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Abstract:
I dette projekt er kohærent lokal eksitation
af overflade plasmon polaritoner (forko-
rtet SPPs) ved hjælp af lineær spred-
ning i individuelle organiske 1-cyano-p-
quaterphenylene (CNHP4) nanofibre lagt
på en sølvfilm teoretisk analyseret. Speci-
fikt er fiberdimensioneringen analyseret i
et forsøg på at optimere eksitationen af
SPPs, samt at kunne forudsige hvilken ge-
ometri der er bedst. Sølvlaget er lagt
på et glas substrat for at kunne obser-
vere mængden af lækkede SPPs. Andre
faktorer som orienteringen af dipoler inde
i fiberen for anden harmonisk generering
(forkortet SHG), samt sølvfilmens tykkelse
bliver også undersøgt på samme grundlag.
Det blev dog ikke muligt at finde en
rigid model som forudser den bedst mulige
størrelse af fiberen, dette er grundet at
en højere fiber introducere komplicerede
effekter som gør det svært at fortolke.
En hypotese er sat op der beskriver ét
aspekt af de observerede effekter, men
denne kan ikke konstituere en fuldendt
model. Ydermere er eksitering af SH-
SPPs i 3D blevet analyseret med henblik
på dipol orientering i søgen efter størst
asymmetrisk SHG. Den kritiske tykkelse af
sølvfilms laget viser sig at være afhængig
af fiber størrelsen og giver derfor ikke
konkluderbare resultater.

The content of the report is freely available, but publication (with source reference) may only take place

in agreement with the authors.





Preface

This report is written by Christian Storgaard and Søren Rulle from the 4th semester of
the master in physics at the Department of Materials and Production, Aalborg University.
The subject of the project is Optimization of SPP Excitation for Nanofibers Deposited on
a Silver Film and has the purpose of studying the optimal geometry for organic nanofibers
in relation to excitation of surface plasmon polaritons on a silver-air interface.

The report is divided into three parts; a theoretical introduction which is necessary
for the understanding of formulae and concepts used to describe and discuss the results;
an analyzing part where different geometries are considered, and lastly a concluding part
where the theoretical knowledge is utilized to discuss and conclude upon the results.

Reading Guide

In this report, references are a part of the text and are collected in the bibliography in
the back of the report. In this report the references are indicated with [number ]. These
numbers refer to the bibliography where books are stated with author, title, edition, and
publisher while web-pages are stated with author, title and the date the information was
gathered.

In the text, vectors are shown as A, normal vectors are shown as Â, matrices are shown
as A and tensors is shown as

←→
A .

Figures and tables are numbered according to the chapter they appear in, i.e. the first
figure in chapter 2 is numbered 2.1, the second figure has the number 2.2, etc. Both figures
and tables have an explaining caption placed below.

Christian Storgaard Kristensen Søren Rulle
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Chapter 1

Introduction

1.1 Historical Context

In 1959 a patent was raised for the idea of integrated circuits (ICs), which is a miniaturized
circuit that made use of transistors, by Jack Kilby [1][2]. An IC is essentially a connected
array of transistors and other electronic components designed to perform a specific task.
This invention made it possible to replace vacuum tubes which was widespread in electronic
applications, thus sparking a whole revolution in electronics and opening a span of
possibilities of applications. Independently of Jack Kilby the IC was developed by Robert
Noyce, thus highlighting the necessity of replacing Vacuum tubes [1][2]. Technology today
still relies on the invention, as do it on the discovery of transistors, which is made smaller
and faster at an ongoing pace. Jack Kilby’s own words illustrates the impact of the
technology.

"What we didn’t realize then was that the integrated circuit would reduce
the cost of electronic functions by a factor of a million to one, nothing had ever
done that for anything before."

-Jack Kilby

However, it is an ongoing task to better the already great performance that has been
achieved up to this very day. Research in the field of nanostructures in regards to graphene
has been suggested as a promising tool to improve electronic components. However, the
use of graphene has its issues, e.g. patterning of the graphene lattice compromises the
lattice structure such that it becomes a less efficient conductor [3]. Solutions are already
being developed using embedded graphene in a sandwiched layered structure as shown in
Ref. [3]. The advancement in the field of graphene and graphene related materials can
very well become the new standard material in ICs as it is already a well studied material
and can find its use for a great deal of applications as shown in Ref. [4].

However, all these new technologies still relies on the idea of pushing electrons around as
the main mechanism that enables electronic components to work. An alternative to using
electronic components and using electrons as signals can be by using photons and smart
optical components to achieve the same thing. The technology is based on the subject
of nano-optics which is the study field of near-field optics, plasmonics, photonic crystals
to name a few. In plasmonics particular, the research of bound light at an interface is of
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Group 5.236A 1. Introduction

interest when trying to construct an IC based on light interaction. Effort has been put
into developing the necessary advances, which has made progress at an increasing pace in
the last decade [5]. One crucial step is developing a component which can locally excite
surface plasmon polaritons (SPPs) in a desired direction. It has been shown that this is
already possible using grating, ridge and slit couplers to locally excite SPPs in for example
Ref. [6]. However, with the use of non-linear effects, such as second harmonic generation,
it can also be achieved. The additional effect of being able to use a near-infrared pump
beam which generates SPPs in the visible range can prove useful as visible light is easier to
detect or use afterwards in other optical components [5]. One such way of achieving these
non-linear effects is by using specifically grown nanofibers which has been shown in Ref.
[5] and [7]. Thus they are of great interest and will therefore be the focus of this rapport.

1.2 Case Study

It has become possible to grow organic 1-cyano-p-quaterphenylene (CNHP4) crystalline
nano-fibers with a large second order non-linear properties, which is able to efficiently
create second harmonic (SH) radiation [8][9]. This effect has been used in the works of
Ref. [5] and [7] for nano-fibers deposited on an air-silver interface. The detection of SPPs
at the air-silver interface was possible due to leakage radiation into the substrate at a larger
angle than the critical angle for an air-glass interface, which for these cases was quartz
glass.The general layered structure thus becomes of the form as shown in Figure 1.1. It
was shown that an ensemble of fibers lead to a symmetric second harmonic generation
(SHG), however asymmetric scattering for the SHG was achieved in Ref. [5] focusing on a
single fiber, thus showing a non-symmetric generation of SPPs. The test conducted in the
article compares linear scattering using a fundamental harmonic (FH) wavelength of 390
nm pump beam to SHG using a FH wavelength of 780 nm.

ε1

εAg

ε2

εquartz

Figure 1.1. Illustrated cross section of a fiber deposited on top of a silver film on a quartz
substrate. The fiber is illuminated by a incoming light beam and the light is then
scattered, including coupling into surface plasmon polariton modes at both interfaces.
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1.2. Case Study Aalborg University

These fibers consists of dipoles that are oriented at an angle in relation to the interface. It
is this angle that enables the asymmetric generation. In the experiment analyzed in Ref.
[5] a 100 nm high and 350 nm wide fiber was considered. However, these resulted in weak
excitation of SPPs and in Ref. [10] it is hypothesized that this could be due to interference
inside of the fiber. This would result in fibers with widths near the SPP wavelength at
the air/silver interface to diminish plasmon excitation. In Ref. [10] an example of a three
dimensional fiber that is 100 nm in height, 100 nm in width and 400 nm in length is shown.
This fiber is significantly better at exciting SPPs than the previously examined fibers. This
could suggest that the aforementioned hypothesis could be have truth to it.

1.2.1 Objective

In order to create the best possible circumstances for excitation of SPPs, it is thus of great
interest to examine the ability to excite such SPPs of fibers of different dimensions. The
aim thus becomes to confirm or deny the aforementioned hypothesis, and hopefully create
a rigid model that can predict the optimal dimensions of a fiber for a given pump beam
wavelength.

This will be done by doing theoretical calculations, based on the Green’s function integral
equation method that is presented in Ref. [10]. It is assumed that the width and height
of the fiber will have the largest effect on SPP excitation, and that in practice most
fibers will have a length significantly larger than both the width or height. Therefore,
this examination will be limited to the two dimensional case. This is also done as three
dimensional calculations are much heavier computationally. In order to create a data set
of different dimensions of sufficient size, the method used in Ref. [5] and [7] have to be
improved in computation time and complexity. This will be achieved by applying the
fast Fourier transformation algorithm as well as solving the problem iteratively, by the
conjugate gradient algorithm.

In addition to the dimensions of the fiber, the impact of the thickness of the silver layer,
thus a full analysis of the geometry of the overall structure will be conducted. For this
geometrical analysis of the structure, both in changing the dimensions of the fibers and
the thickness of the silver film, linear scattering will be applied.

Furthermore, and separate from the aforementioned analysis, an examination of the
effects of SHG in three dimensions will be conducted. The aim here will be to test
the effects of the orientation of the dipoles in the fibers. This is done by changing the
orientation of the dipoles defined by two angles.
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Chapter 2

Introductory Theory

2.1 Maxwell’s Equations

When working with Maxwell’s equations it is easier to consider them in the frequency
domain, as this simplifies the derivations substantially. In order to do so, consider
Maxwell’s equations in the time domain, in which the macroscopic Maxwell’s equations
are given as

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (2.2)

∇ ·D(r, t) = ρ(r, t), (2.3)

∇ ·B(r, t) = 0, (2.4)

where E is the electric field, H is the magnetic field, D is the electric displacement field,
B is the magnetic induction field, ρ is the free charge density and J is the free current
density [11][10].

The electromagnetic properties of matter is often described by the macroscopic
polarization density P and magnetization density M , which is related to the electric
field and the magnetic induction field by

D(r, t) = ε0E(r, t) + P (r, t), (2.5)

B(r, t) = µ0(H(r, t) +M(r, t)). (2.6)

However, for practical purposes in the field of optics, the magnetization density is a
negligible factor and is thus not considered [10]. This results in the direct relation
B = µ0H. In linear, local and isotropic media, which will be one of the main assumptions
of this report, the polarization and current density follows roughly the same form,

P (r, t) = ε0

ˆ
t′
χ(r, t− t′)E(r, t′)dt′, (2.7)

J(r, t) = Js(r, t) +

ˆ
t′
σ(r, t− t′)E(r, t′)dt′, (2.8)

where Js is the source current density and σ and χ are the conductivity and the
susceptibility respectively [6][10]. These integrals are known as convolution integrals and
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Group 5.236A 2. Introductory Theory

the convolution theorem states that when the Fourier transform is applied on a convolution
integral, it becomes the transformed product of the constituents of the integrand [12]. The
Fourier transform and its reverse can now be applied to P (r, t) as

P (r, t) =

ˆ
ω
P (r, ω) e−iωtdω, (2.9)

P (r, w) =
1

2π

ˆ
t
P (r, t) eiωtdt. (2.10)

This can be done in the same manner to every field in the Maxwell’s equations as well
as the current density. Thus, following the convolution theorem, in the frequency domain
P (r, ω) can be written simply as

P (r, ω) = ε0χ(r, ω)E(r, ω). (2.11)

In the same manner, the current density can be written as,

J(r, ω) = Js(r, ω) + σ(r, ω)E(r, ω). (2.12)

Consider now the Fourier transform of equation (2.2),

∇×H(r, ω) = Js(r, ω) + σ(r, ω)E(r, ω)− iωε0(1 + χ(r, ω))E(r, ω). (2.13)

This can be derived by inserting the time domain fields written in the same manner as
equation (2.9) into (2.2) and then letting the time derivative work on the exponential
e−iωt and afterwards leave out the Fourier transform as it is working on every term of the
equation. From this expression the displacement can be written as

D(r, ω) = ε0

(
1 + χ(r, ω) +

iσ(r, ω)

ωε0

)
E(r, ω), (2.14)

and hence, a new factor that correlates the displacement field to the electric field can be
introduced, this factor is termed the relative dielectric constant,

ε(r, ω) = 1 + χ(r, ω) +
iσ(r, ω)

ωε0
. (2.15)

Then the Maxwell’s equation can be simplified in the frequency domain to

∇×E(r, ω) = iωµ0H(r, ω), (2.16)

∇×H(r, ω) = Js(r, ω)− iωε0ε(r, ω)E(r, ω), (2.17)

∇ ·D(r, ω) = ρs(r, ω), (2.18)

∇ ·B(r, ω) = 0, (2.19)

where ρs = ∇·Js/iω. Maxwell’s equations will be considered in this domain as it simplifies
all time derivatives as these can be effectively replaced with a −iω factor. Since this is
the case, fields like E(r, ω) is often noted as E(r), thus the dependence of ω is implicitly
understood.
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2.1. Maxwell’s Equations Aalborg University

2.1.1 The Wave Equations

An essential part of the theory is the wave equations for the electric and magnetic fields,
as they state the general behavior of the waves in question. To derive these equations one
can take the curl of equations (2.16) and (2.17), which yields

−∇×∇×E(r) + k2
0ε(r)E(r) = −iωµ0Js(r), (2.20)

−∇× 1

ε(r)
∇×H(r) + k2

0H = −∇×
(
Js(r)

ε(r)

)
, (2.21)

where k0 = ω/c is the free space wave vector and c = 1/
√
µ0ε0 is the speed of light in

vacuum. The wave equations can be simplified to be of the form of the Helmholtz equation.
In order to do so two assumptions are made. The first assumption is that the source current
density is zero, and the second is that the dielectric constant does not depend on position,
i.e. ε(r) = ε. This results in the divergence of electric field to be zero which can be seen
by

∇ ·E(r) =
ρs(r)

ε0ε
=

1

iωε0ε
∇ · Js(r) = 0. (2.22)

Applying ∇×∇× = ∇∇ · −∇2, equations (2.20) and (2.21) simplifies to(
∇2 + k2

0ε
)
E(r) = 0, and

(
∇2 + k2

0ε
)
H(r) = 0. (2.23)

2.1.2 Poynting Vector

The Poynting vector is defined as

S(r, t) = E(r, t)×H(r, t) (2.24)

which represents the energy flux density. Keep in mind that the fields oscillate, thus it is
often convenient to consider the time average Poynting vector given by

〈S(r, t)〉 =
1

T

ˆ T

t=0
S(r, t)dt, (2.25)

where T is the period of the electromagnetic wave. A more useful equation for the time
average Poynting vector can be found if the electric and magnetic field is re-written. The
electric field for a monochromatic light source can be expressed as

E(r, t) = Real{E(r, ω) e−iωt} =
1

2

(
E(r, ω) e−iωt + (E(r, ω))∗ e−iωt

)
. (2.26)

Using this notation, the time average Poynting can be re-written to

〈S(r, t)〉 =
1

2
Real{E(r, ω)× (H(r, ω))∗}, (2.27)

where it has been used that the period is T = 2π/ω. For the most part the time average
Poynting vector is for monochromatic fields will be used. The Poynting vector is the energy
flux density, the power, e.g. from the light scattered on a scatterer, can be found as

P (t) =

‹
δΩ
S(r, t) · n̂dS. (2.28)

7



Group 5.236A 2. Introductory Theory

2.2 Surface Plasmons Polaritons

Metals have many interesting properties, one such property is the ability to sustain surface
or volume oscillations at distinct wavelengths. These oscillations consists of free conduction
electrons and can be viewed as oscillations of electron plasma. Just as photons are a quanta
of electromagnetic oscillations, a quanta of plasma oscillations is called a plasmon.

For the purposes of this report the main subject of discussion will be surface plasmon
polaritons (SPPs). In general these SPPs should be seen as homogeneous solutions to
Maxwell’s equations, i.e. a solution that can exist without external excitation, and is
bound to an interface between a metal and a dielectric. In order for the photon to be
bound at an interface the fields needs to decay exponentially away from the interface. In
general these are particular solutions and not all photons can excite a SPP. To have a
better understanding of which photons can excite a SPP a dispersion relation is derived.

z

x
z > 0

z < 0

Media 1

Media 2

k1

k2

Figure 2.1. Here the theoretical case of a two layered system is shown, for different media with
corresponding wavevectors.

2.2.1 Derivation of the Dispersion Relation for SPPs

Assuming a two layered system, an example of such a system is shown in figure 2.1, where
a p-polarized wave is propagating in the x-direction on an interface between air(ε1) and
some metal(ε2), which is located at z = 0. It is enough to consider only p-polarized waves
as no s-polarized wave can excite a surface-bound mode [6][11]. The wave in both air and
metal will be on the form:

z > 0 : H1 = (0, Hy,1, 0) ei(kx,1x+kz,1z−ωt), (2.29)

E1 = (Ex,1, 0, Ez,1) ei(kx,1x+kz,1z−ωt), (2.30)

z < 0 : H2 = (0, Hy,2, 0) ei(kx,2x−kz,2z−ωt), (2.31)

E2 = (Ex,2, 0, Ez,2) ei(kx,2x−kz,2z−ωt). (2.32)

From the continuity relations derived from Maxwell’s equations it is found that kx = kx,1 =

kx,2. Applying the Maxwell equation, ∇×H i = εi
1
c
∂Ei
∂t [13], to the relevant electric and

magnetic fields yields

∂Hy,i

∂z
= −iεiEx,i

ω

c
⇒ kz,iHy,i = ±ω

c
εiEx,i, (2.33)

8



2.2. Surface Plasmons Polaritons Aalborg University

where i ∈ {1, 2} represents if it is for air or metal respectively, and ± is (+) when i = 2

and (-) when i = 1. The continuity relations show that Ex,1 = Ex,2 and Hy,1 = Hy,2,
which can be applied to Eq. (2.33) in order to get

kz,1
ε1

+
kz,2
ε2

= 0. (2.34)

This is the dispersion relation for the relevant SPPs for the discussed system. A relation for
kx can be found by taking the rotor on one of the Maxwell’s equations, ∇×H i = εi

1
c
∂Ei
∂t

or ∇×Ei = 1
c
∂Hi
∂t [13]. Then by applying equation (2.33) it can be found that

k2
x + k2

z,i =
ω2

c2
εi ⇒ kz,i =

√
ω2

c2
εi − k2

x. (2.35)

Inserting equation (2.35) into (2.34) yields

k2
x

(
1

ε2
1

− 1

ε2
2

)
=
ω2

c2

(
1

ε1
− 1

ε2

)
⇒ kx =

ω

c

√
ε1ε2

ε1 + ε2
. (2.36)

This is the SPP dispersion relation and it describes the relation between the surface
wavevector in the direction of propagation and the angular frequency of the wave.

