
A Hybrid Learning Approach to Stochastic
Routing

Master’s thesis (4+4)
Simon Aagaard Pedersen

Software Engineering

Copyright ©Aalborg University 2019

Computer Science
Aalborg University
http://www.aau.dk

Title:
A Hybrid Learning Approach to Stochastic Routing

Theme:
Scientific Theme

Project Period:
Spring Semester 2019

Participant(s):
Simon Aagaard Pedersen

Supervisor(s):
Christian S. Jensen

Bin Yang

Copies: 1

Page Numbers: 16

Date of Completion:
16th August 2019

The content of this report is freely available, but publication (with reference)

may only be pursued due to agreement with the author.

http://www.aau.dk

Project Summary
Routing is a central component of many GPS-based
applications, and an increasingly large amount of historical
routing data is becoming available. This data can be applied
to modern routing models and algorithms to enable a
better approximation of real-life road networks. This paper
investigates how historical data in combination with machine
learning can be applied to accurately estimate traversal
costs and integrates the resulting estimation technique into
a stochastic graph network model called the Hybrid Model
to more accurately capture the mobility of real-life road
networks. The model encodes road intersections as vertices
and road segments as edges, and each edge is associated with
a distribution that represents a traversal cost of the edge.
Following the construction of the model, we examine why
traditional routing algorithms such as Dijkstra’s algorithm
cannot be applied in the model, and we propose a routing
algorithm, called Hybrid Search, that enables stochastic
routing.

The Hybrid Model utilizes machine learning to estimate
the cost of traversing a path consisting of several edges. In
stochastic modeling, a traditional approach to calculating
the cost of traversing a path consisting of multiple edges is
to use convolution. However, convolving two distributions
is done under the assumption that they are independent,
i.e., observing a cost in one distribution does not change
the probability of any cost in the second distribution. This
assumption is a simplification, and it does not hold in real-life
road networks. For instance, the traversal cost of a road
segment immediately after an intersection may depend on the
traversal cost observed on the road segment leading up to the
intersection: stopping at the intersection implies deceleration
before the intersection and acceleration after the intersection,
while not stopping yields lower travel total time.

In order to capture traversal cost dependencies, we employ a
Neural Network (NN) to estimate the sum of two distributions.
We do this by utilizing a large amount of historical traversal
records as well as extracting a number of auxiliary road
network properties that intuitively may impact the degree of
cost dependence between the traversals of two adjacent road
segments. As such, we build a machine learning model that
accepts as input the stochastic traversal costs for two road
segments as well as secondary properties such as the existence
of traffic signals between edges and the degree that a vehicle
has to turn to move from one road segment to the next. We
find that the NN in many cases estimates a cost that is more
similar to the ground truth than does traditional convolution,
but we also note that this is not always the case because
the dependence may be weak. Consequently, we construct a
classifier that is used to determine whether we should utilize
convolution or NN to compute a cost. The Hybrid Model thus
follows two simple steps to compute the summed cost of two
distributions: First, it uses the classifier to determine whether

convolution or NN is expected to produce the most accurate
result. Next, it applies the best approach to compute a result.
We offer empirical evidence that the Hybrid Model produces
better results than always using either NN or convolution.

While we wish to compute costs for paths of arbitrary
length during routing, the Hybrid Model takes its outset
in the computation of the cost of traversing two adjacent
edges. We provide empirical evidence that suggests that
NN-based estimation should be repeated at most four times,
i.e., for paths consisting of four vertices, as NN-based
estimation becomes less accurate than convolution for
longer paths. We proceed to extend the Hybrid Model
with two path-cost building algorithms: One that accepts
an arbitrary number of edges and constructs a distribution
representing the cost of traversing the path that consists of
all edges, and one that accepts a path and a single edge
and computes the cost of traversing the edge after traversing
the path. These algorithms are essential components for the
Hybrid Model to enable stochastic routing in a graph network.

The paper proceeds to solve the problem of finding
the best path in a stochastic graph network given a time
budget. Stochastic routing is traditionally performed under
the assumption that the employed graph network adheres
to a property called subpath optimality. Given the shortest
path between a source and destination, this property states
that all subpaths that can be constructed using this shortest
path are also shortest paths. As a consequence, the property
enables heavy pruning of the search space, which can yield
much reduced execution times. However, this property does
not hold when performing routing with the Hybrid Model.
We propose a stochastic routing algorithm, called Hybrid
Search, that uses several pruning techniques to reduce the
search space. First, we employ an A*-like cost reach to reject
potential paths given a time budget. Second, we maintain a
pivot variable that always represents the best path found. This
variable enables evaluation of all paths based on their cost
and the A* cost estimate for reaching the destination vertex.
Third, we determine that we can prune paths using stochastic
dominance whenever they reach a node that is fully cost
independent, i.e., no edge entering the node is cost dependent
on any edge exiting the node.

Finally, we present an anytime extension of the Hybrid
Search that, given an execution time limit, will return the
best possible path that can be found within this time limit.
We show through empirical studies that reasonable execution
time limits produce results that, on average, are very similar
to those produced by the algorithm without a time restriction.
This suggests that Hybrid Search quickly finds a good path,
but may spend substantial additional time in order to find
the best path, which may be only marginally better. We also
show that utilizing the Hybrid Model produces paths that often
are different from the path found using Dijkstra’s algorithm,
suggesting that intra-city routing may benefit from considering
cost dependence.

CONTENTS

I Introduction 1

II Preliminaries 2
II-A Basic Concepts . 2

II-A1 Road Networks . 2
II-A2 Uncertain road networks . 2

II-B Path costs . 2
II-C Problem Definition . 2

III Hybrid Learning Model Building 3
III-A Limitations of Convolution . 3
III-B Learning Path Cost Distributions . 3

III-B1 Short paths . 3
III-B2 Long Paths . 5

III-C Hybrid Model . 6

IV Routing with Hybrid Learning 7
IV-A Limitations of Existing Routing . 7
IV-B Incremental Property . 9
IV-C Hybrid Routing . 9

V Empirical Study 11
V-A Experimental Setup . 11
V-B Experimental Results . 12

V-B1 Routing Efficiency . 12
V-B2 Routing Quality . 13

VI Related work 14

VII Conclusion and Future Work 15

References 15

A Hybrid Learning Approach to Stochastic Routing
Simon Aagaard Pedersen

Department of Computer Science
Aalborg University
Aalborg, Denmark

sape@cs.aau.dk

Bin Yang
Department of Computer Science

Aalborg University
Aalborg, Denmark
byang@cs.aau.dk

Christian S. Jensen
Department of Computer Science

Aalborg University
Aalborg, Denmark

csj@cs.aau.dk

Abstract—Increasingly available trajectory data enables de-
tailed capture of traffic conditions. We consider an uncertain
road network graph, where each graph edge is associated with
a travel time distribution, and we study probabilistic budget
routing that aims to find the path with the highest probability of
arriving within a given time budget. In this setting, a fundamental
operation is to compute the travel cost distribution of a path from
the cost distributions of the edges in the path. Solutions that
rely on convolution generally assume independence among the
edges’ distributions, which often does not hold and thus incurs
poor accuracy. We propose a hybrid approach that combines
convolution and machine learning based estimation to take into
account dependencies among distributions in order to improve
accuracy. Next, we propose an efficient routing algorithm that
is able to utilize the hybrid approach and that features effective
pruning techniques to enable efficient routing. Empirical studies
on a substantial real world trajectory set offer insight into the
properties of the proposed solution, indicating that it is practical.

I. INTRODUCTION

Emerging disruptive innovations in transportation, e.g.,
autonomous vehicles and transportation-as-a-service, call for
high-resolution routing where traffic uncertainty is captured
accurately. For example, when an autonomous taxi needs to
arrive at an airport within a deadline, having accurate travel
time distributions of candidate paths enables the taxi to choose
the most reliable path. In the example in Table I, if the deadline
is within 60 minutes, path P1 is more reliable than path P2,
since P1 gives a 0.9 probability of arriving within 60 minutes,
which exceeds P2’s probability of 0.8. When using average
travel times, the taxi will choose P2 because P2 has average
travel time 51, while P1’s average travel time is 53. Thus, the
taxi has a higher risk of being late.

Table I: Travel Time Distributions of Two Paths to the Airport

Travel time (mins) [40, 50) [50, 60) [60, 70)
P1 0.3 0.6 0.1
P2 0.6 0.2 0.2

Next, more and more trajectories are becoming available
that capture the movements of vehicles and traffic conditions.
This provides a solid data foundation for high-resolution traffic
uncertainty modeling. We often model a road network as a
graph, where vertices represent road intersections and edges

represent road segments. Then, we split trajectories into pieces
that fit the underlying edges and assign uncertain weights
in the form of travel time distributions to the edges using
the edges’ corresponding trajectory pieces. The edge weights,
i.e., their travel time distributions, are often assumed to be
independent to each other. Then the travel time distribution of
a path is computed based on the convolution of the travel time
distributions of the edges in the path.

