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SUMMARY 

Oxide glasses are fairly cheap materials with a huge range of applications in industries 

like construction, telecommunication and the medical industry. Glasses are 

extensively researched but because of the amorphous nature of the glassy structure, 

the number of possible glass compositions is huge, making it a field with potential for 

research and development.  Understanding composition-structure-property relations 

in oxide glasses would accelerate the design of new compositions with tailored 

properties. The goal of this thesis is to push the understanding of composition-

structure relations in binary- and ternary oxide glasses.  

First, we modified a statistical mechanics-based model, theorized by John Mauro to 

capture the probabilities of interactions between network modifier and network 

former species in binary oxide glass systems. We applied the model to binary 

phosphate-, borate- and silicate glasses, obtaining relative enthalpies of each possible 

interaction between network modifier and network former species in these glasses. 

We could successfully predict composition-structure relations with only 1-3 glasses 

as input for each system. Additionally, the model was used to predict the structural 

dependence on thermal history in these binary glasses.  

Second, we used the thermal history dependence of the present statistical mechanics-

based model to predict MD simulated composition-structure relations in Na2O-SiO2 

glasses. By assuming the same enthalpies of interactions in experimentally obtained 

glasses and MD simulated glasses, we were able to successfully predict the MD 

simulated structures with only one free parameter. 

Third, we used the obtained parameters from the binary systems to predict 

composition-structure relations in ternary borosilicate glasses by assuming same bond 

energies between a specific network modifier and network forming species in the 

binary and ternary glass systems. With this assumption, the statistical mechanics-

based model was used to predict composition-structure relations in the Na2O-B2O3-

SiO2 and K2O-B2O3-SiO2 systems with 1 and 0 free parameters, respectively. The 

predictions were compared to data obtained by both NMR experiments and MD 

simulations with most accurate results when comparing to MD simulation. 
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CHAPTER 1. INTRODUCTION 

Glass has spiked interest and intrigue in mankind ever since the first discovery of 

small glass beads in the early mesopetania as a byproduct from metal production.1 At 

that time, opaque materials were assessed with very high values, with examples being 

amber and gemstones.2 With the discovery of colored glass beads, production of 

glasses started becoming a profession were the skills and experiences would travel 

and grow from generation to generation. Eventually, glasses could be produced in 

large enough scale to be used as building materials, allowing for sunlight to flow into 

the houses while keeping the insides shielded from the weather.1 However, even with 

glass being more available as building materials, it was still used as a sign of quality, 

value and decoration as seen in the mosaiks of old buildings such as churches or in 

modern builds, were large window sections are frequently used.3 Entering the 

industrial age, up till now, glass has become a high tech material, used in a variety of 

industries, including but not limited to bioactive glass in the medical industry, optical 

fibers in telecommunication and nuclear waste encapsulant in the energy industry.4–7 

With the large range of applications of glass, finetuning the chemical composition of 

glasses to obtain very specific physical properties for a certain application has become 

a large research area.2,8 To accelerate the design of new functional glasses, 

composition-property models have been extensively researched and developed but are 

often limited to very specific glass systems and are not transferable between systems.9 

Recently, the atomic-scale chemical structure of oxide glasses has been found to 

correlate nicely with several physical properties and structure-property models have 

been developed, even between systems.10–12 The issue with structure-property models 

is obtaining structural data, as physical properties are easier to measure than the 

atomic scale-structure.13–15 In this study, we apply a statistical mechanics-based model 

accounting for the enthalpic and entropic contributions to bond preferences in simple 

oxide glasses to predict the composition-structure relation, also between systems.16,17 

Coupling the proposed composition-structure model with already developed 

structure-property models could enable quantitative composition-property predictions 

in glass systems not yet experimentally studied. In this thesis, however, the focus is 

on predicting the composition-structure relation in oxide glasses. First, using 

experimentally obtained data from binary oxide glasses to build enthalpy values, 

specific to each modifier in each glass system. Second, to transfer these enthalpy 

values to ternary glasses and predict composition-structure relation without fitting to 

any experimentally obtained data. 

1.1. BACKGROUND 

Glasses are non-crystalline amorphous materials with chemical structures resembling 

that of liquids.18,19 Due to its liquid-like structure, the number of possible elements 

that can be included to form a glass extends to over half of the periodic table. As a 

result, the number of potential glass compositions is huge and only a very small 
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fraction has already been synthesized and analyzed.2 Today, glass is a key part in 

many technologies such as bioactive bone growth, telecommunication, nuclear waste 

encasement and high-tech monitors.4,20–22 All of these technologies have in common 

that they are developed through the tedious and time-consuming trial-and error 

methodology.2,23 A method of tailoring the structure of the glass to obtain the desired 

properties would greatly accelerate the research and development. To get closer to 

such a method, this study focuses on the thermodynamics that determine the short-

range order in oxide glasses to ultimately predict structures of multicomponent glasses 

from composition without any experiments. Additionally, we will review and apply 

topological constraint theory (TCT) as a structure-property model. In this report, TCT 

has only been applied after predicting glass structure of specific oxide systems to 

illustrate the potential of linking statistical mechanics and TCT. Moving forward, TCT 

will be linked directly to the proposed statistical mechanics-based model to tailor glass 

compositions by predicting and optimizing their properties.  

1.1.1. GLASS FORMATION 

Upon cooling, most liquids will spontaneously crystallize once reaching a critical 

temperature (Tm in Figure 1).24 The crystallization will result in an abrupt decrease in 

enthalpy in the material, resulting in a release of energy (heat) to the system. Some 

liquids, however, will keep their liquid form even after passing Tm if the cooling rate 

is high enough, hence forming a “supercooled liquid”. Upon further cooling, the 

viscosity of the liquid will keep increase until reaching the fictive temperature, where 

the viscosity of the liquid becomes too high for the structure to rearrange, hence 

forming a glass.25 As a result, glasses are amorphous solid materials with chemical 

structures resembling that of liquids.19 As seen in Figure 1, the faster cooling rate will 

result in a higher fictive temperature (Tf) which will be an important factor later, when 

exploring the statistical mechanical description of structure distribution, since a higher 

Tf will result in higher entropy and more randomly distributed structures in the glass. 

Since Tf of the glass depends on the cooling rate during quenching, the glass transition 

temperature (Tg) has been defined as the temperature where the supercooled liquid 

reaches a viscosity of 1012 Pa×S.26,27 Tf is estimated to be equal Tg when the glass is 

quenched at a cooling rate of 10 K/min.25 
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Figure 1. Enthalpy of a glass-forming liquid as a function of temperature, where Tm is the 
melting temperature of the corresponding crystal, Tffast and slow are fictive temperatures of the 
glass with a fast and slow cooling rate, respectively.24 

Some of the most common materials to form glasses upon fast quenching of melts are 

silica (SiO2), borate (B2O3) and phosphate (P2O5), where the Si, B and P atoms form 

a network through bridging oxygens (BOs), hence they are termed “network 

formers”.7,19,28 These glass-formers will have relatively high Tg in their pure form so 

to reduce the working temperature (and to alter other physical properties) “network 

modifiers” such as Na2O, K2O, and CaO are often added to the glasses.24 These 

elements are known as network modifiers because they will break the BOs on the 

network formers, hence modifying the network.  

1.1.2. STRUCTURE OF GLASS 

All short-range order (SRO), which refers to the arrangement of atoms over the 

spacing of only 1-2 atoms, structural groups in the Na2O-SiO2 glass system are shown 

in Figure 2.29,30 The structural groups are named using the Qn denotation, where n is 

the number of BOs pr. silicon atom.  



PREDICTING THE STRUCTURE OF BINARY- AND TERNARY OXIDE GLASSES USING STATISTICAL MECHANICS 

14
 

 

Figure 2. Qn structural units in a Na2O-SiO2 glass system, where green circles are Na+ ions, 
red circles are oxygen atoms and black circles are silicon atoms. Covalent bonds are 
represented by a straight blue line. 

The more BOs on a silicon atom, the higher the potential energy and hence, a Q4 unit 

is more likely to interact with a modifier ion than a Q3 is.31 On the other hand, the 

higher the temperature of the system, the higher the entropic contribution to the free 

energy of the interaction, hence Q3 has a closer to equal chance at reacting with a 

modifier ion as a Q4 unit.16 By accounting for the fraction of each structural unit, the 

energy difference between the interactions, and the energy present from heat at the 

fictive temperature (where the liquid freezes in time), one would be able to predict the 

probability of each interaction, leading into statistical mechanical modeling of glass. 

1.1.3. STATE OF THE ART 

Before descriping the proposed statistical mechanics-based model, an overview of the 

state of the art is given. Models have already been developed to predict glass 

properties from their compositions. Below are a few examples, including their 

strengths and weaknesses. 

