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access interference is low to moderate.
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Dansk Resumé

Mængden af trådløst forbundne enheder er stødt stigende, og det forventes at
denne udvikling fortsætter. Dette skydes, at konceptet tingenes internet (internet of
things/IoT) har vundet stort indpas. Kommunikationsformen i IoT-netværker er
fundamental anderledes end ved menneskekontrolleret kommunikation. Derfor er
en af de store udfordringer i fremtidens trådløse netværker at kunne understøtte et
massivt antal maskinstyrede enheder. Udover det massive antal enheder er karak-
teristika, i dette regime, at enheder sender meget små datapakker, og er meget
sporadisk aktive. Dette gør, at sættet af enheder, der sender, er tilfældigt i hver
transmission, og er konstant skiftende. Dette regime kaldes massive random access.

I analysen og designet af sådanne systemer er det en general antagelse, at en-
hederne er uafhængige. Dette er også antagelsen i den nylige informationsteo-
retiske behandling af massive random access af Y. Polyanskiy [1]. Her er enheder
ikke identificerbare, og en mere relevant fejlmodel for IoT bliver introduceret. I
mange praktiske scenarier vil IoT-enheder i sensor-netværker være korrelerede på
grund af et fælles observeret fysiske fænomen. I denne rapport introducerer vi
en model, der bygger på Polyanskiys model, hvor enheder kan være korrelerede
i både tidspunktet de aktiveres på, og i den information de sender. Til dette in-
troducerer vi et fysisk fænomen, der kan forårsage en alarm, som påvirker en del
af IoT-enhederne til at sende den samme alarmbesked på samme tid. Introduktio-
nen af disse alarmbeskeder kræver en ny fejlmodel, der også tager højde for falske
positive alarmer. Altså, dekodningen af en alarmbesked når der ikke har været en
alarm. Vi behandler flere transmissionsstrategier under denne model. Disse kan
karakteriseres som enten ortogonale og ikke-ortogonale strategier.

Resultaterne viser, at udnyttelse af korrelation mellem enheder kan resultere
i ultra høj pålidelighed men med en afvejning mod lavere netværk spektral ef-
fektivitet (network spectral efficiency). Dette reflekterer den intuitive afvejning: at
kommunikation fra et massivt antal enheder kan kun være ultra pålideligt, hvis in-
formationen mellem enhederne er korreleret. Ydermere viser resultaterne, at ikke-
ortogonale strategier kan give bedre ydelse end ortogonale strategier, når interfer-
ensen mellem enheder er lav til moderat. Ved høj interferens, med ikke-ortogonale
strategier, bliver det for energikrævende at sikre, at der ikke forekommer falske
positive alarmer.
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Chapter 1

Introduction

The number of connected devices is expected to reach more than 70 billions by
2025 [2]. This is several devices for every person on the planet. The main reason for
this is the huge recent growth in the interest of internet of things (IoT) [3]. The de-
vices in IoT networks are not human controlled, resulting in a fundamental change
in the type of communication that needs to be supported by future technologies.
One of the main use cases for IoT is distributed sensor networks that intelligently
monitor and manage a large number of devices [4]. Applications include smart
traffic systems [5], Industry 4.0 [6], [7], smart metering in smart cities [8], [9] and
malfunction detection such as gas leakage source detection [10]. For smart meter-
ing in large cities, such as London, the number of devices for each base station (BS)
can be up to 35 000 [11].

Consequently, the ITU-R (International Telecommunication Union - Radiocom-
munication) sector has in their vision for the IMT-2020 (International Mobile Telecom-
munications -2020) standard included three main components in the foundation of
5G [12]. The three components are: 1) enhanced mobile broadband (eMBB) which
support stable connections with high peak data rates; 2) massive machine-type
communications (mMTC) which supports a massive number of machine-controlled
devices; 3) ultra reliable low latency communications (URLLC) which offers low-
latency transmissions of ultra-high reliability with activity patterns typically spec-
ified by outside events, such as alarms. URLLC requirements can demand higher
than 99.999 % availability with latency less 1 ms [13]. The operating regions for the
services in 5G, in terms of number of supported users and data rates, is seen in
Figure 1.1.

IoT falls into the category of mMTC. Apart from a massive number of devices,
one of the main characteristic of IoT is very small data packets [14], e.g. a smart me-
ter electricity reading or a log-entry about a manufacturing process. Generally, IoT
devices are considered to be low-powered and battery-driven. To achieve the goal
of devices having a lifetime of many years (without battery change), the devices
can enter a sleep-mode or power saving mode [15] when they are not transmitting.
A device will wake up, send its packet and go back to sleep. The massive number
of devices sending small data packets in such an uncoordinated way results in a
very sporadic activation pattern with the set of active users constantly changing. In
the literature, this regime is often referred to as massive random access. Another
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2 Chapter 1. Introduction

Figure 1.1: Operating regions of the 5G services eMBB, mMTC and URLLC. Figure based on [16,
Fig. 1].

characteristic of IoT networks, such as distributed sensor networks, is the fact that
sensors, in many cases, sense a common phenomenon. This introduces correlation
in both activation pattern and source information between devices. An example is
in malfunction detection where more devices can detect the same malfunction, e.g.
a gas leak. Here an increase in activations would be observed and many devices
would send correlated information about the gas leak.

Today’s 3GPP standards for IoT, such as Narrowband IoT (NB-IoT) and en-
hanced machine-type communication (eMTC) [17], are grant-based protocols. In
grant-based protocols each device will attach to a BS to be able to send or receive
data. The BS then controls the access by scheduling the data packets for each de-
vice orthogonally in the available radio access network (RAN) resources. This en-
tails several transmissions of metadata, including system information blocks (SIBs),
preambles, user identification and resource allocation, between the BS and each ac-
tive device before the data can be transmitted. Therefore, although a user has data
to send at a random instant, the data transmission is granted after a successful ran-
dom access for metadata. During the random access procedure parts of the meta-
data can be retransmitted if the packet is not successfully received due to a collision
or a bad channel. If the data transmission itself fails, a new access-grant has to be
established through a new process of random access for metadata. The device will
not know if a transmission error is due to a bad channel or interference, so it will
increase the transmission power in every retransmission (to a certain limit). There-
fore NB-IoT and eMTC does not easily scale to support a massive amount of users,
since this introduces more interference and thereby more retransmissions (which
results in even more interference) and higher power consumption.

On the other end of the spectrum are the solutions such as SigFox and LoRa
(Long Range) that are grant-free random access protocols. Such solutions are often
based on (slotted) ALOHA [18]. In slotted ALOHA each data packet is put into
slots. A collection of a fixed and known number of slots are used to form a block.
In every access opportunity the active devices choose a slot randomly and inde-
pendently in the block (without any coordination with the BS). With pure slotted
ALOHA collisions of packets in the same slot are assumed lost. Therefore, the best
strategy is to let the number of slots in a block be equal to the average number
of active devices. This is the case under the assumption of an infinitely large set
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of devices such that the set of active devices always is unique, and the number of
active devices can be assumed to follow a Poisson distribution. Then, with number
of slots chosen such that, on average, one device is active in each slot, the through-
put is 1/e ≈ 0.37 of the channel capacity. Using more complex signal processing,
a higher throughput can be achieved, e.g. with coded slotted ALOHA where colli-
sions can be resolved [19]. Coded slotted ALOHA lets each active device transmit
several repetitions of the data in different randomly chosen slots. Packets from
non-collision slots (singleton slots) can then potentially be used to successively re-
solve the collisions in other slots. This is called successive interference cancellation
(SIC).

It is generally difficult to asses theoretical throughput limits for random ac-
cess protocols, and the analysis of different solutions fall within different theoretic
categories. Slotted ALOHA falls within Network theory, coded slotted ALOHA
is coding theoretic and the analysis of the multiple access channel (MAC) [20] is
information-theoretic. This makes fair comparison between the solutions difficult
and in turn complicates the problem of characterizing fundamental problems and
limits in massive random access.

In information theory, the MAC has been fully characterized in terms of rate
region. Here, both the number of users and the time they are active are assumed
known by the receiver. Therefore, for the purpose of characterizing massive ran-
dom access, this model is ill suited. Apart from the number of active devices being
known, the analysis is based on asymptotic blocklengths. However, with a mas-
sive amount of users and small data packets the blocklength is comparable to the
number of users. Therefore, the theoretically achievable performance of massive
access with infinite blocklength is not realistically possible to attain with arbitrary
low probability of error. This is known as finite blocklength effects [21]. X. Chen
et al. introduced in [22] a fundamentally new information-theoretic regime with
the many-access channel (MnAC). Here, the number of active devices is taken to
infinity together with the blocklength. They show that the capacity of the MnAC is
closely related to the conventional MAC (where only blocklength goes to infinity).
In the analysis they let the payloads grow together with the users and blocklength,
but the crucial metric, energy-per-bit, still goes to infinity. Intuitively this means
that devices must work harder to move fewer bits with increasing number of users
due to the encoding of user address. Because of the power requirements of IoT
devices, a model that allows for devices to transmit with finite energy-per-bit is
desired.

In [1] Y. Polyanskiy introduced exactly such a model. This information-theoretic
model captures many of the effects of massive random access and allows for honest
comparison between many popular solutions including slotted ALOHA and coded
slotted ALOHA. The model distinguishes itself from the classical information-
theoretic multiple access channel in three important ways: 1) all users use the
same codebook (no user identification); 2) decoding is done up to permutation; 3)
the error probability is considered per-user. The idea of not having user identifica-
tion has later been called unsourced random access [23]–[25], and is a consequence
of wanting ALOHA as a valid achievability. ALOHA assumes an infinite number
of total devices which naturally precludes user identification. Without user iden-
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tification, the decoder can output any ordering of the estimated messages. The
per-user error probability (PUPE) can be related to the fact that IoT traffic often
has low priority. It is, therefore, more relevant to ask for the average fraction of
decoded IoT messages compared to the probability that all messages are decoded.
The analysis of in [1] shows that popular methods (including slotted ALOHA and
coded slotted ALOHA) are several orders of magnitude away from the theoretical
achievability. Therefore, the recent research within unsourced random access has
been focused on designing codes that get as close to this achievability as possible.
The first coding scheme was proposed in [26] and has since been improved in [23]
and most recently in [24]. Inspired by the approach in [24], the model is analyzed
for the MIMO channel in [25] and for the fading channel in [27] and [28]. Most of
these works use elements from compressed sensing due to the close resemblance
between sparse support recovery and decoding messages in Polyanskiy’s model.
Particularly, since all users use the same codebook, the problem of decoding mes-
sages is equivalent to finding a sparse binary vector specifying a ultra-high dimen-
sional linear subspace of the codebook. The ultra-high dimensionality comes from
the high number of messages in the code which makes the problem infeasible to
solve with conventional compressed sensing methods.

As mentioned users in IoT networks are likely to exhibit correlation both in
activation time and in source information. This aspect is not included in Polyan-
skiy’s model. Time correlation in activation of users is not a new concept since
bursty activations is a common phenomenon. Therefore, this has been studied in a
great number of works (cf. [29]–[31]). Correlation in source information is inher-
ently connected to source coding and was characterized for the classical multiple
access channel by D. Slepian and J. Wolf in [32]. It has recently been extended to
Polyanskiy’s model in [33]. This is the only work that deals with correlated users
for Polyanskiy’s model. In this report, we build upon Polyanskiys model to in-
clude correlation both in time of activation and in source information. We do not
consider source coding. Instead, we exploit that users use the same codebook and
consider not only correlation in source information but also correlation in the ac-
tual codewords. This is different from the typical view on massive random access,
where the message content and the coded waveforms are independent for each
device. An exemplary case, for the correlation model we consider, is malfunction
detection of gas leakage. Here, IoT devices can send standard operation messages
or alarm messages with information of a gas leak. The latter has a critical reliabil-
ity requirement and is triggered by the commonly observed phenomenon: the gas
leak, see Figure 1.2. In normal operation, standard uncorrelated messages are sent.
Upon the alarm activation, a number of IoT devices will detect the alarm event and
send the same message. This reflects the extreme all-or-nothing correlation, where
devices are either mutually independent, or they are completely correlated both in
source information and in time. Our model intends to capture the following intu-
itive observation: if the number of devices that transmit the same alarm message
increases, then the reliability of the alarm message increases at the expense of a
decrease in the total amount of information that comes from the total population
of connected IoT devices.

This report is motivated by the following problem statement.
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Figure 1.2: System model with common physical phenomenon and devices connected to a single BS.
The parameter ps is the probability of devices independently generating a standard message.

1.1 Problem Statement

How can correlation between devices in IoT networks be characterized, and how does it
affect the system spectral efficiency and error probabilities in the network? Can correlation
be exploited to ensure ultra-high reliability of certain critical messages, and does this allow
for an alternative to modern solutions in 5G?

1.2 Organization of the Thesis

In Chapter 2 the overall model is introduced along with model choices and delim-
itations of this thesis. In Chapter 3 and 4 relevant classical information-theoretic
results are presented including an overview of the multiple access channel (MAC).
In Chapter 5 we describe the necessary departures from the classical MAC to char-
acterize moden massive random access. In Chapter 6, 7 and 8 the analysis and
results of two different approaches to attain achievability for the considered model
is presented. In Chapter 9 the analysis of a more practical approach to designing
random access systems is considered. Finally, in Chapter 10, 11 and 12, we have a
discussion, conclusions and comments on future possible research.





Chapter 2

System Model

In this chapter, we introduce the general system model along with considerations
regarding the model choices and delimitations of this thesis.

Generally, an information-theoretic discrete communication model consists of
the following components (see Figure 2.1):

1. An a priori unknown message W, which is modeled as a random variable,
taking values uniformly in the message set [M] = {1, 2, . . . , M}.

2. An encoder, which is a deterministic rule that maps messages into length n
sequences of channel input symbols from the alphabet X . These sequences
are known as codewords and n ∈ N is known as the blocklength. Therefore
the encoder is a function f : [M]→ X n.

3. A channel representing the noisy communication medium. The random
transformation applied by the channel can be specified by a transition prob-
ability distribution PY |X : X n → Yn describing the conditional probability of
receiving an output sequence of symbols from the alphabet Y given an input
sequence of symbols from the alphabet X .

4. A decoder, which is a deterministic rule that produces an estimate of the
original message by observing an n-sequence of channel outputs. Therefore
the decoder is a function g : Yn → [M].

These are components of a discrete channel, since n ∈ N is discrete. The input
and output alphabets X and Y can be discrete, continuous or a mix. This discrete
channel represents a system that, naturally, exists in continuous time as illustrated
in Figure 2.1. The main interest in this thesis is to explore the existence of encoders
and decoders that satisfy certain requirements. Therefore, it is convenient to con-
sider the digital data modulator and demodulator as part of the channel such that
the channel can be treated as a discrete channel [34, Chap. 4].

The source in Figure 2.1 is not considered to be the raw data. The assump-
tion of uniformly chosen messages in point 1) would not be realistic if this was the
case. Instead we assume the source to be the output of an ideal source coding algo-
rithm that removes all redundancy of the data. From the asymptotic equipartition
property (AEP), the messages can then be assumed to be uniformly distributed in

7
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Source Encoder
Discrete

Digital data

modulator

Continous

time channel

Digital data

demodulator

DecoderSink
Discrete Discrete

Discrete

Discrete channel

Waveform

Waveform

W

PY|X(Y|X)

X = f(W )

Ŵ = g(Y)Ŵ

Figure 2.1: Representation of the channel model. Figure based on [34, Chap.4.1].

the message set [20, Chap. 3]. The relevance of not considering the source coding
as part of the problem is justified by the source-channel separation theorem [20,
Chap. 7.13]. Specifically, the theorem states that a two-stage method for source
coding and channel coding is as good as any other method of transmitting infor-
mation over a noisy channel.

Due to the noisy channel, we are not guaranteed to be able to decode the
message from the received signal. Say that in a transmission the message w is
chosen, such that codeword x = f (w) is transmitted. An error occurs if the
decoder estimates the message incorrectly, i.e. the occurrence of the error event
E = {g(Y) 6= w}. Exact expressions for the error event E are often difficult to
derive, but in many cases bounds, P [E | w] ≤ ε for some ε < 1, can be formulated.
We see that the important parameters of a code is the tuple (M, n, ε), since the
channel is usually considered fixed. The general question in information theory is
then: does there exist encoders and decoders for which the code is achievable?

2.1 Uncorrelated Unsourced Random Access

To characterize massive random access Y. Polyanskiy introduced a model in [1] and
established achievability for the finite blocklength real Gaussian multiple access
channel (the model will be discussed in details in Chapters 4 and 5). The received
signal Y ∈ Yn when K devices are active is given as

Y =
K

∑
i=1

Xi + Z (2.1)

where Xi = f (Wi) for Wi being the codeword selected uniformly from [M] by the
i’th device and Z ∼ N (0, In).

This system model is based on the assumption that the blocklength n is short
enough to be within the coherence time of the channel. The BS then broadcasts
one or more pilot sequences to all devices in the downlink before every transmis-
sion. From the pilots we assume that devices get perfect channel state information
(CSI), i.e. the estimated channel from the downlink is identical to the channel in
the following uplink. This allows for perfect channel inversion. This will be an
important model choice for the exploitation of user correlation as we will see later.
Polyanskiy’s model has three important elements:
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1. Users generate codewords from the same codebook.

2. The decoded list is any ordering of the estimated messages.

3. The error measures the average fraction of correctly decoded messages.

This means that no user identification is done, and an average per-user probability
of error is considered. The technical reasons for these model choices will be made
clear in Chapter 5.

2.2 Correlated Unsourced Random Access

In this thesis, we consider a generalization of Polyanskiy’s model to incorporate
both temporal correlation and correlation in source information of messages. Due
to all users using the same codebook correlation in messages create correlation in
the actual codewords as well.

To integrate correlation in the model, we define the activation pattern based on
a physical scenario. We consider a total of N devices deployed in some distributed
sensor network. Within every access opportunity each device generates a message
with probability ps. We refer to this state as standard operation. Additionally, some
physical phenomenon can cause an alarm state. This happens with probability pa.
Each device detects this event with probability pd. We can relate this model to the
case where the physical phenomenon has some range in which it can be sensed
by a device. This could, e.g., be a gas leak or a fire. Assuming that such an event
can happen anywhere within the network, we consider pd as the average fraction
of devices that will detect such an event, see Figure 1.2. This way pd represents
some underlying specification of the physical phenomenon, the sensor type and
the geometry of the network. Since the purpose of the model is to characterize
correlation in devices we do not incorporate these underlying specifications into
the model. We do not want to restrict the scope of the model to a specific geometry
or other specific architectures.

Each device is equipped with two message setsMs andMa, assigned for mes-
sages in standard operation and for alarm messages, respectively. The message
sets each consist of |Ms| = Ms and |Ma| = Ma messages. Based on the described
physical scenario the generation of messages happens as follows: in standard op-
eration devices select a message uniformly and independently from the message
set Ms with probability ps. Additionally, if an alarm occurs, each device will se-
lect a message uniformly from the message set Ma with probability pd. Due to
the common alarm event, all devices that generate an alarm message generate the
same alarm message.

The probability pd can be seen as the composite probability of both detecting
the alarm event and deciding to select an alarm message. This motivates the notion
of pd being a design parameter. We will still refer to pd as the detection probability.
Additionally we denote the alarm event as A and the standard operation state as
¬A. A graphical representation of the model is shown in Figure 2.2. Devices can
end up in four scenarios: 1) generating a standard message; 2) generating an alarm
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pa 1− pa

∅

ps 1− ps

Mspd

(Ms,Ma)

1− pd

∅Ms

1− psps

Ma

pd 1− pd

Figure 2.2: Graphical representation of the message generation model.

message; 3) generating both a standard message and an alarm message; 4) not gen-
erating any messages. Particularly, the event where a device has both a standard
message and an alarm message motivates several transmission strategies. We will
return to these in Chapters 6, 7 and 8. Notice that with the alarm probability pa or
the detection probability pd set to zero the model reduces to Polyanskiy’s model.

The different types of messages (standard and alarm) introduce the concept of
reliability diversity. Generally, the alarm messages will require ultra-high reliabil-
ity while the standard messages has lower priority. The per-device probability of
error is not meaningful for devices transmitting the alarm message in our model.
Since all alarm devices transmit the same message they all either succeed or fail.
Hence, the physical phenomenon itself can be seen as a “ghost” device, which
communicates through the actual IoT devices, see Fig. 1.2. Therefore, we calculate
the error probability with respect to this ghost device. In addition, the fact that we
consider two message types necessitates the introduction of false positive errors,
namely decoding a codeword that was not transmitted. With this system model,
decoding an alarm message when no alarm has occurred is critical. This type of
error is typically not considered in communication theory where an error is de-
fined as the event in which a decoder is not decoding a codeword correctly. We
will formally introduce the error events in Chapter 5.4.

The idea of exploiting correlation in devices is based on three main model
choices: 1) several devices can choose to send the same message; 2) devices us-
ing the same codebook; 3) devices having perfect CSI. With perfect CSI channel
inversion can be done for both amplitude and phase of the signal. In this way the
(possibly many) alarm messages can add up coherently at the receiver. The idea
of having correlation in the transmitted codewords and hens the coded waveforms
is one of the main contributions of this thesis. It allows the ghost device to poten-
tially achieve ultra-high reliability even in the presence of interference of a massive
amount of standard messages.

Notice that the IoT devices are not aware of each other, thus the physical phe-
nomenon affects each device independently. Therefore, under this model the case
where no device chooses to generate an alarm message when an alarm has hap-
pened (a false negative) is an important concern.

The purpose of the model is to characterize correlation between devices by an-
alyzing achievabilities for the model. The introduction of users using the same
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codebook allows for the unique ability of having coherent addition, of codewords
from several users, at the receiver. This is the key enabler of achieving ultra-reliable
communication in this model. Therefore, although relevant, we will not consider
non-coherent channels in this thesis. In line with the work by Polyanskiy in [1] we
analyze the model from an information-theoretic point of view to characterize rel-
evant trade-offs and transmissions strategies for the correlated devices. Therefore,
the coding theoretic approach of designing practical coding schemes for the model
is not in the scope of this thesis.

To formalize the communication problem of this model we first introduce the
relevant concepts of information theory.





Chapter 3

Discrete Memoryless Channels

When considering a communication problem specified by the four components: a
message set, a channel, an encoder and a decoder (see Chapter 2), a relevant metric
is the rate at which information is conveyed in the codewords. We denote a code
that encodes messages from a set [M] to a blocklength n as an (M, n) code. The
rate R of an (M, n) code is the ratio between information bits and the blocklength,
n. With the assumption of uniformly chosen codewords the rate of an (M, n) code
is defined as R =

log2 M
n . This is the common definition found in the literature.

However, for the system model with alarm events, the messages not are chosen
uniformly or independently. To generalize the rate we define the concept of en-
tropy.

Definition 3.1 (Entropy [20, Chap. 2]). The entropy H(X) of a discrete random variable
X with range X and distribution PX is defined by

H(X) = − ∑
x∈X

PX(x) log PX(x) (3.1)

= −EPX [log P(X)] . (3.2)

We will use the convention that 0 log 0 = 0 due to the continuity of x log x
around zero. The entropy H measures the uncertainty of a random variable. If
the logarithm in Definition 3.1 is to the base 2, the entropy is expressed in bits.
This is the common unit of entropy. Alternatively, if the natural logarithm is used,
the unit is nats. The more uncertain a random variable is the more information is
gained from the reveal of the outcome. We now define rate as

Definition 3.2 (Rate). Let the message W be chosen according to the probability distribu-
tion PW from the message set [M], and let n be the blocklength. The rate of a (M, n) code
is defined as the ratio

R =
H(W)

n
. (3.3)

We now introduce several definitions that will be of importance later. We ex-
tend the concept of entropy to joint entropy which describes the uncertainty of a
tuple of K random variables (X1, X2, . . . , XK) = XK

1 .

13
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Definition 3.3 (Joint entropy [20]). The joint entropy H(XK
1 ), of random variables XK

1
with ranges X K

1 and joint distribution PXK
1

, is defined as

H(XK
1 ) = − ∑

x1∈X1

· · · ∑
xK∈XK

PXK
1
(xK

1 ) log PXK
1
(xK

1 ) (3.4)

= −EPXK
1

[
log P(XK

1 )
]

. (3.5)

Definition 3.4 (Conditional entropy [20, Chap.2]). Let X and Y be two random vari-
ables with ranges X and Y and distribution PX and conditional distribution PY|X. The
conditional entropy H(Y|X) is defined as

H(Y|X) = ∑
x∈X

PX(x)H(Y|X = x) (3.6)

= − ∑
x∈X

PX(x) ∑
y∈Y

PY|X(y|x) log PY|X(y|x). (3.7)

The conditional entropy conditioned on more than one random variable follows
Definition 3.4 but with X as a tuple of random variables instead. An important
property of the joint entropy is that it can be expressed in terms of a sum of condi-
tional entropies. This is the chain rule for entropy.

Theorem 3.5 (Chain rule for entropy [20, Chap. 2]). Let XK
1 be random variables with

joint distribution PXK
1

. Then

H(XK
1 ) =

K

∑
i=1

H(Xi|Xi−1
1 ). (3.8)

An important concept in information theory is mutual information I(X; Y) of
random variables X and Y. Mutual information measures the reduction of uncer-
tainty of either of the random variables due to the knowledge of the other. It is
defined as

Definition 3.6 (Mutual information [20, Chap. 2]). Let X and Y be random variables
with range X and Y , joint distribution PX,Y marginal distributions PX and PY conditional
distribution PX|Y. Then, mutual information I(X; Y) is defined as

I(X; Y) = ∑
x∈X ,y∈Y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
(3.9)

= ∑
x∈X ,y∈Y

PX,Y(x, y) log
PX|Y(x|y)

PX(x)
(3.10)

= EPX,Y

[
log

PX|Y(X|Y)
PX(X)

]
. (3.11)

We see how the summation resembles a likelihood-ratio test for the hypothesis
stating that the random variables X and Y are independent. We, therefore, have
that for independent random variables the mutual information I(X; Y) = 0. It is
relevant to consider the largest mutual information that can be transmitted over
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a channel in one use. This is known as the capacity of the channel. First, we
introduce the notion of memoryless channels. For a memoryless channel each
output symbol depends only on the corresponding input symbol. Formally, we
say that a channel is memoryless if there exist a probability distribution for the
output sequence Y = (Y1, . . . , Yn) given the input sequence X = (X1, . . . , Xn) given
by

PY |X(y|x) =
n

∏
i=1

PY|X(yi|xi), (3.12)

for all x ∈ X n, y ∈ Yn and n ∈ N [34, Chap. 4]. We now define the channel
capacity.

Definition 3.7 (Capasity [20, Chap. 7]). The channel capacity of a discrete memoryless
channel is defined as

C = max
P(x)

I(X; Y), (3.13)

where the maximum is taken over all possible input distributions.

It is obvious that information can be transmitted at capacity, since the maxi-
mizing input distribution per definition must exist. However, it is not obvious that
information can be transmitted reliably at any rate R below the channel capacity
C [34, Chap. 4]. This major observation made by Shannon in [35] is the existence
of sequences of (n, Mn) codes with increasing n that achieves any positive rate

R = lim
n→∞

log2 Mn

n
< C, (3.14)

and vanishing probability of error limn→∞ εn = 0. This discovery made by Shannon
in [35] has had major impact, but it is not very operational in the sense that it does
not tell how fast the convergence is or how to construct codebooks that achieves the
rates. Gallager introduced in [36] the random coding exponent or the error exponent,
showing that the probability of error goes exponentially fast to zero with increasing
blocklength. This result, and the proof in particular, will be of great importance
for this thesis, so we go through the argument.

3.1 Random Coding Exponent

The bound is based on maximum likelihood (ML) decoding. This decoding rule g
chooses a message w′ given observation y such that

PY |X(y|xw′) ≥ PY |X(y|xw), ∀ w 6= w′. (3.15)

Let Pe,w = P [g(y) 6= w|w] be the probability of error for message w. With uni-
formly chosen messages the average probability of decoding error is given by [34,
Chap. 5.2]

Pe =
1
M

M

∑
w=1

Pe,w. (3.16)

We consider the case where the input and output alphabets X and Y are finite.
The first part of the result is as follows.
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Theorem 3.8 ([34, Chap. 5.6]). Let Qn(X) be an arbitrary probability assignment on the
input sequences and, for a given number M ≥ 2 of codewords of blocklenght n, consider
the ensemble of codes in which each word is selected independently with the probability
measure Qn(x). Suppose that an arbitrary message w, 1 ≤ w ≤ M enter the encoder
and that maximum-likelihood decoding is employed. Then over this ensemble of codes the
average probability of decoding error P̄e,w is bounded, for any choice of ρ, 0 ≤ ρ ≤ 1, by

P̄e,w ≤ (M− 1)ρ ∑
y

(
∑
x

Qn(x)PY |X(y|x)1/(1+ρ)

)1+ρ

. (3.17)

For the proof and later reference we need Gallager’s ρ-trick

Lemma 3.9 (Gallager’s ρ-trick [34, Chap 5.6]). Let P [A1] , . . . ,P [AM] be the probabil-
ities of a set of events A1, . . . , AM. For any ρ ∈ [0, 1],

P
[

M⋃

m=1

Am

]
≤
(

M

∑
m=1

P [Am]

)ρ

. (3.18)

We can now prove Theorem 3.8.