However, the travel times on edges are often dependent due
to a number of factors, e.g., traffic lights and turns. As a result,
the independence assumption often leads to inaccurate results.
For example, consider a path that consists of only two edges,
e1 and e2. Assume that 100 trajectories cover the path. Of
these, 50 traverse e1 in 10 seconds and e2 in 20 seconds,
yielding a total traversal time of 30 seconds. The remaining
50 trajectories traverse e1 in 15 seconds and e2 in 25 seconds,
yielding a total traversal time of 40 seconds. A driver then
either traverses both edges quickly or slowly, and it is very
unlikely that a driver traverses one edge fast and the other
slow, or vice versa.

Next, we split the trajectories to fit edges e1 and e2 such
that we obtain cost distributions H1 and H2 of the two edges,
as shown in Table II. The convolution of H1 and H2, shown in

Table II: Distributions for e1 and e2

H1

Travel Time Probability
10 0.5
15 0.5

H2

Travel Time Probability
20 0.5
25 0.5

Table III, does not reflect the same reality as do the trajectories.
Rather, we now have a large probability of traversing the two
edges in 35 seconds, which no trajectories support.

To better capture travel time dependency, we propose a
hybrid learning approach. First, we train a regression model,
specifically a neural network, that is able to take into account

Table III: e1 and e2 convolved

Travel Time Probability
30 0.25
35 0.50
40 0.25

Table IV: Ground truth for
P = 〈e1, e2〉

Travel Time Probability
30 0.50
40 0.50

two edges’ distributions and a number of road condition
features that describe the relationships between the two edges,
e.g., whether a traffic light is in-between the two edges or the
angle between the two edges, while estimating the travel time
distribution of the path that consists of the two edges. In our
example, when training the regression model, the input is H1,
H2, and road condition features. The ground truth for the input
is distribution HP , shown in Table IV.

Second, we observe that convolution is not always a bad
choice, especially when the dependency between two edges
is weak. Thus, we train a binary classifier to judge whether
we should use convolution or the trained regression model.
The resulting hybrid learning approach yields better accuracy
compared to using only convolution or only regression.

We proceed to investigate the integration of the proposed
hybrid learning approach into a routing algorithm to support
stochastic routing, specifically probabilistic budget routing. In
routing algorithms, we often need to compare two paths P1 and
P2 that connect the same pair of vertices. In a deterministic
setting, if the cost of P1 is smaller than that of P2, we can
disregard P2 since any path P ′ that is extended from P2 has
a higher cost than the path where P1 is used instead of P2.

In a stochastic setting, paths have travel time distributions,
not deterministic values. Let P1 and P2 have distributions
D1 and D2, respectively. We often use stochastic dominance
to compare two such distributions. In short, if distribution
D1 stochastically dominates D2 then D1 is considered to
be “smaller” than D2, and then we can prune P2 as in the
deterministic case. The reason is that when extending P1

and P2 by an edge e, the distribution H1 ⊕ He of path
P ′1 = 〈P1, e〉 dominates the distribution H2 ⊕ He of path
P ′2 = 〈P2, e〉, where ⊕ denotes convolution. However, when
using the regression model RM(·, ·), we cannot guarantee that
RM(H1, He) dominates RM(H2, He) when H1 dominates
H2. This resulting inability to prune based on stochastic
dominance makes routing more challenging.

We propose a routing algorithm that employs the hybrid
learning approach to estimate path travel time distributions
along with additional speed-up techniques to ensure efficiency.
The proposal includes a method to estimate best possible
distributions for paths, enabling an A*-like heuristic, and using
so-called pivot paths to enable additional pruning. Finally, we
provide an anytime extension of the algorithm that can deliver
a solution at any time; and the longer the algorithm runs, the
more accurate the solution becomes. This provides flexibility
on how long a user may want to wait.

To the best of our knowledge, this is the first study that in-
tegrates machine learning based cost estimation with a routing
algorithm. We make four specific contributions. We propose
(i) a hybrid learning approach to accurately estimate the
travel time distributions of paths, (ii) a routing algorithm that
employs the hybrid learning approach to support probabilistic
budget routing, and (iii) an anytime query processing extension
to the routing algorithm, and (iv) we conduct a comprehensive
empirical study to justify our design choices and to offer
insight into the proposed methods.

The remainder of the paper is organized as follows: Sec-
tion II presents preliminaries and the problem. Section III
presents a hybrid approach for estimating travel cost distri-
bution of a path. Section IV presents a routing algorithm that
utilizes the proposed hybrid approach. Section V presents the
empirical study. Finally, Section VI covers related work, and
Section VII concludes and suggests future work.

II. PRELIMINARIES

A. Basic Concepts

1) Road Networks: A road network is represented as a
graph G = (V,E,C), where V is a set of vertices, E is a set
of edges of the form ei = (vj , vk), and C is a cost function
C : E → D that maps edges to their corresponding traversal
cost distributions.

A path P = 〈e1, . . . , en〉 is a sequence of edges such that
∀e∈P (e ∈ E). We only consider simple paths, meaning all
vertices covered by the path are distinct. A subpath PS of a
path P is a path consisting of a contiguous subsequence of
the edges in P . A pre-path P−n of a path P is P with the
last n edges removed. Consequently, |P−n| = |P | − n. Path
expansion occurs when a path P is expanded by an edge e,
denoted P ′ = 〈P, e〉.

2) Uncertain road networks: We use equi-width histograms
to represent distributions. A histogram is a collection of
(bucket, probability) pairs with each bucket representing a
cost range. The sum of all probabilities in a histogram sum
to 1.0, and the probability for all values within each bucket
is uniform. We use histograms because they can represent
arbitrary distributions and are more compact than Gaussian
mixture models [18].

We consider traversal time with the lowest unit of measure
being a second. To obtain a histogram for an edge, we build a
probability distribution D based on the traversal time values.
Next, a bucket width w, a lower cost bound lb, and an
upper cost bound ub are chosen, yielding a histogram with
d(ub− lb)/we (bucket, probability) pairs. Then, we place all
probabilities in D in their appropriate bucket such that the
probability of each pair represent the sum of all probabilities
of the bucket’s costs in D.

B. Path costs

The cost of a path can be represented by the sum of the edge
costs. When costs are represented by discrete distributions,
we can use circular convolution to sum the costs with the
underlying assumption that all distributions are independ-
ent [16], [19]. The convolution of two independent discrete
distributions X and Y , denoted Z = X⊕Y , can be expressed
as Z(z) =

∑
x∈X (fX(x) · fY (z − x)).

C. Problem Definition

Probabilistic Budget routing: Given a source s, a destination
d, and a time budget t, we aim to select a path P from a path
set P that consists of all paths from s to d, such that P has
the largest probability of arriving at d within t. Formally, we
have PBR(s, d, t) = argmaxP∈P Prob(cost(P) ≤ t).

2

(a) Estimation (b) Convolution (c) Ground Truth

Figure 1: Example based on real world data

III. HYBRID LEARNING MODEL BUILDING

A. Limitations of Convolution

The result of applying convolution to two distributions is
only accurate if the distributions are independent. However,
in road networks this is often not the case [6]. Rather, cost
dependence is a common phenomenon. For instance, a traffic
light has the potential to create a dependence: cars either
decelerate, stop, and then accelerate in case of a red light, or
cars pass through at unchanged speed in case of a green light—
the other two combinations of behaviors before and after the
traffic light are not likely.

Next, due to the central limit theorem [10], repeatedly
convolving independent distributions eventually results in dis-
tributions akin to Gaussian distributions, which often reflects
reality poorly [6], [19].

The variance of the sum of two normally distributed random
independent variables can be derived as the sum of the
variance of the individual random variables. With repeated
convolution, we therefore obtain distributions with increas-
ingly large variance, reducing the possibility of any spikes
in traversal costs, and instead moving towards a distribution
that is flatter and more uniform between the lower and upper
bounds.

Next, convolution using discrete histograms with bucket
width w > 1 is not good at capturing spikes. This is due
to the lost granularity when discretizing values into equi-
width buckets. As an example, Figures 1(a–b) shows a real-
world example of the difference between convolution and
the ground truth. The convolution result is dissimilar to the
ground truth because it cannot obtain the same spike; even
if we were to convolve two histograms each consisting of
the same cost pair, e.g., ([2, 4), 1.0), we would obtain the
result {([4, 6), 0.5), ([6, 8), 0.5)}. In general, for a discrete
convolution with uniformly distributed equi-width buckets of
width w > 1, no bucket in the output can have a probability
of 1.0, and probabilities above 0.5 are rare.

B. Learning Path Cost Distributions

We propose to use machine learning to better capture cost
distribution dependencies and thus to more accurately estimate

the cost distributions of paths. We distinguish between cost
distribution estimation for short paths and long paths.

1) Short paths: We first consider short paths, i.e., paths
with two edges. We treat path cost estimation as a regression
problem: ĤP = F (H1, H2, C), where H1 and H2 are cost
histograms of edges e1 and e2, and C represents features that
characterize the two edges, e.g., whether they meet at a traffic
light. Regression function F estimates the cost distribution
ĤP of path P = 〈e1, e2〉. We proceed to elaborate on how to
prepare training data and on the regression function F .

We employ GPS trajectories for training. In particular, we
identify short paths that are traversed frequently by trajector-
ies. Specifically, we use the 5000 most traversed edge pairs
in our road network, which each has from 5603 to 295
unique trajectory samples that represent a ground truth cost
distribution for their full traversal.

