawing this copula sample requires doing the following:

1. Draw d independent samples, v1, . . . , vd , from Unif(0,1)

2. Transform these samples as follows

u1 = v1

u2 = F−1
2|1

(
v2|u1

)
u3 = F−1

3|1,2

(
v3|u1,u2

)
...

ud = F−1
d |1,...,d−1

(
vd |u1, . . . ,ud−1

)
This idea extends to vine copulas by using inverses of h functions, which is detailed in [Brech-
mann, 2010].
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Application in Energy Markets
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4 European Power Market Data

In this second part of the project, we turn our attention to the German electricity market, and
employ a model involving a vine copula as described in the previous part in order to describe
and simulate the joint behaviour of certain market variables.

The data used consists of a set of time series downloaded from the European Network of
Transmission System Operators for Electricity’s Transparency Platform, extracted from the
following regulation articles (details about these articles can be found on [ENTSO-E, 2019]):

Day-ahead Prices (12.1.D) consists of hourly day-ahead electricity prices in EUR/MW for
given control areas, bidding zones, or countries. Germany is part of a bidding zone
together with Luxembourg, and prior to 2018-09-30, Austria was also part of that bidding
zone, so to obtain historical data for German day-ahead prices, DE-AT-LU bidding zone
prices have been downloaded for 2015-2018 and DE-LU bidding zone prices have been
downloaded for 2018-2019.

Actual Total Load (6.1.A) consists of quarterly total load (power demand) in MW for given
control areas, bidding zones, or countries. Historical data for Germany has been down-
loaded from this article for 2015-2019.

Actual Generation per Production Type (16.1.B&C) consists of hourly, aggregated genera-
tion in MW for each type of power production: biomass, lignite, coal-derived gas, gas,
hard coal, oil, oil shale, peat, geothermal, pumped storage, run-of-river, water reservoir,
marine, nuclear, waste, solar, onshore wind, offshore wind, and other renewables. His-
torical data for German solar, onshore wind, and offshore wind production has been
downloaded from this article for 2015-2019.

4.1 Preprocessing and Aggregation

The data is preprocessed and aggregated into four daily time series representing prices, load,
solar production, and wind production, respectively.

The series of prices consists of DE-AT-LU bidding zone prices starting from 2015-01-06,
and ending on 2018-09-30, and then DE-LU bidding zone prices starting from 2018-10-01 and
ending on 2019-07-31. These hourly day-ahead electricity prices are then grouped together
by date and averaged, yielding average daily prices, which are also called base prices on the
market.
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The series of load consists of the German actual load data starting from 2015-01-06 and
ending on 2019-07-31, grouped by data and averaged into daily average load.

The wind production consists of both German onshore and offshore wind, in the same
date range as above. The two series are summed together hourwise, and the resulting series
is grouped by date and averaged to form daily average wind production. For observations
where the value for either onshore or offshore was missing, the sum is set to simply be the
non-missing value. For observations where both onshore and offshore had missing values, the
sum is set to also be missing. Missing values are removed when averaging the observations,
and the resulting daily series has itself has two missing values: observations for 2016-10-28 and
2016-12-09. These are estimated from surrounding values using simple linear interpolation
and added in place of the missing values.

Solar production is likewise averaged over daily groups, and missing observations are
ignored when calculating this average. For the same dates as for wind production, 2016-
10-28 and 2016-12-09, all hourly observations are missing, leading to two missing values in
the averages. These two values are also estimated with linear interpolations. In addition,
for the dates 2015-02-28 and 2016-06-01, the observations for all but one night hour are
missing, leading to zero values for the averages. These zero values are also replaced by linear
interpolations of surrounding values, as they are only zero due to missingness, and the solar
data is otherwise quite regular.

The four time series are plotted on Figure 4.1, and some summary statistics are shown in
Table 4.1. In the following sections, when estimating model parameters from the data, we re-
strict all four variables to the date range 2015-06-01 – 2018-12-31. The remaining observations,
2019-01-01 – 2019-07-31, are used for comparison with simulated results later on.

Spot Load Solar Wind

Mean 34.87 55948.74 4186.46 10392.41
Median 33.56 57079.17 4150.41 8263.86

Std. Error 13.30 6506.29 2696.19 7556.22
Min -52.11 38398.25 207.93 715.57

Q1 27.70 51253.14 1592.87 4577.15
Q3 41.46 60718.84 6414.03 14094.18

Max 101.92 68944.61 10737.04 41825.95

Table 4.1: Summary statistics of the four aggregated ENTSO-E time series
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Figure 4.1: Daily aggregated time series from ENTSO-E

47





5 Modelling

In this chapter we go through the steps and results involved in modelling the joint distribution
for the day-ahead base price, the load, and the solar and wind production. Powered by Sklar’s
Theorem, we fit marginal models for each of the four variables individually in the first section,
and then link them together with a vine copula in the second.

5.1 Marginal Analysis

For the marginal models of each variable, we apply a two-step filter involving two models.
Denoting the modelled variable at time t as Yt , we consider models on the form

Yt = sY
t +X Y

t , (5.1)

where sY
t is the deterministic part of Y , and X Y

t is the stochastic part. The two parts will be
modelled as follows:

Seasonal model: to account for deterministic variations in the data due to seasons, first a
linear model is fitted using sine-cosine pairs of various frequencies and indicators, and
the residuals are extracted to continue the filtering process in the serial model. This
model also filters out a linear time trend and level.

Serial model: to account for serial correlation and heteroskedasticity in volatility, an ARMA-
GARCH model is fitted on the residuals of the seasonal model, and the standardised
residuals are extracted and transformed to uniform variables using the estimated ARMA-
GARCH distribution.

For the seasonal part, which depends only on the time index t = 1, . . . ,T , the term is given by

sY
t =α0 +α1 · t + ∑

φ∈Φ

(
β1,φ sin

(
2πtφ

)+β2,φ cos
(
2πtφ

))+ ∑
D∈D

γD D(t ) , (5.2)

whereΦ⊆ I is a set of frequencies, andD is a set of dummy variables, here denoted as functions
D(t ), such that ranD = {

0,1
}

for all D ∈D. We consider the frequency setΦ= {
1/365,2/365

}
,

corresponding to annual and semiannual cycles, and for dummy variables, we consider
weekday indicators and holiday/workday indicators as well as their interaction terms. A day is
counted as a holiday if either
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(a) it’s an official German holiday,

(b) it’s an official German non-working day, or

(c) it’s between Boxing Day and New Years Day, i.e. December 27–31

The reason for including holidays—and furthermore to count the Christmas week as such—
is exactly that we are trying to capture predictably differering levels due to human activity,
especially in consumption. On holidays, fewer companies will be consuming at their usual
level, due to employees having those days off, and as such their production—and therefore
also power consumption—will be expected to be at a lower level. This can be seen quite clearly
on ??, where the consumption curve has notable dips every year between Christmas and New
Years Eve. The interaction terms between the two sets of dummy variables are included to
account for holidays that fall on weekends; the effects of weekdays and holidays are counted
separately, but we do not expect a holiday falling on a weekend to have the same effect as a
holiday falling on a weekday. Including the interaction terms takes this into account.

Note that even with the included variables, the seasonal model is a simplification. It does
not, for example, take into account that single holidays falling on Thursdays might be followed
by a pseudo-holiday the next day, as employees will be likely to spend a vacation day that
Friday to get an extended weekend. It also disregards days that are not official holidays, but
which would still see different activity levels, for example vacation weeks in schools. We discuss
this a bit more when modelling the consumption.

The serial model is specified by an ARMA (autoregressive moving average) model in the
mean,

X Y
t =

p∑
j=1

φ j X Y
t−1 +

q∑
k=1

θkεt−1 +εt , (5.3)

where εt follows a GARCH (generalised autoregressive conditional heteroskedasticity) model,
i.e. εt = σt zt where σt depend on the type of GARCH model and zt are realisations of i.i.d.
random variables with zero mean and unit variance. A lot of different ARMA-GARCH models
are available to choose from, due to model order of the ARMA component, model type and
order of the GARCH component, and distribution of zt . Below are given short definitions of a
few types of GARCH models:

Definition 5.1 (GARCH). The GARCH(q, p) model specifies the conditional variance as

σ2
t =ω+

q∑
j=1

α j ε
2
t− j +

p∑
k=1

βkσ
2
t−k . (5.4)

Definition 5.2 (GJR-GARCH). The GJR-GARCH(q, p) model specifies the conditional variance
as

σ2
t =

q∑
j=1

(
α j +γ j1

(
εt− j < 0

))
ε2

t− j +
p∑

k=1
βkσ

2
t−k . (5.5)

Definition 5.3 (E-GARCH). The E-GARCH(q, p) model specifies the conditional variance as

logσ2
t =ω+

q∑
j=1

(
α j zt− j −γ j

(∣∣zt− j
∣∣−E∣∣zt− j

∣∣))+ p∑
k=1

βk log
(
σ2

t−k

)
. (5.6)
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Note that in the specification for the E-GARCH model the mean of the absolute value of
the conditional residuals appear. The values of these for the distributions we are going to use
are given as follows:

Z ∼ N
(
0,1

) =⇒ E|Z | =
√

2

π
, (5.7)

Z ∼ t (ν) =⇒ E|Z | =
Γ
(
ν−1

2

)
Γ
(
ν
2

) √
ν−2

π
, (5.8)

where N and t denote the distribution functions of the normal and Student’s t-distribution,
respectively.

The latter two specifications model shocks to the conditional variance asymmetrically,
which is known as the leverage effect. Note that, like for the ARMA model, the model order
of these are also denoted with p and q , since this is the standard notation in the literature,
and since we won’t be using general orders of the models beyond this point. We consider the
following model specifications:

• ARMA orders: p, q ∈ {
0,1

}
• GARCH orders: p, q ∈ {

0,1
}
, such that at least one is nonzero

• GARCH types: standard GARCH, E-GARCH, GJR-GARCH

• Conditional distributions: Gaussian, Student’s t

for a grand total of 72 different models per series. These are fitted with numerical maximum
likelihood methods using the R package rugarch [Ghalanos, 2019]. For choosing a single
“best” model among the model specifications, we use AIC, and in case this quantity can’t be
calculated—e.g. in case of non-convergence—that model specification is dropped from further
considerations.

5.1.1 Electricity Prices

In financial mathematics, prices of assets are commonly considered through log-returns—for
a sequence of prices,

(
Pt

)
t∈J , the log-returns are given by

rt := log
Pt −Pt−1

Pt−1
= logPt − logPt−1. (5.9)

The returns represent how much an investor would earn or lose by buying one unit of the asset
at time t −1 and selling it again at time t—this is convenient when considering the logarithms
of the returns, since the total profit or loss incurred by buying at time t0 and selling at time
t0 +T is simply

∑t0+T
t=t0

rt . While log-returns are therefore natural to consider for the prices of
assets such as stocks or commidities like oil and gold, it makes little sense to talk about the
“returns” of electricity, since it is a non-storable good.
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In the literature, when modelling electricity spot prices, it is common to use log-prices
rather than log returns for very spiky and non-negative prices, since it makes the spot price
distribution more symmetric and less leptokurtic [Manner et al., 2019]. However, since the
logarithm function is only defined on the positive real half-line, it cannot be used to transform
negative prices, and spot prices on the German day-ahead electricity market exhibit occasional,
negative spikes. As such, before applying a logarithmic transformation, all prices in the data
set are offset by a constant K > 0 such that the “log-prices” considered become

pt := log
(
Pt +K

)
, ∀t ∈J . (5.10)

Note that this constant is only really constant in the sense that the same value is used for all
t ∈J , but this value will in fact depend on the data, as it must be at least large enough to offset
the most negative prices.

