
Master Thesis

- Advanced Analysis of Steel Structures -

Project Report by

Anders Anthonippilai

Aalborg University
M.Sc. in Structural and Civil Engineering

4th Semester
May 24th 2019



The School of Engineering and Science

Study Board of Civil Engineering
Thomas Manns Vej 23, 9220 Aalborg Ø

http://www.ses.aau.dk/

Title:

Advanced Analysis of Steel Structures

Theme:

Design of Steel Structures

Project Period:

Spring Semester 2019

Participant:

Anders Anthonippilai

Supervisor:

Johan Christian Clausen

Copies: 1

Page Numbers: 84

Date of Completion:

May 24th 2019

Abstract:

In this report 2 methods from the design guide
Eurocode (EC) 1993-1-1 has been employed
to highlight and quantify load carrying capac-
ity of steel structures.
Method 1 being an analytical method in EC
clause 6.3.3 where only hand calculation is
needed. The hand calculation was made with
the help of calculation program MathCAD.
Method 2 in EC clause 6.3.4 described as
the general method is a numerical approach
where the FEA software tool Abaqus has been
used in this project. General method has its
advantages of being applicable for material
non-linearities and large deformation.
A literature study provided description for the
theoretical background of the two methods
which has been presented in this report.
Finally, a comparison between the two meth-
ods has been made and discussed.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the author.

http://www.ses.aau.dk/


Preface

This report is written by 4th semester student as a part of the Master’s programme in Structural
and Civil Engineering at Aalborg University.

Prerequisites for reading the report is knowledge regarding the AAU PBL method, steel structures
in a technical perspective, methods from Eurocode, and basic knowledge of numerical solutions
using Abaqus/CAE.

Great gratitude is addressed to the supervisor of the project, Assoc. prof. Johan C. Clausen.

Reading guide

References to sources are in the form of the Harvard method, and a complete source list is stated
in the bibliography. References are made to sources with either “[Surname/organisation, Year]”
or “Surname/organisation [Year]” and, when relevant, specific pages, tables or figures may be
stated. Websites are specified by author, title, URL and date. Books are specified by author, title,
publisher and edition, where available. Papers are furthermore specified with journal, conference
papers with time and venue, when available.

The report contains figures and tables, which are enumerated according to the respective chapter.
E.g. the first figure in Chapter 5 has number 5.1, the second number 5.2 and so on.

References are made to folders on the enclosures-CD attached to the report, which contains digital
files of various kinds. The reference are in the form: “[Enclosures-CD, Folder name]”.

Aalborg University, May 24th 2019

Anders Anthonippilai
<aantho14@student.aau.dk>
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Symbols

a Imperfection factor
aLT Imperfection factor for lateral-torsional buckling

acr,op Minimum load amplifier out-of-plane
ault,k Minimum load amplifier in-plane

b Factor to use of determining critical elastic flexural-
torsional buckling force, Ncr,T F

bA Ratio between A and Ae f f

gM0 Partial coefficients
gM1 Partial coefficients
gM2 Partial coefficients
e Factor to use of determining cross-section classification
l Non-dimensional slenderness
l1 Factor to use of determining non-dimensional slenderness

l op Global non-dimensional slenderness
l LT Non-dimensional slenderness for lateral-torsional buckling
l T Non-dimensional slenderness for torsional and torsional-

flexural buckling
r Density

tEd Shear stress
u Poisson’s ratio
f Factor to use of determining reduction factor, c

fLT Factor to use of determining reduction factor for lateral-
torsional buckling, cLT

c Reduction factor for lateral buckling
cop Minimum reduction factor of c and cLT

cLT Reduction factor for lateral-torsional buckling
cy, cz Reduction factors due to flexural buckling for respectively

strong and weak axis
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fy Nominal values of yield strength of structural steel
fu Ultimate tensile strength of structural steel
h Height
i Radius of gyration about the relevant axis
ic Radius of polar gyration

kz, kw Effective length factors that depend on the support condi-
tions at the end sections

kii Interaction factor
q Design load

qapplied Applied load
qult Ultimate load

t Thickness of the examined point
yc Distance along the y axis between the shear centre and the

centroid of the section
za, zs Coordinates of the point of application of the load and of

the shear centre, relative to the centroid of the cross-section
zg zg = (za � zs)

z j Parameter that reflects the degree of asymmetry of the
cross-section in relation to the strong axis

t Time-step



A Area of cross-section
Ae f f Effective area of cross-section
Av Shear area of the cross-section

C1, C2, C3 Coefficients depending on the shape of the bending
moment diagram and on support conditions

E Young’s Modulus
G Shear Modulus
I Second moment of area
IT Torsion constant
Iz Moment of inertia about the weak axis
Iw Warping constant
L Geometrical length

Lcr Buckling length
LE Buckling length
LET Equivalent length

Mb,Rd Design buckling resistance moment
MEd Design value of the moment
Mc,Rd Design resistance for bending moment
Mcr Elastic critical moment for lateral-torsional buckling

My,Ed Design value of the moment about the strong axis
My,Rk Characteristic value of the moment about the strong axis
Mz,Ed Design value of the moment about the weak axis
Mz,Rk Characteristic value the moment about the weak axis

DMy,Ed , DMz,Ed Moments due to the shift of the centroidal axis
NEd Design value of the compression force

Nb,Rd Design buckling resistance
Nc,Rd Design resistance of the compression member
Ncr Elastic critical force

Ncr,T Elastic torsional buckling force
Ncr,T F Elastic torsional-flexural buckling force
Ncr,y Critical load for flexural buckling about the strong axis
NRk Characteristic value of the compression force
S First moment of area

UR Utilization ratio
Vc,Rd Design elastic shear resistance
VEd Design value of shear force

Vpl,Rd Plastic shear resistance
Wpl Plastic section modulus

Wel,min Elastic section modulus
We f f ,min Effective minimum section modulus

Wy Section modulus of the compression flange
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Introduction 1
In this chapter the projects relevance is discussed, some theoretical background is explained, and
material properties are presented.

Steel structures are favourable due to numerous reasons: the ability of prefabricating which
reduces errors on the construction sites, labour hours at construction sites, and cost of the material
compared with the space needed of cross-section.

A number of failures have been recorded regarding steel frames and therefore a closer examination
and insight has become essential. As an example of an accident of steel frame structure can be
seen in Figure 1.1 which took place in Rønbæk in 2016.

Figure 1.1. https://stiften.dk/article_gallery/420020

There are several approaches based on EC standards for a design of steel structures, which have
been used over the years. In [Standard, 2005] there is introduced a new methodology to be used
for steel structure design. The main purpose of this project is to compare the existing method with
the new proposed method and to make parameter and sensitivity studies.

1.1 Aim of the Project

In ultimate limit state (ULS) analyses of steel frames; compression forces and bending moments
are of concern, as they may lead to global instability manifested in either buckling or lateral torsion

Anders A., Master Thesis 1
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Anders A., Master Thesis 1. Introduction

buckling failure. The design guide Eurocode (EC) sets up procedures for evaluating the ULS and
in EC different designs approaches are suggested. Some EC-approaches are more simplifying
than others resulting that the final evaluation of the ULS depends on the method chosen for the
evaluation. The aim of the project is to highlight and quantify load carrying capacity of steel
frames employing different methods, ranging from basic methods to more advanced methods, and
with different steel configurations. In all methods a comparison will be made with FE-analyses to
various degree of complexity. Furthermore the method 6.3.4 from EC 3-1-1 (which is applicable
for material non-linearities and large deformations) will be investigated which requires non-linear
analysis.

1.1.1 Linear and Non-linear material behaviour

The global analysis of a steel structure provides with sufficient accuracy the internal forces,
moments, and the corresponding displacements. The internal forces and displacements may be
determined using either an elastic or plastic analysis. Elastic analysis is based on the assumption
of a linear stress-strain relation for steel (see Figure 1.2). Plastic analysis, assumes progressive
yielding of some cross-sections of the structures, normally leading to plastic hinges and a
redistribution of forces as explained in [da Silva et al., 2010]. For design purposes, steel is
idealized as an elastic-perfectly plastic material as seen in Figure 1.2 b.

Figure 1.2. Stress-strain relation of steel a) Real behaviour, b) Perfect elastic-plastic behaviour.

Sometimes it is also necessary to model a non-linear geometry analysis, referring to the second
order analysis. In the first order analysis the internal forces and displacements are obtained
with reference to the undeformed structure (small displacements assumption). In the second
order analysis the influence of the deformation of the structure is taken into account (large
displacements), the procedure and the methodology used is explained in Chapter 4. The different
deformation shapes influencing are explained and described furthermore in Section 1.2.

1.2 Instability Modes Regarding Steel Structures

As explained in [da Silva et al., 2010], the resistance of a steel member subjected to axial compres-
sion depends on the cross-section resistance or the occurrence of instability phenomena. As steel
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1.2. Instability Modes Regarding Steel Structures Aalborg University

members usually have high slenderness the design for compression is governed by the instability
phenomena such as:
• Flexural buckling
• Torsional buckling
• Flexural torsional buckling
• Lateral torsional buckling

The buckling resistance should be evaluated according to the relevant buckling mode and relevant
imperfections of real members, as described in the following sections.

1.2.1 Flexural Buckling

Flexural buckling is a phenomenon that occurs about the axis of the highest slenderness ratio and
the smallest radius of gyration. It can happen in any member subjected to compression, which in
the end will lead to deflection of the member. An illustration of the flexural buckling can be seen
in Figure 1.3.

Figure 1.3. Flexural buckling of a column, [da Silva et al., 2010].

1.2.2 Torsional Buckling

Torsional buckling is a form of buckling occurring about the longitudinal axis of a member, where
the center of the member remains straight while the rest of the section rotates. An illustration of
torsional buckling can be seen in Figure 1.4.

Anders A., Master Thesis 3
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Figure 1.4. Torsional buckling, [da Silva et al., 2010].

1.2.3 Flexural Torsional Buckling

According to [da Silva et al., 2010], flexural torsional buckling consists of the simultaneous
occurrence of torsional and bending deformations along the axis of the member. An illustration
of this can be seen in Figure 1.5.

Figure 1.5. Flexural torsional buckling, [da Silva et al., 2010].

1.2.4 Lateral Torsional Buckling

Lateral torsional buckling is as stated in [da Silva et al., 2010], characterized by lateral deformation
of the compressed part of the cross-section. In an I-profile, the compressed part will be one of the
flanges. As a part of the member will behave under compression, it will also simultaneously have
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one continuously restrained by the part of the section in tension. This will result in a deformation
of the cross-section where both lateral and torsion buckling is included. There is a difference
between constrained and unconstrained lateral torsional buckling as they will behave differently
under the buckling process. It is understood that with constrained lateral torsional buckling means
that a point of the member is restrained against deformations across the length of the member.
This means that the axis of rotation is made fixed, which is where the member buckles around
(see Figure 1.6). With unconstrained lateral torsional buckling, the axis of rotation is not given in

Figure 1.6. Lateral torsional buckling a) Longitudinal view, b) Cross-section near support, c) Cross-section
in center with lateral-torsional buckling.

advance, and it is therefore more complicated to determine the capacity, as it is dependent of the
members internal balance at buckling.