• Classical additivity models, where properties of glasses are modelled 

through multiple regression, assuming some linearity between the 
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compositions and the property. This type of model is used for interpolation 

of properties in specific systems but offers no prediction outside of the glass 

systems examined.32,33 

 

• Structural and semi-empirical models, which, unlike the classical additivity 

model, allows for predictions of glass properties beyond the limits of the 

available experimental data. This kind of model extends the experimental 

data through empirically based structural models, basic principles or general 

glass chemistry. Hence widening the model application but at the cost of 

accuracy.34,35 

 

• Statistical models are based on statistical analysis such as linear and non-

linear regression. These models are often very accurate but limited to the data 

input in contrast to the structural and semi-empirical models.9 

 

• Deductive glass models are based on fundamental laws or theory and are 

hence not termed as empirical. Examples of deductive glass models include 

molecular dynamic simulations36 and thermodynamic modelling37. These 

models are based on the atomic volume, bond strength, atomic size etc. for 

molecular dynamic simulations and the chemical equilibrium constant, 

energy of formation etc. for the thermodynamic modelling. Due to the basis 

of the models, they are often referred to as semi-empirical. Because of the 

complex amorphous nature of glasses, prediction of complex commercial 

glasses are hardly possible using deductive glass models as of yet.38 

The above models aim at predicting the properties of glasses directly from the 

composition. Molecular dynamics simulations, first established in the late 1980s 39 

uses  computer simulations of empirical pair potentials between the elements of the 

glass to predict the short range structure in the glass.40 Today, detailed molecular 

dynamics simulations are usually applied on systems containing no more than 

hundreds of atoms and on time scales of tens of picoseconds.41 MD simulations offer 

insight into the structure of oxide glasses but with the main limitation that simulation 

of glasses must be performed on a system to system basis and is time consuming. 

Hence, MD simulations do not offer fast prediction of structure of properties of glass 

systems on a large scale.  

Instead of making a direct model to predict the properties of glasses from their 

composition, this project aims at predicting the structure of the glass from the 

composition through statistical mechanics and then the properties from the structure. 

This would give fast prediction of SRO-scale structural units in a large range of glass 

systems which could then be coupled with structure-property models to easily 
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estimate properties in the systems. Since the proposed statistical mechanical model is 

semi-empirical, quantitative analysis of the structure of glass systems is a requirement.  

Solid state nuclear magnetic resonance spectroscopy 

 

Solid state nuclear magnetic resonance (SS-NMR) is a valuable tool to quantitatively 

analyse both the short and medium range structures of oxide based glasses.14 NMR 

can only be used to probe certain isotopes, since the nuclei investigated must have 

intrinsic magnetic moment and angular momentum.42 Common elements used in glass 

science have NMR active isotopes, which are naturally abundant, such as 29Si, 11B, 
31P, 27Al, and 23Na, making SS-NMR a relevant tool to quantitatively analyse the 

structure of oxide glass systems. Most commercial glasses contain one or more 

modifiers. These modifiers form non-bridging oxygen (NBO) in the glass network or 

charge stabilise the network former units. In the SS-NMR results, the peak for the 

network former nuclei will shift with each added NBO due to increased deshielding. 

Hence, the Qn distribution (Figure 2)  of most glasses may be quantified using SS-

NMR.31 In mixed network former glasses, 2D NMR has arisen as a powerful tool for 

predicting the intermediate range structure. Through-bond scalar coupling or 

internuclear-distance dependent through-space dipolar interactions are exploited to 

describe the pair-wise connectivity between tetrahedra of different species.43 

 

Raman spectroscopy 

 

Raman Spectroscopy is another tool for obtaining short range structural information 

of a glass system. Like NMR, Raman may be used to probe the Qn distribution of most 

glass systems such as silicates, borates or phosphates.44 Raman utilises the vibrational 

modes of bonds, since these will shift a reflected beam of light with a specific 

wavelength to a different wavelength. The shift in wavelength is then specific to the 

given bond. To be Raman active, the species must have stretching or vibrating bonds, 

such as the stretching-vibrations of silicon-oxygen bonds.45 Unlike NMR, 

quantification of structural units is very difficult using Raman spectroscopy and it is 

mostly used qualitatively or in combination with SS-NMR.  

Neutron diffraction 

 

Finally, neutron diffraction may be used to probe the glass structure. Neutron 

diffraction works on the basis that a free neutron with a high kinetic energy will 

transfer kinetic energy to a substrate upon impact. Depending on the energy 

transferred, the diffraction angle will change and the intensity is detected as a function 

of diffraction angle. The results may then be Fourier transformed to obtain the pair 

distribution between atoms in the materials. This method is usually used on crystalline 

samples and the amorphous nature of glasses makes quantification difficult.18  
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Even though the structural analysis methods of glasses are developed, a general model 

for predicting the structure of glasses from their composition is still lacking due to 

their disordered nature.11  

 

1.1.4. STATISTICAL MECHANICAL MODELLING OF GLASS  

The following description elaborates on the proposed Statistical mechanics-based 

model by Mauro.17 We consider that the modifier distribution in simple oxide glasses 

may be described statistically, using a hypergeometric distribution. Hypergeometric 

distributions are used to describe the probabilities of a series of events, considering 

the previous event.46 An example could be drawing marbles from an urn without 

replacing them after each draw. In the case of the silicate system in Figure 2, the 

marbles represent the different structural units, where each unit corresponds to a 

unique type of marble. The modifiers would then represent the hand drawing a marble 

from the urn and keeping it. Considering pure SiO2, the urn would only contain Q4 

marbles. Considering a population of 100 Q4 marbles, the first random draw would 

leave 99 remaining Q4 marbles. The one marble that would be randomly chosen would 

react with the modifier ion and form a Q3 unit, hence the marble would be returned to 

the urn as a Q3 marble. At the second draw, the urn would contain 99 Q4 marbles and 

1 Q3 marble and the probability of the modifier to randomly pick a Q3 marble would 

be 1 %. If the interaction of the modifier to a network-former species was completely 

entropically controlled, the hypergeometric distribution would explain the distribution 

of structural units as a function of modifier concentration. However, in a real glass 

system, the modifier-former interaction is highly controlled by the system obtaining 

the lowest possible potential energy, hence the interaction probability is determined 

by the enthalpies of the different possible interactions and the random hypergeometric 

distribution is not sufficient. To capture the added enthalpic driving force for a 

modifier-former interaction, a type of non-central hypergeometric distribution must 

be applied. In a non-central hypergeometric distribution, each possible event is 

corrected by a weighting factor, specific to that event. In the case of the marble 

analogy, the weighting factor would correspond to the marbles having different sizes 

and the largest marbles would be more likely to be randomly picked. Such a type of 

distribution is captured mathematically by the Wallenius type non-central 

hypergeometric distribution:46,47 

 𝑝𝑖,𝜔 =
(g𝑖−𝑛𝑖,𝜔−1)𝑤𝑖

∑ ∑ (g𝑗−𝑛𝑗,𝜔−1
𝜔−1
𝜔=0 )𝑤𝑖

𝑀
𝑗=1

, (1) 

where pi,ω is the probability of drawing marble i after ω draws, gi is the initial 

population of marble i, ni,ω-1 is the number of marble i already drawn before draw ω 

and wi is the weighting factor for marble i. That is, the numerator in Eq. 1 is the 

number of marbles i before the given draw multiplied by the weighting factor of 

marble i, and the denominator in Eq. 1 is the total number of marbles before the draw, 

multiplied by each of their respective weighting factors. 
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To find a physical meaning of the weighting factor, the non-central hypergeometric 

distribution is derived from the Boltzmann distribution function. In statistical 

mechanics, the Boltzmann distribution function48 describes the probability for a 

system to be in a given state as a function of the system’s temperature and the energy 

of that state, 

 
𝑝𝑖 =

𝑒
−

𝜀𝑖
𝑘𝑇

∑ 𝑒
−

𝜀𝑗
𝑘𝑇𝑀

𝑗=1

, 
(2) 

where pi is the probability of state i, k is the Boltzmann constant, T is the temperature 

of the system, εi is the total energy of state i, and M is the total number of states. Mauro 

recently proposed to use the Boltzmann distribution to describe modifier speciation in 

mixed former glasses.17 In the glass forming systems, we define the probability states 

(pi) to be interactions between modifier ions and network former species i, and 

consequently, εi becomes the free energy of this interaction, which may be described 

by entropic and enthalpic contributions, 

 
𝑝𝑖 =

𝑒
−

𝐻𝑖−𝑆𝑖𝑇
𝑘𝑇

∑ 𝑒
−

𝐻𝑗−𝑆𝑗𝑇

𝑘𝑇𝑀
𝑗=1

. 
(3) 

Next, we introduce the statistical entropy of the system as, 

 𝑆𝑖 = 𝑘 ln Ω𝑖 , (4) 

where Ωi is the number of microstates consistent with a given macrostate for species 

i, 

 
𝑝𝑖 =

𝑒
−

𝐻𝑖−𝑘 ln Ω𝑖𝑇
𝑘𝑇

∑ 𝑒
−

𝐻𝑗−𝑘 ln Ω𝑗𝑇

𝑘𝑇𝑀
𝑗=1

. 
(5) 

We then obtain, 

 
𝑝𝑖 =

𝑒
−

𝐻𝑖
𝑘𝑇+ln Ω𝑖

∑ 𝑒
−

𝐻𝑗
𝑘𝑇+ln Ω𝑗𝑀

𝑗=1

, 
(6) 

or,   

 
𝑝𝑖 =

Ω𝑖𝑒
−

𝐻𝑖
𝑘𝑇

∑ Ω𝑗𝑒
−

𝐻𝑗
𝑘𝑇𝑀

𝑗=1

. 
(7) 
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The number of microstates consistent with the macrostate of species i divided by the 

total number of microstates consistent with the macrostate of the oxide glass will be 

the same as the relative fraction of species i divided by the total number of species. 