Seasonal model Fitting the seasonal component is sensitive to outliers in the data, so as a
prior step to fitting the model described in (5.2), we filter them out temporarily. Following
[Benth et al., 2008], since the data is clearly not normally distributed, we use the following
summary statistic to identify outliers: Given the lower and upper quartiles of

{
pt

}
t∈J , q1 and

q3, respectively, and the interquartile range qR = q3 −q1, an observation pt is classified to be
an outlier, if

pt < q1 −3qR or pt > q3 +3qR . (5.11)

The quartiles for the log-transformed prices yield the admissible interval
[
6.19,6.37

]
for the

observations, making 9 of them outliers. These observations are removed from the seasonal fit
only, thus resulting in a deterministic component visualised on Figure 5.1 and residuals used
as data for the serial model on Figure 5.2.

Serial model Using the residuals from the seasonal model, we now fit a panel of ARMA-
GARCH models as described above. An overview of the results can be seen in Table A.1 and A.2,
where the model names are given such that the model type, model orders, and conditional
distributions are specified, with N representing the normal distribution, and t representing
Student’s t-distribution.

The model with the lowest AIC is the ARMA(1,1)-E-GARCH(1,1)-t (model #72) with a
value of -6.037. Other models have AIC values close to this, e.g. the AR(1)-E-GARCH(1,1)-t
(model #70) with -6.034. The fact that the models providing the best fits are found among
the models that can account for leverage fit well into our intuition about the behaviour of
electricity prices—the conditional variance is more sensitive to negative shocks than positive
ones. Moreover, the Student’s t-distributed conditional error terms seem to be preferred,
indicating further that the prices do in fact have heavier tail distributions.

For the purpose of this project, we need to choose a single model to continue with, and as
such we select model #72 to be the “best” model. The coefficients for this model are given in
Table 5.1 together with the robust (i.e. heteroskedasticity-consistent) standard errors of [White,
1982]. On Figure 5.3 the residuals from the seasonal model, used as input for this step, are
plotted together with the fitted values, and on Figure 5.4, the standardised residuals from the
model are plotted.
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Figure 5.1: Plot of the fitted seasonal model for the spot price data. The dashed lines represent
the bounds used to identify outliers, which are marked with×.
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Figure 5.2: Plot of the residuals of the seasonal spot price model
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Figure 5.3: Fitted values of the chosen model plotted together with the residuals of the seasonal
model, on which it is fitted
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Figure 5.4: Standardised residuals of the chosen model
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Estimate Std. Error t-value P(> |t |)
φ 0.8395 0.0256 32.8571 0.0000
θ -0.1371 0.0461 -2.9729 0.0030
ω -0.7864 0.2134 -3.6847 0.0002
α -0.0912 0.0397 -2.2997 0.0215
β 0.9106 0.0243 37.4030 0.0000
γ 0.3712 0.0507 7.3264 0.0000
ν 4.7286 0.5655 8.3614 0.0000

Table 5.1: Coefficents of the chosen ARMA-GARCH model for the spot data

5.1.2 Consumption

While the prices of electricity is driven by many factors reflected in trading activity, and
production of renewable energy is subject to the uncertainty of the weather, one would
intuitively expect consumption of electricity to be decently deterministic. Given a bit of expert
knowledge about the schedule of business operations in Germany, it seems reasonable to
assume that one could account for must of the structure in the data and be left with a white
noise process. Unfortunately, aquiring such knowledge is out of scope for this project—there
are whole companies in the business of providing this kind of data—so we instead apply the
same seasonal filter as for the price data and try to capture the rest of the structure with a time
series model.

As noted in Table 4.1, the load data is always positive, so we don’t have to add any constants
to be able to perform a logarithmic transformation on it.

Seasonal model Following the same method for fitting the seasonal model as for the spot
price data, we obtain the model fit described on Figure 5.5 and 5.6. Note that the aforemen-
tioned notable dips in consumption around Christmas each year are somewhat captured
in the modelled path for sC

t , with Christmas 2015 and 2018 not being fully explained by the
holiday dummies.

Serial model As before, we use the residuals from the model as input data in the serial
model. We fit the same panel of ARMA-GARCH models as we did for the spot price data, with
an overview of these summarised in Table A.3 and A.4.

With an AIC of -4.713, the model we choose to continue with is model #60, which is an
ARMA(1,1)-GJR-GARCH(1,1)-t. Its coefficients and standard errors are given in Table 5.2.

The residuals from the seasonal model are plotted together with the fitted values from the
serial model on Figure 5.7, and the standardised residuals are plotted on Figure 5.8.

5.1.3 Solar Power Generation

Like with the load data, the average daily solar power generation is strictly positive, and as
such we can use a logarithmic transformation to dampen the variance in the data.
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Figure 5.5: Plot of the fitted seasonal model for the load data
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Figure 5.6: Plot of the residuals of the seasonal load model
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Figure 5.7: Fitted values from the selected model plotted together with the residuals from the
seasonal model
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Figure 5.8: Plot of the standardised residuals from the serial model for the load data
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Estimate Std. Error t-value P(> |t |)
φ 0.7854 0.0258 30.4282 0.0000
θ -0.1013 0.0447 -2.2666 0.0234
ω 0.0003 0.0000 6.9601 0.0000
α 0.3484 0.0775 4.4979 0.0000
β 0.1753 0.0508 3.4543 0.0006
γ 0.2652 0.1385 1.9146 0.0555
ν 3.9361 0.4330 9.0903 0.0000

Table 5.2: Coefficents of the chosen ARMA-GARCH model for the consumption data

Seasonal model While electricity prices and power consumption are subject to variance
due to human behaviour and schedules, solar power generation is subject only to the natural
phenomenon of sunlight, and as such, it makes little sense to include the weekday or holiday
variables in the seasonal model for solar power generation. Hence, the seasonal term filtered
from the log-series is

sS
t =α0 +α1 · t + ∑

φ∈Φ

(
β1,φ sin

(
2πtφ

)+β2,φ cos
(
2πtφ

))
, (5.12)

still with Φ= {
1/365,2/365

}
. The fitted values and residuals are plotted on Figure 5.9 and 5.10.

The seasonal variation in solar production is fairly regular on an annual cycle, with production
unsurprisingly peaking in the summer months and slumping in the winter months, with little
to no trend over the years.

Serial model One can argue that modelling volatility of solar power production with a
GARCH process doesn’t intuitively make sense. The usual interpretation of such a model is
that shocks are followed by an increase in volatility that persists for some time. Looking at the
residuals on Figure 5.10, they appear to exhibit higher volatility during winter months and
lower volatility during summer months. This fits our expectation, since the longer windows of
strong sunshine on summer days makes for a fairly high baseline of production, while during
winter, there are fewer hours of sunlight in a day, so if the sky is overcast for a few hours, this
has a large impact on the total production for that day.

It might therefore make better sense to consider a model with deterministic—but still
time-varying—volatility for the solar power production, possibly following some sinusoidal
curve with peaks during winters. In this project, however, we continue with a GARCH process
for the volatility, simply because established software for estimating such models already exist,
and because it will likely still be a good enough fit.

The usual panel of ARMA-GARCH models is therefore fitted on the residuals from the
seasonal fit, and an overview of each fit is summarised in Table A.5 and A.6. The model with
the lowest AIC (0.5616) is model #58, an AR(1)-GJR-GARCH(1,1)-t, with coefficients given in
Table 5.3. Worth noting here is that the leverage parameter γ is both negative and bordering
on insignificant. The sign implies that volatility actually decreases following a negative shock.
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The series of fitted values are plotted together with the residuals of the seasonal model on
Figure 5.11 and the residuals are plotted on Figure 5.12.

Estimate Std. Error t-value P(> |t |)
φ 0.4975 0.0282 17.6228 0.0000
ω 0.0014 0.0006 2.3965 0.0166
α 0.1009 0.0199 5.0838 0.0000
β 0.9174 0.0153 60.1446 0.0000
γ -0.0501 0.0256 -1.9569 0.0504
ν 13.4136 4.1731 3.2143 0.0013

Table 5.3: Coefficents of the chosen ARMA-GARCH model for the solar data
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Figure 5.9: Plot of the fitted seasonal model for the solar power generation data

5.1.4 Wind Power Production

As with the load and solar power production data, the wind power production data is strictly
positive and can be logarithmically transformed.
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Figure 5.10: Plot of the residuals of the seasonal solar model
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Figure 5.11: Fitted values from the selected model plotted together with the residuals from the
seasonal model
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Figure 5.12: Plot of the standardised residuals from the serial model for the solar data

Seasonal model Wind power production, like solar power production, is not subject to
human scheduling in the same way that prices and consumption is, so we also omit the
weekday and holiday dummy variables from the seasonal wind power model. The fitted values
and residuals are plotted on Figure 5.13 and 5.14, respectively.

Serial model After fitting the panel of ARMA-GARCH models to the residuals of the seasonal
model, we obtain the results summarised in Table A.7 and A.8. Model #28, an ARMA(1,1)-E-
GARCH(1,0)-N, is chosen as the best model with an AIC of 1.7029, and the parameters are
listed in Table 5.4.

Estimate Std. Error t-value P(> |t |)
φ 0.4915 0.0298 16.5040 0.0000
θ 0.1836 0.0315 5.8243 0.0000
ω -1.1383 0.0342 -33.2343 0.0000
α -0.3307 0.0413 -7.9995 0.0000
γ -0.2327 0.0557 -4.1769 0.0000

Table 5.4: Coefficents of the chosen ARMA-GARCH model for the wind data

Unlike the three other variables, the chosen model for this variable has a Gaussian con-
ditional distribution, and in all the fitted models with Student’s t-distributed conditional
residuals, the degrees of freedom are estimated to be very high (close to or equal to 100, which
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is upper bound for the parameter during the optimisation process). Its fitted values are plotted
on Figure 5.15 and its residuals on Figure 5.16.
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Figure 5.13: Plot of the fitted seasonal model for the wind power generation data

5.2 Joint Analysis

Now that we have estimated marginal models for each of the four variables, we have all we
need to start linking them together with a copula model. We estimate an R-vine model for the
joint distribution as follows:

1. Estimate sequentially the tree structure with a maximum spanning tree algorithm using
empirical Kendall’s τ’s as edge weights in the complete graph

2. Test each edge for independence

3. If not independent, fit a panel of pair-copulas consisting of Gaussian, Student’s t , Clay-
ton, Gumbel, and Frank copulas, as well as their rotations

4. Once all the tree structures and parameters have been estimated, assume the structure
is correct and reestimate the parameters with maximum likelihood using the sequential
estimates as starting values
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Figure 5.14: Plot of the residuals of the seasonal wind model
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Figure 5.15: Fitted values from the selected model plotted together with the residuals from the
seasonal model
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Figure 5.16: Plot of the standardised residuals from the serial model for the wind data

The resulting structure is summarised on Figure 5.17, with the selected copulas and estimated
parameters indicated on each edge, and the contours of the pair-copula densities are plotted
on Figure 5.18.