We then split these short paths into disjoint training and
testing sets. For each short path P = 〈e1, e2〉 in the training
set, we use all trajectories that traversed ei to derive histogram
Hi for edge ei. To derive histogram HP , we only use the
smaller set of trajectories that cover the full path P = 〈e1, e2〉.
This method applies to adjacent edges with no common
trajectories, as long as we can derive a distribution H for
both edges.

Next, we identify features C that characterize the two edges.
These include the lengths and speed limits; the angle between
the edges; whether there is a traffic light between the edges;
the minimum, expected, and maximum traversal times for the
edges; and the road types (e.g., highway) of the edges. The
intuition is that the degree of dependence between two edges
may be affected by these factors that thus should be considered
by the regression model. Some features are discretized and
one-hot encoded, whereas others are floating point values.

We choose to use a classic multilayer perceptron neural
network (NN) as the regression model since its ability to
capture non-linear relationships among inputs is essential
for capturing distribution correlations. We require that H1,
H2, and HP are homogeneous histograms, each having n
(bucket, probability) pairs, and C has m features. Thus, the
input layer has 2 · n + m neurons. The first 2 · n neurons
correspond to the probabilities of the n cost pairs in H1 and

3

H2, and the last m neurons correspond to the features in C.
We input a vector of probabilities without buckets, i.e., cost
ranges. The output layer has n neurons that correspond to
the estimated probabilities of the n buckets, i.e., ĤP . During
training, HP is used as the ground truth, and the squared
error between the histograms ĤP and HP is used as the loss
function.

We measure the accuracy of the resulting NN using the
test path set. For each testing path P ′ = 〈e′1, e′2〉, we derive
histograms H ′1, H ′2, and HP ′ . We give H ′1, H ′2, and a feature
set for edges e′1 and e′2 to the NN , which estimates a histogram
ĤP ′ as the cost distribution of path P ′. We measure the KL-
divergence between the estimated distribution ĤP ′ and the
ground truth distribution HP ′ . The smaller the KL-divergence
is, the more accurate the estimated distribution is.

Figures 1(a–c) show that using estimation instead of con-
volution can yield distributions that are more similar to the
ground truth distribution. In this example, the KL-divergence
between the ground truth and the estimation is 0.06, whereas
the KL-divergence between the ground truth and the convolu-
tion is 0.23, i.e., estimation is best. This example demonstrates
that machine learning techniques can compute more accurate
representations of the sums of two dependent distributions.
Building multiple NNs: Since the input and the output his-
tograms of the NN must be homogeneous, we train different
NNs for different settings. We train different models to ensure
the semantics of the input and output values stay the same, e.g.,
the n values in the output have the same meaning as each of
the two n input values. We cannot create a single model that
accepts arbitrarily large input distributions while maintaining
a clear semantic meaning for each value. Instead, we build
different models that each can process a fixed input space, but
has a clear meaning. In particular, we consider four filtering
parameters: distance lower and upper bounds and cost lower
and upper bounds. We train an NN model based on paths
filtered according to the above parameters such that, e.g., all
training paths have a total distance within the distance bounds.
This increases the likelihood that the selected training data is
similar in structure, and we can use the distance bounds to
identify the model to be used when given two edges as input.
We also limit the lower and upper bounds on the costs. In
combination with the distance bounds, this enforces the data
to have reasonable driving speeds.

Another reason for utilizing cost bounds is that the NNs
need homogeneous histograms, meaning that we have to
determine the histogram structures of the input and output
distributions beforehand. In practice this means that, given
cost bounds and a bucket width, we can pre-calculate how
many (bucket, probability) pairs each histogram should be
represented by. The output distribution is represented by the
same bucket width and number of pairs. We choose to use a
constant number of buckets for all histograms while varying
the bucket width for each model. The reason is twofold:
First, this yields the same number of buckets no matter how
large an upper bound the input distributions have. We can
accommodate large input distributions by using large buckets.

Using instead a constant bucket width and varying number
of buckets would have the effect that increasing the variance
of the input distributions would require an increasingly large
number of buckets, making the estimation inaccurate. Second,
using a constant number of buckets eases model selection, as
it is easy to select one of several models that only vary in the
number of buckets and bucket width.

Figure 2: Building Cost Estimation Models for Short Paths

Model Selection Many different models can be built using
varying filtering configurations, each with different strengths
and weaknesses when compared to convolution. In general,
we find that more specialized models produce better estimates,
but specialized models also have limitations on their inputs,
e.g., distance limitations cause samples outside the limits to
be eliminated from the training set, thus reducing the size of
the training set. Instead of creating a single model, we create
a number of models with different configurations to ensure
that any type of input can be processed by at least one model.
Several models may be applicable for a given input, and we
therefore have to provide means of selecting a good model.

Given input distributions and lengths, as well as several
different estimation models with intersecting input spaces, we
wish to select the model with the tightest fit to the input.

With this in mind, we select a model as follows: Given
two input distributions D1 and D2 and two lengths L1 and
L2, we first select the set of models, called S, trained on
data with similar distance edges. Next, we select the model
in S that minimizes the upper cost bound. When doing so,
we ensure that the selected model has an upper bound that
exceeds the sum of the largest measured costs of D1 and D2.
This requirement makes it possible to obtain a distribution akin
to the result of a convolution if the dependence is small.

Model performance It is not difficult to find cases where
estimation outperforms convolution in terms of accuracy. We
compare the two approaches when given identical input, e.g.,
if we estimate a distribution based on two input distributions
given by n = 5 (bucket, probability) pairs each, we perform
convolution by first deriving the probabilities of each integer
cost value covered by the buckets. We convert the convolution
result back into a histogram with n equi-width buckets to
enable comparison with the estimation result.

4

Figure 3 illustrates how different cost bounds with a con-
stant bucket width affect the accuracy of estimation and convo-
lution. It is clear that the accuracy of convolution deteriorates
heavily with an increase in bucket width, whereas the accuracy
of estimation improves.

Figure 3: Result accuracy when varying bucket width with
n = 10, and distance bounds = (0, 100).

Figure 4 shows the probability of ML estimation vs. con-
volution being more similar to the ground truth for different
bucket widths. Although the average KL-divergence grows as
the bucket width increases for convolution, we still find that
convolution outperforms estimation on a case-by-case basis
40% of the time for bucket width b = 5. The model used here
is built using edge pairs no longer than 100 meters, which
is a defining factor. If paths are exactly 100 meters and we
have a bucket width of 10 seconds, the first bucket covers all
trajectories with average speeds in the range [36,∞] km/h.
As few roads have a speed limit below 36km/h, we can expect
the first bucket to have a near 1.0 probability. Recall that the
model output distribution has the same number of buckets,
bucket width, and cost bounds as the input. As mentioned in
III-A, convolution cannot accurately capture such a discrete
distribution; this causes convolution accuracy to deteriorate
with increasing bucket size, while it becomes progressively
easier for the estimation model to accurately estimate the
ground truth because it tends towards the first bucket always
having a probability of 1.0. However, even for bucket width
b=2, we find that the estimation result has a higher probability
of being more similar to the ground truth than the convolution
result. This suggests that relying purely on either of the two
will increase result inaccuracy. Furthermore, the average KL-
divergence for convolution increases significantly with the
bucket width, as seen in Figure 3, while the probability of
being most similar decreases at a lower rate. This suggests
that the convolution result accuracy has a very large variance
and that the results tend to be either very good or very bad.

Figure 5 supports this hypothesis by visualizing the distri-
bution of KL-divergence values for convolution and estimation

Figure 4: Likelihood of estimation and convolution being best
when varying bucket width with n = 10 and distance bounds
= (0, 100).

across more than 500 edge pairs. Each edge pair has a signific-
ant number of trajectories traversing both edges sequentially,
which we use to create ground truth distributions. Convolution
yields larger accuracy spreads, and larger medians than does
estimation.

Figure 5: Boxplot of KL-divergence between results of convo-
lution, estimation, and the ground truth. Based on more than
500 samples, with n = 10 and bucket width b = 2

2) Long Paths: When performing routing, we often need
to compute cost distributions for paths that are longer than
two edges. Path cost computation is an iterative process, as
the cost of a path P can be computed by combining the cost
of the pre-path P−1 up to the last edge with the cost of the
last edge. We can use an NN model built for short paths to
estimate the costs of longer paths by treating the pre-path as a
“virtual” edge. However, with this approach, we can no longer
expect a pair of edges to have common properties such as

5

similar expectation and variance. Instead, we need to consider
the behavior of our NN model when the distributions of the
two edges significantly differ.

Figure 6 shows the probability of repeated estimation vs.
repeated convolution being superior for varying path lengths.
It is clear that repeatedly applying an NN estimation model
degrades the quality of the path cost and should not be done
more than a few times before convolution is preferable.

The figure shows that for this particular model, estimation
has a 59% probability of being best for paths consisting of
four edges, whereas for paths of five edges, the probability is
22%. Thus, when computing the cost distribution of a long
path, after applying the NN estimation 3 times, it is better to
use convolution.

Other models display a similar behavior. We observe that
for all estimation models, applying them repeatedly for cost
computations increases the probability of obtaining results
dissimilar to the ground truth than when using convolution.