Proof. We condition the probability of error on the message w entering the decoder,
on the selection of the particular codeword xw and the reception of the sequence y.
We then use the law of total probability to get

P̄e,w = ∑
xw

∑
y

Qn(xw)PY |X(y|xw)P [g(y) 6= w|w, xw, y] . (3.19)

For a given w, xw and y, define the event Aw′ for each w′ 6= w, as the event that
codeword xw′ is selected in such a way that PY |X(y|xw′) ≥ PY |X(y|xw). We then
have

P [g(y) 6= w|w, xw, y] ≤ P
[
⋃

w′ 6=w

Aw′

]
(3.20)

≤
(

∑
w′ 6=w

P [Aw′ ]

)ρ

, (3.21)

for any ρ ∈ [0, 1]. The reason for the inequality in (3.20) (not equality) is that
the ML-decoder does not necessarily make an error if PY |X(y|xw′) = PY |X(y|xw)

for some w′. The inequality in (3.21) follows from Gallager’s ρ-trick. From the
definition of Aw′ we get

P [Aw′ ] = ∑
xw′ :PY |X (y|xw′ )≥p(y|xw)

Qn(xw) (3.22)

≤∑
xw′

Qn(xw′)
PY |X(y|xw′)

s

PY |X(y|xw)s , ∀ s > 0, (3.23)

where the inequality in 3.23 is explained by the fact that for positive a, b and s we
have that (a/b)s > 1 for a > b and (a/b)s < 1 for a < b. Thus it is a "soft" indicator
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function. Due to the random coding w′ is a dummy variable in the summation in
(3.23), thus the subscript can be dropped when substituting (3.23) into (3.21). We
get M− 1 equal terms corresponding to all w′ 6= w. Thus we get

P [g(y) 6= w|w, xw, y] ≤
(
(M− 1)∑

x
Qn(x)

PY |X(y|x)s

PY |X(y|xw)s

)ρ

. (3.24)

Further substituting (3.24) into (3.19) we get

P̄e,w ≤ (M− 1)ρ ∑
y

(
∑
xw

Qn(xw)PY |X(y|xw)
1−sρ

)(
∑
x

Qn(x)PY |X(y|x)s

)ρ

. (3.25)

Again from the random coding we notice that indexing xw with subscript w is not
necessary in the summation. We then substitute s = 1/(1 + ρ) into (3.25) such that
1− sρ = s and we get the desired expression.

This result is very general, in the sense that it is not restricted to memoryless
channels and does not assume any particular signal model. We now specialize
the result to the memoryless channel based on [34, Chap. 5.6]. Per definition, we
have (3.12). Additionally, let each symbol in the codewords be generated inde-
pendently of each other according to an arbitrary probability assignment Q(k),
k = 0, 1, . . . , K− 1 on the finite input alphabet. Thus we have

Qn(x) =
n

∏
i=1

Q(xi). (3.26)

Let the finite output alphabet be Y = {0, 1, . . . , J}. We can then express Theo-
rem 3.8 as

P̄e,w ≤ (M− 1)ρ ∑
y1

· · ·∑
yn

(
∑
x1

· · ·∑
xn

n

∏
i=1

Q(xi)PY|X(yi|xi)
1/(1+ρ)

)1+ρ

(3.27)

= (M− 1)ρ
n

∏
i=1

∑
yi

(
∑
xi

Q(xi)PY|X(yi|xi)
1/(1+ρ)

)1+ρ

(3.28)

= (M− 1)ρ




J−1

∑
j=0

(
K−1

∑
k=0

Q(k)PY|X(j|k)1/(1+ρ)

)1+ρ



n

, (3.29)

where (3.29) follows from i being a dummy variable in the product in (3.28).
To show the exponential dependence on n in the bound for a fixed rate R, we,

for convenience, express the rate in nats R = (ln M)/n. That is, M = enR. Due
to the number of messages being discrete we define a (n, R) block code for any
n ∈ N and 0 < R ∈ R as a code of blocklength n with M = denRe messages,
where d·e is the ceiling function. Then, for an ensemble of (n, R) block codes with
M− 1 < enR ≤ M, we have

P̄e,w ≤ e−nRρ




J−1

∑
j=0

(
K−1

∑
k=0

Q(k)PY|X(j|k)1/(1+ρ)

)1+ρ



n

(3.30)

= e−n(E0(ρ,Q)−ρR), (3.31)
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where

E0(ρ, Q) = − ln
J−1

∑
j=0

(
K−1

∑
k=0

Q(k)PY|X(j|k)1/(1+ρ)

)1+ρ

. (3.32)

Finally to get the tightest bound we choose ρ and Q such that the exponent in
(3.31) is maximized. We get the error exponent Er(R) as

Er(R) = max
0≤ρ≤1

max
Q

E0(ρ, Q)− ρR, (3.33)

where the maximizing over Q is over all probability assignments
Q = [Q(0), . . . , Q(K− 1)].

The generalization of this to infinite input and output alphabets X ,Y is done
by restricting the infinite input space to a finite set of letters in the input space,
say a1, a2, . . . , aK. The output space is partitioned into a finite set of disjoint events,
say B1, B2, . . . , BJ , whose union is the entire output space. That is, we construct a
quantizer of sorts where the output is the event Bi that contains the y in the output
alphabet [34, Chap. 7]. We notice that with no restriction on the letters a1, a2, . . . , aK

they can be chosen arbitrarily far apart in the infinite input space X . This results in
unbounded mutual information and hens unbounded channel capacity. To main-
tain finite capacity with infinite input and output alphabets we need to restrict the
input and output alphabets. Many physically meaningful results are related to the
case with power constrained channel input [34, Chap. 7]. We will return to this in
Section 4.1.

We see that with random coding, we can bound the error probability Pe ≤
enEr(R). This gives a bound for how large an error we can expect for a given block-
length n and message set size M. Notice that for finite blocklength results and
point to point communication like this, much tighter bounds have been found
in [21] by means of normal approximations. However, bounding the error like this
will be instrumental in later sections. In particular, we will use random coding and
ML-decoding. Bounding the error will be done by conditioning on unknowns and
averaging over them together with Gallager’s ρ-trick and finally maximizing the
resulting error exponent.



Chapter 4

Multiple Access Channels

As discussed in the introduction, the main characteristics of IoT is a massive num-
ber of devices communicating uncoordinated with small payloads. Additionally,
one of the main concerns in the design of IoT systems is the power consumption.
In communication theory one of the rare fully characterized channels, in terms if
rate region, is the multiple access channel (MAC). One could be inclined to think
that increasing the number of users to a "massive" amount is straight forward.
In fact this is true if the blocklength is allowed to go to infinity before the num-
ber of users. However, due to the massive access in IoT, the approach of infinite
blocklength before users is not representative of the behavior in such systems.

To understand the particular model used in this thesis we review the conven-
tional MAC to identify the shortcomings, when the purpose is to characterize mod-
ern massive random access requirements.

We consider the two user MAC, since the results for this case easily generalizes
to K users (this trait is in fact also a rare property of multi-user channels). The
general framework is a simple extension of Chapter 3.

Definition 4.1 (MAC [20, Chap. 15.3]). A discrete two user memoryless multiple access
channel (MAC) is specified by the tuple (X1 × X2, PY|X1,X2

,Y) consisting of two input
alphabets X1, X2, output alphabet Y and probability transition distribution PY|X1,X2

:
X1 ×X2 → Y .

Definition 4.2 (MAC-code [20, Chap. 15.3]). A (2nR1 , 2nR2 , n) code for the two user
MAC consists of two message sets M1 = {1, 2, . . . , 2nR1} and M2 = {1, 2, . . . , 2nR2},
two encoding functions f1 : M1 → X n

1 , f2 : M2 → X n
2 and a decoding function

g : Yn →M1 ×M2.

Again we assume codewords to be selected uniformly and independently from
the message sets. We can then define the joint average probability of error for the
(2nR1 , 2nR2 , n) code as

Pe =
1

2n(R1+R2) ∑
(w1,w2)∈M1×M2

P [g(Y) 6= (w1, w2)|(w1, w2)] (4.1)

Notice that an error is defined as the event that the decoded list of messages is not
equal to the exact list of transmitted messages.

19



20 Chapter 4. Multiple Access Channels

We say that a rate pair (R1, R2) is achievable for the MAC if there exists a
sequence of (2nR1 , 2nR2 , n) codes with Pe → 0 for n → ∞. The capacity region
is then the closure of the set of achievable rate pairs (R1, R2). We now state the
incredibly general result of the capacity region for the MAC

Theorem 4.3 (MAC capacity [20, Chap. 15.3]). The capacity of a MAC
(X1 ×X2, PY|X1,X2

,Y) is the closure of the convex hull of all (R1, R2) statisfying

R1 < I(X1; Y|X2), (4.2)

R2 < I(X2; Y|X1), (4.3)

R1 + R2 < I(X1, X2; Y), (4.4)

for some product distribution PX1(x1)PX2(x2) on X1 ×X2.

The proof of achievability and converse of Theorem 4.3 can be found in [20, Chap.
15.3.1] and [20, Chap. 15.3.4] respectively.

The characteristic shape of the capacity region for the MAC is seen in Figure 4.1.

4.1 Gaussian Multiple Access Channels

The Gaussian channel is the most important continuous alphabet channel [20]. In
this thesis we consider the Gaussian MAC. It is based on the model that the contin-
uous signal that arrives at the digital data demodulator, as depicted in Figure 2.1, is
a sum of continuous coded waveforms X1(t) and X2(t) plus Gaussian white noise
Z(t)

Y(t) = X1(t) + X2(t) + Z(t). (4.5)

The Gaussian MAC (for the discrete channel) of blocklength n is defined as

Y = X1 + X2 + Z, (4.6)

where Y ∈ Yn, Xi ∈ X n
i , i = 1, 2. For the real Gaussian MAC we have alphabets

Y = Xi = R, i = 1, 2 and Z ∼ N (0, NIn). When there is only one user we refer
to this as the single user Gaussian channel or the additive white Gaussian noise
(AWGN) channel.

Without further conditions the capacity of this channel may be infinite. With
input alphabet being the entire real line we can choose codewords arbitrarily far
apart in the X n space such that they are distinguishable at the receiver. The most
common constraint, which is anchored in the physical impossibility of transmitting
with infinite power, is to require an average power constraint P. That is, for any
codeword X transmitted over the channel, we require that ‖X‖2

2 ≤ nP. Due to this
restriction we redefine capacity. For the single user Gaussian channel the capacity
is defined as

C = max
PX : EPX [X2]≤P

I(X; Y). (4.7)

Using that for a given variance the normal distribution maximizes (differential)
entropy [20, Theo. 8.6.5], it can be shown that the capacity for the single user
Gaussian channel is [20, Theo. 9.1.1]

C =
1
2

ln
(

1 +
P
N

)
. (4.8)
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This is achieved by choosing the input distribution X ∼ N (0, P). Similarly, for the
Gaussian MAC we can specify the capacity region by choosing X1 ∼ N (0, P1In)

and X2 ∼ N (0, P2In). We get that the capacity region for the Gaussian MAC is the
convex hull of the set of points (R1, R2) satisfying

R1 <
1
2

ln
(

1 +
P1

N

)
, (4.9)

R2 <
1
2

ln
(

1 +
P2

N

)
, (4.10)

R1 + R2 <
1
2

ln
(

1 +
P1 + P2

N

)
. (4.11)

It is surprising that the sum of the rates can be as large as 1
2 ln

(
1 + P1+P2

N

)
, which

is the same rate achieved by a single transmitter with a power equal to the sum of
the powers. The capacity region for a Gaussian MAC is seen in Figure 4.1.

4.2 Transmission strategies

We now consider how some of the rate pairs in the capacity region for the Gaussian
MAC can be achieved using different transmission- and signal processing strate-
gies.

4.2.1 Time Division Multiple Access

With time division multiple access (TDMA) the n channel uses in time is parti-
tioned into two blocks n1 = λn and n2 = (1− λ)n. This readily gives the two
achievable rates R1 = λ

2 ln
(

1 + P1
N

)
and R2 = 1−λ

2 ln
(

1 + P2
N

)
. By varying λ all

rate pairs seen in Figure 4.1 can be achieved. This is called naive TDMA since the
devices does not scale their respective power up such that the total power used in
the block is the same [20, Chap. 15.3]. The advantage of this transmission strategy
is that the signal processing required has low complexity, since the two users are
decoded separately.

4.2.2 Frequency Division Multiple Access

With frequency division multiple Access (FDMA) we split the bandwidth between
the users. Consider the single user Gaussian channel. The continuous input to the
digital demodulator is described as the convolution

Y(t) = ((X + Z) ∗ h)(t), (4.12)

where X(t) is the signal coded waveform, Z(t) is white Gaussian noise and h(t)
is an ideal highpass filter that cuts out all frequencies above W1. We know from
the Nyquist-Shannon Theorem [37], [38] that such a signal should be sampled

1Notice that a we cannot have an ideal highpass filter and simultaneously finite blocklength n.
Realistically we are interested in functions that have most of their energy in the bandwidth W and
most of their energy in a finite time interval, but this assumption allows for an easier analysis.
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Figure 4.1: Gaussian MAC capacity region and achievable rates for (naive) TDMA, FDMA, TIN and
TIN with SIC.

with at least a rate of 2W. If the noise has power spectral density of N/2, then
the noise power is proportional to the bandwidth as 2WN/2 = NW. Sampling
in a time period of T we get that each of the n = 2WT samples has variance
NWT/(2WT) = N/2. With a transmission power of P the energy per sample
is PT/(2WT) = P/(2W). Using this in the expression for the capacity of the
Gaussian single user channel (4.8) we get a capacity that depends on the bandwidth
as C = 1

2 ln
(
1 + P

NW

)
.

In FDMA we then divide the frequency band between the users with the ratio
λ similar to dividing the block in TDMA. Then the achievable rates are R1 =
λ
2 ln

(
1 + P

NλW

)
and R2 = 1−λ

2 ln
(

1 + P
N(1−λ)W

)
. By varying λ we can achieve any

rate pair on the curve in Figure 4.1. We see that by choosing λ∗ = P1
P1+P2

we achieve

optimal sumrate 1
2 ln

(
1 + P1+P2

N

)
.

We notice that this approach use the entire power up to the average power
constraint. If each user in TDMA increases its power inversely proportional to the
ratio of allocated time resources as P′1 = P1λ−1 and P′2 = P1(1− λ)−1, we see that
the same rates as with FDMA are achievable with TDMA. That is, dividing power
in time or frequency results in the same achievablity. This is not surprising since
Parseval’s Theorem [39] states that power is preserved between the two domains.

4.2.3 Treating Interference as Noise And Successive Interference
Cancelation

We consider decoding without taking into account that multiple users are trans-
mitting by treating the interference as noise (TIN). If the first user decodes this
way, it can transmit reliably with rates less than 1

2 ln
(

1 + P1
P2+N

)
since the noise

now have power P2 + N. If both users does this, we acheive the rate pair marked
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as "TIN" in Figure 4.1 [40].
We can do better by means of more complex signal processing and decode in

two stages. In the first stage the receiver can reliably decode the second device
with rate less than R2 = 1

2 ln
(

1 + P2
P1+N

)
by means of TIN. In the second stage the

interference can be subtracted second device before decoding device one. This is
called successive interference cancellation (SIC). Decoding user one is now equiv-
alent to the single user channel which we know can be decoded reliably for rates
R1 <

1
2 ln

(
1 + P2

N

)
. Dependent on which user is decoded first, both corner points

of the capacity region can be achieved with this method, see Figure 4.1 [20].
We will consider variations of both TDMA/FDMA and TIN with SIC later in

this thesis.
The generalization to K-user MACs is straight forward and presented results

both for the general MAC and the Gaussian MAC are still valid. Specifically, the
capacity region of the K-user MAC is the closure of the convex hull of the rate
vectors satisfying

∑
i∈S

Ri ≤ I(X(S); Y|X(S c)), for all S ⊆ {1, 2, . . . , K}, (4.13)

for some product distribution p1(x1)p2(x2) · · · pK(xK) and X(S) , {Xi : i ∈ S}.
These results specify achievable rates defined as rate vectors where the prob-

ability of error goes to zero for the blocklength n → ∞. However, in a massive
random access setting we cannot achieve the rates Ri, i = 1, . . . K in (4.13) with
vanishing probability of error, since the number of active users K are comparable
to the blocklength n. In this regime, we have to accept a non-zero probability of
error and redefine what is understood as achievable rates. We next consider the
particular departures we take from the classical analysis of the (Gaussian) MAC to
characterize and analyze massive random access.





Chapter 5

Massive Random Access

We have seen that the MAC is well characterized, and that many rate pairs are
achievable by means of appropriate transmission strategies and signal processing
techniques. Unfortunately we still run into problems when trying to characterize
massive random access. In an IoT setting like distributed sensor networks, we are
likely to have the same specifications for every device in terms of transmission
power and rate. For the K-user MAC this corresponds to having Pi = P, and
Ri = R for i = 1, 2, . . . , K. Additionally we normalize the channel with respect
to the noise such that we have N = 1. In this case we can define the equivalent
to the rate of a code for the single user channel. For the multi-user channel this
is known as the network spectral efficiency S of a code. With the assumption of
K independent users network spectral efficiency is defined as S = (K log M)/n.
Similarly to Definition 3.2 of rate we generalize network spectral efficiency as as

Definition 5.1 (Network spectral efficiency). Let the messages WK
1 be chosen from the

message set M of size M according to the joint probability distribution PWK
1

and let n be
the blocklength. The network spectral efficiency of such a code is defined as the ratio

S =
H(WK

1 )

n
. (5.1)

We now consider the deviations we need to take from the conventional MAC to
characterize massive random access. The main four points are the massive access,
the definition of error, the random access and correlation in devices.

5.1 Massive Access

A key metric for the notion of massive access is the user density relative to the
blocklength. Specifically, we define the user density µ = K/n. This is a relevant
ratio, since, e.g. 1000 devices transmitting simultaneously might sound massive,
but from an information-theoretic viewpoint it is not if the blocklenght is infinite.
Here, the capacity of the MAC is still non-zero and in fact increasing with the
number of users. We will return to this ever increasing capacity later.

A relevant question is then what a realistic value of µ, in an IoT setting, is. As
an example consider water metering in London. 3GPP has estimated that in urban
London the total number of devices for each BS can be more than N = 35 000.
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Periodic reporting of meter readings in ranges of every 5 min, 15 min,. . ., 24 hours
are possible. As a worst case, we assume that devices send every 5 min, i.e. with
a period of T = 300 s. NB-IoT uses a narrow bandwith of W = 180 kHz [11].
As in the treatment of FDMA (Section 4.2.2), we can express the channel uses as
n = 2WT. We get µ = N/(2WT) ≈ 3× 10−4 [40]. This is on average 3333 channel
uses for each device. In [40] a more futuristic example of smart devices in a smart
home is considered. Here, a city of 106 houses with 102 devices that transmit 1− 10
times per hour is assumed to be supported by the same network. Due to the scarce
sub-GHz band, a bandwith of 20 MHz is assumed. This gives a user density of
µ ≈ 4× 10−3 which in turn is on average 250 channel uses per device.

The classical MAC capacity region is achieved by exploiting that joint typi-
cality is satisfied with probability 1 with infinite blocklength [20, Chap. 5.3.1].
However, joint typicality requires the simultaneous convergence of the empirical
joint entropy of every input and output random variables to the corresponding
joint entropy. From the law of large numbers, convergence is guaranteed for every
subset of devices, but the number of subsets grows exponentially with the number
of devices thus the asymptotic equipartition property (AEP) does not hold if the
number of devices grows with the blocklength [41]. Therefore, the error cannot
vanish asymptotically in the same general way.

In the finite blocklength regime we consider codes that depend on the probabil-
ity of error. This is a relaxation, in the sense that in the finite blocklength regime a
rate R is defined as ε-achievable for a single users channel, if there exist a (2nR, n)
code with Pe ≤ ε [21]. We denote this as a (2nR, n, ε) code. With M = d2nRe
the maximal code size M achievable, with a given error probability ε, is denoted
by [21]

M∗(n, ε) = max{M : ∃ (M, n, ε) code}. (5.2)

With more than one user with equal rate R, (5.2) is still applicable but with
achievable understood as joint probability of error limited by ε. This motivates a
new asymptotic regime in which the number of devices grows unbounded with
the blocklength such that the finite blocklength effects are preserved. This idea
was proposed in [22] with the introduction of the many-access channel (MnAC)
where K/n = µ is fixed and n→ ∞. In [22, Theo. 4] it is show that with the usual
requirement ‖Xi‖2

2 ≤ nP, then

log M∗(n, ε) ≈ 1− ε

2µ
log(1 + µnP). (5.3)

This result has an appealing connection to the classical MAC. We next investigate
why this result is still not characterizing for massive random access.

5.2 User-centric probability of error

We initially return to the classical MAC. For the Gaussian MAC we see that with
the assumption of equal power and rate for all devices the inequality with S =

{1, 2, . . . , K} in (4.13) dominates the others. That is, the sumrate is less than

Csum =
1
2

ln(1 + KP). (5.4)
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We see that Csum → ∞ for K → ∞. Thus, with an arbitrary large number of users
where interference is arbitrarily large the total amount of information can still be
arbitrarily large. However, the rate per devices 1

2K ln(1 + KP) → 0 for K → ∞ [20,
Chap. 15.3.6]. We consider the crucial performance metric energy-per-bit to noise
spectral density ratio Eb/N0 to asses this trade off. We have normalized the channel
with respect to the noise, i.e. N0 = 1, thus the ratio is, here, simply energy-per-bit.
The energy-per-bit is the ratio between the total energy spent and the total number
of bits that is moved in the network [40].

Definition 5.2 (Energy-per-bit). For a communication code with power constraint P and
users choosing codewords WK

1 from a message set [M] according to the joint probability
distribution PwK

1
, the energy-per-bit Eb is given as

Eb =
nKP

2H
(
WK

1

) . (5.5)

To be consistent with the literature we consider the energy-per-bit to noise spec-
tral density ratio Eb/N0, but due to the normalized channel with respect to the
noise, we will refer to it as simply energy-per-bit. For uncorrelated users using the
Gaussian MAC we have

Eb

N0
=

nKP
2nCsum

=
KP

ln (1 + KP)
. (5.6)

It is apparent that Eb
N0
→ ∞ for K → ∞. Thus, the capacity increases but each

device works harder and moves fewer bits [40]. As seen from (5.3) this is also
the case for the MnAC. It is, however, not a very realistic regime, since the re-
ceiver at the base station cannot receive unbounded power. Additionally, as dis-
cussed earlier the energy consumption of IoT devices is a limiting factor in the
design of IoT networks. The relevant scaling is therefore with Ptot = KP fixed [40].
This enforces a finite energy-per-bit even in the asymptotic regime. This, how-
ever, introduces another problem. With the joint average probability of error
P [g(Y) 6= (w1, w2, . . . , wK)|(w1, w2, . . . , wK)], as used in the MnAC, codes are not
achievable in either sense of the word. In fact we have the following result

Theorem 5.3 ([40]). Suppose K users send one bit each, with finite energy E , over the
Gaussian MAC, with an arbitrary blocklength n. Then we have

P [g(Y) = (w1, w2, . . . , wK)|(w1, w2, . . . , wK)] ≤
E log e

2 + log 2
log K

. (5.7)

Theorem 5.3 shows that, even for infinite blocklength, the joint probability of error
goes to one as K → ∞. This has the intuitive interpretation that with Ptot fixed, ev-
ery user is forced to "whisper" when many users are active which makes it difficult
to "hear" them all. This motivates a user-centric probability of error. The average
per-user probability of error (PUPE) was introduced in [1] as

PPUPE ,
1
K

K

∑
i=1

P [Ei] , (5.8)
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where Ei is the i-th user error event. We will return to the specific definition
of the error event Ei shortly. This definition of probability of error allows for ε-
achievablity for communitation codes with finite energy-per-bit and the number of
users scaling with the blocklength. The intuitive reason for this is that it is easier
to guarantee that 90 % of all messages are decoded in every transmission-block
compared to guaranteeing that 90 % of all transmission blocks are fully decoded.
This type of error is also more relevant for an engineer or a customer of a device
in the network who might ask: "What is the probability that my device fails?".

5.3 Random Access

Addressing random access has been done in many different ways based on many
different models. In network theory protocols such as slotted ALOHA[18] and
CSMA [42] and in coding theory methods such as coded slotted ALOHA [19] and
CDMA. In [1] Polyanskiy introduced a unifying model that allows for a fair com-
parison between many solutions such as slotted ALOHA, coded slotted ALOHA,
CDMA and TIN. For ALOHA to become a valid availability an important assump-
tion is made for the model. The analysis of ALOHA is based on having an infinite
total number of users such that the number of active users can be assumed to be
Poisson distributed. The notion of having infinite users naturally precludes the
possibility of user identification. For this reason all users in Polyanskiy’s model
employ the same codebook. This allows for decoding done up to permutation.
Specifically, the multiple access channel is specified by a permutation invariant
memoryless MAC PY|XK

1
: X K → Y . The permutation invariance condition re-

quires that PY|XK
1
(·|x1, x2, . . . , xK) coincides with PY|XK

1
(·|xπ(1), xπ(2), . . . , xπ(K)) for

any xi ∈ X , i = 1, 2, . . . , K and any permutation π [1]. A random access code is
then defined as

Definition 5.4 (Random Access Code [1]). An (M, n, ε) random access code for the
memoryless K-user channel PY|XK

1
: X K → Y is a pair of (possibly randomized) maps - the

encoder f :M→ X n and the decoder g : Yn → [M]K satisfying

1
K

K

∑
i=1

P [Ei] ≤ ε, (5.9)

where Ei , {Wi 6= g(Y)} ∪ {Wi = Wj for some j 6= i} is the i-th user error event,
W1, W2, . . . , WK are independent and uniform onM and Xi = f (Wi).

The error event Ei for the i-th user is defined as the event that message Wi is not
in the decoded list and the event that some other user chooses the same message.
This last error event is introduced due to users using the same codebook.

The main points of massive random access discussed in the previous sections
is included in definition 5.4. That is devices having same power requirements,
fixed rate, generating codewords from the same codebook, permutation invariant
decoding and per-user probability of error.

In [1] a finite blocklength achievability for the (M, n, ε) random access code is
derived using a Gallager-type bound (as in Section 3.1). The derivation of the error
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exponent has the same structure as for (3.33), but due to the many users here, the
error exponent is much more complex. We get

Theorem 5.5 ([1, Theo. 1]). Fix P′ < P. There exists an (M, n, ε) random-access code
for the K-user Gaussian MAC satisfying power-constraint P and

ε ≤
K

∑
t=1

t
K

min(pt, qt) + p0 (5.10)

, S(K) + p0, (5.11)

where p0 =
(K

2)
M +KP

[ 1
n ∑n

i=1 Z2
i >

P
P′
]
. The first bound pt is given by pt = e−nE(t) where

the error exponent is given by

E(t) = max
0≤ρ,ρ1≤1

−ρρ1tR1 − ρ1R2 + E0(ρ, ρ1), (5.12)

E0 = ρ1a +
1
2

ln(1− 2bρ1),

a =
ρ

2
ln(1 + 2tP′λ) +

1
2

ln(1 + 2tP′µ),

b = ρλ− µ

1 + 2tP′µ
,

µ =
ρλ

1 + 2tP′λ
,

λ =
tP′ − 1 +

√
D

4(1 + ρ1ρ)tP′
,

D = (tP′ − 1)2 + 4tP′
1 + ρρ1

1 + ρ
,

R1 =
1
n

ln(M)− 1
nt

ln(t!),

R2 =
1
n

ln
(

K
t

)
.

The second bound qt is given by

qt = inf
γ
P [It ≤ γ] + en(tR1+R2)−γ, (5.13)

It = min
S0∈[M]t

it


 ∑

W∈S0

cw; Y | ∑
W∈Sc

0

cW


 , (5.14)

it =
1
2

ln(1 + tP′) +
ln e
2

(
‖y− b‖2

2
1 + P′t

− ‖y− ab‖2
2

)
, (5.15)

for S0 ∈ [M]t being a t-subset of true standard messags and cW ∼ N (0, InP′) is the
codeword corresponding to message W.

Except for the exponential decay as a function of blocklength the bound does
not offer much intuition, but it can be used in numerical evaluations. Apart form
the Gallager-type bound pt a bound qt is given based on information densities. In
almost all terms of the numerical evaluations of (5.10) in [1] the bound pt provides
lower bounds than qt. The numerical evaluations in [1] are made with the setup of
a blocklength n = 30 000 and each user sending k = 100 bits. The target per-user
probability of error is 10−1. A range of active users K from 0 to 300 is considered.
A blocklength of n = 30 000 might seem large for a finite blocklength scenario
with small payloads. Since the channel uses is to be shared between the number
of devices in the range 0 to 300, we get user densities µ around 10−4 to 10−3 and
beyond. As discussed in Section 5.1, this is a relevant finite blocklengt regime,
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Figure 5.1: Tradeoff between Eb
N0

and the number of active users for different protocols compared to
the achievablity from Theorem 5.5 (solid red). Figure from [1].

since it relates to an average per-device blocklength of down to a hundred channel
uses. This is a common range of blocklengths found in the finite blocklength
litterature [21]. Additionally, we need to remember that these average per-device
blocklengths are in a multiple access channels where devices interfere with each
other.

The achievable energy-per-bit, with this setup, is compared to practical solu-
tions such as ALOHA and Coded ALOHA and CDMA, see Figure 5.1. We will not
consider how the particular curves for the different practical solutions are gener-
ates. It is, however, seen that there are orders of magnitude in difference between
the achievable energy-per-bit and the performance of the practical solutions. Addi-
tionally, it is seen that the achievable energy-per-bit is fairly constant for less than
150 devices, but after this point the energy-per-bit increases. This is due to the finite
blocklength effects being the dominating constraint when the number of users is
relatively low and multi-access interference being the dominating constraint when
many users are active [1].

