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A Area of cross-section
Acry Effective area of cross-section
A, Shear area of the cross-section
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moment diagram and on support conditions
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G Shear Modulus
1 Second moment of area
Ir Torsion constant
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My, ra Design buckling resistance moment
Mg, Design value of the moment
M. ra Design resistance for bending moment
M., Elastic critical moment for lateral-torsional buckling
M, gq Design value of the moment about the strong axis
M, gk Characteristic value of the moment about the strong axis
M; ka Design value of the moment about the weak axis
M Rk Characteristic value the moment about the weak axis
AM, gq, AM, r;  Moments due to the shift of the centroidal axis
Ngg Design value of the compression force
Np ra Design buckling resistance
Ne ra Design resistance of the compression member
N Elastic critical force
Nert Elastic torsional buckling force
NerTr Elastic torsional-flexural buckling force
Nery Critical load for flexural buckling about the strong axis
Ngi Characteristic value of the compression force
S First moment of area
UR Utilization ratio
Ve.Rd Design elastic shear resistance
VEa Design value of shear force
Vol Rd Plastic shear resistance
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Welmin Elastic section modulus
We r £.min Effective minimum section modulus
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Introduction

In this chapter the projects relevance is discussed, some theoretical background is explained, and
material properties are presented.

Steel structures are favourable due to numerous reasons: the ability of prefabricating which
reduces errors on the construction sites, labour hours at construction sites, and cost of the material
compared with the space needed of cross-section.

A number of failures have been recorded regarding steel frames and therefore a closer examination
and insight has become essential. As an example of an accident of steel frame structure can be
seen in Figure 1.1 which took place in Rgnbak in 2016.

Figure 1.1. https://stiften.dk/article_gallery/420020

There are several approaches based on EC standards for a design of steel structures, which have
been used over the years. In [Standard, 2005] there is introduced a new methodology to be used
for steel structure design. The main purpose of this project is to compare the existing method with
the new proposed method and to make parameter and sensitivity studies.

1.1 Aim of the Project

In ultimate limit state (ULS) analyses of steel frames; compression forces and bending moments
are of concern, as they may lead to global instability manifested in either buckling or lateral torsion

Anders A., Master Thesis 1
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buckling failure. The design guide Eurocode (EC) sets up procedures for evaluating the ULS and
in EC different designs approaches are suggested. Some EC-approaches are more simplifying
than others resulting that the final evaluation of the ULS depends on the method chosen for the
evaluation. The aim of the project is to highlight and quantify load carrying capacity of steel
frames employing different methods, ranging from basic methods to more advanced methods, and
with different steel configurations. In all methods a comparison will be made with FE-analyses to
various degree of complexity. Furthermore the method 6.3.4 from EC 3-1-1 (which is applicable
for material non-linearities and large deformations) will be investigated which requires non-linear
analysis.

1.1.1 Linear and Non-linear material behaviour

The global analysis of a steel structure provides with sufficient accuracy the internal forces,
moments, and the corresponding displacements. The internal forces and displacements may be
determined using either an elastic or plastic analysis. Elastic analysis is based on the assumption
of a linear stress-strain relation for steel (see Figure 1.2). Plastic analysis, assumes progressive
yielding of some cross-sections of the structures, normally leading to plastic hinges and a
redistribution of forces as explained in [da Silva et al., 2010]. For design purposes, steel is
idealized as an elastic-perfectly plastic material as seen in Figure 1.2 b.

pa

pe e
a) b)

Figure 1.2. Stress-strain relation of steel a) Real behaviour, b) Perfect elastic-plastic behaviour.

Sometimes it is also necessary to model a non-linear geometry analysis, referring to the second
order analysis. In the first order analysis the internal forces and displacements are obtained
with reference to the undeformed structure (small displacements assumption). In the second
order analysis the influence of the deformation of the structure is taken into account (large
displacements), the procedure and the methodology used is explained in Chapter 4. The different
deformation shapes influencing are explained and described furthermore in Section 1.2.

1.2 Instability Modes Regarding Steel Structures

As explained in [da Silva et al., 2010], the resistance of a steel member subjected to axial compres-
sion depends on the cross-section resistance or the occurrence of instability phenomena. As steel
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1.2. Instability Modes Regarding Steel Structures Aalborg University

members usually have high slenderness the design for compression is governed by the instability
phenomena such as:

* Flexural buckling

» Torsional buckling

* Flexural torsional buckling

* Lateral torsional buckling

The buckling resistance should be evaluated according to the relevant buckling mode and relevant
imperfections of real members, as described in the following sections.

1.2.1 Flexural Buckling

Flexural buckling is a phenomenon that occurs about the axis of the highest slenderness ratio and
the smallest radius of gyration. It can happen in any member subjected to compression, which in
the end will lead to deflection of the member. An illustration of the flexural buckling can be seen
in Figure 1.3.

Figure 1.3. Flexural buckling of a column, [da Silva et al., 2010].

1.2.2 Torsional Buckling

Torsional buckling is a form of buckling occurring about the longitudinal axis of a member, where
the center of the member remains straight while the rest of the section rotates. An illustration of
torsional buckling can be seen in Figure 1.4.

Anders A., Master Thesis 3
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Figure 1.4. Torsional buckling, [da Silva et al., 2010].

1.2.3 Flexural Torsional Buckling

According to [da Silva et al., 2010], flexural torsional buckling consists of the simultaneous

occurrence of torsional and bending deformations along the axis of the member. An illustration
of this can be seen in Figure 1.5.

Figure 1.5. Flexural torsional buckling, [da Silva et al., 2010].

1.2.4 Lateral Torsional Buckling

Lateral torsional buckling is as stated in [da Silva et al., 2010], characterized by lateral deformation
of the compressed part of the cross-section. In an I-profile, the compressed part will be one of the

flanges. As a part of the member will behave under compression, it will also simultaneously have

4
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1.3. Methods Aalborg University

one continuously restrained by the part of the section in tension. This will result in a deformation
of the cross-section where both lateral and torsion buckling is included. There is a difference
between constrained and unconstrained lateral torsional buckling as they will behave differently
under the buckling process. It is understood that with constrained lateral torsional buckling means
that a point of the member is restrained against deformations across the length of the member.
This means that the axis of rotation is made fixed, which is where the member buckles around
(see Figure 1.6). With unconstrained lateral torsional buckling, the axis of rotation is not given in

l ANy

a)
Figure 1.6. Lateral torsional buckling a) Longitudinal view, b) Cross-section near support, ¢) Cross-section
in center with lateral-torsional buckling.

\

advance, and it is therefore more complicated to determine the capacity, as it is dependent of the
members internal balance at buckling.

The point of application in respect to the load will influence the elastic critical moment of a
member. As stated in [da Silva et al., 2010], a gravity load applied below the shear centre C (that
coincides with the centroid, in case of doubly symmetric I or H sections) has a stabilizing effect
(Mcr,1 > Mcr), whereas the same load applied above this point has a destabilizing effect (Mcr,2 <
Mcr). This is illustrated in Figure 1.7.

M >M,,

Figure 1.7. Displacement influenced by elastic critical moment, [da Silva et al., 2010].

1.3 Methods

In order to achieve the aim of the project and be able to understand the behaviour of a steel frame, a
literature study is made to understand the behaviour of a steel frame and the parameters influencing
this. The focus is on literature explaining the different mechanisms of a frame, but also on EC 3
part 1-1, where detailed suggestions on how to calculate a steel frame are presented. In addition,
the different compositions of a steel structure is compared to investigate optimised solution. In
order to make a reasonable comparison between the analytical solution based on the equations in
the [Standard, 2005] and the models made in Abaqus software, a further understanding of Abaqus
is also a necessity. In this thesis Abaqus is used to analyse a frame numerically by the Finite

Anders A., Master Thesis 5



Anders A., Master Thesis 1. Introduction

Element Method (FEA). In addition, a parameter study is also conducted in order to elicit the
behaviour of a steel frame.

1.4 Limitations

The load applied in the project is a design load uniformly distributed and not the most critical load
combination of permanent, variable nor accidental loads. It seems fulfilling because the aim of
the project is to compare the two methods in EC and not to find an exact solution of a final design
of the structure.

Usually, there will be placed bracing along the steel frames to prevent the before mentioned
instability modes but in this project the structures are assumed not to have these kind of supports.

Because of the complexity of frame some parameters and geometries which are well suited for
an analysis of a frame are not included. Only some parameters has been chosen to be further
investigated.

6 Advanced Analysis of Steel Structures



Steel Structures

In this chapter the type of steel profile, static system, material properties of the steel structures
that will be investigated and analysed are presented.

2.1 Static system

In this project, two type of structures are examined. Firstly, a beam with simple support, as seen
in Figure 2.1, will be investigated to make a comparison between the different methods.

A-A
AG— q =10 kN/m —DA
AN RN \LJZK
A —DA
) L=5m '

Figure 2.1. Static model of a simply supported beam.

Secondly, a steel frame with pinned supports is analysed as seen in Figure 2.2.

g =10 kKN/m
}xiiiiiiiiiiiiiiiiiiiiiiiiiii{

XA A
Z L=10m

Figure 2.2. Static model of a frame with pinned supports and fork supports in the corner.

Anders A., Master Thesis 7



Anders A., Master Thesis 2. Steel Structures

2.2 Profiles

The steel profile which will be used throughout the project is HE400A. The cross-section of
HE400A as it will be in reality can be seen in Figure 2.3 b). Because of the limitations of Abaqus
the fillet radius is being neglected as seen in Figure 2.3 a). This error can be ignored as the same
cross-section will be used in the analytical analysis.

19 | 19 ff\n

y,,,%,,,y 400 y”’*:”’y 400
tr 11 47 11
z z
300 300
a) b)

Figure 2.3. HE400A steel profile a) Assumed HE400A profile b) Real HE400A profile

2.3 Material Properties

The material properties of the steel profile can be seen in Tabel 2.1 and found in [Jensen et al.,
2011].

Table 2.1. Material properties

Material Properties Values  Units
Young’s Modulus, E 2.1x10° MPa
Shear Modulus, G 8.1x10* MPa
Yield strength of Steel, f, 235 MPa
Ultimate strength of Steel, f, 360 MPa
Poisson’s Ratio, v 0.3 -

Density, p 7850 ll;%

These values are used to calculate design values from the characteristic values divided by appro-
priate partial factor Jj:

* Ym0, resistance of cross-sections to excessive yielding including local buckling (depending on
)

* Yum1, resistance of members to member buckling

* Yu2, resistance of cross-sections in tension to fracture (depending on f,)

where the recommended values of the partial factors are:

* Yo = 1.00

8 Advanced Analysis of Steel Structures



2.4. Beam Aalborg University

® Ym1 = 1.10
®* Y2 = 1.25
24 Beam

The normal force-, shear force-, and bending moment diagram for the simply supported beam can
be seen in Figure 2.4, 2.5, and 2.6. FEM Design software tool has been used.

I
|

o -
O
-
Figure 2.4. Normal force diagram
O i
i 5
—
n O
|
Figure 2.5. Shear force diagram
I
(e
O
| o i
T O
—
Figure 2.6. Bending moment diagram
2.5 Frame

The normal force-, shear force-, and bending moment diagram for the frame model with pinned
supports at the bottom and fork supports in the corners can be seen in Figure 2.7, 2.8, and 2.9.