Figure 6: Probability ratio of repeated estimation or convolu-
tion being more similar to the ground truth for different path
lengths

C. Hybrid Model

As discussed earlier, neither convolution nor estimation
outperforms the other across all input configurations. Rather,
both approaches have their advantages, depending of the cost
dependencies and the granularity at which we wish to compute
costs, i.e., bucket width, and path length.

To more accurately compute a path’s cost distribution, we
create a hybrid model by combining NN estimation and
convolution. We introduce a Boolean classifier to determine
which approach to use in a given context. During the model
testing, where we determine how accurate a model is across
a test data set, we cache a Boolean value encoding whether
convolution or estimation is better for the given input. After
terminating model fitting, we then build a binary classifier
using logistic regression such that the likelihood scores of the

output feature represent the estimated probabilities of whether
convolution or estimation is most accurate.

The classifier functions in the same way as the estimation
model, accepting a number of input features and outputting
two scores that sum to 1 and represent the likelihoods of
the two approaches being best. We use the same features for
the classifier as we used for the estimation model. Figure 7
illustrates the process of using the classifier; it accepts two
distributions D1 and D2, as well as a number road network
properties encoded as features. The output scores returned
by the classifier represent the likelihood of estimation or
convolution being best. The closer the scores are to 0 and
1, the more confident we can be in the result. Figure 8 shows

Figure 7: Using a classifier to choose between convolution and
ML estimation

the accuracy of the hybrid approach vs. the accuracy of purely
using estimation. The classifier selects the correct method
73% of the time, yielding an even tighter spread on the KL-
divergence of the result. When the classifier chooses wrong,
the average difference in the likelihood scores is 0.12, and the
average difference in KL-divergence between the incorrectly
chosen method and the best method is 0.07. Thus, when
the wrong method is selected, the two methods obtain very
similar result accuracy. Using the classifier, we label adjacent
edge pairs as being dependent if estimation is to be used and
independent if convolution is to be used.

The classifier only determines whether two adjacent edges
are dependent or not. This is acceptable given the assumption
that pair-wise cost dependence between edges is stronger the
closer together the edges are: for a path P = 〈e1, e2, e3〉,
where we determine there is no dependence between e2 and
e3, we also assume there is no dependence between e1 and e3.
Inversely, if we determine a cost dependence between e1 and
e2 and between e2 and e3, we also assume a cost dependence
between e1 and e3, i.e., cost dependence is transitive. We
limit the cost dependence reach to a constant k as we cannot
accurately capture the dependence for edges further than k
hops away.

Algorithm 1 builds the cost of a path of arbitrary length
using the hybrid model. It first determines the set of independ-
ent edge pairs by traversing the path and using the classifier
to determine whether convolution or estimation is better for
each pair of adjacent edges. Then, it builds i+1 distributions,
where i is derived from the number of independent edge pairs
and the largest number of times we wish to use estimation. By
using len = k in line 7, we never repeat NN estimation more
than k times. Finally, we combine the i+ 1 distributions into
one using convolution. Thus, we assume that all sub-paths that

6

Figure 8: Boxplot of KL divergence between results of estim-
ation, the hybrid method, and the ground truth. Based on more
than 500 samples, with n = 10 and bucket width b = 2

Algorithm 1: Path cost
Input:

Path P = 〈e1, .., ek〉; Integer k;
Output:

Cost distribution of path P ;
1: For every two consecutive edges in P , use classifier to

mark shared vertex n.conv or n.est;
2: D ← Distribution of e1;
3: SP ← Set of distributions to be convoluted;
4: i← 2; len← 1;
5: while i < |P | do
6: if len = k or e.s.conv then
7: Insert D into SP ;
8: len← 1;
9: D ← e.cost;

10: else if e.s.est then
11: D ← NN(D, e);
12: len← len+ 1;
13: i← i+ 1;
14: result← Convolve all distributions in SP into one;
15: return result;

the distributions represent are independent, which is justified
by the classifier. The assumption may not hold when len = k,
but estimation becomes inaccurate after repeating it k times.

IV. ROUTING WITH HYBRID LEARNING

A. Limitations of Existing Routing

Finding the lowest-cost path from a source s to a destination
d in a deterministic graph with non-negative edge weights can
be solved using Dijkstra’s algorithm. The algorithm expands
outwards from s in a breadth-first manner, maintaining a
minimum-cost priority queue containing all unexplored ver-
tices organized according to the costs of reaching them via

the explored network. The algorithm repeatedly considers the
lowest-cost vertex from the queue, establishing a final cost
for that vertex during extraction. The cost is guaranteed to be
minimal, as it is impossible to reach the vertex from any other
unexplored vertex via a lower-cost path. This guarantee holds
specifically because weights are non-negative. The algorithm
terminates when the destination vertex d has been extracted
from the queue. As an example, examine Figure 10 and assume
it is cheaper to traverse P1 than P2. As traversal costs are
calculated as sums, we can guarantee that P ′1 = P1 + e has
lower cost than P ′2 = P2 + e.

In an uncertain network, the cost of a path is given by a dis-
tribution, which makes it more difficult to compare two paths.
In this setting, the notion of lowest-cost path can be defined
as the path with a stochastically non-dominated distribution
among all paths with the same source and destination. This
implies that we have to compare distributions to determine
dominance relationships.

Given two discrete distributions D1 and D2, and their
corresponding cumulative distribution functions CDFD1

and
CDFD2

, we say that D1 dominates D2 if:

∀x (CDFD1
(x) ≥ CDFD2

(x))∧∃x (CDFD1
(x) > CDFD2

(x))

Here, x is a travel cost. Thus, the cumulative probability of
any cost x in D1 is never lower than that of D2, and there is at
least one cost x for which D1 has a strictly larger cumulative
probability than has D2.

Conversely, if distributions D1 and D2 are identical or if
the inverse statement,

∃x (CDFD1
(x) > CDFD2

(x))∧∃x (CDFD1
(x) < CDFD2

(x))

is true, we say that the two distributions do not dominate each
other, i.e., they are pair-wise non-dominated. Given the above
scenario of finding a non-dominated distribution, we could
either pick one distribution to continue with and prune the
other, or we could branch out and continue with both.

Figure 9: Stochastic dominance example

7

As an example, consider the three CDFs depicted in Fig-
ure 9. Each CDF represents a unique path between the same
source and destination. As can be seen, all three distributions
share the same minimum and maximum costs. Following the
aforementioned definition of stochastic dominance, we can
determine pairwise dominance relationships by examining the
CDFs in the figure. Distribution A dominates B, as there
is no x for which CDFA(x) < CDFB(x), whereas it is
always the case that CDFA(x) ≥ CDFB(x). A dominates
C in a similar manner. Furthermore, B does not dominate C
and vice versa. This is evident, as the lines representing the
two distributions intersect, meaning that we have values of
x for which CDFB(x) < CDFC(x) and values for x for
which CDFB(x) > CDFC(x). Thus, given three paths with
CDFs A, B, and C, we can prune B and C as the cumulative
probability of any cost never exceeds that of A.

Given our setting with a routing time budget t in an uncer-
tain network suggests that we simply pick and proceed with
the distribution with the highest probability of cost t. However,
that is not possible. To see why, assume a time budget t and
consider paths P1 and P2 in Figure 10. Furthermore assume
that Prob(CDFP1

, t) > Prob(CDFP2
, t). Even though P1

is better than P2, we cannot simply disregard P2 because
it can happen that Prob(CDF ′P1

, t) < Prob(CDF ′P2
, t).

Consequently, we cannot use a budget to prune paths reaching
intermediate vertices [13].

Next, when using neural networks to estimate path cost
distributions, we may not be able to perform pruning based
on stochastic dominance. First, the output estimate may not
stochastically dominate either of the input distributions. When
this happens, the result distribution has a lower expected value
than those of the input distributions have. If this occurs too
often, it is a problem, as we could in a worst-case scenario
repeatedly expand a path while maintaining a non-increasing
cost. To avoid this, we ensure that the minimum cost of the
output distribution is bounded by the sum of the minimum
costs of the two inputs. Furthermore, we cannot guarantee that
the dominance relationship between two paths also holds for
the paths when they are extended by the same edge. For in-
stance, consider Figure 10 where paths P1 and P2 reach vertex
vk, and assume that the CDF of P1 stochastically dominates
that of P2. Given P ′1 = NN (P1, e) and P ′2 = NN (P2, e),
in a traditional setting, it would hold that the CDF of P ′1
stochastically dominates that of P ′2. However, with hybrid
cost computation, we cannot know what relationship the cost
distributions of P ′1 = NN (P1, e) and P ′2 = NN (P2, e) have,
as a neural network is a complex, non-linear function. This
breaks the subpath optimality property, which causes issues
for routing.

Thus when using Dijkstra’s algorithm, and replacing con-
volution with estimation, we find that pruning cannot be done
on all vertices since the subpath optimality property does not
hold. As a consequence, we cannot directly apply Dijkstra’s
algorithm in combination with cost estimation. However, we
can construct a pruning-free, brute-force variant of Dijkstra’s
algorithm with a priority queue that contains all explored paths

Figure 10: Two paths being extended by the same edge

organized on the cost expectation. An example of such a
brute force search is shown in Algorithm 2. This approach is
naturally very inefficient, as the entire search space is explored
before a path is returned.