This model is a random access model, in the sense that it is applicable to ran-
dom access protocols and allows for a fair comparison between them. The model
assumes that the decoder knows the number of active devices K. This assumption
can be justified, by the fact that the number of devices K can be estimated as in [26].
Specifically, the receiver can decode the received packets under the assumption that
K = 0, 1, . . . , N, and then re-generate the resulting codewords and subtract them
from the received signal. K can then be determined based on the residual, which
will equal the noise Z if the correct value of K has been determined. The problem
is, however, that the achievable energy-per-bit in Figure 5.1 based on Theorem 5.5
is achieved by generating the transmitted codewords with a power optimal for the
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Classification of events

Error No error

No alarm - A standard message is not decoded: - A standard message is decoded:
{Ms 3Wj /∈ g(Y)} {Ms 3Wj ∈ g(Y)}

- More than one user send the same message: - Different messages are sent:
{Wj = Wi for some i 6= j} {Wj 6= Wi ∀ i 6= j}

- At least one alarm message is decoded: - No alarm message is decoded:
{g(Y) ∩Ma 6= ∅} (false positive) {g(Y) ∩Ma = ∅} (true negative)

Alarm - An alarm message is not decoded: - One alarm message is decoded:
{g(Y) ∩Ma = ∅} (false negative) {|g(Y) ∩Ma| = 1} (true positive)

- More than one alarm message is decoded: - More than one user send the same alarm message:
{|g(Y) ∩Ma| > 1} {Wj = Wi ∈ Ma for some i 6= j}

- A standard message is not decoded:
{Ms 3Wj /∈ g(Y)}

- Two or more users sends the same standard
message:
{Wj = Wi ∈ Ms for some i 6= j}

Table 5.1: Error events for when an alarm has occurred and when no alarm has occurred.

particular number of active useres K. Thus, the model is not applicable to more
realistic design scenarios of random access where the number of active devices nat-
urally are not known by the devices. We will, in Chapter 9, consider a model where
users are equipped with a codebook and fixed power such that the performance is
guaranteed when the number of users K is unknown. Untill then, we will assume
that the decoder knows the number of active devices K, and we will average the
required energy-per-bit over K.

5.4 Correlated Access

We now consider how to generalize the random access code from Definition 5.4
to be applicable to the correlated unsourced random access model we consider in
this thesis. We have devices equipped with two message sets Ms and Ma where
devices are selecting messages independently selected fromMs unless an alarm A
has occurred. In this event all devices that detect the alarm event will additionally
select end the same message uniformly from Ma (for details see Chapter 2.2).
Similar to the necessity of switching to a new error definition when introducing
a massive number of devices in Section 5.2, this model entails several new error
events.

There are three main error effects we want to characterize with this model.
First, just as in [1], we consider a per-user probability of error for standard mes-
sages. Second, due to the common alarm event, we consider the overall probability
of error for the alarm message in the alarm event. That is we consider the physi-
cal phenomenon itself as a ghost device that communicates through an unknown
and random subset of IoT devices. Lastly, we consider the probability of decoding
an alarm message in standard operation. We refer to this as a false positive. The
concept of false positives is new in the analysis of the MAC. The reason is that as
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we saw in Chapter 4 and 5, both when joint probability of error and per-user prob-
ability of error is used, the error event is defined as the list of decoded messages
not corresponding to the transmitted list. With false positives we need to consider
which codewords are erroneously included in the decoded list.

Let K be the number of active devices. Additionally, let Ka be the number
of devices that generate an alarm message and let Ks be the number of devices
that generate a standard message, with generation as defined in Chapter 2.2. Due
to the leftmost branch in Figure 2.2 we do not nessasarily have K = Ka + Ks.
Define the encoder f : Ma ∪ we ×Ms ∪ we → X n and the decoder g : Yn →
Ma ∪ we × [Ms]Ks ∪ we, where we is a zero message. The encoder f has domain
Ma∪we×Ms∪we such that when both an alarm message and a standard message
is generated (leftmost branch in Figure 2.2), it is the encoders job to solve this
problem. In most transmissions only one type of message is generated by a device.
Therefore, to have the encoder well-defined, we include the zero-message we in
both sets. Whenever a device only has one message to send the decoder will use
the zero message as input from the other message set. The same principle is used
for the decoder g that has codomainMa ∪ we × [Ms]Ks ∪ we.

The error events are specified in table 5.1. The reason for the "No error"-column
is to emphasize the sometimes opposite characteristics of alarm messages and stan-
dard messages. E.g., two or more users sending the same message results in error
when it is a standard message, as in Polyanskiy’s model, but not when it is an
alarm message. On the contrary when distinct messages are decoded there is only
an error when it is alarm messages, since only one alarm is assumed to be active
at a time.

Let W0 ∈ Ma be the selected alarm message in the alarm event and let Wi ∈
Ms, i = 1, . . . , Ks be the selected standard messages. Formally, we define the
following error events:

Ei , ({Wi /∈ g(Y)} ∪ {Wi = Wj for some j 6= i}, i = 1, . . . Ks, (5.16)

which is the event of not decoding the i’th standard message or it being equal to
another selected standard message.

Ea , {W0 /∈ g(Y)} ∪ {|g(Y) ∩Ma| > 1}, (5.17)

which is the event of not decoding the alarm message or decoding more than one.
Finally,

Efp , {g(Y) ∩Ma 6= ∅}, (5.18)

which is the event of decoding any alarm message. This is an error when no alarm
has occurred.

This leads to the following definition of a K-user alarm random access (ARA)
code.

Definition 5.6 (ARA-code). An (Ma, Ms, n, εa, εs, εfp) alarm random access (ARA)-
code for the memoryless K-user channel PY|XK

1
: X K → Y is a pair of maps, the encoder

f : Ma ∪ we ×Ms ∪ we → X n, and the decoder g : Yn → Ma ∪ we ×MK̂s
s ∪ we
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satisfying

P [Ea|A] ≤ εa, (5.19)

EPKs |K

[
1

Ks

Ks

∑
i=1

P [Ei|B, Ks]

]
≤ εs, (5.20)

P
[
Efp|¬A

]
≤ εfp, (5.21)

where B = {A,¬A}, Xi = f (Wi) for the random number of messages W1, . . . , WKs+Ka in
Ms or Ma selected randomly according to the correlated random access model described
in Chapter 2.2.

The error probabilities are conditioned on the state: alarm or no alarm. This is
the case since we are only interested in alarm probability of error when an alarm
has occurred. Similarly, we want to ensure the reliability of standard messages
in both states, since it is desirable to be able to guarantee the performance of
the system even in the alarm event. When there is no alarm B = ¬A in (5.20)
Ks is not random since then Ks = K. Therefore, the expectation in (5.20) can be
removed and we consider the usual per-user probability of error. With B = A the
expectation in (5.20) in fact expresses the per-standard message probability of error.
That is, (5.20) ensures that (both when an alarm has happened or not), if a standard
message is generated, the average probability that it introduces an error is less than
εs. Finally, false positives can only occur when an alarm has not happened, thus
we condition on this state.

In the paper included in Appendix A an ARA code is defined based on error
events where only a transmitted standard message can introduce an error. That is,
if a device has a standard message to send but an alarm occurs, it is not considered
to be an error to drop the standard message in favor of an alarm message. This
allows for achievability of ARA codes for any number of total devices N. However,
this is a simpler model and is not as relevant as the one defined in Definition 5.6.
Particularly, any standard message that is generated by a device should be con-
tributing with an error if it is not received, both if it is due to potentially getting
dropped in favor of an alarm message or because of a decoding error. We no-
tice that if standard messages are dropped in favor of alarm messages, then in the
alarm event, it is automatically impossible to achieve a per-user probability of error
for standard messages less than the alarm detection probability pd. This is the case
since a device with a standard message to send still has detection probability pd
where it will drop its message. On top of that it has the non-zero finite blocklength
probability of error of not being decoded.

We will in this thesis consider two types of transmission strategies to achieve
the ARA code in definition 5.6. Both strategies are designed to not drop stan-
dard messages if a device has both a standard message and an alarm message to
send. The first approach is similar to TDMA/FDMA where we divide the chan-
nel uses orthogonally. However, as we saw in Section 5.1 it is not feasible to use
TDMA/FDMA in massive access with finite blocklength due to the huge waste in
channel uses. Instead, we will divide the block in only two; one for alarm mes-
sages and one for standard messages, see Figure 5.2. This means that the standard
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Figure 5.2: Received signal in one block of n channel uses in the alarm event. The alarm message
and standard messages each have one sub-block. Alarm messages consist of ka bits and standard
messages consist of ks bits.

Figure 5.3: Received signal in one block of n channel uses in the alarm event. The received signal is
both standard messages and the alarm message.

messages are still transmitted non-orthogonally and the alarm messages can still
add up coherently. The heterogeneous reliability requirements of the two types
of messages make this setup similar to the problem of achieving coexistence of
the services URLLC and mMTC within the same RAN in 5G. This problem has
introduced the concept of network slicing for 5G [43], [44]. The typical approach
is to divide the RAN resources orthogonally between the services, eMBB, mMTC
and URLLC while letting each service operate potentially non-orthogonally within
each slice. With this mix between orthogonal and non-orthogonal transmissions,
when we divide the block between alarm and standard messages, it is somewhat
misleading to call it TDMA or FDMA. Therefore, inspired by network slicing for
5G, we adopt the naming convention used in [44] and refer to the method as het-
erogeneous orthogonal multiple access (H-OMA).

The separation of RAN resources may lead to an often unused channel in the
alarm block if the alarm event is rare. Therefore, we consider a second transmission
strategy where the block is shared by the two types of messages, see Figure 5.3.
We let all devices use the entire block and if a device has both an alarm and a
standard message to send, the encoder will encode a superposition of the alarm
codeword and the standard codeword. We refer to this as heterogeneous non-
orthogonal multiple access (H-NOMA). The decoder will employ a TIN decoding
of the alarm messages followed by a SIC of the alarm message to continue decoding
the standard messages.

We treat each method separately next, starting with H-OMA.



Chapter 6

Heterogeneous Orthogonal
Multiple Access

6.1 Signal model

We consider the heterogeneous orthogonal multiple access (H-OMA) approach
where each block of n channel uses is split up in two. One for alarm messages
with na channel uses, and one for standard messages with ns = n − na channel
uses, see Figure 5.2. Alarm messages consist of ka bits and standard messages
consist of ks bits. That is Ma = 2ka and Ms = 2ks . In practical scenarios we will
consider ka < ks. Particularly the number of bits in standard messages in IoT sys-
tems can be around 100 bits while an extreme case for alarm messages can be 1 bit
simply indicating an alarm event. As discussed, the alarm bits will require ultra
high reliability. We define a communication problem that is applicable to the set-
ting of Definition 5.6. Because of the separation of the blocks we can consider it as
two separate communication problems. We will refer to the number of active users
in the alarm block and standard block as Ka and Ks, respectively. Notice that for
a total of K active devices we do not necessarily have K = Ks + Ka, since a device
can send both an alarm message and a standard message.

6.1.1 Alarm Block

In the alarm block we consider the alarm messages Ma. The channel for the
alarm block is specified by a probability distribution PY|X : Xa → Ya for a single
user memoryless channel with input alphabet Xa and output alphabet Ya. We
define the encoder as the map fa : Ma ∪ we → X na

a and the decoder as the map
ga : Yna

a →Ma ∪ we. The received signal in the alarm block Ya is defined as

Ya = KaX0 + Za, (6.1)

where X0 = fa(W0) for W0 chosen uniformly from Ma and Z ∼ N (0, Ina). We
impose an average power constraint P, i.e. ‖ fa(W0)‖2 ≤ naP. The model in (6.1)
is essentially a single user AWGN channel with random SNR of K2

aP. Here, the
coherent addition of many repetitions of the same alarm message from different
users is clearly seen.

35
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Due to the complete correlation between alarm messages in each transmis-
sion and that they are orthogonally seperated from the standard messages, we get
simple expressions for the network spectral efficiency and energy-per-bit. The net-
work spectral efficiency in the alarm event with Ka active alarm devices sending
messages W1 = W2 = . . . = WKa = W0 is given as

Sa =
1
na

H(WKa
1 ) (6.2)

=
1
na

Ka

∑
i=1

H(Wi|W i−1
1 ) (6.3)

=
1
na

H(W0) (6.4)

=
log2 Ma

na
, (6.5)

where (6.3) follows from the chain rule for entropy (Theorem 3.5). Equation (6.4)
follows from the fact that, in the alarm event, all conditioning messages in (6.3)
are equal which leaves no uncertainty in the considered message. Thus, all terms
in the sum are zero except the first. Lastly, (6.5) follows from W0 being uniformly
selected from the message set Ma. We see that the per-device spectral efficiency
log2(Ma)/(Kana) is decreasing for an increasing number of alarm-devices due to
the complete correlation between devices. Since the entropy of the messages in the
alarm block is H(WKa

1 ) = log2 Ma, the energy-per-bit (Definition 5.2) is given as
Eb
N0

= naPKa
2 log2 Ma

. Again, due to the complete correlation between alarm devices, we
see that the energy-per-bit increases with the number of alarm-devices.

6.1.2 Standard Block

The standard block is equivalent to Polyanskiy’s model in [1]. Particularly, the
channel related to the standard block is specified by the probability distribution
PY|XKs

1
: X Ks

s → Ys for a memoryless MAC satisfying permutation invariance. The

encoder is the map fs : Ms ∪ we → X ns
s and the decoder is the (possibly random-

ized) map gs : Yns
s →MKs

s ∪ we. The received signal Ys is given by

Ys =
Ks

∑
i=1

Xi + Zs, (6.6)

where Xi = fs(Wi) for codewods Wi, i = 1, . . . , Ks, chosen uniformly and indepen-
dently from Ms and Zs ∼ N (0, Ins). We have the same average power constraint
P as in the alarm block demanding ‖ fs(Wi)‖2

2 ≤ nsP, i = 1, . . . , Ks.
As in [1] the network spectral efficiency is given as Ss = Ks log2(Ms)/ns and

the energy-per-bit is Eb
N0

= nsP
2 log2 Ms

. In contrast to the alarm block we see that the
network spectral efficiency and energy-per-bit does not depend on the number of
users Ks since the users are completely uncorrelated.

The overall received signal Y of both the alarm and standard block is the vector
Y = [YT

a , YT
s ]

T. To strictly relate this setup to Definition 5.6 the two encoders fa and
fs must be seen as part of an overall encoder f (W1, W2) = [ fa(W1)

T, f (W2)T]T that
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takes an alarm message (or zero message we) as first input and a standard message
(or a zero message we) as second input. Similarly when we consider decoders
for each block in the next section, these can be thought of as part of an overall
decoder that takes the total signal Y as input and output an alarm message (or a
zero message we) and a collection standard messages (or a zero message we).

6.2 H-OMA Achievability

In H-OMA we have the alarm messages and standard messages separated orthog-
onally. Thus, there is no interference from either of the two and we can treat each
service separately. We notice that they are however linked through the division of
the n channel uses and by having the same average power requirement P.

6.2.1 Standard Block

The standard block is is equivalent to Polyanskiy’s model with a blocklength of ns.
That is, the achievability of the standard block is specified by Theorem 5.5. This
is achieved by considering using random coding and a Gallager-type bound as in
Section 3.1. In Section 3.1, the codewords are generated according to an arbitrary
probability distribution Q(x) and the error exponent is maximized over all such
distributions. To get theoretically tractable bounds in this regime, the generating
distribution is chosen to be the Gaussian distribution beforehand. That is, the Ms

standard codewords are generated as c1, . . . , cMs

i.i.d.∼ N (0, P′ Ins) corresponding to
the message set [Ms]. For a Gaussian channel ML-decoding is equivalent to mini-
mizing the least squares difference between the received signal and the estimated
codewords. For convenience define c(S) , ∑i∈S ci for any set S ⊆ [M]t of any size
t ≤ Ms. Given a realization of the received signal ys the ML-decoder is defined as

gs(ys) =

{
Ŝ Ks > 0

we Ks = 0

Ŝ = arg min
S∈[Ms]Ks

‖c(S)− ys‖2
2 .

(6.7)

In Polyanskiy’s model it is assumed that the number of standard devices Ks can
be correctly estimated by the receiver. If any standard messages are transmitted
(Ks > 0), the decoder outputs the set of Ks estimated messages and if no standard
devices are active (Ks = 0) the decoder outputs the zero message we.

6.2.2 Alarm Block

In the alarm block there is two sources of error: not decoding the alarm message
in the alarm event and false positives when there has been no alarm.

Due to the assumption of perfect channel inversion, the alarm block is effec-
tively equivalent to having only one device (the ghost-device) transmitting over an
AWGN channel with SNR K2

aP. We notice that the bound in [21] for the AWGN
channel with finite blocklength is not valid due to the random SNR we have in this
case. Alternatively, as for the bound in Theorem 5.5, we consider a Gallager-type
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bound. That is, as in Chapter 3 we use a ML-decoder and random coding to bound
the probability of error and arrange the resulting bound such that it is specified by
an error exponent. We generated the Ma alarm codewords according a Gaussian

distribution as c1, . . . , cMa

i.i.d.∼ N (0, P′ Ina) corresponding to the message set [Ma].
If the uniformly chosen codeword W0 ∈ Ma does not satisfy the average power
constraint, ‖cW0‖2

2 > naP, then all alarm devices must transmit X0 = 0. Otherwise,
if the power constraint is satisfied, all alarm devices transmit the alarm codeword
X0 = cW0 . Given a realization of the received signal ya the ML-decoder is defined
as

ga(ya) =

{
ŵ K̂a > 0

we K̂a = 0

ŵ, K̂a = arg min
w∈Ma

0≤Ka<K

‖Kacw − ya‖2
2 .

(6.8)

The decoder outputs the most likely alarm message or the zero message we if the
estimated number of alarm messages is zero (K̂a = 0).

We consider the probability of error for alarm messages in the alarm event
and the probability of false positive when no alarm has occurred separately. The
bounds will rely heavily on the following two results

Theorem 6.1 (Chernoff Bound [45]). Let X = ∑n
i=1 Xi where X1, X2, . . . , Xn are inde-

pendent random variables. Then

P [X ≥ t] ≤ e−λtE
[

n

∏
i=1

eλXi

]
(6.9)

= e−λtE
[
eλ ∑n

i=1 Xi
]

, (6.10)

for any λ > 0.

Theorem 6.2 ([1]). Let X ∼ N (µ, σ2In). Then

E
[
e−λ‖X‖2

2

]
=

e−
λ‖µ‖22

1+2σ2λ

(1 + 2σ2λ)n/2 , (6.11)

for any λ > − 1
2a

Alarm messages

For the probability of not decoding an alarm message we get the following result.

Lemma 6.3 (H-OMA alarm decoding bound). Fix Ka, na ≤ n and P′ < P. The
probability of error of an alarm message in an (Ms, Ma, n) ARA code using H-OMA is
bounded as

P [Ea|A] ≤ min

(
N

∑
K′a=0

e−naξa , 1

)
+ p1 (6.12)

, AH−OMA(Ka) + p1, (6.13)
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where p1 = P
[

Q > naP
P′

]
for Q ∼ χ2

na
and the error exponent is given as

ξa = max
0≤ρ≤1,0≤λ

− ρ

na
ln(Ma − 1) + τa, (6.14)

τa =
ρ

2
ln(1 + 2K′2a P′λ) +

1
2

ln(1 + 2K2
aP′ρβ) +

1
2

ln(1 + 2γ), (6.15)

γ =
ρβ

1 + 2K2
aP′ρβ

− ρλ, (6.16)

β =
λ

1 + 2K′2a P′λ
. (6.17)

Proof. Due to the uniform selection of messages fromMa and the identical distri-
bution of codewords (Gaussian) we assume without loss of generality that the Ka

alarm devices choose the first alarm message such that w0 = 1 = w1 = w2 = · · · =
wKa . With the received signal defined as (6.1) and the decoder defined as (6.8) an
error occurs if

∥∥K′acw′ − (KaX0 + Za)
∥∥2

2 < ‖Kac1 − (KaX0 + Za)‖2
2 , (6.18)

for a wrong alarm codeword cw′ , w′ ∈ [Ma] \ 1 and some integer 0 ≤ K′a ≤ K.
This is the event that, due to noise, some scaling of a wrong codeword is closer (in
l2-norm) to the received signal than the true codeword is.

The fact that we might have X0 = 0 due to a power violation in the random
generation of codeword makes it hard to analyse the probability of (6.18). To get
around this we do as in [1]. We assume that the generated codeword c1 does
fulfill the average power restriction, i.e. ‖c1‖2

2 ≤ naP. We then have that X0 = c1

is transmitted. The resulting bound we find can then be adjusted to satisfy the
bound under the true measure were we do not make assumptions on c1 by adding
the probability p1 = P

[
‖c1‖2

2 > naP
]
. We have that ‖c1‖2

2 follows a scaled chi-

squared distribution with na degrees of freedom. We have ‖c1‖2
2 = ∑na

i=1(
√

P′Zi)
2 =

P′ ∑na
i=1 Z2

i for Z ∼ N(0, Ina). We get

p1 = P
[
‖c1‖2

2 > naP
]
= P

[
Q >

naP
P′

]
, (6.19)

for Q ∼ χ2
na

. We define the error event as (6.18) but with the assumption of X0 = c1

we define it as

Fa(K′a, w′) =
{∥∥Kac1 − K′acw′ + Za

∥∥2
2 < ‖Za‖2

2

}
. (6.20)

Additionally, we define the union over all wrong codewords with different scalings

Fa(K′a) =
⋃

w′∈[Ma]\1
Fa(K′a, w′), (6.21)

and
Fa =

⋃

0≤K′a≤K

Fa(K′a), (6.22)
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We then have that the probability of error for alarm messages P [Ea|A] = P [Fa]. We
therefore bound P [Fa]. Remember that under the true measure we have P [Ea|A] ≤
P [Fa] + p1.

The general approach to bound P [Fa] is, as in the proof of Theorem 3.8, done by
conditioning on the realization of codewords and the received signal followed by
averaging over these variables. With the condition on the realization of codeword
c1, conditioning on the received signal Y effectively conditions the realization of
the noise of the channel Z. We therefore condition F(K′a, w′) on c1 and Z. Then
the Chernoff bound (Theorem 6.1) is applicable to bound P [Fa(K′a, w′)|c1, Za] since
‖Za‖2

2 is constant and ‖Kac1 − K′acw′ + Za‖2
2 is a sum of independent random vari-

ables where cw′ is the only source of randomness. We get

P
[
Fa(K′a, w′)|c1, Za

]
≤ eλ‖Za‖2

2Ecw′

[
e−λ‖Kac1−K′acw′+Za‖2

2

]
, (6.23)

for λ > 0. We now see that the identity from Theorem 6.2 is applicable to the expec-
tation in (6.23) since λ > 0 and Kac1 − K′acw′ + Za|c1, Za ∼ N (Kac1 + Za, K′2a P′ Ina).
We then get

P
[
Fa(K′a, w′)|c1, Za

]
≤ eλ‖Za‖2

2
e
−λ‖Kac1+Za‖2

2
1+2K′2a P′λ

(1 + 2K′2a P′λ)na/2 (6.24)

= eλ‖Za‖2
2 e−β‖Kac1+Za‖2

2− na
2 ln(1+2K′2a P′λ), (6.25)

where (6.25) follows by moving the denominator of (6.24) inside the exponential
and defining β = λ

1+2K′aP′λ .
We now bound the union (6.21) using Gallager’s ρ-trick (Theorem 3.9) as

P
[
Fa(K′a)|c1, Z

]
≤
(

∑
w′∈[Ma]\1

eλ‖Za‖2
2 e−β‖Kac1+Za‖2

2− na
2 ln(1+2K′2a P′λ)

)ρ

, (6.26)

for ρ ∈ [0, 1]. As in the proof of Theorem 3.8 the subscript w′ is a dummy variable
and we get Ma − 1 equal terms

P
[
Fa(K′a)|c1, Za

]
≤ (Ma − 1)ρeρλ‖Za‖2

2 e−ρβ‖Kac1+Za‖2
2−

ρna
2 ln(1+2K′2a P′λ). (6.27)

We now take expectation with respect to the distribution of c1. We see that only the
factor e−ρβ‖Kac1+Za‖2

2 in (6.27) depends on c1 and that Kac1 +Za|Za ∼ N (Za, K2
aP′ Ina).

Therefore the identity from Theorem 6.2 is applicaple again and we get

E
[
e−ρβ‖Kac1+Za‖2

2 |Za

]
=

e
−ρβ‖Za‖22
1+2K2

a P′ρβ

(1 + 2K2
aP′ρβ)na/2 (6.28)

= e
−ρβ‖Za‖22
1+2K2

a P′ρβ
− na

2 ln(1+2K2
a P′ρβ)

. (6.29)

Now inserting (6.29) in (6.27) gives the expectation of (6.27) taken over c1

P
[
Fa(K′a)|Za

]
≤ (Ma − 1)e−γ‖Za‖2

2−naτ, (6.30)
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where we define γ = ρβ
1+2K2

a P′ρβ
− ρλ and τ = ρ

2 ln
(
1 + 2K′2a P′λ

)
+ 1

2 ln(1+ 2K2
aP′ρβ).

We can then use the identity in Theorem 6.2 one last time to take expectation
over Za. Since Za ∼ N (0, Ina), we get

P
[
Fa(K′a)

]
≤ (Ma − 1)ρ 1

(1 + 2γ)na/2 e−naτ (6.31)

= e−naξa , (6.32)

where ξa = max0≤ρ≤1,0<λ− ρ
na

ln(Ma − 1) + 1
2 ln(1 + 2γ) + τ is the error exponent

for alarm messages. We now take the union over K′a defined in (6.22). We see that
the error exponent depends on K′a thus we cannot benefit from using Gallager’s
ρ-trick. Therefore, we use the union bound and get

P [Fa] ≤ min

(
N

∑
K′a=0

e−naξa , 1

)
, (6.33)

which concludes the proof.

As for Theorem 5.5 the bound in Lemma 6.3 does not provide much intuition
except for the exponential decay in the alarm probability of error as a function of
blocklength. We will in Section 6.3 do numerical evaluations to understand the
implications of the bounds.

False Positives

False positives with H-OMA can only occur if the pure noise in the na unused
channel uses in the alarm block can be decoded as an alarm message. The bound
for the probability of false positives P

[
Efp|¬A

]
is similar to the bound for alarm

messages. In this case Ka = 0 and with the decoder (6.8), a false positive occurs if
K̂a > 0 for any alarm message. Therefore, we bound the false positive probability
by bounding

P
[
Efp|¬A

]
= P


 ⋃

1≤K′a

⋃

w′∈Ma

{∥∥K′acw′ − Za
∥∥

2 < ‖Za‖2
}

 . (6.34)

We get the following result.

Lemma 6.4 (H-OMA false positive bound). Fix na ≤ n and P′ < P. The probability
of false positive in a (Ms, Ma, n) ARA code code using H-OMA is bounded as

P
[
Efp|¬A

]
≤ min

(
∞

∑
K′a=1

e−naξfp , 1

)
(6.35)

, FPH−OMA, (6.36)

where the error exponent is given as

ξfp = max
0≤ρ≤1,0≤λ

− ρ

na
ln Ma +

ρ

2
ln(1 + 2K′2a P′λ) +

1
2

ln(1 + 2ρβ), (6.37)

β =
λ

1 + 2K′2a P′λ
− λ. (6.38)
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The proof of 6.4 is found in Appendix C.1 and is very similar to the proof of
Lemma 6.3.

Based on Theorem 5.5, Lemma 6.3 and Lemma 6.4 we can formulate the first
main achievability theorem for ARA codes.

Theorem 6.5 (ARA achievability with H-OMA). Fix na ≤ n and P′ < P. There exists
an (Ms, Ma, n, εa, εs, εfp) ARA code for the Gaussian MAC satisfying power-constraint P
and

εs ≤ EPKs |K [S(Ks) + p0] , (6.39)

εa ≤ EpKa |K,A [AH−OMA(Ka)] + p1, (6.40)

εfp ≤ FPH−OMA(K), (6.41)

where S(Ks), AH−OMA(Ka) and FPH−OMA are given as in Theorem 5.5, Lemma 6.3 and

Lemma 6.4 respectively and p1 = P
[

Q > naP
P′

]
for Q ∼ χ2

na
and p0 =

(Ks
2 )

M + Ks p1.

Due to the orthogonal separation of the number of messages in the standard block
and the error probability does not depend on the alarm state. Therefore, only one
bound for standard messages is sufficient in Theorem 6.5.

In a practical setting εs, εa and εfp can be seen as reliability requirements that
need to be fulfilled. Next we consider the question of how we can choose the
parameters of the model such that they are optimal in some sense while satisfying
the target reliabilities εs, εa and εfp. We will use the energy-per-bit (Definition 5.2)
as the performance metric of choice. This is a common metric used in the literature
and is particularly relevant for an IoT setting where power consumption is of great
concern.

6.3 Numerical Evaluation

We consider the minimal achievable energy-per-bit based on Theorem 6.5. Similar
to the scenario used for Figure 5.1 we consider a fixed blocklength n, fixed message
set sizes for alarm and standard messagesMa,Ms and fixed target error probabil-
ities εs, εa and εfp. Additionally we fix the standard activation probability ps. With
the parameters left, we seek a split of the n channel uses between alarm and stan-
dard messages, a detection probability pd and a power such that the energy-per-bit
is minimized while fulfilling the target error probabilities.