This structure corresponds to a C-vine with the wind power production (here enumerated
as variable 4) as the root node. As expected, the dependence between the spot prices and
the wind production is negatively sloped, as is the dependence between spot prices and solar
production (conditional on wind production), which fits well with our intuition about how the
prices are set.

Rotated copulas are chosen for two of the edges due to negative Kendall’s τ’s. Because
these are 90 and 270 degree rotations, these naturally have no tail dependence coefficents, as
defined in Definition 2.28, but one can consider similar quantities, e.g.

λU ,L
(
X ,Y

)
:= lim

t↓0
P
(
Y ≤ F (−1)

Y (t )
∣∣X > F (−1)

X (1− t )
)

, (5.13)

which compares the upper tail of X with the lower tail of Y —let’s call it right rotated tail
dependence, as it describes the mass concentrated in the lower right corner of the contours
of (X ,Y ). One can similarily define a left rotated tail dependence, λL,U , which describes the
upper left corner mass of the contours.

The actual values of these can be derived from the standard versions of the copulas
they’re describing. For the edge (4,1) in T1, we have a 270-degree rotated Gumbel copula
with parameter α270 = −1.76, which has mass in the lower right of the contours. The right
rotated tail dependence coefficent, λU ,L , of this copula then corresponds to the upper tail
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Figure 5.17: Estimated vine structure, with copulas and Kendall’s τ’s given as edge labels.
Variables are labelled by numbers such that Spot = 1, Load = 2, Solar = 3, and Wind = 4.

dependence coefficent, λU , of the corresponding standard Gumbel copula with parameter
α=−α270 = 1.76, i.e.

λU ,L

(
C Gum,270
−1.76

)
=λU

(
C Gum

1.76

)
= 2−21/1.76 = 0.517. (5.14)

The interpretation of this coefficent fits well with our understanding of the market: when wind
production (variable 4) is in the right tail end of its distribution, the spot prices (variable 1)
is very likely to be in the left tail end of its distribution. In other words, high levels of wind
production pushes the spot prices down.

The other rotated copula, found on the edge (4,3) (wind, solar) in T1, is a 90-degree rotated
Clayton copula with parameter α90 =−0.18, which like the 270 degree rotated Gumbel copula
also has mass in the lower right, since the standard Clayton copula has lower tail dependence.
Its right rotated tail dependence coefficent therefore corresponds to the lower tail dependence
coefficent, λL , for the unrotated version with parameter α=−α90, i.e.

λU ,L

(
C Clay,90
−0.18

)
=λL

(
C Clay

0.18

)
= 2−1/0.18 = 0.021. (5.15)

The interpretation is also similar to the one above, albeit with a much smaller size of coefficient:
when the wind production is very high, there is a small probability that the solar production is
very low. The explanation for this effect could be that windy weather is slightly correlated with
weather conditions that block out the sun, and perhaps if the productions we were considering
were more local and not averaged over days, this effect would be more pronounced.
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Figure 5.18: Kernel density contours of each copula, given the data

66



CHAPTER 5. MODELLING 5.2. JOINT ANALYSIS

A rather surprising finding in this model is in the edge (4,2), which describes the depen-
dence between wind production and consumption. Here we obtain a Gumbel copula with
α= 1.45, which implies an upper tail dependence coefficent of

λU

(
C Gum

1.45

)
= 2−21/1.45 = 0.387. (5.16)

That is, according to the model, in very high wind production scenarios, we are also about 39%
likely to also be in a very high consumption scenario. This goes a bit against our intuition—how
can extreme wind production levels affect the consumption levels? One possible explanation is
that there are industrial consumers on the market who are somehow sensitive to the electricity
spot price, and therefore ramps up their production of goods—and thus consumes more
electricity—when the spot price is low.

An example of this could be owners of pumped storage hydroelectricity plants. These
facilities have large reservoirs of water at different elevations, which can either produce
electricity by letting the water run from the high reservoir to the lower or consume electricity
by pumping the water up the opposite direction, effectively storing the power as potential
energy. In a scenario with high wind production, the spot prices are simultaneously likely to
be very low, or even negative, which acts as an incentive for the pumped storage owners to
consume electricity at their plant and hope for prices to go up on a later day. Given enough of
such plants or similar facilities, this effect could potentially be pronounced enough to produce
this positive dependence, and according the [ENTSO-E, 2019], the total installed capacity for
pumped storage is 9422 MW, which—if the effect is assumed to be symmetric and all of it is set
to consume—would be enough to lift the consumption into a high level.

In T2 in the vine, both copulas chosen for the edges are Gaussian, with parameters -0.17
and -0.09, respectively. Conditional on wind production, the solar production is negatively
correlated with spot prices and consumption, but not very strongly, and with no tail depen-
dence. This would indicate that out of the two sources of renewable energy, it’s the wind
production that’s the strongest driving force in determining the spot prices. And moving
to T3, we get truncation, i.e. the independence copula Π2 is chosen for the edge (2,1|3,4),
meaning that the spot prices and the consumption are conditionally independent given wind
and solar production. This is again in line with our intuition, as we know the demand curve for
electricity to be close to vertical, which corresponds to the consumption being independent of
the prices, and whatever actual dependence there might have been is already captured by the
dependence with wind and solar.
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6 Portfolios of PPAs

We now present a scenario in which one can make use of being able to simulate the joint
distribution of day-ahead prices, consumption, and solar and wind production. Imagine that
we trade electricity in such a way that we do not own any generators ourselves, but we buy
from e.g. power plant owners and sell to industrial consumers. The service we provide is
two-fold:

(a) Buying power production from plant owners at a fixed price

(b) Selling power to consumers at a fixed price

The price is fixed through an instrument called a power purchase agreement, or PPA for short.
Such contracts can have deliveries that are several years out in the future, but for the purpose
of this example, we will consider PPAs on shorter windows of time.

6.1 Portfolio Setup

Assume the following setup. Two power providers—call them S and W , respectively—wish to
enter into a PPA with us to get a fixed price on the electricity they produce. Provider S owns
a large solar farm that accounts for 2% of all of Germany’s solar power production, and W
owns a wind turbine park that accounts for 5% of Germany’s total wind power production,
and we assume that their production is representative in such a way that those percentages
are constant.1 On the other hand, we have a large industrial consumer—call them C —who
wish to enter into a PPA to pay a fixed price for electricity consumed. Consumer C accounts
for 1% of all of Germany’s consumption, and as with S and W , we assume this ratio to always
be constant.2 All three PPAs are signed on New Year’s Eve 2018 with delivery in May through
July 2019, i.e. it can be considered forward prices Fc

(
t ,T1,T2

)
with T1 = t +121 and T2 = 212,

representing delivery starting 121 days into the future and ending 91 days later (212 days into
the future), for each of the counterparts c ∈ {

C ,S,W
}
.

1In a real scenario, regional differences would mean that this assumption could not possibly hold, since weather
conditions (wind flow velocity, whether it’s cloudy, etc.) are far from homogeneous over an area as large as the
country of Germany. For now, one can imagine that these counterparts are not actually single counterparts, but
comprise many smaller counterparts, who overall are assumed to be representative of the country.

2The three given sizes of our counterparts are arbitrarily chosen, but later we will investigate how to “choose”
counterparts in such a way that the resulting payoff distribution is “best” in some sense.
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6.2 Simulated Payoff Distributions

In order to answer questions about these PPAs, we use our model to draw N = 1000 samples
of joint paths of length 212 of the four variables, denoting P̂ i

t , Ĉ i
t , Ŝi

t , and Ŵ i
t to be the i ’th

time t simulated value for spot, consumption, solar, and wind, respectively, for i = 1, . . . , N and
t = T1, . . . ,T2. Throughout this section, the simulation used to calculate quantities is the same.

The first obvious problem we need to answer is: what should FC , FS and FW be? A first
suggestion could simply be the unconditional mean of the day-ahead electricity prices for the
period of delivery. Given our simulations, this price is

FC = FS = FW = 1

N (T2 −T1)

N∑
i=1

T2∑
t=T1

P̂ i
t =AC42.7/MW. (6.1)

However, this price does not account for the correlation between day-ahead prices and the
quantities produced or consumed. Since we have simulations from the joint distribution, we
can reflect this correlation in the forward prices by weighting each price by its corresponding
produced quantity, i.e. set the forward prices to the weighted means

FS =
∑N

i=1

∑T2
t=T1

Ŝi
t P̂ i

t∑N
i=1

∑T2
t=T1

Ŝi
t

=AC42.3/MW (6.2)

FW =
∑N

i=1

∑T2
t=T1

Ŵ i
t P̂ i

t∑N
i=1

∑T2
t=T1

Ŵ i
t

=AC37.9/MW, (6.3)

which as expected are lower than the unweighted mean, due to the negative correlation
between the day-ahead price and the solar and wind production. A similar argument can be
made for the consumer C , yielding the forward price

FC =
∑N

i=1

∑T2
t=T1

Ĉ i
t P̂ i

t∑N
i=1

∑T2
t=T1

Ĉ i
t

=AC43.1/MW, (6.4)

which is higher than the unweighted mean due to the positive correlation between the day-
ahead price and the consumption level.

The payoff of a portfolio of three such PPAs can now be calculated as

PPPAP = 24
T2∑

t=T1

(
Ct FC −St FS −Wt FW +Pt

(
St +Wt −Ct

))
(6.5)

= 24
T2∑

t=T1

(
St

(
Pt −FS

)+Wt
(
Pt −FW

)−Ct
(
Pt −FC

))
, (6.6)

that is, the quantities sold or bought, at the price specified in the respective PPA, plus the
surplus generated power sold at the spot market (if S and W produce more power than C
consumes) or the deficit power bought at the spot market (if C consumes more than S and
W produce). This can also be represented in terms of of price-forward spreads weighted by
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the actualised production or consumption, with the signs of the terms representing positions
(positive = bought quantities, negative = sold quantities). Exchanging the actualised quantities,
Pt , Ct , St , and Wt , by the simulated quantities, we get N simulated payoffs P i

PPAP, i = 1, . . . , N ,
representing a payoff distribution. This distribution is visualised on Figure 6.1.
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Figure 6.1: Simulated distribution for PPPAP, with lines inserted to indicate, in order from left to
right: the 5% expected shortfall, the 5% quantile/Value-at-Risk, the mean payoff, the actualised
payoff, the median, and the 95% quantile

There are several things to notice here. The mean payoff is zero by construction, but the
median payoff is positive, aboutAC0.95 million. However, while the distribution is skewed to
the right, it’s left tail is almost three times longer than the right tail. Indeed, inspecting the tail
quantiles q0.05

(
PPPAP

)
and q0.95

(
PPPAP

)
, where qp

(
X

)= F (−1)
X

(
p

)
, we see that

q0.05
(
PPPAP

)=AC−6,816,790.40 and q0.95
(
PPPAP

)=AC4,015,347.90 (6.7)

In other words, in the best 5% of cases, we only earn about 60% as much as we lose in the
worst 5% of cases. The latter is also called the 5% Value-at-Risk (or VaR for short). This skew is
further accentuated when considering the expected shortfall of the portfolio, defined as

ESp
(
PPPAP

)= E(PPPAP
∣∣PPPAP ≤ qp

(
PPPAP

))
, (6.8)

i.e. the expected loss conditional on being in the left tail of the distribution. At the 5% level, the
expected shortfall for the portfolio isAC12.5 million. If we define a similar quantity for the right
tail, i.e. where the inequality is flipped and p = 0.95, we obtain an expected right-tail profit of
onlyAC4.97 million, only about 40% of the expected shortfall.
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6.3 Towards An Optimal Portfolio

The nature of the payoff distribution is intuitively clear: variations in consumption notwith-
standing, high production of renewables gives us a surplus of power that we can sell on the
spot market, but the spot price is pushed down, while low production instead pushes the spot
price up, but the lower quantity also means we have to buy the deficit on the spot market to
serve our consumer counterparts. Such a distribution, where the majority of the mass may be
on the positive halfline, but the left tail is slowly decaying, is not attractive to a trader.