Algorithm 2: Brute-force Search
Input:

Graph G = (V,E,W); Time budget t;
Source s and destination d;

Output:
Path from s to d with max probability of arriving by t;

1: PQ← priority queue of paths sorted on expected cost;
2: Insert all outgoing edges from s into PQ;
3: result← set of non-dominated paths to be returned;
4: while PQ is not empty do
5: P ← extract-min from PQ
6: for all e ∈ outgoing neighbors of P.d do
7: P ′ ← 〈P, e〉, calculate cost using Algorithm 1;
8: if P ′.d = d then
9: result← argmaxx∈{P ′,result} prob(x, t);

10: else
11: if P ′ is a simple path then
12: insert P ′ into PQ;
13: Return result;

Algorithm 2 returns the best path given budget t between
vertices s and d. It iteratively expands the search outwards
from s, extending the cheapest path, and it only prunes a
path candidate if it no longer is simple or if d is found. The
path result represents the best current path found between s
and d, and whenever a new path between s and d is found,
we compare it to result . The brute-force approach utilizes
Algorithm 1 to construct the traversal cost of a path. However,
this approach introduces overhead because the traversal cost
is fully recomputed each time a path is expanded.

Being brute force, Algorithm 2 is inefficient due to two main
reasons. First, in line 7, whenever we extend a path P with an
edge e to obtain a new path P ′ = 〈P, e〉, we call Algorithm 1
to compute the cost distribution of P ′. Algorithm 1 computes
the cost distribution from scratch, meaning that it does not
reuse the cost distribution of path P that has already been
computed. Second, no pruning is applied, and the search space
is very large.

To improve the efficiency of the brute force algorithm,
we consider the incremental property of the hybrid learning

8

approach that will enable reuse of already computed cost
distributions; and we propose a hybrid routing algorithm that
allows pruning at selected independent vertices.

B. Incremental Property

We do not wish to recompute the entire cost distribution
each time we add an edge to a path. Instead, we present
a method that supports incremental path extension by cach-
ing and reusing different distribution elements of a path.
Algorithm 3 details this process. Note that Algorithm 1 is
designed for computing the cost distribution of a path given the
distributions of all the edges in the path, whereas Algorithm 3
is designed for computing the cost distribution of a path
P ′ = 〈P, e〉 using the distributions of P and e.

In Algorithm 3, we store three different distributions, which
we call cost elements: element DFC , representing the cost
distribution of a full path; element D1, representing the cost
distribution of the pre-path up to the last independent vertex
in the path; and element D2, representing the cost distribution
of the subpath from the last independent vertex in the path to
the end vertex.

Whenever a new edge e is to be added to the path, we
first determine whether or not the source vertex of e is
independent by using the classifier. If it is, we simply convolve
the distribution of e with the cost of the path. If not, we
combine D2 with the cost of e using ML estimation and then
convolve D1 and D2.

Algorithm 3: Incrementally Build Path Cost
Input:

Path P = 〈e1, .., ek〉; Edge en;
Output:

Path P ′ = 〈e1, .., ek, en〉 with associated traversal cost;
1: op ← Determine with classifier if convolution or

estimation should be used for calculating the cost of
〈ek, en〉;

2: P ′ ← 〈P, en〉;
3: if op = convolution then
4: P ′.D1 ← P.DFC ⊕ en.cost;
5: P ′.DFC ← P ′.D1;
6: P ′.D2 ← empty;
7: else
8: P ′.D1 ← P.D1;
9: if P.D2 is empty then

10: P ′.D2 ← en.cost;
11: else
12: P ′.D2 ← NN (P.D2, en.cost);
13: if P.D1 is empty then
14: P ′.DFC ← P ′.D2

15: else
16: P ′.DFC ← P ′.D1 ⊕ P ′.D2;
17: if P ′.D2 represents the cost of a path of length k then
18: P ′.D1 ← P ′.DFC ;
19: P ′.D2 ← empty;
20: return P ′;

Figure 11: Example graph for path expansion with k = 3

Table V: Cost elements for paths

Path D1 D2 DFC

P1 = 〈e1〉 empty e1 D2

P2 = 〈P1, e2〉 empty NN (e1, e2) D2

P3 = 〈P2, e3〉 NN (P2.D2, e3) empty D1

P4 = 〈P3, e4〉 P3.D1 e4 D1 ⊕D2

P5 = 〈P4, e5〉 P4.D1 ⊕NN (P4.D2, e5) empty D1

P6 = 〈P5, e6〉 P5.D1 e6 D1 ⊕D2

P7 = 〈P6, e7〉 P6.D1 NN (e6, e7) D1 ⊕D2

Figure 11 shows a path with 7 edges, where the independent
vertices are marked with “i”, e.g., the vertex between e3 and
e4. Starting from e1, we iteratively extend the path with an
additional edge. Table V shows the different cost elements for
each path throughout the expansion. Distribution D2 always
represents the estimation result, whereas D1 represents the
established distribution that we only use convolution on. Path
P1 consists of a single edge, and as we have no independent
vertex, we store the cost of edge e1 in D2. We do not store
anything in D1 before convolution is used for the first time,
and the full cost DFC of the path is therefore represented by
the distribution given by D2. Path P2 has a full cost that is also
derived purely from D2 since there is no independent vertex
in P2. Cost element D2 now corresponds to the estimated
sum of the costs of e1 and e2. In this example we have k = 3,
meaning that we want to use NN at most two times to estimate
the sum of edge distributions before enforcing convolution.
Path P3 consists of three dependent vertices, and the result
of the estimation is therefore moved into D1. Expanding P3

with e4 yields path P4 that has a full cost represented by
the result of convolving the contents of D1 and D2. Observe
that in order to obtain the full cost, we need to perform
additional computations, which suggests that storing the total
cost as a separate entity is valuable to avoid unnecessary
repeats of the computation. Path P5 includes e5 that leads
to an independent vertex. As a consequence, we obtain the
cost of P5 by performing cost estimation on the distributions
given by e5 and P4.D2, and then convolving the result of the
estimation with the distribution stored in P4.D1. Paths P6 and
P7 follow the same procedure, representing the total path cost
by convolving D1 and D2.

C. Hybrid Routing

We integrate the incremental path cost construction with
more sophisticated hybrid search. The hybrid search, detailed
in Algorithm 4, uses several pruning techniques and can be
considered an advanced version of the brute-force approach.
The pruning techniques include (a) using an A* inspired
optimistic cost of reaching the destination for each vertex, (b)
using a pivot path that represents the most promising return

9

candidate at any point during the search, which is used in
combination with (c) distribution cost shifting that enables
comparison between the pivot path and any path that does not
yet reach the destination vertex d, and finally (d) stochastic
dominance pruning on all fully independent vertices, i.e.,
vertices with all combinations of in-edges and out-edges
being classified as independent.

We initiate the hybrid search by performing three Dijkstra
searches. First, we conduct a one-to-all Dijkstra search from
the source vertex on a graph where each edge is associated
with the minimum travel cost of the edge’s distribution. Then
we identify a sub-graph G′ = (V ′, E′), where V ′ represents all
reachable vertices from source s within time t and E′ include
the edges whose incident vertices are in V ′. This sub-graph
excludes the vertices and edges that are not reachable from s
within time t when always using the most optimistic traversal
cost, i.e., always using the minimum travel cost.

Second, to enable A*-like search, we need to estimate an
optimistic cost from each vertex to the destination vertex d.
To this end, we perform a one-to-all Dijkstra search from
destination d based on graph G′, where each edge is annotated
with the minimum cost from the edge’s distribution. Then we
label each vertex v with v.min, i.e., the least required cost
of reaching the destination vertex from v. We also determine
the fastest path when using minimum travel costs. Third,
we perform a new Dijkstra search on G′, where each edge
is annotated with the maximum travel cost. We identify the
fastest path using the maximum travel costs.

The algorithm explores paths using a priority queue PQ.
The queue is sorted on (a, b), where a is the optimistic
probability of arriving at d and b is the optimistic expected
travel time to d. By utilizing both a and b, we increase the
likelihood of finding promising paths between s and d early.
Specifically, for a path P from s to vertex v, we shift the cost
distribution D1 of the path to the right by v.min to derive
the optimistic distribution if we continue along the path to d.
We use D1 and not DFC because the nature the estimation
may lead to a path expansion yielding an increased likelihood
of arriving by t, whereas using D1 ensures a probability that
is strictly non-increasing during path expansion. This property
is important for the return statement in line 17, which returns
the pivot path if all other paths in the queue have a smaller
optimistic probability of arrival by t. Based on the shifted
distribution, we are able to compute a and b. Figure 12
illustrates this shifting method when v.min = 6. The shifted
distribution represents the most optimistic distribution if we
continue from path P to reach the destination d.