The first consideration is that the alarm state affects the random number of
active users. Therefore, we use a total number of devices N and consider the
average probability of error for the three target reliabilities εa, εs and εfp averaged
over K. Due to the law of total expectation, taking expectation over K for the
bounds in Theorem 6.5 (which are already given as expectations) we get that we
just need to take expectations Ks and Ka with out the condition. As mentioned,
Ks is not affected by the alarm state thus with a total of N devices Ks is binomial
distributed with success probability ps over N trials, i.e. Ks ∼ B(ps, N). Similarly,
Ka|A ∼ B(pd, N) where we condition on the alarm event A, since Ka = 0 otherwise.
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Formally, we seek to solve the following optimization problem

minimize
0≤P′, 0≤pd≤1

0≤na≤n

E
[

E0
N0

]

s.t. EPKs
[S(Ks)] ≤ εs,

EPKa |A [AH−OMA(Ka)] ≤ εa,
EPKs

[FPH−OMA(Ks)] ≤ εfp,

(6.42)

We notice the high numerical complexity of evaluating the constraint functions for
high N. Each constraint function requires N evaluations of error exponents where
each error exponent is a bivariate optimization problem that can be solved, e.g.
using the golden section search (for details see Appendix B). In reality we do not
have to evaluate all N error exponents since e.g. some values of Ka and Ks have
extremely low probability when N is high and the detection probability pd is low.
The error bound for these values of Ka will therefore not contribute significantly to
the expectation. The numerical complexity, however, still remains high. Therefore
in the error bounds in the optimization problem (6.42) we assume that there is no
power restriction P, i.e. p1 = 0. That is, we optimize the energy-per-bit based
on the average power P′ instead. We argue that this is acceptable since with the
blocklengths of interest in this report we will have that P′ ≈ P due to the law of
large numbers. We will comment on this later.

Since we consider the expected error probabilities over the number of trans-
mitted messages we also need to consider the expected energy-per-bit. We denote
the energy-per-bit of the alarm and standard block as Ea and Es respectively. As
we saw in Chapter 6.1.2, the energy-per-bit for the standard block does not explic-
itly depend on the number of standard messages Ks and is therefore still given as
EPKs

[Es] = Es = nsP′
2 log2 Ms

. From Chapter 6.1.1 we have that the expected energy-

per-bit of the alarm block in the alarm event is EPKa |A [Ea] =
naP′E[Ka]
2 log2(Ma)

. Since the
energy-per-bit for the standard block is not affected by the alarm state, and the
energy-per-bit is zero in the alarm block when no alarm has occurred, we will con-
sider the energy-per-bit for the two services in the alarm event. This will however
not reflect the effect of having potentially rare alarm events. To reflect this we also
consider the average energy-per-bit required in the entire system. We define the
average energy-per-bit as

Eavg = pa

(Ea + Es

2

)
+ (1− pa)Es. (6.43)

6.3.1 Method

The alarm block and standard block have their own expressions for the energy-
per-bit (Ea and Es), but per definition the devices use the same average power (per
channel use) in both blocks. Therefore, we initially consider minimizing only the
common required average power P′ over the split of the block and pd. We later
comment on why this is optimal for energy-per-bit as well.

For a given split of the overall block, the alarm block and standard block will
require two different average powers to reach the target reliabilities. Since both
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reliability constraints need to be fulfilled and they have to use the same power,
we have to use the highest of the required average powers. Therefore, the optimal
values of na and pd are attained when the powers required by the two blocks are
equal thus having no waste of power resources. The overall procedure for attaining
this is done by using a bisection algorithm on the difference between the average
power required in the alarm block and in the standard block. Here the split of
the n channel uses is the free parameter. Intuitively the procedure can be seen as
sliding the divider between the two blocks in Figure 5.2 back and fourth until the
average powers required in each block are equal and thus minimal.

To do this we need to evaluate the least required average power in both blocks.
For the alarm block we have the constraints εa and εfp that affects the required
power. We notice that the coherent addition of alarm messages will make it pos-
sible to obey most relevant constraints εa for alarm messages by setting pd suffi-
ciently high. One assumption for this is that the total number of users N is high
enough such that this "sufficiently high" pd exists. In the regime of massive ran-
dom access this is not a problem. Therefore, in the alarm block the required power
is determined by the constraint for false positives εfp that does not depend on pd.
We can then obey the constraint εa later by setting pd appropriately. In the stan-
dard block the required power is determined by the constraint εs that also does
not depend on pd. We denote the least required powers by the alarm block and the
standard block as P∗fp(na) and P∗s (na), where we use the number of channel uses
in the alarm block na as argument in both since for fixed n the number channel
uses in the standard block is uniquely given as ns = n− na. The left hand side of
the constraints of the optimization problem 6.42 (i.e. the error bounds) are given
as a function of the power but because of the complex structure of the error ex-
ponents there is no closed form solution to P∗fp(na) and P∗s (na). Instead, we use
that the error bounds are monotonically decreasing for increasing power, see Fig-
ure 6.1. Therefore, finding the power that corresponds to the crossing of the target
reliability threshold can be done efficiently by means of bisection.

Now with a way of evaluating the least required average powers P∗s (na) and
P∗fp(na) of the two blocks, we can define the function f (na) = P∗fp(na)− P∗s (na). If
na is too low, the alarm block will require a high power and the standard block
will only require a low power. Therefore f will be positive. Similarly, if na is too
high, then f will be negative. As mentioned we use a bisection algorithm to find
the root of f (na). We notice that since na is discrete we only seek to get as close to
the root as possible. We denote this optimal value of the split of the block as n∗a .
The constraints εfp and εs both need to be fulfilled thus the optimal average power

is P∗ = max
(

P∗s (n∗a), P∗fp(n
∗
a)
)

.
As mentioned earlier we can then find the optimal p∗d using P∗ and n∗a . The

alarm error bound decreases monotonically with increasing pd, similar to how
the error bounds decrease monotonically with increasing power (see Figure 6.1).
Therefore, bisection is again an efficient way of determining p∗d.

Now that we have minimized the required power, we comment on why P∗, n∗a
and p∗d also are the parameter choices that minimize energy-per-bit. We consider
what changing the different parameters would entail for the energy-per-bit. We
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Figure 6.1: Alarm messages error probability bound as a function of the average power P′. Block-
length na = 10 000, number of total users N = 1000, detection probability pd = 0.006 and message
set size Ma = 23.

know that the power is optimal thus we can only increase the power which will
obviously not lead to a lower energy-per-bit. We consider changing na. Since the
expression for Ea is proportional to na and the expression for Es is proportional to
ns = n− na this will only make one of the blocks potentially perform better and
would require an increase in power since P∗ is optimal for n∗a . This increase in
power would affect the energy-per-bit of both blocks, thus changing na is not ben-
eficial. The second possibility is to change the detection probability pd. Increasing
pd will only make the energy-per-bit higher since more devices will send alarm
messages needlessly. Alternatively, pd could be decreased in the hope that the
needed increase in power to accommodate this would not be more than the gain
in network spectral efficiency. Again, this is not the case for the following reason.
The value of E [Ka] is linearly dependent on pd and the SNR of alarm messages de-
creases cubically with Ka but linearly with P′. Additionally, the spectral efficiency
is linearly dependent on E [Ka]. All in all decreasing pd will linearly decrease the
spectral efficiency while it will demand a cubic increase in power thus resulting in
a higher energy-per-bit.

We will, in the numerical evaluations, compare the results to the achievable
energy-per-bit for Polyanskiy’s model. We optimize the energy-per-bit as described
in [1] but without the power restriction to allow for a fair comparison to our eval-
uations where the power restriction is omitted.

6.3.2 Setup

We choose to use a standard activation probability ps = 0.01 and a range of to-
tal number of devices N ∈ {500, . . . , 30 000} with a blocklength of n = 30 000.
This setup is similar to the one considered in the [1] since the average number of
standard devices EPKs

[Ks] = Nps will be in the range of 5 to 300. This gives the
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(a) The alarm (green) and standard block
(blue) in H-OMA for N from 500 to 30 000.

(b) The standard block (blue) in H-OMA for
N from 500 to 10 000.

Figure 6.2: Trade-off between Eb
N0

and the number of devices N when using H-OMA. For comparison
the energy-per-bit for uncorrelated devices (Polyanskiy’s model) is included (red). Blocklength n =
30 000, target error probabilities εa = εfp = 10−5, εs = 10−1, set sizes Ms = 2100, Ma = 23 and
ps = 0.01

average user density E [µ] = E [Ks] /n around the interesting regime of 10−4to10−3

discussed in Chapter 5.1. We choose the target reliability of alarm messages based
on the commonly used reliability requirements for URLLC in 5G. Here a reliability
of 99.999 % is often used [13]. That is εa = εfp = 10−5. For the standard messages
we choose a reliability that reflects the lower priority and is similar to what is ex-
perienced in wireless connections today [13]. We use εs = 10−1. Lastly, standard
messages consist of ks = 100 bits and alarm messages of ka = 3 bits.

Using the method described in Chapter 6.3.1 we obtain Figure 6.5 where the
achievable energy-per-bit for the two blocks is seen in the specified range of total
number of devices N. Since the energy-per-bit is zero for the alarm block when
there is no alarm, Figure 6.2a shows the energy-per-bit only in the alarm event.
This means that the probability pa has no effect on Figure 6.2. It is first seen that
the alarm block is highly inefficient especially when the total number of devices
N is low. This is due to the fact that the energy needed for the standard block is
relatively low when multi-user interference in low. Therefore, the compensation
in increased pd needed to still achieve the target alarm reliability lowers the per-
device spectral efficiency. The energy-per-bit for the standard block is on the other
hand comparable to the energy-per-bit achievable for Polyanskiy’s model (no cor-
relation) when the total number of devices is relatively low, see Figure 6.2b. We
see that the threshold for when the multi-access interference starts to dominate
and the energy-per-bit starts to increase in the standard block happens with fewer
devices (around 7000) compared to with uncorrelated devices, since with H-OMA
the standard messages do not use the entire block.

The reason for the decrease in energy-per-bit for the alarm block is that for an
increasing number of users the standard block demands more power due to the
increasing multi-access interference, see Figure 6.3a. This increased power then
makes false positives less likely so we can dedicate a larger ratio of the entire block
to the standard messages to even it out, see Figure 6.3b. Additionally, with the
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(a) The optimal average power P∗ for dif-
ferent total number of devices N.

(b) The optimal split ratio n∗a/n for differ-
ent total number of devices N.

Figure 6.3: H-OMA with blocklength n = 30 000, target error probabilities εa = εfp = 10−5, εs =

10−1, set sizes Ms = 2100, Ma = 23 and ps = 0.01.

increased power fewer devices are needed to transmit alarm messages to reach a
sufficient SNR. All in all, the energy-per-bit decreases for the alarm block.

In Figure 6.4 the optimal detection probability p∗d is seen for the corresponding
number of total devices N. It is seen that the required detection probabilities are
generally very low and that they are decreasing fast with then number of total
devices. This is not surprising since,apart form the alarm block getting smaller,
the alarm messages are not affected by the increasing number of users. We can
therefore expect a somewhat constant number of alarm message to be needed in the
alarm block, and hence a decreasing optimal detection probability for an increasing
number of total users.

Figure 6.2a also shows that the choice of disregarding the average power re-
striction and instead optimize over the average power has low impact for the used
blocklength, since the curve for uncorrelated random access in Figure 6.2a is indis-
tinguishable from the "NOMA: random-coding achievability"-curve in Figure 5.1
where optimization is done over the average power constraint.

In Figure 6.5 we see the average energy-per-bit Eavg for different alarm proba-
bilities. The figure shows the intuitive result that if the alarm is rare, the inefficient
alarm block is rarely used and we get average energy-per-bit close to the achievable
energy-per-bit for uncorrelated devices (the standard block).

The fact that the average energy-per-bit gets lower when the alarm event is rare
is based on the assumption that energy-per-bit is zero when the channel is unused.
However, per definition the energy-per-bit when the channel is unused is in fact
given as 0/0 and is, strictly speaking, not well-defined. If we define it as letting
both P′ and Ma go to zero, L’Hospital’s rule indeed gives that Ea → 0. But with
the number of bits ka themselves going to zero instead of the number messages we
still get a 0/0-expression. It is therefore not an unconditional fact that the system
performs better when the alarm event is rare. A systems engineer would strait
away argue that having available channel resources that are mostly unused can
only be suboptimal. We, therefore, next consider the H-NOMA approach where
the entire block is always used.
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Figure 6.4: The optimal detection probability p∗d for different total number of devices N. Blocklength
n = 30 000, target error probabilities εa = εfp = 10−5, εs = 10−1, set sizes Ms = 2100, Ma = 23 and
ps = 0.01.

Figure 6.5: Trade-off between average energy-per-bit Eavg for H-OMA and the number of devices
N with different alarm probabilities pa. For comparison the energy-per-bit for uncorrelated devices
(Polyanskiy’s model) is included. Blocklength n = 30 000, target error probabilities εa = εfp = 10−5,
εs = 10−1, set sizes Ms = 2100, Ma = 23 and ps = 0.01.



Chapter 7

Heterogeneous Non-Orthogonal
Multiple Access

We consider the heterogeneous non-orthogonal multiple access (H-NOMA) ap-
proach where transmissions of alarm messages and standard messages are com-
pletely non-orthogonal (as illustrated in Figure 5.3). We formulate a signal model
where we have the possibility of avoiding devices dropping standard messages
when they have both an alarm message and a standard message to send (leftmost
branch in Figure 2.2). The model is based on using a separate encoder for alarm
and standard messages and if a device has selected both an alarm message and
a standard message, the encoder will encode both messages as a superposition of
the two codewords. Unfortunately, this model turns out to be hard to analyze and
for that reason the analysis presented in this chapter will be of a special case of
the signal model. The special case is that standard messages are dropped in favor
of alarm messages instead of doing a superposition. In Chapter 8 we consider the
general signal model.

7.1 Signal Model

Define the encoder f : Ma ∪ we ×Ms ∪ we → X n and the decoder g : Yn →
Ma ∪ we × [Ms]Ks ∪ we. Just as with H-OMA we split the encoder in two. For
alarm messages we define encoder fa :Ma ∪ we → X n and for standard messages
we define the encoder fs : Ms ∪ we → X n. To capture the random generation of
messages according to the model described in Section 2.2 we define two Bernoulli

vectors δs = [δs
1, . . . , δs

N ]
T and δa = δb[δd

1 , . . . , δd
N ]

T where δs
i

i.i.d.∼ Bernoulli(ps),

δd
i

i.i.d.∼ Bernoulli(pd) and δb ∼ Bernoulli(pa). We consider the Gaussian MAC.
Then, for a total of N devices the received signal Y is defined as

Y =
N

∑
i=1

Xi + Z, (7.1)

where
Xi = δs

i
√

α
δa

i Xs
i + δa

i

√
1− α

δs
i X0, (7.2)

49
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pa 1− pa

Silent

ps 1− ps

Ms

pd

Ma

1− pd

SilentMs

ps 1− ps

Figure 7.1: Graphical representation of the selection of transmitted messages for H-NOMA with
α = 0.

for α ∈ [0, 1] and Z ∼ N (0, In). Xs
i = fs(Wi) for Wi, i = 1, . . . , N, chosen uniformly

inMs and X0 = fa(W0) for W0 chosen uniformly inMa. As usual we impose the
power restriction of P, i.e. ‖Xi‖2

2 ≤ nP.
This is a very general signal model that captures the correlation structure for

N total devices and the superposition encoding. It introduces a parameter α that
determines the ratio of power allocated for alarm and standard messages when
superposition is done.

We have that, if there is no alarm, which corresponds to δb = 0, then δa
i = 0, ∀i.

In this case we get Xi = Xs
i which is equivalent to Polyanskiys model. If the i’th

devices detects an alarm (δa
i = δbδd

i = 1) and it in addition has a standard message
to send (δs

i = 1) it transmits Xi =
√

αXs
i +
√

1− αX0. In all cases, the device will
transmit with the same average power, and the power restriction P has the same
statistical implications.

We see that a special case of this model is with α = 0, which corresponds to
always sending the full alarm message when a device has bot an alarm message
and a standard message to send. That is, standard messages are dropped in favor of
alarm messages. As mentioned, due to the increased model complexity caused by
the non-orthogonal interaction between alarm and standard messages, we initially
consider the model with α = 0, i.e. without superposition. With the reliability
diversity in this model the other extreme of α = 1 is not relevant, since it does
not make much sense to have high reliability requirements for alarm messages but
prioritize the standard messages. In Chapter 8 we consider the general model with
α ∈ [0, 1]. For the general model we can only formulate necessary but not sufficient
conditions for the existence of ARA codes.

We continue to denote the number of transmitted alarm messages Ka and the
number of transmitted standard message Ks. We notice that with α = 0 we have
that for K active devices K = Ka + Ks, since a device can only send one type of
message. For the rest of this chapter we consider the model with α = 0. In this
setting the model can be graphically represented as seen in Figure 7.1.

7.2 Network Spectral Efficiency

Because of the non-orthogonality of alarm and standard messages the network
spectral efficiency, as defined in Definition 5.1, is not on a simple form. Specifically,
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with K messages chosen according to the correlation model, messages are neither
independently nor uniformly chosen from the message setMa ∪Ms.

We are in a setting where K out of N devices are active users. Thus, we have an
implicit condition that the K users did send messages. Additionally, the total num-
ber of devices in the network N will be an important parameter. As an example
consider the case with a high detection probability pd, a low standard activation
probability ps, alarm probability pa = 0.5 and that K = 10 messages are transmit-
ted. If also N = 10, then there is a high probability that an alarm has occurred
since we know that all devices in the network have transmitted and that pd is high.
Consequently all the devices have most likely transmitted the same message, re-
sulting in a low network spectral efficiency. On the other hand if N = 10 000, the
probability of an alarm is low, since if there was an alarm, it is unlikely that only
10 devices detect the alarm. In this case the messages are most likely all different
resulting in a high spectral efficiency.

To explicitly show the dependency on the number of messages define

TN
K = {W1 ∈ Ma∪Ms}∩ · · · ∩ {WK ∈ Ma∪Ms}∩{WK+1 ∈ ∅}∩ · · · ∩ {WN ∈ ∅},

(7.3)
as the event that the first K out of N users transmit something and the rest are
silent. We can without loss of generality assume that it is the K first devices that
are transmitting due to symmetry in the devices. By the law of total probability
this event has probability

P[TN
K ] = pa(pd + (1− pd)ps)

K(1− pd)
N−K(1− ps)

N−K + (1− pa)pK
s (1− ps)

N−K.
(7.4)

The entropy of a single message conditioned on TN
K is from Definition 3.1 given as

H(W1) = − ∑
w1∈Ma∪Ms

P(w1|TN
K ) log P(w1|TN

K ) (7.5)

= − ∑
w1∈Ma

P(w1|TN
K ) log P(w1|TN

K )− ∑
w1∈Ms

p(w1|TN
K ) log p(w1|TN

K ) (7.6)

= − ∑
w1∈Ma

P[W1 ∈ Ma|TN
K ]

Ma
log
(
P[W1 ∈ Ma|TN

K ]

Ma

)

− ∑
w1∈Ms

P[W1 ∈ Ms|TN
K ]

Ms
log
(
P[W1 ∈ Ms|TN

K ]

Ms

)
(7.7)

= −P
[
W1 ∈ Ma|TN

K

]
log

(
P
[
W1 ∈ Ma|TN

K
]

Ma

)

− P
[
W1 ∈ Ms|TN

K

]
log

(
P
[
W1 ∈ Ms|TN

K
]

Ms

)
. (7.8)

In (7.6) we use that the sets Ma and Ms are disjoint and we therefore can split
the summation in two. In (7.7) we use that from within each set the messages are
chosen uniformly and (7.8) follows from w1 being a dummy variable in the sum-
mations leading to Ma and Ms equal terms, respectively. Using Bayes’ Theorem we
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get the two probabilities as

P[W1 ∈ Ma|TN
K ] =

P[TN
K |W1 ∈ Ma]P[W1 ∈ Ma]

P[TN
K ]

, (7.9)

P[W1 ∈ Ms|TN
K ] =

P[TN
K |W1 ∈ Ms]P[W ∈ Ms]

P[TN
K ]

. (7.10)

We know the denominator from (7.4) and we have P [W1 ∈ Ma] = pa pd. For
P[TN

K |W1 ∈ Ma] we use that the condition ensures that an alarm has occurred
and we get

P[TN
K |W1 ∈ Ma] = (pd + (1− pd)ps)

K−1(1− pd)
N−K(1− ps)N−K. (7.11)

Then inserting (7.4) and (7.11) into (7.9) the factor (1− ps)N−K cancels and we get

P[W1 ∈ Ma|TN
K ] =

(pd + (1− pd)ps)K−1(1− pd)
N−K pa pd

pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pK
s

. (7.12)

For P
[
TN

K |W1 ∈ Ms
]

in (7.10) we do not know anything for certain about the alarm
state thus from the law of total probability we get

P[TN
K |W1 ∈ Ms] = P[A|W1 ∈ Ms)P[TN

K |W1 ∈ Ms, A]

+ P[¬A|W1 ∈ Ms)P[TN
K |W1 ∈ Ms,¬A] (7.13)

=
P[W1 ∈ Ms|A]P[A]

P[W1 ∈ Ms]
P[TN

K |W1 ∈ Ms, A]

+
P[W1 ∈ Ms|¬A]P[¬A]

P[W1 ∈ Ms]
P[TN

K |W1 ∈ Ms,¬A], (7.14)

where in (7.14) we use Bayes’ Theorem. The denominator P[W1 ∈ Ms] in (7.14)
and the factor (1− ps)N−K cancels when inserted into (7.10) leaving

P[W1 ∈ Ms|TN
K ] =

pa(1− pd)
N−K+1 ps(pd + (1− pd)ps)K−1 + (1− pa)pK

s
pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pK

s
. (7.15)

Inserting (7.12) and (7.15) in (7.8) we get an expression for the entropy of a single
message under this system model.

We now generalize this to express the network spectral efficiency S (Defini-
tion 5.1) of K messages under this system model.

Theorem 7.1. For K out of N received messages and correlated devices as described in
Section 2.2, then using H-NOMA with α = 0 the system spectral efficiency S is

S =
1
n

K

∑
k=1

H(Wk|Wk−1
1 ), (7.16)

where H(Wk|Wk−1
1 ) is given by

H(Wk|Wk−1
1 ) = (B0 + B1)

k−1

∑
i=1

(
k− 1

i

)
pa pi

d((1− pd)ps)
k−1−iN0

− B2

(
B3 log2

B3

Ma
+ (1− B3) log2

1− B3

Ms

)
,

(7.17)
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and

N0 =
(pd + (1− pd)ps)K−(k−1)(1− pd)

N−K

pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pK
s

, (7.18)

B0 = − pd

pd + (1− pd)ps
log2

(
pd

pd + (1− pd)ps

)
, (7.19)

B1 =
(1− pd)ps

pd + (1− pd)ps

(
log2 Ms − log2

(
(1− pd)ps

pd + (1− pd)ps

))
, (7.20)

B2 =
pa(1− pd)

N−K+(k−1)pk−1
s (pd + (1− pd)ps)K−(k−1) + (1− pa)pK

s
pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pK

s
, (7.21)

B3 =
pa pd(pd + (1− pd)ps)K−k(1− pd)

N−K+k−1 pk−1
s

pa(pd + (1− pd)ps)K−k+1(1− pd)N−K+k−1 pk−1
s + (1− pa)pK

s
. (7.22)

The proof is found in Appendix C.2. The sum in 7.16 follows directly from the
chain rule for entropy (Theorem 3.5), therefore, the proof of Theorem 7.1 considers
expressing the terms in the sum. This is based on the same principles as for the
entropy of a single message, where the summation can be split up between the two
message sets (equation 7.6) and Bayes’ Theorem can be used with the law of total
probability.

In Figure 7.2a we see the per-user joint entropy, given by nS/K, for different
values of K, detection probability pd and standard activation probability ps. We use
a total of N = 100 devices, message set sizes of Ms = 2100 and Ma = 23 and alarm
probability pa = 0.05. The reason for plotting nS/K is the easily interpretable unit;
information bits per device. We see that if a small fraction of the total number
of devices are transmitting, then the per-user entropy is equal to the number of
information bits in standard messages alone. This is because for low K the proba-
bility that an alarm has occurred is small. Then for increasing K there is generally
a sharp transition to a very low entropy especially for large pd. This is due to
the fact that when K and pd is high the probability of having an alarm is high.
In this case many devices sends the same message from the smaller set Ma which
drastically decreases the per-device entropy. We see that this effect is not so pro-
nounced for small pd (and not at all for pd = 0), since in this case the probability
of receiving many alarm messages is equally unlikely as receiving many standard
messages thus the alarm state is uncertain. Another thing worth noticing is the
discontinuity at pd = 1. This is caused by the impossibility of having less than N
active devices in the alarm event when pd = 1 making it a certainty that an alarm
has not occurred. However, as soon as pd is strictly less than 1 there is an almost
certainty that an alarm has occurred if K is high.

In Figure 7.2b the same tendencies are seen. Namely, when K is high, then
if also ps is high, there is a low probability of an alarm and thus a high spectral
efficiency. Also in this case discontinuities occur. When ps = 0 an alarm has
certainly happened when K 6= 0 and thus the per-device entropy is small. As
soon ps is strictly greater than 0 the condition on that exactly K devices transmits
drives the probability of having no alarm up and thereby an increased per-device
entropy. Another discontinuity occur at ps = 1 for any K 6= N, since the entropy is
not well-defined.
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(a) Variable K and pd with ps = 0.1 (b) Variable K and ps with pd = 0.1.

Figure 7.2: Per user joint entropy for different number of active users K and probabilities pd and ps.
Total number of devices N = 100, message set sizes Ma = 23, Ms = 2100 and probability of alarm
pa = 0.05.

As in Section 6.3 we will later consider the average energy-per-bit for a fixed
total number of devices N. We, therefore, show the average per-device entropy
EPKs

[
H(WK

1 )/K
]

for varying detection probably pd and total number of users N.
This is seen in Figure 7.3. The alarm probability is pa = 0.05 and the standard acti-
vation probability is ps = 0.1. In Figure 7.3a we consider 3 bits for alarm messages
and 100 bits for standard messages. It is seen that lowering the detection prob-
ability generally increases the average per-device entropy. This is not surprising
since fewer devices will be transmitting alarm messages when pd is low. It is seen
that for an increasing total number of devices N, the average per-device entropy is
converging to the interval 95 to 100 bits for any detection probability. The 95 bits
corresponds to the case where pd is close to one. Here the per-device entropy is
virtually zero in the alarm event, since close to all N devices will send the same
alarm message On the other hand in standard operation the per-device entropy is
100. With pa = 0.05 we will have 5 % blocks with (close to) zero per-device entropy
and 95 % blocks with 100 per-device entropy, hence the convergence to minimum
95 bits. In Figure 7.3b we see the same convergence towards the interval of 95 to
100 bits per-device, even though both message types consists of 100 bits. We see
that the maximum per-device entropy is attained when only one device is present
in the network N = 1. Here we can have complete uncertainty of which message
set the one transmitted message belongs to. This corresponds to 101 bits; 1 bit for
the uncertainty of the message set and 100 bits for the uncertainty of the particular
message. As soon as more than one device is present in the network the average
per-device entropy is less than 100 bit due to the possibility of more than device
might send the same message. The main conclusion here is that keeping pd low
increases the average entropy, and that the size of the alarm message set has little
effect on the average entropy when the total number of users is high as in mas-
sive access. This directly relates to the network spectral efficiency, since this is just
scaled entropy per Definition 5.1.
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(a) Message set sizes Ma = 23 and Ms =
2100.

(b) Message set sizes Ma = Ms = 2100.

Figure 7.3: Average per-device entropy for different detection probabilities pd and number of total
devices N. Alarm probability pa = 0.05 and standard activation probability ps = 0.1.

7.3 H-NOMA Achievablility

Using H-NOMA the alarm and standard messages are not separated as for H-
OMA, thus we get interference from the different kinds of messages in the decod-
ing. Because of the reliability diversity, where alarm messages are held to a higher
reliability, we decode the alarm message first using TIN. Then the alarm message
is subtracted from the received signal in a SIC fashion.

As in Chapter 6.2 we choose the Gaussian distribution for generating code-
words beforehand to get tractable bounds. That is, we generate the Ma + Ms = M

codewords as c1, . . . , cM
i.i.d.∼ N (0, P′ In) corresponding to messages in the mes-

sage sets Ma and Ms. Let Wi be the codeword selected by the i’th device. If
‖cWi‖2

2 > nP then device i transmits Xi = 0. Otherwise, the device transmits
Xi = cWi . As in Section 6.2.1, we define c(S) , ∑i∈S ci for any set S ⊆ [M]t of any
size t ≤ M.

We define the decoder as follows. In the first step, the decoder estimates the
transmitted alarm message. Since the standard messages are Gaussian distributed
and we consider a Gaussian channel, the least squares decoder (6.8) is also the ML-
decoder when the received signal Y contains interference from standard messages.
That is, given a realization of the received signal y the decoder is defined as

ga(y) =

{
ŵ K̂a > 0

we K̂a = 0

ŵ, K̂a = arg min
w∈Ma

0≤Ka<K

‖Kacw − y‖2
2 .