The point of application in respect to the load will influence the elastic critical moment of a
member. As stated in [da Silva et al., 2010], a gravity load applied below the shear centre C (that
coincides with the centroid, in case of doubly symmetric I or H sections) has a stabilizing effect
(Mcr,1 > Mcr), whereas the same load applied above this point has a destabilizing effect (Mcr,2 <
Mcr). This is illustrated in Figure 1.7.

Figure 1.7. Displacement influenced by elastic critical moment, [da Silva et al., 2010].

1.3 Methods

In order to achieve the aim of the project and be able to understand the behaviour of a steel frame, a
literature study is made to understand the behaviour of a steel frame and the parameters influencing
this. The focus is on literature explaining the different mechanisms of a frame, but also on EC 3
part 1-1, where detailed suggestions on how to calculate a steel frame are presented. In addition,
the different compositions of a steel structure is compared to investigate optimised solution. In
order to make a reasonable comparison between the analytical solution based on the equations in
the [Standard, 2005] and the models made in Abaqus software, a further understanding of Abaqus
is also a necessity. In this thesis Abaqus is used to analyse a frame numerically by the Finite
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Element Method (FEA). In addition, a parameter study is also conducted in order to elicit the
behaviour of a steel frame.

1.4 Limitations

The load applied in the project is a design load uniformly distributed and not the most critical load
combination of permanent, variable nor accidental loads. It seems fulfilling because the aim of
the project is to compare the two methods in EC and not to find an exact solution of a final design
of the structure.

Usually, there will be placed bracing along the steel frames to prevent the before mentioned
instability modes but in this project the structures are assumed not to have these kind of supports.

Because of the complexity of frame some parameters and geometries which are well suited for
an analysis of a frame are not included. Only some parameters has been chosen to be further
investigated.

6 Advanced Analysis of Steel Structures



Steel Structures 2
In this chapter the type of steel profile, static system, material properties of the steel structures
that will be investigated and analysed are presented.

2.1 Static system

In this project, two type of structures are examined. Firstly, a beam with simple support, as seen
in Figure 2.1, will be investigated to make a comparison between the different methods.

q = 10 kN/m

L = 5 m
A

A

A-A

A

A

Figure 2.1. Static model of a simply supported beam.

Secondly, a steel frame with pinned supports is analysed as seen in Figure 2.2.

q = 10 kN/m

L = 10 m

h = 5 m
y

x

z

Figure 2.2. Static model of a frame with pinned supports and fork supports in the corner.
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2.2 Profiles

The steel profile which will be used throughout the project is HE400A. The cross-section of
HE400A as it will be in reality can be seen in Figure 2.3 b). Because of the limitations of Abaqus
the fillet radius is being neglected as seen in Figure 2.3 a). This error can be ignored as the same
cross-section will be used in the analytical analysis.

Figure 2.3. HE400A steel profile a) Assumed HE400A profile b) Real HE400A profile

2.3 Material Properties

The material properties of the steel profile can be seen in Tabel 2.1 and found in [Jensen et al.,
2011].

Table 2.1. Material properties

Material Properties Values Units
Young’s Modulus, E 2.1⇥105 MPa
Shear Modulus, G 8.1⇥104 MPa
Yield strength of Steel, fy 235 MPa
Ultimate strength of Steel, fu 360 MPa
Poisson’s Ratio, n 0.3 -
Density, r 7850 kg

m3

These values are used to calculate design values from the characteristic values divided by appro-
priate partial factor gM:
• gM0, resistance of cross-sections to excessive yielding including local buckling (depending on
fy)
• gM1, resistance of members to member buckling
• gM2, resistance of cross-sections in tension to fracture (depending on fu)
where the recommended values of the partial factors are:
• gM0 = 1.00

8 Advanced Analysis of Steel Structures
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• gM1 = 1.10
• gM2 = 1.25

2.4 Beam

The normal force-, shear force-, and bending moment diagram for the simply supported beam can
be seen in Figure 2.4, 2.5, and 2.6. FEM Design software tool has been used.

Figure 2.4. Normal force diagram

Figure 2.5. Shear force diagram

Figure 2.6. Bending moment diagram

2.5 Frame

The normal force-, shear force-, and bending moment diagram for the frame model with pinned
supports at the bottom and fork supports in the corners can be seen in Figure 2.7, 2.8, and 2.9.

Anders A., Master Thesis 9
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Figure 2.7. Normal force diagram

Figure 2.8. Shear force diagram

Figure 2.9. Bending moment diagram

10 Advanced Analysis of Steel Structures



Analytical 3
In this chapter the theoretical background of the analytical analysis is presented. The method is
based on [Standard, 2005] and [da Silva et al., 2010]

3.1 Method 6.3.3

Firstly the analytical analysis is made for the simply supported beam and secondly the pinned
supported steel frame is analysed.

Before determining the occurrence of instability phenomena the cross-section resistance to axial
compression should be verified where the classification of cross-section is needed.

3.1.1 Classification of Cross-section

According to clause 5.5.2(1) in [Standard, 2005], four classes of cross-sections are defined,
depending on their rotation capacity and ability to form rotational plastic hinges:
• Class 1: Cross-sections are those which can form a plastic hinge with the rotation capacity
required from plastic analysis without reduction of the resistance.
• Class 2: Cross-sections are those which can develop their plastic resistance moment, but have
limited rotation capacity because of local buckling.
• Class 3: Cross-sections are those in which the stress in the extreme compression fibre of the
steel member, assuming an elastic distribution of stresses, can reach the yield strength. However,
local buckling is liable to prevent development of the plastic resistance moment.
• Class 4: Cross-sections are those in which local buckling will occur before the attainment of
yield stress in one or more parts of the cross section.

3.1.2 Compression Verification

According to clause 6.2.4(1) in EC, the cross-section resistance of axially compressed members
should be verified by the following condition:

NEd

Nc,Rd
 1 (3.1)

where

Anders A., Master Thesis 11
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NEd Design value of the compression force
Nc,Rd Design resistance of the compression member

For members with cross-section classification 1, 2, and 3 Nc,Rd is determined by:

Nc,Rd = A
fy

gM0
(3.2)

where

A Area of cross-section
gM0 Partial coefficient

For classification 4 it is determined by:

Nc,Rd = Ae f f
fy

gM0
(3.3)

where

Ae f f Effective area of cross-section

3.1.3 Shear Verification

The design value of the shear force should satisfy at each cross-section:

VEd

Vc,Rd
 1 (3.4)

where

VEd Design value of shear force
Vc,Rd Design elastic shear resistance determined by the Equation (3.5)

Vc,Rd =
tEd
fyp

3gM0

(3.5)

where

tEd Shear stress determined by the Equation (3.6)

tEd =
VEdS

It
(3.6)

where

12 Advanced Analysis of Steel Structures



3.1. Method 6.3.3 Aalborg University

S First moment of area
I Second moment of area
t Thickness of the examined point

In ultimate designing condition the plastic shear resistance will be used:

Vc,Rd =Vpl,Rd =

Av

✓
fyp
3

◆

gM0
(3.7)

where

Vpl,Rd Plastic shear resistance
Av Shear area of the cross-section

3.1.4 Bending Moment Verification

According to clause 6.2.5 in [Standard, 2005] the design value of the bending moment MEd at
each cross-section shall satisfy Equation (3.8).

MEd

Mc,Rd
 1 (3.8)

where

MEd Design value of the moment
Mc,Rd Design resistance moment

The design resistance for bending moment is depended on the cross-section classification which
can be seen in the following Equations (3.9) to (3.11).

Class 1 or 2 cross-sections:

Mc,Rd =
Wpl fy

gM0
(3.9)

Class 3 cross-sections:

Mc,Rd =
Wel,min fy

gM0
(3.10)

Class 4 cross-sections:

Mc,Rd =
We f f ,min fy

gM0
(3.11)

where

Anders A., Master Thesis 13
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Wpl Plastic section modulus
Wel,min Elastic section modulus
We f f ,min Effective minimum section modulus

3.1.5 Buckling Resistance of Compression

After verifying the cross-section resistance of axial compression and bending moment the next
step is to verify the buckling resistance. According to clause 6.3.1 in [Standard, 2005] the buckling
resistance of compression shall fulfil Equation (3.12).

NEd

Nb,Rd
 1 (3.12)

where

Nb,Rd Design buckling compression resistance

For class 1, 2, and 3 cross-section:

Nb,Rd = cA
fy

gM1
(3.13)

For class 4 cross-section:

Nb,Rd = cAe f f
fy

gM1
(3.14)

where

c Reduction factor

The reduction factor is determined from Equation (3.15).

c =
1

f +

q
f 2 �l 2

(3.15)

where

f Factor to use of determining c
l Non-dimensional slenderness

To determine reduction factor, f must be determined first. This lead to determining Equation
(3.17) and (3.18) where Figure 3.2 is used to determine the imperfection factor.

f = 0.5
h
1+a

⇣
l �0.2

⌘
+l 2i

(3.16)

where
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3.1. Method 6.3.3 Aalborg University

a Imperfection factor

For class 1, 2, and 3 cross-section:

l =

r
A fy

Ncr
(3.17)

For class 4 cross-section:

l =

r
Ae f f fy

Ncr
(3.18)

where

Ncr Elastic critical force for the relevant buckling mode based on the gross cross sectional properties

Elastic critical load is determined by Equation (3.19).

Ncr =
p2EI

L2
E

(3.19)

where

LE Buckling length

Buckling length can be determined by looking at the supports of a simple static model like a
simply support beam. But in the case of frame model the supports, loading, equality between
beam element and column element cross-section, and the geometry has influence on the buckling
length, [Ehlers, 2009].

Selection of buckling curve for a cross-section is decided by the type of cross-section, which axis
buckling is about, yield strength, and in the case of H-profile the flange thickness compared to the
width/height relation of the cross-section is important. This can also be seen in Figure 3.1.

The imperfection factor takes into account the effect of the imperfections and the values
corresponding to the appropriate buckling curve can be obtained from Table 3.1 but more precise
imperfection factors can be obtained by use of Table 3.1 orthe graph seen in Figure 3.2 by knowing
c and l .

Table 3.1. Imperfection factors for buckling curves.