2.2.2 Surface Plasmon Polariton Properties

Considering a surface plasmon polariton at the interface between air and metal as previous,
however, loss is now considered for the metal, meaning its dielectric function becomes
complex, i.e. ε2 = ε′2 + iε′′2. Losses are assumed to be negligible for air. This results
in kx becoming a complex number, i.e. kx = k′x + ik′′x. Examining a standard electric
wave, E = x̂Ex eikxx, it becomes clear that the real part of kx determines the frequency
of the SPP and the imaginary part determines the rate at which the SPP is damped due
to the aforementioned loss. The wavelength of the SPP can be calculated by using that
λSPP = 2π/k′x, and k′x can be found by using equation (2.36) and, under the assumption
that |ε′′2| << |ε′2|, is found to be

k′x '
ω

c

√
ε′2ε1

ε′2 + ε1
. (2.37)

This results in a SPP wavelength of

λSPP ' λ

√
ε′2 + ε1

ε′2ε1
, (2.38)

where λ is the vacuum wavelength.
From the imaginary part of kx the propagation length can also be calculated, since

k′′x results in the decay in the x-direction. So the 1/e decay length in the direction of
the interface can be found as 1/k′′x and for the intensity it can be found as 1/(2k′′x) [11].
Following the same assumptions as in equation (2.37), k′′x can be found as

k′′x '
ω

c

√
ε′2ε1

ε′2 + ε1

ε′′2ε1

2ε′2(ε′2 + ε1)
. (2.39)

In this report in general two specific incident wavelengths are used, 390 nm and 780 nm.
For a silver surface these wavelengths result in the dielectric function becoming -3.87 +
0.20i and -29.30 + 0.36i, which results in 1/e intensity decay lengths of 3.01 µm and 278.72
µm, respectively.

9
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Excitation

As is evident from equation (2.36), the wavevector, kx, is always smaller than the
wavevector of the incident light from free space. In Fig. 2.2, it is shown how this results
in the plasmon dispersion curve always being to the right of the light-line for free space
light, which is the left most striped line. This makes it more difficult to excite plasmons,
as the incident light needs to have a larger wavevector than its free space counterpart in
order to work. There are several methods of increasing the wavevector component of the
incident light, one way would be by the use of evanescent waves, by placing a material
with refractive index n > 1 between a medium and air. This shifts the light-line with a
factor of n, such that ω = ck/n consists of larger kx. This effect is also shown in Fig. 2.2,
by the rightmost striped line in the leftmost plot.

kx

F
re

q
u

en
cy

ω = ck ω = ck/n

θ

Figure 2.2. The left figure shows the plasmon dispersion curve with two light lines, one from
air and another from a material with a higher refractive index, n. The right picture
shows the angle notation used when describing far fields.

The scenario that is examined in this report is a nanofiber placed on a silver interface in
order to excite SPPs. However, in order to test how well a given nanofiber excites SPPs
one need to be able to observe how many plasmons are excited. The way this is done in
this report, is by observing the amount of plasmons that have leaked out of the air-silver
interface. The trick is that one can calculate at what very specific angles the SPPs will
leak of out the interface from into a substrate. These can be found by using the fact that
kx is the x-component of k0, i.e. k0 = kxn cos(θ), and that it must follow the dispersion
relation for plasmons, equation (2.37). In total this yields

n cos(θ) = Real
(√

ε2ε1

ε2 + ε1

)
, (2.40)

where n is the refractive index for the material that the plasmons are leaking into and θ
is the leakage angle. If one tries to solve this equation using the refractive index for silver,
one will find no real solutions for θ, meaning that the plasmons are bound to the interface.
However, if one uses e.g. glass with a refractive index of 1.5, solutions are found. So in
order to observe the amount of bound plasmons the silver layer is changed to a thin silver
film placed on a glass layer.

If the angle is defined as given in the right figure of figure 2.2, negative angles are given
when the angles turns in the clockwise direction. Then for the 390 nm incident wave the

10
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leakage angles, θ, are found to be −39.26◦ and −140.74◦. Furthermore, for the 780 nm
wavelength these angles are found to be -47.29◦ and -132.71◦. Since these modes have a
higher kx than what is possible by simply shining light on the surface, the leakage radiation
will leak at a larger angle than the critical angle of the air-glass interface. The critical
angles of the air-glass interface is, by the given notation, -48.2◦ and -131,8◦, which means
that the leakage angles for both incident wavelengths are beyond the critical angles.
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Chapter 3

Scattering Problem in Two
Dimensions

This chapter seeks to derive the Green’s function and tensor for s- and p-polarized light that
is incident on a scatterer. The examined case is depicted in figure 3.1. Different subjects
will be covered such as defining and using a reference structure, constructing a dyadic
Green’s tensor and separating it into a direct and indirect part, and then constructing the
far fields. Lastly, the far field will be used to calculate different optical cross sections.

z

y

x

ε1

εL2

εLN

ε2

Figure 3.1. Illustration of a scatterer placed on top of a layered dielectric structure.

The fundamental mechanic that is considered is that the scattering of light inside of the
scatterer is a coupled system, since when different parts of the scatterer gets polarized
they emit radiation that affects all other parts of the scatterer. Thus the field scattered
at a point inside of the scatterer is a sum of the incident field and the scattered field from
all positions inside the fiber.

3.1 Green’s Function Area Integral Equation

When finding the electric field, the central equation that is considered is the wave equation
(2.20),

−∇×∇×E(r) + k2
0ε(r)E(r) = −iωµ0Js(r),

where it is assumed that the electric field and the current density only vary in the xy-plane,
i.e., r = x̂x+ ŷy. This means that the electric field and the current density are invariant
in the z-direction.
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3.1.1 Calculations for s-polarization

For an electric field that is s-polarized, the electric field is pointing along the z-axis, thus

E(r) = ẑE(r), (3.1)

Js(r) = ẑJs(r). (3.2)

This in turn simplifies the wave equation, since

∇ ·E(r) =
∂E(r)

∂z
= 0, (3.3)

thus when considering the operator ∇ × ∇× = −∇∇ · +∇2, only the Laplace operator,
∇2, is left. The wave equation for the electric field then simplifies to the scalar Helmholtz
equation, (

∇2 + k2
0ε(r)

)
E(r) = −iωµ0Js(r). (3.4)

A Green’s function can then be found to solve the following equation:(
∇2 + k2

0ε(r)
)
g(r, r′) = −δ(r − r′). (3.5)

where r is the observation point and r′ is the source of the field. A solution to equation
(3.4) can now be found in terms of the Green’s function as

E(r) = iωµ0

ˆ
g(r, r′)Js(r)d2r′. (3.6)

Now, the structure without the scatterer is considered. This structure is termed the
reference geometry. Let εref(r) be the dielectric function for the reference geometry, and
consider the Helmholtz equation(

∇2 + k2
0εref(r)

)
E0(r) = −iωµ0Js(r), (3.7)

where the electric field E0(r) is the field generated by the same current density Js(r) as
before, however, only in the reference geometry. Using the reference dielectric function,
equation (3.4) can be re-written to(

∇2 + k2
0εref(r)

)
E(r) = −k2

0(ε(r)− εref(r))E(r)− iωµ0Js(r). (3.8)

Subtracting equation (3.7) from (3.8) removes iωµ0Js(r) as a driving term, this leaves(
∇2 + k2

0εref(r)
)

(E(r)− E0(r)) = −k2
0(ε(r)− εref(r))E(r). (3.9)

A solution to equation (3.9) can then be found by

E(r) = E0(r) +

ˆ
g(r, r′)k2

0

(
ε(r′)− εref(r

′)
)
E(r′)d2r′, (3.10)

where g(r, r′) now need to satisfy equation (3.5), but for the reference geometry. Since
ε(r′) − εref(r

′) is only nonzero when inside the scatterer, one only needs to evaluate the
integral at coordinates inside the scatterer.
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3.1.2 Calculations for p-polarization

In the case of p-polarized fields, the electric field is polarized in the xy-plane, and is still
invariant in the z-direction. This means that the electric field and the current density can
be written as

E(r) = x̂Ex(r) + ŷEy(r), (3.11)

Js(r) = x̂Jx,s(r) + ŷJy,s(r). (3.12)

The electric wave equation can thus not be simplified to the Helmholtz equation, therefore
the starting point becomes equation (2.20). A solution can be constructed using a dyadic
Green’s tensor which needs to be a solution to(

−∇∇ ·+∇2 + k2
0ε(r)

)←→
G (r, r′) = −

←→
I δ(r − r′). (3.13)

Just as before, the same wave equation can be used for the reference structure defined by
the reference dielectric function, εref(r), in which the reference field, E0, is generated by
the same current density. The field can then be found by evaluating the integral

E0(r) = iωµ0

ˆ ←→
G (r, r′) · Js(r′)d2r′, (3.14)

which solves (
−∇∇ ·+∇2 + k2

0εref(r)
)
E0(r) = −iωµ0Js(r). (3.15)

The same method as before of subtracting the two wave equations, one for the reference
structure and one for the whole structure, can be applied to yield a combined wave equation(

−∇∇ ·+∇2 + k2
0εref(r)

)
(E(r)−E0(r)) = −k2

0(ε(r)− εref(r))E(r). (3.16)

This results in the Green’s function area integral equation for p-polarization, which has a
form similar to the s-polarization case,

E(r) = E0(r) +

ˆ ←→
G (r, r′)k2

0 ·
(
ε(r′)− εref(r

′)
)
E(r′)d2r′, (3.17)

here
←→
G (r, r′) needs to solve equation (3.13), but for the reference geometry.

3.2 Scatterer on a Layered Structure

Before the electric field is found, in the case where a scatterer is placed on top of a layered
structure, it is needed to separate the working parts of the Green’s function and Green’s
tensor. In the upper half plane of the structure, where y, y′ > 0, the Green’s function and
tensor can be separated into two terms, the direct part and the indirect part, this is indexed
with a (d) and (i) respectively, which for the Green’s function is shown in figure 3.2. The
direct part represents the direct scattering effect in the scatterer, while the indirect part
represents the the scattered field that gets reflected back into the scatterer. Since the
scatterer scatters the field in a continuous array of plane waves with different kx, a plane
wave expansion for the direct Green’s function and tensor can be derived.
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z

y

x

ε1

εL2

εLN

ε2
g(d)

g(i)
r'

r

Figure 3.2. Illustration of the direct and indirect Green’s function from a source point to an
observation point inside of a scatterer.

3.2.1 Plane Wave Expansion of the Green’s Function

In the upper half plane, where εref = ε1, the Helmholtz equation for the Green’s function
becomes (

∇2 + k2
0ε1(r)

)
g(r, r′) = −δ(r − r′).

A particular solution to this equation can be found as [14]

g(d)(r, r′) =
i

4
H

(1)
0 (k0n1|r − r′|), (3.18)

where n1 =
√
ε1 and H(1)

0 is a Hankel function of first kind and of 0’th order. Next a plane
wave expansion of the direct Green’s function will be derived. This is done by the use
of the eigenvalue expansion method [15]. The method starts by considering the left hand
operator of equation (3.5), and defining eigenmodes Eλ with eigenvalue λ. The eigenvalue
problem becomes (

∇2 + k2
0ε1

)
Eλ(r) = λEλ(r), (3.19)

which can be re-written as (
∇2 + k2

)
Ek(r) = 0, (3.20)

where k2 = k2
0ε1 − λk = k · k. A solution to this differential equation is of the form

Ek(r) = eik·r, (3.21)

where k = x̂kx + ŷky. These modes are orthogonal modes, thus the normalization factor
can be found by the overlap integral,ˆ

Ek(r) (Ek′(r))∗ d2r = Nkδ(k − k′), (3.22)

where the normalization factor can be found to be Nk = (2π)2 by applying the definition
of the Dirac delta function. A solution to Eq. (3.5), where εref(r) = ε1, can now be found
using eigenmode expansion, i.e. plane wave expansion,

g(d)(r, r′) = −
ˆ
Ek(r) (Ek(r′))∗

Nkλk
d2k. (3.23)
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This can be verified as a solution by inserting it into Eq. (3.5) and then applying the result
from equation (3.19), as the operator works on the unmarked term in the integral. The
scalar Helmholtz then becomes(

∇2 + k2
0ε1

)
g(d)(r, r′) = −

ˆ
Ek(r) (Ek(r′))∗

Nk
d2k. (3.24)

Inserting Ek(r)(Ek(r′))∗ = eik·(r−r
′) and Nk = (2π)2 it can be shown, by using (3.22),

that the direct Green’s function is a solution.
In order to evaluate the integral of Eq. (3.23) it is used that dk2 = dkxdky. Only

the integral over ky is evaluated, as the integral over kx is equivalent. However, when
evaluating the integral, one must consider the poles found when

λk = k2
0ε1 − k2 =

(√
k2

0ε1 − k2
x − ky

)(√
k2

0ε1 − k2
x + ky

)
= 0, (3.25)

where two poles are found as

ky,p = ±
√
k2

0ε1 − k2
x. (3.26)

In order to avoid integrating directly over the poles, a small imaginary part, iη, is added
to the poles, where the the poles are given as

ky,p = ±
(√

k2
0ε1 − k2

x + iη

)
. (3.27)

This results in a shift of the poles into the imaginary plane. This results in a direct Green’s
function of the form

g(d)(r, r′) = lim
η→0+

1

(2π)2

¨
eikx(x−x′) eiky(y−y′)(

ky −
(√

k2
0ε1 − k2

x + iη
))(

ky +
(√

k2
0ε1 − k2

x + iη
))dkydkx.

(3.28)

Due to this small imaginary part, the integral of ky can now be replaced by a closed line
integral in the complex plane depicted in figure 3.3. The idea is to evaluate the integral so
that it is still equivalent to integrating over the real axis for ky, this is done by applying
the residue theorem when evaluating the integral.

ky,i

ky,r

R

y-y'>0

y-y'<0

Figure 3.3. Illustration of the poles of the integrand in equation (3.28) as well as the closed
integration path that extends the integration over ky into the complex plane as two
half circles, one for each pole.
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The two poles of equation (3.27) are illustrated in the figure. One closed line path can be
drawn for each pole. Since the integral needs to include the real axis the closed line path is
chosen from −R to R on the real axis and a half circle with radius R is chosen for each pole
extending into the complex plane. In order to only integrate over ky,real, it is required that
the contribution from the exponential function in Eq. (3.28), regarding ky,img, becomes to
zero, i.e. e−ky,img(y−y′) → 0. Taking the limit R → ∞ extends the integration of the real
axis to cover the entire real axis. For the imaginary part the exponential e−ky,img(y−y′)

converges either to 0 or ∞ depending of the sign of ky,img and (y − y′). This means that
the sign of ky,img and (y − y′) needs to match so that the complex contribution to the
integral converges to zero for R → ∞. The sign needed for y − y′ is shown in figure 3.3.
Since the complex contribution of ky converges to zero as R→∞ the integral is still only
an integral over ky,real.

Since the integral is now a line integral over a closed path in the complex plane it can
be solved using residual calculus [12]

˛
C
f(z)dz = ±2πi

n∑
j=1

[Resf(z)]z=zj , (3.29)

where Res stands for residual, which can be calculated as

[Resf(z)]z=zj = lim
z→zj

(z − zj)f(z), (3.30)

and zj are the poles of the function f(z) and C is the closed integration path. The sign
change occur when the integration around the closed path changes direction, if the direction
is counterclockwise (+) is used, for clockwise (−) is used.

Let the integrand of equation (3.28) be noted as f(ky; kx). Now one can apply the
residual theorem to f(ky; kx), first note that when evaluating the right side of equation
(3.29) only one of the closed paths needs to be considered. Depending of the chose of
closed path, either y − y′ < 0 or y − y′ > 0, the (±) either become a (-) or a (+) in the
residual theorem. For completion both paths are considered, thus including both poles.
This is indexed by the sign of the pole given from equation (3.27), noted by a (+) or a (−)

index. The residual theorem yields,
˛
f(ky)dky

∣∣∣∣
y−y′=±|y−y′|

= ± 2πi

(
lim

ky→k(±)
y,p

(
ky − k(±)

y,p

)
f(ky)

)∣∣∣∣∣
y−y′=±|y−y′|

. (3.31)

Each of the limits will leave the exponentials with a factor of 1/2(
√
k2

0ε1 − k2
x + iη) since

± lim
ky→k(±)

y,p

(
ky − k(±)

y,p

)
f(ky)

= ± lim
ky→k(±)

y,p

(
ky − k(±)

y,p

) eikx(x−x′) eiky(±)|y−y′|(
ky −

(√
k2

0ε1 − k2
x + iη

))(
ky +

(√
k2

0ε1 − k2
x + iη

))
=

eikx(x−x′) ei(
√
k20ε1−k2x+iη)|y−y′|

2(
√
k2

0ε1 − k2
x + iη)

. (3.32)

Equation (3.32) shows that the residual theorem gives the same result for each of the two
poles. After applying the residue theorem, the limit where η → 0+ is applied. This leads
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to the plane wave expanded direct Green’s function,

g(d)(r, r′) =
i

2π

ˆ
eikx(x−x′) eiky,1|y−y

′|

2ky,1
dkx. (3.33)

where ky,1 =
√
k2

0ε1 − k2
x.