(7.23)

The estimated interference from the alarm messages is subtracted from the received
signal using SIC as ySIC = y− K̂acŵ. Next, the decoder estimates the set of standard
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messages, similarly to (6.8), as

gs(ySIC) =

{
Ŝ K̂a < K

we K̂a = K

Ŝ = arg min
S∈[Ms]K−K̂a

‖c(S)− ySIC‖2
2 .

(7.24)

We assume that the number of active devices K = Ka +Ks is known by the receiver,
but due to the non-orthogonal access, we do not assume that the number of either
alarm messages Ka or standard messages Ks is known. Therefore, in the standard
message decoding step gs, we use the estimate K̂s = K− K̂a.

7.3.1 Alarm Messages

We now describe the approach of bounding the probability of not decoding an
alarm message in the alarm event, P [Ea|A]. Fix the number of active devices K.
We order the M generated codewords such that the first Ma codewords correspond
to alarm messages. Due to the symmetry in the devices and the uniform selection
of messages we assume, without loss of generality, that devices 1, . . . Ka are trans-
mitting the alarm message w0 = 1 = w1 = w2 = · · · = wKa . We want to bound
P [Ea|A] = P

[
Ŵ 6= 1|A

]
, where Ŵ is the estimator of the transmitted alarm mes-

sage given by the output of the decoder (7.23). Assume that the Ks transmitted
standard messages are S = {Ka + 1, . . . , K}, such that K = Ka + Ks. We can write
the received signal as Y = KaX0 + ∑i∈S Xi + Z. As in [1] we assume that the gener-
ated alarm codeword c1 and the standard codewords cKa+1 , . . . cK fulfills the average
power restriction. That is ‖c1‖2

2 ≤ nP and ‖ci‖2
2 ≤ nP for i ∈ S . We address this

assumption in Appendix C.3. With this assumption we have that X0 = c1 and
Xi = ci for i ∈ S . The received signal is therefore given as Y = Kac1 + c(S) + Z.

Let w′ be a some wrong alarm message i.e. w′ ∈ Ma \ 1, and let 0 ≤ K′a ≤ K be
some integer. Then by definition of the decoder (7.23) an error occurs if

∥∥K′acw′ − (Kac1 + c(S) + Z)
∥∥2

2 < ‖Kac1 − (Kac1 + c(S) + Z)‖2
2 . (7.25)

The right hand side of (7.25) reduces to ‖c(S) + Z‖2
2. Taking union over all wrong

codewords of different possible scalings, we want to bound

P [Ea|A] = P


 ⋃

0≤K′a≤K

⋃

w′∈Ma\1

{∥∥Kac1 − K′acw′ + c(S) + Z)
∥∥2

2 < ‖c(S) + Z)‖2
2

}

 .

(7.26)
We get the following result

Lemma 7.2 (H-NOMA alarm decoding bound). Fix P′ < P. The probability of error of
alarm messages in an (Ms, Ma, n) ARA code using H-NOMA with α = 0 for the K-user
MAC is bounded as

P [Ea|A] ≤ EPKa |K,A

[
min

(
K

∑
K′a

e−nξa , 1

)]
+ p1 (7.27)

, EPKa |K,A [AH−NOMA(K, Ka)] + p1, (7.28)
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where p1 = P
[
Q > nP

P′
]

for Q ∼ χ2
n, PKa|K,A(k) = (K

k)
pk

d((1−pd)ps)K−k

(pd+(1−pd)ps)K is a scaled binomial
distribution and the error exponent ξa is given as

ξa = max
0≤ρ≤1,0≤λ

− ρ

n
ln(Ma − 1) + τa, (7.29)

τa =
ρ

2
ln(1 + 2K′2a P′λ) +

1
2

ln(1 + 2K2
aP′ρβ) (7.30)

+
1
2

ln(1 + 2(K− Ka)P′γ) +
1
2

ln(1 + 2ψ), (7.31)

ψ =
γ

1 + 2(K− Ka)P′γ
, (7.32)

γ =
ρβ

1 + 2K2
aP′ρβ

− ρλ, (7.33)

β =
λ

1 + 2K′2a P′λ
. (7.34)

The proof of Lemma 7.2 is found found in Appendix C.3. Similar to the proof of
Lemma 6.3 and Lemma 6.4 the proof of Lemma 7.2 is based on the Chernoff bound
(Theorem 6.1) and Gallager’s ρ-trick (Lemma 3.9).

The averaging over Ka|K in Lemma 7.2 using the conditional distribution PKa|K
is necessary because of the interference from standard messages. With a fixed num-
ber of active devices K, the random number of active alarm devices also determines
the number of active standard devices and thereby the interference.

We notice that the error exponent is almost equal to the error exponent for
alarm messages using H-OMA (Lemma 6.3) except for having an extra term 1

2 ln(1+
2(K − Ka)P′γ) corresponding to the interference from standard messages. Addi-
tionally, we use all n channel uses with H-NOMA.

7.3.2 False Positives

The bound for the probability of false positives P
[
Efp|¬A

]
is similar to the bound

for false positives using H-OMA except here we also have the interference from
standard messages. We have Ka = 0 and a false positive occurs if the decoder
outputs K̂a > 0. Since the received signal is given as Y = c(S) + Z we bound the
false positive probability by bounding

P
[
Efp|¬A

]
= P


 ⋃

1≤Ka′≤K

⋃

w′∈Ma

{∥∥c(S)− K′acw′ + Z
∥∥2

2 < ‖c(S) + Z‖2
2

}

 . (7.35)

We get the following result

Lemma 7.3 (H-NOMA false positive bound). Fix P′ ≤ P and the total number of users
K = Ks. The probability of false positives in a (Ms, Ma, n) ARA code using H-NOMA is
bounded as

P
[
Efp|¬A

]
≤ min

(
∞

∑
K′a

e−nξfp , 1

)
(7.36)

, FPH−NOMA(K), (7.37)
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where the error exponent ξfp is given as

ξfp = max
0≤ρ≤1,0≤λ

− ρ

n
ln(Ma) + τfp, (7.38)

τ =
ρ

2
ln(1 + 2K′2a P′λ) +

1
2

ln(1 + 2KP′ρβ) +
1
2

ln(1 + 2γ), (7.39)

γ =
ρβ

1 + 2KP′ρβ
, (7.40)

β =
λ

1 + 2K′2a P′λ
− λ. (7.41)

The proof of Lemma 7.3 is found in Appendix C.4

7.3.3 Standard Messages

The probability of error for standard messages need to be fulfilled in both the alarm
event and in standard operation. When the alarm messages have been successfully
subtracted as YSIC = Y − K̂acŴ (in the alarm event) or no false positive has hap-
pened (in standard operation) then we are in the case of Y. Polyanskiy’s model for
the standard messages. We assume that in the alarm event, if the alarm message is
not correctly subtracted from the received signal, we cannot decode the standard
messages, since there is then interference left from the alarm messages and the
decoder will look for a message set of the wrong size. Similarly, we assume that if,
in standard operation, a false positive occur, then an alarm message is erroneously
subtracted from the received signal which also results in error when decoding the
standard messages. We already have a bound for the probability of false positives
from Lemma 7.3 given as FPH−NOMA(K). Therefore we can bound the per-user
probability of error for standard messages in standard operation as

1
K

K

∑
i=1

P
[
Ej|¬A

]
≤ 1− (1− FPH−NOMA(K))(1− (S(K) + p0)), (7.42)

where S(K) + p0 is the standard message bound from Theorem 5.5.
The same approach is used when there is an alarm. However, the bound for

the probability of error for alarm messages only bounds the probability that Ŵ
is wrong not K̂a, since the decoder does not care about the estimated scaling K̂a.
For bounding the probability of not subtracting the alarm message correctly we
do, however, need to consider not estimating Ka correctly. Assume without loss
of generality that w0 is the transmitted alarm message. For the error probability
of standard messages we also need to remember the probability of a standard
message being dropped in favor of an alarm message. This probability is exactly
pd. For a fixed number of active devices K and alarm messages Ka we can then
bound the per-user probability of error for alarm messages in the alarm event as

1
K

K

∑
i=1

P [Ei|A, Ka] ≤ (1− pd)
(

1− P
[
Ŵ = w0, K̂a = Ka

]
(1− (S (K− Ka) + p0))

)
.

(7.43)
As in the bound for alarm messages (Lemma 7.2) we need to remember to average
the bound over Ka with the distribution PKa|K later.
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To express 7.43 we need a bound for the probability P
[
Ŵ = w0, K̂a = Ka

]
. For

fixed K and Ka we already have a bound for P
[
Ŵ 6= w0

]
given as AH−NOMA(K, Ka)+

p1 in Lemma 7.2. We, therefore, express the probability as

P
[
Ŵ = w0, K̂a = Ka

]
= P

[
K̂a = Ka|Ŵ = w0

]
P
[
Ŵ = w0

]
(7.44)

=
(

1− P
[
K̂a 6= Ka|Ŵ = w0

]) (
1− P

[
Ŵ 6= w0

])
(7.45)

≥
(

1− P
[
K̂a 6= Ka|Ŵ = w0

])
(1− (AH−NOMA(K, Ka) + p1)) ,

(7.46)

where we use the complementry events. Only P
[
K̂a 6= Ka|Ŵ = w0

]
is now un-

known. We state the bound for this probability in the following lemma.

Lemma 7.4 (H-NOMA estimating Ka). Fix P′ < P, K and Ka. The probability of
not estimating Ka correctly given that the alarm message w0 ∈ Ma is decoded, in an
(Ms, Ma, n) ARA code using H-NOMA with α = 0, is bounded as

P
[
K̂a 6= Ka|Ŵ = w0

]
≤ min




K

∑
K′a=0

K′a 6=Ka

e−nξ , 1


 (7.47)

, e(K, Ka), (7.48)

where the error exponent ξ is given as

ξ = max
0<λ

1
2

ln
(

1 + 2
(
Ka − K′a

)2 P′λ
)
+

1
2

ln
(
1 + 2 (K− Ka) P′β

)
+

1
2

ln (1 + 2γ) ,

γ =
β

1 + 2(K− Ka)P′β
, (7.49)

β =
λ

1 + 2(Ka − K′a)2P′λ
− λ. (7.50)

The proof is found in Appendix C.5.
We now insert the bound from Lemma 7.4 into (7.46) and get

P
[
Ŵ = w0, K̂a = Ka

]
≥ (1− e (K, Ka)) (1− (AH−NOMA (K, Ka) + p1)) (7.51)

, d(K, Ka). (7.52)

Further, inserting (7.52) in (7.43) and taking expectation over Ka|K we get

1
K

K

∑
i=1

P
[
Ej|A

]
≤ (1− pd)EPKa |K [(1− d(K, Ka) (1− (S (K− Ka) + p0)))]

, (1− pd)EPKa |K [SH−NOMA(K, Ka)] (7.53)

Finally, we can collect the results of Lemmas 7.2 and 7.3 and equations (7.42) and
(7.53) in the second main theorem for the achievability of ARA codes
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Theorem 7.5 (ARA achievability with H-NOMA). Fix P′ < P. There exists an
(Ms, Ma, n, εa, εs, εfp) ARA code for the K-user MAC satisfying power constraint P and

εs ≤ 1− (1− FPH−NOMA(K)) (1− (S(K) + p0)) , (7.54)

εs ≤ (1− pd)EPKa |K,A [SH−NOMA(K, Ka)] , (7.55)

εa ≤ EPKa |K,A [AH−NOMA(K, Ka)] + p1, (7.56)

εfp ≤ FPH−NOMA(K), (7.57)

where FPH−NOMA(K), AH−NOMA(K, Ka) and S(K) are given as in Lemma 7.3, Lemma 7.2
and Theorem 5.5 respectively and SH−NOMA(K, Ka) is given as in (7.53). p1 = P

[
Q > nP

P′
]

for Q ∼ χ2
n, p0 =

(K
2)

Ms
+ Kp1 and PKa|K,A(k) = (K

k)
pk

d((1−pd)ps)K−k

(pd+(1−pd)ps)K is a scaled binomial dis-
tribution.

As earlier Theorem 7.5 provides little intuitive insight into the dynamic rela-
tionship between the different message types. We explore this with numerical
evaluations.

7.4 Numerical evaluation

Initially, we are interested in the trade-off between reliability and network spectral
efficiency. This trade-off is well-known and for uncorrelated devices. This can
be the result of changing the messages set size or blocklength. If the message
set size M is increased the distance between codewords in the signal space must
decrease (to still obey the power restriction) and hence a higher probability of error
is seen. The network spectral efficiency, given as S = K log(M)/n, will on the other
hand increase due to a larger M. We aim to show this trade of but as a function
of correlation. The important parameter for this is the detection probability pd.
We saw in Figure 7.2a that increasing pd increases the correlation between devices
resulting in a lower network spectral efficiency but increases the number of devices
that add up coherently which will increase the reliability of alarm messages.

As with the numerical evaluations of H-OMA we will consider the average
error probabilities over K for a fixed number of total devices N. We do this since
the number of active devices K depends on the alarm state and the bounds are
conditioned on the alarm state.

We consider the same general setting as for the numerical evaluation of H-
OMA. Particularly, a blocklength of n = 30 000. The standard and alarm messages
consists of ks = 100 and ka = 3 bits respectively. The probability of activation
in standard operation is ps = 0.01 and we fix the target reliability of standard
messages as εs = 10−1 and target reliability for false positives as εfp = 10−5. Ad-
ditionally, we fix the alarm probability as pa = 0.001. Different from the setting
used for H-OMA we do not fix a target reliability for alarm messages since this is
the entity we want to observe. To show the trade off between reliability for alarm
messages and network spectral efficiency we additionally fix the number of total
users N = 1000 and the power constraint P. We fix the power constraint P such
that the target error probabilities εs and εfp are satisfied by using the bound in



7.4. Numerical evaluation 61

Figure 7.4: Trade-off between probability of error for alarm messages and the spectral efficiency.
Blocklength n = 30 000, N = 1000, target error probabilities εs = 10−1, εfp = 10−5, set sizes Ms =

2100, Ma = 23, ps = 0.01 and pa = 1.

(7.53) and the bound in Lemma 7.3. As discussed on Section 6.3.1 the error prob-
ability for any error-type decreases with increasing power thus we use a bisection
algorithm to find a power constraint P that satisfies the target reliability. Particu-
larly in this case P = 0.00669. The only parameter that is not fixed is the detection
probability pd. We vary this to show the trade-off between the reliability of alarm
messages, bounded as in Lemma 7.2, and the network spectral efficiency, given
as in Theorem 7.1. In Figure. 7.4 it can be seen that the probability of error in-
creases for increasing spectral efficiency (decreasing pd). Notice that the maximum
spectral efficiency is achieved when the error probability is one (or equivalently,
pd = 0), i.e. no alarm messages are detected an no user correlation. This is ex-
pected, since a higher number of devices transmitting alarm messages reduces the
network spectral efficiency but increases the received signal-to-noise ratio of alarm
messages. We see that ultra-reliable communication for alarm messages is possible
even in the presence of interference from standard messages. The trade-off is a
lower spectral efficiency. As mentioned, this trade-off between spectral efficiency
and reliability is not surprising. The novelty is in the fact that it is the correlation
between devices that causes the trade-off.

We now consider the minimal achievable energy-per-bit based on Theorem 7.5.
With H-NOMA there is no split of the channel uses thus there is one less parameter
to optimize over. We consider the optimization problem

minimize
0≤P′, 0≤pd≤1

E
[

Eb
N0

]

s.t. EPK|¬A [FPH−NOMA(K) + S(K)− FPH−NOMA(K)] ≤ εs,

EPK|A

[
EPKa |K,A [SH−NOMA(K, Ka)]

]
(1− pd) ≤ εs,

EPK|A

[
EPKa |K,A [AH−NOMA(K, Ka)]

]
≤ εa,

EPK|¬A [FPH−NOMA(K)] ≤ εfp.

(7.58)

In standard operation the distribution of K is binomial distributed as K|¬A ∼
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B(ps, N) and in the alarm event K|A ∼ B(pd + (1− pd)ps, N). As in the numerical
evaluation of the optimal energy-per-bit for H-OMA we also here disregard the
power restriction, i.e. assume p1 = 0. Therefore the optimization is done over the
average power P′.

7.4.1 Method

Although we only have the two parameters P′ and pd to optimize over, compared
to three for H-OMA, we are faced with the problem that both the alarm message
error probability and the standard message error probability depends on the de-
tection probability pd in the alarm event. This is the case since standard messages
are dropped in favor of alarm messages if a device both detects the alarm event
and has a standard message to send. To optimize the energy-per-bit we will exploit
one of the fundamental characteristic of the overall model. Namely, the possibility
that no device sends an alarm message in the alarm event, resulting in an error
no matter how well the decoder is designed or how much power each device can
use. This, in conjunction with the power requirements of the standard messages
and false positives, creates a bottleneck for the alarm messages. As an example,
consider a network of 100 devices where on average 30 % are active with standard
message. With this amount of average interference a certain power is needed to
satisfy both the standard message reliability requirement and bounding the risk
of false positives. With this power it might be enough to send say 4 alarm mes-
sages that ad up coherently to decode the alarm message with a sufficiently low
probability of error. However, setting the detection probability pd = 0.04 results
in a probability of 0.0169 of not transmitting any alarm messages. In fact we need
pd ≥ 0.1088 to get a probability of less than 10−5 for not sending any alarm mes-
sages. That is, the average SINR will be higher than needed. We use this to easily
determine a lower bound for the alarm detection probability pmin

d . This is useful in
he optimization problem (7.58).

If we use the exact pmin
d we would need infinite power to satisfy the alarm

reliability constraint, since on top of bounding the probability of not transmitting
any alarm messages we also need to bound the probability of not decoding the
alarm messages. That is, we need to increase pd from pmin

d . However, increasing
pd too much will also not be beneficial, both because of the increased network
spectral efficiency and because of the increased probability of discarding standard
messages. To determine how much we need to increase pd from pmin

d we use an
iterative procedure where P′ and pd is updated alternately.

We start by fixing pd = pmin
d . With this, we minimize the power needed to

satisfy the individual requirements regarding standard messages (in standard op-
eration and in the alarm event) and false positives P∗S|¬A(pd), P∗S|A(pd) and P∗fp(pd)

respectively. These are found using bisection as described in Section 6.3.1. The
power that satisfies all three constraints is given as

P∗(pd) = max
(

P∗S|¬A(pd), P∗S|A(pd), P∗fp(pd)
)

. (7.59)

We then go back to the constraint for alarm messages εa using the power P∗(pd).
With this power we determine a new minimum required pmin

d . This is also done by
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bisection. By going back and forth like this we converge towards a common min-
imum p∗d and P∗. The algorithm is stopped when the values of pmin

d and P∗(pmin
d )

do not change more than a tolerance limit in each iteration.
The values P∗ and p∗d are found by minimizing the required power and detec-

tion probability simultaneously. We therefore argue that P∗ and p∗d also minimize
energy-per-bit. Particularly, increasing pd only increases the probability of error
for standard messages in the alarm event and the network spectral efficiency. For
the same reason described in Section 6.3 decreasing pd will decrease the network
spectral efficiency linearly but demands a cubic increase in power, resulting in a
higher energy-per-bit.

As for H-OMA we will include the achievable energy-per-bit for Polyanskiy’s
model for reference. We optimize the energy-per-bit as described in [1] but without
the power restriction to allow for a fair comparison to the numerical evaluations of
H-NOMA model where we disregarded the power restriction.

7.4.2 Setup

For the numerical evaluation of the achievable energy-per-bit of an ARA code using
H-NOMA we consider the same setup as with H-OMA to allow for comparison
between the two approaches. That is, we use a standard activation probability
ps = 0.01, a blocklength of n = 30 000 and target error probabilities εs = 10−1 and
εa = εfp = 10−5. Standard messages consist of ks = 100 bits and alarm messages of
ka = 3 bits. A range of total number of devices N ∈ {500, . . . , 20 000} is considered.

In Fig. 7.5 the we see the energy-per-bit as a function of total number devices,
N, for this setup corresponding to different alarm probabilities. Additionally, the
achievable energy-per-bit for the uncorrelated case (Polyanskiy’s model) is seen. It
apparent that when the alarm probability is low, almost the same energy-per-bit
is achievable for correlated and uncorrelated devices up to approximately 13 000
devices. However, similarly to the average energy-per-bit for H-OMA the energy-
per-bit is high when the alarm probability is high. For more than 13 000 devices
the required energy-per-bit increases significantly. This is due to the fact that the
bound for false positives starts to dominate the choice of P′. Thus, due to high
multi-access interference, the probability of decoding a false positive is higher
than the probability of failing to decode a standard message. This is similar to
the behavior in the uncorrelated case where the finite blocklength penalty is the
dominating constraint when N is small, while multi-access interference dominates
for large N [1]. This effect is seen as the increase in the slope of the red curve
at around 16 000 devices. In general, the curves corresponding to different values
of pa are approaching each other for increasing N. This due to that increasing N
increases the average ratio of alarm messages to standard messages, resulting in
the traffic being mostly standard messages.

Due to this bottleneck of the system, caused by the false positives, it is relevant
to consider the effective average reliabilities of the different types of error. This is
shown in Figure 7.6. Here, it becomes more apparent how the different error types
affect each other. Notice the alarm probability pa does not affect the error bounds
thus Figure 7.6 is applicable to any of the H-NOMA curves in Figure 7.5. We see
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Figure 7.5: Trade-off between Eb
N0

and the number of devices, N, for different values of alarm
probability pa and for uncorrelated devices. Blocklength n = 30 000, target error probabilities
εa = εfp = 10−5, εs = 10−1, set sizes Ms = 2100, Ma = 23 and ps = 0.01.

that for a total number of devices below 13 000 the error probabilities are fixed at
their target reliabilities except for the false positives. This is caused by the con-
straints εs and εa being the active constraints in the optimization problem 7.58 and
the false positive constraint εfp being inactive. At around 13 000 total devices the
false positive constraint becomes active and the constraint for standard messages
becomes inactive making the average error probabilities of standard messages de-
crease. The error bounds all settle at (close to) a reliability of 10−5. The reason for
this is that decoding of standard messages is assumed to only be possible when
there is no false positive or the alarm message is correctly subtracted from the
received signal. Therefore, the bounds for standard messages can never be lower
than the bounds for alarm messages or false possitives, which in this case are fixed
at 10−5.

In Figure7.7 the optimal detection probability p∗d for the corresponding number
of total devices N is seen. It is seen to be almost identical to the detection probabil-
ities when using H-OMA (Figure 6.4). Thus, even though the alarm messages are
impaired by the interference from standard messages, the detection probability is
still decreasing. That means that although the number of needed alarm messages
might be increasing due to the increasing interference, it is not nearly as much as
the total number of users.

We now compare the two approaches H-OMA and H-NOMA. In Figure 7.8
we see the achievable energy-per-bit with H-NOMA compared to the achievable
average energy-per-bit with H-OMA (denoted Eavg in Section 6.3). We see that both
methods are less effective when an alarm has happened (Figure 7.8a) compared to
when alarms are rare (Figure 7.8b). Additionally, the H-NOMA approach can
achieve a lower energy-per-bit than H-OMA when the total number of devices
are relatively low (both for pa = 1 and pa = 0.001). H-OMA has the advantage
that the increased multi-access interference, when the total number of users is
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Figure 7.6: Average error probabilities for the different error types as a function of total number of
devices N. Blocklength n = 30 000, target error probabilities εa = εfp = 10−5, εs = 10−1, set sizes
Ms = 2100, Ma = 23 and ps = 0.01.

high, does not affect the probability of false positives, since these are caused by the
separate alarm block. Therefore, H-OMA does not experience a significant increase
in energy-per-bit when the multi-access interference is high.
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Figure 7.7: The optimal detection probability p∗d for different total number of devices N. Blocklength
n = 30 000, target error probabilities εa = εfp = 10−5, εs = 10−1, set sizes Ms = 2100, Ma = 23 and
ps = 0.01.

(a) Probability of alarm pa = 1 (b) Probability of alarm pa = 0.001

Figure 7.8: Achievable energy-per-bit for an ARA code with H-NOMA compared to with H-OMA
for a different number of total devices N. Blocklength n = 30 000, target error probabilities εa =
εfp = 10−5, εs = 10−1, set sizes Ms = 2100, Ma = 23 and ps = 0.01.



Chapter 8

General Heterogenious Non-
Orthogonal Multiple Access

So far we have considered H-NOMA without using superposition encoding. Namely,
the signal model in Section 7.1 with α = 0. We now consider the model with α 6= 0.
The advantage is that we avoid disregarding the standard message when a device
has both an alarm message and a standard message to send. Instead, the device
can send both messages with less power for each message according to the ratio
α. As always, there is no free lunch, since with this approach the SINR of alarm
messages decreases. Due to the superposition both the received signal power of
alarm messages decreases and the interference from standard messages increases.
To retain the same reliability for alarm messages the detection probability pd needs
to be increased. It is, therefore, not obvious if a better performance, in e.g. energy-
per-bit, is possible. We bring back the example from Section 7.4.1. That is, we have
a total of N = 100 devices where each devices is active with a standard message
with probability ps = 0.3. For this amount of average interference we need a cer-
tain power to satisfy the standard message requirements. We assume that with
this power it is sufficient to transmit 4 alarm messages to be able to decode the
alarm message with a probability of error less than 10−5. However, the random
access demands that instead of pd = 0.04 we need at least pd = 0.1088 to have a
probability less than 10−5 of not transmitting any alarm messages at all. That is we
will on average send more than 10 alarm messages to avoid this type of error. As a
result the average SINR for alarm messages is higher than needed. Therefore, with
this in mind, intuitively a gain in performance should be possible by setting α 6= 0.
This can allows the decoder to allocate some of the "wasted" power to the standard
messages. As we shall see, this is indeed the case, but only to a small extend.

8.1 Decoder

The power of the received messages can attain different values depending on
whether the devices transmit a superposition of two codewords or only one code-
word at full power. We, therefore, have to redefine the decoder. Initially, we

generate Ms + Ma = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). We assume that the

first Ms codewords correspond to standard messages and the last Ma codewords

67
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correspond to alarm messages. From symmetry and random coding we may as-
sume, without loss of generality, that devices 1, . . . , Ks are transmitting standard
messages S = {1, 2, . . . Ks}. Additionally, we assume that the alarm message w0

is selected and let Ka be the number of active alarm devices. We cannot assume
without loss of generality which Ka devices transmit alarm messages since some
of them might also be standard devices, i.e. transmitting a superposition. As for
H-OMA we, therefore, now have that in the number of active devices K is not
necessary given as K = Ks + Ka.

Let s be the number of devices transmitting a superposition of an alarm mes-
sage and a standard message. That is, s of the standard devices 1, 2, . . . , Ks are
also alarm devices. We introduce a binary vector δ ∈ {0, 1}Ks indicating which
standard devices transmitted a superposition. If the i’th device for i ≤ Ks send
a superposition then δi = 1 and is zero otherwise. That is, if δi = 1 the i’th
device will send a standard codeword with power αP′ superpositioned with an
alarm codeword with power (1− α)P′. A zero entry indicates a standard code-
word transmitted at full power. We have that the received alarm message, when
Ka devices send alarm messages and s of them send a superposition, is scaled as
(Ka− s)X0 + s

√
1− αX0 = (s

(√
1− α− 1

)
+Ka)X0. For notational convenience we

define σ(K, s, x) = s(
√

x− 1)+K and c(S , δ) = ∑i∈S
√

α
δi cWi denoting the received

superposition of standard codewords.
The decoder works in two steps as earlier. Now it estimates the alarm mes-

sage, the number of devices transmitting the alarm message and the number of
superpositions. For a realization of the received signal y the decoder is defined as

ga(y) =

{
ŵ K̂a > 0

we K̂a = 0

ŵ, K̂a, ŝ = arg min
w∈Ma

0≤Ka≤K
0≤s≤Ka

‖σ(s, Ka, 1− α)cw − y‖2
2 .

(8.1)

The estimated interference from the alarm messages is then subtracted from the
received signal in a SIC fashion as

ySIC = y− σ(K̂a, ŝ, 1− α)cŵ. (8.2)

The estimated number of standard devices is K̂s = K− K̂a + ŝ. In the next step the
decoder estimates the set of standard messages as

gs(ySIC) =

{
Ŝ K̂s > 0

we K̂s = 0

Ŝ = arg min
S⊆[Ms]K̂s

δ∈{0,1}K̂s

‖c(S , δ)− ySIC‖2
2 .

(8.3)

In Chapter 7 when bounding the error probabilities using H-NOMA with α = 0,
we assume that decoding of standard messages is not possible if the alarm mes-
sages is not correctly subtracted from the received signal. This provides useful
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Figure 8.1: Evaluation of the average bound for erroneously estimating Ka and s as a function of
the ratio α in the alarm event. We have blocklength n = 30 000, total number of devices N = 20,
pd = ps = 0.2, Ma = 23 and Ms = 2100.

bounds, since the probability of decoding the alarm message is required to be high
and, when α = 0, the probability of also estimating Ka correctly is even higher. This
is, however, not the case with α 6= 0. For σ(Ka, s, 1− α) in (8.1) different combina-
tions of s and Ka may lead to the same, or close to the same, value of σ(Ka, s, 1− α).
It will, therefore, be very likely that the decoder will estimate a pair K̂a and ŝ that
only almost correspond to the correct power of the alarm message Ŵ. That is, in
practice the alarm codeword will be correctly, or almost correctly, subtracted and
thus retaining a reasonable chance of decoding the standard messages. The bounds
will however not reflect this, since we assume that no decoding is possible even if
the alarm codeword is nearly perfectly subtracted from the received signal. In Ap-
pendix D we derive the bounds for the probability of not subtracting the alarm
message correctly. We repeat the Figure D.1 from Appendix D here as Figure 8.1.
We see that for all values of α, except for 0 or 1, the bound for the probability of not
estimating Ka and s correctly is close to one. On the other hand if α = 0 estimating
Ka correctly (here s = 0 always) is effectively a certainty.