For illustrative purposes, imagine that the sizes of our counterparts are different, say,
such that the consumer C comprises 10% of German consumption instead of 1%. The payoff
distribution for such a contract is plotted on Figure 6.2.
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Figure 6.2: Simulated distribution for PPPAP with C comprising 10% of the consumption instead
of 1%

This distribution is more symmetric, but in return the expected shortfall is far higher than
before—atAC93.7 million, it’s almost an order of magnitude larger. The reason for both is that
as C grows in size, the consumption dominates the production in our portfolio, and thus the
effect on the payoff from the PPAs with the wind and solar producers vanish, since we have to
buy the majority of the consumed quantity on the spot market, making us more exposed to
variations in day-ahead prices.

If on the other hand, if we imagine that W is a larger provider, say, comprising 50% of the
total German wind power production instead of 5%, we obtain a payoff distribution as plotted
on Figure 6.3.

This distribution is similar to the first in shape, but the expected shortfall is even higher
than in the high-C scenario; atAC181 million it’s almost double the value. The higher position
in wind production means we are less likely to have a deficit against C , but we still become
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Figure 6.3: Simulated distribution for PPPAP with W comprising 50% of the wind power pro-
duction instead of 5%

exposed to the day-ahead price, as we now sell surplus power on the spot market. High wind
productions imply low spot prices, which nets us a loss on the surplus.

Clearly, the shape of the payoff distribution depend greatly on the size of each counterparts
relative to each other, and the question is whether we can “choose”, in some sense, a portfolio
with the most desirable possible payoff distribution. To this end, assume that each counterpart
C , S, and W is a basket of smaller counterparts, and we can control the size of the basket by
entering into contracts with more or fewer of these smaller counterparts. For the purpose of
this example, assume furthermore that we can choose any size of counterpart this way, up to
100% of the total German consumption/production, and denote it as

PPPAP
(
αC ,αS ,αW

)= 24
T2∑

t=T1

(
αSS∗

t

(
Pt −FS

)+αW W ∗
t

(
Pt −FW

)−αC C∗
t

(
Pt −FC

))
, (6.9)

whereαC ,αS ,αW ∈ (
0,1

)
, and S∗

t ,W ∗
t , and C∗

t denote the total German solar power production,
wind power production, and consumption, respectively, at time t . Our goal is now to find
values of αC , αS , and αW , such that the resulting distribution is “optimal”. For the measure of
optimality, we consider the expected shortfall at the 5% level under the given distribution, and
the problem then becomes a maximisation problem:3

max
αC ,αS ,αW

ES0.05

(
PPPAP

(
αC ,αS ,αW

))
(6.10)

3Note that we have previously listed expected shortfalls without signs, since the interpretation is the amount we
lose, but for these distributions the values of those expectations are negative, so maximising expected shortfall
corresponds to minimising the interpreted loss.
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It’s easy to see that allowing the variables to vary freely over
(
0,1

)
would push them all towards

0 because of the quantity we’re optimising over. We conjecture that the distribution shape
depends only on the relative size of the counterparts, as long as the size of one does not
dominate the others. Therefore, fix the size of C at 1% of the total German consumption, i.e.
set αC = 0.01, and let αS and αW be free variables in the maximisation problem. The values
obtained at the maximum are

αS = 0.015 and αW = 0.025, (6.11)

that is, when the consumer position comprise 1% of the total consumption, the provider
positions yielding the smallest expected shortfall are 1.5% of the total solar power production
and 2.5% of the total wind power production. The resulting distribution is shown on Figure 6.4

5%

Median

95%
Expected shortfall

at the 5% level

0.0e+00

5.0e−08

1.0e−07

1.5e−07

2.0e−07

−20 −10 0 10
Payoff [million EUR]

D
en

si
ty

Actual

Mean

Quantiles

Figure 6.4: Simulated payoff distribution for PPPAP with optimised portfolio allocation

This distribution, like the first arbitrarily chosen one, is skewed to the right with a long
left tail, but the key difference is in the mass of said tail, which has fewer bumps and is “only”
twice as long as the right tail. The expected shortfall is AC5.97 million, about half of the first
portfolio, but the expected right-tail profit is also smaller, atAC3.42 million it’s about 57% of the
expected shortfall.

6.4 Diagnostics and Possible Extensions

The chosen “optimal” payoff distribution above still exhibits some undesirable traits, namely
the long left tail, and an entry point for further research might lie in extensions of the un-
derlying model. In this section we take a look at the specific simulations associated with the
extreme losses.
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As can gleaned from Figure 6.4, the mass in the tail is caused by only a few simulated
scenarios—in numbers, out of the tail 5% of values, about 20% of the mass is ascribed to just
6% of the scenarios. These scenarios correspond to the losses that are larger than the largest
profit in the right tail, which for this given simulation comprise three values.

The path simulations for the underlying data yielding these losses are plotted on Figure 6.5.
The cause of each loss is readily apparent:

• The loss ofAC14 million (for data plotted with solid lines) is caused by simultaneous spikes
in spot prices and wind production happening in June, where the wind production hits
100,000 MW while the spot price dips toAC-119/MW, followed by very large fluctuations
in the spot price. The high wind production dominates the consumption at that time, so
we “sell” a large quantity of power at a negative price, effectively meaning we pay to get
rid of it.

• The loss ofAC22.5 million (for data plotted with dotted lines) is caused by an absurd spike
in solar power production towards the end of June, hitting over 10 million MW. The
simulated spot price on this date isAC36.2/MW, which is lower than the forward price
for solar power production, so we face a loss on the surplus production, and since the
simulated consumption is only around 50,000 MW, the vast majority of this production
is a surplus.

• The loss ofAC23 million (for data plotted with dashed lines) is likewise caused by abnor-
mally large values for solar power production—in the millions of MW—and this time
for a wider range of observations simulated in the first half of July. The simulated spot
price is again low, and the consumption is easily dominated by the production, yielding
a huge loss.

The huge values for solar and wind productions causing the losses are most likely artifacts
of assumptions implicit in the model, that—in light of these results—are too liberal. The
production variables are effectively modelled to have the entire positive halfline as their
codomains, but this does not reflect the reality that theoretically possible power production is
bounded from above.

According to [ENTSO-E, 2019], the total installed capacity for renewables in Germany anno
2019 is around 45,000 MW and 59,000 MW for solar and wind, respectively. This is a far cry
from the millions of MWs simulated in these extreme cases, and should be cause for revisiting
the base assumptions of the model. Possible ways to incorporate the physical constraints
could be to model the production variables with a truncated distribution, i.e. a probability
distribution with hard limits on its range, or more simply to consider the produced quantities
as ratios of the installed capacity.

Due to time constraints, we do not carry out such corrections in this project, but we conjec-
ture that implementing these physical limits would yield more symmetric payoff distributions
on PPA portfolios and let it be a topic for further research in later projects.
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Figure 6.5: Simulated paths corresponding to the three biggest losses on the optimal portfolio
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7 Conclusions and Outlooks

In this project, we present the theory of copulas, starting from basic definitions from probabil-
ity theory, and including all results and definitions necessary to prove the main result, Sklar’s
Theorem (2.20), which lets us separate marginal and joint modelling of variables. With this
result, we present the ideas behind vine copulas and how one can construct a d-dimensional
copula distribution from a set of 2-dimensional ones. These pair copulas need not be the same
or even belong to the same family of copulas, and thus the vine acts as a flexible extension to
copula modelling.

Armed with this knowledge, we set out to describe the joint behaviour of daily base
prices together with consumption, solar power production, and wind power production,
choosing Germany as the area of interest. Based on freely available historical market data,
we considered the four variables as time series on a daily frequency by averaging hourly or
quarterly observations grouped by days.

We first filtered out seasonal variations in the data due to the time of year via a simple
linear model with the log-transformed variables as responses. These models were constructed
such that they only depended on time indices, making them completely deterministic, and
the residuals were then further modelled as an ARMA-GARCH process. Each model exhibited
clear autoregressive dependence, and the leverage-adjusting variants of the GARCH models
were preferred to the symmetric standard GARCH. Student’s t-distributed conditional errors
were chosen for spot prices, consumption, and solar power production, while Gaussian errors
were selected for wind power production, indicating lighter tails than the other variables.

Using the residuals transformed by their estimated distributions, we then obtain uniformly
distributed variables that we model together with a 4-dimensional vine copula. The estimated
structure is a C-vine with the wind power production as the root node, which indicates that
among all possible pairs, the strongest rank correlations involved wind for all variables. This is
accentuated by the estimated copulas in the first tree of the C-vine, as all three are types with
tail dependence or rotated versions of such types. Strong negative dependence was found
between wind and spot prices, and weak negative dependence was present between wind and
solar. Curiously, wind and consumption exhibited a surprising amount of positive dependence,
complete with upper tail dependence. We conjectured that this effect could be due to big
market players who are both exposed to the spot price while being able to take on a consumer
role. Condtional on wind production, the dependence between the other variables were
Gaussian and not very strong, further indicating that wind is the most important contributing
factor to the prices.
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7.1. FUTURE CONSIDERATIONS CHAPTER 7. CONCLUSIONS AND OUTLOOKS

From this joint model for the four variables, we draw samples for simulated joint paths
for the time window 2019-01-01 – 2019-07-31 and use them to simulate the distribution of
the payoff for a portfolio of power purchase agreements with delivery during 2019-05-01
– 2019-07-31. Here, the effect of the wind power production became readily apparent, as
the payoff distribution exhibited long left tails for portfolio allocations in which the size of
consumers and producers did not match. For allocations with a large wind power provider, we
became exposed to the price due to the negative dependence between wind and price, and for
allocations with a large consumer, we became exposed due to the vanishing effect from the
providers. We assume a fixed size consumer and find optimal sizes of providers based on the
expected shortfall of the resulting portfolio.

7.1 Future Considerations

In our model, we made several simplifications and empirical findings that are prime candidates
for further research in the future.

When applying the model to create portfolios of power purchase agreements, we observed
some very extreme left tail outcomes that were contrary to the physical limits of the market.
A natural modification of the model would therefore be to consider how to adequately take
these physical limits into account, and see whether the resulting portfolio payoff distributions
are more desirable. In the same vein, some of the marginal models could be reconsidered
altogether. We used ARMA-GARCH models wholesale on the variables, when other, more
specialised models may have been appropriate. As already mentioned earlier, consumption
could possibly be modelled as simply

Ct = sC
t +εt , (7.1)

i.e. a deterministic seasonal component st and a white noise error term εt , where st would
include a lot more terms than the one used in this project. Solar power production seemed
to exhibit patterns in the volatility, and a way to express this could be with it’s stochastic part
being a diffusion process with deterministic variance, that is, St = sS

t +X t with e.g.

dX S
t =σS

t dBt , (7.2)

σS
t =β1 sin

(
2πt

365

)
+β2 cos

(
2πt

365

)
, (7.3)

where Bt is a standard Brownian motion. The above would correspond to an annual cycle in
volatility, which for suitable choices of β1 and β2 would peak during winters.