Buckling curve Imperfection factor, a
a0 0.13
a 0.21
b 0.34
c 0.49
d 0.76

A graphical representation of Equation (3.15) can be seen in Figure ??.

Anders A., Master Thesis 15
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Figure 3.1. Selction of buckling curves, [Standard, 2005]

Figure 3.2. Buckling curves, [Standard, 2005].
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Flexural Buckling

The non-dimensional slenderness, l , for flexural buckling can be determined by buckling lenght,
Lcr, instead of the elastic critical force, Ncr, as seen in Equation (3.20) and (3.21).

For class 1, 2, and 3 cross-section:

l =

r
A fy

Ncr
=

Lcr

i
1
l1

(3.20)

For class 4 cross-section:

l =

r
Ae f f fy

Ncr
=

Lcr

i

p
bA

l1
(3.21)

where

Lcr Buckling length
i Radius of gyration about the relevant axis, determined using the properties of the gross

cross-section
bA Ratio between A and Ae f f
l1 Determined in Equation (3.23)

bA =
Ae f f

A
(3.22)

l1 = p

s
E
fy

= 93.9e (3.23)

e =

s
235
fy

(3.24)

Torsional and Torsional-flexural Buckling

The non-dimensional slenderness, l T , for torsional or torsional-flexural buckling can be
determined by Equation (3.25) and (3.26).

For class 1, 2, and 3 cross-section:

l T =

r
A fy

Ncr
(3.25)

Anders A., Master Thesis 17
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For class 4 cross-section:

l T =

r
Ae f f fy

Ncr
(3.26)

where, Ncr = Ncr,T F but should satisfy Ncr < Ncr,T

Ncr,T Elastic torsional buckling force
Ncr,T F Elastic torsional-flexural buckling force

The critical elastic torsional buckling force, Ncr,T , can be determined by Equation (3.27):

Ncr,T =
1
i2c

✓
GIT +

p2EIw

L2
ET

◆
(3.27)

where

ic Radius of polar gyration determined by Equation (3.28)
IT Torsion constant
Iw Warping constant
LET Equivalent length that depends on the restrictions to torsion and warping at the end sections

i2c = y2
c +

Iy + Iz

A
(3.28)

where

yc Distance along the y axis between the shear centre and the centroid of the section

The critical elastic flexural-torsional buckling force, Ncr,T F , can be determined by Equation (3.29):

Ncr,T F =
1

2b


(Ncr,y +Ncr,T )�

q
(Ncr,y +Ncr,T )

2 �4bNcr,yNcr,T

�
(3.29)

where

Ncr,y Critical load for flexural buckling about the strong axis
b Factor given by b = 1� (yc/ic)2

3.1.6 Lateral-torsional Buckling Resistance

According to clause 6.3.2 in [Standard, 2005] the lateral-torsional buckling resistance is
determined by Equation (3.30).

MEd

Mb,Rd
 1 (3.30)

where
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Mb,Rd Design buckling resistance moment

The design buckling resistance moment is determined by Equation (3.31).

Mb,Rd = cLTWy
fy

gM1
(3.31)

where

cLT Reduction factor for lateral-torsional buckling
Wy Section modulus of the compression flange

The value of Wy is determined from Table 3.2.

Table 3.2. The value of Wy categorised by the cross-section classification.

Class 1 or 2 cross-section Wy =Wpl,y
Class 3 cross-section Wy =Wel,y
Class 4 cross-section Wy =We f f ,y

Reduction factor for lateral-torsional buckling is determined by Equation (3.32).

cLT =
1

fLT +

q
f 2

LT �l 2
LT

but cLT  1.0 (3.32)

fLT = 0.5
h
1+aLT

⇣
l LT �0.2

⌘
+l 2

LT

i
(3.33)

where

fLT Factor to use of determining reduction factor for lateral-torsional buckling
aLT Imperfection factor for lateral-torsional buckling
l LT Non-dimensional slenderness for lateral-torsional buckling

Imperfection factor for lateral-torsional buckling, aLT , is determined by the conditions seen in
Figure 3.3.

Figure 3.3. Buckling curves, [Standard, 2005].
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Non-dimensional slenderness lateral-torsional buckling is determined by the Equation (3.34).

l LT =

r
Wy fy

Mcr
(3.34)

where

Mcr Elastic critical moment for lateral-torsional buckling

The elastic critical moment, Mcr, can be determined according to [da Silva et al., 2010] by
Equation (3.35).

Mcr =C1
p2EIz

(kzL)2

("✓
kz

kw

◆2 Iw

Iz
+

(kz L)2 GIT

p2E Iz
+(C2 zg �C3 z j)

2

#0.5

� (C2 zg �C3 z j)

)

(3.35)

where

L Beam length
Iz Moment of inertia about the weak axis
C1, C2, and C3 Coefficients depending on the shape of the bending moment diagram and on

support conditions
kz and kw Effective length factors that depend on the support conditions at the end sections
zg = (za � zs) za and zs are the coordinates of the point of application of the load and of the

shear centre, relative to the centroid of the cross-section
z j Parameter that reflects the degree of asymmetry of the cross-section in relation

to the y axis

Parameter z j can be determined by Equation (3.36).

z j = zs �

0

@0.5
Z

A

�
y2 + z2�

✓
z
Iy

◆
dA

1

A (3.36)

The conservative values will be kz = 1 and kw = 1 which will be used further on in the analytical
solution.

The coefficients of the parameters C1, C2, and C3 for the Equation (3.35) can be determined by the
Figures 3.4, 3.5, and 3.6 depending on how the beam is loaded.

3.1.7 Bending and Axial Compression

According to [da Silva et al., 2010] and clause 6.3.3(1) two distinct situations should be
considered:
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Figure 3.4. Coefficients C1, C3, and kz factor for beams with end moments, [da Silva et al., 2010].

Figure 3.5. Coefficients C1, C2, C3, and kz factor for beams with transverse loads, [da Silva et al., 2010].
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Figure 3.6. Correction factors, kc, to determining C1 coefficient, [da Silva et al., 2010].

- Members not susceptible to torsional deformation, such as members of circular hollow section
or other sections restrained from torsion. Here, flexural buckling is the relevant instability mode.
- Members that are susceptible to torsional deformations, such as members of open section (I or
H sections) that are not restrained from torsion. Here, lateral torsional buckling tends to be the
relevant instability mode.[da Silva et al., 2010]

A single span member of doubly symmetric section is subjected to bending moment and axial
compression should satisfy Equation (3.37) and (3.38).

NEd

cy
NRk

gM1

+ kyy
My,Ed +DMy,Ed

cLT
My,Rk

gM1

+ kyz
Mz,Ed +DMz,Ed

Mz,Rk

gM1

 1.0 (3.37)

NEd

cz
NRk

gM1

+ kzy
My,Ed +DMy,Ed

cLT
My,Rk

gM1

+ kzz
Mz,Ed +DMz,Ed

Mz,Rk

gM1

 1.0 (3.38)

where

Interaction factors can be determined by formulas seen in Figure 3.7.

To be able to determine the interactions factors auxiliary terms are needed which can be seen in
Figure 3.8 and 3.9.

Equivalent factors of uniform moment, Cmi,0, is determined by the corresponding bending moment
diagrams which can be seen in Figure 3.10.
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NEd Design value of the compression force
NRk Characteristic value of the compression force
My,Ed Design value of the moment about the strong axis
My,Rk Characteristic value of the moment about the strong axis
Mz,Ed Design value of the moment about the weak axis
Mz,Rk Characteristic value the moment about the weak axis
DMy,Ed and DMz,Ed Moments due to the shift of the centroidal axis
cy and cz Reduction factors due to flexural buckling for respectively strong and weak axis
kyy, kyz, kzy, and kzz Interaction factors

Figure 3.7. Interaction factors according to [da Silva et al., 2010].

Equations (3.37) and (3.38) can now be checked for instability .

According to EC3-1-1 two methods are given for the calculation of the interaction factors. Method
1 and Method 2 (beskriv forskellen og hvorfor jeg går videre med Method 2 da IT er mindre end
Iy. Men selvom It er mindre end Iy så kan metode 1 anvendes hvis en formel eftervises.

The HE400B profile has been verified in MathCAD calculation by Method 2 and can be seen in
Appendix A.

3.2 Results

The utilization ratio determined by the analytical approach can be seen from Table 3.3.

The results will be discussed and compared to the results determined by the numerical approach
in Chapter 5.
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Figure 3.8. Auxiliary terms for the calculation of the interaction factors, ki j, [da Silva et al., 2010].
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Figure 3.9. Auxiliary terms for the calculation of the interaction factors, ki j, [da Silva et al., 2010].
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Figure 3.10. Equivalent factors of uniform moment, Cmi,0, [da Silva et al., 2010].

Table 3.3. Utilization Ratio, UR, determined by analytical approach.

Simply supported beam Strong axis 0.428
Simply supported beam Weak axis 0.318
Beam element of frame structure Strong axis 0.202
Beam element of frame structure Weak axis 0.157
Column element of frame structure Strong axis 0.140
Column element of frame structure Weak axis 0.136
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Numerical 4
In this chapter the general method proposed by [Standard, 2005] clause 6.3.4 is applied and
performed with Abaqus software as FEA tool and presented.

4.1 General method - Method 6.3.4

According to [Standard, 2005] clause 6.3.4 frames composed of beams or columns or beam-
columns subject to mono-axial bending and compression, the assessment for lateral torsional
buckling out of the plane of the frame may be performed in the following way:

• For the distribution of action effects on the frame resulting from the analysis of the frame for the
design loads the multiplier acr,op of these design loads to reach the elastic critical resistance of the
frame with regard to lateral deformations should be determined
• For the same distribution of action effects the minimum multiplier ault,k of the design loads
to reach the characteristic resistance of the frame without taking lateral torsional buckling into
account should be determined.

4.2 Abaqus

Abaqus FEA software includes several kinds of finite element programs. In this project
Abaqus/CAE has been used. Abaqus/CAE is described by [Simulia] as an interactive environment
used to create finite element models, submit Abaqus analyses, monitor and diagnose jobs, and
evaluate results.

The unit values used in Abaqus in this project are N, m, and kg.

4.2.1 Theory

Five aspects of an element characterize its behaviour, Simulia:
• Family
• Degrees of freedom (directly related to the element family)
• Number of nodes
• Formulation
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• Integration

Element type

Figure 4.1, shows the element families that are used most commonly in a stress analysis and used
in this project, [Simulia].

Figure 4.1. Element types used in this project, [Simulia]

Degrees of Freedom

The degrees of freedom are the fundamental variables calculated during the analysis. For a
stress/displacement simulation the degrees of freedom are the translations and, for shell and beam
elements, the rotations at each node, [Simulia].