3.2.2 Calculations for p-polarization

The Direct Green’s Tensor

It has already been established that for p-polarization, the field can be found by using the
Green’s tensor, this is described in section 3.1.2. Such a direct Green’s tensor must satisfy(

−∇∇ ·+∇2 + k0ε1

)←→
G (d)(r, r′) = −

←→
I δ(r − r′). (3.34)

To construct such a Green’s tensor one can use the direct Green’s function, which satisfies
Eq. (3.5) and it can be written as

←→
G (d)(r, r′) =

(
←→
I +

1

k2
1

∇∇
)
g(d)(r, r′), (3.35)

where k2
1 = k2

0ε1. This can be shown to satisfy Eq. (3.34),

(−∇∇ ·+∇2 + k2
1)

(
←→
I +

1

k2
1

∇∇
)
g(d)(r, r′) (3.36)

=

(
−∇∇ ·

←→
I − 1

k2
1

∇∇ · ∇∇+∇2←→I +
1

k2
1

∇2∇∇+ k2
1

←→
I +∇∇

)
g(d)(r, r′)

=
(
∇2 + k2

1

)←→
I g(d)(r, r′) = −

←→
I δ(r − r′). (3.37)

Equation (3.18) and (3.33) are two equally valid expressions to use in Eq. (3.35). If Eq.
(3.18) is chosen the direct Green’s tensor can be found analytically which is obviously
beneficial. The results in

←→
G (d)(r, r′) =

←→
I
i

4

(
H

(1)
0 (k1R)−H(1)

1 (k1R)
1

k1R

)
− RR

R2

i

4

(
1

2

(
H

(1)
0 (k1R)−H(2)

1 (k1R)
)
−H(2)

1 (k1R)
1

k1R

)
, (3.38)

where R = r − r′ and R = |R|. This is done by applying the calculus identity:
∇∇ = x̂x̂ ∂2

∂x2
+ ŷŷ ∂2

∂y2
+ x̂ŷ ∂2

∂xy + ŷx̂ ∂2

∂x∂y and the identity regarding differentiating a
n’th order Hankel function of the first kind which is [16]

∂

∂z
H(1)
m (z) =

mH
(1)
m (z)

z
−H(1)

m+1(z). (3.39)

The Indirect Green’s Tensor

In order to find an equation for the indirect Green’s tensor, the plane wave expansion can
be used. This is done by constructing the direct Green’s tensor by using equation (3.35)
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and (3.33). Doing so yields

←→
G (d)(r, r′) =

(
←→
I +

1

k1
∇∇

)
i

4π

ˆ
eikx(x−x′)eiky,1|y−y

′|

ky,1
dkx

=
i

4π

ˆ (
x̂x̂+ ŷŷ − x̂x̂k

2
x

k2
1

− ŷŷ
k2
y,1

k2
1

− (x̂ŷ + ŷx̂)
kxky,1
k2

1

y − y′

|y − y′|

)

× eikx(x−x′) eiky,1|y−y
′|

ky,1
dkx. (3.40)

Using that k2
y,1 = k2

1 − k2
x, the integrand can be simplified to

←→
G (d)(r, r′) =

i

4π

ˆ (
x̂x̂

k2
y,1

k2
1

+ ŷŷ
k2
x

k2
1

− (x̂ŷ + ŷx̂)
kxky,1
k2

1

y − y′

|y − y′|

)
eikx(x−x′) eiky,1|y−y

′|

ky,1
dkx.

(3.41)

In order to proceed, instead of a layered reference structure, consider one where there is
only one interface such that

εref(r) =

{
ε1, y > 0

εL2, y < 0
. (3.42)

The indirect Green’s tensor can now be found by using the direct Green’s tensor. This
is done by finding the incoming electric fields and applying reflection from the interface.
Consider the incident field on the interface as

Ei,x(r) =
←→
G (d)(r, r′) · x̂

=
i

4π

ˆ (
x̂
k2
y,1

k2
1

− ŷkxky,1
k2

1

y − y′

|y − y′|

)
eikx(x−x′) eiky,1|y−y

′|

ky,1
dkx, (3.43)

in which the incident field is Ei(r) = Ei,x(r) + Ei,y(r), and Ei,y is found by taking
the y-component of the direct Green’s tensor. If the field is found at the interface then
0 < y < y′, thus the wave propagates towards the interface. This means that

y − y′

|y − y′|
= −1. (3.44)

The plane wave expansion expands the incoming wave into a continuum of plane waves
by kx. It is then possible to define a reflection coefficient function, as this is a function
of kx, which can be multiplied to the integrand to ensure that different plane waves are
reflected appropriately. When the field is reflected off the surface the x-component of the
field changes sign, and y − y′ becomes the collective distance y + y′ since the fields needs
to travel to the interface and then change direction upwards to the observation point. The
reflected field is then

Er,x(r) =
i

2π

ˆ
r(p)(kx)

(
−x̂

k2
y,1

k2
1

+ ŷ
kxky,1
k2

1

)
eikx(x−x′) eiky,1(y+y′)

ky,1
dkx. (3.45)
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This can be done equivalently for Er,y. The indirect Green’s tensor can now be found by
multiplying x̂ and ŷ on Er,x and Er,y respectively. By doing so yields

←→
G (i)(r, r′) =

i

4π

ˆ
r(p)(kx)

(
−x̂x̂

k2
y,1

k2
1

+ ŷŷ
k2
x

k2
1

+ (ŷx̂− x̂ŷ)
kxky,1
k2

1

)

× eikx(x−x′) eiky,1(y+y′)

ky,1
dkx. (3.46)

In order to find the reflection coefficient it is needed to construct the transmitted field and
then apply boundary conditions at the interface. Finding the transmitted field is straight
forward as it can be found by using the incoming field as before. The transmitted field
concerning an incident field given by equation (3.43) is

Et,x(r) =
i

4π

ˆ
t(p)(kx)

ε1

εL2

(
x̂
ky,1ky,L2

k2
1

+ ŷ
kxky,1
k2

1

)
eikx(x−x′) eiky,1y

′
e−iky,L2y

ky,1
dkx,

(3.47)

where t(p)(kx) is the transmission coefficient, and is related to the reflection coefficient by

1 + r(p)(kx) = t(p)(kx). (3.48)

The boundary condition stated in equation (A.7) can be used to derive an expression for
the reflection coefficient. In this case the tangential component is in direction of x̂, thus

Et,x · x̂ = Ei,x · x̂−Er,x · x̂, for y = 0. (3.49)

This results in

k2
y,1

k2
1

(1− r(p)(kx)) = t(p)(kx)
ε1

εL2

ky,1ky,L2

k2
1

, (3.50)

which can be rearranged to yield

r(p)(kx) =
ky,1εL2 − ky,L2ε1

ky,1εL2 + ky,L2ε1
. (3.51)

3.3 Green’s Function Area Integral Equation in the Far
Field

The far fields gives a visual representation of how a field is scattered by a scatterer. This
section aim to rigid and simple equation for calculating the far field. As before, the case is
considered for p-polarized light. One can find the electric far field, by applying a so called
far field Green’s tensor, found by

E(ff)(r) = E0(r) +

ˆ ←→
G (ff)(r, r′)k2

0 · (ε(r′)− εref(r′))E(r′)d2r′, (3.52)

where

←→
G (ff)(r, r′) =

←→
G (ff,d)(r, r′) +

←→
G (ff,i)(r, r′). (3.53)
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The direct Green’s tensor is given by equation (3.38), thus a far field expression of the
Hankel function is needed in order to find

←→
G (ff,d). A Hankel function of the first and

second kind consists of a Bessel J and a Bessel Y function, and can thus be written on the
form

H(1)
m (x) ≡ Jm(x) + iYm(x), and H(2)

m (x) ≡ Jm(x)− iYm(x). (3.54)

The Bessel functions can be approximated for large x as [16][17]

Jm(x) ≈
√

2

πx
cos
(
x− mπ

2
− π

4

)
, for x >> 1 and (3.55)

Ym(x) ≈
√

2

πx
sin
(
x− mπ

2
− π

4

)
, for x >> 1. (3.56)

If one uses these approximations and x = k1|r − r′|, then the Hankel function can be
written as

H
(1)
0 (k1|r − r′|) ≈

√
2

πk0n1r
e−iπ/4 eik0n1r eik0n1r̂·r′ , (3.57)

where it has been used that |r − r′| ≈ r − r̂ · r′. Then the direct Green’s tensor can be
found for the far field as

←→
G (ff,d)(r, r′) =

(
←→
I +

1

(k0n1)2
∇∇

)
i

4

√
2

πk0n1r
e−iπ/4 eik0n1r eik0n1r̂·r′ . (3.58)

Applying the dyadic operator ∇∇ results in terms that scale as 1/r or of higher order,
which can be ignored in the far field. After, only one term is left which originates from
the r̂r̂ ∂2

∂r2
-term from the operator. Since

←→
I = r̂r̂ + θ̂θ̂, the direct Greens tensor for the

far field becomes

←→
G (ff,d)(r, r′) = θ̂θ̂

1

4

√
2

πk0n1r
eiπ/4 eik0n1r eik0n1r̂·r′ , (3.59)

where it has been used that i
√
−i =

√
i = eiπ/4.

The next step is to find the far field indirect Green’s tensor, so far it is of the form of
equation (3.46). An alternative expression of this equation can be found by re-writing the
direct Green’s function (3.33) and conduct a new derivation, this results in

g(d)(r, r′) =
i

2π

ˆ ∞
0

cos(kx(x− x′)) eiky,1|y−y
′|

ky,1
dkx, (3.60)

using this Green’s function for calculating the Green’s tensor results in [10]

←→
G (i)(r, r′) =

i

2π

ˆ ∞
0
r(p)(kx)

(
−x̂x̂

k2
y,1

k2
1

+ ŷŷ
k2
x

k2
1

)
cos(kx(x− x′)) eiky,1(y+y′)

ky,1

+r(p)(kx)(ŷx̂− x̂ŷ)
ikxky,1
k2

1

sin(kx(x− x′)) eiky,1(y+y′)

ky,1
dkx. (3.61)

In the far field the exponential function exp{iky,1(y + y′)} will go towards zero when
kx > k0n1, as this is where k1,y is imaginary. Therefore, can the integration boundary be
limited to integration from 0 to k0n1. By doing the coordinate substitution;

x = r cos θ, y = r sin θ, for 0 < θ < π, (3.62)

kx = k1 cosα, ky,1 = k1 sinα, for 0 < α < π/2, (3.63)
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a shift in integration variable can be done as dkx = −ky,1dα. The indirect Green’s tensor
can now be written on the form

←→
G (i)(r, r′) =

ˆ π/2

0

i

2π

(
U(α) cos(kx(x− x′)) +Q(α) sin((kx(x− x′))

)
eiky,1(y+y′)dα,

where Q(α) = r(p)(k1 cosα) (ŷx̂− x̂ŷ) cosα sinα, and (3.64)

U(α) = r(p)(k1 cosα)
(
−x̂x̂ sin2 α+ ŷŷ cos2 α

)
,

which follows by inserting equations (3.62) and (3.63) and using the change of integration
variable on Eq. (3.46). In order to proceed the far field approximation k0n1r >> 1 needs
be considered and the cosine and the sin in Eq. (3.64) must be re-written as a sum of two
exponential terms. In the far field some exponential terms oscillate fast with α, and will
thus vanish when considering the integration. This concept, in addition to the use of the
expression

ˆ ∞
−∞

e−ax
2+bxdx = eb

2/4a

√
π

a
, (3.65)

results in an analytic expression for the far field indirect Green’s tensor. This is done in
reference [10], and the result is

←→
G (ff,i)(r, r′) = (−x̂ sin θ + ŷ sin θ)(x̂ sin θ + ŷ cos θ)

× eik0n1r

√
2

πk0n1r

eiπ/4

4
r(p)(k0n1 cos θ) e−ik0n1x′ cos θ eiky,1y

′
, 0 < θ < π. (3.66)

3.4 Optical Cross Section

This section seeks to derive expressions of the optical cross section for the scatterer when
subject to an incoming beam. The optical cross section, noted by σ, can be split into factors
that contribute to an extinction of the incoming fields, such as absorption and coupling
into bound modes, however, here the extinction due to scattering is of most importance.
The case in question is shown in figure 3.4.

z

y

x

ε1

εAg

ε2

εquartz
SSPb

SSP SSP

SSPb

Figure 3.4. Illustration of light incident on a scatterer. The scattered light can be coupled into
modes at the air-silver and silver-quartz interfaces as SPPs. Only the SPPs at the
silver-quartz interface are bound modes, the SPPs at the air-silver interface will leak
down into the quartz substrate and contribute to the scattered field.

23



Group 5.236A 3. Scattering Problem in Two Dimensions

It is expected that the scattering cross sections obey conservation of energy, it is thus
required that

σext = σscat + σabs + σb, (3.67)

where the ext, scat, abs and b index notes extinction, scattering, absorption and bound
respectively. A cross section, with regards to electromagnetism, can be found as [10]

σ =
P

Ii
, (3.68)

where P is the power lost and Ii is the incoming intensity. If the scatterer was removed,
it is appropriate to divide the cross section into two part, one for reflection and one for
transmission.

The power of the reflected beam is obtained by considering only the power that is
reflected directly up in the far field, thus not including the scattered field. This is done
by integrating the Poynting vector for just the right angular interval such that it covers
on the reflected beam. This interval is defined to be from −θb to θb. The reflected beam
power can be written as

Pbeam,r = P0,r − Pext,r, (3.69)

whereas a similar expression can be formulated for the transmitted beam. The power of
the reflected beam can be found by

Pbeam,r =

ˆ θb

−θb

1

2
Real

{
E

(ff)
beam,r(r, θ)×

[
H

(ff)
beam,r(r, θ)

]∗}
· r̂rdθ. (3.70)

The reflected fields can be represented as

E
(ff)
beam,r(r, θ) = E

(ff)
0,r (r, θ) +E

(ff)
scat(r, θ), (3.71)

which, since the far field is considered, points in the radial direction. Using that the
Poynting vector, in the far field, can be written as [11]

〈S〉 =
1

2µ0

n

c
|E(ff)|2r̂ (3.72)

equation (3.70) can be written as

Pbeam,r =
1

2

√
ε0

µ0
n1

ˆ θb

−θb
|E(ff)

0,r (r, θ) + E
(ff)
scat,r(r, θ)|2rdθ. (3.73)

Since P0,r is given as

P0,r =
1

2

√
ε0

µ0
n1

ˆ θb

−θb
|E(ff)

0,r (r, θ)|2rdθ, (3.74)

Pext,r can be found to be

Pext,r =

√
ε0

µ0
n1

ˆ θb

−θb
Real

{
E

(ff)
0,r (r, θ)

[
E

(ff)
scat(r, θ)

]∗}
rdθ. (3.75)
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The term concerning the scattered field of second order, in equation (3.73), is assumed to
be insignificant in magnitude compared to the incident field since the angular interval is
small enough to only include the beam. In order to obtain analytic expressions for the
powers, an expression for the incident electric field must be found. The incident electric
field can be approximated as a Gaussian beam with a wide beam waist of w0, thus the
field can be assumed to be of the form

E0(x, y = 0) ≈ x̂E0 e−x
2/w2

0 . (3.76)

The field can be found at any position y by using Fourier transformations, thus the field
at any y is [11]

E0(x, y) =

ˆ
Ẽ0(kx; y = 0) eikxx e−iky,1ydkx, (3.77)

where ky,1 =
√
k2

0n
2
1 + k2

x and

Ẽ0(kx; y = 0) =

ˆ
E0(x, y = 0) e−ikxxdx. (3.78)

By using Eq. (3.65) two times and by approximating the beam to be wide, meaning
k0n1w0 >> 1, such that the paraxial approximation [11] can be used, i.e. ky,1 =

k0n1 − k2
x/2k0n1, the electric field can be approximated to be

E0(x, y) ≈ E0

√
w2

0
2iy
2r + w2

0

eik0n1y exp

(
−x2

2iy
k0n1

+ w2
0

)
. (3.79)

It can be used that y = r cos θ and x = r sin θ for 0 < θ < 2/(k0n1w0), where the sine and
cosine can be approximated by a Taylor series of the second order since the beam waist is
large, meaning θ << 1. In addition, the far field approximation k0n1r >> 1 can be used
to obtain the far field [10]

E
(ff)
0 (r, θ) = E0w0

√
k0n1

2r
e−iπ/4 eik0n1r exp

(
−θ

2

4
(k0n1w0)2

)
. (3.80)

Then the reflected and transmitted field can be found by using the appropriate reflection
and transmission coefficient. Since the beam waist radius is large only a insignificant
interval of kx is relevant, therefore it is assumed that kx ' 0. This allows one to
replace r(p)(kx) and t(p)(kx) with r(p)(kx = 0) and t(p)(kx = 0), as well as approximating
E

(ff)
scat(r, θ) ≈ E

(ff)
scat(r, θ = 0). The reflected electric field then becomes

E
(ff)
0,r (r, θ) ≈ −r(p)(kx = 0)E

(ff)
0 (r, θ). (3.81)

For the transmitted field, x = r sin θ̃ and y = −r sin θ̃ is used instead when rewriting
equation (3.79) and a similar derivation is carried out. The transmitted electric field is
then

E
(ff)
0,t (r, θ̃) ≈ n1

n2
t(p)(kx = 0)E0w0

√
k0n2

2r
e−iπ/4 e−ik0n2d e−ik0n2r exp

(
− θ̃

2

4
(k0n2w0)2

)
,

(3.82)
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where a factor n1/n2 has been added since t(p) is the transmission coefficient for the
magnetic field [10], which is much easier to find. From these expressions the extinction
power can be found analytically by the use of Eq. (3.65). The extinction power for reflected
and transmitted light is

−Pext,r =

√
ε0

µ0

2π

k0n1
Real

{
E0r

(p)(kx = 0)
√
r
[
E

(ff)
scat(r, θ = 0)

]∗
e−iπ/4 eik0n1r

}
, and

−Pext,t = −
√
ε0

µ0

2π

k0n2
Real

{
E0t

(p)(kx = 0)
√
r
[
E

(ff)
scat(r, θ = 0)

]∗
e−iπ/4 eik0n2r e−ik0n2d

}
.