Seeing how exposed we were to the day-ahead prices through the wind power production,
it would be a natural question to ask whether the risk associated with wind can be hedged.
Indeed, a opportunity for this exists specifically on the German market: since 2017, so-called
wind power futures, a derivative instrument written on a wind production index by EuroWind
(an accredited German wind analysis company), have been available to trade on the European
Energy Exchange. Investigating the effect of incorporating such contracts into our portfolio
would be an interesting extension to consider.
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Another natural extension of the model is found in the dimensions. We aggregated the data
to daily observations, both because it’s common to consider daily prices in the literature, but
also because it dampens shocks a bit. If one instead models the hourly day-ahead electricity
prices directly, one faces some interesting considerations. Due to the nature of how the prices
are determined, all 24 hourly prices for a given day are based on the same information set,
making it inappropriate to consider them as a univariate, hourly time series, and instead they
should be considered as a 24-dimensional, daily time series. Here, one could again employ
the flexible copula framework, and model the prices of each hour of the day individually as a
univariate, daily time series, and link them together afterwards with a suitable copula model.
Such a model would account for intraday variation and would allow for more flexible contracts
to be written on the prices.
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A Overview of ARMA-GARCH Model Fits

Model ω α φ θ β γ ν LLH AIC

1 ARMA(0,0)-GARCH(1,0)-N 3.19E-05 1.000 - - - - - 3720.50 -5.108
2 ARMA(1,0)-GARCH(1,0)-N 1.22E-04 0.393 0.752 - - - - 4264.32 -5.853
3 ARMA(0,1)-GARCH(1,0)-N 1.54E-04 0.383 - 0.527 - - - 4087.55 -5.611
4 ARMA(1,1)-GARCH(1,0)-N 1.20E-04 0.416 0.762 -0.027 - - - 4264.39 -5.852
5 ARMA(0,0)-GARCH(0,1)-N 1.21E-06 - - - 0.997 - - 3668.48 -5.036
6 ARMA(1,0)-GARCH(0,1)-N 6.46E-07 - 0.695 - 0.997 - - 4147.61 -5.693
7 ARMA(0,1)-GARCH(0,1)-N 6.51E-07 - - 0.580 0.998 - - 4002.63 -5.494
8 ARMA(1,1)-GARCH(0,1)-N 1.25E-06 - 0.703 -0.016 0.994 - - 4145.28 -5.689
9 ARMA(0,0)-GARCH(1,1)-N 1.27E-06 0.100 - - 0.900 - - 3822.43 -5.246

10 ARMA(1,0)-GARCH(1,1)-N 7.43E-07 0.087 0.749 - 0.913 - - 4304.15 -5.907
11 ARMA(0,1)-GARCH(1,1)-N 7.67E-07 0.086 - 0.590 0.914 - - 4124.38 -5.660
12 ARMA(1,1)-GARCH(1,1)-N 2.98E-06 0.116 0.799 -0.109 0.884 - - 4318.25 -5.925
13 ARMA(0,0)-GJR-GARCH(1,0)-N 1.19E-04 0.722 - - - 0.134 - 3914.13 -5.372
14 ARMA(1,0)-GJR-GARCH(1,0)-N 4.89E-06 0.500 -0.009 - - 1.000 - 2415.83 -3.313
15 ARMA(0,1)-GJR-GARCH(1,0)-N 3.33E-06 0.500 - -0.009 - 1.000 - 2016.47 -2.764
16 ARMA(1,1)-GJR-GARCH(1,0)-N 1.23E-04 0.305 0.767 -0.050 - 0.127 - 4267.69 -5.855
17 ARMA(0,0)-GJR-GARCH(0,1)-N 1.21E-06 - - - 0.997 - - 3668.48 -5.036
18 ARMA(1,0)-GJR-GARCH(0,1)-N 6.46E-07 - 0.695 - 0.997 - - 4147.61 -5.693
19 ARMA(0,1)-GJR-GARCH(0,1)-N 6.51E-07 - - 0.580 0.998 - - 4002.63 -5.494
20 ARMA(1,1)-GJR-GARCH(0,1)-N 1.25E-06 - 0.703 -0.016 0.994 - - 4145.28 -5.689
21 ARMA(0,0)-GJR-GARCH(1,1)-N 9.52E-07 0.144 - - 0.834 0.045 - 3824.91 -5.248
22 ARMA(1,0)-GJR-GARCH(1,1)-N 9.13E-07 0.072 0.763 - 0.903 0.050 - 4306.23 -5.908
23 ARMA(0,1)-GJR-GARCH(1,1)-N 3.77E-06 0.115 - 0.589 0.878 -0.000 - 4137.46 -5.676
24 ARMA(1,1)-GJR-GARCH(1,1)-N 2.35E-06 0.075 0.815 -0.123 0.894 0.051 - 4319.25 -5.925
25 ARMA(0,0)-E-GARCH(1,0)-N -8.15E+00 -0.006 - - - 0.905 - 3869.42 -5.311
26 ARMA(1,0)-E-GARCH(1,0)-N -8.62E+00 -0.074 0.715 - - 0.432 - 4239.87 -5.819
27 ARMA(0,1)-E-GARCH(1,0)-N -8.40E+00 -0.001 - 0.518 - 0.449 - 4066.71 -5.581
28 ARMA(1,1)-E-GARCH(1,0)-N -8.63E+00 -0.082 0.752 -0.101 - 0.442 - 4241.87 -5.820
29 ARMA(0,0)-E-GARCH(0,1)-N 1.61E-04 - - - 1.000 - - 3674.53 -5.045
30 ARMA(1,0)-E-GARCH(0,1)-N 1.94E-04 - 0.697 - 1.000 - - 4155.06 -5.703
31 ARMA(0,1)-E-GARCH(0,1)-N 1.79E-04 - - 0.583 1.000 - - 4008.53 -5.502
32 ARMA(1,1)-E-GARCH(0,1)-N -1.56E-04 - 0.705 -0.018 1.000 - - 4155.02 -5.702
33 ARMA(0,0)-E-GARCH(1,1)-N -1.57E-01 -0.013 - - 0.980 0.443 - 3848.71 -5.281
34 ARMA(1,0)-E-GARCH(1,1)-N -6.13E-01 -0.054 0.775 - 0.928 0.320 - 4327.06 -5.937
35 ARMA(0,1)-E-GARCH(1,1)-N -6.24E-01 -0.015 - 0.575 0.925 0.321 - 4139.77 -5.680
36 ARMA(1,1)-E-GARCH(1,1)-N -7.19E-01 -0.066 0.819 -0.126 0.916 0.332 - 4330.61 -5.940

Table A.1: Overview of the first 36 of the fitted ARMA-GARCH models for the spot price data
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APPENDIX A. OVERVIEW OF ARMA-GARCH MODEL FITS

Model ω α φ θ β γ ν LLH AIC

37 ARMA(0,0)-GARCH(1,0)-t 1.08E-04 0.867 - - - - 12.081 3928.39 -5.392
38 ARMA(1,0)-GARCH(1,0)-t 1.21E-04 0.421 0.775 - - - 4.035 4364.21 -5.989
39 ARMA(0,1)-GARCH(1,0)-t 1.57E-04 0.346 - 0.567 - - 5.585 4147.47 -5.692
40 ARMA(1,1)-GARCH(1,0)-t 1.22E-04 0.430 0.809 -0.098 - - 3.994 4366.64 -5.991
41 ARMA(0,0)-GARCH(0,1)-t 8.62E-07 - - - 0.998 - 4.772 3747.01 -5.143
42 ARMA(1,0)-GARCH(0,1)-t 5.63E-07 - 0.764 - 0.999 - 2.493 4327.05 -5.938
43 ARMA(0,1)-GARCH(0,1)-t 2.77E-07 - - 0.596 1.000 - 2.757 4103.04 -5.631
44 ARMA(1,1)-GARCH(0,1)-t 9.83E-07 - 0.773 -0.021 0.998 - 2.477 4323.23 -5.932
45 ARMA(0,0)-GARCH(1,1)-t 1.01E-04 0.750 - - 0.065 - 11.860 3927.69 -5.390
46 ARMA(1,0)-GARCH(1,1)-t 2.25E-06 0.111 0.766 - 0.887 - 4.634 4382.37 -6.013
47 ARMA(0,1)-GARCH(1,1)-t 3.30E-06 0.139 - 0.592 0.859 - 6.827 4180.92 -5.736
48 ARMA(1,1)-GARCH(1,1)-t 1.65E-06 0.102 0.815 -0.114 0.898 - 4.713 4383.65 -6.013
49 ARMA(0,0)-GJR-GARCH(1,0)-t 9.35E-06 0.977 - - - 0.046 6.226 3559.62 -4.884
50 ARMA(1,0)-GJR-GARCH(1,0)-t 1.26E-04 0.291 0.776 - - 0.273 3.921 4366.40 -5.991
51 ARMA(0,1)-GJR-GARCH(1,0)-t 1.56E-04 0.450 - 0.568 - -0.183 5.531 4148.96 -5.692
52 ARMA(1,1)-GJR-GARCH(1,0)-t 9.01E-06 0.973 0.901 -0.177 - 0.055 4.262 3889.72 -5.335
53 ARMA(0,0)-GJR-GARCH(0,1)-t 8.62E-07 - - - 0.998 - 4.772 3747.01 -5.143
54 ARMA(1,0)-GJR-GARCH(0,1)-t 5.63E-07 - 0.764 - 0.999 - 2.493 4327.05 -5.938
55 ARMA(0,1)-GJR-GARCH(0,1)-t 2.77E-07 - - 0.596 1.000 - 2.757 4103.04 -5.631
56 ARMA(1,1)-GJR-GARCH(0,1)-t 9.83E-07 - 0.773 -0.021 0.998 - 2.477 4323.23 -5.932
57 ARMA(0,0)-GJR-GARCH(1,1)-t 1.01E-04 0.829 - - 0.034 0.017 12.626 3928.36 -5.389
58 ARMA(1,0)-GJR-GARCH(1,1)-t 2.63E-06 0.095 0.778 - 0.876 0.050 4.720 4384.10 -6.014
59 ARMA(0,1)-GJR-GARCH(1,1)-t 3.34E-06 0.122 - 0.590 0.893 -0.043 6.733 4183.59 -5.738
60 ARMA(1,1)-GJR-GARCH(1,1)-t 1.28E-06 0.075 0.830 -0.126 0.900 0.050 4.810 4382.55 -6.010
61 ARMA(0,0)-E-GARCH(1,0)-t -8.18E+00 0.046 - - - 0.953 10.880 3887.61 -5.335
62 ARMA(1,0)-E-GARCH(1,0)-t -8.59E+00 -0.061 0.765 - - 0.490 3.596 4351.24 -5.970
63 ARMA(0,1)-E-GARCH(1,0)-t -8.44E+00 0.064 - 0.561 - 0.439 5.285 4136.23 -5.675
64 ARMA(1,1)-E-GARCH(1,0)-t -8.59E+00 -0.057 0.789 -0.078 - 0.502 3.617 4352.47 -5.970
65 ARMA(0,0)-E-GARCH(0,1)-t 2.95E-04 - - - 1.000 - 3.842 3751.46 -5.149
66 ARMA(1,0)-E-GARCH(0,1)-t -6.23E-01 - 0.756 - 0.926 - 3.090 4316.22 -5.923
67 ARMA(0,1)-E-GARCH(0,1)-t -6.24E-01 - - 0.587 0.925 - 4.588 4104.56 -5.633
68 ARMA(1,1)-E-GARCH(0,1)-t -1.67E-02 - 0.784 -0.027 0.998 - 2.245 4316.65 -5.923
69 ARMA(0,0)-E-GARCH(1,1)-t -6.04E-01 0.016 - - 0.927 0.605 9.742 3899.73 -5.350
70 ARMA(1,0)-E-GARCH(1,1)-t -8.71E-01 -0.082 0.791 - 0.901 0.382 4.666 4398.86 -6.034
71 ARMA(0,1)-E-GARCH(1,1)-t -7.37E-01 0.022 - 0.582 0.914 0.374 6.313 4191.80 -5.750
72 ARMA(1,1)-E-GARCH(1,1)-t -7.86E-01 -0.091 0.840 -0.137 0.911 0.371 4.729 4402.29 -6.037