Since the fraction of a given structural species i in the glass changes with composition, 

we obtain 

 Ω𝑖,𝜔 = (𝑔𝑖 − 𝑛𝑖,𝜔), (8) 

where ω represents a given modifier concentration, gi is the degeneracy of species i 

and ni,ω is the total fraction of species i that has already interacted at modifier 

concentration ω. When calculating the probability of an interaction with species i at 

concentration ω, we must use the fraction of species i at the previous concentration 

step (ω-1), 

 
𝑝𝑖,𝜔 =

(g𝑖−𝑛𝑖,𝜔−1)𝑒
−

𝐻𝑖
𝑘𝑇

∑ ∑ (g𝑗−𝑛𝑗,𝜔−1
𝜔−1
𝜔=0 )𝑒

−
𝐻𝑗
𝑘𝑇𝑀

𝑗=1

. 
(9) 

The double summation in the denominator is over all species M and each modifier 

concentration ω up to, but not including the current concentration ω. The probability 

distribution function in Eq. (9) is a type of non-central hypergeometric distribution 

function, where the relative enthalpy Hi values are the free parameters when fitting to 

experimental data. We define 𝑒−
𝐻𝑖
𝑘𝑇 as the weighting factor wi for a modifier to interact 

with the structural group i, where T is assumed to be equal to Tf for T < Tf, since the 

structure is assumed to freeze in at the fictive temperature: 

 𝑝𝑖,𝜔 =
(g𝑖−𝑛𝑖,𝜔−1)𝑤𝑖

 

∑ ∑ (g𝑗−𝑛𝑗,𝜔−1
𝜔−1
𝜔=0 )𝑤𝑗

 𝑀
𝑗=1

, (10) 

where, 
𝑤𝑖 = 𝑒

−
𝐻𝑖

𝑘𝑇𝑓. 
(11) 

In the glass systems, the concentrations of structural units i at ω are calculated based 

on the concentrations of those species at ω-1 and the pi,ω values that all depend on 

concentrations at ω-1. Then, the new structural concentrations at ω are used to 

calculated probabilities pi,ω+1 and so on. By knowing a starting concentration of 

structural units at ω=0, one can iteratively calculate the concentrations of all structural 

units at all modifier concentrations ω if wi for all i are known, or fit the model to 

experimentally obtained data to obtain wi. In Figure 3, the Qn distribution after the 

first draw is illustrated, where the colored spheres illustrate each Qn unit. Here, we see 

that even after the first draw, the probability of drawing another Q4 unit is still 100 % 

when rounded to 3 decimals. This is due to the effect of the weighting factors seen in 

the bottom right corner.  
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Figure 3. The probabilities of drawing each former specie at 0 % modifier in a Na2O-SiO2 glass 
system. The colored spheres represent the population of structural units in the glass at the first 
draw. The top right graph shows experimental data of composition-structure relation in the 
glass system as symbols and the prediction as lines (up until the current concentration). The 
lower right graph shows the Tg at the composition as a line and the weighting factors calculated 
for the given composition based on the Tg value. 

In Figure 4, the probabilities of drawing each structural unit is calculated for a 

50Na2O-50SiO2 glass. Observe how the probability to draw a Q3 unit is still higher 

than drawing a Q2 unit despite the larger population of Q2 units. Figure 3 and 4 should 

give a picture of the numerical solution to calculating the probabilities of interaction. 

By knowing the starting concentration and the starting weighting factors, the initial 

probabilities may be calculated. From the initial probabilities, the fraction of each 

specie randomly picked for interaction is known and hence the new populations may 

be calculated, as these units are “returned to the urn” as different units. In the lower 

right corner of Figure 4, the Tg at the glass composition is tracked and used to calculate 

new weighting factors for each iteration. Note the difference between the weighting 

factors in Figures 3 and 4 due to the difference in Tg. 
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Figure 4. The probabilities of drawing each former specie at 0 % modifier in a Na2O-SiO2 glass 
system. The colored spheres represent the population of structural units in the glass at the first 
draw. The top right graph shows experimental data of composition-structure relation in the 
glass system as symbols and the prediction as lines (up until the current concentration). The 
lower right graph shows the Tg at the composition as a line and the weighting factors calculated 
for the given composition based on the Tg value. 

In case the Tg values of the glass is known, the model can be used to obtain the Hi of 

modifier former-interactions. Assuming these Hi values are constant for the specific 

modifier-former interaction, then these can be used in all systems where this 

interaction occurs. Consequently, the model can be applied to simple glass systems 

with few components to obtain Hi values, from experimentally obtained data, which 

in turn may be used to predict structural evolutions in complicated, multicomponent 

glasses without any fitting. In Appendix A, the python script used to apply this model 

to the binary phosphate is included with explanation. 

1.1.5. TOPOLOGICAL CONSTRAINT THEORY 

Topological constraint theory (TCT) was first proposed by Gupta and Cooper to 

mathematically explain the Zachariasen rules for glass formation.10 The Gupta-

Cooper model is derived for an arbitrary d-dimensional space and generalizes the 

tetrahedral network (as seen in Figure 2) to rigid polytopes of arbitrary dimensionality. 

At the same time, Phillips published another topological-based model which was later 

extended and put rigorous mathematical basis by Phillips and Thorpe.49,50 The Phillips 

and Thorpe model considers the connectivity of individual atoms in the network and 

predicted that the glass-forming ability would be maximized when the number of rigid 

two-and three-body constraints equals the number of atomic degrees of freedom. This 

prediction was later confirmed experimentally.12,51 According to Phillips and Thorpe, 
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the glass network can be considered floppy (underconstrained), isostatic (optimally 

constrained), or stressed rigid (overconstrained), dictated by the relative difference 

between the average number of constraints per atom (n) and the network 

dimensionality (d). When n<d, the network is underconstrained and contains low-

frequency deformation modes (so-called “floppy modes”). The network is isostatic 

when n=d and stressed rigid when n>d. Gupta and Mauro developed a method to 

account for temperature dependent constraints in glass-forming liquids.51 They 

categorized the constraints by their different onset temperatures, such that 𝑇𝛾 < 𝑇𝛽 <

𝑇𝜇 < 𝑇𝛼, where γ, β, µ, and α are different types of constraints defined as: 

• α: Linear constraints. Two α constraints for each oxygen. 

• β: Angular constraints on the network former. The quantity depends on the 

coordination and the number of NBOs associated with the former atom 

• γ: Angular constraints on the oxygen. One γ constraint per oxygen. 

• μ: Additional modifier rigidity due to clustering effects. 

In Figure 5, the influence of the onset temperatures of the constraints is illustrated. 

When the atomic degrees of freedom passes through zero, the system transition 

from containing floppy modes to a fully rigid system, where zero corresponds to 

an isostatic network.10  

 

Figure 5. The average atomic degree of freedom as a function of temperature in a binary borate 
glass system. As the system is cooled, more constraints become rigid and the average degrees 
of freedom decrease.10 
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Following the discovery of temperature dependent constraint theory in oxide glasses, 

the concept has been used to predict physical properties such as Tg, fragility, and 

hardness from the structure on the short-range order scale.11,12,52–54 

As the topological constraints of a glass is directly calculated from the atomic-scale 

structure, coupling TCT to the statistical mechanics-based model described in Section 

1.1.2 would enable the prediction of physical properties of glasses, effectively 

amplifying the usefulness of the statistical mechanics-based model.  

1.2. CHALLENGES 

The statistical mechanics-based model proposed five years ago by Mauro17 appears to 

easily solve many of the problems glass scientists are faced with when trying to come 

up with new and better glass compositions. To reach the end-goal of being able to 

easily predict structures for a huge range of glass systems from knowing the structures 

of a few simple systems only, a number of challenges must first be tackled.  

First, accurate measurements of the atomic scale structure of oxide glasses is a hard 

and tedious task and is often neglected in favor of easy measurements of physical 

properties, which is then correlated to the composition without taking the structure in 

consideration. To establish and verify the statistical mechanics-based model, 

systematic measurements of both binary and multicomponent glass structures are 

required.  

Second, the solution to binding probabilities, using the statistical mechanics-based 

model, is numerical with a set of free parameters. To obtain the most accurate 

parameters, energy landscaping is required as there may be several global minima 

when optimizing against the free parameters. Consequently, using the method will 

require a decent amount of computing power.  

Finally, the model also considers the structural dependence on thermal history of the 

glasses. To establish the model on simple glass systems, the fictive temperatures of 

the glasses are required as well as quantification of their structural units. Additionally, 

the structures of the predicted glasses are also depending on their fictive temperatures, 

making the model seem useless since you need to know a physical property of a glass 

before you can predict the structure of said glass. 