(3.83)

The extinction cross section can then be found by normalizing with the incident power per
unit area,

Ii =
1

2

√
ε0

µ0
n1|E0|2, (3.84)

yielding

σext,r = 2

√
2π
k0n1

|E0|2
Real

{
E0r

(p)(kx = 0)
√
r
[
E

(ff)
scat(r, θ = 0)

]∗
e−iπ/4 eik0n1r

}
, (3.85)

σext,t = −2

√
2π
k0n2

|E0|2
Real

{
E0t

(p)(kx = 0)
√
r
[
E

(ff)
scat(r, θ = 0)

]∗
e−iπ/4 eik0n2r e−ik0n2d

}
.

(3.86)

The scattering cross section can be found by considering the scattered field and be
separated into scattering in the half plane containing reflected light and transmitted light
respectively. The scattering cross sections are

σscat,r =
1

|E0|2

ˆ π

0
|Escat(r, θ)|2rdθ, (3.87)

σscat,t =
n2

n1

1

|E0|2

ˆ 0

−π
|Escat(r, θ̃)|2rdθ, (3.88)

where the additional factor n2/n1 arises since Sscat,t ∝ n2|Escat,t|2 and S0 ∝ n1|E0|2.
It is important to note that the scatterer absorbs part of the incident wave, and thus

power is lost to ohmic losses inside of the scatterer. The power absorbed is [11][18]

Pabs =

〈
−1

2

ˆ
E(r, t) · J(r, t)dV

〉
, (3.89)

which can be simplified if there are no source currents such that J(r, ω) = σ(r, ω)E(r, ω).
By using the definition of ε in equation (2.15) such that σ = ωε0Imag{ε} the absorption
cross section for p-polarized light can be written as [10]

σabs =
k0/n1

|E0|2

ˆ
Imag{ε(r)}|E(r)|2dA. (3.90)
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3.4.1 Differential Cross Section

Instead of examining the cross section as defined in Eq. (3.68) it can be convenient to
consider the differential cross section defined as the number of particles scattered into
direction (θ, φ) pr. unit time pr. unit solid angle, divided by incident flux, [19]

σdiff =
∂σ

∂Ω
, (3.91)

such that the cross section can be found by integrating over all solid angles, i.e.

σ =

ˆ
σdiff dΩ. (3.92)

The differential cross section gives the angular distribution of the scattered particles, hence
it is a useful tool to visualize e.g. far fields. The scattering cross section, which is given
by equations (3.87) and (3.88), the differential scattering cross section is proportional to

∂σscat
∂Ω

∝ 〈Sscat · n̂r〉 , (3.93)

thus can be thought to represent the power scattered in all directions.

3.5 Mode Index Analysis

In this section allowed modes inside of a layer in a layered structure will be derived and
discussed by a method described in Appendix F in Ref. [10]. This method utilizes a
central equation, f(kx), that builds upon continuity of the fields across a layer. A mode
inside of the layer will be characterized by the kx wave number. If this wave number
cannot be obtained using closed expressions, it is common to define a mode index such
that kx is given as kx = k0nm, where nm is referred to as the mode index. The idea is to
consider a layered structure consisting of air, then CNHP4 and finally a silver substrate;
the calculations are based on figure 3.5(a).

0

d
ε1  air

ε2  CNHP4

εL2  silver

y

x

nm,�iber nm

(a) (b)

Figure 3.5. Figure (a) shows the labeling of the layers for the theoretical structure. Figure (b)
illustrates SPPs being reflected and transmitted from inside of the fiber to outside.

The amount of found mode indexes equal the amount of allowed modes for a given
structure, with height d. Then using the given mode index, one can calculate the
wavelength of the mode as λm = λ0/nm. The mode index can also be used to determined
whether the mode is confined inside of the fiber, as shown in figure 3.5(b). If the mode
index is larger than than for the air-silver interface, then the mode can transmit out of the
fiber.
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3.5.1 Preliminary Theory

The following derivations are based on a layered structure given by figure 3.5(a). In this
report, H = ẑH and is thus generally given by

H =

{ A eiky,1(y−d) eikxx, y > 0,(
B eiky,2y + C e−iky,2y

)
eikxx, d < y < 0,

D eiky,L2y eikxx, y < 0,

(3.94)

where A, B, C and D are constant, and k2
y,i = k2

0εi−k2
x. Using boundary conditions across

the first and second interface yield

A = B eiky,2d + C e−iky,2d and B + C = D, (3.95)

respectively. Using that Ex ∝ ε−1∂H/∂y is continuous across the same interfaces yields

iky,1A

ε1
=
iky,2
ε2

(
B eiky,2d + C e−iky,2d

)
, and

iky,2
ε2

(B − C) =
−iky,L2

εL2
D. (3.96)

Solving this system of equations leads to

f(kx) = eiky,2d
(

1− ε1

ε2

ky,2
ky,1

)(
1− ε2

εL2

ky,L2

ky,2

)
+ e−iky,2d

(
1 +

ε1

ε2

ky,2
ky,1

)(
1 +

ε2

εL2

ky,L2

ky,2

)
= 0.

(3.97)

Solving this equation for kx = k0nm thus gives the modes allowed for a fiber of height d.
It can be solved graphically by plotting (Real{f(kx)}, Imag{f(kx)}) = (0, 0) for different
nm = n′m + in′′m in a contour plot, and the solution is the coordinates of the crossing point
of the real and imaginary part of f(kx). This is not a very accurate method, but gives a
rough estimate of the mode index.

3.5.2 Results

The result of calculating these modes, with an incident wavelength of 780 nm for different
values of d, is given in Tab. 3.1.

Mode 1 Mode 2 Mode 3
Height (d) n′m n′′m λm n′m n′′m λm n′m n′′m λm

100 nm 1.3900 0.0020 560 - - - - - -
200 nm 1.6486 0.0017 473 - - - - - -
300 nm 1.0175 0.0002 766 1.7060 0.0014 457 - - -
400 nm 1.1840 0.0005 659 1.7228 0.0012 453 - - -
500 nm 1.3460 0.0005 579 1.7286 0.0018 451 - - -
600 nm 1.0172 0.0002 766 1.4440 0.0004 540 1.7309 0.0011 451
700 nm 1.1338 0.0003 688 1.5030 0.0003 519 1.7320 0.0012 450
800 nm 1.2520 0.0003 623 1.5405 0.0002 506 1.7322 0.0011 450

Table 3.1. Table of allowed modes in a layer consisting of CNHP4 on top of silver, illuminated
by light with a wavelength of 780 nm. The height, d, of the CNHP4 layer is shown,
and the allowed modes are given to the right of that particular height.

In Tab. 3.1, for the 100 nm and 200 nm high fibers, the real values of the mode indexes are
smaller than the refractive index of the fiber, which is n =1.65. This means that the modes
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are propagating modes inside of the fiber for these heights, however, since the modes have
a larger real value than air, the modes decays away from the fiber. This creates guided
mode, which for small d behaves like a regular plasmon, thus it can be understood as a
pseudo-SPP. For larger heights semi consistent a SPP mode is found. The mode index for
these are around nm ≈ 1.7254 + i0.0013, thus the average mode wavelength is 452 nm.

The result of calculating these modes, with an incident wavelength of 390 nm for different
values of d, is given in Tab. 3.2.

n′m n′′m λm n′m n′′m λm

Height (d) Mode 1 Mode 2
100 nm 3.006 0.1802 130 - - -
200 nm 3.007 0.1796 130 1.301 0.0032 300
300 nm 3.007 0.1796 130 1.070 0.0002 364
400 nm 3.007 0.1796 130 1.315 0.0016 296
500 nm 3.007 0.1796 130 1.163 0.0016 335

Mode 3 Mode 4
100 nm - - - - - -
200 nm - - - - - -
300 nm 1.503 0.0011 260 - - -
400 nm 1.570 0.0005 248 - - -
500 nm 1.443 0.0009 270 1.600 0.0002 244

Table 3.2. Table of allowed modes in a layer consisting of CNHP4 on top of silver, illuminated
by light with a wavelength of 390 nm. The height, d, of the CNHP4 layer is shown,
and the allowed modes are given to the right of that particular height.

In Tab 3.2 a consistent mode of around nm = 3.007 + i0.1796 is found for all heights.
This results in a SPP mode wavelength around 130 nm. Compared to the 780 nm case,
more allowed modes appear for higher fibers, which is most likely a result of the shorter
wavelength.

The decay length into the fiber of the SPP into can be calculated as 1/|Imag{ky,1}|,
where ky,1 is given as [11]

ky,2 =
2π

λm

√
ε2

2

ε′L2 + ε2

(
1− i

ε′′L2

2(ε′L2 + ε2)

)
, (3.98)

where ε2 and εL2 = ε′L2 + iε′′L2 is the dielectric constant of CNHP4 and silver respectively.
Calculating the decay length for the two modes, nm ≈ 1.7254 + i0.0013 and nm ≈
3.007 + i0.1796, yields decay lengths of around 20 000 nm and 95 nm respectively. The
long decay length of the 780 nm mode is a results of the real part of the mode index being
close to the refractive index of the fiber, thus the modes are less localized to the interface.
Interestingly, that coincides with how stable the modes are for the different heights; the
consistent mode for 780 nm incoming light varies a little for the different heights due to
the tail interfering with the air-fiber interface, and the mode recorded for 390 nm is stable
for all heights, due to the tail not reaching the other interface. As mentioned in order for
these modes in the fiber to transmit to the interface outside of the fiber, i.e. going from
a fiber-silver to a air-silver interface, the mode index for the air-silver SPP needs to be
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smaller than the SPP mode index for fiber-silver interface. It is thus of interest to calculate
the mode index for the SPP outside of the fiber, which can be found by equation (2.36),
i.e.

n′m = Real
{√

εL2

εL2 + 1

}
. (3.99)

The real part of the mode index outside of the fiber can thus be calculated to be 1.1607 for
the 390 nm incident wave, and 1.0175 for the 780 nm incident wave. These are significantly
smaller than those found in Tab. 3.1 and 3.2, thus the SPPs would easily transmit to the
air-silver interface.
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Chapter 4

Scattering Problem in Three
Dimensions

This chapter seeks to expand the equations and concepts, presented in chapter 3 into three
dimensions. Most of the results are very similar, as are most of the methods. In addition,
the theory follows closely chapter 6 in [10], thus the theory will not be summarized in
detail, however the main results important for constructing a 3D simulation regarding a
scatterer on top of a layered structure will be discussed.

First consider the wave equation (2.20) where now r = x̂x + ŷy + ẑz. A reference
structure defined by εref(r), which is the dielectric function for the structure without the
scatterer, is then introduced. This can be added into the wave equation such that the
left side of the wave equation is zero outside of the scatterer. This leads to the Green’s
function volume integral equation

E(r) = E0(r) +

ˆ ←→
G (r, r′)k2

0 · (ε(r′)− εref(r′))E(r′)d3r′. (4.1)

4.1 Scatterer On a Layered Structure

In this section the direct and indirect Green’s tensor will be derived for a scatterer on top
of a layered structure. As before, the direct Green’s tensor can be found analytically whilst
the indirect Green’s tensor can be derived by considering a mode expansion method.

4.1.1 Direct Green’s Tensor

The direct Green’s tensor needs to solve(
−∇×∇×+k2

0ε1

)←→
G (d)(r, r′) = −

←→
I δ(r − r′), (4.2)

where a solution can be found as

←→
G (d)(r, r′) =

(
←→
I +

1

k2
0ε1
∇∇

)
g(d)(r, r′). (4.3)

Equation (4.2) is satisfied if the direct Green’s function satisfies

(∇2 + k0ε1)g(d)(r, r′) = −δ(r, r′), (4.4)
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where it can be shown that

g(d)(r, r′) =
eik0ε1|r−r

′|

4π|r − r′|
(4.5)

is a solution [10][15]. The direct Green’s tensor can then be found analytically by
differentiation and using the dyadic operator ∇∇ = x̂x̂ ∂2

∂x2
+ ŷŷ ∂2

∂y2
+ (x̂ŷ + ŷx̂) ∂2

∂x∂y

to be

←→
G (d)(r, r′) =

(
←→
I

[
1 +

i

k1R
− 1

(k1R)2

]
− RR

R2

[
1 +

3i

k1R
− 3

(k1R)2

])
g(d)(r, r′), (4.6)

where R = r − r′, R = |R| and k1 = k0n1.

4.1.2 Indirect and Transmitted Green’s Tensor

The indirect Green’s tensor can be constructed by considering a plane wave expansion of
equation (4.5) as applied previously. The plane wave expansion is [20]

g(d)(r, r′) =
i

2

1

(2π)2

ˆ
kx

ˆ
ky

eikx(x−x′) eiky(y−y
′) eikz,1|z−z

′|

kz,1
dkxdky, (4.7)

where kz,1 =
√
k2

0ε1 − k2
x − k2

y. This can be shown using an eigenvalue expansion method
[15] and introducing an imaginary part to the poles of the equation. The direct Green’s
function can then be expressed as [10]

g(d)(r, r′) = lim
α→0+

ˆ
eik·(r−r

′)

(2π)3
(
kz −

(√
k2

0ε1 − k2
ρ + iα

))(
kz +

(√
k2

0ε1 − k2
ρ + iα

))d3k,

(4.8)

where k2
ρ = k2

x + k2
y. Now residual calculations using the same methods as the ones

previously leads to the plane wave expansion, equation (4.7). Using polar coordinates

kx = k1 cos θk, x− x′ = ρr cos θr, (4.9)

ky = k1 sin θk, y − y′ = ρr sin θr, (4.10)

the Bessel J of 0’th order can be found in the equation such that,

g(d)(r, r′) =
i

4π

ˆ ∞
0

J0(kρρr) eikz,1|z−z
′|

kz,1
kρdkρ. (4.11)

Inserting this equation into Eq. (4.3) and using that the gradient can be expressed for
cylindrical coordinates as ∇ = ẑ ∂

∂z + ρ̂r
∂
∂ρr

+ φ̂r
1
ρr

∂
∂φr

, the direct Green’s tensor can be
derived to be

←→
G (d)(r, r′) =

1

4π

ˆ ∞
0

{
ρ̂rρ̂r

(
J0(kρρr) +

k2
ρ

k2
1

J ′′0 (kρρr)

)
+ φ̂rφ̂r

(
J0(kρρr) +

k2
ρ

k2
1

J ′0(kρρr)

kρρr

)

+ ẑẑ
k2
ρ

k2
1

J0(kρρr) + (ρ̂rẑ + ẑρ̂r)
ikz,1kρ
k2

1

z − z′

|z − z′|
J ′0(kρρr)

}
eikz,1|z−z

′| kρ
kz,1

dkρ, (4.12)
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where k2
ρ = k2

1 − k2
z,1. The next step is to find the incident, reflected and transmitted

electric fields in order to construct the dyadic tensors. This is done for a two layered
reference structure defined by

εref(r) =

{
ε1, z > 0

εL2, z < 0
. (4.13)

Consider now an incident field where 0 < z < z′ which can be written as

Ei(r) = Ei,x(r) +Ei,y(r) +Ei,z(r). (4.14)

These parts can be found by taking the appropriate component of the direct Green’s
tensor. However, since the fields are three dimensional both p- and s-polarization needs
to considered, thus the total field becomes

E(r) =

{
E

(s)
i (r) +E

(p)
i (r) +E

(s)
r (r) +E

(p)
r (r), z > 0

E
(s)
t (r) +E

(p)
t (r), z < 0

. (4.15)

Using these fields the appropriate Green’s tensors can be found. It is intended for the
Green’s tensor to become of the form

←→
G (r, r′) =

{←→
G (d)(r, r′) +

←→
G (i)(r, r′), z > 0

←→
G (t)(r, r′), z < 0

, (4.16)

where

←→
G (t)(r, r′) = Et,x(r)x̂+Et,y(r)ŷ +Et,z(r)ẑ, (4.17)

and

←→
G (i)(r, r′) = Er,x(r)x̂+Er,y(r)ŷ +Er,x(r)ẑ. (4.18)

The Indirect Green’s tensor can then be obtained as

←→
G (i)(r,r′) =

i

4π

ˆ ∞
0

{
r(p)(kρ)

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

+ φ̂rφ̂r
J ′0(kρρr)

kρρr

k2
z,1

k2
1

+ ρ̂rρ̂rJ
′′
0 (kρρr)

k2
z,1

k2
1

− (ẑρ̂r − ρ̂rẑ)
ikz,1kρ
k2

1

J ′0(kρρr)