Anders A., Master Thesis 9
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Figure 2.7. Normal force diagram
83
| o~ I
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— _I -
14 || il
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Figure 2.8. Shear force diagram
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Figure 2.9. Bending moment diagram
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Analytical

In this chapter the theoretical background of the analytical analysis is presented. The method is
based on [Standard, 2005] and [da Silva et al., 2010]

3.1 Method 6.3.3

Firstly the analytical analysis is made for the simply supported beam and secondly the pinned
supported steel frame is analysed.

Before determining the occurrence of instability phenomena the cross-section resistance to axial
compression should be verified where the classification of cross-section is needed.

3.1.1 Classification of Cross-section

According to clause 5.5.2(1) in [Standard, 2005], four classes of cross-sections are defined,
depending on their rotation capacity and ability to form rotational plastic hinges:

e Class 1: Cross-sections are those which can form a plastic hinge with the rotation capacity
required from plastic analysis without reduction of the resistance.

e Class 2: Cross-sections are those which can develop their plastic resistance moment, but have
limited rotation capacity because of local buckling.

e Class 3: Cross-sections are those in which the stress in the extreme compression fibre of the
steel member, assuming an elastic distribution of stresses, can reach the yield strength. However,
local buckling is liable to prevent development of the plastic resistance moment.

e Class 4: Cross-sections are those in which local buckling will occur before the attainment of
yield stress in one or more parts of the cross section.

3.1.2 Compression Verification

According to clause 6.2.4(1) in EC, the cross-section resistance of axially compressed members
should be verified by the following condition:

NEa
<1 3.1
Nc7Rd

where

Anders A., Master Thesis 11



Anders A., Master Thesis 3. Analytical

Ngg | Design value of the compression force
N ra | Design resistance of the compression member

For members with cross-section classification 1, 2, and 3 N, gq is determined by:

)y
Nega = A= (3.2)
Ymo
where
A Area of cross-section

Ymo | Partial coefficient

For classification 4 it is determined by:

i
Nerd = Aepr— (3.3)
Ymo

where

Acrr | Effective area of cross-section

3.1.3 Shear Verification

The design value of the shear force should satisfy at each cross-section:

1%
Ed < (3.4)
Vc,Rd

where

Vea Design value of shear force
Ve ra | Design elastic shear resistance determined by the Equation (3.5)

TEd
Ve ra = (3.5)
JRd f;}

V3 Ymo

where

TEd ‘ Shear stress determined by the Equation (3.6)

VEaS
It

TEd = (3.6)

where

12 Advanced Analysis of Steel Structures



3.1. Method 6.3.3 Aalborg University

S | First moment of area
I | Second moment of area
t | Thickness of the examined point

In ultimate designing condition the plastic shear resistance will be used:

)
A (
7\@ (3.7)

Vera = Vprra =

Ymo
where
Vpira | Plastic shear resistance
A, Shear area of the cross-section

3.1.4 Bending Moment Verification

According to clause 6.2.5 in [Standard, 2005] the design value of the bending moment Mg, at
each cross-section shall satisfy Equation (3.8).

M
Ed (3.8)
Mc,Rd

where

Mgy Design value of the moment
M. rq | Design resistance moment

The design resistance for bending moment is depended on the cross-section classification which
can be seen in the following Equations (3.9) to (3.11).

Class 1 or 2 cross-sections:

Wi,
M, ga = Wotfy (3.9)
Yo

Class 3 cross-sections:

Wel,minfy

Mera = (3.10)
Ymo
Class 4 cross-sections:
W .
Mg = Yettminds (3.11)
Ymo
where

Anders A., Master Thesis 13



Anders A., Master Thesis 3. Analytical

Wy Plastic section modulus
Wel min Elastic section modulus
Werfmin | Effective minimum section modulus

3.1.5 Buckling Resistance of Compression

After verifying the cross-section resistance of axial compression and bending moment the next
step is to verify the buckling resistance. According to clause 6.3.1 in [Standard, 2005] the buckling
resistance of compression shall fulfil Equation (3.12).

N,
Ed < (3.12)
Np ra

where

Np.ra | Design buckling compression resistance

For class 1, 2, and 3 cross-section:

S

Nb,Rd = XA (313)
Ymi
For class 4 cross-section:
_ fy
Npra = XAerf—— (3.14)
Yu1
where
X ‘ Reduction factor
The reduction factor is determined from Equation (3.15).
1
X = — (3.15)
6+ 97 -2

where

¢ | Factor to use of determining
A | Non-dimensional slenderness

To determine reduction factor, ¢ must be determined first. This lead to determining Equation
(3.17) and (3.18) where Figure 3.2 is used to determine the imperfection factor.

0=05[1+a(2-02)+1’] (3.16)

where

14 Advanced Analysis of Steel Structures



3.1. Method 6.3.3 Aalborg University

a | Imperfection factor

For class 1, 2, and 3 cross-section:

A= ILf) 3.17)
Ncr

For class 4 cross-section:

A= [Aash (3.18)
Ncr

where

Ner ‘ Elastic critical force for the relevant buckling mode based on the gross cross sectional properties

Elastic critical load is determined by Equation (3.19).

n2El

N, =2t 3.19
2 (3.19)

where

Lg | Buckling length

Buckling length can be determined by looking at the supports of a simple static model like a
simply support beam. But in the case of frame model the supports, loading, equality between
beam element and column element cross-section, and the geometry has influence on the buckling
length, [Ehlers, 2009].

Selection of buckling curve for a cross-section is decided by the type of cross-section, which axis
buckling is about, yield strength, and in the case of H-profile the flange thickness compared to the
width/height relation of the cross-section is important. This can also be seen in Figure 3.1.

The imperfection factor takes into account the effect of the imperfections and the values
corresponding to the appropriate buckling curve can be obtained from Table 3.1 but more precise
imperfection factors can be obtained by use of Table 3.1 orthe graph seen in Figure 3.2 by knowing
x and A.

Table 3.1. Imperfection factors for buckling curves.

Buckling curve | Imperfection factor, o
agp 0.13
a 0.21
b 0.34
c 0.49
d 0.76

A graphical representation of Equation (3.15) can be seen in Figure ??.

Anders A., Master Thesis 15
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Buckling curve
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Figure 3.2. Buckling curves, [Standard, 2005].
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3.1. Method 6.3.3

Aalborg University

Flexural Buckling

The non-dimensional slenderness, A, for flexural buckling can be determined by buckling lenght,

L., instead of the elastic critical force, N, as seen in Equation (3.20) and (3.21).

For class 1, 2, and 3 cross-section:

- Afy,  Lg 1
A=y /2 =" 3.20
Ncr i )vl ( )
For class 4 cross-section:
5 [Aerrfy Lo/ Ba
A=y 2= = — (3.21)
Ner i M
where
L., | Buckling length
i Radius of gyration about the relevant axis, determined using the properties of the gross
cross-section
Ba | Ratio between A and A, s ¢
A1 | Determined in Equation (3.23)
A
pa=— (3.22)
E
M=m,/—=939¢ (3.23)
fy
235
E=4|— (3.24)
Iy

Torsional and Torsional-flexural Buckling

The non-dimensional slenderness, IT, for torsional or torsional-flexural buckling can be

determined by Equation (3.25) and (3.26).

For class 1, 2, and 3 cross-section:

Afy

Ar =
Nor

(3.25)

Anders A., Master Thesis
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For class 4 cross-section:

_ Ae
Ar = ]\f]ffy (3.26)

where, N. = N7 but should satisfy N., < Ne.r

Ncr,T
Nerrr

Elastic torsional buckling force
Elastic torsional-flexural buckling force

The critical elastic torsional buckling force, N7, can be determined by Equation (3.27):

1 T’EI
Nerr = <GIT + = W> (3.27)
le Lgr

where

i Radius of polar gyration determined by Equation (3.28)

Ir Torsion constant

I, Warping constant

Lgr | Equivalent length that depends on the restrictions to torsion and warping at the end sections

L+1,

4 (3.28)

2 _ 2
lc - yc +
where

ye | Distance along the y axis between the shear centre and the centroid of the section

The critical elastic flexural-torsional buckling force, N7, can be determined by Equation (3.29):

1
Ncr,TF = % |:(Ncr7y +Ncr,T) - \/(Ncr,y +Ncr7T)2 - 4'ﬁjvcr,y]\/vcr,T (329)

where

Ncr,y
B

Critical load for flexural buckling about the strong axis
Factor given by 8 =1 — (y./i.)?

3.1.6 Lateral-torsional Buckling Resistance

According to clause 6.3.2 in [Standard, 2005] the lateral-torsional buckling resistance is
determined by Equation (3.30).

<1 (3.30)
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My, rq | Design buckling resistance moment

The design buckling resistance moment is determined by Equation (3.31).

My ra = )CLTWyi
Ymi1

where

xrr | Reduction factor for lateral-torsional buckling
W, | Section modulus of the compression flange

The value of W, is determined from Table 3.2.

Table 3.2. The value of W, categorised by the cross-section classification.

Class 1 or 2 cross-section | W, =W,
Class 3 cross-section Wy = Wery
Class 4 cross-section Wy =Werry

Reduction factor for lateral-torsional buckling is determined by Equation (3.32).

1

XLT =
—
Orr + 1/ Ofr — Arr

but xer < 1.0

orr = 0.5 [1 Vaur <ILT . 0.2) +IiT}
where

¢rr | Factor to use of determining reduction factor for lateral-torsional buckling
o7 | Imperfection factor for lateral-torsional buckling
Arr | Non-dimensional slenderness for lateral-torsional buckling

(3.31)

(3.32)

(3.33)

Imperfection factor for lateral-torsional buckling, o7, is determined by the conditions seen in

Figure 3.3.
Section Limits Buckling curve (EC3-1-1)
I or H sections h/b<2 b
rolled h/b>2 c
I or H sections h/b<2 c
welded h/b>2 d

Figure 3.3. Buckling curves, [Standard, 2005].
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Non-dimensional slenderness lateral-torsional buckling is determined by the Equation (3.34).

Wty

.34
MCV (33 )

ILT =

where

M., ‘ Elastic critical moment for lateral-torsional buckling

The elastic critical moment, M,,, can be determined according to [da Silva et al., 2010] by
Equation (3.35).

0.5
m2EI k\%1, (k. L)>GI
M., =C—= (kz) Iw+(Z)T+(szg—C3Zj)2 —(Crzy — C3z)
w Z

(k.L)* T2EI
(3.35)
where
L Beam length
I, Moment of inertia about the weak axis

Ci1, (5, and C3 | Coefficients depending on the shape of the bending moment diagram and on
support conditions

k; and k,, Effective length factors that depend on the support conditions at the end sections
2= (za—2s) | zq and zy are the coordinates of the point of application of the load and of the
shear centre, relative to the centroid of the cross-section

Zj Parameter that reflects the degree of asymmetry of the cross-section in relation
to the y axis

Parameter z; can be determined by Equation (3.36).

Zj=12— 0.5/(y2+z2) (;) dA (3.36)
1 y

The conservative values will be k, = 1 and k,, = 1 which will be used further on in the analytical
solution.