Number of Nodes and Order of Interpolation

Displacements or other degrees of freedom are calculated at the nodes of the element. At
any other point in the element, the displacements are obtained by interpolating from the nodal
displacements. Usually the interpolation order is determined by the number of nodes used in the
element. Elements that have nodes only at their corners, such as the 8-node brick shown in Figure
4.2, use linear interpolation in each direction and are often called linear elements or first-order
elements. In Abaqus/Standard elements with midside nodes, such as the 20-node brick shown in
Figure 4.2, use quadratic interpolation and are often called quadratic elements or second-order
elements. Modified triangular or tetrahedral elements with midside nodes, such as the 10-node
tetrahedron shown in Figure 4.2, use a modified second-order interpolation and are often called
modified or modified second-order elements, [Simulia].

Figure 4.2. Node element types in Abaqus, [Simulia]

In this project the quadratic elements have been used.
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Integration

Abaqus uses numerical techniques to integrate various quantities over the volume of each element,
thus allowing complete generality in material behavior. Using Gaussian quadrature for most
elements, Abaqus evaluates the material response at each integration point in each element.
Some continuum elements in Abaqus can use full or reduced integration, a choice that can
have a significant effect on the accuracy of the element for a given problem. Shell, pipe, and
beam element properties can be defined as general section behaviors; or each cross-section of
the element can be integrated numerically, so that nonlinear response associated with nonlinear
material behavior can be tracked accurately when needed. In addition, a composite layered section
can be specified for shells and, in Abaqus/Standard, three-dimensional bricks, with different
materials for each layer through the section, [Simulia].

4.2.2 Boundary Conditions

Figure 4.3, 4.4, and 4.5 shows the boundary conditions of the beam model.

Figure 4.3. Boundary conditions of beam model.

The boundary condition in z-direction of beam model is set only at one end of the beam at one
point which is the crossing point of the web and bottom flange.

Boundary condtion of the frame model can be seen in Figure 4.6 and 4.7.

4.2.3 Loads

Figure 4.8, 4.9, and 4.10 shows the load applied of the beam model and frame model. Load has
been converted to pressure in beam model so it will be evenly distributed on top flange which
contains shell elements. On the frame model a line load has been applied.
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Figure 4.4. Boundary condition of beam model in x-direction.

Figure 4.5. Boundary condition of beam model in y-direction.
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Figure 4.6. Boundary condition of frame model at the bottom supports.

Figure 4.7. Boundary condition of frame model at the corner supports.

Figure 4.8. Load applied on beam model for bifurcation analysis.
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Figure 4.9. Load applied on beam model for large displacement analysis.

Figure 4.10. Load applied on frame model.

4.2.4 Mesh

The mesh of beam model in both bifurcation analysis and large displacement analysis can be seen
in Figure 4.11 and 4.12.

4.2.5 Simulation

There has to be made a bifurcation and large displacement analyses to get the minimum load
amplifier outputs. The bifurcation analysis provides the time-step before reaching yielding and
large displacement analysis provides the eigenvalue.

In Figure 4.13, 4.14,4.15, and 4.16 shows the choices made to achieve the wanted outputs.
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Figure 4.11. Beam element partitioning of bifurcation analysis.

Figure 4.12. Beam element partitioning of large displacement analysis.

4.2.6 Output

The outputs achieved by the simulations of both bifurcation and large displacement analyses can
be seen in Figure 4.17, 4.18, 4.19, 4.20, and 4.21.

The outputs have been used in Appendix B with the formulas presented in the following sections.

4.3 Determining of the Minimum Load Amplifier, ault,k

Firstly the ultimate load, qult , will be determined by Equation (4.1).

qult = qappliedt (4.1)
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Figure 4.13. Bifurcation analysis.

Figure 4.14. Large displacement analysis - Basic.

where

qapplied Applied load in Abaqus
t Time-step before reaching the yielding in Abaqus

The minimum load amplifier, ault,k, can be determined by Equation (4.2).

ault,k =
qult

q
(4.2)

where
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Figure 4.15. Large displacement analysis - Incrementation.

Figure 4.16. Large displacement analysis - Iteration method.

ault,k Minimum load amplifier of the design loads to reach the characteristic resistance of the
frame without taking lateral torsional buckling into account

q Design load
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Figure 4.17. Time-step output from beam model analysis.

Figure 4.18. Time-step and displacement plot of beam model.

Figure 4.19. 1st eigenvalue of beam model.
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Figure 4.20. Time-step output from frame model analysis.

Figure 4.21. 1st eigenvalue of frame model.

4.4 Determining of the Minimum Load Amplifier, acr,op

The minimum load amplifier, acr,op, is obtained by making a buckle analysis in Abaqus with
employing the design load.

4.4.1 Determining of the Utilization Ratio

When the minimum load amplifier for both in-plane and out-of-plane behaviour is obtained the
utilization ratio of the structure can be determined.

Firstly the the global non-dimensional slenderness, l op, of the structure is determined by the
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Equation (4.3).

l op =

rault,k

acr,op
(4.3)

where

acr,op Minimum load amplifier of the design loads to reach the elastic critical resistance of the
frame with regard to lateral torsional deformation

Secondly the reduction factor for lateral torsional buckling, cLT , is determined by the Equation
(4.4) where the factor fLT is determined by Equation (4.5).

cLT =
1

fLT +

q
f 2

LT �bl 2
LT

but cLT  1.0 (4.4)

where

b Correction factor for the lateral torsional buckling curves
l LT Plateau length of the lateral torsional buckling curves

fLT = 0.5
h
1+aLT

⇣
l op �l LT

⌘
+bl 2

LT

i
(4.5)

where

aLT Imperfection factor for lateral torsional buckling

Reduction factor for lateral torsional buckling, cLT , is determined but it is a necessity for the
lateral buckling, c , to be determined. Because the minimum value of cLT and c will result in the
maximum utilization ratio. Determining of reduction factor for lateral buckling will be similar
to the analytical calculation Equation (3.15) and (3.16) where the non-dimensional slenderness is
replaced by l op determined in Equation (4.3).

Verification of the structural element is made by the Equation (4.6).

ault,kcop

gM1
� 1.0 (4.6)

where

cop The minimum value of cLT and c

The utilization ratio, UR, is determined by the Equation (4.7).

UR =
1

ault,kcop

gM1

but UR  1.0 (4.7)

38 Advanced Analysis of Steel Structures



4.5. Results Aalborg University

4.5 Results

The utilization ratio determined by the numerical approach in Appendix B can be seen from Table
4.1.

Table 4.1. Utilization Ratio, UR, determined by numerical approach.

Simply supported beam 0.293
Beam element of frame structure 0.204

The results will be discussed and compared to the results determined by the analytical approach
in Chapter 5.

Anders A., Master Thesis 39



Comparison 5
In this chapter results from the analytical method 6.3.3 and numerical approach method 6.3.4 will
be compared and discussed.

The results from the analytical and numerical approach is shown in Table 5.1.

Table 5.1. Utilization ratio, UR, determined by analytical and numerical approach.

Structural element Axis Analytical Numerical
1� Simply supported beam Strong axis 0.428 0.293
Simply supported beam Weak axis 0.318 -
2� Beam element of frame structure Strong axis 0.202 0.204
Beam element of frame structure Weak axis 0.157 -
Column element of frame structure Strong axis 0.140 -
Column element of frame structure Weak axis 0.136 -

From Table 5.1 it can be seen that UR only for the simply support beam about the strong axis and
beam element of frame structure about the strong axis can be compared.

Deviation between analytical and numerical approach for the two structural elements are given as:
• 1� Simply supported beam UR about strong axis deviates 46.1%
• 2� Beam element of frame structure UR about strong axis deviates 1.0%

The tendency clearly shows with 1� simply supported beam the analytical approach provides the
most conservative UR with deviation of 46.1%.

But in the case of 2� beam element of frame structure in both analytical and numerical for the UR
shows similar results with numerical solution slightly being conservative by 1.0%.
One of the reason why the UR for 2� frame model from Abaqus is being more conservative than
the analytical result could be that a convergence analysis is missing. There should have been
made a convergence analysis of the discretization of the structure. Too few elements would result
in incorrect and inapplicable UR and too many would make the computational time of simulations
too time consuming.

In the following problems and uncertainties of the analytical approach 6.3.3 method is showcased.
During the calculation some parameters and determining of these, e.g. buckling length of frame
structure was dealt with some uncertainties which could have led to some wrong results in the end.

There is a discrepancy in the analytical determination of buckling curve for lateral and torsional
bending between [Standard, 2005] and [da Silva et al., 2010]. The impact of difference in the
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results should be investigated.

In the following problems and uncertainties of the numerical approach 6.3.4 general method is
showcased.
When using Abaqus a result is obtained faster compared to undergo many calculations and
formulas in the analytical method. But during analytical calculation there will be conditions that
should be satisfied and thereby an ongoing control will be made.
Even though numerical method is faster to achieve result with this could lead to incorrect results
and without any conditions nor equations to confirm the result can easily be misleading without
having knowledge of this.
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In this chapter the conclusion of the results from the analytical method 6.3.3 and numerical
approach method 6.3.4 will be discussed. Further investigations intended or provided in an
extension of this project will be described.

As the project and report was intended an investigation of method proposed in [Standard, 2005]
clause 6.3.3 and clause 6.3.4 has been performed and compared by the final outputs. The
theoretical background of both methods was examined during the calculations and procedures.

It should be mentioned that the steel structures in this project with beam and frame model and its
simplicity made the analytical approach accommodating. If more complexity was introduced
to the structures; e.g. the profile was tapered, the applied load was unevenly distributed or
added more supports and placed irregularly obtaining results analytically would be difficult. The
deviation between the clause 6.3.3 and 6.3.4 in [Standard, 2005] would have been more significant.

Furthermore investigations could be made to compare the analytical and numerical approach:
• A structure or element that can not be categorised as standard profile
• Different supports and the effects of these
• Uneven distributed loading

There should have been made a convergence analysis of the amount of elements needed before
reaching a converging result. Which could lead to a applicable comparison between the accuracy
of results and time consumption of hand calculation and computational time of the simulations.

A parameter and sensitivity studies could have been made for the following:
• Shell and beam - Structural model analysed with both shell and beam elements and convergence
analysis for both cases
• Supports - the impact of different kind of supports of the results and deviation between the two
methods
• C1, C2, and C3 coefficients from the analytical approach should be examined because the values
are in an interval, which will cause a range in the end results

It can not be denied the visualization of the model in FEA software also being favourable when
choosing methods. Whether it is deformation, stress/strain or UR the impact of the values can
be seen. For inexperienced engineering student without any practical experience the visualization
gives an insight.