Table A.2: Overview of the last 36 of the fitted ARMA-GARCH models for the spot price data
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APPENDIX A. OVERVIEW OF ARMA-GARCH MODEL FITS

Model ω α φ θ β γ ν LLH AIC

1 ARMA(0,0)-GARCH(1,0)-N 1.25E-04 1.000 - - - - - 2559.24 -3.513
2 ARMA(1,0)-GARCH(1,0)-N 2.32E-05 1.000 0.051 - - - - 1330.05 -1.823
3 ARMA(0,1)-GARCH(1,0)-N 5.60E-04 0.571 - 0.488 - - - 3081.71 -4.229
4 ARMA(1,1)-GARCH(1,0)-N 4.03E-04 0.736 0.641 0.029 - - - 3236.29 -4.440
5 ARMA(0,0)-GARCH(0,1)-N 4.75E-06 - - - 0.997 - - 2670.77 -3.666
6 ARMA(1,0)-GARCH(0,1)-N 2.57E-06 - 0.653 - 0.997 - - 3074.81 -4.220
7 ARMA(0,1)-GARCH(0,1)-N 2.51E-06 - - 0.489 0.998 - - 2925.76 -4.015
8 ARMA(1,1)-GARCH(0,1)-N 6.10E-08 - 0.764 -0.196 1.000 - - 3087.82 -4.236
9 ARMA(0,0)-GARCH(1,1)-N 4.72E-06 0.100 - - 0.900 - - 2770.96 -3.802

10 ARMA(1,0)-GARCH(1,1)-N 1.54E-05 0.141 0.708 - 0.859 - - 3170.59 -4.350
11 ARMA(0,1)-GARCH(1,1)-N 1.68E-05 0.162 - 0.541 0.838 - - 3044.40 -4.176
12 ARMA(1,1)-GARCH(1,1)-N 2.20E-05 0.100 0.783 -0.147 0.890 - - 3171.32 -4.349
13 ARMA(0,0)-GJR-GARCH(1,0)-N 5.55E-04 0.553 - - - 0.248 - 2935.87 -4.029
14 ARMA(1,0)-GJR-GARCH(1,0)-N 3.88E-04 0.374 0.664 - - 0.965 - 3257.46 -4.469
15 ARMA(0,1)-GJR-GARCH(1,0)-N 1.21E-05 0.990 - 1.000 - 0.020 - 225.97 -0.305
16 ARMA(1,1)-GJR-GARCH(1,0)-N 3.87E-04 0.381 0.656 0.018 - 0.928 - 3257.60 -4.468
17 ARMA(0,0)-GJR-GARCH(0,1)-N 4.75E-06 - - - 0.997 - - 2670.77 -3.666
18 ARMA(1,0)-GJR-GARCH(0,1)-N 2.57E-06 - 0.653 - 0.997 - - 3074.81 -4.220
19 ARMA(0,1)-GJR-GARCH(0,1)-N 2.51E-06 - - 0.489 0.998 - - 2925.76 -4.015
20 ARMA(1,1)-GJR-GARCH(0,1)-N 6.10E-08 - 0.764 -0.196 1.000 - - 3087.82 -4.236
21 ARMA(0,0)-GJR-GARCH(1,1)-N 3.67E-06 0.075 - - 0.900 0.050 - 2756.66 -3.781
22 ARMA(1,0)-GJR-GARCH(1,1)-N 3.32E-04 0.371 0.684 - 0.082 0.840 - 3259.16 -4.470
23 ARMA(0,1)-GJR-GARCH(1,1)-N 9.87E-05 0.105 - 0.545 0.795 0.027 - 3055.92 -4.191
24 ARMA(1,1)-GJR-GARCH(1,1)-N 4.86E-06 0.075 0.795 -0.144 0.900 0.050 - 3142.13 -4.308
25 ARMA(0,0)-E-GARCH(1,0)-N -6.76E+00 -0.115 - - - 0.785 - 2878.15 -3.949
26 ARMA(1,0)-E-GARCH(1,0)-N -7.19E+00 -0.111 0.663 - - 0.601 - 3207.23 -4.400
27 ARMA(0,1)-E-GARCH(1,0)-N -6.97E+00 -0.099 - 0.451 - 0.571 - 3036.87 -4.166
28 ARMA(1,1)-E-GARCH(1,0)-N -7.19E+00 -0.121 0.681 -0.050 - 0.597 - 3207.84 -4.400
29 ARMA(0,0)-E-GARCH(0,1)-N -2.81E-04 - - - 1.000 - - 2671.00 -3.666
30 ARMA(1,0)-E-GARCH(0,1)-N 7.70E-05 - 0.659 - 1.000 - - 3076.20 -4.221
31 ARMA(0,1)-E-GARCH(0,1)-N 6.62E-05 - - 0.500 1.000 - - 2926.54 -4.016
32 ARMA(1,1)-E-GARCH(0,1)-N 4.37E-06 - 0.764 -0.196 1.000 - - 3087.89 -4.236
33 ARMA(0,0)-E-GARCH(1,1)-N -1.69E+00 -0.020 - - 0.748 0.671 - 2897.57 -3.975
34 ARMA(1,0)-E-GARCH(1,1)-N -3.08E+00 -0.146 0.713 - 0.569 0.653 - 3247.22 -4.454
35 ARMA(0,1)-E-GARCH(1,1)-N -6.71E-01 -0.036 - 0.573 0.901 0.421 - 3089.28 -4.237
36 ARMA(1,1)-E-GARCH(1,1)-N -1.79E+00 -0.106 0.763 -0.088 0.746 0.535 - 3237.54 -4.439

Table A.3: Overview of the first 36 of the fitted ARMA-GARCH models for the load data
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Model ω α φ θ β γ ν LLH AIC

37 ARMA(0,0)-GARCH(1,0)-t 4.22E-04 0.870 - - - - 6.661 3008.47 -4.128
38 ARMA(1,0)-GARCH(1,0)-t 4.10E-04 0.560 0.727 - - - 3.767 3428.04 -4.703
39 ARMA(0,1)-GARCH(1,0)-t 5.38E-04 0.611 - 0.485 - - 4.301 3199.85 -4.390
40 ARMA(1,1)-GARCH(1,0)-t 4.14E-04 0.549 0.759 -0.077 - - 3.681 3429.82 -4.704
41 ARMA(0,0)-GARCH(0,1)-t 3.22E-06 - - - 0.998 - 3.515 2828.05 -3.881
42 ARMA(1,0)-GARCH(0,1)-t 5.73E-06 - 0.732 - 0.996 - 2.513 3344.77 -4.589
43 ARMA(0,1)-GARCH(0,1)-t 2.49E-06 - - 0.484 0.998 - 3.037 3130.09 -4.294
44 ARMA(1,1)-GARCH(0,1)-t 4.18E-06 - 0.772 -0.142 0.997 - 2.601 3350.99 -4.596
45 ARMA(0,0)-GARCH(1,1)-t 1.50E-04 0.100 - - 0.757 - 5.324 2914.02 -3.997
46 ARMA(1,0)-GARCH(1,1)-t 2.91E-04 0.222 0.750 - 0.304 - 3.952 3420.88 -4.692
47 ARMA(0,1)-GARCH(1,1)-t 1.36E-05 0.080 - 0.518 0.909 - 4.667 3153.02 -4.324
48 ARMA(1,1)-GARCH(1,1)-t 1.50E-05 0.078 0.792 -0.154 0.901 - 3.741 3367.17 -4.617
49 ARMA(0,0)-GJR-GARCH(1,0)-t 4.08E-04 0.892 - - - 0.050 6.145 3008.18 -4.127
50 ARMA(1,0)-GJR-GARCH(1,0)-t 4.46E-04 0.435 0.730 - - 0.344 3.492 3430.54 -4.705
51 ARMA(0,1)-GJR-GARCH(1,0)-t 4.86E-04 0.586 - 0.483 - 0.087 4.646 3200.66 -4.390
52 ARMA(1,1)-GJR-GARCH(1,0)-t 3.27E-04 0.561 0.720 0.008 - 0.255 4.085 3425.82 -4.698
53 ARMA(0,0)-GJR-GARCH(0,1)-t 3.22E-06 - - - 0.998 - 3.515 2828.05 -3.881
54 ARMA(1,0)-GJR-GARCH(0,1)-t 5.73E-06 - 0.732 - 0.996 - 2.513 3344.77 -4.589
55 ARMA(0,1)-GJR-GARCH(0,1)-t 2.49E-06 - - 0.484 0.998 - 3.037 3130.09 -4.294
56 ARMA(1,1)-GJR-GARCH(0,1)-t 4.18E-06 - 0.772 -0.142 0.997 - 2.601 3350.99 -4.596
57 ARMA(0,0)-GJR-GARCH(1,1)-t 4.03E-04 0.827 - - 0.020 0.069 6.733 3008.93 -4.126
58 ARMA(1,0)-GJR-GARCH(1,1)-t 1.39E-04 0.287 0.757 - 0.613 0.034 3.231 3410.48 -4.676
59 ARMA(0,1)-GJR-GARCH(1,1)-t 4.50E-05 0.241 - 0.531 0.764 -0.065 5.035 3188.45 -4.371
60 ARMA(1,1)-GJR-GARCH(1,1)-t 3.02E-04 0.348 0.785 -0.101 0.175 0.265 3.936 3438.06 -4.713
61 ARMA(0,0)-E-GARCH(1,0)-t -6.87E+00 0.021 - - - 0.940 6.080 2959.51 -4.060
62 ARMA(1,0)-E-GARCH(1,0)-t -7.26E+00 -0.013 0.728 - - 0.670 3.362 3413.48 -4.682
63 ARMA(0,1)-E-GARCH(1,0)-t -7.07E+00 0.026 - 0.480 - 0.609 4.209 3177.69 -4.358
64 ARMA(1,1)-E-GARCH(1,0)-t -7.27E+00 -0.009 0.751 -0.060 - 0.652 3.378 3414.41 -4.682
65 ARMA(0,0)-E-GARCH(0,1)-t 7.41E-05 - - - 1.000 - 3.449 2828.57 -3.881
66 ARMA(1,0)-E-GARCH(0,1)-t -6.27E-01 - 0.729 - 0.909 - 2.742 3342.81 -4.586
67 ARMA(0,1)-E-GARCH(0,1)-t -6.25E-01 - - 0.483 0.909 - 3.429 3128.99 -4.293
68 ARMA(1,1)-E-GARCH(0,1)-t 3.75E-04 - 0.773 -0.144 1.000 - 2.628 3354.10 -4.600
69 ARMA(0,0)-E-GARCH(1,1)-t -1.76E+00 0.036 - - 0.745 0.802 6.242 2977.31 -4.083
70 ARMA(1,0)-E-GARCH(1,1)-t -7.76E-01 -0.028 0.755 - 0.894 0.403 3.473 3405.16 -4.669
71 ARMA(0,1)-E-GARCH(1,1)-t -7.23E-01 0.014 - 0.526 0.899 0.435 4.558 3202.00 -4.390
72 ARMA(1,1)-E-GARCH(1,1)-t -8.96E-01 -0.031 0.805 -0.130 0.877 0.401 3.475 3413.18 -4.679