1.3. OBJECTIVES 

As this thesis is part of an ongoing Ph.D. study, the following objectives are expected 

to be completed at the end of the Ph.D.: 
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I. universal model for predicting the bonding preferences in oxide glasses with 

different combinations of network formers and modifiers by determining the 

bond energy parameters for the systems of interest 

II. coupling of new structure model with TCT; thus 

III. prediction of glass properties as a function of glass chemistry, enabling 

quantitative design of glass compositions with tailored properties starting at 

the atomic level. 

As the focus of this thesis is on the composition-structure relation in oxide glasses, 

objectives for the thesis are: 

I. Verify the proposed statistical mechanics-based model on experimental data 

in simple binary oxide glass systems 

II. Using the statistical mechanics-based model, obtain relative enthalpy values 

for binary phosphate-, silicate- and borate glass systems 

III. Using the enthalpy parameters obtained in the binary oxide glass systems, 

modify the statistical mechanics-based model to predict composition-

structure relations in ternary oxide glass systems with 0 fitting parameters. 

 

1.4. THESIS CONTENT 

The content of this thesis consists of three papers as well as an extended summary of 

these papers. The papers constitute a large portion of this thesis and may be found 

after the list of references. 

I. M.S. Bødker, J.C. Mauro, S. Goyal, R.E. Youngman, and M.M. Smedskjaer, 

Predicting Q-Speciation in Binary Phosphate Glasses Using Statistical 

Mechanics. The Journal of Physical Chemistry B, 122 (2018), 7609-7615 

II. M.S. Bødker, J.C. Mauro, R.E. Youngman, and M.M. Smedskjaer, Statistical 

Mechanical Modeling of Borate Glass Structure and Topology: Prediction of 

Superstructural Units and Glass Transition Temperature, The Journal of 

Physical Chemistry B, 123 (2019), 1206-1213 

III. M.S. Bødker, S.S. Sørensen, J.C. Mauro, and M.M. Smedskjaer, Predicting 

Composition-Structure Relations in Alkali Borosilicate Glasses using 

Statistical Mechanics, Frontiers in Materials, 6 (2019), 175 
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CHAPTER 2. STATISTICAL 

MECHANICAL MODELS OF BINARY 

OXIDE GLASSES 

In this chapter, the statistical mechanics-based model will be established and verified 

in the binary phosphate, silicate and borate glass systems. We will show that the model 

can predict the compositional structure evolutions in these systems with input data of 

only a few reference glasses. In the binary phosphates and silicates, we will explore 

the compositional evolution of their SRO scale structures, while in the borate glass 

systems, we will also explore the evolution of their intermediate range order (IRO) 

structures (superstructure).  

2.1. BINARY PHOSPHATE GLASSES 

Phosphate glasses have seen a high increase in industrial applications over the last 20-

30 years, examples being nuclear waste hosts, drug delivery systems, and fast ion 

conductivity.21,55,56 As such, phosphate glasses have served as a model system in 

understanding structure-property relations through topological modeling.57 Since 

structure-property relation for the elasticity of phosphate glasses has been established 

for these systems, predicting their compositional-structure relation would be a useful 

tool to enable composition-property prediction.  

The SRO structure of phosphate glasses are very similar to that of silicate glasses 

(Figure 2) with the main difference being the extra valence electron on phosphorous 

compared to silicon.58,59 As a result, phosphorous is most stable when forming five 

covalent bonds to oxygen atoms but since the tetrahedral is still the most stable 

configuration, phosphorous will form a double bond to one oxygen and singe covalent 

bonds to three oxygen.60 

In Figure 6, all SRO structural units (Q3, Q2, Q1, and Q0) are shown as well as the 

compositional structure evolution of each unit in binary alkali phosphates as predicted 

by the chemical order model.28 As seen Figure 6, the chemical order model assumes 

a purely stepwise conversion of the Qn units with increasing modifier content. This 

assumption is commonly explained by the double bond being able to delocalize to any 

NBO, hence the Q2 structural configuration is more energetically favorable than the 

Q3 configuration.60 Additionally, the difference in the potential energy between a Q3 

and a Q2 must be larger than that between a Q2 and a Q1, otherwise the Q2 would be 

more likely to react with a modifier ion. By applying the statistical mechanics-based 

model described in Section 1.1.2 to experimentally obtained structure data, we can 
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obtain the enthalpies of these interactions and predict composition-structure relations 

specific to each glass system.  
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Figure 6. Composition dependence of the molar fraction of Qn structural units as described by 
the general chemical order model for a binary phosphate glass. Figure taken from paper I 

In paper I, we used the model to predict the fraction of Qn units in a Na2O-P2O5 glass 

system as a function of the sodium content.61 First, lets describe the probability for a 

sodium to interact with a Q3 unit at a given composition ω, with the interaction 

enthalpies as free parameters: 

 
𝑝𝑄3,𝜔 =

𝑄𝜔−1
3 𝑤𝑄3,𝜔

𝑄𝜔−1
3 𝑤𝑄3,𝜔 + 𝑄𝜔−1

2 𝑤𝑄2,𝜔 + 𝑄𝜔−1
1 𝑤𝑄1,𝜔

, 
(12) 

where, 

 

𝑤𝑄3,𝜔 = 𝑒
−

𝐻
𝑁𝑎+,𝑄3

𝑘𝑇𝑓𝜔 , 
(13) 

where 𝐻𝑁𝑎+,𝑄3is the relative enthalpy value for a sodium ion to interact with a Q3 

structural unit, 𝑇𝑓𝜔
 is the fictive temperature in the Na2O-P2O5 glass system at 

composition ω, and k is the Boltzmann constant (in kJ mol-1 K-1). Similar approaches 

are used to calculate the probabilities for Q2 and Q1 at composition ω. 

Next, the fractions of Q3, Q2, Q1, and Q0 at composition ω are calculated: 
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 𝑄𝜔
3 = 𝑄𝜔−1

3 − 𝑝𝑄3,𝜔, (14) 

 𝑄𝜔
2 = 𝑄𝜔−1

2 + 𝑝𝑄3,𝜔 − 𝑝𝑄2,𝜔, (15) 

 𝑄𝜔
1 = 𝑄𝜔−1

1 + 𝑝𝑄2,𝜔 − 𝑝𝑄1,𝜔, (16) 

 𝑄𝜔
0 = 𝑄𝜔−1

0 + 𝑝𝑄1,𝜔. (17) 

That is, the fractions of the Q3, Q2 and Q1 units will decrease for each draw ω based 

on the probabilities for drawing those species, while the fractions of Q2, Q1 a and Q0 

will increase for each draw based on the probability of drawing Q3, Q2 and Q1 units, 

respectively. Since a Q3 unit is converted to a Q2 unit, the probability for a modifier 

to interact with a Q3 will affect the quantity of both Q3 and Q2 units (same argument 

applies to all other units). Next, the 𝑄𝜔
𝑛  fractions are used to calculate probabilities at 

concentration ω+1 etc.   

In Figure 7, the statistical mechanics-based model predictions as well as 31P NMR 

data for the Li2O-P2O5 glass system from article I is reported.60,62 The model 

prediction was made based on structural data of one glass composition only (50Li2O-

50P2O5) and fits very well with the remaining data, with an R2 of 0.992. All python 

codes for fitting experimental data to the predicted values with the enthalpy values as 

free parameters is shown and explained in Appendix A. The model was also applied 

to binary phosphate glasses with Na2O, Cs2O, MgO, and ZnO as the modifier ions as 

seen in article I.58,59,63–66 As Tg as a function of modifier concentration were known 

for all these glass systems, the enthalpy for the interactions were obtained as reported 

in Table 1.67 
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Figure 7. Composition dependence of the fraction of Qn structural units in binary lithium 
phosphate glasses. Experimental data from Van Wüllen et al.62 is represented as closed symbols 
and from Alam et al.60 as open symbols. The solid lines represent the prediction using the 
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present statistical mechanics-based model, which is established only based on experimental 
data for the glass marked by an arrow. Figure taken from Article I. 

 

Glass modifier Li2O Na2O Cs2O MgO ZnO 

H3 (kJ/mol) 0 0 0 0 0 

H2-H3 (kJ/mol) 33.5 42.8 56.8 31.6 27.0 

H1-H3 (kJ/mol) 70.4 74.9 85.1 55.0 40.0 

R2 0.992 0.998 0.996 0.942 0.988 

 

Table 1. Hi parameters and coefficient of determination (R2) values for the fitting of the current 
model to experimental data for five different binary phosphate glass systems. Hi are scaled 
relative to that for the Q3 to Q2 conversion (H3), which is set to 0. Table taken from Article I 

When introducing the divalent magnesium and zinc cations as modifiers, the enthalpy 

barriers for the interactions drastically drops, allowing the system to obtain a 

disproportionate state where more than two structural units are present at a time 

(contradictory to the chemical order model).  