Recall that the two final searches determine paths represent-
ing the fastest optimistic and pessimistic paths between s and
d in a deterministic setting. The best of these two paths with
respect to time budget t is chosen as a pivot path. Whenever
we find a new path reaching the destination, we compare it
to the pivot and select the best of the two as a new pivot, in
lines 18–20. The pivot path is guaranteed to have a non-zero
probability of reaching d within t time budget and is used for

Algorithm 4: Hybrid Search
Input:

Graph G = (V,E,W); Time budget t;
Source s and destination d;

Output:
Path with maximum probability of arriving at d by t;

1: HPS ← hash map of (vertex, path set);
2: V ′ ← all vertices reachable from s within t time using

the minimum traversal time of each edge;
3: One-to-all Dijkstra search from d using minimum

travel costs, annotating all vertices with the
minimum cost of reaching d;

4: One-to-all Dijkstra search from d using maximum
travel costs, annotating all vertices with the
maximum cost of reaching d;

5: if V ′ does not contain d then
6: Return;
7: Pa ← using Algorithm 1, build the fastest optimistic

path that is found using minimum traversal time;
8: Pb ← using Algorithm 1, build the fastest pessimistic

path that is found using maximum traversal time;
9: result← argmaxx∈{Pa,Pb} Prob(x, t);

10: if Prob(result, t) = 1.0 or Pa.edges = Pb.edges then
11: Return result;
12: PQ← priority queue of paths sorted on (shifted prob

of reaching d at t, expected cost + estimated cost to d);
13: Insert all outgoing edges from s into PQ;
14: while PQ is not empty do
15: P ← PQ.ExtractMin();
16: if Prob(P.D1 + P.d.min, t) < Prob(result, t) then
17: Return result;
18: if P.d = d then
19: result← argmaxx∈{result,P} Prob(x, t);
20: Continue;
21: else if P.d is a fully-independent vertex then
22: Insert P into HPS [P.d] and update such that no

dominance occurs within HPS [P.d];
23: Remove all paths Pm in PQ that go through P.d,

where sub-path P ′m = 〈s, . . . , P.d〉 /∈ HPS [P.d];
24: if P /∈ HPS [P.d] then
25: Continue;
26: for all e ∈ Outgoing edges of P.d where e.d ∈ V ′ do
27: Pk ← 〈P, e〉, calculate cost;
28: if Pk is not simple then
29: Continue; // Paths with loops are never best
30: L← Pk.D1 shifted e.d.min to the right; // Most

optimistic probability of reaching d within t;
31: if Prob(L, t) ≥ Prob(result, t) then
32: Continue;
33: Insert Pk into PQ with queue cost

(Prob(L, t), expectation(Pk) + e.d.min);
34: Return result;

10

comparison with all path candidates throughout the algorithm.
The comparison can be performed between the pivot and

any path P with an arbitrary end vertex v by shifting P ’s
cost distribution v.min values, where v.min is the minimum
traversal time of reaching d from v, which is available thanks
to the second Dijkstra search. After the distribution shift we
calculate the probability of arriving by t—if the probability is
lower than that of the pivot, we can disregard P as it cannot
possibly lead to a path that has a higher probability of arriving
within t than the pivot path. If the probability is the same or
exceeds that of the pivot, we proceed with routing using P .

Finally, we perform stochastic dominance based pruning
on all fully independent vertices, as seen on lines 21–25.
A vertex is fully independent if the vertex is classified as
independent for all combinations of in-edges and out-edges
of the vertex. This means that when extending a path that
reaches a fully independent vertex v, no matter which edge is
followed from v, convolution is always used to compute the
cost distribution of the extended path. Thus, it is safe to use
stochastic dominance to perform pruning.

We use a hash map HPS to maintain a path set for each
fully independent vertex n containing all non-dominated paths
between s and n. Whenever a new path P between s and a
fully independent vertex n is discovered, we compare P to all
pre-discovered non-dominated paths ending at n to determine
whether it is necessary to expand P any further.

Note that the fully independent vertices are different from
the independent vertices used in Algorithm 3. In Algorithm 3,
a path is given, so we take into account only the specific edge
pair from the path when classifying a vertex as independent
or not.

In Algorithm 4, we build path costs on two distinct occa-
sions. During routing, we iteratively add an edge to an existing
path (line 27), and during the initial stage, we build the costs
for the fastest optimistic and pessimistic paths, in lines 7–8.
We distinguish these two occasions because of the different
input used; in the first cases, an entire path is given, and

Figure 12: Shifting a distribution (blue) v.min = 6 to the right
(green)

we therefore use Algorithm 1 to construct a cost distribution,
whereas we use Algorithm 3 in the path expansion process
where we extend paths with a single edge.

Extension for Anytime Query Processing. Algorithm 4
performs well on average, but has a mean run-time that is
dominated by few “outlier” queries being disproportionally
slow. This is among other things due to being unable to limit
the search space further than V ′, which may be very large
when the source and destination are far apart.

To control the run-time, we propose an anytime extension
to Algorithm 4 that limits the time spent searching. With this
approach, we give an acceptable maximum run-time ta as
an additional input, and the algorithm returns the pivot path
if search has not terminated when it has spent ta seconds
searching for a path. The pivot path is the best path found at
any time during the execution of the algorithm — the closer
the algorithm is to termination, the more likely it is that the
pivot path is different from Pa or Pb, assuming that the best
path is different from these.

Furthermore, we modify the priority queue to use a different
sorting for paths: we now use the A* cost estimate on the final
vertex of a path. The intuition is that we wish to find as many
promising candidate paths as possible before termination, and
sorting on the A* cost estimation means that paths closer to
the destination have a larger priority than paths farther away.

Observe that this extension breaks the guarantee of returning
the path with the largest probability of arriving by t. Instead,
Algorithm 4 now returns a path that is at least as good as
P̂ , which is the best path using deterministic minimum edge
costs. In the next section we assess the quality of the paths
returned by the extended algorithm.

V. EMPIRICAL STUDY

A. Experimental Setup

Road network and GPS Data. We use an undirected graph
that represents the Danish road network, extracted from
OpenStreetMap1. The graph consists of 667,950 vertices and
1,647,724 edges. We utilize a GPS data set consisting of
ca 180 million GPS records, covering 167,520 edges of the
graph. All measurements are rounded to the nearest second.
Further, we disregard measurements that are rounded to 0, and
we disregard trajectories representing road segment traversal
speeds exceeding 110% of the speed limit. This ensures that
no roads exist which are free to traverse, while also making
sure we avoid producing paths that are best only if a driver
exceeds the speed limit.
Uncertain Road network. We instantiate the cost function
C : E → D in G as follows: First, if an edge is covered
by GPS records, we instantiate the travel time distribution
of the edge using the records. Second, if an edge is not
covered by GPS records, we derive a travel time td based
on the length and speed limit of the edge. Then, we generate
a triangular distribution centered around td · 1.2 with lower
bound td and upper bound td ·1.4. The intuition is that drivers

1http://www.openstreetmap.org

11

http://www.openstreetmap.org

may not always drive as fast as the speed limit due to traffic
and often spends more than td. We use this approach to
ensure uncertainty across all edges. A triangular distribution is
similar to a Gaussian distribution, the main difference being
that it accepts strict upper and lower bounds as parameters,
ensuring no samples have values outside the bounds. Further,
we center the triangular distribution around td · 1.2 to reduce
the likelihood of performing routing with edges having no
trajectory data. Further, we always use convolution on edges
with triangular distributions.
Time Budgets. The budgets in probabilistic budget routing
queries have a significant impact on routing efficiency. Select-
ing a very large budget enables Algorithm 4 to short-circuit
and return one of the two paths found in the deterministic
search, since each path has probability 1.0 of arriving at d
by t. Conversely, a very small budget decreases the size of
the search space given by V ′, which in turn improves query
efficiency. However, if the budget is too small, no path is able
to reach d within t. Thus, in order to assess the impact of
different budgets, we need to select time budgets carefully.

We proceed to describe how we choose time budgets. Given
a source and destination pair, we employ Algorithm 4, but
terminate after line 7, which returns path Pa, the fastest
optimistic path when all edges are annotated with minimum
travel times. Next, based on the travel time cost distribution,
we choose three time budgets b1, b2, and b3, such that the
probabilities that the path Pa has travel time smaller than b1,
b2, and b3 are 25%, 50%, and 75%, respectively. In other
words, we choose the 25%, 50%, and 75% quantiles of the
distribution of Pa as the budgets.
Queries. To speed up the routing, we pre-compute dependence
relations in the graph. We apply a classifier to each pair of
adjacent edges to determine whether they are cost dependent.
Edges with no trajectory coverage are assumed to be inde-
pendent in all associated relations. Roughly 10% of all edge
pairs are cost dependent.

To easily distinguish between the results of Algorithm 4
with and without the anytime extension, we denote the re-
turned path as Px, where x is the time limit. Thus, P∞ denotes
the path returned by the algorithm without anytime extension.
When using the anytime extension, we focus on P1, P5, and
P10, i.e., the paths returned with a 1, 5, and 10 second time
limit.

We focus on probabilistic budget routing in intra-city set-
tings as the traffic uncertainty inside cities is higher. The path
choices for inter-city travel are often limited because they
tend to use highways. Thus, we generate source and destin-
ations pairs inside cities based on three distance categories:
[0, 1), [1, 5), and [5, 10). For each category we generate 100
source-destination pairs that we use as input to Hybrid Search
to examine the influence of different budget values and varying
values of k.
Implementation. All algorithms are written in Python version
3.7. The experiments are conducted in a single process on
a machine running Windows 10 with an 8-core Intel 8900K
4.2 GHz CPU with 32GB DDR4 main memory and 4TB

secondary memory.