Table A.4: Overview of the last 36 of the fitted ARMA-GARCH models for the load data
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Model ω α φ θ β γ ν LLH AIC

1 ARMA(0,0)-GARCH(1,0)-N 9.28E-02 0.388 - - - - - -615.55 0.848
2 ARMA(1,0)-GARCH(1,0)-N 9.03E-02 0.239 0.493 - - - - -477.42 0.660
3 ARMA(0,1)-GARCH(1,0)-N 9.40E-02 0.238 - 0.408 - - - -507.87 0.702
4 ARMA(1,1)-GARCH(1,0)-N 9.01E-02 0.242 0.460 0.047 - - - -477.07 0.661
5 ARMA(0,0)-GARCH(0,1)-N 1.53E-04 - - - 0.999 - - -696.88 0.960
6 ARMA(1,0)-GARCH(0,1)-N 2.80E-03 - 0.481 - 0.976 - - -506.12 0.699
7 ARMA(0,1)-GARCH(0,1)-N 3.95E-04 - - 0.424 0.997 - - -537.38 0.742
8 ARMA(1,1)-GARCH(0,1)-N 4.96E-04 - 0.466 0.019 0.996 - - -506.16 0.701
9 ARMA(0,0)-GARCH(1,1)-N 1.40E-02 0.242 - - 0.675 - - -591.13 0.816

10 ARMA(1,0)-GARCH(1,1)-N 1.60E-03 0.067 0.486 - 0.920 - - -412.27 0.572
11 ARMA(0,1)-GARCH(1,1)-N 1.55E-03 0.067 - 0.428 0.921 - - -442.84 0.614
12 ARMA(1,1)-GARCH(1,1)-N 1.60E-03 0.067 0.467 0.024 0.920 - - -412.18 0.573
13 ARMA(0,0)-GJR-GARCH(1,0)-N 9.28E-02 0.412 - - - -0.048 - -615.37 0.849
14 ARMA(1,0)-GJR-GARCH(1,0)-N 8.99E-02 0.296 0.491 - - -0.099 - -476.51 0.660
15 ARMA(0,1)-GJR-GARCH(1,0)-N 9.36E-02 0.308 - 0.409 - -0.127 - -506.26 0.701
16 ARMA(1,1)-GJR-GARCH(1,0)-N 8.96E-02 0.299 0.457 0.049 - -0.101 - -476.12 0.661
17 ARMA(0,0)-GJR-GARCH(0,1)-N 1.53E-04 - - - 0.999 - - -696.88 0.960
18 ARMA(1,0)-GJR-GARCH(0,1)-N 2.80E-03 - 0.481 - 0.976 - - -506.12 0.699
19 ARMA(0,1)-GJR-GARCH(0,1)-N 3.95E-04 - - 0.424 0.997 - - -537.38 0.742
20 ARMA(1,1)-GJR-GARCH(0,1)-N 4.96E-04 - 0.466 0.019 0.996 - - -506.16 0.701
21 ARMA(0,0)-GJR-GARCH(1,1)-N 1.18E-02 0.258 - - 0.707 -0.064 - -589.80 0.816
22 ARMA(1,0)-GJR-GARCH(1,1)-N 1.70E-03 0.095 0.482 - 0.918 -0.047 - -409.86 0.570
23 ARMA(0,1)-GJR-GARCH(1,1)-N 1.61E-03 0.092 - 0.428 0.920 -0.044 - -439.76 0.611
24 ARMA(1,1)-GJR-GARCH(1,1)-N 1.69E-03 0.095 0.460 0.029 0.918 -0.047 - -409.72 0.571
25 ARMA(0,0)-E-GARCH(1,0)-N -1.97E+00 0.022 - - - 0.544 - -632.96 0.874
26 ARMA(1,0)-E-GARCH(1,0)-N -2.17E+00 0.033 0.501 - - 0.351 - -482.02 0.668
27 ARMA(0,1)-E-GARCH(1,0)-N -2.13E+00 0.047 - 0.411 - 0.332 - -514.54 0.712
28 ARMA(1,1)-E-GARCH(1,0)-N -2.17E+00 0.035 0.471 0.044 - 0.355 - -481.71 0.669
29 ARMA(0,0)-E-GARCH(0,1)-N -4.85E-02 - - - 0.974 - - -696.83 0.960
30 ARMA(1,0)-E-GARCH(0,1)-N -5.27E-02 - 0.481 - 0.976 - - -506.12 0.699
31 ARMA(0,1)-E-GARCH(0,1)-N -4.97E-02 - - 0.423 0.977 - - -537.31 0.742
32 ARMA(1,1)-E-GARCH(0,1)-N -5.27E-02 - 0.466 0.019 0.976 - - -506.06 0.701
33 ARMA(0,0)-E-GARCH(1,1)-N -3.45E-01 0.017 - - 0.832 0.476 - -592.72 0.820
34 ARMA(1,0)-E-GARCH(1,1)-N -3.56E-02 0.007 0.485 - 0.984 0.133 - -411.50 0.572
35 ARMA(0,1)-E-GARCH(1,1)-N -3.31E-02 0.008 - 0.427 0.985 0.132 - -442.46 0.615
36 ARMA(1,1)-E-GARCH(1,1)-N -3.56E-02 0.008 0.457 0.036 0.984 0.134 - -411.29 0.573

Table A.5: Overview of the first 36 of the fitted ARMA-GARCH models for the solar data
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Model ω α φ θ β γ ν LLH AIC

37 ARMA(0,0)-GARCH(1,0)-t 9.20E-02 0.401 - - - - 45.283 -615.58 0.850
38 ARMA(1,0)-GARCH(1,0)-t 8.97E-02 0.261 0.526 - - - 8.716 -466.34 0.646
39 ARMA(0,1)-GARCH(1,0)-t 9.32E-02 0.251 - 0.419 - - 13.366 -502.80 0.696
40 ARMA(1,1)-GARCH(1,0)-t 8.96E-02 0.261 0.502 0.035 - - 8.775 -466.12 0.647
41 ARMA(0,0)-GARCH(0,1)-t 3.73E-03 - - - 0.975 - 17.378 -693.56 0.957
42 ARMA(1,0)-GARCH(0,1)-t 1.20E-04 - 0.514 - 0.999 - 7.545 -490.43 0.679
43 ARMA(0,1)-GARCH(0,1)-t 3.08E-04 - - 0.437 0.997 - 10.254 -528.49 0.731
44 ARMA(1,1)-GARCH(0,1)-t 1.20E-04 - 0.506 0.011 0.999 - 7.562 -490.40 0.680
45 ARMA(0,0)-GARCH(1,1)-t 1.34E-02 0.241 - - 0.681 - 97.390 -591.13 0.817
46 ARMA(1,0)-GARCH(1,1)-t 1.32E-03 0.072 0.505 - 0.919 - 13.060 -404.93 0.563
47 ARMA(0,1)-GARCH(1,1)-t 1.31E-03 0.070 - 0.434 0.920 - 20.296 -439.39 0.610
48 ARMA(1,1)-GARCH(1,1)-t 1.31E-03 0.072 0.488 0.023 0.919 - 13.093 -404.84 0.564
49 ARMA(0,0)-GJR-GARCH(1,0)-t 9.22E-02 0.423 - - - -0.056 79.049 -615.21 0.851
50 ARMA(1,0)-GJR-GARCH(1,0)-t 8.92E-02 0.314 0.522 - - -0.093 8.849 -465.79 0.647
51 ARMA(0,1)-GJR-GARCH(1,0)-t 9.27E-02 0.335 - 0.418 - -0.149 13.100 -501.03 0.695
52 ARMA(1,1)-GJR-GARCH(1,0)-t 8.91E-02 0.315 0.497 0.036 - -0.093 8.918 -465.57 0.648
53 ARMA(0,0)-GJR-GARCH(0,1)-t 3.73E-03 - - - 0.975 - 17.378 -693.56 0.957
54 ARMA(1,0)-GJR-GARCH(0,1)-t 1.20E-04 - 0.514 - 0.999 - 7.545 -490.43 0.679
55 ARMA(0,1)-GJR-GARCH(0,1)-t 3.08E-04 - - 0.437 0.997 - 10.254 -528.49 0.731
56 ARMA(1,1)-GJR-GARCH(0,1)-t 1.20E-04 - 0.506 0.011 0.999 - 7.562 -490.40 0.680
57 ARMA(0,0)-GJR-GARCH(1,1)-t 1.13E-02 0.259 - - 0.712 -0.068 89.149 -589.65 0.817
58 ARMA(1,0)-GJR-GARCH(1,1)-t 1.37E-03 0.101 0.497 - 0.917 -0.050 13.414 -402.84 0.562
59 ARMA(0,1)-GJR-GARCH(1,1)-t 1.33E-03 0.099 - 0.432 0.920 -0.050 19.114 -435.97 0.607
60 ARMA(1,1)-GJR-GARCH(1,1)-t 1.36E-03 0.101 0.476 0.029 0.918 -0.050 13.436 -402.71 0.563
61 ARMA(0,0)-E-GARCH(1,0)-t -1.97E+00 0.025 - - - 0.550 100.000 -632.88 0.875
62 ARMA(1,0)-E-GARCH(1,0)-t -2.17E+00 0.022 0.531 - - 0.368 8.693 -470.98 0.654
63 ARMA(0,1)-E-GARCH(1,0)-t -2.13E+00 0.050 - 0.424 - 0.337 13.079 -509.49 0.707
64 ARMA(1,1)-E-GARCH(1,0)-t -2.17E+00 0.022 0.514 0.025 - 0.369 8.734 -470.85 0.655
65 ARMA(0,0)-E-GARCH(0,1)-t -4.71E-02 - - - 0.975 - 17.381 -693.56 0.957
66 ARMA(1,0)-E-GARCH(0,1)-t -4.02E-01 - 0.514 - 0.812 - 7.638 -490.44 0.679
67 ARMA(0,1)-E-GARCH(0,1)-t -4.71E-02 - - 0.437 0.978 - 10.501 -528.44 0.731
68 ARMA(1,1)-E-GARCH(0,1)-t -3.47E-01 - 0.505 0.012 0.838 - 7.665 -490.42 0.681
69 ARMA(0,0)-E-GARCH(1,1)-t -3.34E-01 0.019 - - 0.838 0.475 99.379 -592.64 0.821
70 ARMA(1,0)-E-GARCH(1,1)-t -3.13E-02 0.009 0.499 - 0.987 0.144 13.002 -404.08 0.563
71 ARMA(0,1)-E-GARCH(1,1)-t -2.92E-02 0.011 - 0.431 0.987 0.139 19.133 -438.70 0.611
72 ARMA(1,1)-E-GARCH(1,1)-t -3.12E-02 0.009 0.475 0.034 0.987 0.144 13.031 -403.90 0.564