The coefficients of the parameters C;, C,, and C; for the Equation (3.35) can be determined by the
Figures 3.4, 3.5, and 3.6 depending on how the beam is loaded.

3.1.7 Bending and Axial Compression

According to [da Silva et al., 2010] and clause 6.3.3(1) two distinct situations should be
considered:
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Diagram of k,

Loading and C G
support conditions moments v, <0 v, >0
Y=+ 11.011.00 1.000
(T | 0.5 | 1.05 1.019
¥=+34 1101114 1.000
([T | 0.5 | 1.19 1.017
v=+12 | 1.0 | 1.31 1.000
0.5 | 1.37 1.000
w=s14 | 1.0 |1.52 1.000
(M= | g5 | 1.60 1.000
T w=0 | 1.0 |1.77 1.000
0.5 [1.86 1.000
M ¥M w--114 | 1.0 [2.06 1.000 0.850
Iy > | T
e
0.5 [2.15 1.000 0.650
¥=-12 | 1.0 [2.35 1.000 13-12y,
e 05(242| 0950 077y,
¥=-3/4 11.0 |2.60 1.000 0.55—;1//
i ~q | 0.5 | 2.45 0.850 035y,
¥=-1 110 2.60 -y, -y
] |05 |245 ~0.125-0.7y, | ~0.125-0.7y,

= In beams subject to end moments, by definition C2 z, = 0.

I,-1,

I,.+1,

=+~ where I, and / 4 are the second moments of area of the

compression and tension flanges respectively, relative to the weak axis of the section (z

axis);

= C; must be divided by 1.05 when T ﬂg]_o, but C; >21.0.
k,L\GI,

Figure 3.4. Coefficients Cy, C3, and k; factor for beams with end moments, [da Silva et al., 2010].

Loading and Diagram of k, Cy C, Cs
support conditions moments
P 1.0 1.12 0.45 | 0.525
e | P | o5 | 097 | 036 | 0478
lP W 1.0 1.35 0.59 0411
Y S 0.5 1.05 0.48 | 0.338
Pl lP 1.0 1.04 042 | 0.562
Baidld d= W 0.5 0.95 0.31 0.539

Figure 3.5. Coefficients C;, C, C3, and k; factor for beams with transverse loads, [da Silva et al., 2010].
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Diagram of bending moments k.
Y=+1
1.0
1
1.33-0.33Y¥
0.94
0.90
0.91
< ; 0.86
Bvél 0.77
Wéﬂ 0.82
Y - ratio between end moments, with -1<W<I.

Figure 3.6. Correction factors, k., to determining C; coefficient, [da Silva et al., 2010].

- Members not susceptible to torsional deformation, such as members of circular hollow section
or other sections restrained from torsion. Here, flexural buckling is the relevant instability mode.
- Members that are susceptible to torsional deformations, such as members of open section (I or
H sections) that are not restrained from torsion. Here, lateral torsional buckling tends to be the
relevant instability mode.[da Silva et al., 2010]

A single span member of doubly symmetric section is subjected to bending moment and axial
compression should satisfy Equation (3.37) and (3.38).

NEq My gq+AM, £q M, gy +AM, g4
kyy—= : k 2 = < 1.0 3.37
x NRk + el XLTM%R[{ + 2 Mz,Rk - ( )
y?’Ml Y1 Y1
NEa My g +AM, gq M, pq+AM; £q
k : ’ k ’ — <1.0 3.38
Ner + Kzy o M, g bod M. g = ( )
ZYMl Y1 Ym1

where
Interaction factors can be determined by formulas seen in Figure 3.7.

To be able to determine the interactions factors auxiliary terms are needed which can be seen in
Figure 3.8 and 3.9.

Equivalent factors of uniform moment, C,,; ¢, is determined by the corresponding bending moment
diagrams which can be seen in Figure 3.10.
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NEgq

Nri

My,Ed

M, gi

Mz,Ed

M, ri

AM%Ed and AMz,Ed

Xy and Y,
kyy, kyz, kzy, and k;;

Design value of the compression force

Characteristic value of the compression force

Design value of the moment about the strong axis

Characteristic value of the moment about the strong axis

Design value of the moment about the weak axis

Characteristic value the moment about the weak axis

Moments due to the shift of the centroidal axis

Reduction factors due to flexural buckling for respectively strong and weak axis
Interaction factors

Interaction Elastic sectional Plastic sectional properties

properties
factors (Class 3 or 4 sections) (Class 1 or 2 sections)
H H 1
C, Cyp——2— c, C r
kyy y ~mLT 1 NEd my ~mLT 1 NEd ny
N cr,y NCV D4
Y7
C b /l Yy 1 wz
C 0.6
kyz 1— % mz ! N];‘d C Wy
H, 1 w
c, C, H, y
kzy o4 LT _ NEd Cmy CmLT ) NEd Czy 0.6 w,
NL‘V D4 N cry
c _H c _# 1
ke, mzl_NEa' mzl_NEd sz
N" iz crz

Figure 3.7. Interaction factors according to [da Silva et al., 2010].

Equations (3.37) and (3.38) can now be checked for instability .

According to EC3-1-1 two methods are given for the calculation of the interaction factors. Method

1 and Method 2 (beskriv forskellen og hvorfor jeg gar videre med Method 2 da IT er mindre end

Iy. Men selvom It er mindre end Iy sa kan metode 1 anvendes hvis en formel eftervises.

The HE400B profile has been verified in MathCAD calculation by Method 2 and can be seen in

Appendix A.

3.2 Results

The utilization ratio determined by the analytical approach can be seen from Table 3.3.

The results will be discussed and compared to the results determined by the numerical approach

in Chapter 5.
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Auxiliary terms:
1 NEd 1- NEd W
N w
U =i; U =¢; wy=ﬂ51.5; w, = Phi <15,
’ I—Z NEd ’ l_x h ely el,z
Y NC"’}’ ’ Ncr,z
n N T
P Ne Vs Arr =1_I_ 20, C,, and C, are factors of equivalent

y

uniform moment, determined by Table 3.15.
For class 3 or 4, consider w, =w, =1.0.

w w

y y ply

16 , — 16 W,
cyy:1+(wy—1){(2——c;yzm—w—c;y,1;axJ ,—bLT}Z 2

My,Ed Mz,Ed
ILT Mpl,y,Rd MpI,z,Rd

C2 A%,
Cyz=1+(wz—1)[(2 14—me " Jn cLT]zos

where b;; =0.5a;; A’

w

z plz

A M,
5'*‘/14 Coy X0 M 1, 2a .

C* A2 w, W
C, =1+(w, —1)|| 2-14—2"2% |n  —d,; |20.6 /—yi
Wy Wz Wp[’y

Z_'O My,Ed Mz,Ed
0'1+ﬂ'z4 C ZLTM Rd sz Mpl,z,Rd .

my ply,

where Cir = 10 ar

where d,, =2a,,

W,
sz =1+ (wz - 1)[(2 _—C2 /‘imax Zmax eLT} npl 2 Wel,z ] )

w, pl,z

’To MyEd

=1.7a
LTOI 2’4 CmyZLTMplde ’

where €L7

Figure 3.8. Auxiliary terms for the calculation of the interaction factors, k;;, [da Silva et al., 2010].
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Auxiliary terms (continuation):

zmax =max(ﬂ_’y > /T’z );

A, = non dimensional slenderness for lateral torsional buckling due to uniform
bending moment, that is, taking ¥, =10 in Table 3.15;

A, = non dimensional slenderness for lateral torsional buckling;

= N, N
If 20 S 02\/614 [l_ NEd J(l_ £ J: Cmy = Cmy,O; sz = sz,O;CmLT = 10’

Ncr,T
. _NEa' _NEd C = 1-C M
If 2’0 >O_2\/a4 (1 y; J(l Ncr’TJ. my my,0 +( my,0)1+\/gaLT,

cr,z

cr,z

_ ) _ 2 a;r .
mz_sz,O’ CmLT_Cmy >1;
1 _ N Ed 1 _ N Ed
N cr,z N cr,T
My,Ed : .
g, = —— for class 1, 2 or 3 cross sections;
N Ed n/el,y
£, = Z2E T for class 4 cross sections;
N Ed We]f Ly

N, , is the elastic critical load for flexural buckling about y;

N cr.z 18 the elastic critical load for flexural buckling about z;

N,, ; is the critical load for torsional buckling;

[

I, is the constant of uniform torsion or St. Venant’s torsion;

I y is the second moment of area about y;

2
C= (kij where £, is taken from Table 3.10.

c

Figure 3.9. Auxiliary terms for the calculation of the interaction factors, k;;, [da Silva et al., 2010].
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Diagram of moments Chio
N
AE[D]]]]ID]]D? M C,.0=0.79+021'F, +0.36(¥, - 0.33) NEd

n* EIL|5,| | Ve
L ‘M i,Ed (XX Nei

‘ IM(X) Coip =1+

M
h\w/ﬂ } @ M, g {x) is the maximum moment M, z;0r M, ¢4
according to the first order analyses

S,

is the maximum lateral deflection &, (due to

M, ;) or 6, (due to M, ;) along the member

7 Cpi =1-0.18 2
’ N

cr,i

S C..,=1+0.03ee
: N

cr,i

Figure 3.10. Equivalent factors of uniform moment, Cy; ¢, [da Silva et al., 2010].

Table 3.3. Utilization Ratio, UR, determined by analytical approach.

Simply supported beam Strong axis | 0.428
Simply supported beam Weak axis | 0.318
Beam element of frame structure Strong axis | 0.202

Beam element of frame structure Weak axis | 0.157
Column element of frame structure  Strong axis | 0.140
Column element of frame structure Weak axis | 0.136
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Numerical

In this chapter the general method proposed by [Standard, 2005] clause 6.3.4 is applied and
performed with Abaqus software as FEA tool and presented.

4.1 General method - Method 6.3.4

According to [Standard, 2005] clause 6.3.4 frames composed of beams or columns or beam-
columns subject to mono-axial bending and compression, the assessment for lateral torsional
buckling out of the plane of the frame may be performed in the following way:

e For the distribution of action effects on the frame resulting from the analysis of the frame for the
design loads the multiplier o, of these design loads to reach the elastic critical resistance of the
frame with regard to lateral deformations should be determined

e For the same distribution of action effects the minimum multiplier o, x of the design loads
to reach the characteristic resistance of the frame without taking lateral torsional buckling into
account should be determined.

4.2 Abaqus

Abaqus FEA software includes several kinds of finite element programs. In this project
Abaqus/CAE has been used. Abaqus/CAE is described by [Simulia] as an interactive environment
used to create finite element models, submit Abaqus analyses, monitor and diagnose jobs, and
evaluate results.

The unit values used in Abaqus in this project are N, m, and kg.

4.2.1 Theory

Five aspects of an element characterize its behaviour, Simulia:
e Family

e Degrees of freedom (directly related to the element family)
e Number of nodes

o Formulation
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e Integration

Element type

Figure 4.1, shows the element families that are used most commonly in a stress analysis and used

<

Shell Beam
glements elements

in this project, [Simulia].

Figure 4.1. Element types used in this project, [Simulia]

Degrees of Freedom

The degrees of freedom are the fundamental variables calculated during the analysis. For a
stress/displacement simulation the degrees of freedom are the translations and, for shell and beam
elements, the rotations at each node, [Simulia].