)
−r(s)(kρ)

(
φ̂rφ̂rJ

′′
0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1(z+z′) kρ

kz,1
dkρ, (4.19)

and the transmitted Green’s tensor as

←→
G (t)(r,r′) =

i

4π

ˆ ∞
0

{
t(p)(kρ)

ε1

εL2

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

− φ̂rφ̂r
J ′0(kρρr)

kρρr

kz,1kz,L2

k2
1

− ρ̂rρ̂rJ ′′0 (kρρr)
kz,1kz,L2

k2
1

−
(
ẑρ̂r + ρ̂rẑ

kz,L2

kz,1

)
ikz,1kρ
k2

1

J ′0(kρρr)

)
−t(s)(kρ)

(
φ̂rφ̂rJ

′′
0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1z

′
e−ikz,L2z

kρ
kz,1

dkρ. (4.20)
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4.2 Far Fields and Cross Sections

In order to derive an expression for the electric field in the far field one must first derived
both the direct and indirect far field Green’s tensors. The far field direct Green’s tensor is
derived by considering the result obtained previously, namely equation (4.6). In relation to
the far field, r′ is close to the origin in comparison to r. This means that R = r− r′ ≈ r.
Then removing all terms that converge to zero, as k1r →∞, yields

←→
G (ff,d)(r, r′) =

(←→
I − r̂r̂

)
g(ff,d)(r, r′). (4.21)

Using that
←→
I = r̂r̂+ θ̂θ̂+ φ̂φ̂ and that |r− r′| ≈ r− r̂ · r′ in the far field, the tensor can

be written as

←→
G (ff,d)(r, r′) =

(
θ̂θ̂ + φ̂φ̂

) eik1r e−ik1r̂·r
′

4πr
. (4.22)

In order to get an analytic expression for the indirect Green’s tensor, one must consider
equation (4.19). The same methods can be applied as for the two dimensional case, where
the fast oscillating exponential terms vanishes evaluating the integral. In this context, it is
required to approximate the Bessel J functions for large x, as done in Eq. (3.55), in which
the mentioned exponential terms are found. Along with a coordinate shift and replacing
the integration boundaries, the indirect Green’s tensor can be analytically found as [10]

←→
G (ff,i)(r, r′) =

eik1r

4πr
e−ikρr·ρ̂ eikz,1z

′
(
r(s)(kρ)φ̂φ̂− r(s)(kρ)θ̂

(
ẑ
kρ
k1

+ ρ̂
kz,1
k1

))
. (4.23)

These far field Green’s tensors constitutes the electric field in the far field by

E
(ff)
scat(r) =

ˆ ←→
G (ff)(r, r′)k2

0(ε(r′)− εref(r′)) ·E(r′)d3r′, z > 0. (4.24)

Using equation (4.23) and (4.22), equation (4.24) can be split up into a direct and indirect
part given by

E
(ff,d)
scat (r) =

eik1r

4πr
(θ̂θ̂ + φ̂φ̂) ·

ˆ
k2

0(ε(r′)− εref(r′)) e−ik1r
′·ρ̂E(r′)d3r′, (4.25)

and

E
(ff,i)
scat (r) =

eik1r

4πr

(
−r(p)(kkρ)θ̂

(
ẑ
kρ
k1

+ ρ̂
kz,1
k1

)
+ r(s)(kρ)φ̂φ̂

)
·
ˆ
k2

0(ε(r′)− εref(r′)) eikρr
′·ρ eikz,1z

′
E(r′)d3r′, (4.26)

respectively. By applying these fields the scattering cross sections for the three dimension
case can be found as

σscat,r =
1

|E0|2

ˆ π/2−

0

ˆ 2π

0
|E(ff)

scat(r)|2r2 sin θdθdφ, (4.27)

and

σscat,t =
1

|E0|2
n2

n1

ˆ π

π/2+

ˆ 2π

0
|E(ff)

scat(r)|2r2 sin θdθdφ. (4.28)
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4.3 Second Harmonic Generation

Some materials responds non-linearly to an electric field. These effects arise due to a
non-linear response of embedded dipoles in the material. These dipoles facilitate valence
electrons that responds in a non-linear manner when excited by an external electric field
[21]. The non-linear response can found in the polarization density in the frequency domain
given by [22]

P (ω) =ε0

(
χ(1)(ω)E(ω) + χ(2)(ω = ω′ + ω′′)E(ω′)E(ω′′) + ...

+ χ(n)(ω = ω′ + ω′′ + ...+ ω(n))E(ω)...E(ω(n))

)
, (4.29)

where χ(n) is the response strength of the nth term. The second term is called the sum-
frequency generation since it sums the frequency as ω = ω′ + ω′′. Second harmonic
generation (SHG) is a special case of the sum frequency generation where ω′ = ω′′ = ω,
this is denoted as 2ω = ω′ + ω′′. This effect is examined in the report, thus other higher
order effects are ignored. This also implies E(ω′)E(ω′′) = (E(ω))2. The resulting second
harmonic (SH) dipole polarization can thus be expressed as

P (r, 2ω) = χ(2)(E(r, ω))2. (4.30)

Considering that the dipoles are orientated in some direction the polarization density needs
to be rewritten. The polarization density points in the same direction as the dipoles, noted
n̂dip, and is driven by the component of the electric field that points in that direction. The
polarization density is thus on the form,

P (r, 2ω) = χ(2)n̂dip(n̂dip ·E(r, ω))2. (4.31)

SHG, in a scattering fiber, becomes a new source of fields that is subject to scattering from
the moment it is generated. The field that is calculated for the reference structure takes
the form

E0(r, 2ω) =

ˆ ←→
G (r, r′; 2ω)

(2ω)2

c2
· P (r, 2ω)

ε0
d3r′. (4.32)

This in turn leads to the total field generated by a scatterer with SH properties;

E(r, 2ω) = E0(r, 2ω) +

ˆ ←→
G (r, r′; 2ω)

(2ω)2

c2
· (ε(r′)− εref(r′))E(r, 2ω)d3r′. (4.33)

In order to find the scattering cross section the far field of the scattered field needs to be
found. This deviates from the linearly scattered field, which is also called fundamental
harmonic (FH) scattering, since E0(2ω) now contributes to the far field. The scattered far
field is given as

E
(ff)
scat(r, 2ω) =

ˆ ←→
G (ff)(r, r′; 2ω)

(2ω)2

c2
·
(
P (r, 2ω)

ε0
+ (ε(r′)− εref(r′))E(r, 2ω)

)
d3r′.

(4.34)
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Chapter 5

Numerical Convertion and Solution
Method

In chapter 3, equations for finding the electric field resulting from scattering by a scatterer
on a layered structure were found. However, these require that complicated integrals
are solved. This section aims to discretize these equations so that they can be solved
numerically, and then finding a method for solving these equations quickly and finally
applying them to the situation of a CNHP4 nanofiber on a silver film on quartz.

5.1 Discretization into Square Elements

The initial step is to discretize the fiber into smaller elements, and for the given problem
the most practical approach would be to use a square discretization. The idea is to divide
an area that includes the entire scatterer into small square elements and assigning each
element a dielectric constant in order to represent the scatterer. In order to simplify the
problem, the discretization is chosen in such a way that the height of the fiber are described
by an integer amount of squares.

ε2

ε1

n ^

ε1 ε2

= x^

Figure 5.1. The left figure represents an area that has been discretized and the cells within the
fiber have value ε2. The cells marked with red, have a dielectric constant that is a
combination between ε1 and ε2. The right figure is a closer look at one such cell.

However, not every square will be guaranteed to have a uniform dielectric constant, e.g. if
the width of the strip does not match an integer amount of squares. This results in the cell
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having some part ε1 and some part ε2. An example of this is shown in figure 5.1, where
the red boxes indicate which cells will have such a shared dielectric constant.

For these boxes an appropriate dielectric constant must be chosen. This is done by using
an average for the cell. However, one must consider the polarization before calculating. For
s-polarization, the field lies in the z-direction and is therefore parallel with every interface,
thus for a cell i the dielectric constant is calculated as [23]

ε‖,i =
1

∆i

ˆ
i
ε(r)d2r, (5.1)

where ∆i is the area of cell i. For p-polarization the field consists of a combination
of components which is parallel and perpendicular to the interface. Following the same
reason, if a component of a field is in the direction of the n̂ unit vector, the effective
dielectric constant can be calculated as [23]

1

ε⊥,i
=

1

∆i

ˆ
i

1

ε(r)
d2r. (5.2)

A tensor expression for the dielectric constant can be written as a combination of the two
and results in a effective εi for p-polarization on the form;

εi = ε⊥,in̂n̂+ ε‖,i(
←→
I − n̂n̂). (5.3)

In this report the fiber will always be assumed square and so will the discretization, and
since the discretization is chosen to fit with the height of the fiber, only the sides will pose
the possible problem of an averaged dielectric constant. Therefore, n̂ will be equal x̂ for
any case in this report.

5.2 Numerical Method

In previous sections the direct and indirect Green’s tensor was derived. In general the
tensor,

←→
G , can be expressed as

←→
G = x̂x̂Gxx + x̂ŷGxy + ŷx̂Gyx + ŷŷGyy. (5.4)

Similarly, the dielectric constant tensor, for a cell i, can be expressed as

←→ε i = x̂x̂εxx,i + x̂ŷεxy,i + ŷx̂εyx,i + ŷŷεyy,i. (5.5)

Since n̂ = x̂ for a square fiber, equation (5.3) will not have dyadic x̂ŷ- or ŷx̂-components.
This would not be the case if n̂ pointed such that it is a combination of x̂ and ŷ, as the
dyadic n̂n̂ would then have x̂ŷ- or ŷx̂-components.

It is assumed that within each cell both the reference electric field, E0,i, and total
electric field are constant and can be written of the form Ei = x̂Ex,i + ŷEy,i. Given these
assumptions and definitions, the integral equation in (3.17) can be written in discrete form
as

Ei = E0,i +
∑
j

←→
G ij · k2

0(←→ε j −
←→
I εref) ·Ej , (5.6)
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where
←→
G ij =

←→
G

(d)
ij +

←→
G

(i)
ij =

ˆ
j

←→
G (ri, r

′)d2r′. (5.7)

However, both the direct and indirect Green’s functions both have highly singular points.
For the indirect part, this problem is circumvented by integrating around the singular
point in the complex plane, and was discussed in Section 4.2.1 in Ref. [10]. However, the
direct Green’s tensor is only singular when i = j. In order to solve this, the area integral is
converted to a surface integral for a surface that is far away from the point that is singular
[24][25]. First the integral of the Green’s tensor can be written asˆ

i

←→
G (d)(ri, r

′) =

ˆ
i

(
←→
I +

1

k2
∇′∇′

)
g(d)(ri, r

′)d2r′. (5.8)

However, the scalar Green’s function, g(d), satisfies(
∇2 + k2

)
g(d)(ri, r

′) = −δ(r − r′), (5.9)

which implies that

g(d)(ri, r
′) = − 1

k2
∇2g(d)(ri, r

′)− 1

k2
δ(r − r′). (5.10)

If equation (5.10) is inserted into equation (5.8) and the divergence theorem is applied, it
leads tô

i

←→
G (d)(ri, r

′)d2r′ = − 1

k2

←→
I +

1

k2

ˆ
∂i

(n̂′∇−
←→
I n̂′ · ∇′)g(d)(ri, r

′)dl′, (5.11)

where ∂i is the size of the line element i. In the limit of ∂i becoming very small, equation
(5.11) goes towards a constant value [10];

←→
G

(d)
ii = −

←→
I

2k2
. (5.12)

For every point an appropriate approximation for the direct Green’s tensor is thus

←→
G

(d)
ij '

{←→
G (d)(ri, rj)∆j , i 6= j,

−
←→
I /2k2, i = j.

(5.13)

One can define vectors containing the electric fields, both total and incident, in every cell
as

Ex = [Ex,1 Ex,2 . . . Ex,N ]T , (5.14)

E0,x = [E0,x,1 E0,x,2 . . . E0,x,N ]T , (5.15)

and similar vectors can be created for E0,y and Ey. Matrices for the Green’s tensor can
also be defined as Gxy, where each matrix element is of the form Gxy,i,j = x̂ ·

←→
G i,j · ŷ.

Equivalent matrices are defined for indices: (xx), (yy) and (yx). By defining dielectric
constant matrices, εxy, as diagonal matrices with elements εxy,i = x̂ · ←→ε i · ŷ. Again
equivalent matrices with indices: (xx), (yy) and (yx), are also defined. Applying all of
these definitions, equation (5.6) can be rewritten in matrix form, resulting in(

I −

[
Gxx Gxy

Gyx Gyy

]
k2

0

([
εxx εxy

εyx εyy

]
− Iεref

))[
Ex

Ey

]
=

[
E0,x

E0,y

]
. (5.16)

Solving equation (5.16) results in the electric field in a given area, this area should be
chosen to include the scatterer so that one can use equation (3.17) to find the field in all
other positions.
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5.3 Applying the Fast Fourier Transform

The matrix equation, (5.16), must now be solved. However, the matrix in question scales
in size as N2, where N is the number of discretization elements. Furthermore, by applying
matrix inversion the calculation time will scale as N3 [10]. This results in limitations for
the size of the numerical problem, N , as one will run out of memory or the calculation
time becomes too long for practical purposes. Therefore, a more efficient method is needed
that scales better with N .

A more efficient method would be to first use the Fast Fourier Transformation (FFT)
algorithm. Considering the main problem of a scatterer placed on a surface, FFT can be
applied due to the Green’s tensor being of the form;

←→
G (r, r′) =

←→
G (d)(x− x′, y − y′) +

←→
G (i)(x− x′, y + y′). (5.17)

This results in the Green’s function integral equation (3.17) becoming two convolution
integrals. Convolution integrals are a type of integral which have the form

E(x, y) =

ˆ
f(x− x′, y − y′)h(x′, y′)dx′dy′. (5.18)

Following the convolution theorem, which can be found in Ref. [26], the calculation-heavy
convolution integral can be found as a simple product in reciprocal space, i.e.

Ẽ(kx, ky) = f̃(kx, ky)h̃(kx, ky). (5.19)

Using this, the convolution integral in equation (5.18) can be solved by Fourier-
transforming both f and h and doing the product of the two and then inverse Fourier-
transforming back into real space, resulting in

E(x, y) =
1

(2π)2

ˆ
f̃(kx, ky)h̃(kx, ky)e

ikxxeikyydkxdky. (5.20)

It should be noted that it is not necessarily a faster approach to Fourier transform back
and forth, however, if the FFT algorithm is used it can save a lot of calculation time.
This is because the FFT algorithm scales as N logN [27][28] and is thus significantly less
dependent on the size of N . So in summary this provides a way to make calculations for
large and finely discretized structures.

For the next step the square discretization of the Green’s function integral equation,
(5.6), is redefined so that it makes use of an extra index, resulting in

Eix,iy = E0,ix,iy +
∑
jx,jy

(
G

(d)

ix−jx,iy−jy +G
(i)

ix−jx,iy+jy

)
· k2

0(εjx,jy − Iεref) ·Ejx,jy , (5.21)

where Eix,iy = [E
(x)
ix,iy

E
(y)
ix,iy

](T ), and E0,ix,iy = [E
(x)
0,ix,iy

E
(y)
0,ix,iy

](T ).

The Green’s matrix, denoted as Gix,jx,iy ,jy = G
(d)

ix−jx,iy−jy +G
(i)

ix−jx,iy+jy , and the dielectric
matrix εjx,jy , are in this case of the form

Gix,jx,iy ,jy =

[
G

(xx)
ix,jx,iy ,jy

G
(xy)
ix,jx,iy ,jy

G
(yx)
ix,jx,iy ,jy

G
(yy)
ix,jx,iy ,jy

]
, and εjx,jy =

[
ε

(xx)
jx,jy

ε
(xy)
jx,jy

ε
(yx)
jx,jy

ε
(yy)
jx,jy

]
. (5.22)
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One can now seperate equation (5.21) into an x-component and a y-component. This
results in

E
(x)
ix,iy
−
∑
jx,jy

k2
0

[(
G

(xx)
ix,jx,iy ,jy

(ε
(xx)
jx,jy
− εref) +G

(xy)
ix,jx,iy ,jy

ε
(yx)
jx,jy

)
E

(x)
ix,iy

+
(
G

(xx)
ix,jx,iy ,jy

ε
(xy)
jx,jy

+G
(xy)
ix,jx,iy ,jy

(ε
(yy)
jx,jy
− εref)

)
E

(y)
ix,iy

]
= E

(x)
0,ix,iy

, (5.23)

and

E
(y)
ix,iy
−
∑
jx,jy

k2
0

[(
G

(yy)
ix,jx,iy ,jy
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For each of these components, one can define two operators that transform a sum of E
(x)

and E
(y)

into either E
(x)

0 or E
(y)

0 , so that

ĈxE
(x)
− Ĉ ′xE

(y)
= E

(x)

0 and ĈyE
(y)
− Ĉ ′yE

(x)
= E

(y)

0 . (5.25)

When it comes to applying these operators element-wise multiplication is used. This is
denoted by A . ∗ B and means that element (α, β) in the resulting matrix is found by
multiplying element (α, β) of matrix A with element (α, β) of matrix B. The matrices
with the values of the Green’s functions and the matrices containing the product of the
dielectric function and the electric field are both Fourier transformed by applying the FFT
algorithm. From here the product of these are completed in reciprocal space and thereafter
it is transformed back into real space. Applying this, the operators for the x-component
in (5.25) becomes;

ĈxE
(x)

= E
(x)
− IFFT

[
FFT

(
G

(xx)
)
. ∗ FFT

(
k2

0(ε
(xx) − Iεref). ∗E

(x)
)

− FFT
(
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(xy)
)
. ∗ FFT

(
k2

0 ε
(yx)

. ∗E
(x)
)]

, and (5.26)

−Ĉ ′xE
(y)

= IFFT

[
FFT

(
G

(xx)
. ∗ FFT

(
k2

0 ε
(xy)

. ∗E
(y)
)

+ FFT

(
G

(xy)
)
. ∗ FFT

(
k2

0(ε
(yy) − Iεref). ∗E

(y)
)]

. (5.27)

Similar operators are found for the y-component. An important detail is that every matrix
with values of Green’s functions are of the size (2Nx − 1)× (2Ny − 1), where Nx and Ny

are the amount of elements in the x and y directions, and the E and ε matrices are of the
size Nx×Ny. Therefore, the matrices must be zero-padded so that it has the same size as
the Green’s function matrices before the FFT algorithm is applied. After the inverse FFT
has been applied, one must take the appropriate submatrix of size; Nx ×Ny.