Therefore, we cannot get useful bounds for the standard messages that reflect
the actual probabilities of decoding standard messages. As a consequence, we
cannot evaluate sufficient optimal energy-per-bit for the general H-NOMA model.
We will continue by characterizing necessary conditions for the existence of ARA
codes using general H-NOMA. We characterize the region of α-values where a
lower energy-per-bit might be possible, compared to with α = 0. We can do this,
since the problem of estimating Ka and s is not affecting the bounds for not decod-
ing alarm messages and false positives.
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8.1.1 Alarm messages

Based on the decoder in (8.1) and the random generation of codewords we get the
following result

Lemma 8.1 (General H-NOMA alarm decoding bound). Fix P′ < P. For the K-
user MAC the probability of error of alarm messages in an (Ms, Ma, n) ARA code using
H-NOMA with α ∈ [0, 1] is bounded as

P [Ea|A] ≤ EPKa,Ks |K,A

[
min

(
K

∑
K′a=0

K′a

∑
s′=0

e−nξa , 1

)]
+ Kp1, (8.4)

where the error exponent is given as

ξa = max
0≤ρ≤1,0<λ

ρ

n
ln(Ma − 1) + τ, (8.5)

τ =
ρ

2
ln(1 + 2σ(K′a, s′, 1− α)2P′λ) +

1
2

ln(1 + 2σ(Ka, s, 1− α)P′ρβ) + η, (8.6)

η =
1
2

ln(1 + 2(s(α− 1) + Ks)P′γ) +
1
2

ln(1 + 2Γ), (8.7)

Γ =
γ

1 + 2(s(α− 1) + Ks)P′γ
, (8.8)

γ =
ρβ

1 + 2σ(Ka, s, 1− α)2P′ρβ
− ρλ, (8.9)

β =
λ

1 + 2σ(K′a, s′, 1− α)2P′λ
, (8.10)

and p1 = P
[
Q < nP

P′
]

for Q ∼ χ2
n and the conditional distribution PKa,Ks|K,A is given as

PKa,Ks|K,A(Ka, Ks) =
K!

(Ka + Ks + K)!(K− Ka)!(K− Ks)!
pKa

d (1− pd)
K−Ka pKs

s (1− ps)K−Ks

(pd + (1− pd)ps)K .

(8.11)

The proof of Lemma 8.1 is found in Appendix C.6.
In Lemma 8.1 the expectation needs to be taken with respect to the joint distri-

bution PKa,Ks|K,A since Ks affects the amount of interference from standard messages
and since Ks is not given from Ka as Ks = K− Ka.

With the joint distribution of Ka and Ks given K follows the distribution of s
used in the error exponent in Lemma 8.1 as s = Ka + Ks − K.

8.1.2 False Positives

The false positives also plays a crucial role in specifying the range of α-values that
might provide lower energy-per-bit than with α = 0. For higher α-values, less
power is allocated to alarm messages when a superposition is done. This means
the decoder has to look for alarm codewords with smaller power in the received
signal which in turn makes false positives more likely. That is, higher α values
result in higher probabilities of false positives. A bound for the relation between
the two is specified in the following lemma.
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Lemma 8.2 (General H-NOMA false positive bound). Fix P′ ≤ P. For the K = Ks-
user MAC The probability of false positives in a (Ms, Ma, n) ARA code using H-NOMA
with α ∈ [0, 1] is bounded as

P
[
Efp|¬A

]
≤ min

(
∞

∑
K′a=1

K′a

∑
s′=0

e−nξfp , 1

)
, (8.12)

where the error exponent ξfp is given as

ξfp = max
0≤ρ≤1,0<λ

ρ

n
ln(Ma) + τ, (8.13)

τ =
ρ

2
ln(1 + 2σ(K′a, s′, 1− α)2P′λ) +

1
2

ln(1 + 2KP′ρβ) +
1
2

ln(1 + 2γ), (8.14)

γ =
ρβ

1 + 2KP′ρβ
, (8.15)

β =
λ

1 + 2σ(K′a, s′, 1− α)2P′λ
− λ. (8.16)

The proof of Lemma 8.2 is found in Appendix C.7.

8.2 Numerical Evaluation

We seek to determine a region of α values where an improvement in energy-per-bit
might be possible compared to having α = 0. That is, we consider necessary but
not sufficient conditions for attaining a lower energy-per-bit. As in Chapters 6 and
7 we consider the average bounds over K for a fixed number of total devices N.
We use this to specify the region of α-values where a gain in energy-per-bit can be
possible compared to with α = 0.

8.2.1 Method

We use the observation that the probability of false positives (bounded in Lemme 8.2)
increases for increasing α, see Figure 8.2. As mentioned, this is because that for
increasing α the decoder has to look for smaller fractions of alarm codewords in
the received signal, which makes it easier to mistake the interference and noise as
an alarm message.

The general approach to specifying this region of α-values is based on eliminat-
ing values that are not useful. We use the optimal energy-per-bit values for α = 0
(determined as described as in Section 7.4.1) as a benchmark.

For a given α we can determine the least required power P∗fp(α) that guaran-
tees the reliability requirements of false positives using the bound in Lemma 8.2
and bisection (as described in Section 6.3.1). With the power P∗fp(α) we then de-
termine the least required detection probability p∗d(P∗fp(α)) to satisfy the reliability
requirements of alarm messages using the bound in Lemma 8.1 and bisection.
These candidates for power and detection probability P∗fp(α) and p∗d(P∗fp(α)) are
bare minimum possible values. They are nessasary but they might not be suffi-
cient to guarantee the requirements of standard messages. We cannot check for
sufficiency due the lack of useful bounds for standard messages.
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Figure 8.2: Evaluation of the false positive probability bound (Lemma 8.2) for α ∈ [0, 1]. Blocklength
n = 30 000, N = 20, pd = ps = 0.2 an message set sizes of Ma = 23 and Ms = 2100.

With the values P∗fp(α) and p∗d(P∗fp(α)) we evaluate the corresponding energy-
per-bit candidate. This is compared to the one we know is achievable with α = 0.
If the energy-per-bit is higher than the one achievable with α = 0, then we know
that this particular value of α surely cannot provide a gain in performance. On the
other hand, if the evaluated energy-per-bit is lower than the one achievable with
α = 0, a gain in energy-per-bit might be possible for this α-value.

8.2.2 Setup

We consider the same scenario as in Chapter 6 and 7. That is, a blocklength of
n = 30 000 with standard and alarm messages consisting of ks = 100 and ka = 3
bits, respectively. The probability of activation in standard operation is ps = 0.01
and we fix the target reliability for standard messages as εs = 10−1 and target
reliability for alarm messages and false positives as εa = εfp = 10−5.

In Figure 8.3 the region, where a gain in energy-per-bit might be possible, is the
area below the curves. The method described in Section 8.2.1 is used for the two
values of alarm probability pa = 1 and pa = 0.001. The curve specify necessary
conditions thus the α-values below the curve only might be useful in terms of
achieving a lower energy-per-bit. Therefore, it is in fact the area above the curve
that provides information, since these α-values are surely not beneficial compared
to α = 0. We see that, for an increasing number of total devices N, the possibility
of achieving a gain with superposition diminishes and around N = 12 000 no gain
is achievable. This is the case no matter if the alarm probability pd is low or high.
This fits with the observation that with α = 0 and more than N = 12 000 devices
the false positive bound dominates the energy-per-bit in Figure 7.5. Therefore, with
more than N = 12 000 devices we can determine that superposition encoding is not
preferable compared to simply discarding the standard message when a device has
both an alarm message and a standard message to send.
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Figure 8.3: Values of α below the curve specify the region where a gain in energy-per-bit (may)
be achievable compared to the case with α = 0. Blocklength n = 30 000, target error probabilities
εa = εfp = 10−5, εs = 10−1 set sizes Ma = 23, Ms = 2100 and ps = 0.01.

To quantify the possible gain by using α 6= 0, when the number of users is
below N = 12 000, we consider the ARA code that was analyzed in in the paper
in Appendix A. As described in Section 2.2 this model does not assign an error to
the event that a device discards a standard message in favor of an alarm message.
The numerical evaluations of the paper in Appendix A therefore provides a lower
bound (that is not achievable) for the energy-per-bit of the H-NOMA model, since
we can never do better than when there is no penalty for throwing away stan-
dard messages. We, therefore, compare the achievability for α = 0 (as described
in Chapter 7) and the achievability in derived in the Paper in Appendix A. This is
seen in Figure 8.4. It is seen that there is only a small gap between the achievability
of H-NOMA with α = 0 and the (non-achievable) lower bound of energy-per-bit.
Therefore, even for the number of total users below 12 000 the potential gain of us-
ing superposition coding (α 6= 0), in terms of energy-per-bit, is virtually negligible.
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Figure 8.4: Comparison between achievable energy-per-bit for the ARA code in Definition 5.6 (red)
and the ARA code defined in the paper in Appendix A (blue). Particularly the blue curve is the solid
blue curve from Figure 7.5 and the red curve is the solid blue curve from in Fig. 3 in the paper in
Appendix A. Blocklength n = 30 000, target error probabilities εa = εfp = 10−5, εs = 10−1, set sizes
Ma = 23, Ms = 2100, and ps = 0.01.



Chapter 9

Design Penalty for Unknown K

The model considered so far is based on Polyanskiy’s model where the purpose is
to characterize fundamental limits for massive random access. It is assumed that
the decoder can correctly estimate the number of active devices and the codebook
used by the devices is generated to be optimal for that particular number of active
devices. Therefore, it is possible to provide bounds for how much energy-per-bit is
required to support a certain amount of users. However, in the design of random
access systems the exact number of users is naturally not known. Therefore, we
cannot be satisfied with the energy-per-bit requirement for just one number of
active devices. To provide target reliabilities over time it is relevant to be able to
guarantee the performance of the system up to a certain amount of users Kmax.
The value of Kmax needs to be chosen based on the prior knowledge of the system
activation load.

We will in this chapter limit the analysis to the pure model of Polyanskiy. That
is, there are no alarm events and thus devices are not correlated. In the model
considered so far we have modeled the number of active users K according to a
binomial distribution with N total users. With no alarm event we only have the
activation probability is ps. Thus, the average number of users is Nps. We now let
the total number of users go to infinity while keeping Nps = λ fixed. In this case
the Poisson distribution is the limit distribution of the binomial distribution. That
is we model K ∼ Poisson(λ). The same approach is used in the analysis of e.g.
(slotted) ALOHA [18]. With this assumption we can provide statistically optimal
values for Kmax based on the average number of users λ.

We will bound the average per-user probability of error as

EK

[
1
K

K

∑
i=1

P [Ei|K]
]
≤ P [K ≤ Kmax]

1
Kmax

Kmax

∑
i=1

P [Ei|K = Kmax] + P [K > Kmax] ,

(9.1)
where Ei is the error event for the i’th device, defined as Ei = {Wi 6= g(Y)} ∪
{Wi = Wj for some j 6= i} for a decoder g : Yn → [M]K̂ and messages Wi chosen
uniformly inM.

In (9.1) we use the law of total probability to bound the average per-user proba-
bility of error with the per-user probability of error when Kmax users are active. For
this we assume that, if the per-user probability of error is satisfied when Kmax users

75
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are active, then the per-user probability of error is also satisfied for any number of
active users less that Kmax. Additionally, we make the pessimistic assumption that
for any K > Kmax the per-user probability of error is one.

We cannot use the bound from Theorem 5.5 directly since this is based on
that the number of users K already have been estimated. That is, the bounds in
Theorem 5.5 are derived for a decoder that does ML-decoding only among message
sets of the correct size. We, therefore, need to modify the decoder to do ML-
decoding among message sets of all sizes.

Decoder in [1]

The Gallager-type bound in Theorem 5.5 is based on bounding the probability
of exactly t errors and using that the per-user probability of error then can be
expressed as

K

∑
t=1

t
K
P [t errors] , (9.2)

where the factor t/K is the per-user probability of error given that t errors hap-
pen. The approach to bounding P [t errors] is done by defining two t-subsets; one
being a t-subset of the transmitted messages, and one being a t-subset of the non-
transmitted messages. We call the t-subset of true messages S0 and the t-subset
of wrong messages S′0. The probability P [t errors] is then bounded by considering
the probability of decoding the list of true messages but with the messages from S0

substituted with the messages from S′0. Particularly, with M codewords generated

as c1, . . . , cM
i.i.d∼ N (0, P′ In) and c(S) = ∑i∈S ci the decoder outputs the set Ŝ if the

realized received signal is y and

g(y) = Ŝ = arg min
S∈[M]K

‖c(S)− y‖2
2 . (9.3)

We have the received signal given as Y = c(S) + Z for Z ∼ N (0, In). Therefore, t
errors occur in the decoding if

∥∥c(S0)− c(S′0) + Z
∥∥2

2 < ‖Z‖
2
2 . (9.4)

9.1 Generalized Decoder

We modify the decoder such that for a realization of the received signal y the
decoders is defined as

ggeneral(y) = Ŝ = arg min
S∈[M]K , 0≤K

‖c(S)− y‖2
2 . (9.5)

That is, the decoder must minimize over all sets of all sizes. Now t errors can occur
in several ways. Same as before t, errors happen is S′0 is mistaken for the set S0.
Additionally t errors happen if the decoder thinks that one device less than the
true K are active and a (t− 1)-subset of wrong messages is mistaken for a (t− 1)-
subset of true messages. Let K be the true number of active devices. Generally t
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errors happen if the decoder estimates K± r active devices and mistakes a (t− r)-
subset of wrong messages for a (t− r)-subset of true messages for any r ≤ t. That
is, r is the number of devices the decoder is off when estimating K. Following
the same procedure as the proof in [1] for Theorem 5.5 using the Chernoff bound
(Theorem 6.1 and the identity in Theorem 6.2 we get the following bound

1
K

K

∑
i=1

P
[
Ej
]
≤

∞

∑
t=1

t
K

pt + p0, (9.6)

where p0 =
(K

2)
M + KP

[
Q < nP

P′
]

for Q ∼ χ2
n and

pt =
t

∑
r=−t

e−nξ(t,r), (9.7)

where the error exponent ξ(t, r) is given as

ξ(t, r) = max
0≤ρ,ρ1≤1,0<λ

−ρρ1R1 − ρ1R2 + E0(ρ, ρ1), (9.8)

E0 = ρ1a +
1
2

ln(1− 2bρ1),

a =
ρ

2
ln(1 + 2(t− r)P′λ) +

1
2

ln(1 + 2tP′µ),

b = ρλ− µ

1 + 2tP′µ
,

µ =
ρλ

1 + 2(t− r)P′λ
,

R1 =
1
n

ln
(

M− K
t− r

)
,

R2 =
1
n

ln
(

K
t

)
.

The bound in (9.6) is not very different from the bound in Theorem 5.5. The dif-
ferences are the occurrence of (t− s) instead of t, the summation of the exponential
in (9.7) and the sum in (9.6) being infinite instead of bounded by K.

The summation in (9.7) comes from the union bound over the possible value of
r. The infinite summation in (9.6) comes from the fact that the decoder technically
can produce infinitely many errors. The optimal expression for λ is not known
for this bound thus λ is included in the maximization in (9.8). This new bound
reduces to the bound in Theorem 5.5 if K is known, i.e. if r is set to zero.

The general bound in (9.1) is based on the assumption that if per-user prob-
ability of error satisfies some target reliability for K = Kmax, then the per-user
probability of error is also satisfied for any K < Kmax. In Figure 9.1 we see the
bound for per-user probability of error with all parameters fixed for varying K. We
use a blocklength n = 30 000, messages set size M = 2100 and power constraint
P = 0.00576. We see that the probability of error is increasing for increasing K.
This fits with the assumption that if we require a target reliability of e.g. 10−1 for
K = 100 devices, the reliability is also satisfied for K < 100.

There is one and important further assumption behind the claim that if the
target reliability is satisfied for K = Kmax it is also satisfied for K < Kmax. The
assumption is related to the fact that the bound is based on random coding. The
bound in (9.6) is the average probability of error over the ensemble of codebooks
generated according to the Gaussian distribution with fixed variance. Specifically,
if codebooks are generated randomly according to this distribution, then on aver-
age the probability of making a decoding error when K users are active is below
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Figure 9.1: Bound for per-user probability of error for an increasing number of active users. Block-
lenght n =30 000, message set size M = 2100 and power constraint P = 0.00716.

the bound provided. If the good codebooks among this ensemble (the ones pulling
the average bound down) could be identified, we could choose one of these as the
one installed in the IoT network. It is, however, not possible to identify a good
randomly generated codebook, and more importantly, we do not even know if the
collection of good codebooks for K active users has any overlap with the good
codebooks for K′ 6= K active users. A worst case scenario is that the chosen good
codebook (by a genie) for K active users, does not work at all for some K′ ≤ K.
Proving that this is not the case would be a fundamental result in information
theory, since the ingenious idea of using random coding by Shannon [35] was in-
troduced particularly to avoid dealing with individual codebooks. Proving this is,
therefore, out of the scope of this thesis. We will simply assume that there exist
codebooks such that if the reliability requirements of messages is satisfied for Kmax

users the same reliability requirements are at least satisfied for any K < Kmax.

9.2 Numerical Evaluation

We consider the minimal energy-per-bit required to satisfy a target reliability when
the number of users is unknown. We fix the blocklenght n, message set size M and
target per-user probability of error ε. Similarly to in Section 6.3, 7.4 and 8.2 we
disregard the power restriction to reduce the numerical complexity. Instead we
optimize over the average power P′ instead. For a given average number of active
devices E [K] = λ we consider the minimization problem

minimize
0≤P′,1≤Kmax

nP′
2 log2 M

s.t. P [K ≤ Kmax]∑∞
t=1

t
Kmax

pt + P [K > Kmax] ≤ ε,
(9.9)

where the objective function is the expression for energy-per-bit for Polyanskiy’s
model and pt is given as in the bound (9.6).
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We see that to find the minimizing arguments P∗ and K∗max, we can consider
only minimizing the average power P′ subject the constraint function, since only
the variable P′ plays a role in the objective function. We know from Figure 9.1
that lowering the number of active users (Kmax) will require lower power. The
constraint function does however limit how low Kmax can be. The last term in
the constraint function readily gives a lower bound for Kmax, since we assume K
is Poisson distributed and thus theoretically tractable. Using this lowest possible
Kmax means that the first term in the constraint needs to be nearly zero. This can
only happen if the error bound ∑∞

t=1
t

Kmax
pt is nearly zero, which is only possible

with nearly infinite power. Thus, using this least possible Kmax is not optimal.
Increasing Kmax can therefore give some slack to the first term in the constraint
function in (9.9) allowing for a lower required power in the error bound. However,
increasing Kmax too much will then again increase the required power, since the
error bound then will be dominated by the high Kmax that needs to be supported.

9.2.1 Method

The method used for minimization (9.9) is part bisection and part brute force. As
mentioned we can determine the least required Kmax as the least one that satisfy
P [K > Kmax] ≤ ε. As described in Section 9.2 the required power will decrease
until a certain point for increasing Kmax. We will increase Kmax one by one from
the least required Kmax as long the required power decreases. For each Kmax we
can rewrite the constraint function as

∞

∑
t=1

t
Kmax

pt ≤
ε− P [K > Kmax]

P [K ≤ Kmax]
. (9.10)

We can then determine the least required average power P∗(Kmax) such that (9.10)
is satisfied using bisection (as described in Section 6.3.1). Let K(i)

max be the Kmax

in the i’th iteration. We have that K(i+1)
max = K(i)

max + 1 and as long as P∗(Ki+1
max) ≤

P∗(K(i)
max) we keep advancing. We will then arrive at optimal power P∗ which is

then used to evaluate the energy-per-bit as Eb
N0

= nP∗
2 log2 M .

We will include the achievable energy-per-bit for Polyanskiy’s model, where
the number of active users is known, for reference. We optimize the energy-per-bit
as described in [1] but without the power restriction to allow for a fair comparison
to our numerical evaluation where we disregard the power restriction.

9.2.2 Setup

We consider a setup with a blocklength of n = 30 000, a message set size M = 2100, a
target probability of error ε = 10−1 and a range of average active users correspond-
ing to the active users used in Figure 5.1, i.e. EpK [K] = λ ∈ {1, 2, . . . , 200}. We
optimize the energy-per-bit as described in Section 9.2.1. The achievable energy-
per-bit for known and unknown number of users is shown in Figure 9.2a. We see
that there is a margin of added energy-per-bit required to satisfy the target relia-
bility for the system when K is random and unknown. It is not a constant penalty
since the maximal number of users Kmax we need to satisfy is increasing faster than
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(a) Achievable energy-per-bit for a random
access code where the number of active
users K are either known (red) or unknown
(blue), for different values of average num-
ber of active users.

(b) The Kmax needed to satisfy the target
reliability as a function of average active
devices E [K].

Figure 9.2: Blocklength n = 30 000, message set size M = 2100, and target probability of error
ε = 10−1.

the average active devices. This is seen in Figure 9.2b, where the required Kmax is
seen compared to the average number of active users E [K]. It is seen that Kmax is
increasing linearly with E [K], and that the slope is slightly above one. This is due
to the fact that the variance of the Poisson distribution is equal to its mean λ.
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Discussion

One of the main assumptions of the general model we consider in this thesis is that
all devices are doing channel inversion before every transmission. This is to inves-
tigate the idea of having correlation in codewords translating to correlation in the
received coded waveforms. Due to the sporadic activation pattern of devices, this
demands the BS to be constantly broadcasting pilot sequences. It is not uncom-
mon to assume the BS to have unlimited resources in e.g. power and processing
capabilities, but system-wise it might be more realistic to consider a non-coherent
channel. This could be in the form of a quasi-static fading channel as considered
in [27]. This would naturally eliminate the possibility of having alarm messages
adding up coherently and thus complicate the purpose of the model. Particularly,
we show in Figure 7.4 that the fundamental trade-off between reliability and net-
work spectral-efficiency also applies to correlated devices. This result might not
have been possible to show with a non-coherent model. Therefore, although a non-
coherent model is relevant to to analyze, it is not the first choice for the purpose in
this thesis.

The overall construction of the model where devices can send the same message
simultaneously is in idealization of what can be expected in reality. As described
in Section 2.2, we condense all the factors that can affect the detection of an alarm
event into the probability pd. We do this, in line with Occam’s razor, to avoid re-
stricting the scope of the model to a specific deployment geometry or sensor type.
Throughout the thesis we do, however, treat pd as a design parameter. This is based
on the idea that pd is the composite probability of both detecting the alarm event
and the user-defined probability of deciding to send an alarm message. The actual
detection probability of a physical event can be estimated using existing models,
e.g. the models in [10] for gas leakage detection. The question is then whether the
optimal values of pd we have found make sense in the context of an IoT distributed
sensor network. For the setup we use in Section 7.4, the optimal value of pd for a
total of 10 000 devices is pd = 0.00115. That is, the devices should be deployed close
enough to having at least ≈12 devices detecting the alarm event. This is somewhat
high but e.g. a gas leakage can be expected to affect a large area, thus it might
not be unrealistic. The problem is then the timing. Having 12 devices detecting
the same phenomenon at the same time is unlikely. However, if the times at which
the devices can access the channel are limited, such that they will have to wait to
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the next transmission opportunity, we can have simultaneous transmissions. This,
on the other hand, limits the practical relevance of the model to the somewhat
unusual scenario where the alarm messages require ultra-high reliability but has
very little urgency. This is hardly the case in gas leakage detection but could be rel-
evant in control systems for slowly changing phenomenons, such as temperature
in a cooling facility. It is clear that the model is an idealization of a physical sce-
nario, but the overall main findings based on the model are nevertheless relevant
for less ideal scenarios. This includes the trade-off between reliability and network
spectral efficiency for correlated devices. This general trade-off can e.g. also be
expected when exploiting interface diversity as in [46] where information is dis-
tributed over different interfaces to achieve ultra-reliability and low latency. Here,
the information between data from each interface will be correlated in some sense
resulting in the same trade-off. The finding that false positives are a limiting factor
when interference is high, also provides insight into what needs to be considered
when designing systems with diversity in message types. The analysis of the two
signal models H-OMA and H-NOMA can be related to the analysis in [44] where
the conclusion also is that non-orthogonal access can be beneficial in certain cases
when dealing with the heterogeneous requirements of eMBB, mMTC and URLLC
in 5G. This adds to the belief that non-orthogonal transmission schemes can be
valuable in the realization of 5G systems if the receiver can afford the increased
demands in signal processing.

In Chapter 9 we considered the more realistic case of having the number of ac-
tive devices unknown. This showed generally the same tendencies as for when the
number of devices is known. The difference was a penalty causing an offset in the
required energy-per-bit. From this we might infer that the same general results in
this thesis for correlated devices are maintained when the number of active users
is completely unknown. This is further supported by the fact that the model we
have considered generally only assumes the number of active devices to be known,
not the number of respective alarm and standard devices. Having the number of
active devices unknown is a more realistic model from a system design point of
view, but for the purpose of characterizing fundamental limits in massive random
access it introduces several problems. While we avoid the assumption of knowing
the number of active devices we have to replace it with an assumption on the dis-
tribution of active devices. In Chapter 9 we assumed a Poisson distribution which
is theoretically tractable. One of the main premises of this thesis is, however, that
users can be correlated thus a more advanced activation model could have been
considered. This need for an activation model conflates the problem of charac-
terizing fundamental properties of massive access with the problem of analyzing
the performance of particular systems. When designing systems or transmission
protocols it is desired to know if the limitations of a solution (e.g. found based
on simulations or experimental trials) are related to the particular design or if it is
caused by a fundamental limitation of massive random access.

We have throughout this thesis used the metrics energy-per-bit and spectral ef-
ficiency. These are relevant metrics, but it is important to notice that these in fact
express energy per successful bit and spectral efficiency upon successful transmis-
sion. This means that the energy-per-bit metric does not reflect the reliability of
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the messages. This is not a problem in classical information theory where the error
probability can be made arbitrarily small. However, in finite blocklenght analysis
it might not be ideal. For a code with reliability requirement of either 10−1 or
10−5 the latter will have higher energy-per-bit requirements due to the increased
required power to attain the high reliability. We get a higher required energy-per-
bit, but whenever one decoding error occur the low reliability code would have
made 10 000 errors. In all these 10 000 transmissions with the low reliability code,
the energy-per-bit is not as "advertised", since no information bits are actually de-
coded. An idea could be to scale the energy-per-bit according to the reliability.
However, the energy-per-bit is in fact infinite when a decoding error occurs, since
some power is used, but no information bits are decoded. Therefore an alternative
theoretically meaningful metric for the performance in finite blocklength analysis
is desired. Not to be used exclusively, but as an additional metric for measuring
goodness. Naturally, it does not mean that the energy-per-bit metric is a not use-
ful. Particularly, it does in fact make sense that more energy is required to send
one bit with higher reliability. It is just important to remember that while the
energy-per-bit is higher, less of the energy is wasted over time.





Chapter 11

Conclusions

In this thesis we have studied how correlation between devices in IoT networks can
affect the performance in terms of reliability, system spectral efficiency and energy-
per-bit. To this end, we considered a particular model where a random set of users
can detect a physical phenomenon causing them to send the same message at the
same time. We conclude that it is possible to exploit the correlation to achieve ultra-
high reliability for the set of devices that are affected by the physical phenomenon.
Achieving this comes at the cost of decreased network spectral efficiency. This
reflects that the fundamental trade-off between reliability and network spectral
efficiency (or rate) is preserved as a function of correlation. Particularly, a massive
amount of users can only be ultra-reliable if the information between the users is
correlated.

An important aspect of the model is the need for considering false positives.
This turns out to be a critical factor when deciding upon a transmission strategy.
The achievability of the model was considered for two general transmission strate-
gies: orthogonal access and non-orthogonal access. With the former, devices that
detect the physical phenomenon transmit packets using separate RAN resources,
whereas with the latter all devices use the same RAN resources. We can conclude
that non-orthogonal access can be beneficial, in terms of energy-per-bit, when the
multi-access interference is low to moderate. When the multi-access interference
is high, the network will be prone to false positives demanding a higher energy-
per-bit compared to orthogonal access. This supports the conclusions in [44], that
non-orthogonal access for the services eMBB, mMTC and URLLC in 5G can be
beneficial.

For the non-orthogonal access we considered a model where each device can
use superposition encoding to transmit two types of messages. This is, however,
difficult to analyze and only necessary (not sufficient) conditions for the achiev-
ability could be derived. These showed that with high multi-access interference
it is not preferable of use superposition encoding compared to simply discarding
one of the two messages.

Finally, we conclude that providing true random access in a practical scenario
demands an extra margin of energy-per-bit to guarantee the performance of a net-
work, when the number of active users is completely unknown.
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Chapter 12

Future research

Considering the model used in this thesis in an asymptotic regime could provide
a more general characterization of correlated access. The most apparent regime
for this is where the ratio K/n = µ is kept fixed with n → ∞ as in [22]. There is,
however, several parameters that need to be considered in this regime. Increasing
the number of users will increase the number of alarm messages thus the alarm
message probability of error will go asymptotically to zero. This is not desired to
characterize the effects we have seen in the non-asymptotic regime in this thesis.
Therefore, the product Kpd could be kept fixed, forcing the detection probability pd
to go to zero. As we have seen this, on the other hand, would make the correlation
between devices go to zero unless the messages set sizes are scaled accordingly.
Additionally, we require false positives to be an important aspect of the asymptotic
model. It is clearly not obvious how to define the relevant asymptotic regime.