Number of Nodes and Order of Interpolation

Displacements or other degrees of freedom are calculated at the nodes of the element. At
any other point in the element, the displacements are obtained by interpolating from the nodal
displacements. Usually the interpolation order is determined by the number of nodes used in the
element. Elements that have nodes only at their corners, such as the 8-node brick shown in Figure
4.2, use linear interpolation in each direction and are often called linear elements or first-order
elements. In Abaqus/Standard elements with midside nodes, such as the 20-node brick shown in
Figure 4.2, use quadratic interpolation and are often called quadratic elements or second-order
elements. Modified triangular or tetrahedral elements with midside nodes, such as the 10-node
tetrahedron shown in Figure 4.2, use a modified second-order interpolation and are often called
modified or modified second-order elements, [Simulia].

Figure 4.2. Node element types in Abaqus, [Simulia]

In this project the quadratic elements have been used.
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Integration

Abaqus uses numerical techniques to integrate various quantities over the volume of each element,
thus allowing complete generality in material behavior. Using Gaussian quadrature for most
elements, Abaqus evaluates the material response at each integration point in each element.
Some continuum elements in Abaqus can use full or reduced integration, a choice that can
have a significant effect on the accuracy of the element for a given problem. Shell, pipe, and
beam element properties can be defined as general section behaviors; or each cross-section of
the element can be integrated numerically, so that nonlinear response associated with nonlinear
material behavior can be tracked accurately when needed. In addition, a composite layered section
can be specified for shells and, in Abaqus/Standard, three-dimensional bricks, with different
materials for each layer through the section, [Simulia].

4.2.2 Boundary Conditions

Figure 4.3, 4.4, and 4.5 shows the boundary conditions of the beam model.

Figure 4.3. Boundary conditions of beam model.

The boundary condition in z-direction of beam model is set only at one end of the beam at one
point which is the crossing point of the web and bottom flange.

Boundary condtion of the frame model can be seen in Figure 4.6 and 4.7.

4.2.3 Loads

Figure 4.8, 4.9, and 4.10 shows the load applied of the beam model and frame model. Load has
been converted to pressure in beam model so it will be evenly distributed on top flange which
contains shell elements. On the frame model a line load has been applied.
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Figure 4.4. Boundary condition of beam model in x-direction.

Figure 4.5. Boundary condition of beam model in y-direction.
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45 Edit Boundary Condition

Name:  Pinned-support_inst
Type:  Displacement/Rotation
Step:  Instability (Buckle)
Region: Set-4 [y

Use BC for
@ Stress perturbation and buckling mode calculation
O Stress perturbation only
O Buckling mode calculation only

CSYS: (Global) [p A

Distribution: | Uniform

Ut

vz

us:

[JuRr: radians
[ URz: radians
[JuR3: radians

Figure 4.6. Boundary condition of frame model at the bottom supports.

4F Edit Boundary Condition
Name:  Fork_inst

Type:  Displacement/Rotation
Step:  Instability (Buckle)
Region: Set-5 [}

Use BC for
@ Stress perturbation and buckling mode calculation
O Stress perturbation only
O Buckling mode calculation only

CSYS: (Global) [p A

Distribution: | Uniform

Oun

Ouz

[IE

JuRr: radians
[ uRrz: radians
[JuR3: radians

Figure 4.7. Boundary condition of frame model at the corner supports.

< Edit Load

Name: Pressure

Type:  Pressure

Step:  General (Static, General)
Region: Surf-4 [}

Distribution: | Uniferm
Magnitude: | 200000

Amplitude: | (Ramp)

Figure 4.8. Load applied on beam model for bifurcation analysis.
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4 Edit Load

Name: Pressure

Type:  Pressure

Step:  General (Static, General)
Region: Surf-4 [}

Distibution: Uniform M

Magnitude: | 200000

Amplitude: | (Remp) Y A

Figure 4.9. Load applied on beam model for large displacement analysis.

4 Edit Load

Name:  Lineload_inst
Type:  Lineload

Step:  Instability (Buckle)
Region: Set-6 [}

System: Global M

Distribution: | Uniform Mo

Component 1: ‘0

Component 2: -10000

Component 3: ‘o

ok |

Figure 4.10. Load applied on frame model.

4.2.4 Mesh

The mesh of beam model in both bifurcation analysis and large displacement analysis can be seen
in Figure 4.11 and 4.12.

4.2.5 Simulation

There has to be made a bifurcation and large displacement analyses to get the minimum load
amplifier outputs. The bifurcation analysis provides the time-step before reaching yielding and
large displacement analysis provides the eigenvalue.

In Figure 4.13, 4.14,4.15, and 4.16 shows the choices made to achieve the wanted outputs.
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Figure 4.11. Beam element partitioning of bifurcation analysis.

Figure 4.12. Beam element partitioning of large displacement analysis.

4.2.6 Output

The outputs achieved by the simulations of both bifurcation and large displacement analyses can
be seen in Figure 4.17, 4.18, 4.19, 4.20, and 4.21.

The outputs have been used in Appendix B with the formulas presented in the following sections.

4.3 Determining of the Minimum Load Amplifier, o, «

Firstly the ultimate load, g,;;, will be determined by Equation (4.1).

quir = Yapplied? 4.1
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4 Edit Step X

Name: Instability
Type: Buckle

Description:

Nigeom: Off

Eigensolver: @ Lanczos () Subspace

Number of eigenvalues requested: |4

[ Minimum eigenvalue of interest:

[ Maximum eigenvalue of interest:

Block size: @ Default O Value:

Maximum number of block Lanczos steps: @) Default O Value:

Warning: The Lanczos eigensolver cannot be used for buckling analyses
of models that contain contact pairs; connector, contact or

hybrid elements; distributing coupling constraints; or for models
with rigid body modes or those preloaded above the bifurcation load.

Cancel

Figure 4.13. Bifurcation analysis.

< Edit Step X
Name: General
Type: Static, General

Incrementation  Other

Description:

Time period: | 1

Nigeom: On 7

Automatic stabilization: | None M

[ Include adiabatic heating effects

0K Cancel

Figure 4.14. Large displacement analysis - Basic.

where

Qappliea | Applied load in Abaqus
t Time-step before reaching the yielding in Abaqus

The minimum load amplifier, o, x, can be determined by Equation (4.2).

Guit

Ot k =

where

(4.2)
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45 Edit Step
Name: General

Type: Static, General

Basic Other
Type: ® Automatic O Fixed
Maximum number of increments: | 1000

Initial Minimum  Maximum

Increment size: | 0.025 1E-005 0.1

OK Cancel

Figure 4.15. Large displacement analysis - Incrementation.

45 Edit Step

Name: General

Type: Static, General

Basic  Incrementation

Equation Solver

Method: @ Direct O lterative
Matrix storage: @ Use solver default (O Unsymmetric (O Symmetric

Solution Technique
Solution technique: @) Full Newton (O Quasi-Newton
8

Convert severe discontinuity iterations: | Propagate from previous step | (Analysis preduct default)

Default load variation with time

O Instantaneous @) Ramp linearly over step

Extrapolation of previous state at start of each increment: | Linear M

[ Stop when region is fully plastic.

Note: Only available with fixed time incrementation. Use with caution!
[[] Obtain long-term solution with time-domain material properties

OK Cancel

Figure 4.16. Large displacement analysis - Iteration method.

Minimum load amplifier of the design loads to reach the characteristic resistance of the

Qyit e
frame without taking lateral torsional buckling into account

q Design load
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ODB: HE4004-02.0db  Abaqus/Standard 6.14-2  Sun May 19 11:54:22 Centraleuropa, sommertid 2019

Figure 4.17. Time-step output from beam model analysis.

(x1E-9]

Displacement

0.20 0.40 0.60 0.60 T.oo
Time

[ U:U2 PI. HE400-1 N: 244]

Figure 4.18. Time-step and displacement plot of beam model.

ODB: HE400A-01.0db  Abagu: ard 6,14-2  Sun May 19 10:41:53 Centra pa, sommertid 2019

1: Eigenvalue
Mises

Figure 4.19. 1st eigenvalue of beam model.
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-2 Thu May 141 Centraleu mertid 2019

idard 6,14-2  Thu M. mmertid 2019

0 : Eigenvalue =
mary Yar: U, Magnitude
f U Defar

Figure 4.21. 1st eigenvalue of frame model.

4.4 Determining of the Minimum Load Amplifier, o,

The minimum load amplifier, @,,, is obtained by making a buckle analysis in Abaqus with
employing the design load.

4.4.1 Determining of the Utilization Ratio

When the minimum load amplifier for both in-plane and out-of-plane behaviour is obtained the
utilization ratio of the structure can be determined.

Firstly the the global non-dimensional slenderness, Iop, of the structure is determined by the
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Equation (4.3).

Ouit k
op = ult, 4.3)
acr,op

>

where

Minimum load amplifier of the design loads to reach the elastic critical resistance of the
frame with regard to lateral torsional deformation

Cecrop

Secondly the reduction factor for lateral torsional buckling, x;r, is determined by the Equation
(4.4) where the factor ¢y is determined by Equation (4.5).

1
XLT = = but xzr < 1.0 “4.4)
Or + 1/ ¢ir —BArr
where
B Correction factor for the lateral torsional buckling curves
Arr | Plateau length of the lateral torsional buckling curves
— = =2
our = 0.5 [1+ oz (Lop—Aur ) + BAsr] 4.5)
where

arr ‘ Imperfection factor for lateral torsional buckling

Reduction factor for lateral torsional buckling, yrr, is determined but it is a necessity for the
lateral buckling, y, to be determined. Because the minimum value of y;r and ) will result in the
maximum utilization ratio. Determining of reduction factor for lateral buckling will be similar
to the analytical calculation Equation (3.15) and (3.16) where the non-dimensional slenderness is
replaced by Iop determined in Equation (4.3).

Verification of the structural element is made by the Equation (4.6).

ault,k%op > 1.0 (46)
Y1

where

Xop ‘ The minimum value of y;7 and

The utilization ratio, UR, is determined by the Equation (4.7).

1
UR:W but URSIO (47)

M1
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4.5 Results

The utilization ratio determined by the numerical approach in Appendix B can be seen from Table
4.1.

Table 4.1. Utilization Ratio, UR, determined by numerical approach.

Simply supported beam 0.293
Beam element of frame structure | 0.204

The results will be discussed and compared to the results determined by the analytical approach
in Chapter 5.

Anders A., Master Thesis 39



Comparison

In this chapter results from the analytical method 6.3.3 and numerical approach method 6.3.4 will
be compared and discussed.

The results from the analytical and numerical approach is shown in Table 5.1.

Table 5.1. Utilization ratio, UR, determined by analytical and numerical approach.

Structural element Axis Analytical Numerical
(D Simply supported beam Strong axis 0.428 0.293
Simply supported beam Weak axis 0.318 -

@ Beam element of frame structure  Strong axis 0.202 0.204
Beam element of frame structure Weak axis 0.157 -
Column element of frame structure  Strong axis 0.140 -
Column element of frame structure =~ Weak axis 0.136 -

From Table 5.1 it can be seen that UR only for the simply support beam about the strong axis and
beam element of frame structure about the strong axis can be compared.