Table A.6: Overview of the last 36 of the fitted ARMA-GARCH models for the solar data
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Model ω α φ θ β γ ν LLH AIC

1 ARMA(0,0)-GARCH(1,0)-N 3.30E-01 0.350 - - - - - -1517.38 2.087
2 ARMA(1,0)-GARCH(1,0)-N 3.33E-01 0.013 0.580 - - - - -1275.61 1.756
3 ARMA(0,1)-GARCH(1,0)-N 3.46E-01 0.033 - 0.529 - - - -1316.53 1.813
4 ARMA(1,1)-GARCH(1,0)-N 3.31E-01 0.008 0.455 0.192 - - - -1266.84 1.746
5 ARMA(0,0)-GARCH(0,1)-N 4.73E-04 - - - 0.999 - - -1575.21 2.166
6 ARMA(1,0)-GARCH(0,1)-N 3.17E-04 - 0.581 - 0.999 - - -1275.37 1.756
7 ARMA(0,1)-GARCH(0,1)-N 3.33E-04 - - 0.534 0.999 - - -1316.81 1.813
8 ARMA(1,1)-GARCH(0,1)-N 3.13E-04 - 0.455 0.192 0.999 - - -1266.51 1.745
9 ARMA(0,0)-GARCH(1,1)-N 3.30E-01 0.350 - - 0.000 - - -1517.38 2.088

10 ARMA(1,0)-GARCH(1,1)-N 1.42E-03 0.007 0.582 - 0.988 - - -1273.35 1.755
11 ARMA(0,1)-GARCH(1,1)-N 1.08E-03 0.007 - 0.534 0.990 - - -1314.88 1.812
12 ARMA(1,1)-GARCH(1,1)-N 1.38E-03 0.007 0.457 0.191 0.989 - - -1264.61 1.744
13 ARMA(0,0)-GJR-GARCH(1,0)-N 3.31E-01 0.288 - - - 0.118 - -1516.19 2.087
14 ARMA(1,0)-GJR-GARCH(1,0)-N 3.10E-01 0.000 0.580 - - 0.155 - -1267.93 1.747
15 ARMA(0,1)-GJR-GARCH(1,0)-N 3.29E-01 0.000 - 0.524 - 0.147 - -1309.87 1.805
16 ARMA(1,1)-GJR-GARCH(1,0)-N 3.05E-01 0.000 0.460 0.194 - 0.163 - -1258.61 1.736
17 ARMA(0,0)-GJR-GARCH(0,1)-N 4.73E-04 - - - 0.999 - - -1575.21 2.166
18 ARMA(1,0)-GJR-GARCH(0,1)-N 3.17E-04 - 0.581 - 0.999 - - -1275.37 1.756
19 ARMA(0,1)-GJR-GARCH(0,1)-N 3.33E-04 - - 0.534 0.999 - - -1316.81 1.813
20 ARMA(1,1)-GJR-GARCH(0,1)-N 3.13E-04 - 0.455 0.192 0.999 - - -1266.51 1.745
21 ARMA(0,0)-GJR-GARCH(1,1)-N 3.31E-01 0.288 - - 0.000 0.118 - -1516.19 2.088
22 ARMA(1,0)-GJR-GARCH(1,1)-N 1.20E-03 0.005 0.582 - 0.989 0.004 - -1273.27 1.756
23 ARMA(0,1)-GJR-GARCH(1,1)-N 8.00E-04 0.006 - 0.534 0.991 0.002 - -1314.85 1.813
24 ARMA(1,1)-GJR-GARCH(1,1)-N 1.02E-03 0.005 0.457 0.191 0.990 0.004 - -1264.51 1.745
25 ARMA(0,0)-E-GARCH(1,0)-N -7.64E-01 -0.091 - - - 0.558 - -1519.12 2.091
26 ARMA(1,0)-E-GARCH(1,0)-N -1.12E+00 -0.311 0.608 - - -0.199 - -1246.25 1.717
27 ARMA(0,1)-E-GARCH(1,0)-N -1.04E+00 -0.196 - 0.538 - -0.051 - -1303.05 1.795
28 ARMA(1,1)-E-GARCH(1,0)-N -1.14E+00 -0.331 0.491 0.184 - -0.233 - -1234.68 1.703
29 ARMA(0,0)-E-GARCH(0,1)-N -5.69E-05 - - - 1.000 - - -1574.94 2.166
30 ARMA(1,0)-E-GARCH(0,1)-N -1.07E-01 - 0.581 - 0.901 - - -1275.76 1.757
31 ARMA(0,1)-E-GARCH(0,1)-N -5.51E-05 - - 0.534 1.000 - - -1316.53 1.813
32 ARMA(1,1)-E-GARCH(0,1)-N -1.08E-01 - 0.455 0.192 0.901 - - -1266.90 1.746
33 ARMA(0,0)-E-GARCH(1,1)-N -6.58E-01 -0.080 - - 0.145 0.578 - -1517.96 2.091
34 ARMA(1,0)-E-GARCH(1,1)-N -1.04E+00 -0.311 0.610 - 0.075 -0.196 - -1246.07 1.719
35 ARMA(0,1)-E-GARCH(1,1)-N -1.10E+00 -0.199 - 0.538 -0.049 -0.060 - -1303.00 1.797
36 ARMA(1,1)-E-GARCH(1,1)-N -9.97E-01 -0.333 0.496 0.187 0.125 -0.230 - -1234.01 1.703

Table A.7: Overview of the first 36 of the fitted ARMA-GARCH models for the wind data
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Model ω α φ θ β γ ν LLH AIC

37 ARMA(0,0)-GARCH(1,0)-t 3.30E-01 0.355 - - - - 100.000 -1518.88 2.091
38 ARMA(1,0)-GARCH(1,0)-t 3.34E-01 0.013 0.581 - - - 99.992 -1275.89 1.758
39 ARMA(0,1)-GARCH(1,0)-t 3.46E-01 0.033 - 0.530 - - 99.999 -1317.21 1.815
40 ARMA(1,1)-GARCH(1,0)-t 3.31E-01 0.008 0.457 0.191 - - 99.996 -1267.19 1.748
41 ARMA(0,0)-GARCH(0,1)-t 4.75E-04 - - - 0.999 - 99.999 -1575.95 2.169
42 ARMA(1,0)-GARCH(0,1)-t 1.07E-01 - 0.582 - 0.683 - 99.997 -1276.04 1.758
43 ARMA(0,1)-GARCH(0,1)-t 7.28E-02 - - 0.535 0.797 - 99.998 -1317.92 1.816
44 ARMA(1,1)-GARCH(0,1)-t 3.13E-04 - 0.457 0.191 0.999 - 97.736 -1266.90 1.747
45 ARMA(0,0)-GARCH(1,1)-t 3.30E-01 0.355 - - 0.000 - 100.000 -1518.88 2.092
46 ARMA(1,0)-GARCH(1,1)-t 1.44E-03 0.007 0.583 - 0.988 - 99.864 -1273.72 1.756
47 ARMA(0,1)-GARCH(1,1)-t 1.09E-03 0.007 - 0.535 0.990 - 100.000 -1315.61 1.814
48 ARMA(1,1)-GARCH(1,1)-t 1.40E-03 0.007 0.459 0.190 0.988 - 93.291 -1265.07 1.746
49 ARMA(0,0)-GJR-GARCH(1,0)-t 3.31E-01 0.297 - - - 0.112 100.000 -1517.86 2.090
50 ARMA(1,0)-GJR-GARCH(1,0)-t 3.10E-01 0.000 0.582 - - 0.158 84.209 -1268.31 1.749
51 ARMA(0,1)-GJR-GARCH(1,0)-t 3.30E-01 0.000 - 0.526 - 0.148 99.999 -1310.66 1.807
52 ARMA(1,1)-GJR-GARCH(1,0)-t 3.05E-01 0.000 0.462 0.194 - 0.167 98.331 -1258.91 1.738
53 ARMA(0,0)-GJR-GARCH(0,1)-t 4.75E-04 - - - 0.999 - 99.999 -1575.95 2.169
54 ARMA(1,0)-GJR-GARCH(0,1)-t 1.07E-01 - 0.582 - 0.683 - 99.997 -1276.04 1.758
55 ARMA(0,1)-GJR-GARCH(0,1)-t 7.28E-02 - - 0.535 0.797 - 99.998 -1317.92 1.816
56 ARMA(1,1)-GJR-GARCH(0,1)-t 3.13E-04 - 0.457 0.191 0.999 - 97.736 -1266.90 1.747
57 ARMA(0,0)-GJR-GARCH(1,1)-t 3.31E-01 0.297 - - 0.000 0.112 100.000 -1517.86 2.092
58 ARMA(1,0)-GJR-GARCH(1,1)-t 1.24E-03 0.005 0.583 - 0.989 0.004 99.742 -1273.65 1.758
59 ARMA(0,1)-GJR-GARCH(1,1)-t 8.18E-04 0.006 - 0.535 0.991 0.002 99.993 -1315.58 1.815
60 ARMA(1,1)-GJR-GARCH(1,1)-t 1.03E-03 0.005 0.459 0.190 0.990 0.004 99.809 -1264.94 1.747
61 ARMA(0,0)-E-GARCH(1,0)-t -7.59E-01 -0.087 - - - 0.565 100.000 -1520.91 2.095
62 ARMA(1,0)-E-GARCH(1,0)-t -1.12E+00 -0.313 0.610 - - -0.199 100.000 -1246.96 1.720
63 ARMA(0,1)-E-GARCH(1,0)-t -1.04E+00 -0.197 - 0.540 - -0.050 100.000 -1304.03 1.798
64 ARMA(1,1)-E-GARCH(1,0)-t -1.14E+00 -0.334 0.493 0.184 - -0.234 100.000 -1235.14 1.705
65 ARMA(0,0)-E-GARCH(0,1)-t -5.43E-05 - - - 1.000 - 100.000 -1575.70 2.169
66 ARMA(1,0)-E-GARCH(0,1)-t -4.99E-05 - 0.582 - 1.000 - 99.981 -1275.45 1.757
67 ARMA(0,1)-E-GARCH(0,1)-t -1.90E-01 - - 0.535 0.815 - 99.995 -1317.92 1.816
68 ARMA(1,1)-E-GARCH(0,1)-t -5.06E-05 - 0.457 0.191 1.000 - 99.998 -1266.64 1.747
69 ARMA(0,0)-E-GARCH(1,1)-t -6.51E-01 -0.076 - - 0.148 0.585 100.000 -1519.73 2.094
70 ARMA(1,0)-E-GARCH(1,1)-t -1.02E+00 -0.313 0.612 - 0.084 -0.195 100.000 -1246.74 1.721
71 ARMA(0,1)-E-GARCH(1,1)-t -1.10E+00 -0.200 - 0.539 -0.055 -0.060 100.000 -1303.96 1.799
72 ARMA(1,1)-E-GARCH(1,1)-t -9.93E-01 -0.336 0.498 0.188 0.127 -0.231 100.000 -1234.47 1.705

Table A.8: Overview of the last 36 of the fitted ARMA-GARCH models for the wind data
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