In Figure 8, the structural prediction for the ZnO-P2O5 glass system is presented along 

with the experimental data as points, the chemical order model as the dashed line and 

a completely entropically controlled distribution as the dotted line.65,66 This would 

represent how the statistical mechanics-based model is able to capture the structural 

evolution by combining the enthalpic and entropic contributions to the bonding 

preference. 
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Figure 8. Composition-structure relation of Qn structural units in zinc phosphate glasses as 
predicted by different types of models. Closed symbols represent experimental data from Fayon 
et al.63 and the open symbols those from Walter et al.64 The solid lines represent the prediction 
using the statistical mechanics-based model, established based on experimental data for the 
glasses marked by an arrow only. The dashed lines represent the chemical order model, and 
the dotted lines a completely random distribution model. Figure taken from Article I 

Finally, we were able to use the statistical mechanics-based model to predict the 

structural dependence on the fictive temperature of the glass in article I. It is assumed 

that a higher fictive temperature will lead to a more entropically controlled, and hence 

more random distribution of structural units due to the higher energy for making 

energetically unfavorable interactions.  

In Figure 9, the structure of 66ZnO-34P2O5 is plotted against the fictive temperature 

of the glass. As expected, the structure will approach a completely ordered structure 

with no disproportionation as the fictive temperature approaches 0 and a higher 

disordered structure as the temperature increases. The dashed lines represent the 

expected range of experimentally obtainable fictive temperatures for this glass 

composition.  
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Figure 9. Fraction of Qn structural units in a 66ZnO-34P2O5 glass as a function of fictive 
temperature. The solid lines show model predictions, while the closed symbols represent the Tf 
(=Tg) values. The dashed vertical lines represent the extremes of realistically obtainable Tf 
values (0.9Tg to 1.2Tg). Figure taken from Article I. 
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2.2. BINARY SILICATE GLASSES 

Silicate glasses are probably the most used glass family in industry, most famously 

known for the soda-lime silicate glasses used for building materials such as 

windows.19 The structural units in the silicate glass system are shown in Figure 2 in 

Section 1.1.1. The Qn units will interact with a modifier ion in a similar fashion to the 

phosphate glass system: 

 𝑄𝜔
𝑛 = 𝑄𝜔−1

𝑛 + 𝑝𝑄𝑛+1,𝜔 − 𝑝𝑄𝑛,𝜔 , (18) 

where 𝑄𝜔
𝑛  is the fraction of species Qn at draw ω, and the probabilities 𝑝𝑄𝑛,𝜔 are 

calculated as: 

 
𝑝𝑄𝑛,𝜔 =

𝑄𝜔−1
𝑛 𝑤𝑄𝑛,𝜔

∑ 𝑄𝜔−1
𝑛 𝑤𝑄𝑛,𝜔

𝑁
𝑛=1

, 
(19) 

where N is the total number of structural species and 𝑤𝑄𝑛,𝜔is defined as: 

 

𝑤𝑄𝑛,𝜔 = 𝑒
−

𝐻
𝑀+,𝑄𝑛

𝑘𝑇𝑓𝜔 . 
(20) 

As in the phosphate glass system, the relative enthalpy values for a modifier ion to 

interact with a given structural unit is found by fitting the model numerically to 

structural data with the enthalpy values as free parameters.  

The compositional evolution of structural Qn units in the Na2O-SiO2 glass system as 

obtained by 29Si MAS-NMR experiments is shown in Figure 10, with a very good 

agreement to the model predictions.68,69 
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Figure 10. Fraction of Qn structural units as a function of composition in sodium silicate 
glasses. Solid lines represent the model predictions and the closed symbols are 29Si MAS NMR 
experimental data (from Ref. 68). Figure taken from Article I. 

 

Glass modifier Li2O Na2O K2O 

H4 (kJ/mol) 0 0 0 

H3-H4 (kJ/mol) 8.4 14.1 18.8 

H2-H4 (kJ/mol) 16.4 22.9 35.5 

H1-H4 (kJ/mol) 22.1 27.1 45.8 

 

Table 2. Hi for the fitting of the current model to experimental data for Three different binary 
silicate glass systems. Hi are scaled relative to that for the Q4 to Q2 conversion (H4), which is 
set to 0. Table taken from Article I. 

As with the phosphate glasses, the larger the alkali ion, the larger the difference 

between the enthalpies of interactions (Table 2). This is reflected in the higher degree 

of disproportionation of structural units in the Li2O-SiO2 glasses, compared to Na2O-

SiO2 or K2O-SiO2 glasses as found in article III.40,70 

In Section 2.1, the structural dependence of the fictive temperature was predicted for 

a 66ZnO-34P2O5 glass, using Eq. 19. Molecular dynamics (MD) simulation of oxide 

glasses has become a powerful tool for probing the SRO scale structure of glasses but 

suffers from short simulation timescales (nanoseconds to a few microseconds).71,72 

Due to the short simulation timescales, the simulated glasses will attain unrealistically 

high fictive temperatures and the distributions of structural units differ significantly 

from those quantified by NMR experiments. As the statistical mechanics based model 

has the fictive temperature of glasses as an input parameter, it can be a tool to close 

the gap between MD simulated glass structures and melt-quenched glass structures.  

In Figure 11, the distribution of predicted SRO scale structures (line) in the 35Na2O-

65SiO2 glass is plotted as a function of fictive temperature of the glass (taken from 

article III). The distribution of Qn units in this glass composition as obtained by MD 

simulations fall exactly upon the predicted curves.72,73 This is a first indication, that 

the enthalpy values obtained by fitting the statistical mechanics-based model to 

experimentally obtained data may describe both MD simulated- and melt-quenched 

glasses.  
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Figure 11. Structural units in 35Na2O-65SiO2 plotted against fictive temperature (Tf). The open 
symbols represent MD simulated data73, the closed symbols represent 29Si MAS-NMR 
experimental data68, and the solid lines represent the model predictions. Figure taken from 
Article III.  

In Figure 12, the structural prediction of MD simulated glasses was performed using 

the enthalpy values obtained for Na2O-SiO2 by using data quantified by 29Si MAS-

NMR (Table 2). The model predicts the structural evolution of MD simulated Na2O-

SiO2 glasses very well with only the Tf scaling factor as a free parameter (MD Tf = 

3.6xTg). 
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Figure 12. Fraction of Qn structural units as a function of composition in sodium silicate 
glasses. The closed and open symbols represent MD simulated data72,73. The solid lines 
represent model predictions, using the same bonding preferences parameter, but a different 
fictive temperature compared to Figure 10. Figure taken from Article III. 
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The statistical mechanics-based model was successfully established in the binary 

silicate glass system in a similar fashion as in the binary phosphate glass system. 

Additionally, the temperature dependence of the proposed statistical mechanics-based 

model was used to predict composition-structure relations in MD simulated glasses 

by using the same enthalpy parameters as in data obtained by MAS-NMR 

spectroscopy of melt-quenched glasses with only one free parameter. 

2.3. BINARY BORATE GLASSES 

Unlike phosphate and silicate glasses, the structural backbone of borate glasses is 

made up of three-fold coordinated trigonal units.74 Modifiers introduced to the borate 

glass will either (a) convert a three-fold coordinated boron with three BOs to a four-

fold coordinated boron with four BOs with the modifier as charge-compensator for 

the boron atom or (b) break a BO and form an NBO with the modifier as charge-

compensator for the oxygen atom, as in the silicate glasses.75 In binary borates, 

conversion (a) is favored at low modifier concentrations (0-30 %), effectively 

increasing the connectivity of the network by forming additional BOs, resulting in 

non-monotonic changes in physical properties with modifier content, known as “the 

boron anomaly”.75 On the SRO scale, borate glass structures are denoted Tn and Qn, 

where Tn units are trigonal boron with n number of BOs and Qn units are tetrahedral 

units with n number of BOs. 

Additionally, the borate glass will form different intermediate range order (IRO) scale 

structures as seen in Figure 13.76,77 The distribution of these “superstructures” depends 

on the modifier concentration in the glass as well as the thermal history of the glass 

and may hence be predicted using the statistical mechanics-based model. 

These structural units were proposed by Feller in 1982, by assuming all boron atoms 

to exist in one of the structures in Figure 13.76 By then using an underutilized 10B 

NMR technique, they quantified the distribution of these superstructural units in the 

Li2O-B2O3 glass system. Today, only about 70 % of the boron atoms in a pure borate 

glass are believed to be found in the boroxol ring configuration, while the rest will be 

found in non-ring T3 unit.78,79 In the following prediction from Article II, the old 

assumption is used since the data was produced with the same assumption, and the 

non-ring boron units are assumed to be uniformly distributed among the presumed 

ring structure-population.  
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Figure 13. Superstructures in lithium borate glasses. Red circles represent oxygen atoms and 
black circles boron atoms. The negative signs on oxygen atoms indicate non-bridging oxygen, 
which are charge-balanced by lithium cations (not shown). A triborate and a pentaborate 
connect to form a tetraborate unit. The boron structural configurations (quantified by 10B 
NMR76) are marked by arrows, where B3 is a three-fold coordinated boron in boroxol unit, T4 
is a four-fold coordinated boron in tetraborate unit, etc. Figure taken from Article II 

To predict the structural dependence of these IRO scale units, the possible interactions 

between boron atoms illustrated in Figure 13 and a modifier ion were established 

based on Feller76. 