The last step is to solve both components in equation (5.25), which can be done using
an iterative method. The method used in this report is the conjugate gradient algorithm,
which can be found in Appendix B of Ref. [10]. The algorithm requires an initial guess,
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in this case the guesses are chosen to be E
(x)

0 and E
(y)

0 , that is then iteratively improved
until it is satisfactory according to a convergence criteria. In this report, the convergence
criteria is chosen to be acceptable when the error, as described in the definition of the
conjugate gradient algorithm, is below 10−10.

The same method have been applied to the three dimensional case, this results in
equations of the general form;

E0,jx,jy ,jz = Eix,iy ,iz −
∑

jx,jy ,jz

G
(d)

ix−jx,iy−jy ,iz−jzk
2
0(εjx,jy ,jz − εref) ·Ejx,jy ,jz

−
∑

jx,jy ,jz

G
(i)

ix−jx,iy−jy ,iz+jzk
2
0(εjx,jy ,jz − εref) ·Ejx,jy ,jz . (5.28)
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Chapter 6

Analysis of Results in Two
Dimensions

Following the theoretical structure, a method for efficiently calculating the electric field
inside and outside of a fiber on a silver film on quartz has been developed and an analysis
can now be conducted. Several aspects of the setup with a nanofiber on a silver film over
quartz are interesting to examine, such as how efficient the fiber is at exciting plasmons
dependent on its size or thickness of the silver film. This chapter aims to examine as
many of these aspects as possible all while providing context and hypothesizing what is
the cause of the effects that are examined. However, to start one must test how well the
model converges.

6.1 Convergence of the Model

Convergence is tested in order to confirm how many discretization elements are needed for
the model to be rigid and provide consistent results. In order to discuss how many elements
is needed, a clear definition of the amount of elements is required. Therefore, the variable
Nd is introduced, which describes the amount of points per 100 nm for a single axis in the
fiber. For example, if one needs a 200 nm high and 400 nm wide fiber that is discretized so
that dx = dy = 5 nm, dx and dy being the size of the sides of the discretization elements,
40 cells would be needed in the y-axis and 80 cells in the x-axis. This makes N = 3200 for
the fiber and would be described as having Nd = 20. In summary, a Nd = 10 corresponds
to a dx = 10 nm and a Nd = 40 corresponds to a dx = 2.5 nm.

To test convergence, a fiber with a height of 100 nm and a width of 100 nm, denoted
100×100 nm2, is chosen and the method is applied with an incident wave with an incident
wavelength of 390 nm, as well as the doubled wavelength, 780 nm. For the same setup,
different discretizations are applied to see the effect of a higher or a lower Nd. In order to
quantify the difference, the maximum value of the plasmon peaks is observed so to see the
change dependent on Nd.

To start the incident wavelength of 390 nm is examined. In the left part of figure 6.1,
one can see the downwards differential scattering cross section, σdiff, for a fiber with a
discretization of Nd = 40. Here one can see the two plasmon peaks that were predicted,
however, they appear wider than expected. The right plot shows a convergence plot for
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the scenario, where the value of σdiff at the top of the peaks is shown for different Nd.

-180-160-140-120-100-80-60-40-200

Angle, 

0

50

100

150

200

250

D
if
f.

 S
c
a

t.
 C

ro
s
s
 S

e
c
. 

d
if
f

With N
d
 = 40

0 20 40 60 80 100 120 140 160 180 200

N
d

225

230

235

240

245

250

d
if
f a

t 
P

la
s
m

o
n

 P
e

a
k
 

Convergence plot for  = 390 nm

Figure 6.1. The left plot shows the downwards differential scattering cross section at different
angles, where the two peaks at the plasmon angles are visible. The right plot is a
convergence plot that shows the evolution of value of σdiff in one of the plasmon
peaks when Nd becomes larger.

From the convergence plot it appears that it converges towards a single value for higher
Nd. Since the calculation time of the program scales significantly with the size of Nd, it is
preferred to choose as small a value as possible for Nd that is still sufficient. For Nd = 20

the peak value is at 233.4 nm, for Nd = 40 it is 228.4 nm and for Nd = 200 it becomes
227.3 nm. This value appears to be close to a converged value and therefore a percent
deviation between Nd = 200 and Nd = 20 as well Nd = 40 are calculated, and results in
a deviation of 2.69% and 0.48% respectively. To further see the difference between the
different discretizations, a plot that focuses on only one of the plasmon peaks are made
where all three discussed values are used. This is seen in figure 6.2.
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Figure 6.2. Three plots, with different Nd, of the σdiff for the 100 × 100 fiber with an incident
wavelength of 390 nm. However, here it is limited to only the left plasmon peak, in
order to properly examine the the difference cause by Nd.

In the figure there does not appear to be a significant difference between using an Nd of
40 or 200 as the two lines are placed almost on top one another, as thus so far an Nd of
40 seems appropriate to use going forward.
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An additional incident wavelength that will be thoroughly examined is the doubled
wavelength; 780 nm. Again a fiber of size 100 × 100 nm2 is used, so in figure 6.3 two
similar plot to figure 6.1 are made, however, using another wavelength.
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Convergence plot for  = 780 nm

Figure 6.3. Here the right plot is a convergence plot that shows the evolution of value of σdiff
in one of the plasmon peaks when Nd becomes larger. The left plot shows σdiff at
different angles, here the two plasmon peaks are clearly visible and very defined.

Again the two plasmon peaks are present, however, for this wavelength the peaks are much
more defined. Initially looking at the convergence plot it appears to vary more drastically
than for the 390 nm wavelength. However, values vary on a significantly lower scale. It
seem that after Nd = 20 the values start to drop and goes towards a single converged
value, much like the previous example, though for Nd = 200 it does not appear to have
reached it yet. Comparing the discretization with Nd = 40 with one with Nd = 200, the
percent deviation is only 0.24 %, which is an even smaller difference then for the 390 nm
incident wavelength.

It makes sense that for a higher wavelength a lower Nd is needed for sufficient results, as
the lower frequency incident wave would result in less variance in the electric field inside
the fiber.

In general an Nd of 40 appear to be sufficient for the purposes of this report and is also
low enough to be able to examine a lot more complicated scenarios without the calculation
time becoming too problematic. Therefore, Nd = 40 is used as a standard for the remainder
of the report.

6.2 Effective Dimensions of a Fiber for Plasmon Excitation

In reference [10], it is mentioned that changing the size of the fiber results in a significant
difference in ability to excite plasmons. From Ref. [5] a fiber with a width of 350 nm and
a height of 100 nm was analyzed in relation to SPP excitation. In Ref. [10], it is shown
that a fiber that is 100 nm high, 100 nm wide and 400 nm long is significantly better at
exciting SPPs, than the one describe in Ref. [5]. this is hypothesized to be an effect of
destructive interference outside of the fiber, by the SPPs at the air-silver interface. This
seems to be the case that was found in Ref. [5], since a width of 350 nm matched the
mode wavelength at the air-silver interface, which is λSPP = 390 nm/1.1607 ≈ 336 nm.
It is then hypothesized that when the fiber matches the SPP mode wavelength for the
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air-silver interface, the resulting SPP-related peaks will be extinguished. This concept is
shown in figure 6.4. Thereafter, for every period of 2λSPP, the same conditions are met
for destructive interference, thus the SPP-related peaks will be extinguished whenever the
fiber width is an odd integer times λSPP.

λSPP

Figure 6.4. Illustration of the idea that a specific width for a fiber will result in minimum plasmon
excitation.

The hypothesis in question is one that would be quite interesting to confirm or deny,
and it would perhaps lead to a simple and rigid model for how well one can expect a
given fiber to excite plasmons. So for the two wavelength, 390 nm and 780 nm, the
scattering is calculated for many different heights and widths. For the purpose of this
initial examination, the thickness of the silver film will remain constant at 40 nm.

6.2.1 Effect of the Width of the Fiber

Initially the effects of the width of the fiber is examined, thus for this intial analysis the
the height is then kept at a constant value. First, the case of an incident wave with a 390
nm wavelength is studied.

Incident Wave with Significant Loss

The first thing that is examined, is a fiber with a height and width of 100 nm for the 390
nm incident wavelength. As found in section 2.2, for the case with 390 nm wavelength
incident wave the angles at which the SPP leaks are expected to be -39.26◦ and -140.74◦.
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Figure 6.5. Far field plots for a fiber of size 100× 100 nm2 for an incident wave with a 390 nm
wavelength. The left plot is for the downwards differential scattering cross section
and the right shows a polar plot of the differential scattering cross section for all
angles.
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In figure 6.5, a downwards differential scattering cross section plot of a fiber that is 100
nm high and 100 nm wide as well as a polar plot showing the scattering in every direction.
For this fiber the plasmon peaks are very clear, with limited scattering in other downwards
directions. The plasmon peaks are also found at angles -39.96◦ and -140.10◦, which are
very near to the angles at which they were expected to appear. The upwards scattering
is not focused at specific angles as the plasmons are, however, a significant amount of the
intensity is still scattered in the upwards direction.

As mentioned in the previous section, for an incident wavelength of 390 nm the peaks
are much wider than for its 780 nm counterpart where the peaks are very defined at the
predicted angles, this is seen in figure 6.3. This finite width of the peaks is related to the
propagation loss of the SPP and is a result of absorption into the silver film [5]. For higher
wavelength, however, this effect is greatly diminished.

To get a more holistic view of the scattering, the electric field around the fiber is also
calculated, and in figure 6.6 a plot of the absolute value of the real part of Ey is presented.
The y-component is chosen since it must be a result of the scattering by the fiber; the
incoming field does not oscillate in y, and since the incoming field is much stronger than
the scattered field. The near field image of the y-component of the electric field thus shows
what is relevant.

Figure 6.6. The absolute value of real part of the y-component of the electric field is shown in-
and outside of the scatterer. The scatterer here is of size 100 × 100 nm2 and the
incident wave has the wavelength 390 nm.

In the figure, one can see that the field is scattered upwards in every direction. One is
also able to see a plasmon following the air and silver interface, as the field is stronger
near this interface. However, it is difficult to differentiate between the surface plasmon
and scattered field.

To further examine the fiber, it is kept at a height of 100 nm but the width is changed
from 50 nm to 2000 nm with a 50 nm interval. This is represented in two ways and both
can be seen in figure 6.7. For the left plot the differential scattering cross section at the
peak of one of the plasmon peaks is plotted dependent on the size of the width of the
fiber. For the right plot, however, an integral is calculated for the peaks. The resolution
for the downwards scattered plot is chosen to consists of 10 000 points, so for the purposes
of integrating over a peak, the point at which the peak is the highest is chosen and the
integral is then started 100 values prior and ends 100 after the top point of the peak
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Figure 6.7. Plot of the value of σdiff at the top point of the plasmon peaks, but for different
fibers with varying widths. The right plot shows the same, however, the y-axis is
found by integrating around the peaks.

The first feature one notices is the oscillating tendency of the values, going back an forth
between being good and poor at exciting plasmons. An important note is also that is seems
that at every width that is near an integer of 400 nm the fiber hits a low point of exciting
plasmons, e.g. at 400 nm, 800 nm, 1200 nm, 1600 nm, etc. This is close to the incident
wavelength, however, does not relate with the plasmon wavelength for either the silver-air
interface or fiber-silver interface, which are 336.2 nm and 129.7 nm respectively. However,
by expanding the fiber by only 100 nm in width results in a fiber that again is great at
exciting plasmons. Furthermore, there appears to consistently be a smaller peak in σdiff
between each of these bigger peaks, which is interesting and might suggests that multiple
factors that determine if a fiber is effective at exciting plasmons. Another tendency that is
observed is that it appears that that the overall effectiveness for exciting plasmons slowly
diminishes for wider fibers.

To examine a fiber with diminished plasmon excitation, the resulting downwards
scattering for a fiber with a width of 400 nm is also shown in the right plot of figure
6.8.
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Figure 6.8. This plot shows an example of a fiber width that results in an extinction of the
plasmon peaks, in this example this width is 400 nm.

Here it is clear that there are simply no clear peaks at the leakage angles. The transmitted
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intensity in the middle is also significantly larger than for the 100 × 100 nm2 fiber,
however, further examination shows that this appears to be a general effect for wider
fibers. Additionally, a corresponding near field plot has also been calculated and is shown
in figure 6.9.

Figure 6.9. The absolute value of real part of the y-component of the electric field is shown in-
and outside of the scatterer. The scatterer here is of size 100 × 400 nm2 and the
incident wave has the wavelength 390 nm.

Here it is clear that there are no, or at least not very many, plasmons that are excited
and propagate along the air-silver interface, as they are much weaker than for the previous
example. This shows that it is in fact possible to extinguish plasmon excitation for specific
widths.

Examining the far fields of wider fibers, one finds that the transmitted light, that does
not correspond to plasmons, becomes much stronger and with more complex scattering
pattern. Two such examples are shown in figure 6.10, where the far fields for fibers with
widths of 600 nm and 1700 nm are used.
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Figure 6.10. Far field plots for fibers of size 100× 600 nm2 (left plot) and 100× 1700 nm2 (right
plot), for an incident wave with a 390 nm wavelength.

The axis is limited to a max of 250 nm for σdiff in order to still be able to see the peaks
for the plasmons, however, for the 600 nm wide fiber, the transmitted beam in the middle
reaches a peak value of 355 nm, and for the 1700 nm wide fiber it reaches 2641 nm. This
is a general observation, that for wider fibers more complex transmitted scattering pattern
appears. This is most likely due to interference of the transmitted field.
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Incident Wave without Significant Loss

The other examined wavelength of 780 nm is also applied to the same fiber with a width
and height of 100 nm. A plot for the downwards σdiff is presented in figure 6.11, together
with the corresponding polar plot.
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Figure 6.11. Far field plots for a fiber of size 100× 100 nm2 for an incident wave with a 780 nm
wavelength. The left plot is for the downwards differential scattering cross section
and the right shows a polar plot of the differential scattering cross section for all
angles.

Initially it is observed that the plasmon peaks are much more defined and also the
maximum value of the peaks is slightly smaller. The much more defined peaks are a result
of the lower frequency which results in much lower SPP propagation loss as mentioned. In
order to truly see the difference in ability to excite plasmons between the two examples,
the integral taken over the peaks for both the 390 nm and 780 nm incident wave is made.
From doing this integral it is found that

390 nm incident wave: σdiff,peak = 885.3 nm, and

780 nm incident wave: σdiff,peak = 28.6 nm.

So for the 780 nm wavelength, there are significantly fewer plasmons that are excited even
though it would appear that a similar amount is present looking at the peak value of the
peaks. So one need to be cognizant of the widths of the peaks, and also be able to evaluate
how much should be integrated when checking the plasmon power. For now, the method
of integrating 100 value prior and after the peak is applied.

Figure 6.12. The absolute value of real part of the y-component of the electric field is shown in-
and outside of the scatterer.. The scatterer here is of size 100 × 100 nm2 and the
incident wave has the wavelength 780 nm. For the right plot the colorbar has been
expanded to correspond directly with figure 6.6.
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To examine how the near field behaves for the scenario of a 780 nm wavelength incident
wave, a plot is made and presented in figure 6.12. Initially, when examining the left plot it
appears very similar for to figure 6.6, however, when the scale of the colorbar is expanded
to the same scale, as in figure 6.6, it becomes clear that for this wavelength the same fiber
scatter much less of the wave.

Following the same analysis method as for the 390 nm incident wave, a plot of the σdiff
around plasmon peaks for different widths of the fiber is carried out and shown in figure
6.13.
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Figure 6.13. Integral of σdiff around plasmon peaks for different widths of a fiber that is 100 nm
high, with an incident wavelength of 780 nm.

For the purposes of this figure the width was expanded to 3000 nm, so to compensate for
the longer wavelength. This figure is somewhat similar to figure 6.7, however, with a few
key differences. This figure also oscillates, but does not have minor peaks between bigger
peaks. Furthermore, for this figure the first peaks also appear to be the most effective,
however, the peaks does not appear to have a simple trajectory of slowly becoming less
effective for wider fibers, as it appears that the peaks again becomes better for even wider
fibers. Examining the individual far field plots reveals that, similarly to 390 nm, the
transmitted beam in the middle becomes stronger for wider fibers, however, the scattering
pattern for this beam does not become more complex as for 390 nm. Furthermore, the
period between peaks also corresponds very well with the wavelength of the SPP inside of
the fiber, which has a wavelength of 560 nm for a 100 nm high fiber.