B. Experimental Results

1) Routing Efficiency: For routing efficiency, we consider
Algorithm 4 without the anytime extension, i.e., P∞.

(a) Efficiency, [0, 1), k = 2 (b) Efficiency, [0, 1), k = 4

(c) Efficiency, [1, 5), k = 2 (d) Efficiency, [1, 5), k = 4

(e) Efficiency, [5, 10), k = 2 (f) Efficiency, [5, 10), k = 4

Figure 13: Boxplots visualizing the speed of Algorithm 4.
Whiskers represent 5th percentile and 95-th percentile

Figures 13(a–f) report on the runtimes of Algorithm 4 using
different query distance categories, different values of k, and
different budgets. We omit figures for k = 3 to save space.
In general, short queries terminate very fast no matter the
configuration. Examining the results for longer queries reveals
that larger budgets lead to an increased variance in execution
time. In contrast, varying k while maintaining the same budget
has a negligible effect on the execution time; in the [5, 10)
query category, the mean varies by at most one second when
varying k.

For all categories, the mean runtime exceeds the median
substantially due to a few slow queries. There can be several
reasons for this: First, query pairs are categorized w.r.t. their
Euclidean distances, while shortest path distances always
exceed the Euclidean distances. This may affect the search
space, yielding a much larger set of potential paths than what
is typical for the query category. For example, near a river, we
may need to take a detour to cross a bridge. Second, varying
numbers of measurements on edges may yield loose path cost

12

bounds. This happens in cases with many traversals on edges.
Here, measurements of traversals at very low speeds give some
edges a small probability of having a very high traversal cost.
This yields a larger search space for Algorithm 4. Third, the
nature of estimation means that an expanded path P may be
better than the pre-path P−1. When this occurs, path pruning
occurs less frequently than when using convolution. Fourth,
the budget size has a direct impact on the search space. This
is reflected in the figures, as can be seen by looking at the
worst case for different budgets — using a smaller budget can
significantly reduce the worst-case execution time, and thereby
also the mean.

Table VI: Probability of returning a path P different from P̂

[0,
1) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P∞ 12% 12% 12% 12 % 13% 13% 14% 15% 14%

[1,
5) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P∞ 49% 51% 54% 50% 52% 54% 53% 55% 57%
P1 47% 50% 52% 48% 50% 52% 50% 53% 54%
P5 49% 51% 54% 50% 52% 54% 53% 55% 57%
P10 49% 51% 54% 50% 52% 54% 53 % 55% 57%

[5,10) 25% 50 % 75 %
Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P∞ 59% 56% 56% 60% 64% 58 % 65% 65% 60%
P1 54% 48% 46% 56% 58% 50% 62% 61% 54%
P5 59% 55% 54% 59% 62% 57% 63% 63% 59%
P10 59% 55% 56% 60% 62% 58% 64% 64% 59%

Table VII: Average probability of returning a path P different
from P̂

P∞ P1 P5 P10

[0, 1) 13% 13% 13% 13%
[1, 5) 53% 51% 53% 53%
[5, 10) 60% 54% 59% 60%

2) Routing Quality: To assess the quality of the returned
paths, we first examine the likelihood of P∞ being different
from P̂ , where P̂ is the path given by line 9 in Algorithm 4.
This is of interest because if P∞ 6= P̂ , a strong cost
dependence exists in the search space; otherwise, the two
paths P∞ and P̂ should be identical. If there is no strong
cost dependence, there is no need to use Hybrid Routing.
In addition, it is possible to pre-compute whether we should
use Hybrid Routing for a given source and destination pair
by determining whether P∞ = P̂ . Observe that P̂ may be
the best path no matter which type of routing algorithm we
use. Furthermore, for each query, it is always the case that if
Px 6= P̂ then P∞ 6= P̂ , and if P∞ = P̂ then Px = P̂ , where

Px can be, e.g., P1, P5, or P10. As a consequence, no Px can
have a larger percentage of being different from P̂ than P∞.

Table VI shows the percentage of times P∞, P1, P5, and P10

are different from P̂ for each query category, and Table VII
provides a summarized version to better see the trend. All
short queries finish within a second. Hence, P1, P5, and P10

are equal to P∞. Further, for short queries, P̂ has a very high
likelihood of being the best path. This is likely because most
paths are so short (|P |<5) that the uncertainty and dependence
do not matter.

However, for longer queries, the uncertainty and depend-
encies make a difference. In the medium distance category,
we obtain a path different from P̂ some 50% of the time.
Here, P1 and P∞ are very similar, with a difference of 2%,
suggesting that it often is not worth spending more than one
second on these queries. In the long distance category, we find
that P∞ 6= P̂ 60% of the time on average. Also, P10 is very
close to P∞, although P10 is limited to ten seconds, while
P∞ can spend many times that in the worst case as seen in
Figures 13(e–f).

Next, we examine the set of returned paths where Px 6= P̂
to assess the differences in terms of traversed vertices and
probability of arrival within the time budget.

Table VIII shows the difference in probability of arrival
within t between Px and P̂ . This probability always larger
than 0.0 and smaller or equal to 1.0. Interestingly, the average
difference is very large, suggesting that when there is a
strong cost dependency, paths may exist that are significantly
better than P̂ . Moving from left to right in the tables, we
observe that the average difference diminishes. This is due
to the probability of P̂ being at least as large as the budget
percentage, e.g., 25%. Thus, there is more leeway to improve
the probability with a low budget.

Examining Px vs. P∞, we find that between five to ten
seconds is an acceptable limit for queries in [1, 5) and that
queries in [5, 10) need at least ten seconds. However, with a
large budget, it is also more acceptable to decrease the time
limit for Px. For example, for 75% in [5, 10), we obtain the
same result with P5 as with P10, suggesting that time limits
should be stated relative to budget sizes. Conversely, there is
no obvious correlation between k and the likelihood of P∞ =
Px. From Tables VI and VIII, we learn that we sometimes
find a path Px different from both P̂ and P∞. For example,
in the [1, 5) category for P5 with k = 2 and 25%, we have
a lower average probability difference than that of P∞; yet,
according to Table VI, the same number of paths are different
from P̂ with this configuration. Thus, cases exist where the
algorithm finds a result that is better than P̂ , but is not the
best. Still, the average difference in probability is 5%, which
can be considered negligible.

Next, we consider the similarity between P∞ and P̂ .
Specifically, we calculate the Jaccard similarity between their
vertex sets, having excluded the source and destination vertices
that always occur in both sets. The Jaccard similarity is defined
as JS = |A∩B|

|A∪B| . A similarity score of 1.0 means the two paths
are identical, whereas a similarity score of 0.0 means the two

13

Table VIII: Average difference of the probability of arrival by
t between Px and P̂ when Px 6= P̂

[0,
1) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P∞ 0.38 0.36 0.33 0.26 0.22 0.20 0.14 0.11 0.10

[1,
5) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P∞ 0.43 0.38 0.35 0.33 0.28 0.26 0.18 0.20 0.18
P1 0.40 0.34 0.29 0.31 0.25 0.22 0.16 0.18 0.15
P5 0.42 0.37 0.34 0.33 0.28 0.25 0.18 0.19 0.17
P10 0.43 0.38 0.35 0.33 0.28 0.26 0.18 0.20 0.18

[5,10) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P∞ 0.53 0.39 0.31 0.38 0.24 0.23 0.20 0.14 0.15
P1 0.40 0.31 0.23 0.32 0.20 0.18 0.17 0.11 0.12
P5 0.45 0.36 0.27 0.36 0.24 0.20 0.19 0.14 0.14
P10 0.48 0.38 0.29 0.36 0.24 0.21 0.19 0.14 0.14

Table IX: Similarity between P∞ and P̂ when P∞ 6= P̂

P∞ 25% 50 % 75 %
Length k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
[0, 1) 0.47 0.40 0.45 0.43 0.37 0.42 0.39 0.34 0.41
[1.5) 0.47 0.46 0.49 0.47 0.43 0.47 0.46 0.44 0.46
[5, 10) 0.48 0.47 0.45 0.48 0.50 0.48 0.47 0.48 0.48

paths are disjoint and thus share no vertices. Table IX reports
the average Jaccard similarities. The table shows that hybrid
paths on average are very different from P̂ , scoring 0.50 when
they are most similar. In other words, paths follow, on average
a route so different that half of the vertices covered by the
path are different from the covered vertices in P̂ . The average
number of vertices covered by P∞ for [0, 1) is 12.7, while
for [1, 5), it is 40.7, and for [5, 10), it is 69.3. Conversely, the
average number of vertices covered by P̂ for [0, 1) is 12.7,
while for [1, 5), it is 41.3, and for [5, 10), it is 70.5. Thus,
paths have similar lengths, but cover very different sets of
vertices. No matter the distance category, P∞ 6= P̂ implies
very different paths, showing that considering cost dependence
can significantly alter results, particularly for long distance
queries.