 8𝐵3 + 𝐿𝑖2𝑂 → 6𝑇3 + 2𝑇4, (21) 

where the exponents represent the boron coordination number. As lithium oxide 

interacts with the boroxol structural groups, it changes eight boron atoms in the 

boroxol configuration into eight boron atoms in the tetraborate configuration, where 

two of the eight atoms will be four-fold coordinated, and balance the charge from the 

lithium modifier cation. We assume that the fraction of T3 is always three times the 

fraction of T4 due to the site constraints. Eight boron atoms in the tetraborate 

configuration will then interact with lithium oxide to form eight boron units diborate 

configurations, with four of the boron atoms in four-fold coordination, effectively 

stabilizing the new modifier cations:76 
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 6𝑇3 + 2𝑇4 + 𝐿𝑖2𝑂 → 4𝐷3 + 4𝐷4. (22) 

It is assumed that the fraction of D3 is always equal to that of D4 due to the site 

constraints. Diborate units may then be transformed into either metaborate or non-ring 

BO4 units,76 

 2𝐷3 + 2𝐷4 + 𝐿𝑖2𝑂 → 4𝑦𝑀3 + 4(1 − 𝑦)𝑁4. (23) 

 The ratio (y) between metaborate and non-ring BO4 is assumed to be constant at all 

modifier concentrations.76 Other studies78,80 have found higher concentrations of non-

ring BO4 at low modifier content in alkali borate glasses. These are assumed to part 

of the tetraborate and diborate structural data by Feller76. Metaborate, non-ring BO4, 

and orthoborate units are assumed to interact with lithium oxide and form the next 

structural group at a one-to-one ratio:76  

 2𝑀3 + 𝐿𝑖2𝑂 → 2𝑃3, (24) 

 2𝑁4 + 𝐿𝑖2𝑂 → 2𝑃3, (25) 

 2𝑃3 + 𝐿𝑖2𝑂 → 2𝑂3. (26) 

When applying the statistical mechanical model in Article III to the borate glass 

system, each of the structural configurations that the boron atoms undertake in Eqs. 

(21)-(26) are considered as individual network former species i.  

With the interactions established, the probabilities of these interactions may be 

predicted using Eq. 9 like in the previous subsection: 

 𝐵𝜔
3 = 𝐵𝜔−1

3 − 4𝑝𝐵3,𝜔, (27) 

 𝑇𝜔 = 𝑇𝜔−1 − 4𝑝𝑇,𝜔 + 4𝑝𝐵3,𝜔, (28) 

 𝑇𝜔
3 =

3

4
𝑇𝜔,     𝑇𝜔

4 =
1

4
𝑇𝜔. (29) 

𝐵𝜔
3  is the fraction of boron atoms in the B3 configuration at draw ω etc., and the 

number of probabilities corresponds to the stoichiometries in Eqs. 22-29. The 

remaining structural units are found with the same methodology, using the 

stoichiometry in Eqs. 22-29. With these descriptions, the compositional evolution of 

IRO scale structural units in the Li2O-B2O3 glass system may be predicted with 

enthalpy values as free parameters, as fictive temperatures are known.81 
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Figure 14. The fraction of IRO superstructural units (see nomenclature in Figure 10) as 
a function of composition in the lithium borate glasses. The solid lines represent the 
prediction using the present statistical mechanics-based model and the closed symbols 
represent experimental data from Feller76. Figure taken from Article II 

The structural evolution is well described by the statistical mechanics-based model 

with the enthalpy values reported in Table 3.82 

 

 

Table 3. Relative association enthalpies (Hi), where i corresponds to a given boron 
configuration (see Figure 10), and coefficient of determination (R2) value for the fitting of the 
current statistical mechanics-based model to experimental structure data.76. y is a constant 
determining the ratio between M3 and N4 boron species. Table taken from Article II. 

The superstructures predicted in Figure 14 may be converted into their SRO scale 

counterparts. The focus of this thesis is the composition-structure relation in oxide 

glasses but in the following, the obtained structures are used in the structure-property 

relation TCT model as an example.  

 

𝐻𝐵3  

(kJ/mol) 

𝐻𝑇 

(kJ/mol) 

𝐻𝐷 

(kJ/mol) 

𝐻𝑁4 

(kJ/mol) 

𝐻𝑀3 

(kJ/mol) 

𝐻𝑃3  

(kJ/mol) 

y R2 

0 8.8 1.8 29.9 28.9 31.9 0.40 0.980 
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Figure 15. Fraction of SRO structural units as a function of composition in lithium borate 
glasses. The solid lines represent the prediction using the present statistical mechanical model 
and the closed symbols represent experimental data from Feller76. Figure taken from Article II. 

Following TCT, the average number of constraints per atom (n) can be calculated by 

averaging over the different network forming species i and types of constraints α,51 

 𝑛(𝑇, 𝑥) = ∑ 𝑁𝑖(𝑥) ∑ 𝑙𝑖,𝛼𝑞𝛼(𝑇)𝛼𝑖 , (30) 

where li,α is the number of α-constraints associated with species i, Ni(x) is the mole 

fraction of species i in composition x, and qα(T) accounts for the temperature 

dependence of constraints α.  

Based on the work of Smedskjaer et al.,12 the following is used to count the number 

of constraints for each fraction of structural unit as shown in Figure 15: 

• α: B-O and LiNB-O linear constraints. Two α constraints for each oxygen. 

• β: O-B-O angular constraints. Five β constraints per Q4 to form a rigid BO4 

tetrahedron and three β constraints per T3 to keep the BO3 unit planer 

• γ: B-O-B angular constraints. One γ constraint per oxygen. 

• μ: Additional modifier rigidity due to clustering effects. Two μ constraints 

per NBO-forming Li atom. 

Here, LiNB-O is the fraction of lithium modifiers bonded to non-bridging oxygen.. 

With the constraint counting rules listed above, Eq. 30 may be applied for the lithium 

borate glass system to count the average number of constraints: 
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 𝑛(𝑥) = 2𝑁(𝐵𝑂) + 5𝑁(𝑄4) + 3𝑁(𝑇3) + 2𝑁(𝑇2) +
4𝑁(𝑇1) + 6𝑁(𝑇0). 

(31) 

Here, the fraction of NBO-forming Li atoms that contribute μ constraints is calculated 

from the fractions of T2, T1 and T0 structural groups.  

Following TCT, the composition dependence of Tg is considered to be due to the 

variation of the configurational entropy Sc.11 As such, Tg of composition x, where x is 

the lithium modifier concentration in the present case, may be computed relative to 

that of some reference composition xR. The configurational entropy is then largely 

proportional to the atomic degrees of freedom f: 

 𝑇𝑔(𝑥)

𝑇𝑔(𝑥𝑅)
=

𝑆𝑐[𝑇𝑔(𝑥𝑅),𝑥𝑅]

𝑆𝑐[𝑇𝑔(𝑥),𝑥]
=

𝑓[𝑇𝑔(𝑥𝑅),𝑥𝑅]

𝑓[𝑇𝑔(𝑥),𝑥]
=

𝑑−𝑛[𝑇𝑔(𝑥𝑅),𝑥𝑅]

𝑑−𝑛[𝑇𝑔(𝑥),𝑥]
, (32) 

where d=3 is the dimensionality of a three-dimensional glass. With this, Tg may be 

predicted at any glass composition by knowing Tg and f of a reference glass and f of 

the glass in question: 

 𝑇𝑔(𝑥) = min [𝑇𝛽 ,
3−𝑛(𝑥𝑅)

3−𝑛(𝑥)
𝑇𝑔(𝑥𝑅)], (33) 

where Tβ is the temperature where the β constraint becomes floppy. The resulting Tg 

prediction is shown in Figure 16. 
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Figure 16. Glass transition temperature (Tg) as a function of fraction of modifier content in the 
Li2O-B2O3 glasses. The crossed, closed and open symbols represent experimentally data from 
Chryssikos,83 Kodama81 and Shelby84, respectively. Both model predictions are based on the 
TCT structure-property model from Smedskjaer et al.,12 with the dashed and solid lines 
representing the predictions using the random pair model by Gupta85 and the present statistical 
mechanical composition-structure model, respectively. Figure taken from Article II. 

TCT combined with statistical mechanics may be used to capture Tg of the Li2O-B2O3 

glass system very accurately. 
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CHAPTER 3. STATISTICAL 

MECHANICAL MODELING OF 

TERNARY OXIDE GLASSES 

In Chapter 2, the statistical mechanics-based model proposed in Section 1.1.2 was 

applied to a number of binary oxide glasses to predict the SRO scale structures at any 

binary composition. With this exercise, we obtained relative enthalpies of interactions 

specific for each modifier ion and each SRO scale structural unit.  In all of the cases 

in Chapter 2, some experimentally obtained structural data was required to make the 

predictions and establish the H parameters. In this chapter, we will use the parameters 

established in Chapter 2 to predict structural evolution of multicomponent glasses 

without using any experimentally obtained structures, except for comparison. That is, 

assuming the energy of association between modifier and a Qn unit is the same in 

binary- and ternary glasses. With this method, the number of glassy systems we are 

able to predict increases exponentially as we establish enthalpy values in binary 

glasses linearly.  