Unlike for 390 nm, where the first and most prominent peak was present at 100 nm,
meaning around a quarter incident wavelength. the first and most prominent peak is
present at around 400 nm, meaning at around half an incident wavelength. Furthermore,
for this case the width where the plasmon peaks are extinguished are as follows; 700 nm,
1300 nm, 1825 nm and 2400 nm. This is also something that varies from earlier, as it does
not follow an integer value of incident wavelength and also the difference between them
varies, as the differences are; 700 nm, 600 nm, 525 nm and 575 nm, which was not the case
previously.

Looking at the far field plots for the different widths, the scattering pattern does not
significantly alter apart from the change in plasmon peak size. An example of this can be
found in figure 6.14, where the scattering pattern of the fiber with a height of 100 nm and
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a width of 400 nm is presented.
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Figure 6.14. Far field plots for a fiber of size 100× 400 nm2 for an incident wave with a 780 nm
wavelength. The left plot is for the downwards differential scattering cross section
and the right shows a polar plot of the differential scattering cross section for all
angles.

This is a significantly better fiber at exciting plasmons for the 780 nm wavelength than a
100 × 100 nm2 fiber. It is worth noting that neither for this fiber is there any significant
upwards scattering. To compare with the best fiber for 390 nm wavelength incident wave,
an integral over one of the peaks is carried out, using the same method. This results in
a σdiff,peak of 1665.2 nm, compared to the 885.3 nm for the 390 nm wavelength incident
wave it is significantly larger. It would seem logical that a wavelength of 780 nm would
be better, given that the propagation loss for the SPP is much lower, and therefore less
plasmons will be absorbed before leaking into the quartz at the plasmon angle. However, it
can be more difficult to evaluate how much of the peak for 390 nm one is should integrate,
so comparison between the two can be difficult. However, no matter the choice of integral
boundaries, the 780 nm incident wave is still significantly better at exciting plasmons.

Additionally, a near field plot is made for the fiber examining quite a large area around
the fiber.

Figure 6.15. The absolute value of real part of the y-component of the electric field is shown in-
and outside of the scatterer.. The scatterer here is of size 100 × 400 nm2 and the
incident wave has the wavelength 780 nm.

It is not quite possible to directly differentiate the surface plasmons from the rest of the
scattered field. However, one can see that with a wavelength of 780 nm, loss does not
appear to be a significant factor, as the field does not appear to diminish even at 3000 nm
away from the fiber.
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6.2.2 Effect of the Height of the Fiber

From what was initially assumed, most relevant feature of the dimensions of the fiber was
the width, as it would cause inference between plasmons in both directions and extinguish
the SPPs. This certainly seems to be the case, however, it would be interesting to see of
the effectiveness of the fibers change when the height is changed.

Incident Wave with Significant Loss

First, the case of the 390 nm incident wave is considered with a fiber with a height of 200
nm. To inspect this difference, a plot of the integral around plasmon peaks for σdiff with
different widths is plotted. The resulting plot for a 200 nm high fiber is shown against the
result obtained from figure 6.7. Both of these are shown in figure 6.16.
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Figure 6.16. Plot of the value of σdiff integrated around the plasmon peaks for fibers with
different width, but fixed heights of 100 nm and 200 nm.

Examining the result, one will see a lot of difference between the two plots. One could
suspect that the added height would not result in drastic changes in plasmon excitation.
It would be logical that the width mostly determined the effectiveness of fiber for exciting
plasmons, as the change in width would be assumed to have a larger effect on the wave
following along the interface. However, the change in height has a significant impact on the
plasmon excitation. Firstly, it notably improved overall plasmon excitation for most peaks.
Secondly, the peaks are not necessarily in the same positions as for a 100 nm high fiber,
as many large peaks are now present for widths that before did not provide great plasmon
excitation, e.g. at around a 300 nm or 700 nm. Similarly at around a 500 nm width, where
there were a peak for the 100 nm high fiber, is now one of the lowest points. And lastly,
for a wider fiber the effectiveness of plasmon excitation does not seem to diminish as it
was previously.

However, examining the result closer reveals that the result has been effected even
further. In figure 6.17 two plots of the downwards σdiff is shown. One where the height of
the fiber is 100 nm and one where it is 200 nm, here the widths both vary from 50-2000
nm.
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Figure 6.17. Downwards differential cross section for different widths. The left plot have a
constant height of 100 nm and the right a constant height of 200 nm.

For the 100 nm high fiber, it is clear that the plasmon peaks are all present at the same
leakage angle of around -39.26◦ and are not disrupted by other effects outside of the
critical angle. However, for the 200 nm high fiber the image becomes much more messy
and scattering beyond the critical angle clearly start to have an effect. If examined closely
the different plasmon peaks also vary in position. For many of the larger peaks, at the
-39◦ or -40◦ angles, the peak is actually at a minimum, but the peaks only a single angle
away could be very large. An example of this is the scattering of a 200 nm high and 600
nm wide fiber shown in figure 6.18.
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Figure 6.18. Downwards differential cross section for a fiber of size 200× 600 nm2.

For this scattering pattern it can be difficult to distinguish what is an plasmon and what is
not. At the exact plasmon leakage angle the value of σdiff seems to drop to zero, however,
the method of integrating used would not necessarily conclude that this fiber excites no
plasmons, as it would include some of the effect close to it.

In general the added effects, together with a more complicated scattering pattern for
wider fibers, results in more confusing images that make it hard to differentiate the plasmon
peaks from other types of scattering. This is a problem when integrating for the plasmon
peaks, as one can not easily determine where to integrate and if what is included is actually
a plasmon.
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Furthermore, the effects does not appear only for a 200 nm high fiber nor diminish for
even higher fibers. In figure 6.19 two similar plots are presented, however for fibers that
are 300 nm and 500 nm high.

Figure 6.19. Downwards differential cross section for different widths. The left plot have a
constant height of 300 nm and the right a constant height of 500 nm.

For these heights the scattering pattern appear to be just as, if not even more, complicated.
Given all this, is it correct to assume from figure 6.16 that there is no width where

the plasmons completely diminish? Or is this just a result of included too much in the
integration?

Returning to the example of a 200 nm high fiber, when examining the near field of fibers
varying from 2000 nm to 50 nm in width, it can be seen that for any width there are always
some clearly bound plasmons outside of the fiber. Such an example is shown in figure 6.20.

Figure 6.20. The absolute value of real part of the y-component of the electric field is shown in-
and outside of the scatterer. Near field scattered by a fiber that is 200 nm high
and 600 nm wide.

Here one can see that there is plasmons bound to the surface, and as mentioned this is the
case for every width of the fiber, when it is 200 nm high. However, compared its 100 nm
high counter part, this is not the case.

In figure 6.21 one can see an example where no or at least very little is bound to the
surface. Another such example is given in figure 6.9 and more examples can be found for
quite a few widths for a 100 nm high fiber. Of course this is not the case for every width,
however, it does suggest that the fact that peaks, that are integrated over for the 200 nm
high fiber in figure 6.16, does in fact not completely diminish at any point. Meaning that
e.g. figure 6.18 does produce plasmons, despite the scattering showing that σdiff is zero at
exactly the predicted plasmon angle.

55



Group 5.236A 6. Analysis of Results in Two Dimensions

Figure 6.21. The absolute value of real part of the y-component of the electric field is shown in-
and outside of the scatterer. Near field scattered by a fiber that is 100 nm high
and 800 nm wide.

To further examine for different heights, a color plot is made in order to see the σdiff
around the plasmon peaks for all the calculated widths for all the calculated heights. This
is shown in the left plot in figure 6.22.
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Figure 6.22. The left plot shows the σdiff around the plasmon peaks for every calculated
dimensions of the fiber. The right plot shows σdiff around the plasmon peaks for
every calculated width, however, only for three different heights; 350 nm, 400nm
and 500 nm.

From the colorplot one can see that some form of oscillation is present for every height,
however, it appears that it varies for different heights. One thing to note is that it shows
that the 100 nm high fiber is in general a quite poor fiber for exciting plasmons, as it is
only really good at around 100 nm wide and it is one of the few heights where the exciting
of plasmon completely diminish for certain widths. However, a 100 nm wide fiber is in
general great at exciting plasmons no matter the height, although it does seem that for a
higher fiber the 100 nm wide fiber becomes better, peaking at 400 nm high. Furthermore,
it appears that this fiber is the best, with similar good excitation for a 350 nm high fiber
and 500 nm high fiber.

To closer examine and find the best fiber for exciting plasmons a plot of σdiff around
the plasmon peaks for every width with heights 350 nm, 400 nm, and 500 nm is shown
in figure 6.22. For these heights it appear that the simple oscillations have been swapped
out for irregular peaks. As can be seen some of the best peaks are found when the fiber
is 100 nm wide, however, for the 350 nm high fiber a comparable peak appear for a 1400
nm wide fiber. Additionally for a 500 nm high fiber, two peaks appear for a 1450 nm wide
fiber and a 1750 nm wide fiber. In figure 6.23 the downwards σdiff for two of the best fibers
are shown.
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Figure 6.23. Plot of downwards scatter for fibers of sizes 400 nm high, 100 nm wide (left) and
500 nm high, 1450 nm wide (right).

For the fiber of size 400 × 100 nm2 the scattering pattern is still of the simple form as it
was for a height of 100 nm. However, it has become more potent at exciting plasmons, as
the plasmon peaks have become significantly higher, but not wider.

For the the 500× 1450 nm2 fiber, the problem of it not being completely clear what is
a plasmon and what is not is again present. In fact at the leakage angle there does not
appear to be any peak, but due to the two high peaks next to it the integral become large.

Incident Wave without Significant Loss

The obvious next step is to examine the same effect, bur for the longer incident wavelength
of 780 nm. For this wavelength loss is significantly less of a problem, this results in the
1/e decay length to become around 280 µm which, if compared to its 390 nm counterpart,
is almost 100 times longer. The plasmons therefore have ample time to leak into the
substrate before it is absorbed. This results in more focused and easily distinguishable
plasmon peak and fewer effects that distort the scattering pattern. This can be seen in
figure 6.24, where the downwards scattering for a fiber of size 700× 2850 nm2 is shown.
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Figure 6.24. The left plot shows the σdiff around the plasmon peaks for every calculated
dimension of the fiber. The right plot shows the downwards scattering of a fiber of
size 700× 2850 nm2.

This fiber is one of the worst offenders of having "extra effects" overflowing the scattering
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pattern, however, the plasmon peaks are still clearly visible and not altered by these effects
in any significant capacity. Additionally in figure 6.24, a colorplot is also presented which
shows how effective at exciting plasmons the different fiber sizes are. From this plot it can
be seen that fibers of different heights again does not agree on which width is the best. It
does appear that the 100 nm, 200 nm and 300 nm heights somewhat follow the same trend
in regards to the width, however, other heights does not replicate this. The σdiff relative
to width for these three heights are shown in figure 6.25, as well as a similar plot for the
heights 400 nm, 600 nm and 800 nm.
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Figure 6.25. Two plots that show σdiff around the plasmon peaks for every calculated widths,
with constant heights. The heights in the left plot are 100 nm, 200 nm and 300
nm, and they are 400 nm, 600 nm, and 800 nm for the right.

While it is true that the 100 nm, 200 nm and 300 nm high fibers do have some similar
peaks, the 100 nm high fiber is drastically different from the two other with two extra
peaks that are present where the rest are at a minimum. This story continue for the
higher heights, where none of the plots have peaks at the same widths.

These observation paints the picture that making a rigid and simple formula that predicts
which size of the fiber is best at exciting plasmons is more complicated than initially
assumed. Even using this incident wavelength that does not have significant loss, it still
seem that it becomes to complicated to predict the best fiber, especially when examining
the height of the fiber.

6.2.3 Summary

When it comes to the validity of the initial hypothesis, very few things, if any, point
towards it being correct in terms of what is examined. For both the 390 nm and 780 nm
case, i.e. figures 6.7 and 6.13, the observed oscillations did not diminish when at a width
equal to the SPP wavelength of the air-silver interface.

In general, when analyzing the results for larger heights, the oscillation of the peaks
becomes irregular and significantly more complicated, as the result changes drastically for
just a small change in height. This results in the observations straying even further from
the initial hypothesis.

It is also found that, especially when applying a lossy incident wavelength, additional
effects appeared for wider fibers, that made it difficult to distinguish the plasmons peaks.

58



6.3. Near Field Examination and Alternative Hypothesis Aalborg University

It is believed that the complexity arises with the amount of allowed modes that enables
complicated interference of the fields inside of the fiber.

The combination of all these results, points to that making a rigid and simple formula
that predicts which size of the fiber is best at exciting plasmons, for any given wavelength,
is not possible or at least much more complicated that initially thought. Even using an
incident wavelength that does not have significant loss, it still seem that it becomes to
complicated to predict the best fiber, especially when including the height of the fiber.

6.3 Near Field Examination and Alternative Hypothesis

In general, when examining the near field inside of the fiber, one does not find results that
confirm the initial hypothesis. Examining the effects of a change in fiber width for the
near field, one does not find a reliable way of determining whether the fiber provide good
plasmon excitation. However, when observing the absolute value of the y-component of
near field inside of the fibers a specific tendency appears. No matter the width of the fiber,
inside the fiber the same standing wave was present. An example of this is shown in figure
6.26, where the near fields inside a 100 nm high fiber, for different widths and a incident
wavelength of 780 nm, are shown.

Figure 6.26. Near field for a 100 nm high fiber, from left to right the widths of the fibers are:
3000 nm, 2150 nm and 1150 nm. This shows the standing wave inside of the fiber,
that does not change in relation to the width of the fiber. The incident wavelength
used is 780 nm and the axes shows the position in x and y given in nm.

Examining the field for any one of these fibers, one will find that the wavelength of this
standing wave is around 560 nm, which is equivalent to the plasmon wavelength at the
fiber-silver interface found for a 100 nm high fiber, Tab. 3.1. Logically this suggests that if
the effectiveness of a fiber should be dependent on what happens inside of the fiber, then
the period of that should be similar to the wavelength of the SPP inside the fiber. This is in
agreement with what was found for the 100 nm high fiber with a 780 nm incident wave, seen
in figure 6.13. Here the difference in width between the best fibers at exciting plasmons are
exactly the 560 nm that is the plasmon wavelength inside the fiber. However, this is not
a general tendency for every height of the fiber or if one uses a lossy incident wavelength.
In fact, this only appears for the 100 nm high fiber, with the 780 nm incident wavelength,
as the period for every other width becomes irregular and inconsistent. Although it must
be said that if one wants to discuss the most general mechanic of exciting plasmons, then
this is the fiber that one should examine, as it does not appear to be as affected by the
additional effects that higher fibers or lossy incident wavelengths cause.
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If one ignore these much more complicated effects and wants to explain why the period
of good plasmon excitation is equivalent to the plasmons wavelength inside of the fiber,
then a possible hypothesis would be to consider the sides of the fibers as dipoles that
excites a plasmon both inside and outside of the fiber. The concept is presented in figure
6.27.

Figure 6.27. Alternative hypothesis for describing what constitutes a fiber that is good at
exciting SPPs. If two plasmons are excited at each side of the fiber, then the
SPP inside of the fiber must match in phase to the outside SPP on the other side
to maximize SPP excitation.

Here it can be seen that each side of the fiber excites an air-silver SPP away from fiber
and a fiber-silver SPP inside of the fiber. The relative phase of these SPPs can be difficult
to determine, however, When the fiber width matches the phase change of the SPP mode
inside the fiber, such that the phase change makes the air-silver SPP mode in phase with
the fiber-silver SPP mode, constructive interference happen, resulting in the best SPP
excitation.

when the fiber is has a width such that the SPP inside the fiber constructively interfere
with the SPP outside of the fiber on the other side, then the SPP excitation would be
optimum. When the fiber is then made one fiber-silver SPP wavelength wider, it would
again be optimal at exciting plasmons.

Since no further simple examples can be found for the loss-less incident wavelength of
780 nm, without increasing the height, different wavelengths are examined in order to test
the validity of the new hypothesis. Here it is calculated only for a 100 nm high fiber, in
order to again diminish the complicated effects of a higher fiber and the wavelengths are
chosen so to have minimal loss as well. The extra wavelengths that are examined are; 550
nm and 1000 nm. The σdiff around plasmon peaks for different widths are shown for both
wavelengths in figure 6.28.
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Figure 6.28. Two plots that show σdiff around the plasmon peaks for every calculated widths,
both have a height of 100 nm. The left plot is for an incident wavelength of 550
nm, and the right plot for an incident wavelength of 1000 nm.

The mode index for modes inside of a 100 nm high fiber, applying the two wavelengths
in question are then found. For the 550 nm wavelength one mode is found with index:
n′m = 1.7344 and n′′m = 0.0111, resulting in a SPP wavelength of λm ' 317 nm. For
the 1000 nm wavelength one mode is found with index: n′m = 1.2160 and n′′m = 0.0009,
resulting in a SPP wavelength of λm ' 822 nm.

First the 550 nm wavelength, here it is clear that the oscillation between peaks are
much smaller, which also fits with the shorter SPP wavelength. Looking at the difference
between each peak is becomes clear that it is compares great with the SPP wavelength of
317 nm. As the difference between each peak, which is calculated only for an interval of
50 nm, is always 300 nm or 350 nm.

For the 1000 nm wavelength, a similar effect is observed. The oscillation is, as could
be predicted, a lot slower and examining each peak the difference between them is then
found to be around 800 nm and 850 nm. This is again in good agreement with the SPP
wavelength inside of the fiber.