Deviation between analytical and numerical approach for the two structural elements are given as:
e (D Simply supported beam UR about strong axis deviates 46.1%
e (2) Beam element of frame structure UR about strong axis deviates 1.0%

The tendency clearly shows with (I) simply supported beam the analytical approach provides the
most conservative UR with deviation of 46.1%.

But in the case of (2) beam element of frame structure in both analytical and numerical for the UR
shows similar results with numerical solution slightly being conservative by 1.0%.

One of the reason why the UR for (2) frame model from Abaqus is being more conservative than
the analytical result could be that a convergence analysis is missing. There should have been
made a convergence analysis of the discretization of the structure. Too few elements would result
in incorrect and inapplicable UR and too many would make the computational time of simulations
too time consuming.

In the following problems and uncertainties of the analytical approach 6.3.3 method is showcased.
During the calculation some parameters and determining of these, e.g. buckling length of frame
structure was dealt with some uncertainties which could have led to some wrong results in the end.

There is a discrepancy in the analytical determination of buckling curve for lateral and torsional
bending between [Standard, 2005] and [da Silva et al., 2010]. The impact of difference in the
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results should be investigated.

In the following problems and uncertainties of the numerical approach 6.3.4 general method is
showcased.

When using Abaqus a result is obtained faster compared to undergo many calculations and
formulas in the analytical method. But during analytical calculation there will be conditions that
should be satisfied and thereby an ongoing control will be made.

Even though numerical method is faster to achieve result with this could lead to incorrect results
and without any conditions nor equations to confirm the result can easily be misleading without
having knowledge of this.
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Conclusion

In this chapter the conclusion of the results from the analytical method 6.3.3 and numerical
approach method 6.3.4 will be discussed. Further investigations intended or provided in an
extension of this project will be described.

As the project and report was intended an investigation of method proposed in [Standard, 2005]
clause 6.3.3 and clause 6.3.4 has been performed and compared by the final outputs. The
theoretical background of both methods was examined during the calculations and procedures.

It should be mentioned that the steel structures in this project with beam and frame model and its
simplicity made the analytical approach accommodating. If more complexity was introduced
to the structures; e.g. the profile was tapered, the applied load was unevenly distributed or
added more supports and placed irregularly obtaining results analytically would be difficult. The
deviation between the clause 6.3.3 and 6.3.4 in [Standard, 2005] would have been more significant.

Furthermore investigations could be made to compare the analytical and numerical approach:
e A structure or element that can not be categorised as standard profile

e Different supports and the effects of these

e Uneven distributed loading

There should have been made a convergence analysis of the amount of elements needed before
reaching a converging result. Which could lead to a applicable comparison between the accuracy
of results and time consumption of hand calculation and computational time of the simulations.

A parameter and sensitivity studies could have been made for the following:

e Shell and beam - Structural model analysed with both shell and beam elements and convergence
analysis for both cases

e Supports - the impact of different kind of supports of the results and deviation between the two
methods

e (1, (5, and C3 coefficients from the analytical approach should be examined because the values
are in an interval, which will cause a range in the end results

It can not be denied the visualization of the model in FEA software also being favourable when
choosing methods. Whether it is deformation, stress/strain or UR the impact of the values can
be seen. For inexperienced engineering student without any practical experience the visualization
gives an insight.

Both methods has some advantages and disadvantages but in the end both methods should be
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handled with proper understanding and knowledge of the material behaviour and using software.
This leads to the final mark:
In extension of this project an experimental execution can be a recommendable addition. Both

the analytical and numerical method can be compared to the reality and see how much the results
deviate.
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Analytical Calculation

In Appendix A the analytical calculation has been made by use of MathCAD software.
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Anders A., Master Thesis

A. Analytical Calculation

24th May 2019

Simply Supported Beam, HE400A

Simply Supported Beam, HE400A

Inputs
Line load :

Length of beam :

Internal Forces

Axial force :

Shear force :

Bending moment :

Material Properties
Yielding strength :

Ultimate strength :
Young modulus of elasticity :

Shear modulus :
Poisson's ratio :

Partial safety factors :

Constant to determine
cross-section classification :

kN
q:=10—

m
1:= 10m
Ngq:= OkN

1 2
Mpax = §~q-1 =125-kN-m
fy = 235MPa
f, = 360MPa

E:= 2]0-IO3MPa
2

G := 810-10"MPa

v:i=03

Ywmo =1 Mg = L

235MPa
e= |22
J fy

Cross-section Properties for HE400A

Height :

Width :

Web thickness :

Flange thickness :

Web height:

Radius :

h := 390mm
b := 300mm
ty = llmm
tp = 19mm

hy, :=h—2-t =352-mm

r:= 27mm

111
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24th May 2019 Simply Supported Beam, HE400A 211
. . 3 2
Cross sectional area : A= 15.9-100mm
Moment of inertia, y-axis : [y = 450.7- 106mm4
Elastic section 3 3
modulus, y-axis : Wel.y == 2310-10"mm
Plastic section 3 3
modulus, y-axis : Wiy = 2560-10"mm
pLy
Radius of giration, y-axis : iy = 168mm

2
Cross sectional shear area : Ayi=A- (z-bf-tf) + (tw + 2-r)~tf =5735-mm

Moment of inertia, z-axis : I, = 85,6~106mm4
Elastic section 3 3
modulus, z-axis : Wel 7= 571-10"mm
Plastic section 3 3
modulus, z-axis : Wi, = 873-10"mm

plz
Radius of giration, z-axis : i = 73mm

z
; . 9 6
WarpingConstant: 1 := 2940-10 ' mm

St. Venant torsional constant : I; == 1900- ]03mm4
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A. Analytical Calculation

24th May 2019 Simply Supported Beam, HE400A

Cross-section Classification

Internal Web in Compression

Effected length : Cy = h = 2:tp — 2.r=352-mm
Factor to determine ¢
cross-section classification : Yo
tW
w
Cross-section class : Webjass = if — <33¢ =1
tW
. Cw
if 33-e <— <38¢
tW
. Cw
if 38 < — <42¢
tW
if 42 < -
tW
Outer Flange in Compression
bf —ty — 2-r
Effected length : cp = = 144.5-mm
2
Factor to determine
cross-section classification : E p
te
X C
Cross-section class : Flange, o5 = |1 if — <33¢ =1
t
f

f
4 if 42.e <—

°f
2 if 33.e <— <38

¢

°f
3 if 38.e <— <42¢

¢
(v

te

3/11
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24th May 2019 Simply Supported Beam, HE400A 4111
Compression resistance
Axial force : Ngg4:= OkN
fy
Resistance axial force : N.Rq = A—— =3736.5-kN For cross-section class 1,2 and 3!
' MO
N
E
d —0
Nerd

Validation of resistance of " Ngg
compression : !

<1,"OK","Redimension" | = "OK"
NeRd

Shear Resistance
Shear force : Vg = 50-kN
. fy
Resistance shear force : VeRrd:=—=——=778.1kN
V3 Mo
V
Ed
=0.1
VeRrd
Validation of resistance of VEd
shear force : if <1,"OK","Redimension" | ="OK"
VeRd

Bending Moment Resistance

Bending moment : ME4 = Mpax = 125:kN'm
. . . fy
Resistance of bending, y-axis : M. R4 = Wpl.y'_ =601.6-kN-m
MO
M
Ed
=02

M rd
Validation of resistance of [ MEd R, - A
bending moment - 1f(M "y < 1,"OK","Redimension ]— OK

C.
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Anders A., Master Thesis A. Analytical Calculation

24th May 2019 Simply Supported Beam, HE400A 511

Elastic Critical Load for Torsional Buckling, N, 1

h-t
f =33.7 1> 10 Thin-walled section
tW
by
— =158 1> 10 Thin-walled section
te
Determination of 1 3 3 p 4
torsion constant : Iy = E[(h - tw)~tw + 2bpty } =1.54x 10"-mm
Determination of te(h —t 2 b 3
. _ £ - ty) "y 26
warping constant : Ly = 2 =3.1x 10 "-mm
Distance along the y-axis between the shear centre and the centroid of
the section :
Yo=0
) ly+ L
Radius of polar gyration : ic= |y + =183.7-mm
Buckling lenght for the
torsional bucling mode : Lgt:= 1.0l =10-m
Critical axial load for ) .,TZ.E.IW
torsional buckling : N 1=~ GlIp+ ——— | =5584.8:kN
: .2 2
i Lgr

Buckling Resistance of Compression
Uniform members in compression

Compression force : Ngq = OkN

Determination of Slenderness for Flexural Buckling

A =939-e=939

Buckling length for simple supported beam in both y and z axis:

Lcr.y = 10m
Lepz = 10m
L
Slenderness, y-axis : X yi= ﬂL =0.63
— 1
y 1
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24th May 2019 Simply Supported Beam, HE400A 6/11
Slenderness, y-axis : X = ﬂi =1.46
- Iz 1
Slendemess, maximum : A = max()\ ey Z) =1.46

Determination of buckling curve, a:

L =13 if L <12
by by
tp=19-mm if tp < 40mm

for S 235, buckling curve:
y-y=>a=> Oy = 0.21

zz=>b=> o, = 0.34

Determination of reduction factor, x:
Factor to determine

. . s ) B 2]
reduction factor : byi= 0.5 [1 + oy (>\ r 0.2) Xy } =0.746
2
¢, = 0.5-[1 +oy (N 5= 02)+ N Z} = 1.778
¢ = max(d)y,ctuz) =1.778
Reduction factor, y-axis: Xy = SR 0.877
2 2
byt by Ay
Reduction factor, z-axis: Xy = S 0.358
2 2
O+, - >‘72

Reduction factor, maximum: = min(Xy,XZ) =0.358

Verification of buckling resistance of compression:

fy
NpRrd = X-A—— = 12154-kN
M1
N,
Ed
=0
Nb.rd

[ Ned .
if| <1,"OK","Redimension" | ="OK"
Nb.Rd
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A. Analytical Calculation

24th May 2019

Simply Supported Beam, HE400A 7

Buckling Resistance of Bending
Uniform members in bending

Coefficent from figure 3.4 :

Coefficent from figure 3.4 :

Coefficent from figure 3.4 :

Factor depending on the
supports :

Factor depending on the
supports :

Coordinate of the applied load :

Coordinate of the applied load :

Parameter, assymetry of the
cross-section :

B

Section modulus :

Dertermining of buckling
curve from Figure 3.1 :

Non-dimensional slenderness :

Factor to dertimne reduction
factor :

Reduction factor :

[ k, ]2 Ly (kz'Lcr.z)z'G'IT
I

(kz‘ Lcr.z)2

Cl = 1.12
Cy =045
Cy = 0.525
k, =1

ky =1

zy:=h

h

Z = —

ST 2

2= 2y~ 25 = 195-mm
z; = Omm for doubly symmetric cross-section

1

Determination of elastic critical moment for lateral-torsional buckling:

0.5

- +(Cyzg-Cag)|  —(Cpzg- Cyz)|=49174N-

- 2

7 -EL,

= for Class 1 cross-section
Wy = Wy '

Determination of imperfection factor for for Rolled
I-section for lateral-torsional buckling:

L:1,3 if h

<2 = Buckling curve b
be b

op =034

)‘7LT =

Op 1= 0.5-[1 +opp(X pp-02)+ x_LTz} =1.266

1

arsrTT
SLT+{OLT “ A LT

=0.532
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24th May 2019

Buckling resistance of
bending :

Verification of buckling
resistance of bending:

Simply Supported Beam, HE400A

f,
o A
My, rd = XL Wy =290.7-kN-m
M1

M
Ed o,
Mp rd

MEgq4
if] < 1,"0K" , "Redimension" | = "OK"

My rd

Buckling Resistance of Bending and axial compression
Uniform members in bending and axial compression

Characteristic compression
force :

Characteristic moment,
y-axis :
Reduction factor, y-axis :
Reduction factor, z-axis :
Elastic critical load for flexural

bucklingm, y-axis :

Elastic critical load for flexural
buckling, z-axis :

Auxiliary term from Figure 3.6 :

Auxiliary term from Figure 3.6 :

Auxiliary term from Figure 3.6 :

NR = A-fy = 3736.5-kN

My Ri:= Wppy-fy = 601.6kN-m

y
Xy = 0877
X, = 0.358
nz-EIy
Nery= = = 934134N
Lcr.y
1T2-E~IZ
Nerg = = 177424N
LCT.Z
Ngd
N
Hy - Ccr.y -1
. Ngg
e
4 Ncr.y
Ngg
. NCT.Z -1
He NEgq
=X,
NCIXZ
W,
wy = Py 44
Wel.y

8/11
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24th May 2019 Simply Supported Beam, HE400A oM

if(wy < 1.5,"0k" ,”Redimension") ="0Ok"

Wpl z
Auxiliary term from Figure 3.6 : w, = —— =1.53

Welz

if(wz < 1.5,"0k" ,”Redimension") = "Redimension"

. NEg
Factor to determine Cij : nppi=——= 0
NRk
M1
L
Factor to determine Cij : app=1-—=099% where ap20
ly
2
) Yo
Factor to determine Ncr,TF: B=1-|—]| =1
1
C

Elastic critical axial load for flexural-torsional buckling, y-axis :

1 2
Ner.TF = 2fg"V(Ncr.y + Ncr.T) - \](Ncr.y + Ncr.T) - 4'B'Ncr.y'Ncr.T—‘ =5584.8-kN

Non dimensional slenderness for lateral torsional buckliing :
No=Xxpr=11

4
NEq NEgg
Because X\ o > 0.2 [Cl- 1- N 1= =0.212 fromfigure 3.7

cr.z Ner.TF

Becase X\ 0>02:

N
Equivalent moment factor : Crny 0= 1+0.03 Ed =1 from figure 3.8
cr.y
M
€y =ﬂ.L for class 1 => gyi= 0 because Ngg=0
Ngg Wel.y

Ear
1+\/€_yaLT7

mz =0 The moment around the z-axiz is 0

Equivalent moment factor : Cmy = Cmy.O + (1 - Cmy.O)

Equivalent moment factor : C
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24th May 2019 Simply Supported Beam, HE400A 10111
Equivalent tfactor : —c 2 LT h
quivalent momentfactor: €,y i= Cppy ™ =1 where CrLr 2 1
. NEg . Ngg
Ncr.z Ncr.T
Determination of interaction factors:
My.Ed = Mpgq = 125-kN'-m
Mpl.yARd =M Rq= 601.6-kN-m
M =W P 205.2-kN-m
1.z.Rd 1.z
P P Ymo
M, gq= OkN-m
M M
Factor to determine CW: by = 0.5a -\ 02~ vEd _"zEd =0
_ M M
XLT MplLy.Rd Mpl.z.Rd
Slenderness, maximum : Nax == A
" ) ] 16 . 2 16 . 2
Auxiliary term from Figure 3.6 : ny;: 1+ (Wy - |).|:(2 - W_.Cmy Nmax — W—.Cmy ')‘maxj'“pl - bLT:| =1
y y
R Wel.y . .
if| ny > ,"Ok" ,"Redimension" | = "Ok"
Wply
¢ =na o My Ed M Ed
Factor to determine C, LT = “9LT :
B 0.1+ X\ z4 Cmy‘XLT'Mpl.y.Rd sz'Mpl.z.Rd
Ao
dp = 2a p—=—— = 0476
0.1+,
Auxilary term fom Figure 36 : ¢ = 1 1){| 2 14M dy 7| =0.949
ry g .0 7y = +(wyf ) - 14. S ‘npp—dpr| =0
Yy

W, Wl
if] C,y > 06 [——=2 "0K" ,"Redimension” | = "OK"
Wz Wply

Interaction factor :
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A. Analytical Calculation

24th May 2019

Interaction factor :

Equation (3.30) - Strong axis :

Equation (3.30) - Weak axis :

Simply Supported Beam, HE400A 111
y my ~mLT Ngg Czy
Ncr.y
N M
Ed Ed
+ kyy‘ =0.428
Xy'NRk My Rk
XLT
M1 M1
N M
Ed Ed
if N + kyy' <1,"Ok","Redimension" | = "Ok"
Xy NRk Rk
y Y
XLT
M1 M1
N M
E E
d ., ko 4 _oas
Xz NRrk Y My.Rk
XLT
M1 ™I
N; M
E E
if d +k,y d < 1,"Ok","Redimension" | ="Ok"
Xz NRrk Y My.Rk
XLT .
M1 M1
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24th May 2019

Beam Element of the Frame, HE400A

Beam Element of the Frame, HE400A

Inputs
Line load :

Length of beam :

kN
q:=10—
m

1:= 10m

Internal Forces - Obtained from FEM Design Software

Axial force :

Shear force :

Bending moment :

Material Properties
Yielding strength :

Ultimate strength :

Young modulus of elasticity :

Shear modulus :

Poisson's ratio :

Partial safety factors :

Constant to determine
cross-section classification :

Ngg:= 14kN

Vg = S6kN

Mgq:= 70kN-m Mppax = 71kN-m

mq

fy = 235MPa
f, := 360MPa
3
E :=210-10"MPa
2
G := 810-10"MPa
v:i=03

mo = | v = L

’235MPa
€= f— =1
y

Cross-section Properties for HE400A

Height :

Width :

Web thickness :

Flange thickness :

Web height:

h := 390mm
bg = 300mm
ty = 11mm
tp := 19mm

hy, = h—2:tp =352-mm

1711
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A. Analytical Calculation

24th May 2019

Radius :
Cross sectional area :
Moment of inertia, y-axis :

Elastic section
modulus, y-axis :

Plastic section
modulus, y-axis :

Radius of giration, y-axis :

Cross sectional shear area :

Moment of inertia, z-axis :

Elastic section
modulus, z-axis :

Plastic section
modulus, z-axis :

Radius of giration, z-axis :

Warping Constant:

St. Venant torsional constant :

Beam Element of the Frame, HE400A

r:=27mm

A= 15.9-10°mm>

Iy = 450.7-10°mm”

3 3
Wel.y = 2310-10"mm

W 3

3
ply = 2560-10"mm

iy= 168mm

Ayi= A= (2bptg) + (ty + 21)tp = 5735-mm”

1 = 85.6:10°mm’
3 3
We| 7= 571-10"mm

\

ol = 873:10°mm’

i, = 73mm
9 6
I, = 2940-10 ' mm

I, = 190010 mm”

2111
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24th May 2019

Beam Element of the Frame, HE400A

Cross-section Classification

Internal Web in Compression

Effected length :

Factor to determine
cross-section classification :

Cross-section class :

Cy = h =2t —2.r=352-mm

C

Outer Flange in Compression

Effected length :

Factor to determine
cross-section classification :

Cross-section class :

W _3
ty
c
W
Webjaes= |1 if t_ <33e =1
W
CW
2 if 33 e <— <38¢
tW
c
3 if 38 < — <42¢
1'W
c
4 if 426 <—
1'W
be -t — 21
f
Ccp = SN — 144.5-mm
2
c
f
— =706
tf
°f
Flange |,s:= |1 if — <33¢ =1

tr

cp
2 if 33 <— <38
tr

cf
3 if 38e <— <42¢
tf
c
f
4 if 42.e<—
tf

3/11

Anders A., Master Thesis

59



Anders A., Master Thesis

A. Analytical Calculation

24th May 2019

Compression resistance

Axial force :

Resistance axial force :

Validation of resistance of
compression :

Shear Resistance

Shear force :

Resistance shear force :

Validation of resistance of
shear force :

Beam Element of the Frame, HE400A 411

Npq = 14kN

f,
NeRd= A— —3736.5-kN For cross-section class 1, 2 and 3!

Mo

Ngg 3

=37x10

NeRrd

Ngg
if <1,"OK","Redimension" | ="OK"
NeRd

VEg = 56-kN
A f.
vV_y
V. pqi= —=—>— =778.1-kN
eRd V3 Mo
\%
E
d =0.1
VeRd

VEd
if <1,"OK","Redimension" | = "OK"
VeRd

Bending Moment Resistance

Bending moment :

Resistance of bending, y-axis :

Validation of resistance of
bending moment :

Max = 71kN-m

f,
Yy
M =W, ,—— =601.6-kN-m
c.Rd L.
P Mo
M
E
d =0.1
Mc.Rd

MEgq4
if| < 1,"OK","Redimension" | ="OK"
M rd
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Beam Element of the Frame, HE400A 5/11

Elastic Critical Load for Torsional Buckling, N, 1

Determination of
torsion constant :

Determination of
warping constant :

Radius of polar gyration :

Buckling lenght for the
torsional buckling mode :

Critical axial load for
torsional buckling :

h—tp
=337 1> 10 Thin-walled section
t
W
by
— =158 1> 10 Thin-walled section
te
1
b= ;Rh )ty 2~bf<tfﬂ = 1.54 % 10" mm
2.3
' (h _IW) bp 12 6
Ly = =3.1x 10 "-mm
w 24

Distance along the y-axis between the shear centre and the centroid of
the section :

Ye=0
I,+1
ig= yc2 + Yy z_ 183.7-mm
Lgr=05l=5m
1 T Ely
Nep.:= —2 Gl + —2 =11244.7-kN
i LET

Buckling Resistance of Compression

Uniform members in compression

Compression force :

Npg = 14kN

Determination of Slenderness for Flexural Buckling

N[ = 93.9-8 =939

Buckling length for simple supported beam in both y and z axis:
L =Lpgr=5m

cry

Lopp=101=10m
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A. Analytical Calculation

24th May 2019

Slenderness, y-axis :

Slenderness, z-axis :

Slenderness, maximum :

Factor to determine

reduction factor :

Reduction factor, y-axis:

Reduction factor, z-axis:

Reduction factor, maximum :

Beam Element of the Frame, HE400A

Xy=—F 2032
=y iy >\1
S
- iz >‘l

X=max(X g\ ) =146

Determination of buckling curve, a:

l =13 if L <12

by by

tp = 19-mm if tp < 40mm

for S 235, buckling curve:

y-y=>a=> oy 1= 0.21
zz=>b=> o, = 0.34

Determination of reduction factor, x:
-—os-[u (N o -02)+ X 2:|—0563
by=0. ay(X y=02)+ X 7f=0.