3.1. BOROSILICATE GLASSES 

The borosilicate glass system is one of the most investigated mixed network former 

oxide glass system due to the large range of industrial applications such as high 

chemical durable nuclear waste encasement and thermal resistant Pyrex glass.6,27 The 

SRO scale structures existing in the borosilicate glasses are summarized when 

combining Figure 10 and Figure 15 in Sections 2.2 and 2.3, respectively. To predict 

the compositional depending SRO scale structures in ternary borosilicate glasses, the 

driving force for the modifier to interact with a given structural unit is assumed to be 

the same as in the binary glasses but the competitional factor is different since more 

different units compete for the interaction. That is, the denominator of Eq. 9 is 

different but the numerator is the same.  

With this, the enthalpy values reported in Section 2.2 and 2.3 are summarized in Table 

4. First, the Na2O-SiO2 and Na2O-B2O3 parameters were used to predict the structures 

of the Na2O-B2O3-SiO2 glass system in article III. Since all parameters are relative to 

their binary systems, the probability for a modifier to interact with boron or silicon in 

the mixed network former glass must first be established as a Si/B weighting factor.69  
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Glass system Na2O-SiO2 K2O-SiO2 Na2O-B2O3 K2O-B2O3 

H4 (kJ/mol) 0 0 0 0 

H3-H4 (kJ/mol) 14.1 18.8 8.4 6.0 

H2-H4 (kJ/mol) 22.9 35.2 7.4 21.4 

H1-H4 (kJ/mol) 27.1 32.8 28.5 28.3 

𝛼𝐵4 𝐵2⁄  - - 35.5 35.4 

 

Table 4. Relative association enthalpies (Hi), where i corresponds to a given structural 
configuration. The following structural configurations are considered: Q4, Q3, Q2, and Q1 for i 
= 1, 2, 3, and 4, respectively, in the silicate system and T3, Q4, T2 and T1 for i = 1, 2, 3, and 4, 
respectively, in the borate system. 𝛼𝐵4 𝐵2⁄  is the average critical modifier concentration, where 

Eq. (35) starts occurring instead of Eq. (34). Table taken from Article III. 

The enthalpy values for the binary borate glasses in Table 4 differ from Section 2.3 

since these are based on SRO scale structural units. To establish these parameters, the 

following interactions were applied: 

 2𝐵3 + 𝑀2𝑂 → 2𝐵4, (34) 

 2𝐵3 + 𝑀2𝑂 → 2𝐵2. (35) 

Eqs. 34 and 35 account for the boron anomaly. The 𝛼𝐵4 𝐵2⁄  parameter was introduced 

in article III, assuming a critical modifier concentration where reaction Eq. 34 stops 

occurring in place of reaction Eq. 35. In reality these reactions occur somewhat 

simultaneously but this assumption allow for accurate prediction with only one 

additional parameter.  

 2𝐵4 + 𝑀2𝑂 → 2𝐵2 + 𝑀2𝑂. (36) 

The B4 units will start converting to B2 units at high modifier concentrations. To 

account for this conversion, Eq. 36 is assumed to be a reaction with a corresponding 

enthalpy parameter.  

 2𝐵2 + 𝑀2𝑂 → 2𝐵1, (37) 

 2𝐵1 + 𝑀2𝑂 → 2𝐵0. (38) 

With all the interactions established and the parameters obtained, using experimental 

data from literature, the structures of borosilicate glasses were predicted using the 

statistical mechanics-based approach (Appendix A) and compared to experimentally 

obtained glass structures.30,86 

Since the ternary glasses are three-component systems, two-dimensional comparison 

between model prediction and experimental values are shown. For additional 

compositional prediction presentation, please refer to Article III. The model does not 
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predict the structural evolution in the Na2O-B2O3-SiO2 glass system very well when 

using experimental data obtained by NMR (Figure 17). Deconvoluting NMR results 

in this system can be very difficult and the experimental data has a high uncertainty 

as well as higher uncertainties in glass chemistry.13 Another method of quantifying 

the SRO scale structural units in this glass system is by MD simulations.87 Since the 

enthalpy values obtained by the statistical mechanics-based model applies to MD 

simulated glasses as well, these may serve as a more accurate reference point since 

the uncertainties are small.  
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Figure 17. Data obtained by 29Si and 11B MAS NMR 30,86 for sodium borosilicate glasses, 
compared to model predictions. The dashed line shows a one-to-one correlation. Figure taken 
from Article III  

When comparing to MD simulated glasses in article III, the statistical mechanics-

based model predict the structural evolution very well (Figure 18) with the Si/B 

weighting as the only free parameter (wSi,B=0.16).88 
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Figure 18. Structural data obtained by MD simulations88 for sodium borosilicate glasses 
compared to model predictions. The dashed line shows a one-to-one correlation. Figure taken 
from Article III. 

With the wSi,B established the statistical mechanics-based model may be applied to 

any borosilicate glass with zero free parameters. K2O-SiO2- and K2O-B2O3 parameters 

were established using structural data from literature.68,78 With these parameters, the 

structural evolution in the K2O-B2O3-SiO2 glass system was predicted. To validate the 

predictions of the current model, MD simulations of the same glass system were made, 

using already established pair distribution potentials.88 The MD simulation procedure 

is explained in detail in Article III. 

The model predictions replicate the MD simulations very well with no fitting 

parameters as seen in Figure 19. This example is the first prediction of SRO scale 

structures in a multicomponent glass, using only parameters obtained in binary 

glasses. If the method is universal and not limited to the borosilicate system only, the 

statistical mechanics-based model may become a useful tool in the future of glass 

science.  
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Figure 19. Structural data obtained by MD simulations in the potassium borosilicate system 
compared to model predictions with zero free parameters. The dashed line shows a one-to-one 
correlation. Figure taken from Article III 
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CHAPTER 4. GENERAL DISCUSSION 

AND PERSPECTIVE 

As this thesis is a midway report of my PhD project, this Chapter will mainly focus 

on the plans for the work to be done. Objectives I and II of the Ph.D. in Section 1.3 

have both been mostly fulfilled while all objectives for the master’s thesis have been 

fulfilled. The model may be applied to any combination of network formers and 

modifiers but the mixed modifier effect is still not verified or compared to 

experimentally obtained data. The model has been coupled to TCT already but on a 

very minor scale and not in any multicomponent glasses. This aspect will be further 

investigated.  

4.1. THE PRESENT MODEL 

In Chapter 2, the present model was established in binary oxide glasses and provided 

a more accurate description of experimentally obtained data than some of the 

commonly used models such as the chemical order model37 and the Dell-Bray 

model76. The downside of using the statistical mechanics-based model on binary oxide 

glasses is the requirement of some experimentally obtained data to fit the model 

against. For each binary glass system, the model must be fitted against data to obtain 

the enthalpy parameters, however, no more than 2-3 glasses in each system are 

required to obtain valid predictions. In ternary borosilicate glasses, the model captures 

the structural evolution of four-fold coordinated boron equally well as the Bray 

model89. Additionally, the model offers prediction of silicate species and considers 

the effect of changing modifiers without using any experimental data to fit the model, 

making it superior to any other composition-structure model for ternary oxide glasses, 

to my knowledge. The downside of using the model in binary or multicomponent 

glasses is the prior work of establishing enthalpy parameters in binary glasses, but 

once this part is completed, the model may be applied to a large range of glass systems. 

The model should be applicable to all combinations of network formers and modifiers, 

where the enthalpy values are established but has so far only been verified in the 

ternary alkali borosilicate glasses. Additionally, the thermal history dependence of the 

model is not well covered. With a structure to Tg model such as TCT, both thermal 

history and structural units may be predicted simultaneously by first assuming a 

constant Tg to obtain initial structures, which in turn are used to calculate more 

accurate Tg values, which would be used to make new structural predictions and so 

on. This loop would have to go on until neither Tg or structures would change from 

iteration to iteration. Without a structure to Tg model, one could assume a single, either 

constant or modifier dependent Tg value/distribution to use for all glasses and hence 

see the compositional effect on the structural distribution only. This would make the 

model less precise but still useful. 



PREDICTING THE STRUCTURE OF BINARY- AND TERNARY OXIDE GLASSES USING STATISTICAL MECHANICS 

46
 

4.2. FUTURE WORK 

To achieve a universal composition-structure model, some structural features still 

need to be explored. First, the mixed modifier effect will be established and compared 

to experimental data in the Na2O-K2O-SiO2 glass system. Here, the role of the mixed 

modifier effect on the fictive temperature will be explored as well. Secondly, some 

structural units are observed in mixed former glasses which may not be observed in 

their binary counterparts, such as 5- and 6-fold coordinated silicon in phosphosilicate 

glasses. These additional structures must be captured by the model.  

As the different glass systems and features become established, predicting and 

describing structural evolutions become more and more challenging. To tackle this 

challenge, a large portion of the proceeding work will be on software development to 

produce a single software capable of implementing the statistical mechanics-based 

model in all the established systems and any combination of their component 

elements. 

Finally, with the composition-structure software developed, the structures predicted 

using the statistical mechanics-based model will be paired with already established 

TCT and/or ML models to couple the predicted structures to physical properties. With 

this, a new software may be developed to optimize glass compositions for desired 

physical properties by first using the statistical mechanics-based composition-

structure model.  

4.2.1. SOFTWARE DESIGN 

The software development will be done in the object-oriented programming language 

python. Here, the different network former systems can be combined into one 

package.  