Both methods has some advantages and disadvantages but in the end both methods should be
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handled with proper understanding and knowledge of the material behaviour and using software.
This leads to the final mark:
In extension of this project an experimental execution can be a recommendable addition. Both
the analytical and numerical method can be compared to the reality and see how much the results
deviate.
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Analytical Calculation A
In Appendix A the analytical calculation has been made by use of MathCAD software.
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24th May 2019 Simply Supported Beam, HE400A 1/11

Simply Supported Beam, HE400A

Inputs 
q 10

kN
m

:=Line load :

Length of beam : l 10m:=

Internal Forces
Axial force : NEd 0kN:=

Shear force : VEd
1
2
q l 50 kN=:=

Bending moment : Mmax
1
8
q l2 125 kN m=:=

Material Properties
Yielding strength : fy 235MPa:=

Ultimate strength : fu 360MPa:=

Young modulus of elasticity : E 210 103MPa:=

Shear modulus : G 810 102MPa:=

Poisson's ratio : υ 0.3:=

Partial safety factors : γM0 1:= γM1 1.1:=

Constant to determine
cross-section classification : ε

235MPa
fy

1=:=

Cross-section Properties for HE400A
Height : h 390mm:=

Width : bf 300mm:=

Web thickness : tw 11mm:=

Flange thickness : tf 19mm:=

Web height: hw h 2 tf- 352 mm=:=

Radius : r 27mm:=
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24th May 2019 Simply Supported Beam, HE400A 2/11

Cross sectional area : A 15.9 103 mm2:=

Moment of inertia, y-axis : Iy 450.7 106 mm4:=

Elastic section
 modulus, y-axis : Wel.y 2310 103 mm3:=

Plastic section
 modulus, y-axis : Wpl.y 2560 103 mm3:=

Radius of giration, y-axis : iy 168mm:=

Cross sectional shear area : Av A 2 bf tf( )- tw 2 r+( ) tf+ 5735 mm2=:=

Moment of inertia, z-axis : Iz 85.6 106 mm4:=

Elastic section
 modulus, z-axis : Wel.z 571 103 mm3:=

Plastic section
 modulus, z-axis : Wpl.z 873 103 mm3:=

Radius of giration, z-axis : iz 73mm:=

Warping Constant : Iw 2940 109 mm6:=

St. Venant torsional constant : It 1900 103 mm4:=
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24th May 2019 Simply Supported Beam, HE400A 3/11

Cross-section Classification

Internal Web in Compression
Effected length : cw h 2 tf- 2.r- 352 mm=:=

Factor to determine
cross-section classification :

cw
tw

32=

Cross-section class : Webclass 1
cw
tw

33εif

2 33 ε
cw
tw

 38εif

3 38 ε
cw
tw

 42εif

4 42 ε
cw
tw

<if

1=:=

Outer Flange in Compression

Effected length : cf
bf tw- 2 r-

2
144.5 mm=:=

Factor to determine
cross-section classification : cf

tf
7.6=

Cross-section class : Flangeclass 1
cf
tf

33εif

2 33 ε
cf
tf

 38εif

3 38 ε
cf
tf

 42εif

4 42 ε
cf
tf

<if

1=:=
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24th May 2019 Simply Supported Beam, HE400A 4/11

Compression resistance

Axial force : NEd 0kN:=

Resistance axial force : Nc.Rd A
fy
γM0

 3736.5 kN=:= For cross-section class 1, 2 and 3!

NEd
Nc.Rd

0=

Validation of resistance of
compression : if

NEd
Nc.Rd

1 "OK", "Redimension", 








"OK"=

Shear Resistance

Shear force : VEd 50 kN=

Resistance shear force : Vc.Rd
Av

3

fy
γM0

 778.1 kN=:=

VEd
Vc.Rd

0.1=

Validation of resistance of
shear force : if

VEd
Vc.Rd

1 "OK", "Redimension", 








"OK"=

Bending Moment Resistance

Bending moment : MEd Mmax 125 kN m=:=

Resistance of bending, y-axis : Mc.Rd Wpl.y
fy
γM0

 601.6 kN m=:=

MEd
Mc.Rd

0.2=

Validation of resistance of
bending moment : if

MEd
Mc.Rd

1 "OK", "Redimension", 








"OK"=
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Elastic Critical Load for Torsional Buckling, Ncr,T

h tf-

tw
33.7= 10> Thin-walled section

bf
tf

15.8= 10> Thin-walled section

Determination of
torsion constant : IT

1
3
h tw-( ) tw3 2 bf tf

3
+



 1.54 106 mm4=:=

Determination of
warping constant : IW

tf h tw-( )2 bf
3



24
3.1 1012 mm6=:=

Distance along the y-axis between the shear centre and the centroid of
the section :

yc 0:=

Radius of polar gyration : ic yc
2 Iy Iz+

A
+ 183.7 mm=:=

Buckling lenght for the
torsional bucling mode : LET 1.0l 10 m=:=

Critical axial load for
torsional buckling : Ncr.T

1

ic
2
G IT

π
2 E IW

LET
2

+










 5584.8 kN=:=

Buckling Resistance of Compression

Uniform members in compression

Compression force : NEd 0kN:=

Determination of Slenderness for Flexural Buckling

λ1 93.9 ε 93.9=:=

Buckling length for simple supported beam in both y and z axis:

Lcr.y 10m:=

Lcr.z 10m:=

Slenderness, y-axis : λ_y
Lcr.y
iy

1
λ1
 0.63=:=
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Slenderness, y-axis : λ_z
Lcr.z
iz

1
λ1

 1.46=:=

Slenderness, maximum : λ_ max λ_y λ_z, ( ) 1.46=:=

Determination of buckling curve, α:

h
bf

1.3= if
h
bf

1.2

tf 19 mm= if tf 40mm

for S 235, buckling curve:
y-y => a =>

z-z => b =>

αy 0.21:=

αz 0.34:=

Determination of reduction factor, χ:
Factor to determine
reduction factor : ϕy 0.5 1 αy λ_y 0.2-( )+ λ_y

2
+



 0.746=:=

ϕz 0.5 1 αz λ_z 0.2-( )+ λ_z
2

+



 1.778=:=

ϕ max ϕy ϕz, ( ) 1.778=:=

Reduction factor, y-axis: χy
1

ϕy ϕy
2

λ_y
2

-+

0.877=:=

Reduction factor, z-axis: χz
1

ϕz ϕz
2

λ_z
2

-+

0.358=:=

Reduction factor, maximum : χ min χy χz, ( ) 0.358=:=

Verification of buckling resistance of compression:

Nb.Rd χ A
fy
γM1

 1215.4 kN=:=

NEd
Nb.Rd

0=

if
NEd
Nb.Rd

1 "OK", "Redimension", 








"OK"=
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Buckling Resistance of Bending
Uniform members in bending

Coefficent from figure 3.4 : C1 1.12:=

Coefficent from figure 3.4 : C2 0.45:=

Coefficent from figure 3.4 : C3 0.525:=

Factor depending on the
supports : kz 1:=

Factor depending on the
supports : kw 1:=

Coordinate of the applied load : za h:=

Coordinate of the applied load : zs
h
2

:=

zg za zs- 195 mm=:=

Parameter, assymetry of the
cross-section : zj 0mm:= for doubly symmetric cross-section

Determination of elastic critical moment for lateral-torsional buckling:

Mcr C1
π
2 E Iz

kz Lcr.z( )2


kz
kw









2 Iw
Iz


kz Lcr.z( )2 G IT

π
2 E Iz

+ C2 zg C3 zj-( )2+










0.5

C2 zg C3 zj-( )-













 491.7 kN=:=

Section modulus : Wy Wpl.y:= for Class 1 cross-section

Determination of imperfection factor for for Rolled
I-section for lateral-torsional buckling:

Dertermining of buckling
curve from Figure 3.1 : h

bf
1.3= íf

h
b

2 => αLT 0.34:= Buckling curve b

Non-dimensional slenderness : λ_LT
Wy fy

Mcr
1.106=:=

Factor to dertimne reduction
factor : ϕLT 0.5 1 αLT λ_LT 0.2-( )+ λ_LT

2
+



 1.266=:=

Reduction factor : χLT
1

ϕLT ϕLT
2

λ_LT
2

-+

0.532=:=
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Buckling resistance of
bending : Mb.Rd χLT Wy

fy
γM1

 290.7 kN m=:=

MEd
Mb.Rd

0.4=

Verification of buckling
resistance of bending: if

MEd
Mb.Rd

1 "OK", "Redimension", 








"OK"=

Buckling Resistance of Bending and axial compression
Uniform members in bending and axial compression

Characteristic compression
force : NRk A fy 3736.5 kN=:=

Characteristic moment,
y-axis : My.Rk Wpl.y fy 601.6 kN m=:=

Reduction factor, y-axis : χy 0.877=

Reduction factor, z-axis : χz 0.358=

Elastic critical load for flexural
bucklingm, y-axis : Ncr.y

π
2 E Iy

Lcr.y
2

9341.3 kN=:=

Elastic critical load for flexural
buckling, z-axis : Ncr.z

π
2 E Iz

Lcr.z
2

1774.2 kN=:=

Auxiliary term from Figure 3.6 : μy

1
NEd
Ncr.y

-

1 χy
NEd
Ncr.y

-

1=:=

Auxiliary term from Figure 3.6 : μz

1
NEd
Ncr.z

-

1 χz
NEd
Ncr.z

-

1=:=

Auxiliary term from Figure 3.6 : wy
Wpl.y
Wel.y

1.1=:=
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if wy 1.5 "Ok", "Redimension", ( ) "Ok"=

Auxiliary term from Figure 3.6 : wz
Wpl.z
Wel.z

1.53=:=

if wz 1.5 "Ok", "Redimension", ( ) "Redimension"=

Factor to determine Cij : npl
NEd
NRk
γM1

0=:=

Factor to determine Cij : aLT 1
It
Iy

- 0.996=:= where aLT 0

Factor to determine Ncr,TF : β 1
yc
ic









2

- 1=:=

Elastic critical axial load for flexural-torsional buckling, y-axis :

Ncr.TF
1
2 β

Ncr.y Ncr.T+( ) Ncr.y Ncr.T+( )2 4 β Ncr.y Ncr.T--



 5584.8 kN=:=

Non dimensional slenderness for lateral torsional buckling :
λ_0 λ_LT 1.1=:=

Because λ_0 > 0.2 C1

4

1
NEd
Ncr.z

-







1

NEd
Ncr.TF

-








 0.212= from figure 3.7

Becase λ_0 0.2> :