Next, we examine the similarity between Px and P∞. We
disregard [0, 1) because Px = P∞ for all categories. Table X
shows that paths in [1, 5) are very similar, even when limiting
the search to 1 second. This is because the median execution
time is just below one second, and P1 = P∞ for 75% of the
queries in this distance category. Similarly, using 1 second for
[5, 10) queries yields the same result as P∞ in many cases, and
all tested time limits yield results very similar to P∞. Further,
using 10 seconds instead of 5 seconds offers little additional

benefit.

Figure 14: Real-life routes computed by P̂ (red) and P∞ (blue)
with k = 3 and a 300 second budget

Figure 14 shows an example of query results computed by
P̂ and P∞. In this example, Pa = Pb = P̂ , and P∞ utilizes
more than 50000 measurements to derive a distribution. The
paths suggest that P̂ tends to follow main roads, likely be-
cause of their larger speed limits, which reduce the minimum
traversal cost. However, P∞ is significantly different from P̂ ,
suggesting that main roads have traversal costs that are very
uncertain with low probability of fast traversal. P∞ passes
through a residential area, which likely has lower speed limits
and less traffic. Further, P̂ passes eleven traffic lights, while
P∞ passes seven, but P∞ requires eleven turns, whereas P̂
requires one. This suggests that turn costs in residential areas
are negligible, likely because a driver rarely has to stop for
more than a few seconds, whereas traffic signals on main roads
may produce more uncertainty due to a large difference in time
stopped.

We conclude that using Hybrid Routing is a good idea in
regions with strong cost dependence. Further, it is acceptable
to limit the worst case execution time by using an anytime
variant of Algorithm 4. For short queries, we suggest a time
limit of one second, and for medium and long range intra-city
queries, we suggest a five second time limit.

VI. RELATED WORK

Stochastic Cost Modeling. The field of path-cost modeling
has been studied extensively, often with an underlying model
assuming cost independence [5], [15], [17]. Some studies
consider temporal dependence, i.e., traversal costs are given
as a function of time, but assume no spatial cost dependence
between neighboring edges if a departure time is given [2],

14

Table X: Jaccard similarity between P∞ and Px

[1,
5) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P1 0.90 0.89 0.88 0.88 0.88 0.88 0.87 0.88 0.87
P5 0.95 0.94 0.92 0.95 0.93 0.93 0.93 0.93 0.91
P10 0.95 0.96 0.93 0.95 0.95 0.94 0.93 0.95 0.92

[5,10) 25% 50 % 75 %

Path k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
P1 0.81 0.82 0.78 0.82 0.81 0.79 0.82 0.79 0.78
P5 0.85 0.86 0.84 0.88 0.84 0.83 0.86 0.84 0.83
P10 0.88 0.87 0.84 0.88 0.86 0.85 0.87 0.85 0.85

[16], [19]. This paper’s cost model considers spatial depend-
ence, i.e., adjacent edges may be cost dependent. Several
studies integrate spatial dependence into the cost model by
examining historical trajectories to reuse path costs [1], [6],
but they are only able to model cost dependence if trajectories
exist that cover two or more consecutive edges in the path.
Our approach also relies on trajectories to model spatial
dependence, but it does not need trajectories that follow the
path for which a cost is computed. Another study models
spatial dependence between edges [8]. This approach relies
on assumptions such as turn speed bounds, and it neither
utilizes real-world costs nor considers stochastic costs. In
contrast, we make no assumptions about which elements
affect spatial dependence. Finally, a study models spatial
dependence between adjacent edges [11], but assumes that
all pairs of adjacent edges have a known joint distribution.
Further, it uses synthetically generated distributions. Although
some studies [12], [20] employ histograms to represent travel
cost distributions, they only consider individual road segment
traversal cost and assume cost independence.

One study [4] models cost dependence as a correlation
between all edges and a global hidden random variable. In
contrast, we model local spatial dependence.

To the best of our knowledge, we are the first to propose a
cost model that combines convolution and machine learning
to approximate spatially dependent path costs more accurately.

Stochastic Routing. Compared to traditional routing al-
gorithms [7], [9], where costs are assumed to be deterministic,
stochastic routing algorithms employ uncertain weights rep-
resenting road segment traversals. Existing stochastic routing
algorithms often assume that edge cost distributions are inde-
pendent and perform pruning based on stochastic dominance
[14], [16], [19]. Many studies on routing implicitly assume
that the subpath optimality property holds. However, one
study examines how to ensure compliance of the property
when solving the multi-criteria shortest path problem in a
time-dependent graph model of public transportation. Here,
the subpath optimality property does not hold because an
algorithm aims to minimize several criteria to retrieve the

shortest route, and it has the option to wait for a departure.
That paper solves the problem by solely comparing paths with
the same departure time, which ensures subpath optimality
compliance [3]. We also find that subpath optimality does
not always hold in the setting that we consider. Instead,
we determine the cases in which it does hold, and we use
subpath optimality for pruning only in those cases. Further,
we consider spatial dependence, not temporal dependence, and
do not allow waiting at any vertex. One study considers cost
dependence while routing—it only uses stochastic dominance-
based pruning if two edges are independent [18]. However,
independence is assumed if no traversal exists that covers
both edges in sequence. To achieve efficiency, we propose
two additional pruning techniques using pivot paths and A*
like optimistic costs. In addition, we propose an anytime
extension that provides good results within a runtime limit,
e.g., 5 seconds.

VII. CONCLUSION AND FUTURE WORK

We propose means of stochastic routing together with a
hybrid model for path cost computation. We first show that it
is beneficial to use machine learning for path cost computation
because this enables the capture of cost dependencies among
the edges in paths. Next, we propose a hybrid model that
computes costs, and then we integrate this model into a routing
algorithm. We conduct extensive experiments that offer insight
into the efficiency and result quality achieved by the algorithm.
Further, we build an anytime extension of the algorithm that
limits the execution time, and we show that intra-city queries
that may be slow in the worst case, can complete in reasonable
time while offering high result quality.

In future work, it is of interest to consider personalized
routing and to examine if edge properties by themselves are
sufficient to determine distributions, such that no trajectories
are required for cost estimation.

REFERENCES

[1] S. Aljubayrin, B. Yang, C. S. Jensen, and R. Zhang. Finding non-
dominated paths in uncertain road networks. In Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, page 15. ACM, 2016.

[2] M. Asghari, T. Emrich, U. Demiryurek, and C. Shahabi. Probabilistic
estimation of link travel times in dynamic road networks. pages 1–10,
2016.

[3] A. Berger and M. Müller-Hannemann. Subpath-optimality of multi-
criteria shortest paths in time-and event-dependent networks. 2009.

[4] A. Chang and E. Amir. Reachability under uncertainty. UAI, 2007.
[5] A. Chen and Z. Ji. Path finding under uncertainty. Journal of Advanced

Transportation, 39(1):19–37, 2005.
[6] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu. Path cost distribution

estimation using trajectory data. In PVLDB, 10(3):85–96, 2016.
[7] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.
[8] R. Geisberger and C. Vetter. Efficient routing in road networks with turn

costs. In International Symposium on Experimental Algorithms, pages
100–111. Springer, 2011.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

15

[10] C. C. Heyde. Central Limit Theorem. Wiley StatsRef: Statistics
Reference Online, 2014.

[11] M. Hua and J. Pei. Probabilistic path queries in road networks: traffic
uncertainty aware path selection. In EDBT, pages 347–358, 2010.

[12] Y. Ma, B. Yang, and C. S. Jensen. Enabling time-dependent uncertain
eco-weights for road networks. Proc. GeoRich@SIGMOD, pages 1–6,
2014.

[13] Y. M. Nie and X. Wu. Shortest path problem considering on-time arrival
probability. Transportation Research Part B: Methodological, 43(6):597
– 613, 2009.

[14] E. Nikolova, M. Brand, and D. R. Karger. Optimal route planning under
uncertainty. In ICAPS, pages 131–141, 2006.

[15] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher. Stochastic
shortest paths via quasi-convex maximization. In European Symposium
on Algorithms, pages 552–563. Springer, 2006.

[16] M. P. Wellman, M. Ford, and K. Larson. Path planning under time-
dependent uncertainty. In UAI, pages 532–539, 1995.

[17] A. B. Wijeratne, M. A. Turnquist, and P. B. Mirchandani. Multiobjective
routing of hazardous materials in stochastic networks. European Journal
of Operational Research, 65(1):33–43, 1993.

[18] B. Yang, J. Dai, C. Guo, C. S. Jensen, and J. Hu. PACE: a path-centric
paradigm for stochastic path finding. VLDB J., 27(2):153–178, 2018.

[19] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang. Stochastic
skyline route planning under time-varying uncertainty. In ICDE, pages
136–147, 2014.

[20] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving
directions with taxi drivers’ intelligence. In IEEE TKDE, 25(1):220–
232, 2013.

16

	Front page
	Introduction
	Preliminaries
	Basic Concepts
	Road Networks
	Uncertain road networks

	Path costs
	Problem Definition

	Hybrid Learning Model Building
	Limitations of Convolution
	Learning Path Cost Distributions
	Short paths
	Long Paths

	Hybrid Model

	Routing with Hybrid Learning
	Limitations of Existing Routing
	Incremental Property
	Hybrid Routing

	Empirical Study
	Experimental Setup
	Experimental Results
	Routing Efficiency
	Routing Quality

	Related work
	Conclusion and Future Work
	References