These results are both in good agreement with the stated hypothesis, as they peak at
widths equal to the SPP wavelength, and also do not have oscillations related to other
effects. However, these results are, as mentioned, only limited to the case of low fibers,
with loss-less incident wavelengths. This points to that the hypothesis might describe
an effect inside such a fiber, however, there are more effects that complicate the premise
significantly.

It is not trivial to predict at which width the initial peak is present. This can be
explained from the hypothesis, as the relative phase between the SPPs outside and inside
of the fiber is undetermined. Thus it is unknown at which width the initial phase match
will occur.
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6.4 Effect of the Thickness of the Silver Film

It is discussed in Ref. [11] that for a thicker silver layer in general gives rise to higher SPP
attenuation. The attenuation is zero at a critical thickness, i.e. the SPPs will have the
least problem leaking the substrate as possible. Thus there is some thickness, dcrit, that
is optimal for observing as much leakage radiation as possible, which is typically found
to be between 50 - 100 nm [11]. It is not trivial why such a critical thickness exists for
thin films, however, the explanation is given in Ref. [29]. Since, at the critical thickness
there is no attenuation, kx must be real. This means that the wave is propagating along
the interface, and it can be shown that it also means that the wave is purely evanescent
parallel to the interface.

In order to find the critical thickness for the examined structure, five cases have been
tested for a thickness ranging from 5-100 nm. The result is shown in figure 6.29.

Figure 6.29. A normalized σdiff around the plasmon peaks, for five scenarios, is plotted in order
to compare them. Scenario 1: wavelength λ = 780 nm, width W = 100 nm, height
H = 100 nm. Scenario 2: λ = 780 nm, W = 700 nm, H = 100 nm. Scenario 3:
λ = 780 nm, W = 350 nm, H = 200 nm. Scenario 4: λ = 390 nm, W = 300 nm,
H = 200 nm. Scenario 5: λ = 390 nm, W = 100 nm, H = 100 nm.

In this plot the different scenarios all have their peak centered around d = 45 to 50 nm.
This points to the critical thickness for the structure to be around the aforementioned
thicknesses. This legitimized the used thickness of 40 nm, though the given setups in
this report can be further optimized by using the found critical thickness. Examining
thicknesses over 100 nm gives more diminished plasmon peaks, as the SPPs cannot leak
into the substrate since the silver film is too thick.

However, from figure 6.30, where σdiff for different silver thicknesses for different fibers
is shown, it is found that the thickness of the silver film affects the effect the width has on
plasmon excitation, similar to how the height affects the plasmon excitation.
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Figure 6.30. The differential scattering cross section is plotted versus the width of the fiber. The
height for all plots is 200 nm. The wavelength used is 780 nm. Scenario 1: d =20
nm. Scenario 2: d =40 nm. Scenario 3: d =60 nm.

It is clear that the peaks are not consistent across the plots, hence the best fiber dimensions
for some silver thickness is not necessarily the best for another silver thickness, as can be
seen by the difference in scenario 1 and 3 in figure 6.30. Since the critical thickness is not
consistent for all fiber widths, one cannot determine a singular critical thickness. Figure
6.31 confirms this observation since the critical thickness is not the same as for the plots
in figure 6.29.

Figure 6.31. The differential scattering cross section plotted versus silver film thickness. The
fiber geometry is width is 350 nm and height is 100 nm which is illuminated by
light with a wavelength of 390 nm.

The jacked form of figure 6.31 also shows how complicated the critical thickness in reality
is to determine.
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Chapter 7

Analysis of Results in Three
Dimensions

In addition to the dimensions of the fiber, the angles of dipoles inside of the fiber are of
great importance. This results in an asymmetric coupling of the SPPs through SHG. In
this chapter, this second order effect will be analyzed and the aim will be to maximize this
asymmetric coupling, with the possibility of focusing the SPPs in only one direction. This
is useful in the case that a photonic component in a photonic circuit is required to only
have a strong SPP signal in one direction.

In the works of Ref. [5], [7] and [10] the orientation of the dipoles have so far only been
considered to be rotated in the cross sectional plane to the fiber at an angle of 25◦ from
the horizontal axis.

An analysis of the impact that this orientation has on the scattering cross section
and asymmetry is of importance to decipher an optimal dipole orientation. The fiber
is orientated in space given in figure 7.1.

x

y

z
α

 ϕ
θ

Figure 7.1. Illustration of a fiber placed on a layered structure, the orientation of the fiber in
three dimensions is given.

Plots of the differential scattering cross section for SHG will also be calculated for cases
where the linear scattering is using the same SH wavelength. This is done in order to
demonstrate that the result from linear scattering is applicable to SHG as long as the
wavelengths are alike.

Since the 3D computation is demanding in computation time and memory, the resolution
of the discretization is downgraded to use Nd = 16, i.e. 16 elements per 100 nm, this means
that the three dimensional discretization elements are (6.25 nm)3 in volume.
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7.1 Preliminary Theory

The three dimensional simulations are based on the methods discussed in chapter 4. The
polarization density, which are give by the orientation of the dipoles, is given in equation
(4.31) as

P (r, 2ω) = χ(2)n̂dip(n̂dip ·E(r, ω))2,

where n̂dip is the orientation of the dipoles and ω is the angular frequency of the incident
FH wave. In a polar coordinate system n̂dip is given as

n̂dip = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ. (7.1)

where θ ∈ [0, π] and φ ∈ [0, 2π[. However, it is easier in this case to refer to the angle
between the interface and the dipole, thus φ = π/2 − α, where α is that angle. In this
context a better notation for θ is β. For the context of this analysis the strength of the
SHG effect, χ(2), has no relevance as it does not effect the angular distribution, thus is set
to 1 inside of the fiber and 0 otherwise.

The scattered field from linear scattering is required to calculate the SHG, thus it is
necessary to do two full simulations, one for the linear scattering case and one for SHG
applying the previous result.

7.2 Asymmetric Coupling by Dipole Orientation

It is a time consuming task to do enough simulations to yield a reasonable resolution
of angles tested, thus the angles tested is α, β = {0◦, 30◦, 60◦, 90◦} and their respective
combinations. The effect of changing α is presented first, then the additional effects when
changing β will be discussed as well. Changing α only changes the radiation pattern in the
xz- and yz-plane, thus the results will be examined in these planes. In figure 7.2 the cross
sections have been normalized with the physical cross section of the nano-fiber W · L, as
done in Ref. [10], and the angular resolution is given in radians.
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Figure 7.2. Normalized differential scattering cross section is shown for a nano-fiber with
refractive index n2 = 1.65 placed on a 40 nm silver film with a quartz substrate,
with a SH wavelength of 390 nm. Dimensions of the nano-fiber: height H = 100,
width nm W = 100 nm, length L = 400 nm. Orientation of dipoles: (a) α = 0◦,
β = 0◦. (b) α = 30◦, β = 0◦. (c) α = 60◦, β = 0◦. (d) α = 90◦, β = 0◦.

These plots are cross sections for both the downward and upward scattered field, where
the angle is zero in the vertical upwards direction. For now, the analysis focuses on the
highest recorded peak. Here the highest SPP-related peaks are shown in Fig. 7.2(b). As
could be expected, for both for α = 0◦ and α = 90◦ no asymmetry is observed. It is
interesting that the for α = 30◦ the peaks are significantly stronger then for α = 60◦.

Figure 7.3. These figures are calculated for the same parameters as in Fig. 7.2. However, here
β = 0◦ for all plots and (a) α = 10◦. (b) α = 20◦. (c) α = 30◦. (d) α = 40◦.
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In figure 7.3, a test of α with intervals of 10◦ is conducted and shows that both α = 10◦ and
α = 30◦ produce similar magnitude of peaks. However, for α = 20◦ the peaks is marginally
larger in comparison. However, if one intends to have the peak as focused in one direction
as possible, α = 20◦ is not an optimal choice, as it is observed that the difference between
the two peaks becomes greater for the larger of these angles. So in figure 7.2 the most
focused SPP excitation is observed for α = 40◦, however, this has the weakest overall peak
strength.

It would be interesting to see if one could find an angle α, this results in no SPP
excitation in one direction. The best angle found is for α = 80◦, and the result is shown
in figure 7.4

Figure 7.4. These figures are calculated for the same parameters as in Fig. 7.2, however, here
the an dipole orientation is given by α = 80◦ and β = 0◦.

This angle of α results in very focused SPP excitation, however, there is still a minor peak
in the opposite direction. However, it is observed that again the overall SPP excitation is
significantly weaker than in Fig. 7.3. So for the α it does not seem that one can extinguish
excitation in one specific direction without diminishing it in the other. If one examines
larger angles, the peaks become symmetrical again, as seen in figure 7.2(d).

For the next part of the analysis, a change in β will be included and examined. Testing
the different possible orientations of the dipoles result in the 3D radiation patterns,
examples of this is shown in figure 7.5. The axis represented is labeled x, y and z,
however they represent the non-normalized differential scattering cross section in respective
direction.

It can be seen that in general, for any of the given values of α, that when changing
beta the plasmon peaks become significantly smaller. This effect is also observed for the
upwards scatting, which also becomes smaller for higher beta. If the dipole is turned by the
angle β it becomes partially aligned with length of the fiber, thus essentially the radiation
pattern twists such that it follows the new orientation of the dipole.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5. These figures are calculated for the same parameters as in Fig. 7.2, however now
α and β are both varied. Orientation of dipoles: (a) α = 0◦, β = 0◦. (b) α = 0◦,
β = 30◦. (c) α = 0◦, β = 60◦. (d) α = 30◦, β = 0◦. (e) α = 30◦, β = 30◦. (f)
α = 30◦, β = 60◦. (g) α = 60◦, β = 0◦. (h) α = 60◦, β = 30◦. (i) α = 60◦, β = 60◦.

This in general results in a shift in the radiation pattern so that it is opposite below and
above the air/silver interface. The effect is subtle, but enough to see at closer inspection
in e.g. figure 7.6.

Figure 7.6. Top down view of figure 7.5(b) (α = 0◦, β = 30◦).

However, the effects of changing beta does not appear to have a positive influence on either
the plasmon excitation or plasmon focusing, which is goal in question.

Studying cases where β = 90◦ shows that it is possible to excite SPPs in the parallel
direction to the fiber, this is seen in figure 7.7, where α = 0◦.
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Figure 7.7. These figures are calculated for the same parameters as in Fig. 7.2, however, with
α = 0◦ and β = 90◦.

It is clear from the figure that plasmons excitation parallel to the fiber is achieved, however,
it is very weak compared to other plasmon excitation. From this perspective, this is the
same case as from a 400 nm wide, 100 nm high and 100 nm long fiber, with an SH
wavelength of 390 nm. If one ignores the length, this resembles the case for the two
dimensional calculations, in figure 6.8, which resulted in poor plasmon excitation.

It also appears that both parallel and perpendicular plasmon excitation is possible
simultaneously, this is shown in figure 7.8, where the dipole orientation is given by the
angles α = 60◦ and β = 90◦.

Figure 7.8. These figures are calculated for the same parameters as in Fig. 7.2, however, with
α = 60◦ and β = 90◦.

However, the most predominant features are still the ones diagonally to the fiber.

7.3 Comparing Linear Scattering to SH Scattering

In this section different fiber dimensions will be analyzed and the differential cross section
will be calculated. The main purpose is to test that the main results obtained in chapter
6 provide a similar result for the SHG case. Due to three dimensional calculation being
much heavier computationally only relatively small fibers is analyzed.

The first data that is presented is for three different fibers, with an SH wavelength of 390
nm. These fibers was all previously examined in chapter 6, for an incident FH wavelength
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of 390 nm. In figure 7.9, a clear correlation from the 2D calculations to the SH 3D case
with the same SH wavelength is found. The SHG distributes the plasmons predominantly
in one direction, however, the form total scattered field matches with what was expected
from the 2D calculations.

Figure 7.9. These figures are calculated for the same parameters as in Fig. 7.2. The dipole
orientation is α = 25◦ and β = 0◦ and the length of the fiber is set to 400 nm and
the height to 100 nm. The widths are: 100 nm, 350 nm and 400 nm respectively

In the rightmost plot in figure 7.9 it is observed that there is clear excitation of SPPs,
although minor, even though no SPPs was shown for the equivalent 2D calculations. It is
not clear if the plasmons observed in the right most figure, is a result of the finite length of
the fiber or a result of SHG. Therefore, is the same fibers calculated in three dimensions,
but for linear scattering. This is shown in figure 7.10.

Figure 7.10. These figures are calculated for the same parameters as in figure 7.9. The length
of the fiber is set to 400 nm and the height to 100 nm. The widths are: 100 nm,
350 nm and 400 nm respectively

Here it is clear that the peaks are extinguished for the 400 nm wide fiber, thus confirming
that the observed peaks is a result of SHG and not the finite length.
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Chapter 8

Conclusion

The overall goal of this report, was to examine the mechanics of plasmon excitation by a
nanofiber on a silver film on quartz. In order to analyze this, a numerical solution method
for both two and three dimensions was constructed.

Effect of the Fiber Dimensions

It was initially hypothesized that fibers with widths equal to the wavelength of the SPP
mode outside of the fiber, would results in diminished plasmon excitation. However, this
initial hypothesis had to be rejected. As the fibers changed in height, the widths of optimal
fibers would change drastically and the result would become unpredictable and irregular.

A new hypothesis was then formulated, which hypothesized that if a given fiber width
was optimal for exciting plasmons, then other optimal widths would be wider by an integer
of the SPP wavelength inside of the fiber. However, this hypothesis only appeared to be
correct if the fibers were low and one did not apply a lossy incident wavelength. In
conclusion it does not appear to be possible to construct a simple model for predicting the
optimal fiber for plasmon excitation, as there is simply to many effects that interferes.

Effect of the Silver Film Thickness

The efficiency for the SPP excitation for different fiber size, was also examined in relation
to the thickness of the silver film, d. The critical thickness was found not to be consistent
for all widths, thus one was not able to find a singular critical thickness applicable to all
fiber sizes.

SHG and Dipole Orientation

In general, the scattering pattern was altered greatly by the change in angles; α and β.
However, if one intends to create an asymmetric coupling it is found that one should alter
α since the effects caused by changing β did not provide any useful asymmetry. It does
not appear that one can focus SPP excitation entirely in one specific direction, however,
the angles that provided the most asymmetry also lowered the overall effectiveness of SPP
excitation.
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It was shown that if the dipoles are orientated along the fiber it is possible to excite
SPPs radiating parallel to the fiber. Changing both α and β, coupling in both the parallel
and perpendicular directions to the fiber was found to be possible simultaneously.

It was also shown that the results of the two dimensional case could be reconstructed
on three dimensions by using linear scattering. Using SHG, the plasmon peaks did not
extinguish completely for a fiber with a width of 400 nm, however, the result was still in
great correlation to what was found previously.
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Appendix A

Additional Theory

A.1 Boundary Conditions

In order to find the fields on each side of an interface, boundary conditions of Maxwell’s
equations needs be considered. Such conditions are derived by the integral form of
Maxwell’s equation which can be found from applying Stokes’ and Gauss’s theorem. The
two theorems are as follows

Stokes’ Theorem
˛
∂Σ
F · dl =

¨
Σ
∇× F · n̂sdS, (A.1)

Gauss’s Theorem
‹
∂Ω
F · n̂sdS =

˚
Ω
∇ · FdV, (A.2)

where F is some vector field, Σ is some fixed surface with closed boundary curve ∂Σ, Ω

is some fixed volume with closed boundary surface ∂Ω and n̂s is the normal vector to the
surface. Applying these theorems yields the Maxwell’s equations in integral form [11],

˛
∂Σ
E(r, t) · dl = −

¨
Σ

∂B(r, t)

∂t
· n̂sdS, (A.3)

˛
∂Σ
H(r, t) · dl =

¨
Σ

(
Js(r, t) +

∂D(r, t)

∂t

)
· n̂sdS, (A.4)

‹
∂Ω
D(r, t) · n̂sdS =

˚
Ω
ρs(r, t)dV, (A.5)

‹
∂Ω
D(r, t) · n̂sdS = 0. (A.6)

Consider the integral equation (A.3). If the integral is done over the line path as shown in
figure A.1 and letting the side of the box collapse such that only the electric field parallel
to the interface is considered, the first boundary condition can be found.

z

y
Media	1

Media	2

E1

E2

Figure A.1. A rectangular line path shown to cross the interface of two media with different
dielectric constant. The parallel component to the interface of an electric field is
shown.



Assuming that there is no surface charge density the same result can be found for the
magnetic field using (A.4) [11][18],

E1y = E2y which can be written in vector form as n̂s ×E1 = n̂s ×E2, (A.7)

H1y = H2y which can be written in vector form as n̂s ×H1 = n̂s ×H2. (A.8)

Similar relations can be found by considering a three dimensional box that spans across
the interface, this is known as a Gaussian pillbox and is shown in figure A.2.

n1

n2

z

x

y

Media	2

Media	1

D1

D2

Figure A.2. A box that spans across two media with different dielectric constant. This box is
also known as a Gaussian pillbox. The parallel component of the displacement field
at the interface is shown

As before, letting the structure collapse towards the interface, normal contributions vanish
and only the top and bottom of the pillbox needs be considered. Assuming there are no
surface charges and the media are non-magnetic, equations (A.5) and (A.6) can be applied
to find that [11][18]

D1z = D2z which can be written in vector form as n̂s ·D1 = n̂s ·D2, (A.9)

B1z = B2z which can be written in vector form as n̂s ·B1 = n̂s ·B2. (A.10)
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