Equivalent moment factor : Cmy.0 1 0.03
NEd
Ncr.y

+ 1=:= from figure 3.8

εy
MEd
NEd

A
Wel.y

= for class 1 => εy 0:= because NEd 0=

Equivalent moment factor : Cmy Cmy.0 1 Cmy.0-( )
εyaLT

1 εyaLT+
+ 1=:=

Equivalent moment factor : Cmz 0:= The moment around the z-axiz is 0
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Equivalent moment factor : CmLT Cmy
2 aLT

1
NEd
Ncr.z

-







1

NEd
Ncr.T

-










 1=:= where CmLT 1

Determination of interaction factors:

My.Ed MEd 125 kN m=:=

Mpl.y.Rd Mc.Rd 601.6 kN m=:=

Mpl.z.Rd Wpl.z
fy
γM0

 205.2 kN m=:=

Mz.Ed 0kN m:=

Factor to determine Cyy : bLT 0.5 aLT λ_0
2


My.Ed

χLT Mpl.y.Rd


Mz.Ed
Mpl.z.Rd

 0=:=

Slenderness, maximum : λmax λ_:=

Auxiliary term from Figure 3.6 : Cyy 1 wy 1-( ) 2
1.6
wy

Cmy
2

 λmax-
1.6
wy

Cmy
2

 λmax-






npl bLT-








+ 1=:=

if Cyy
Wel.y
Wpl.y

 "Ok", "Redimension", 








"Ok"=

dLT 2 aLT
λ_0

0.1 λ_z
4

+


My.Ed
Cmy χLT Mpl.y.Rd

Mz.Ed
Cmz Mpl.z.Rd

+=Factor to determine Czy :

dLT 2 aLT
λ_0

0.1 λ_z
4

+
 0.476=:=

Auxiliary term from Figure 3.6 : Czy 1 wy 1-( ) 2 14
Cmy

2
λmax

wy
5

-










npl dLT-










+ 0.949=:=

if Czy 0.6
wy
wz


Wel.y
Wpl.y

 "Ok", "Redimension", 






"Ok"=

Interaction factor : kyy Cmy CmLT
μy

1
NEd
Ncr.y

-


1
Cyy

 1=:=
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Interaction factor : kzy Cmy CmLT
μz

1
NEd
Ncr.y

-


1
Czy

 0.6
wz
wy

 0.7=:=

Equation (3.30) - Strong axis :
NEd

χy NRk

γM1

kyy
MEd

χLT
My.Rk
γM1



+ 0.428=

if
NEd

χy NRk

γM1

kyy
MEd

χLT
My.Rk
γM1



+ 1 "Ok", "Redimension", 












"Ok"=

Equation (3.30) - Weak axis :
NEd

χz NRk

γM1

kzy
MEd

χLT
My.Rk
γM1



+ 0.318=

if
NEd

χz NRk

γM1

kzy
MEd

χLT
My.Rk
γM1



+ 1 "Ok", "Redimension", 












"Ok"=
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Beam Element of the Frame, HE400A

Inputs 
q 10

kN
m

:=Line load :

Length of beam : l 10m:=

Internal Forces - Obtained from FEM Design Software

Axial force : NEd 14kN:=

Shear force : VEd 56kN:=

Bending moment : MEd 70kN m:= Mmax 71kN m:=

Material Properties
Yielding strength : fy 235MPa:=

Ultimate strength : fu 360MPa:=

Young modulus of elasticity : E 210 103MPa:=

Shear modulus : G 810 102MPa:=

Poisson's ratio : υ 0.3:=

Partial safety factors : γM0 1:= γM1 1.1:=

Constant to determine
cross-section classification : ε

235MPa
fy

1=:=

Cross-section Properties for HE400A
Height : h 390mm:=

Width : bf 300mm:=

Web thickness : tw 11mm:=

Flange thickness : tf 19mm:=

Web height: hw h 2 tf- 352 mm=:=
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Radius : r 27mm:=

Cross sectional area : A 15.9 103 mm2:=

Moment of inertia, y-axis : Iy 450.7 106 mm4:=

Elastic section
 modulus, y-axis : Wel.y 2310 103 mm3:=

Plastic section
 modulus, y-axis : Wpl.y 2560 103 mm3:=

Radius of giration, y-axis : iy 168mm:=

Cross sectional shear area : Av A 2 bf tf( )- tw 2 r+( ) tf+ 5735 mm2=:=

Moment of inertia, z-axis : Iz 85.6 106 mm4:=

Elastic section
 modulus, z-axis : Wel.z 571 103 mm3:=

Plastic section
 modulus, z-axis : Wpl.z 873 103 mm3:=

Radius of giration, z-axis : iz 73mm:=

Warping Constant : Iw 2940 109 mm6:=

St. Venant torsional constant : It 1900 103 mm4:=
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Cross-section Classification

Internal Web in Compression
Effected length : cw h 2 tf- 2.r- 352 mm=:=

Factor to determine
cross-section classification :

cw
tw

32=

Cross-section class : Webclass 1
cw
tw

33εif

2 33 ε
cw
tw

 38εif

3 38 ε
cw
tw

 42εif

4 42 ε
cw
tw

<if

1=:=

Outer Flange in Compression

Effected length : cf
bf tw- 2 r-

2
144.5 mm=:=

Factor to determine
cross-section classification : cf

tf
7.6=

Cross-section class : Flangeclass 1
cf
tf

33εif

2 33 ε
cf
tf

 38εif

3 38 ε
cf
tf

 42εif

4 42 ε
cf
tf

<if

1=:=
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Compression resistance

Axial force : NEd 14 kN=

Resistance axial force : Nc.Rd A
fy
γM0

 3736.5 kN=:= For cross-section class 1, 2 and 3!

NEd
Nc.Rd

3.7 10 3-
=

Validation of resistance of
compression : if

NEd
Nc.Rd

1 "OK", "Redimension", 








"OK"=

Shear Resistance

Shear force : VEd 56 kN=

Resistance shear force : Vc.Rd
Av

3

fy
γM0

 778.1 kN=:=

VEd
Vc.Rd

0.1=

Validation of resistance of
shear force : if

VEd
Vc.Rd

1 "OK", "Redimension", 








"OK"=

Bending Moment Resistance

Bending moment : Mmax 71 kN m=

Resistance of bending, y-axis : Mc.Rd Wpl.y
fy
γM0

 601.6 kN m=:=

MEd
Mc.Rd

0.1=

Validation of resistance of
bending moment : if

MEd
Mc.Rd

1 "OK", "Redimension", 








"OK"=
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Elastic Critical Load for Torsional Buckling, Ncr,T

h tf-

tw
33.7= 10> Thin-walled section

bf
tf

15.8= 10> Thin-walled section

Determination of
torsion constant : IT

1
3
h tw-( ) tw3 2 bf tf

3
+



 1.54 106 mm4=:=

Determination of
warping constant : IW

tf h tw-( )2 bf
3



24
3.1 1012 mm6=:=

Distance along the y-axis between the shear centre and the centroid of
the section :

yc 0:=

Radius of polar gyration : ic yc
2 Iy Iz+

A
+ 183.7 mm=:=

Buckling lenght for the
torsional buckling mode : LET 0.5l 5 m=:=

Critical axial load for
torsional buckling : Ncr.T

1

ic
2
G IT

π
2 E IW

LET
2

+










 11244.7 kN=:=

Buckling Resistance of Compression

Uniform members in compression

Compression force : NEd 14 kN=

Determination of Slenderness for Flexural Buckling

λ1 93.9 ε 93.9=:=

Buckling length for simple supported beam in both y and z axis:

Lcr.y LET 5m=:=

Lcr.z 1.0 l 10m=:=
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Slenderness, y-axis : λ_y
Lcr.y
iy

1
λ1

 0.32=:=

Slenderness, z-axis : λ_z
Lcr.z
iz

1
λ1

 1.46=:=

Slenderness, maximum : λ_ max λ_y λ_z, ( ) 1.46=:=

Determination of buckling curve, α:

h
bf

1.3= if
h
bf

1.2

tf 19 mm= if tf 40mm

for S 235, buckling curve:
y-y => a =>

z-z => b =>

αy 0.21:=

αz 0.34:=

Determination of reduction factor, χ:
Factor to determine
reduction factor : ϕy 0.5 1 αy λ_y 0.2-( )+ λ_y

2
+



 0.563=:=

ϕz 0.5 1 αz λ_z 0.2-( )+ λ_z
2

+



 1.778=:=

ϕ max ϕy ϕz, ( ) 1.778=:=

Reduction factor, y-axis: χy
1

ϕy ϕy
2

λ_y
2

-+

0.973=:=

Reduction factor, z-axis: χz
1

ϕz ϕz
2

λ_z
2

-+

0.358=:=

Reduction factor, maximum : χ min χy χz, ( ) 0.358=:=

Verification of buckling resistance of compression:

Nb.Rd χ A
fy
γM1

 1215.4 kN=:=

NEd
Nb.Rd

0=
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if
NEd
Nb.Rd

1 "OK", "Redimension", 








"OK"=

Buckling Resistance of Bending
Uniform members in bending

Coefficent from figure 3.6 : kc 0.90:=

Coefficent from figure 3.4 : C1
1
kc









2
1.2=:=

Coefficent from figure 3.3 : C2 0:= When Subjected end moment

Coefficent from figure 3.3 : C3 0:=

Factor depending on the
supports : kz 1:=

Factor depending on the
supports : kw 1:=

Coordinate of the applied load : za h:=

Coordinate of the applied load : zs
h
2

:=

zg za zs- 195 mm=:=

Parameter, assymetry of the
cross-section : zj 0mm:= for doubly symmetric cross-section

Determination of elastic critical moment for lateral-torsional buckling:

Mcr C1
π
2 E Iz

kz Lcr.z( )2


kz
kw









2 Iw
Iz


kz Lcr.z( )2 G IT

π
2 E Iz

+ C2 zg C3 zj-( )2+










0.5

C2 zg C3 zj-( )-













 708.6 kN m=:=

Section modulus : Wy Wpl.y:= for Class 1 cross-section

Determination of imperfection factor for for Rolled
I-section for lateral-torsional buckling:

Dertermining of buckling
curve from Figure 3.1 : h

bf
1.3= íf

h
b

2 => αLT 0.34:= Buckling curve b
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Non-dimensional slenderness : λ_LT
Wy fy

Mcr
0.921=:=

Factor to dertimne reduction
factor : ϕLT 0.5 1 αLT λ_LT 0.2-( )+ λ_LT

2
+



 1.047=:=

Reduction factor : χLT
1

ϕLT ϕLT
2

λ_LT
2

-+

0.647=:=

Buckling resistance of
bending : Mb.Rd χLT Wy

fy
γM1

 354.1 kN m=:=

MEd
Mb.Rd

0.2=

Verification of buckling
resistance of bending: if

MEd
Mb.Rd

1 "OK", "Redimension", 








"OK"=

Buckling Resistance of Bending and axial compression
Uniform members in bending and axial compression