2
¢, = 05-[1 +og (N ,-02)+ xﬁz} = 1.778

= max(¢y, ¢Z) =1.778

1
Xy = =0.973
N [ EENE
CT>y y _y
1
Xz = > > =0.358
by + \l ¢, - )‘72

X = min(xy,xz) =0.358

Verification of buckling resistance of compression:

fy
Np Rd = X' A—— = 12154 kN
M1
N
Ed
=0
Nb.Rd

6/11
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24th May 2019 Beam Element of the Frame, HE400A 7

NEg
if| <1,"OK","Redimension" | ="OK"
Nb.rd

Buckling Resistance of Bending
Uniform members in bending

Coefficent from figure 3.6 : k. = 0.90

2
Coefficent from figure 3.4 : Cy = [kL] =12
C

Coefficent from figure 3.3 : Cy=0 When Subjected end moment
Coefficent from figure 3.3 : C3:=0

Factor depending on the
supports : k, =1

Factor depending on the
supports : k,, =1

Coordinate of the applied load:  z_:= h

Coordinate of the applied load:  z_:= h
2

Parameter, assymetry of the

cross-section : zj:= Omm for doubly symmetric cross-section

Determination of elastic critical moment for lateral-torsional buckling:

0.5
2 2 2
mEl, k; Iy (kz‘Lcr.z) ‘Glp 2
Mg= Cp———— || — | — + ————— +(Cpzg - C3%)"| —(Cpzg—C3zj)|=7086kN-m
cr 1 5 I 5 2'%g 3% 2'%g 3%
-L kW Z m -E-L
(kz cr.z) z
Section modulus : Wy = Wpl y for Class 1 cross-section
Determination of imperfection factor for for Rolled
I-section for lateral-torsional buckling:
Dertermining of buckling b h
curve from Figure 3.1 : — =13 if <2 = op 1= 0.34 Buckling curve b

be b
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Non-dimensional slenderness :

Factor to dertimne reduction
factor :

Reduction factor :

Buckling resistance of
bending :

Verification of buckling
resistance of bending:

Beam Element of the Frame, HE400A

WL,
Y 0921
cr

)‘7LT =

Op 1= 0.5-[1 +opp(X pr-02)+ x_LTz} =1.047

1

Xr= e
SLT+{OLT “ N LT

f,
— y _
My g = XL Wy—— =354.1-kN-m
M1

=0.647

Mgq4
My rd

=02

Mgq
if <1,"OK","Redimension" | ="OK"
b.Rd

Buckling Resistance of Bending and axial compression
Uniform members in bending and axial compression

Characteristic compression
force :

Characteristic moment,
y-axis :
Reduction factor, y-axis :
Reduction factor, z-axis :
Elastic critical load for flexural

buckling, y-axis :

Elastic critical load for flexural
buckling, z-axis :

Auxiliary term from Figure 3.6 :

NRg = A-fy =3736.5-kN

My Rii= Wiy = 601.6-kN-m

Xy = 0.973
Xz =0.358
‘r\'2~E<1y
Ncr‘y:= 3 =37365.1-kN
Lcr.y
71'2~E-IZ
Nepz = > =1774.2-kN
Lerz
NEg
N
_ cr.y
pyf N =1
X Ed
Y Ncr.y

8/11
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Auxiliary term from Figure 3.6 :

Auxiliary term from Figure 3.6 :

Auxiliary term from Figure 3.6 :

Factor to determine Cij :

Factor to determine Cij :

Factor to determine N, ¢ :

Beam Element of the Frame, HE400A

NE4
u, - 0.995
e
%y
NCr.Z
W
L.
wy = PY 11
Wel.y

if(wy < 1.5,"Ok" ,"Redimension") ="Ok"

W
L.
W, = Bz _ 1.53

el.z

if(wZ < 1.5,"Ok" ,"Redimension") = "Redimension"

N
Ed
ol = =0.0041

where

9/11

The value is so close to 1,5
that it will be neglected!

ap720

Elastic critical axial load for flexural-torsional buckling, y-axis :

1 2
Ner.TF = 2fﬁ'[(Ncr.y + Ncr.T) _\]<Ncr.y + Ncr.T) - 4'B'Ncr.y'Ncr.T} = 11244.7kN

Non dimensional slenderness for lateral torsional buckling :

)\_0 = >‘_LT =09

4
N N
Ed Ed
Because X\ 0 > 02 [Cl.j(l _ S ][1 _

Ner.TF

Ccr.z

Becase X\ 0>02:

j = 0.222 fromfigure 3.9

TELTmm | Ngg
Equivalent moment factor : CmyO =l | —2 =1 from figure 3.10 and
’ M Nery deflection obtained from FEM
max Design
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M
eyi= max A for class 1 => gy=0
Ned Wely

Equivalent moment factor : . \/E_YaLT
quiv : cmy = cmy_o + (1 _ Cmy.O)'— -1

1 +\/e_yaLT

Equivalent moment factor : C.. =0 The moment around the z-axiz is 0

. 2 aLT
Equivalent momentfactor: ¢ = . =1 where CmLr 21

=C
mLT my
. NEd . NEd
Ncr.z Ncr.T

Determination of interaction factors:

My.Ed = Mpax = 71-kN-m

Myp1.yRd = M Rd = 601.6-kN-m
£

Yy
My, rd = Wplz—— =2052:-kN-m
b P o
M, gq:= OkN-m
M M
i : . 2 y.Ed z.Ed
Factor to determine C, : by = 0.5a X o - ) 0

— XLT'Mply.Rd MpizRd
Slenderness, maximum : N =\

" . 1.6 1.6
Auxiliary term from Figure 3.6 : C...=1+ (w — 1).{(2 - —.C 2.)\ _'Cmyz'xmaxj'npl _ bLT:| =1
W,
y y

Wel.y
if ny > ,"Ok" ,"Redimension" | = "Ok"

WLy
o= 2o My Ed M; Ed
Factor to determine C_ : LT = <aLT :
Y 0.1+ X 24 Cmy'XLT‘Mpl.y.Rd sz'MpLz.Rd
)
dp 7= 2-ap p——— = 0.396
0.1 +X z
c,
Auxiliary term from Fi 6: = S} 2o pa Yy mAX -
uxiliary term from Figure 3.6 Cpy: ]+(wy l) 2-14 ; npj — dp| =0.953
Wy
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Interaction factor :

Interaction factor :

Equation (3.30) - Strong axis :

Equation (3.30) - Weak axis :

Beam Element of the Frame, HE400A 11/11

W, Wl
if] Cy > 0.6 [ —=2 "OK" ,"Redimension” | = "OK"
W, Wpl.y

kyy = CpyC —_— =
yy my ~mLT Ngg ny
Ncr.y
k. =C.C v L o6 -2 07
zy my ~mLT Ngg Czy wy
Ncr.y
N M
Ed + kyy' Fd =0.202
Xy'NRrk My Rk
XLT
M1 M1
N; M
if]| Ed + Koo Ed < 1,"Ok" ,"Redimension" | = "OK"
XyNre Y My Rk
XLT
M1 ™1
N M
Ed Ed
+ ke =0.157
Xz NRrk Y My Rk
XLT
M1 ™I
N M
E E
if]| d + ka~ d < 1,"Ok" ,"Redimension" | ="Ok"
Xz NRrk My.Rk
XL
M1 M1
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Colmn Element of the Frame, HE400A

Column Element of the Frame, HE400A

Inputs

Line load :

Length of column :

kN
q:=10—
m

l:=5m

Internal Forces - Optained from FEM Design Software

Axial force :

Shear force :

Bending moment :

Material Properties
Yielding strength :

Ultimate strength :
Young's modulus of elasticity :

Shear modulus :
Poisson's ratio :

Partial safety factors :

Constant to determine
cross-section classification :

Npg = 62kN

VEgi= 14kN

Mpq:= 70kN-m

fy = 235MPa

fu = 360MPa
3
E:= 210-10"MPa
2
G := 810-10"MPa
v:i=03

Ywmo =1 Mg = L

235MPa
e= |22
J fy

Cross-section Properties for HE400A

Height :

Width :

Web thickness :

Flange thickness :

Web height:

Radius :

h := 390mm
b := 300mm
ty = llmm
tp = 19mm

hy, :=h—2-t =352-mm

r:= 27mm

1112
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24th May 2019 Colmn Element of the Frame, HE400A 212
. . 3 2
Cross sectional area : A= 15.9-100mm
Moment of inertia, y-axis : [y = 450.7- 106mm4
Elastic section 3 3
modulus, y-axis : Wel.y == 2310-10"mm
Plastic section 3 3
modulus, y-axis : WpLy = 2560-10"mm
Radius of giration, y-axis : iy = 168mm

2
Cross sectional shear area : Ayi=A- (z-bf-tf) + (tw + 2-r)~tf =5735-mm

Moment of inertia, z-axis : I, = 85,6~106mm4
Elastic section 3 3
modulus, z-axis : Wel 7= 571-10"mm
Plastic section 3 3
modulus, z-axis : Wi, = 873-10"mm

pl

Radius of giration, z-axis : i, := 73mm

WarpingConstant: 1 := 2940 109mm6

St. Venant torsional constant : I; == 1900- ]03mm4
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Cross-section Classification

Internal Web in Compression
Cy = h - 2-tf —2.r=298-mm

W
Outer Flange in Compression
bp -ty —2r
cp = =117.5mm
°f
— =62
tr
°f
Flange oo = |1 if — <33¢ =1

cf
2 if 33 <— <38
¢

cf
3 if 38.e < — <42¢
¢
cf
4 if 42-e < —
te

Compression resistance
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24th May 2019 Colmn Element of the Frame, HE400A 4/12

Npg = 62kN

N pg = A—— = 3736.5-kN
Mo

Ngd

=0.017
NeRrd

Ned
if| <1,"OK","Redimension" | = "OK"
Nerd

Shear Resistance

Vg = 14kN

fy
Vo Rdi= —= —— =T778.1-kN

V3 Mo

VEd

=0.018
VeRrd

VEd
if| <1,"OK","Redimension" | = "OK"
VeRrd

Bending Moment Resistance

Mgq=70-kN-m

M =W ,—— =601.6-kN-m
c.Rd L.
PLy Mo

Mgq

=0.116
M Rd

Mgq4
if| <1,"OK","Redimension" | = "OK"
M rd

Determening of critical load

I'Lyeam _ Lpeam 10m

h Sm

To"heotumn colum
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24th May 2019 Colmn Element of the Frame, HE400A 512
p /
3 (/
il
[ /{/ ’/ %/
| (A /j y /
ﬂ= 1 // / / /
// 0,75+ AV /
2 S e e /
] 05T |
B sl 0 //
L
14 -
0 1 125 7 348
— L 1h —=

The value of beta is determined by the knowlegde of the moment of inertia of the
beam and columns of the frame structure and also the support conditions.

beta := 2.62
Buckling lenght, y-axis : Lcr.y = beta-5m = 13.1m
11'2 E-L
Critical load, y-axis : e
4 Nery = 2y =5.4% 10°KN
Lcr.y
Buckling lenght, z-axis : Lo ,=1=5m The column is simply support in the z-axis
Critical load, z-axis : ,TZ.E.IZ 5
Nerz = =7.1x 107-kN
8 . N

cr.z

Elastic Critical Load for Torsional Buckling, Nt

h—tg . .
=337 1> 10 Thin-walled section

Ly
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Determination of
torsion constant :