Another extension of the model is to consider the correlation model with a non-
coherent channel. This could be a quasi-static channel as considered for Polyan-
skiy’s model in [27]. Here, the received signal Y is given as

Y =
K

∑
i=1

HiXi + Z, (12.1)

where Y , X ∈ Cn, Z ∼ CN (0, In) is a circular symmetric complex Gaussian noise

vector and Hi
i.i.d.∼ CN (0, 1) are the fading coefficients. This will most likely be very

destructive for the purpose of achieving high reliability while serving a massive
number of devices. The key enabler of the model so far is that correlation between
codewords translates to correlation in the coded waveforms allowing for coherent
addition of received signals. This is naturally not possible when including fading.
In [28], inspired by [47] and the compressed sensing literature (e.g. [48]), they use a
projection decoder, or nearest subspace decoder, to show achievability conditions.
This is based on the fact that without the noise the received signal lies in the
subspace spanned by the received codewords. With an encoder f for the codebook
C and a realization of the received signal y, the projection decoder g outputs

g(y) = { f−1(w) : w ∈ Ĉ},
Ĉ = arg max

C⊆C :|C|=K1

‖PCy‖2
2 , (12.2)
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where PC is the orthogonal projection operator onto the subspace spanned by the
codewords in C. The value of K1 < K is included to allow the decoder to not
decode codewords that are potentially in a deep fade.

The benefit of the Gaussian MAC and the least squares decoder used in this
thesis is the possibility of decoding the potential alarm message first. The projec-
tion decoder can be modified similarly by grouping the alarm codewords Ca ⊆ C
and in the arg max in 12.2 initially consider only w ∈ Ca, i.e. the projection onto
the closest alarm codeword and essentially treating all other codewords as noise.
This could increase the reliability of alarm messages compared to standard mes-
sages due to the alarm codeword being more represented in the subspace. This
approach, however, is problematic, since the decoder will always produce false
positives unless it somehow knows when the projection onto an alarm codeword
is not "good enough" to declare an alarm. As a consequence it might be neces-
sary to analyze the decoder in (12.2) as it is and see if it can be shown that the
correct alarm codeword has a higher probability of being in the decoded list when
an alarm occurs. This is not unrealistic, since the alarm codeword will be more
represented in the subspace and the risk of the alarm codeword being in deep fad-
ing conditions can be eliminated by means of choosing the detection probability
pd sufficiently high.
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ISIT-2019 Paper

The initial results found in the project period have been written as a scientific pa-
per which has been submitted and accepted in the conference precedings of the
International Symposium on Information Theory (ISIT).

K. Stern, A. E. Kalør, B. Soret and P. Popovski, "Massive Random Access with
Common Alarm Messages", in 2019 IEEE International Symposium on Information
Theory (ISIT), 2019

Copyright 2019 IEEE

The paper considers the same general correlation model as described in Sec-
tion 2.2 but with the important simplification, that standard messages can be
dropped in favor of an alarm message without inducing an error. This has the im-
plication that communication codes are achievable for a broader parameter range.
In particular, all networks sizes are achievable which is not the case for the error
model considered in this thesis.
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Abstract—The established view on massive IoT access is that
the IoT devices are activated randomly and independently. This is
a basic premise also in the recent information-theoretic treatment
of massive access by Polyanskiy [1]. In a number of practical
scenarios, the information from IoT devices in a given geograph-
ical area is inherently correlated due to a commonly observed
physical phenomenon. We introduce a model for massive access
that accounts for correlation both in device activation and in
the message content. To this end, we introduce common alarm
messages for all devices. A physical phenomenon can trigger an
alarm causing a subset of devices to transmit the same message
at the same time. We develop a new error probability model
that includes false positive errors, resulting from decoding a
non-transmitted codeword. The results show that the correlation
allows for high reliability at the expense of spectral efficiency.
This reflects the intuitive trade-off: an access from a massive
number can be ultra-reliable only if the information across the
devices is correlated.

I. INTRODUCTION

The interconnection of billions of devices within the Internet
of Things (IoT) paradigm is one of the main challenges for
future networks. Accordingly, the service structure of 5G, fully
aligned with the ITU-R vision for IMT-2020, includes the
massive Machine Type-Communication (mMTC) as one of
the three core connectivity types. mMTC is typically defined
through a scenario in which a massive number of IoT devices
are connected to a Base Station (BS). The activation of the
IoT devices is intermittent, such that at a given time, the
IoT devices that are active and have a message to send
constitute a random subset from the total set of devices [2].
A main use case for IoT is a distributed sensor network
that intelligently monitors and manages a large number of
devices [3]. The traffic in such systems can be (quasi-)periodic
or event-driven [4]. In addition, source information and time
correlations occur when many devices are sensing a common
physical phenomenon.

The conventional multiple access channel (MAC) has been
well characterized [5]–[7]. The main results in these works are
derived using the fact that the probability of successful joint
decoding goes asymptotically to one with increasing block-
length. However, in the context of mMTC the devices have
small data payloads. Additionally, even though only a small
subset of the devices are active simultaneously, the large total
number of devices (up to 300 000 in a single cell [8]) means
that the number of active devices can still be comparable
to the blocklength. This results in finite blocklength (FBL)
effects. A number of works have addressed the problem of

Physical
Phenomenon

ps

ps

ps

ps

ps

pd

pd

pd

pd

pd

Fig. 1. System model with common alarm and standard messages. pd denotes
the probability of detecting an alarm, and ps is the probability of sending a
standard message.

massive access [8], [9]. However, in terms of theoretical rigor
and fundamental results two works stand out, both of them
assuming independent traffic. The first one is on the many-
access channel by X. Chen et al. [10]. This paper shows the
scaling of the number of users with the blocklength. On the
other hand, Y. Polyanskiy provides a model in [1] that is
closer to the way massive access is commonly understood.
Key elements of the model are devices employing the same
codebook which precludes the identification of users and the
error measure is done on a per-device basis. This has also been
called unsourced random access [11].

In this we build upon the model in [1] with an important
extension: we bring in the correlation of activation and mes-
sage content across different devices. This is different from
the mainstream view on massive random access, where the
device activation and message content is independent across
the devices. An exemplary case is as follows: IoT devices
can send standard messages or alarm messages, the latter
with critical reliability requirement and triggered by a com-
monly observed phenomenon. In normal operation, standard
uncorrelated messages are sent. Upon the alarm activation, a
number of IoT devices will prioritize it and send the same
message. This reflects the extreme all-or-nothing correlation
where devices are either mutually independent, or they are
completely correlated both in source information and in time.
Our model intends to capture the following intuitive observa-
tion. If the number of devices that transmit the same alarm
message increases, then the reliability of the alarm message
increases at the expense of the decrease of the total amount of
information that comes from the total population of connected
IoT devices. The model can be seen as having an (alarm) event
that needs to be communicated through a random subset of
devices, see Fig. 1. By removing the alarm event the model



boils down to the model in [1].
Differently from previous works, the per-device probability

of error is not meaningful for devices transmitting the alarm
event in our model. Instead, the common alarm itself can be
seen as a “ghost” device, which communicates through the
actual IoT devices (see Fig. 1) and we calculate the error
probability with respect to this ghost device. In addition, the
fact that we consider two message types (standard and alarm
messages) necessitates the introduction of false positive errors,
namely decoding a codeword that was not transmitted. In the
system model in Fig. 1, decoding an alarm message when no
alarm has occurred is critical. This type of error is, typically,
not considered in a common communication-theoretic setting,
where an error is defined as the event in which a decoder is
not decoding a codeword correctly.

The rest of the paper is organized as follows. Section II
introduces the system model including the source information
and time correlations. In Section III the entropy and the
spectral efficiency of the correlated devices is derived. Section
IV defines the alarm random access code based on the novel
error model, and the error bound is derived in Section V.
Finally, numerical evaluations are presented in Section VI, and
concluding remarks are given in Section VII.

Notation: The tuple (ai . . . aj) for i ≤ j is denoted aji .
We define Xi−1

i as the empty tuple and
∑j−1
i=j ai = 0. [S]k

denotes the set of k-subsets of the set S
II. CORRELATION MODEL

We consider the uplink in a random access channel in which
each access opportunity is a block of n channel uses. In each
block, K out of N devices transmit a message from one of the
two disjoint message sets Ms and Ma, consisting of Ms =
|Ms| standard messages and Ma = |Ma| alarm messages,
respectively. A typical case is having a stringent reliability
requirement for the alarm messages, and a high throughput
and massive access requirement for the rest. As also done in
[1], we assume that the number of active devices, K, is known
by the receiver.

Let PY |XK
1

: [Xn]K → Yn be a memoryless mul-
tiple access channel (MAC) satisfying permutation in-
variance where X ,Y are the input and output alpha-
bets. That is, the distribution PY |XK

1
(·|xK1 ) coincides with

PY |XK
1

(·|xπ(1), . . . ,xπ(K)) for any xK1 ∈ [Xn]K and per-
mutation π. This assumption relates to the fact that no user
identification is done at the receiver, i.e. unsourced random
access [11]. All devices use the same encoder f : Ms ∪
Ma → Xn and the receiver decodes according to the possibly
randomized map g : Yn → [Ms ∪Ma]K−Ka+1, where Ka

is the random number of devices sending an alarm message.
We denote the message transmitted by the j-th device as

Wj . The transmitted messages are chosen according to the
following model: An alarm event, A, occurs with probability
pa, and there is no alarm with probability 1− pa. If no alarm
occurs then the system acts as in [1], i.e. each device transmits
a message uniformly chosen from Ms with probability ps,
and it is silent with probability 1 − ps. If an alarm occurs,

with probability pd a device will detect it and transmit an
alarm message. Contrary to the standard messages, all devices
detecting the alarm send the same message chosen uniformly
from Ma. With probability 1 − pd the device will act as if
no alarm has occurred. It follows that P[Wj ∈ Ma] = papd
and P[Wj ∈ Ms] = ps − papspd. Notice that the probability
pd in our model is the joint event of detecting an alarm and
deciding to transmit a corresponding alarm message. The latter
can be seen as a system design parameter and its impact to
the system performance, particularly in the tradeoff between
reliability and spectral efficiency, is discussed in next section.

In contrast to practical random access scenarios, we assume
that the number of active devices, K, is known by the receiver.
This assumption can be justified by noting that K could be
estimated using the same procedure as in [12]. Furthermore,
since the number of alarm messages, Ka, is assumed unknown
in the model, an incorrectly estimated K will mainly affect the
decoding of the non-critical standard messages.

III. SPECTRAL EFFICIENCY

In this section, we study how the presence of common alarm
messages affects the information transmitted in the system. We
consider the system spectral efficiency defined as S =

H(WK
1 )

n ,
where WK

1 are messages and H is the joint entropy function.
The total number of devices, N , in the network affects the

system spectral efficiency. To see this, consider the case with a
high alarm detection probability pd, a low ps, alarm probability
pa = 0.5, and suppose we receive 10 messages, i.e. K = 10. If
also N = 10, then there is a high probability that an alarm has
occurred since we know that all devices transmitted and that pd
is high resulting in a low spectral efficiency. On the other hand,
if N = 10 000 devices in the network the probability that an
alarm has occurred is low, being unlikely that 9990 devices do
not detect an alarm when pd is high. In this case, the messages
are likely to be distinct, resulting in a high spectral efficiency.

The exact expression for the system spectral efficiency for
this model is stated in Theorem 1.

Theorem 1. For K out of N received messages and correlated
devices as describe in Section II the system spectral efficiency,
S, is

S =
1

n

K∑

k=1

H(Wk|W k−1
1 ), (1)

where H(Wk|W k−1
1 ) is given by (2)-(7).

Proof of Theorem 1 can be found in Appendix A in [13].
For pa = 0 or pd = 0 (i.e. no correlation) the system

spectral efficiency is the well-known K
n log2Ms as in [1].

IV. ALARM RANDOM ACCESS CODES

We now define a random access code that allows for
reliability diversity for standard and alarm messages. This
entails having different error events for the two message types.
Specifically, in order to capture the characteristics of alarm
messages, we introduce reliability constraints that relates to
the certainty of decoding alarm messages in the event of an



H(Wk|W k−1
1 ) = (B0 +B1)

k−1∑

i=1

(
k − 1

i

)
pap

i
d((1− pd)ps)

k−1−iN0 −B2

(
B3 log2

B3

Ma
+ (1−B3) log2

1−B3

Ms

)
, (2)

N0 =
(pd + (1− pd)ps)

K−(k−1)(1− pd)N−K

pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pKs
, (3)

B0 = − pd
pd + (1− pd)ps

log2

(
pd

pd + (1− pd)ps

)
, (4)

B1 =
(1− pd)ps

pd + (1− pd)ps

(
log2Ms − log2

(
(1− pd)ps

pd + (1− pd)ps

))
, (5)

B2 =
pa(1− pd)N−K+(k−1)pk−1s (pd + (1− pd)ps)

K−(k−1) + (1− pa)pKs
pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pKs

, (6)

B3 =
papd(pd + (1− pd)ps)

K−k(1− pd)N−K+k−1pk−1s

pa(pd + (1− pd)ps)K−k+1(1− pd)N−K+k−1pk−1s + (1− pa)pKs
. (7)

alarm, but also to the certainty of not decoding alarm messages
when no alarms has occurred (false positives).

We define error events for standard messages as in [1], i.e.
errors are considered per-device and the event that more than
one device sends the same standard message results in an error.
In contrast, no error occurs if multiple devices transmit the
same alarm message. Similarly, decoding distinct alarm mes-
sages also results in an error since only one alarm is assumed
to be active at a time, while decoding distinct standard mes-
sages is not an error. Formally, we define the following error
events: Ej , {Wj /∈ g(Y )} ∪ {Wj = Wi for some i 6= j} is
the event of not decoding the message from the j-th device,
Ea , {W0 /∈ g(Y )} ∪ {|g(Y ) ∩Ma| > 1} for W0 ∈ Ma

is the event of not decoding an alarm message or decoding
more than one, and Efp , {g(Y ) ∩Ma 6= ∅} is the event
of decoding any alarm message (which is an error when no
alarm has occurred). This leads to the following definition of
a K-user alarm random access (ARA) code.

Definition 2. An (Ms,Ma, n, εa, εs, εsa, εfp) alarm random
access (ARA) code for the K-user channel PY |XK

1
is a pair of

(possibly randomized) maps, the encoder f :Ms∪Ma → Xn,
and the decoder g : Yn → [Ms ∪Ma]K−Ka+1 satisfying

P [Ea|A] ≤ εa, (8)

1

K

K∑

j=1

P [Ej |¬A] ≤ εs, (9)

EKa


 1

K −Ka

K−Ka∑

j=1

P [Ej |A]


 ≤ εsa, (10)

P [Efp|¬A] ≤ εfp, (11)

where Xj = f(Wj), W1, . . . ,WK ∈ Ms when there is no
alarm and W1, . . . ,WK−Ka ∈ Ms, WK−Ka+1 = . . . =
WK = W0 ∈ Ma in the alarm event for a random number,
Ka, alarm messages.

The left hand side of (8) is the probability of not decoding
or resolving the alarm message in the alarm event. The left

hand side of (9) is the average per-device error probability
when there is no alarm, and (10) refers to the case when there
is an alarm. Lastly left hand side of (11) is the probability of
false positives. In a practical scenario the entities εa, εs, εsa
and εfp can be treated as reliability requirements.

In the remainder of the paper we limit the analysis to the
real Gaussian MAC (GMAC) given by

Y = X1 + · · ·+ Xm + Z, Z ∼ N (0, In), (12)

with power restriction ‖f(Wj)‖22 ≤ nP . This model is based
on the assumption that the blocklength is short enough to be
within the coherence time of the channel. This allows for the
devices to do channel inversion and precode their signals so
that they add up coherently at the receiver. This gives the
possibility of a very high reliability for alarm messages.

V. RANDOM CODING ERROR BOUND

The achievability conditions for an ARA code are presented
in Theorem 3, which provides bounds for the error probabil-
ities εa, εs, εsa and εfp for a given blocklenght n, message
set sizes Ma and Ms, average transmission power P ′, and
maximal transmission power P .

Theorem 3. Fix P ′ < P . There exists an
(Ma,Ms, n, εa, εs, εsa, εfp) alarm random access code
for the K-user GMAC satisfying power-constraint P and

εa ≤
K∑

Ka=0

pKa(Ka)a(K,Ka) + p0, (13)

εs ≤ b(K) + c(K)− b(K)c(K), (14)

εsa ≤
K∑

Ka=0

pKa(Ka)(1− d(K,Ka)(1− c(K −Ka))) (15)

εfp ≤ b(K). (16)

Defining φ(k, α) = 1
2 ln(1 + 2kP ′α) and Φ(k, α) = α

1+2kP ′α .
Related to (13):

pKa(k) =

(
K

k

)
pkd ((1− pd) ps)

K−k

(pd + (1− pd)ps)K
, (17)



a(K,Ka) = min




K∑

K′
a=0

e−nEa , 1


 , (18)

p0 = P

[
1

n

n∑

i=1

Z2
i >

P

P ′

]
, (19)

Ea = max
0≤ρ≤1,0<λa

− ρ
n

ln(Ma − 1) + ξa, (20)

ξa = ρφ(K ′2a , λa) + φ(K2
a , ρβa) + φ(K −Ka, γa)

+ φ(1/P ′, ψa), (21)

ψa = Φ(K −Ka, γa), γa = Φ(K2
a , ρβa)− ρλa,

(22)

βa = Φ(K ′2a , λa). (23)

Related to (16):

b(K) = min




K∑

K′
a=1

e−nEfp , 1


 , (24)

Efp = max
0≤ρ≤1, 0<λfp

− ρ
n

ln(Ma) + ξfp, (25)

ξfp = ρφ(K ′2a , λfp) + φ(K, ρβfp) + φ(1/P ′, γfp), (26)

γfp = Φ(K, ρβfp), βfp = Φ(K ′2a , λfp)− λfp, (27)

Related to (14)

c(K) =
K∑

t=1

t

K
min(pt, qt) +

(
K
2

)

Ms
+Kp0, (28)

pt = e−nEt , (29)
Et = max

0≤ρ,ρ1≤1
−ρρ1tR1 − ρ1R2 + E0(ρ, ρ1), (30)

E0(ρ, ρ1) = ρ1a+
1

2
ln(1− 2bρ1), (31)

a = ρφ(t, λs) + φ(t, µ), b = ρλs − Φ(t, µ), (32)

µ = ρΦ(t, λs), λs =
P ′t− 1 +

√
D

4(1 + ρ1ρ)P ′t
, (33)

D = (P ′t− 1)2 + 4P ′t
1 + ρρ1
1 + ρ

, (34)

R1 =
1

n
ln(Ms)−

1

nt
ln(t!), R2 =

1

n
ln

(
K

t

)
, (35)

qt = inf
γs

P [It ≤ γs] + en(tR1+R2)−γs , (36)

It = min
S0∈[Ms]t

it

( ∑

W∈S0

cW ;Y
∣∣ ∑

W∈Sc
0

cW

)
, (37)

it(a;y|b) = nCt +
ln e

2

(
‖y − b‖22
1 + P ′t

− ‖y − a− b‖22

)
,

(38)

where Ct = φ(1/2, t), S0 ∈ [Ms]
t is t-subsets of true

standard messages and cW ∼ N (0, InP
′) is the codeword

corresponding to message W . Related to (15):

d(K,Ka) = (1− (a(K,Ka) + p0))(1− e(K,Ka) + p0),

e(K,Ka) = min

( K∑

K′
a=0,K′

a 6=Ka

e−nξsa , 1

)
, (39)

Fig. 2. Trade-off between probability of error for alarm messages and the
spectral efficiency. n = 30 000, N = 1000, εs = 10−1, εfp = 10−5,
Ms = 2100, Ma = 23, ps = 0.01 and pa = 1.

ξsa = max
0<λsa

φ((Ka −K ′a)2, λsa) + φ(K −Ka, βsa)

+ φ(1/P ′, γsa), (40)
γsa = Φ(K −Ka, βsa), (41)

βsa = Φ
(
(Ka −K ′a)2, λsa

)
− λsa. (42)

Proof of Theorem 3 is given in Appendix B in [13].

VI. NUMERICAL EVALUATION

The bounds in Theorem 3 are given for a fixed number
of active devices, K, but the probability of a given value
of K depends on whether an alarm has happened or not.
Therefore, we consider the average bound over the distribution
of K conditioned on the alarm state and the total number of
devices, N . The distribution of K given an alarm is binomial
distributed with success probability pd + (1−pd)ps and given
no alarm the success probability is ps.

We first study the trade-off between the probability of error
for alarm messages and the per-device spectral efficiency S,
during the event of an alarm. We consider a setting with
N = 1000 devices and a blocklength of n = 30 000. The alarm
and standard messages are 3 and 100 bits, respectively. The
probability of activation when there is no alarm is ps = 0.01,
and the transmission power is chosen such that the target
average error bound for standard messages is εs = 10−1, and
the probability of false positive alarms is below εfp = 10−5.
Having only a few bits for alarm messages is a realistic setting,
e.g. in a sensor network the alarm event could be that a sensed
value is too high or too low resulting in only one bit needed.

In Fig. 2 it can be seen that the probability of error increases
for increasing spectral efficiency (decreasing pd). Notice that
the maximum spectral efficiency is achieved when the error
probability is one (or equivalently, pd = 0), i.e. no alarm
messages are detected. This is expected since a higher number
of devices transmitting alarm messages reduces the per-device
spectral efficiency, but increases the received signal-to-noise
ratio of alarm messages. Furthermore, very high reliability
is achievable. This trade-off between spectral efficiency and
probability of error is not surprising since this is also the case
when the blocklength or message set size are changed. The
novelty is in the fact that it is the correlation between devices
that causes the trade-off.



We now consider the minimal average transmission power,
P ′, required to satisfy some target error probabilities. We
assume no power restriction, and that all parameters are fixed
except P ′ and pd. We use the same system parameters as in
the previous scenario, except that we now fix εa = εfp = 10−5

and εs = εsa = 10−1. Based on the optimal pd and the
values of ps, pa, we evaluate the minimal average energy-
per-bit EpK

[
E0

N0

]
= nP ′

2EpK [H(WK
1 )/K]

.
In Fig. 3 the solid blue line shows the energy-per-bit

as a function of total number devices, N , for this setup.
Additionally, the achievable energy-per-bit for the uncorrelated
case (pd = 0) is included for reference, and is obtained as
described in [1] but without the transmission power restriction.
It can be seen that almost the same energy-per-bit is achievable
for correlated and uncorrelated devices up to approximately
13 000 devices, where the energy-per-bit required in the cor-
related case starts to increase significantly. This is due to the
fact that the bound for false positives starts to dominate the
choice of P ′. Thus, due to high multi-access interference, the
probability of decoding a false positive is higher than the
probability of failing to decode a standard message. This is
similar to the behavior in the uncorrelated case where the
finite blocklength penalty is the dominating constraint when N
is small, while multi-access interference dominates for large
N [1]. This is seen in the increase in the slope at around
15 000 devices in the uncorrelated case.

The effect of increasing alarm probability, pa, can be seen
as the dashed curves in Fig. 3. The energy-per-bit is higher
for larger pa due to the increased rate of alarm events where
spectral efficiency is lower. The energy-per-bit in alarm events
corresponds to the curve for pa = 1. Notice that the energy
requirement P ′ and the probability pd are not altered by
varying pa since the error probabilities for ARA codes are
conditioned on the occurrence of an alarm. The high energy-
per-bit for small N and high pa is due to the large number of
devices (relative to N ) that must devote their resources to a
single alarm message in order to accommodate the target alarm
reliability. In general, the curves corresponding to different
values of pa are approaching each other for increasing N since
the ratio of alarm messages to standard messages grows.

VII. CONCLUSIONS

We have studied the trade-off between reliability and spec-
tral efficiency in a massive random access scenario where
the devices can send standard messages or alarm messages.
The alarm messages are triggered by a common physical
phenomenon and introduce correlation in both the transmitted
messages and the activation of devices. We derive the sys-
tem spectral efficiency and propose an achievability bound
for alarm random access codes. We show that very reliable
transmissions of alarm messages can be achieved, but that
the correlation causes a trade-off in spectral efficiency. In
particular, when the multi-access interference is moderate, the
cost of providing high reliability of alarm messages is small
in terms of the average energy-per-bit. However, when multi-
access interference is high, the probability of decoding a false

Fig. 3. Trade-off between Eb/N0 and the number of devices, N , for different
values of alarm probability pa and for uncorrelated devices. n = 30 000,
εa = εfp = 10−5, εs = εsa = 10−1, Ms = 2100, Ma = 23 and ps = 0.01.

positive alarm message dominates the error probabilities, and
the cost of providing high reliability is significant.
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Appendix B

Golden Section Search

We need a method for evaluating error exponents on the form

E = max
0≤ρ≤1,0≤λ

− ρ

n
B + f (ρ, λ), (B.1)

for some constant B and a function f of ρ and λ. A particular example is the error
exponent for the alarm error bound using H-OMA (See Chapter 6)

Ea = max
0≤ρ≤1,0<λ

− ρ

na
ln(Ma − 1) + ξa, (B.2)

ξa =
ρ

2
ln(1 + 2K′2a P′λ) +

1
2

ln(1 + 2K2
aP′ρβ) +

1
2

ln(1 + 2γ), (B.3)

γ =
ρβ

1 + 2K2
aP′ρβ

− ρλ, (B.4)

β =
λ

1 + 2K′2a P′λ
. (B.5)

This is a common structure for the error exponents in this thesis. In Figure B.1a a
typical error exponent as a function of ρ and λ is seen. We see that Ea is not convex
and has some deep dips for some values of ρ and λ. The error probability bounds
has the form e−nE. We can then exploit that the error exponent is not useful if it
is negative, since this will result in probability bounds greater than one. We can
therefore instead maximize the function of the form max( ρ

n B + f (ρ, λ), 0) instead.
In Figure B.1b we see that with this modification the function is unimodal (still
not convex). This is the general the case for the error exponents in all bounds we
encounter. Since we need to maximize a vast amount of error exponents in the
numerical evaluation of the error bounds, we seek a numerically efficient method
that does not require knowledge of derivatives. One such method is the golden
section search that can optimize any unimodal function. We describe the method
in one dimension since it easily generalizes to multidimensional optimization.

B.0.1 One-Dimensional Golden Section Search

The description is based on [49]. Similarly to bisection where two function evalu-
ations of opposite sign are used to bracket a root, we can bracket a maximum of
a unimodal function based on three function evaluations. Consider a function f
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(a) The error exponent Ea. (b) The error exponent Ea with negative
values set to zero.

Figure B.1: The error exponent Ea for the alarm error bound using H-OMA evaluated on a grid of
ρ- and λ values with negative values set to zero. The used values are na = 10 000, Ma = 23, Ka = 30,
K′a = 20 and P′ = 0.06.

that, without loss of generality, has a maximum in [a, b]. We evaluate the function
at the points (x1, x2) inside [a, b] with x1 < x2. Since the function is unimodal, we
have that if f (x1) ≥ f (x2) the maximum must be in the interval [a, x2]. Similarly
if f (x1) < f (x2) then the maximum must be in the interval [x1, b]. Evaluating two
points within this interval allows us to keep narrowing down the maximum. The
golden section search gets its name from using the golden ratio for choosing x1

and x2. The golden ratio is defined as φ = (1 +
√

5)/2 = 1.618303... and we define
r = 1/φ. An important property of the golden ratio is the identity r2 = 1 − r.
The golden ratio is used to choose the points in [a, b] as x1 = b − r(b − a) and
x2 = a + r(b− a). The golden ration then has the property that the size of the two
intervals [a, x2] and [x1, b] are equal. Thus the convergence will be uniform. Now
assume that f (x1) ≥ f (x2) such that the maximum lies within [a, x2]. When choos-
ing the next two points we get xnew

1 = x2 − r(x2 − a) and xnew
2 = a + r(x2 − a). We

see that with the identity r2 = 1− r and how x2 is chosen we get

xnew
2 = a + r(a + r(b− a)− a) (B.6)

= a + r2(b− a) (B.7)

= b− r(b− a) (B.8)

= x1. (B.9)

That is we only need to evaluate f (xnew
1 ) in the next iteration since we already have

evaluated f (xnew
2 ) = f (x1). The same principle is used if f (x1) < f (x2) where the

new interval is [x1, b]. Here we get xnew
1 = x2.

Let [ai, bi] be the interval after i iterations. The algorithm can then be terminated
when the size of the interval is below some tolerance bi − ai < εtol or a maximum
of allowed iterations is reached i = imaxiter. The algorithm then returns the function
evaluated at the midpoint of the interval f (x∗) = f ( ai+bi

2 ).



101

Figure B.2: The first 10 iterations (6 are numbered) of the golden section search used on the error
exponent Ea for the alarm error bound using H-OMA. Each point denotes the estimated optimal
point after the specified number of iterations.

B.0.2 Optimization of Error Exponents

The golden section search can be used to optimize a two-dimensional unimodal
function f (x, y) by instead on having one interval [a, b] we have two intervals
[x1, x2] and [y1, y2]. The points within this area are then chosen using the golden
ratio as in the one-dimensional case but for both intervals. In each iteration four
function evaluations are needed and one of them are given from the previous it-
eration as in the one-dimensional case. In Figure B.2 the first 10 iterations of the
two-dimensional golden section search used on (B.2) is seen. Only the first 6 iter-
ations are numbered. For the output at the 10’th iteration 32 function evaluations
are needed.