Characteristic compression
force : NRk A fy 3736.5 kN=:=

Characteristic moment,
y-axis : My.Rk Wpl.y fy 601.6 kN m=:=

Reduction factor, y-axis : χy 0.973=

Reduction factor, z-axis : χz 0.358=

Elastic critical load for flexural
buckling, y-axis : Ncr.y

π
2 E Iy

Lcr.y
2

37365.1 kN=:=

Elastic critical load for flexural
buckling, z-axis : Ncr.z

π
2 E Iz

Lcr.z
2

1774.2 kN=:=

Auxiliary term from Figure 3.6 : μy

1
NEd
Ncr.y

-

1 χy
NEd
Ncr.y

-

1=:=
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Auxiliary term from Figure 3.6 : μz

1
NEd
Ncr.z

-

1 χz
NEd
Ncr.z

-

0.995=:=

Auxiliary term from Figure 3.6 : wy
Wpl.y
Wel.y

1.1=:=

if wy 1.5 "Ok", "Redimension", ( ) "Ok"=

Auxiliary term from Figure 3.6 : wz
Wpl.z
Wel.z

1.53=:=

The value is so close to 1,5
that it will be neglected!if wz 1.5 "Ok", "Redimension", ( ) "Redimension"=

Factor to determine Cij : npl
NEd
NRk
γM1

0.0041=:=

Factor to determine Cij : aLT 1
It
Iy

- 0.996=:= where aLT 0

Factor to determine Ncr,TF : β 1
yc
ic









2

- 1=:=

Elastic critical axial load for flexural-torsional buckling, y-axis :

Ncr.TF
1
2 β

Ncr.y Ncr.T+( ) Ncr.y Ncr.T+( )2 4 β Ncr.y Ncr.T--



 11244.7 kN=:=

Non dimensional slenderness for lateral torsional buckling :
λ_0 λ_LT 0.9=:=

Because λ_0 > 0.2 C1

4

1
NEd
Ncr.z

-







1

NEd
Ncr.TF

-








 0.222= from figure 3.9

Becase λ_0 0.2> :

Equivalent moment factor : Cmy.0 1
π
2 E Iy 7 mm

l2 Mmax
1-











NEd
Ncr.y

+ 1=:= from figure 3.10 and
deflection obtained from FEM
Design 
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εy
Mmax
NEd

A
Wel.y

 34.9=:= for class 1 => εy 0:=

Equivalent moment factor : Cmy Cmy.0 1 Cmy.0-( )
εyaLT

1 εyaLT+
+ 1=:=

Equivalent moment factor : Cmz 0:= The moment around the z-axiz is 0

Equivalent moment factor : CmLT Cmy
2 aLT

1
NEd
Ncr.z

-







1

NEd
Ncr.T

-










 1=:= where CmLT 1

Determination of interaction factors:

My.Ed Mmax 71 kN m=:=

Mpl.y.Rd Mc.Rd 601.6 kN m=:=

Mpl.z.Rd Wpl.z
fy
γM0

 205.2 kN m=:=

Mz.Ed 0kN m:=

Factor to determine Cyy : bLT 0.5 aLT λ_0
2


My.Ed

χLT Mpl.y.Rd


Mz.Ed
Mpl.z.Rd

 0=:=

Slenderness, maximum : λmax λ_:=

Auxiliary term from Figure 3.6 : Cyy 1 wy 1-( ) 2
1.6
wy

Cmy
2

 λmax-
1.6
wy

Cmy
2

 λmax-






npl bLT-








+ 1=:=

if Cyy
Wel.y
Wpl.y

 "Ok", "Redimension", 








"Ok"=

dLT 2 aLT
λ_0

0.1 λ_z
4

+


My.Ed
Cmy χLT Mpl.y.Rd

Mz.Ed
Cmz Mpl.z.Rd

+=Factor to determine Czy :

dLT 2 aLT
λ_0

0.1 λ_z
4

+
 0.396=:=

Auxiliary term from Figure 3.6 : Czy 1 wy 1-( ) 2 14
Cmy

2
λmax

wy
5

-










npl dLT-










+ 0.953=:=
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if Czy 0.6
wy
wz


Wel.y
Wpl.y

 "Ok", "Redimension", 






"Ok"=

Interaction factor : kyy Cmy CmLT
μy

1
NEd
Ncr.y

-


1
Cyy

 1=:=

Interaction factor : kzy Cmy CmLT
μz

1
NEd
Ncr.y

-


1
Czy

 0.6
wz
wy

 0.7=:=

Equation (3.30) - Strong axis :
NEd

χy NRk

γM1

kyy
MEd

χLT
My.Rk
γM1



+ 0.202=

if
NEd

χy NRk

γM1

kyy
MEd

χLT
My.Rk
γM1



+ 1 "Ok", "Redimension", 












"Ok"=

Equation (3.30) - Weak axis :
NEd

χz NRk

γM1

kzy
MEd

χLT
My.Rk
γM1



+ 0.157=

if
NEd

χz NRk

γM1

kzy
MEd

χLT
My.Rk
γM1



+ 1 "Ok", "Redimension", 












"Ok"=
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Column Element of the Frame, HE400A

Inputs 

q 10
kN
m

:=Line load :

Length of column : l 5m:=

Internal Forces - Optained from FEM Design Software
Axial force : NEd 62kN:=

Shear force : VEd 14kN:=

Bending moment : MEd 70kN m:=

Material Properties
Yielding strength : fy 235MPa:=

Ultimate strength : fu 360MPa:=

Young's modulus of elasticity : E 210 103MPa:=

Shear modulus : G 810 102MPa:=

Poisson's ratio : υ 0.3:=

Partial safety factors : γM0 1:= γM1 1.1:=

Constant to determine
cross-section classification : ε

235MPa
fy

1=:=

Cross-section Properties for HE400A
Height : h 390mm:=

Width : bf 300mm:=

Web thickness : tw 11mm:=

Flange thickness : tf 19mm:=

Web height: hw h 2 tf- 352 mm=:=

Radius : r 27mm:=
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Cross sectional area : A 15.9 103 mm2:=

Moment of inertia, y-axis : Iy 450.7 106 mm4:=

Elastic section
 modulus, y-axis : Wel.y 2310 103 mm3:=

Plastic section
 modulus, y-axis : Wpl.y 2560 103 mm3:=

Radius of giration, y-axis : iy 168mm:=

Cross sectional shear area : Av A 2 bf tf( )- tw 2 r+( ) tf+ 5735 mm2=:=

Moment of inertia, z-axis : Iz 85.6 106 mm4:=

Elastic section
 modulus, z-axis : Wel.z 571 103 mm3:=

Plastic section
 modulus, z-axis : Wpl.z 873 103 mm3:=

Radius of giration, z-axis : iz 73mm:=

Warping Constant : Iw 2940 109 mm6:=

St. Venant torsional constant : It 1900 103 mm4:=
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Cross-section Classification

Internal Web in Compression
cw h 2 tf- 2.r- 298 mm=:=

cw
tw

27.1=

Webclass 1
cw
tw

33εif

2 33 ε
cw
tw

 38εif

3 38 ε
cw
tw

 42εif

4 42 ε
cw
tw

<if

1=:=

Outer Flange in Compression

cf
bf tw- 2 r-

2
117.5 mm=:=

cf
tf

6.2=

Flangeclass 1
cf
tf

33εif

2 33 ε
cf
tf

 38εif

3 38 ε
cf
tf

 42εif

4 42 ε
cf
tf

<if

1=:=

Compression resistance
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NEd 62 kN=

Nc.Rd A
fy
γM0

 3736.5 kN=:=

NEd
Nc.Rd

0.017=

if
NEd
Nc.Rd

1 "OK", "Redimension", 








"OK"=

Shear Resistance

VEd 14 kN=

Vc.Rd
Av

3

fy
γM0

 778.1 kN=:=

VEd
Vc.Rd

0.018=

if
VEd
Vc.Rd

1 "OK", "Redimension", 








"OK"=

Bending Moment Resistance

MEd 70 kN m=

Mc.Rd Wpl.y
fy
γM0

 601.6 kN m=:=

MEd
Mc.Rd

0.116=

if
MEd
Mc.Rd

1 "OK", "Redimension", 








"OK"=

Determening  of critical load

I Lbeam

I0 hcolumn

Lbeam
hcolum

= 10m
5m

2=
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The value of beta is determined by the knowlegde of the moment of inertia of the
beam and columns of the frame structure and also the support conditions.

beta 2.62:=

Buckling lenght, y-axis : Lcr.y beta 5 m 13.1m=:=

Critical load, y-axis :
Ncr.y

π
2 E Iy

Lcr.y
2

5.4 103 kN=:=

Buckling lenght, z-axis : Lcr.z l 5 m=:= The column is simply support in the z-axis

Critical load, z-axis :
Ncr.z

π
2 E Iz

Lcr.z
2

7.1 103 kN=:=

Elastic Critical Load for Torsional Buckling, Ncr,T

h tf-

tw
33.7= 10> Thin-walled section
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bf
tf

15.8= 10> Thin-walled section

Determination of
torsion constant : IT

1
3
h tw-( ) tw3 2 bf tf

3
+



 1.54 106 mm4=:=

Determination of
warping constant : IW

tf h tw-( )2 bf
3



24
3.1 1012 mm6=:=

Distance along the y-axis between the shear centre and the centroid of
the section :

yc 0:=

Radius of polar gyration : ic yc
2 Iy Iz+

A
+ 183.7 mm=:=

Buckling lenght for the
torsional bucling mode : LET Lcr.y 13.1 m=:=

Critical axial load for
torsional buckling : Ncr.T

1

ic
2
G IT

π
2 E IW

LET
2

+










 4797.5 kN=:=

Buckling Resistance of Compression

Uniform members in compression

Determination of Slenderness for Flexural Buckling

λ1 93.9 ε 93.9=:=

Buckling length for the column in the frame structure in both y and z axis:

λ_y
Lcr.y
iy

1
λ1

 0.83=:=

λ_z
Lcr.z
iz

1
λ1

 0.73=:=

λ_ max λ_y λ_z, ( ) 0.83=:=

Determination of buckling curve, α:
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h
bf

1.3= if
h
bf

1.2

tf 19 mm= if tf 40mm

for S 235, buckling curve:
y-y => a =>

z-z => b =>

αy 0.21:=

αz 0.34:=

Determination of reduction factor, χ:

ϕy 0.5 1 αy λ_y 0.2-( )+ λ_y
2

+



 0.911=:=

ϕz 0.5 1 αz λ_z 0.2-( )+ λ_z
2

+



 0.856=:=

ϕ max ϕy ϕz, ( ) 0.911=:=

χy
1

ϕy ϕy
2

λ_y
2

-+

0.778=:=

χz
1

ϕz ϕz
2

λ_z
2

-+

0.767=:=

χ min χy χz, ( ) 0.767=:=

Verification of buckling resistance of compression:

Nb.Rd χ A
fy
γM1

 2604.8 kN=:=

NEd
Nb.Rd

0=

if
NEd
Nb.Rd

1 "OK", "Redimension", 








"OK"=

Uniform members in bending
Determination of elastic critical moment:

kz 1:=

kw 1:=

ψ 0:= The moment is zero at end point of the support of the columns
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C1 1.77:=

C2 0:= When subjected end moment

C3 1.0:=

zg 0mm:=

zj 0mm:= for doubly symmetric cross-section

Mcr C1
π
2 E Iz

kz Lcr.z( )2


kz
kw









2 Iw
Iz


kz Lcr.z( )2 G IT

π
2 E Iz

+ C2 zg C3 zj-( )2+










0.5

C2 zg C3 zj-( )-













 2.9 103 kN=:=

Wy Wpl.y:= for Class 1 cross-section

Determination of imperfection factor for for Rolled
I-section for lateral-torsional buckling:

h
bf

1.3= íf
h
b

2 => αLT 0.21:= Buckling curve a

Determination of the coefficient of non-dimensional slenderness:

λ_LT
Wy fy

Mcr
0.458=:=

ϕLT 0.5 1 αLT λ_LT 0.2-( )+ λ_LT
2

+



 0.632=:=

χLT
1

ϕLT ϕLT
2

λ_LT
2

-+

0.937=:=

Verification of buckling resistance of bending:

Mb.Rd χLT Wy
fy
γM1

 512.3 kN m=:=

MEd
Mb.Rd

0.1=

if
MEd
Mb.Rd

1 "OK", "Redimension", 








"OK"=

Uniform members in bending and axial compression
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NRk A fy 3736.5 kN=:=

My.Rk Wpl.y fy 601.6 kN m=:=

χy 0.778=

χz 0.767=

Ncr.y 5443.3 kN=

Ncr.z 7096.6 kN=

μy

1
NEd
Ncr.y

-

1 χy
NEd
Ncr.y
-

0.997=:=

μz

1
NEd
Ncr.z

-

1 χz
NEd
Ncr.z
-

0.998=:=

wy
Wpl.y
Wel.y

1.1=:= where wy 1.5

wz
Wpl.z
Wel.z

1.5=:= where wz 1.5

npl
NEd
NRk
γM1

0.0183=:=

aLT 1
It
Iy

- 0.996=:= where aLT 0
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Factor to determine Ncr,TF : β 1
yc
ic









2

- 1=:=

Elastic critical axial load for flexural-torsional buckling, y-axis :

Ncr.TF
1
2 β

Ncr.y Ncr.T+( ) Ncr.y Ncr.T+( )2 4 β Ncr.y Ncr.T--



 4797.5 kN=:=

Non dimensional slenderness for lateral torsional buckling :
λ_0 λ_LT 0.5=:=

Because λ_0 > 0.2 C1

4

1
NEd
Ncr.z

-







1

NEd
Ncr.TF

-








 0.265= from figure 3.7

Becase λ_0 0.2> :

Equivalent moment factor : Cmy.0 0.79 0.21 ψ+ 0.36 ψ 0.33-( )
NEd
Ncr.y









+ 0.79=:= from figure 3.8

εy
MEd
NEd

A
Wel.y
 7.8=:= for class 1

Equivalent moment factor : Cmy Cmy.0 1 Cmy.0-( )
εyaLT

1 εyaLT+
+ 0.9=:=

Equivalent moment factor : Cmz 0:= The moment around the z-axiz is 0

Equivalent moment factor : CmLT Cmy
2 aLT

1
NEd
Ncr.z

-







1

NEd
Ncr.T

-










 0.9=:= where CmLT 1

Determination of interaction factors:

My.Ed MEd:=

Mpl.y.Rd Mc.Rd:=

Mpl.z.Rd Mc.Rd:=

Mz.Ed 0kN m:=
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Factor to determine Cyy : bLT 0.5 aLT λ_0
2


My.Ed

χLT Mpl.y.Rd


Mz.Ed
Mpl.z.Rd

 0=:=

Slenderness, maximum : λmax λ_:=

Auxiliary term from Figure 3.6 : Cyy 1 wy 1-( ) 2
1.6
wy

Cmy
2

 λmax-
1.6
wy

Cmy
2

 λmax-






npl bLT-








+ 1=:=

where Cyy 1

Factor to determine Czy : dLT 2 aLT
λ_0

0.1 λ_z
4

+


My.Ed
Cmy χLT Mpl.y.Rd

Mz.Ed
Cmz Mpl.z.Rd

+=

dLT 2 aLT
λ_0

0.1 λ_z
4

+
 2.383=:=

Auxiliary term from Figure 3.6 : Czy 1 wy 1-( ) 2 14
Cmy

2
λmax

wy
5

-










npl dLT-










+ 0.734=:=

where Czy  0.6
wy
wz


Wel.y
Wpl.y

 0.5=

Interaction factor : kyy Cmy CmLT
μy

1
NEd
Ncr.y

-


1
Cyy

 0.9=:=

Interaction factor : kzy Cmy CmLT
μz

1
NEd
Ncr.y

-


1
Czy

 0.6
wz
wy

 0.8=:=

Equation (3.30) - Strong axis :
NEd

χy NRk

γM1

kyy
MEd

χLT
My.Rk
γM1



+ 0.14=

if
NEd

χy NRk

γM1

kyy
MEd

χLT
My.Rk
γM1



+ 1 "Ok", "Redimension", 












"Ok"=
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Equation (3.30) - Weak axis :
NEd

χz NRk

γM1

kzy
MEd

χLT
My.Rk
γM1



+ 0.136=

if
NEd

χz NRk

γM1

kzy
MEd

χLT
My.Rk
γM1



+ 1 "Ok", "Redimension", 












"Ok"=
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Numerical Approach B
In Appendix B the numerical approach by use of Abaqus software is shown. Abaqus is used to
obtain ault,k and acr,op which are the minimum multiplier of the design loads. ault,k takes the
in-plane and acr,op takes the out-of-plane behaviour into account.

80 Advanced Analysis of Steel Structures



Aalborg University

24th May 2019 Simply Supported Beam in Abaqus, HE400A 1/2

Simply Supported Beam in Abaqus, HE400A
Input & Output from Abaqus

The inputs and parameters to optain and determine minimum load amplifier:

Width of the beam : b 300mm:=

Design load on the beam : qdesign

10
kN
m
b

3.3 104
N

m2
=:=

Applied load in Abaqus : qapplied 200000
N

m2
:=

Timestep in Abaqus : t 0.8317:=

Ultimate load of the beam : qult qapplied t 1.7 105
N

m2
=:=

Determing of αult,k : αult.k
qult
qdesign

4.99=:=

Determing of αcr,op : αcr.op 8.8032:=

Determining of Utilization Ratio

λ_op
αult.k
αcr.op

0.753=:=

Imperfection factor : αLT 0.34:= For lateral torsional, rolled I-section buckling curve b

λLT.0 0.4:=

β 0.75:=

ΦLT 0.5 1 αLT λ_op λLT.0-( )+ β λ_op
2

+



 0.773=:=

χLT
1

ΦLT ΦLT
2

β λ_op
2

-+

0.842=:=

Verification of reduction
factor:

if χLT 1 "OK", "Redimension", ( ) "OK"=

and

if χLT
1

λ_op
2

 "OK", "Redimension", 





"OK"=
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Imperfection factor : α 0.34:= buckling curve b!

Φ 0.5 1 α λ_op 0.2-( )+ λ_op
2

+



 0.877=:=

Reduction factor : χ
1

Φ Φ
2

λ_op
2

-+

0.753=:=

Minimum value of
reductions factor : χop min χLT χ, ( ) 0.753=:=

Partial factor : γM1 1.1:=

Verification of the element :
αult.k χop

γM1
3.416= if

αult.k χop

γM1
1 "OK", "Redimension", 









"OK"=

Utilization ratio : UR
1

αult.k χop

γM1

0.293=:= if
1

αult.k χop

γM1

1 "OK", "Redimension", 







"OK"=
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Frame in Abaqus, HE400A

Input & Output from Abaqus

The inputs and parameters to optain and determine minimum load amplifier:

Design load on the beam : qdesign 10000
N
m

:=

Applied load in Abaqus : qapplied 300000
N
m

:=

Timestep in Abaqus : t 0.3133:=

Ultimate load of the beam : qult qapplied t 9.4 104
N
m

=:=

Determing of αult,k : αult.k
qult
qdesign

9.399=:=

Determing of αcr,op : αcr.op 8.7758:=

Determining of Utilization Ratio

λ_op
αult.k
αcr.op

1.035=:=

Imperfection factor : αLT 0.34:= For lateral torsional, rolled I-section buckling curve b

λLT.0 0.4:=

β 0.75:=

ΦLT 0.5 1 αLT λ_op λLT.0-( )+ β λ_op
2

+



 1.01=:=

χLT
1

ΦLT ΦLT
2

β λ_op
2

-+

0.678=:=

Verification of reduction
factor:

if χLT 1 "OK", "Redimension", ( ) "OK"=

and

if χLT
1

λ_op
2

 "OK", "Redimension", 





"OK"=

Imperfection factor : α 0.34:= buckling curve b!
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Φ 0.5 1 α λ_op 0.2-( )+ λ_op
2

+



 1.177=:=

Reduction factor : χ
1

Φ Φ
2

λ_op
2

-+

0.575=:=

Minimum value of
reductions factor : χop min χLT χ, ( ) 0.575=:=

Partial factor : γM1 1.1:=

Verification of the element :
αult.k χop

γM1
4.913= if

αult.k χop

γM1
1 "OK", "Redimension", 









"OK"=

Utilization ratio : UR
1

αult.k χop

γM1

0.204=:= if
1

αult.k χop

γM1

1 "OK", "Redimension", 







"OK"=

84 Advanced Analysis of Steel Structures


	Front page
	English title page
	Preface
	Symbols
	Contents
	Table of Contents
	Introduction
	Aim of the Project
	Instability Modes Regarding Steel Structures
	Methods
	Limitations

	Steel Structures
	Static system
	Profiles
	Material Properties
	Beam
	Frame

	Analytical
	Method 6.3.3
	Results

	Numerical
	General method - Method 6.3.4
	Abaqus
	Determining of the Minimum Load Amplifier, ult,k
	Determining of the Minimum Load Amplifier, cr,op
	Results

	Comparison
	Conclusion
	Bibliography
	Analytical Calculation
	Numerical Approach