Determination of
warping constant :

Radius of polar gyration :

Buckling lenght for the
torsional bucling mode :

Critical axial load for
torsional buckling :

Colmn Element of the Frame, HE400A 6/12

— =158 1> 10 Thin-walled section

1
b= ;[(h - tw)-tw3 + 2~bf<tfﬂ = 1.54% 10%mm*

=3.1x 10 mm®

Distance along the y-axis between the shear centre and the centroid of
the section :

Yo=0
I, +1
ig= yc2 + y z._ 183.7-mm
Lgr:= Lcr.y_ 13.1'm
1 7By
Nep.T:= —2 Gl + —2 =4797.5-kN
i Ler

Buckling Resistance of Compression

Uniform members in compression

Determination of Slenderness for Flexural Buckling
X] = 9396 =939
Buckling length for the column in the frame structure in both y and z axis:

L

vy 1
N y= Y —083
— iy >\1
L
z 1
N = et = 0.73
- Iz )‘1

A = max()\,}"k,l) =0.83

Determination of buckling curve, a:

Anders A., Master Thesis

73



Anders A., Master Thesis

A. Analytical Calculation

24th May 2019

Colmn Element of the Frame, HE400A

— =13 if L <12

by by

tp=19-mm if tp < 40mm

for S 235, buckling curve:

y-y=>a=> Q1= 0.21
zz=>b=> a, =034

Determination of reduction factor, x:
& -—05{1 Foag(h o —02)+ X 2}—0911
y = ay(A y=02)+ X 7|=0.
2} =0.856

¢, = 0.5-[1 +o (X, =02)+ X\,

b= max(cby, ¢Z) =0911
1
Xyi= ————=0.778
y NNEENE
byt dy —ry
Xy = =0.767
2
d,+ P, _)‘72

i

X = min(Xy,XZ) =0.767

Verification of buckling resistance of compression:

f
o y _

Np Rd = X-A— =2604.8-kN

M1
N
Ed

=0

Nb.Rrd

Nggq
if <1,"OK" ,"Redimension" | = "OK"
Nb.Rd

Uniform members in bending

Determination of elastic critical moment:

k, =1
kW:=1

7112

Pi=0 The moment is zero at end point of the support of the columns
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24th May 2019 Colmn Element of the Frame, HE400A 8/12

Cp =177

Cy=0 When subjected end moment
C3:=1.0

2= Omm

;= Omm for doubly symmetric cross-section

5 5 5 0.5

Bl K\ Ty (kylg,) Gl

4 4 w Cr.z T 2 3
_ {—J e (Crzg=C37)"|  —(Cpzg—C37)|=29% 107KN
z 7 El,

= for Class 1 cross-section
Wy‘ Wpl.y

Determination of imperfection factor for for Rolled
I-section for lateral-torsional buckling:

- P T op =021 Buckling curve a

by b

Determination of the coefficient of non-dimensional slenderness:

WL,
vly
P = 0458
LT M

cr

2
Op = 0.5-[1 +opr(N pr-02)+ xﬁLT] =0.632

1

XLT =
LT R
ST+ ~ X LT

Verification of buckling resistance of bending:

=0.937

f
- Y _
Mp R = XL Wy —— =512.3-kN-m
M1

M
Ed
=0.1
Mp rd

Mgq4
if]| < 1,"OK","Redimension" | ="OK"
My rd

Uniform members in bending and axial compression

Anders A., Master Thesis

75



Anders A., Master Thesis

A. Analytical Calculation

24th May 2019

Colmn Element of the Frame, HE400A

Nrg = A-fy =3736.5-kN
My.Rk = Wpl,y'fy =601.6-kN-m
Xy = 0.778

X, = 0.767

Ner.y = 54433 kN

Ngp. 5 = 7096.6-kN

Ngq
by = Nery _ 0.997
Ngd
I =Xy
Y Ncr.y
X Ngg
N
Cr.z
g = =09%
Ed
X,
NCr.Z
w
wy = PLY 44 where  w. <15
Wel.y
Wol
w, = —Z =15 where  w, <15
Wel.z
N
Ed
nppi= —— = 00183
Nrk
M1
II
app =1 - =099 where a0

y

9/12
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24th May 2019 Colmn Element of the Frame, HE400A 10/12

2
) Ye
Factor to determine Ncr’TF: Bi=1- (—} =1

Elastic critical axial load for flexural-torsional buckling, y-axis :

1 2
Ner.TF = TB'[(Ncr.y + Ncr.T) - \](Ncr.y + Ncr.'[‘) -4 B'T\Icr.y'Ncr.’l'} =4797.5kN

Non dimensional slenderness for lateral torsional buckling :
X=X =05

) NEd NEg
Because X\ , > 0.2 (cl. 1- S q1= = 0.265 from figure 3.7

cr.z Ncr.TF

Becase X\ 0>02:

N,
. _ Ed
Equivalent momentfactor:  Cy\y o := 0.79 + 0214 + 0.36-(t) — (),33){ ] =0.79 from figure 3.8
cry
M
gy = _Ed A =78 for class 1
Ngg Wel.y

\/E_yaLT =09

Equivalent moment factor : = — =
quiv: Crny = Cmy.0 + (1 Cmon) 1+\/s_a
yeLT
Equivalent moment factor : Chpz=0 The moment around the z-axiz is 0
Equivalent moment factor : °LT wher
quivalent moment factor : =09 ere CuLt 21

2
C =C .
mLT my
. NEd . N4
Ncr.z Ncr.T

Determination of interaction factors:

My Ed= Mggq

Mply.Rd = McRd

Mp1zRd = McRd

M, gq:= OkN-m
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24th May 2019 Colmn Element of the Frame, HE400A 112

My.Ed Mz k4 -0

) ) 2
Factor to determine CW. by = 05a X o v v
~ XLTMply.Rd MplzRd

Slenderness, maximum : N =X

. . 1.6 1.6
Auxiliary term from Figure 36:  C__:= 1 + (w - 1)-{(2 - —'Cmyz‘xmax - _‘Cmyz'xmaxj'“pl - bLT} =1

Yy y
y y
where >
ny >1
N M M
Factor to determine C_ : dy =230 o 0 N y-Ed . zEd
zy LT LT 4 C_ . M C._M
0.1+X, my XLT Mply.Rd “mz Mpl.zRd
X o
dj 7= 2-ap p——— = 2.383
01+,
2'>‘m
" ) . _ my ax B
Auxiliary term from Figure 3.6 : Cpy= 1+ (Wy - 1)- 2 - 14-—5 np —dp | =0.734
Wy
where  C, >06 [ Y o5
Wz, Woly

Interaction factor :

Interaction factor :

N, M
Equation (3.30) - Strong axis : Ed + kyy~ Ed =0.14
Xy NRrk My Rk
XLT
M1 M1
N M
Ed Ed
if + kyy' <1,"Ok","Redimension" | ="Ok"
Xy'NRk y.Rk
XLT
M1 ™1
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24th May 2019 Colmn Element of the Frame, HE400A 12112
N M
Equation (3.30) - Weak axis : Ed + kzy- Ed =0.136
Xz NRrk y.Rk
XLT
M1 ™1
N M
Ed Ed
if| + kzy- <1,"0k","Redimension" | = "Ok"
Xz NRk My Rk
XL
M1 M1
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Numerical Approach

In Appendix B the numerical approach by use of Abaqus software is shown. Abaqus is used to
obtain ;i and Q.r,p which are the minimum multiplier of the design loads. O i takes the
in-plane and O, takes the out-of-plane behaviour into account.

80 Advanced Analysis of Steel Structures



Aalborg University

24th May 2019

Simply Supported Beam in Abaqus, HE400A 172

Simply Supported Beam in Abaqus, HE400A

Input & Output from Abaqus

Width of the beam:

Design load on the beam :

Applied load in Abaqus :

Timestep in Abaqus :

Ultimate load of the beam :

Determing of o, :

Determing of Ogrop:

The inputs and parameters to optain and determine minimum load amplifier:

b := 300mm
. m 4 N
qdeSlgl‘l _—— = 3.3 X IO '_2
m

N

applied = 200000—2
m

t:=0.8317

5 N
Qult *= applied't = 1:7% 10 —
m

ek = =4.99

Adesign

Q, = 8.8032

cr.op

Determining of Utilization Ratio

Imperfection factor :

Verification of reduction
factor:

Cultk
N op = = 0.753
er.op

op 1= 0.34 For lateral torsional, rolled |-section buckling curve b
ALT.0 = 04

B:=0.75

2
1= 0.5[1 + o (M op = ALT.0) + BXgp } =0.773
1

XLT =
. ® B lopn 2
LT +{ELT P> gp

if(XpT < 1,"OK" , "Redimension” ) = "OK"

=0.842

and

1
if[XLT < >’ "OK" ,"Rcdimcnsion"] ="OK"

X op
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Imperfection factor :

Reduction factor

Simply Supported Beam in Abaqus, HE400A

Minimum value of

reductions factor :

Partial factor :

Verification of the element :

Utilization ratio :

a:= 034 buckling curve b!
P :=0.51 N 0.2) + X 2*0877

= 0. +ou( op ™ .)+ op | =0-

1
: X = —— =0.753
o+ / 8’ X gy

Xop = min(XLT,X) =0.753
v = L
M =3.416 if| M >1,"OK" ,"Redimension" | = "OK"

M1 M1
UR := =0.293 if < 1,"OK","Redimension" | ="OK"

itk Xop itk Xop
M1 ™M1

2/2
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Frame in Abaqus, HE400A

Input & Output from Abaqus

The inputs and parameters to optain and determine minimum load amplifier:

N
= 10000 —
m

Design load on the beam: ¢ design ©

. . N
Applied load in Abaqus : iad == 300000 —
Yapplied m

Tmestep in Abaqus : t:= 03133
. . 4 N
Ultimate load of the beam : dult *= dappliedt = 94x 10—

m

Determing of Ay ek =

=9.399
Adesign

Determing of a, o, : Qerop = 87758

Determining of Utilization Ratio

Cultk
N op = = 1.035
er.op

Imperfection factor : o= 0.34 For lateral torsional, rolled I-section buckling curve b

ALT.0 = 04
B:=0.75

2
1= 0.5[1 + o (N op = ALT.0) + BXgp } =101

1

XLT = =0.678
2 2
Prr+ J ST B gp
Verification of reduction if(XLT <1,"OK", "Redimension") ="OK"
factor:
and
. 1 . .
if]| XLT < >’ "OK" ,"Redimension" | = "OK"
X op
Imperfection factor : a:= 034 buckling curve b!
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Reduction factor :

Minimum value of

reductions factor :

Partial factor :

Verification of the element :

Utilization ratio :

Frame in Abaqus, HE400A

Xop = min(XLT,X) =0.575

2/2

v = L
Oyt k Xoj Oyt k Xoy
LS 4913 if _uxtop >1,"OK" ,"Redimension" | = "OK"
™I ™I
1 . 1 . .
UR:i= — =0.204 if| — <1,"OK","Redimension" | = "OK"
ult.k Xop Xtk Xop
M1 M1
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