The general structure of the “Stat_Mech_Glass” package is shortly summarized in 

Figure 20. Here, the blue squares are module files within the package and the green 

squares are the essential functions in each module. The package would obviously have 

way more than two modules but Figure 20 should simply illustrate how the modules 

become increasingly complicated as the number of components of the glass system 

increases. Following, the inputs and outputs of each function in the SiO2 module will 

be discussed. 
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Figure 20. Flow diagram of the “Stat_Mech_Glass” Python package, where the blue boxes are 
examples of modules and the green boxes are examples of essential functions within each 
module. 

The desired output of the plotting function will be a Qn distribution as a function of 

modifier content. Since the solution is not analytical, the user will have the option to 

get the modifier content and the corresponding structural fractions as a CSV file 

output. To achieve these outputs, the input for the model has to be the number and 

types of modifiers (or their corresponding enthalpies), the fraction of each modifier, 

the fictive temperature of the glass system, and whether the user wants to save the 

outcome.  

The second function will be fitting the model to experimentally obtained data of a 

binary silicate glass system to get the interaction enthalpies. This will use a second 

function since the fitting procedure will loop the function over and over so this 

function must be as simple as possible for short computational lengths. That is, many 

of the elements of the plotting function should be run outside this function since they 

do not change with the enthalpies (such as modifier concentration and Tf calculations). 

The input to this model will be the structural data, the number of iterations and what 

types of output data the user wants. Output options will include enthalpies, error for 

each iteration and the resulting prediction as image and data file.  

The structure plotted as a function of fictive temperature-function takes the same 

inputs as the plotting function as well as a single composition. This composition is 

where the structural dependence on fictive temperature is calculated. This function 

does not need a Tf for the composition though.  
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With the structure software above developed, a TCT software may be developed. This 

software would automatically run the composition-structure models and use the 

structures to predict physical properties of the glasses. This would enable 

composition-property plotting. Since the TCT models are still being developed and 

are specific for each glass system, this software should be tailored specifically for 

each system. 

4.2.2. OUTCOME 

Since the statistical-mechanics based model still needs to be verified in mixed 

modifier glasses and should be expanded to more mixed former glasses, these studies 

will be published in pier reviewed journals. Each publication should add additional 

complexity and benefits of using statistical mechanics to predict glass structures. With 

the model established in the most common glass-forming systems, the focus on the 

PhD thesis will become software development. A complete composition-structure 

software will be developed and published for the community to use, including an 

elaborate user guide. Finally, the usefulness of the published model will be explored 

by linking it to TCT models. This will also be published in pier reviewed journals but 

the software will not necessarily be published as it will be tailored for specific 

applications.  
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CHAPTER 5. CONCLUSIONS 

The focus of this thesis has been the composition-structure relation in oxide glasses. 

All studies were based on a statistical mechanics-based model proposed by John 

Mauro in 2013. The statistical mechanics-based model considers the enthalpic and 

entropic contributions to bond preferences in glass melts to calculate the probabilities 

of network former to network modifier interactions. From probabilities, the 

population of structural units may be calculated as a function of composition.  

The model was first applied to binary phosphate glasses due to their relatively simple 

and well documented structures. The composition-structure relation in five different 

was successfully predicted with only 1-2 glasses as reference in each system. The 

statistical mechanics-based model captures both the stepwise conversion of structural 

units as the Chemical Order model and the disproportionation as described by the 

Brow model. Finally, the model was used to predict the structure of two different 

binary phosphate glasses as a function of Tf.  

In the borate glass system, the composition-structure relation is different from 

phosphate glasses due to the “boron anomaly”. By using 10B NMR results from 

literature, the statistical mechanics-based model was modified to predict the 

composition-structure relation for intermediate range order superstructural units. The 

results from the model was then used in combination with TCT to predict Tg values 

as a function of composition, demonstrating how the two model may be combined to 

make accurate composition-property predictions. 

The model was applied to binary silicate glasses with similar structures to the 

phosphate glasses. Here, the model was used to predict the composition-structure 

relation in MD simulated Na2O-SiO2 glasses. This relation was successfully predicted 

with the same enthalpy parameters as found by applying the model to 29Si MAS NMR 

data of Na2O-SiO2 glasses and only one free parameter concerning the Tf difference 

between melt-quenched and MD simulated glasses.  

After establishing the statistical mechanics-based model in the binary oxide glasses, 

it was used to predict the composition-structure relation in ternary Na2O-B2O3-SiO2 

and K2O-B2O3-SiO2 glass systems with only 1 and 0 free parameters, respectively. 

This was accomplished by assuming the same enthalpic driving force for a modifier 

ion to interact with a structural unit in binary- and ternary glass systems. 

The model may be modified to predict composition-structure relation in many glass 

systems since the enthalpy parameters established in binary oxide glasses can be 

transferring to multicomponent glasses. The model has great potential to be coupled 

with already established TCT model to tailor glass compositions with specific 

physical properties.  
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Finally, the present model provides quick and accurate predictions of a number of 

glass systems with the parameters already established. Because of the complexity of 

setting the model up, an easy to use software could be of value to other glass scientists. 

In such a software, the user should only need to input the glass composition he/she is 

interested in and have the software calculate the exact distribution of structural units. 
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Appendix A. Binary Phosphate Python 
Script 

As an example of the procedure of fitting the statistical mechanics-based model to 

experimentally obtained data, below is shown the python script used to accomplish 

that in the binary phosphate glasses (the simplest system and simplest code).  

First the file from which the data is imported is defined by the same name as in the 

folder on the computer. Next, empty lists are made for each column of data, that is the 

modifier concentration and the corresponding Qn units for that modifier concentration. 

With the open command, the file is opened and read as a .csv file. Then, the data is 

appended to the empty lists created at the top of the script. On lines 31 to 35, all values 

in the lists are converted to floats – floats refer to numbers with decimals and this is 

done since the data is always imported as string values (as letters). Finally, the lists 

are converted to numpy arrays which are basically the same as lists but allows for 

more math operations.  
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On line 42 and 43, a numpy array is formed consisting of draw numbers running from 

1 to 300. Next, the modifier concentration corresponding to each draw (when 100 

draws equal 1 modifier ion for 1 P atom). Finally, on line 57 the Tg estimation function 

for zinc phosphates is defined (based on literature data). 

 

On line 59 the model function which will be used to fit the enthalpy values is defined 

and takes a list of enthalpy parameters as input. Inside the function, an array of 

parameters is defined from the function input on line 61. Since the weighting factors 

for the statistical mechanics-based model changes with the Tg, a specific weighting 

factor is calculated for each draw number in lines 66 to 89.  

 



APPENDIX A. BINARY PHOSPHATE PYTHON SCRIPT 

91 

Still inside the “model” function, the prediction of each Qn specie is defined as empty 

lists, except for the starting value at draw/modifier content 0. Then a loop is run for 

each number in the “draw” list. For each loop, the probabilities for each interaction is 

calculated based on the last value in the prediction list and the weighting factors at the 

given draw nr. Then the change in population for each Qn unit is calculated as 

“next_Qn” and “appended” (added to the end) to their respective lists.  

 

For the optimization, the program needs an error between the experimental data which 

was loaded into the script in the beginning and the predicted values. To do so, a new 

set of lists are created in line 132-135 “Qn_m” which is going to be the predicted 

values that has the same modifier content as the imported data. In lines 137 to 139, 

the mod_m list is built to consist of values from the predicted modifier list that are as 

close as possible to the values in the mod_data list. In lines 141 to 159, we find the 

index in the predicted modifier list, that corresponds to each value in the mod_m list. 

That is, we are going to know at which position in the list of numbers, the modifier 

concentrations that correspond to the experimental data is found. We then take the 

value from the predicted Qn units at that same index and append them to the “Qn_m” 

lists. Hence, the “Qn_m” lists are going to consist of a value for each experimental 

data that corresponds to the prediction at the same modifier content as the 

experimental data. 
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Finally, we define an SSE value that is calculated by summing the squared differences 

between the experimentally obtained- and predicted values. The function then returns 

the value so when the function is run with a set of parameters as input, the SSE is 

returned only.  

 

With the model defined, all we need to do is run the optimization with the enthalpy 

values as free parameters. In line 174, we define two random starting values of 55 and 

85 kj/mol (the unit is due to the value chosen for the Boltzman constant in lines 71 to 

89). In line 189, we define “res” to be the results after running the 

scipy.optimize.basinhopping function, using the “model” function as we defined and 

the “H1” parameters. The basinhopping function will start by running a standard 

optimization of the starting parameters, where the values are changes in a direction 

that returns a lower value when running the “model” function until it reaches a 

minimum. Since such an optimization process may have several local minima, the 

basinhopping function attempts to get to another minima by redoing the optimization 

but with a new set of starting values (hence the name “Basin-Hopping”). It will keep 

redoing the optimization with new starting values “niter” number of times, in the 

below code, 10 times. For the results published, all simulations were done with at least 



APPENDIX A. BINARY PHOSPHATE PYTHON SCRIPT 

93 

5000 iterations and repeated at least 10 times. Once finished, the results in the “res” 

parameter may be used to plot the best prediction of the data.  

 

 

 

 

 