Appendix C

Proofs

C.1 Proof of Lemma 6.4

Generate the Ma alarm codewords c1, . . . , cMa

i.i.d.∼ N (0, P′ Ina) corresponding to the
message set [Ma]. Based on (6.34) define error event

Ffp(K′a, w′) =
{∥∥K′acw′ − Za

∥∥2
2 < ‖Za‖2

2

}
, (C.1)

for any scaling 1 ≤ K′a ≤ K and alarm message w′ ∈ [Ma]. Similarly to the proof of
Lemma 6.3 we define the union of error events

Ffp(K′a) =
⋃

w′∈[Ma]

Ffp(K′a, w′), (C.2)

and
Ffp =

⋃

1≤K′a≤K

Ffp(K′a). (C.3)

Using the same approach as in the proof of Lemma 6.3 we take expectation over
cw′ using the Chernoff Bound (Theorem 6.1 and the identity in Theorem 6.2. We
get

P
[
Ffp(K′a, w′)|Za

]
≤ eλ‖Za‖Ecw′

[
e−λ‖K′acw′−Za‖2

2

]
(C.4)

= eλ‖Za‖2
2

e
−λ‖Za‖22

1+2K′2a P′λ

(1 + 2K′2a P′λ)na/2 (C.5)

= e−β‖Za‖2
2− na

2 ln(1+2K′aP′λ), (C.6)

where β = λ
1+2K′2a P′λ − λ and λ > 0. The inequality (C.4) follows from the Chernoff

bound, (C.5) follows from the identity in Theorem 6.2 and (C.6) is obtained by
moving the denominator in (C.5) inside the exponential function.

We then take the union over w′ ∈ [Ma] where we notice that w′ is a dummy
variable resulting in Ma equal terms due to the random and equal generation of
codewords. Using Gallager’s ρ-trick (Lemma 3.9) we get

P
[
Ffp(K′a)|Za

]
≤ Mρ

ae−ρβ‖Za‖2
2−

ρna
2 ln(1+2K′2a P′λ). (C.7)
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We then take expectation over Za using the identity from Theorem 6.2 one last
time. We get

P
[
Ffp(K′a)

]
≤ Mρ

a
1

1 + 2ρβ
e−

ρna
2 ln(1+2K′2a P′λ) (C.8)

= e−nξfp , (C.9)

where the maximizing error exponent is give as

ξfp = max
0≤ρ≤1,0<λ

− ρ

na
ln Ma +

ρ

2
ln(1 + 2K′2a P′λ) +

1
2

ln(1 + 2ρβ). (C.10)

Finally we bound the union over K′a using the union bound and get

P
[
Ffp
]
≤ min

(
K

∑
K′a=1

e−nξfp , 1

)
, (C.11)

which concludes the proof.

�

C.2 Proof of Theorem 7.1

System spectral efficiency S is defined as S = H(WK
1 )/n where the joint entropy of

all K messages can be expressed using the chain rule for entropy [20, Theo. 2.5.1]
as

H(WK
1 ) =

K

∑
k=1

H(Wk|Wk−1
1 ). (C.12)

Thus, we need to express the conditional entropy H(Wk|Wk−1
1 ) given by

H(Wk|Wk−1
1 ) = ∑

w1∈Ma∪Ms

· · · ∑
wk−1∈Ma∪Ms

P(wk−1
1 |TN

K )H(Wk|Wk−1
1 = wk−1

1 ), (C.13)

where

H(Wk|Wk−1
1 = wk−1

1 ) = − ∑
wk∈Ma∪Ms

P(wk|wk−1
1 , TN

K ) log2(p(wk|wk−1
1 , TN

K )), (C.14)

for k ≤ K.
Observe that Ms and Ma are disjoint so that we can split each sum in (C.13)

into two sums over wi ∈ Ma and wi ∈ Ms. For convenience, we define the set
Ak = {wk

1 | wk
1 ∈ [Ma ∪Ms]k, ∃ 0 ≤ i ≤ k : wi ∈ Ma} as the set of k-subsets of

Ma ∪Ms that contain at least one alarm message and rewrite (C.13) as

H(Wk|Wk−1
1 ) = ∑

wk−1
1 ∈Ak−1

PA(wk−1
1 |TN

K )HA(Wk|Wk−1
1 = wk−1

1 )

+ ∑
wk−1

1 ∈[Ms]k−1

PS(wk−1
1 |TN

K )HS(Wk|Wk−1
1 = wk−1

1 ).
(C.15)
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We first derive an expression for HA(Wk|Wk−1
1 = wk−1

1 ) using the fact that at
least one of w1, . . . , wk−1 belongs to Ma. We additionally split the sum in (C.14)
into two sums; one over wk ∈ Ma and one over wk ∈ Ms:

HA(Wk|Wk−1
1 = wk−1

1 ) = − ∑
wk∈Ma

P(wk|wk−1
1 ∈ Ak−1, TN

K ) log2(P(wk|wk−1
1 ∈ Ak−1, TN

K ))

− ∑
wk∈Ms

P(wk|wk−1
1 ∈ Ak−1, TN

K ) log2(P(wk|wk−1
1 ∈ Ak−1, TN

K )).

(C.16)

Using Bayes’ theorem we obtain

P[Wk ∈ Ma|wk−1
1 ∈ Ak−1, TN

K ] (C.17)

=
P
[

TN
K |Wk ∈ Ma, wk−1

1 ∈ Ak−1
]
P
[
Wk ∈ Ma|wk−1

1 ∈ Ak−1
]

P
[

TN
K |wk−1

1 ∈ Ak−1
]

=
(pd + (1− pd)ps)K−k(1− pd)

N−k(1− ps)N−k pd

(pd + (1− pd)ps)K−(k−1)(1− ps)N−k(1− ps)N−k

=
pd

pd + (1− pd)ps
. (C.18)

The expression (C.18) is the probability that a random message is an alarm message
given the condition. Due to the condition on the messages wk−1

1 whereas at least
one is an alarm message and that all devices that detect the alarm transmit the
same alarm message, we have that the probability of a particular message wk ∈ Ma

is either zero or one. Therefore, all terms in the first summation in (C.16) is zero
except for the wk corresponding to the alarm message that is conditioned on. Thus,
the first term in (C.16) is just − pd

pd+(1−pd)ps
log2

(
pd

pd+(1−pd)ps

)
, B0. Similarly, for

the summation over wk ∈ Ms in (C.16) we obtain

P
[
Wk ∈ Ms|wk−1

1 ∈ Ak−1, TN
K

]
=

(1− pd)ps

pd + (1− pd)ps
= 1−P

[
Wk ∈ Ma|wk−1

1 ∈ Ak−1, TN
K

]
.

(C.19)
The equation (C.19) is the probability that a random message is a standard message
given the condition. Since the standard messages are not mutually exclusive, and
selected uniformly fromMs, it follows that the second term in (C.16) becomes

− ∑
wk∈Ms

1
Ms

(1− pd)ps

pd + (1− pd)ps
log2

(
1

Ms

(1− pd)ps

pd + (1− pd)ps

)

= − (1− pd)ps

pd + (1− pd)ps

(
log2 Ms − log2

(
(1− pd)ps

pd + (1− pd)ps

))

, B1.

(C.20)

Substituting B0 and B1 into (C.16) yields HA(Wk|Wk−1
1 = wk−1

1 ) = B0 + B1.
We now derive an expression for PA(wk−1

1 |TN
K ) in (C.15). Let i ∈ {1, . . . , k− 1}

denote the (random) number of alarm messages in the k− 1 messages Wk−1
1 and,
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without loss of generality, assume that the alarm messages occupy the first i mes-
sages in the tuple wk−1

1 , i.e. wi
1 ∈ [Ma]i and wk−1

i+1 ∈ [Ms]k−i+1. For a fixed i, the
probability PA(wk−1

1 |TN
K ) is obtained using Bayes’ theorem as

PA(W i
1 = wi

1 ∈ [Ma]
i, Wk−1

i+1 = wk−1
i+1 ∈ [Ms]

k−(i+1)|TN
K )

=
1

MaMk−(i+1)
s

pa(pd + (1− pd)ps)K−(k−1)(1− pd)
N−K pa pi

d(1− pd)
k−(i+1)pk−(i+1)

s

pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pK
s

=
pa pi

d((1− pd)ps)k−1−i

MaMk−1−i
s

N0, (C.21)

where N0 is given as in (7.18). Notice that as before only one alarm message is
used at a given time so Ma is not raised to the power of i. Since there are exactly
(k−1

i )MaMk−1−i
s equiprobable and disjoint message sets wk−1

1 consisting of i alarm
messages and k − 1− i standard messages, the first summation in (C.15) can be
expressed as

∑
wk−1

1 ∈Ak−1

PA(wk−1
1 |TN

K )HA(Wk|Wk−1
1 = wk−1

1 ) (C.22)

=
k−1

∑
i=1

(
k− 1

i

)
∑

wi
1∈[Ma]i

wk−1
i+1∈[Ms]k−1−i

pa pi
d((1− pd)ps)k−1−i

MaMk−1−i
s

N0(B0 + B1) (C.23)

= (B0 + B1)
k−1

∑
i=1

(
k− 1

i

)
pa pi

d((1− pd)ps)
k−1−iN0. (C.24)

We now consider the second summation in (C.15). Here the conditional mes-
sages in HS and messages in PS are all standard messages. In contrast to the
previous case, this can happen both when there is no alarm, and when there is an
alarm but none of the devices detect it. Similarly to before, we split the summation
in the expression for Hs (given as in (C.14)) in two; one summation over messages
inMa and one for messages inMs.

HS(Wk|Wk−1
1 = wk−1

1 )

= − ∑
wk∈Ma

P(wk|wk−1
1 ∈ [Ms]

k−1, TN
K ) log2(P(wk|wk−1

1 ∈ [Ms]
k−1, TN

K ))

− ∑
wk∈Ms

P(wk|wk−1
1 ∈ [Ms]

k−1, TN
K ) log2(P(wk|wk−1

1 ∈ [Ms]
k−1, TN

K )).

(C.25)

Since each alarm message is equally likely, now that we are not conditioning on
any alarm message we can express the distribution in first summation in (C.25)
using Bayes’ theorem and the law of total probability repeatedly as

P(Wk = wk ∈ Ma|wk−1
1 ∈ [Ms]

k−1, TN
K ) (C.26)

=
1

Ma

pa pd(pd + (1− pd)ps)K−k(1− pd)
N−K+k−1 pk−1

s

pa(pd + (1− pd)ps)K−k+1(1− pd)N−K+k−1 pk−1
s + (1− pa)pK

s
(C.27)

, 1
Ma

B3. (C.28)
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Similarly, for P(Wk = wk ∈ Ms|wk−1
1 ∈ [Ms]k−1, TN

K ) in the second summation
in (C.25) we obtain

P(wk ∈ Ms|wk−1
1 ∈ [Ms]

k−1, TN
K ) =

1
Ms

(1− B3). (C.29)

Therefore, we get

HS(Wk|Wk−1
1 = wk−1

1 ) = − ∑
wk∈Ma

B3

Ma
log2

B3

Ma
− ∑

wk∈Ms

1− B3

Ms
log2

1− B3

Ms
(C.30)

= −B3 log2
B3

Ma
− (1− B3) log2

1− B3

Ms
. (C.31)

Finally, PS(wk−1
1 |TN

K ) is given by

P(Wk−1
1 = wk−1

1 ∈ [Ms]
k−1|TN

K ) (C.32)

=
1

Mk−1
s

pa(1− pd)
N−K+(k−1)pk−1

s (pd + (1− pd)ps)K−(k−1) + (1− pa)pK
s

pa(pd + (1− pd)ps)K(1− pd)N−K + (1− pa)pK
s

(C.33)

, 1
Mk−1

s
B2. (C.34)

Using (C.31) and (C.34), the summation in (C.15) can be expressed as

∑
wk−1

1 ∈[Ms]k−1

PS(wk−1
1 |TN

K )HS(Wk|Wk−1
1 = wk−1

1 ) (C.35)

= ∑
wk−1

1 ∈[Ms]k−1

B2

Mk−1
s

(
−B3 log2

B3

Ma
− (1− B3) log2

1− B3

Ms

)
(C.36)

= −B2

(
B3 log2

B3

Ma
+ (1− B3) log2

1− B3

Ms

)
. (C.37)

Inserting (C.24) and (C.37) into (C.13) yields the final expression:

H(Wk|Wk−1
1 ) = (B0 + B1)

k−1

∑
i=1

(
k− 1

i

)
pa pi

d((1− pd)ps)
k−1−iN0 (C.38)

− B2

(
B3 log2

B3

Ma
+ (1− B3) log2

1− B3

Ms

)
. (C.39)

�

C.3 Proof of Lemma 7.2

Generate the Ma + Ms = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). Let Wi be the

codeword selected by the i’th device. Due to the symmetry in the devices and the
uniform selection of messages we assume without loss of generality that devices
1, . . . Ka are transmitting the alarm message w0 = 1 = w1 = w2 = · · · = wKa .
We want to bound P [ga(Y) 6= 1]. Assume that the standard messages are S =
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{Ka + 1, . . . , K} i.e. the first Ks standard codewords. As described in Section 7.3
we assume that the transmitted codewords fulfills the average power constraint.
Based on (7.26) we define the error event

Fa(w′, K′a) =
{∥∥Kac1 − K′acw′ + c(S) + Z)

∥∥2
2 < ‖c(S) + Z)‖2

2

}
, (C.40)

where w′ ∈ Ma \ 1 and 0 ≤ K′a ≤ K. Additionally, we define the union of error
events

Fa(K′a) =
⋃

w′∈Ma\1
Fa(w′, K′a), (C.41)

and
Fa =

⋃

0≤K′a≤K

Fa(K′a). (C.42)

We have that P [Fa] = P [ŵ 6= 1] = P [Ea|A] since the decoder is designed to only
output one alarm message, thereby eliminating the possibility of collision of alarm
messages at the decoder.

We first use the fact that c(S) is a sum of Gaussian random vectors and hence
is also Gaussian. Similarly to the proof of Lemma 6.3 we use the Chernoff bound
(Theorem 6.1 and the identity from Theorem 6.2 to obtain the bound

P
[
F(w′, K′a)|c1, Ka, c(S), Z

]
≤ eλ‖c(S)+Z‖2

2Ecw′

[
e−λ‖Kac1−K′acw′+c(S)+Z‖2

2

]
(C.43)

= eλ‖c(S)+Z‖2
2

e
− λ‖Kac1+c(S)+Z‖22

1+2K′2a P′λ

(1 + 2K′2a P′λ)n/2 (C.44)

= eλ‖c(S)+Z‖2
2 e
− λ‖Kac1+c(S)+Z‖22

1+2K′2a P′λ e−
n
2 ln(1+2K′2a P′λ) (C.45)

= eλ‖c(S)+Z‖2−β‖Kac1+c(S)+Z‖2− n
2 ln(1+2K′2a P′λ), (C.46)

where β = λ
1+2K′2a P′λ and λ > 0. The bound in (C.43) follows from the Chernoff

bound, (C.44) follows from the identity in Theorem 6.2 and (C.45) is obtained by
moving the denominator in (C.44) inside the exponential function.

Next we use Gallager’s ρ-trick (Lemma 3.9 ) to bound P [Fa(K′a)]. We notice
that w′ in (C.41) is a dummy variable since each codeword is independent and
generated according to the same distribution (Gaussian). Therefore we get Ma − 1
equal terms when using Gallager’s ρ-trick as

P
[
Fa(K′a)|c1, Ka, c(S), Z

]
≤ (Ma − 1)ρ eρλ‖c(S)+Z‖2

2−ρβ‖Kac1+c(S)+Z‖2
2−

ρn
2 ln(1+2K′2a P′λ),

(C.47)
for ρ ∈ [0, 1]. Taking expectation over c1 and using the identity from Theorem 6.2
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once again yields

P
[
Fa(K′a)|Ka, c(S), Z

]
≤ (Ma − 1)ρeρλ‖c(S)+Z‖2Ec1

[
e−ρβ‖Kac1+c(S)+Z‖2

]
e−

ρn
2 ln(1+2K′2a P′λ)

(C.48)

= (Ma − 1)ρeρλ‖c(S)+Z‖2
e
− ρβ‖c(S)+Z‖2

1+2K2
a P′ρβ

(1 + 2K2
aP′ρβ)n/2 e−

ρn
2 ln(1+2K′2a P′λ)

(C.49)

= (Ma − 1)ρe−γ‖c(S)+Z‖2
2−nτ, (C.50)

where τ = ρn
2 ln(1 + 2K′2a P′λ) + 1

2 ln(1 + 2K2
aP′ρβ) and γ = ρβ

1+2K2
a P′ρβ

− ρλ. Now
in the same manner as in (C.48)-(C.50) expectation is taken over c(S) and Z where
the identity from Theorem 6.2 is used for both. We get

P
[
Fa(K′a)|Ka

]
≤ eρ ln(Ma−1)−nν, (C.51)

where ν = τ + 1
2 ln(1 + 2(K − Ka)P′γ) + 1

2 ln(1 + 2ψ) and ψ = γ
1+2(K−Ka)P′γ . In-

troducing ξa = max0≤ρ≤1,0<λ− ρ
n ln(Ma − 1) + ν and applying the union bound

gives

P [Fa|Ka] = min

(
K

∑
K′a=0

e−nξa , 1

)
(C.52)

, AH−NOMA(K, Ka). (C.53)

Finally, we take the expectation over Ka according to the distribution PKa|K. This is
a binomial distribution

PKa|K(k) =
(

K
k

)
pk

d ((1− pd) ps)
K−k

(pd + (1− pd)ps)K , (C.54)

where the normalization coefficient arises because of the conditioning on K. It
follows that

P [Fa] ≤
K

∑
Ka=0

PKa|K(Ka)AH−NOMA(K, Ka). (C.55)

This is under the assumption that the generated and transmitted codewords are
fulfilling the average power constraint. Since the standard messages are treated
as interference in this bound, we can ignore the power constraint for the stan-
dard messages since having less interference can only tighten the bound. For
the alarm messages only one is active at a given time, so we add the probabilty
p1 = P

[
‖c1‖2

2 > nP
]
. We have that ‖c1‖2

2 follows a scaled chi-squared distribu-

tion with n degrees of freedom. We have ‖c1‖2
2 = ∑n

i=1(
√

P′Zi)
2 = P′ ∑n

i=1 Z2
i for

Z ∼ N(0, In). We get

p1 = P
[

Q >
nP
P′

]
, (C.56)

for Q ∼ χ2
n. We add p1 to the expression in (C.55) which concludes the proof.

�
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C.4 Proof of Lemma 7.3

Generate the Ms = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). Let wj be the codeword

selected by the j’th device. Due to the symmetry in the devices and the uniform
selection of messages we assume without loss of generality that the Ks = K devices
chooses the standard messages S = {1, 2, . . . , K}.

Based on (7.35) we define the error event

Ffp(w′, K′a) = {
∥∥S− K′acw′ + Z

∥∥
2 < ‖S + Z‖2}, (C.57)

where w′ ∈ Ma and 1 ≤ K′a ≤ K. The only difference between the error event
Ffp(w′, K′a) and Fa(w′, K′a) in Appendix C.3 is the absence of true alarm messages.
We define the union of error events

Ffp(K′a) =
⋃

w′∈Ma

Ffp(w′, K′a), (C.58)

and
Ffp =

⋃

0<K′a≤K

Ffp(K′a). (C.59)

We have that P
[
Ffp
]
= P

[
Efp|¬A

]
. Similarly to the proof of Lemma 6.3 we condi-

tion on all random variables except cw′ and use the Chernoff bound (Theorem 6.1)
and the identity from Theorem 6.2 to expectation over cw′ . We get the bound

P
[
Ffp(w′, K′a)|c(S), Z

]
≤ e−λ‖c(S)+Z‖2

2Ecw′

[
e−λ‖c(S)−K′acw′+Z‖2

2

]
(C.60)

= eλ‖c(S)+Z‖2
2 e
−λ‖c(S)+Z‖22

1+2K′2a P′λ −
n
2 ln(1+2K′2a P′λ)

(C.61)

= e−β‖c(S)+Z‖2
2− n

2 ln(1+2K′2a P′λ), (C.62)

where β = λ
1+2K′2a P′λ −λ and λ > 0. The inequality (C.60) follows from the Chernoff

bound and (C.61) follows from the identity in Theorem 6.2.
We now use Gallager’s ρ-trick and notice that w′ is a dummy variable in C.58,

thus we get Ma equal terms

P
[
Ffp(K′a)|c(S), Z

]
≤ Mρ

ae−ρβ‖c(S)+Z‖2
2−

ρn
2 ln(1+2K′2a P′λ) (C.63)

= eρ ln(Ma)−ρβ‖c(S)+Z‖2
2−

ρn
2 ln(1+2K′2a P′λ). (C.64)

Taking the expectation over c(S) and Z by using the identity from Theorem 6.2 as
in (C.60)-(C.62) we get

P
[
Ffp(K′a)

]
≤ e−nξfp , (C.65)

where ξfp = max0≤ρ≤1,0<λ
ρ
n ln Ma +

ρ
2 ln(1+ 2K′2a P′λ)+ 1

2 ln(1+ 2KP′ρβ)+ 1
2 ln(1+

2γ) and γ = ρβ
1+2KP′ρβ .

We apply the union bound over K′a and get

P
[
Ffp
]
≤ min

(
K

∑
K′a=1

e−nξfp , 1

)
(C.66)

,FPH−NOMA(K). (C.67)
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This is under assumption that all the transmitted codewords satisfy the average
power constraint as described in Section 7.3. For false positives the standard mes-
sages only serves as interference. Without the assumption we would potentially
have less interference, thus the bound in (C.67) is still valid.

�

C.5 Proof of Lemma 7.4

Generate the Ma + Ms = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). Let Wi be the

codeword selected by the i’th device. Assume the Ms first codewords are standard
codewords. Due to the symmetry in the devices and the uniform selection of mes-
sages we assume without loss of generality that the Ks standard devices transmit
standard messages S = {1, 2 . . . Ks}. Additionally, assume the transmitted alarm
message is W0 = w0 ∈ Ma. We consider the probability P

[
K̂a 6= Ka|Ŵ = w0

]
.

From the definition of the decoder 7.23 an estimation error of Ka happens in the
event

Fe(K′a) = {
∥∥(Ka − K′a)cw0 + c(S) + Z

∥∥2
2 < ‖c(S) + Z‖2

2}, (C.68)

where 0 ≤ K′a ≤ K for K′a 6= Ka. Additionally, define the union of error event

Fe =
⋃

0≤K′a≤K
K′a 6=Ka

Fe(K′a). (C.69)

Similarly to the proof of 6.3 we condition on all random variables except cw0 and
take expectation over cw0 . We use the Chernoff bound (Theorem 6.1) and the iden-
tity from Theorem 6.2 to get the bound

P
[
Fe(K′a)|c(S), Z

]
≤ eλ‖c(S)+Z‖2

2Ecw0

[
e−λ‖(Ka−K′a)cw0+c(S)+Z‖2

2

]
(C.70)

= eλ‖c(S)+Z‖2
2 e

−λ‖c(S)+Z‖2
1+2(Ka−K′a)2P′λ e−

n
2 ln(1+2(Ka−K′a)2P′λ) (C.71)

= −e−β‖c(S)+Z‖2− n
2 ln(1+2(Ka−K′a)2P′λ), (C.72)

where β = λ
1+2(Ka−K′a)P′λ − λ and λ > 0. The inequality (C.70) follows from the

Chernoff bound and (C.71) follows from the identity in Theorem 6.2.
We now taking the expectation over c(S) and Z using the identity from Theo-

rem 6.2 for both similarly to (C.70)-(C.72). We get

P
[
Fe(K′a)

]
≤ e−nξe , (C.73)

where ξe = max0<λ
1
2 ln(1+ 2(Ka−K′a)P′λ)+ 1

2 ln(1+ 2(K−Ka)P′β)+ 1
2 ln(1+ 2γ)

and γ = β
1+2(K−Ka)P′β . Finally, the union bound over K′a is used to get

P [Fe] ≤ min




K

∑
K′a=0

K′a 6=Ka

e−nEe , 1


 (C.74)

, e(K, Ka). (C.75)
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This is under the assumption the transmitted messages satisfy the average power
constraint as described in Section 7.3. The bound is conditioned on that the alarm
message is decoded, thus we an implicit condition on the alarm message fulfilling
the average power constraint. The standard messages only serve as interference,
thus we would potentially have less interference if these was not assumed to satisfy
the average power constraint. Thus, the bound in (C.75) is still valid.

�

C.6 Proof of Lemma 8.1

Generate the Ma + Ms = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). Let Wi be the

codeword selected by the i’th device. Assume the Ms first codewords are stan-
dard codewords. Due to the symmetry in the devices and the uniform selection
of messages we assume without loss of generality that the Ks standard devices
transmit standard messages S = {1, 2 . . . Ks}. Fix Ka and s. Let W0 = w0 ∈ Ma

be the transmitted alarm message. Let δ ∈ {0, 1}Ks be the vector indicating which
of the Ks standard devices are transmitting a superposition of the alarm code-
word cw0 and a standard codeword as described in Section 8.1. We have that for
fixed K, Ka and s the number of standard devices Ks = K − Ka + s since a device
can be both a standard device and an alarm device. We have a power restric-
tion P such that if the i’th device with a codeword (could be a superposition of
an alarm codeword and a standard codeword) that violates this the device must
transmit Xi = 0 instead. We assume that all generated alarm and standard code-
words that are transmitted satisfy the power requirement. This also means that if
a device transmits a superposition of the two codewords the power requirement
is still satisfied due to the down scaling with the ratio α. For convenience we re-
peat the definition c(S , δ) = ∑i∈S

√
α

δi ci from Section 8.1. With the assumption
of the power requirement being satisfied we can express the received signal as
Y = σ(Ka, s, 1− α)cw0 + c(S , δ) + Z. We can without loss of generality assume that
it is the first s entries in δ that equal 1. This is due to all codewords being gener-
ated independently and from the same distribution (Gaussian). δ is then uniquely
given from s.

Let w′ ∈ Ma \ w0 be a non-transmitted alarm codeword and let 0 ≤ K′a ≤ K
and 0 ≤ s′ ≤ K′a be integers. From the definition of the decoder (8.1) an error in
decoding the alarm message occurs in the event F(w′, K′a, s′) defined as
{∥∥σ(Ka, s, 1− α)cw0 − σ(K′a, s′, 1− α)cw′ + c(S , δ) + Z

∥∥ < ‖c(S , δ) + Z‖
}

. (C.76)

Additionally, we define the union of events

Fa(K′a, s′) =
⋃

w′∈Ma\w0

Fa(w′, K′a, s′), (C.77)

and
Fa =

⋃

0≤Ka≤K
0≤s≤Ka

Fa(K′a, s′) (C.78)
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Similar to the proof of the other error probability bounds in Appendix C we use
the Chernoff bound (Theorem 6.1) and the identity in Theorem 6.2. We take ex-
pectation over cw′ while conditioning on cw0 , Ka, s, c(S , δ) and the noise Z. We
get

P[F(w′, K′a,s′)|cw0 , Ka, s, c(S , δ), Z] (C.79)

≤ eλ‖c(S ,δ)+Z‖Ecw′

[
e−λ‖σ(Ka,s,1−α)X1−σ(K′a,s′,1−α)cw′+c(S ,δ)+Z‖2

2

]
(C.80)

= eλ‖c(S ,δ)+Z‖2
2

e
−λ‖σ(Ka,s,1−α)cw0+c(S ,δ)+Z‖2

2
1+2σ(K′a,s′ ,1−α)2P′λ

(1 + 2σ(K′a, s′, 1− α)2P′λ)n/2 (C.81)

= eλ‖c(S ,δ)+Z‖2
2 e−β‖σ(Ka,s,1−α)cw0+c(S ,δ)+Z‖2

2
− n

2 ln(1+2σ(K′a,s′,1−α)2P′λ), (C.82)

for 0 < λ and β = λ
1+2σ(K′a,s′,1−α)2P′λ . We now use Gallager’s ρ-trick to bound the

probability of the union Fa(K′a, s′) over w′ ∈ Ma \ w0. Due to the codewords beign
generated independently and according to the same distribution (Gaussian) we get
Ma − 1 equal terms

P
[
Fa(K′a, s′)|cw0 , Ka, s, c(S , δ), Z

]
(C.83)

≤ (Ma − 1)ρeρλ‖c(S ,δ)+Z‖2
2 e−ρβ‖σ(Ka,s,1−α)cw0+c(S ,δ)+Z‖2

2
− ρn

2 ln(1+2σ(K′a,s′,1−α)2P′λ),
(C.84)

for ρ ∈ [0, 1]. We now average over cw0 and use the identity from Theorem 6.2

again. It is only the factor e−ρβ‖σ(Ka,s,1−α)cw0+c(S ,δ)+Z‖2

2 that depend on cw0 . The
expectation of this is

Ecw0
[e−ρβ‖σ(Ka,s,1−α)cw0+c(S ,δ)+Z‖2

2 |Ka, s, c(S , δ), Z] (C.85)

=
e −ρβ‖c(S ,δ)+Z‖2

2
1+2σ(Ka,s,1−α)2P′ρβ

(1 + 2σ(Ka, s, 1− α)2P′ρβ)n/2 . (C.86)

We now use (C.86) to get the expression for (C.84) averaged over cw0

P
[
Fa(K′a, s′)|Ka, s, c(S , δ), Z

]
≤ (Ma − 1)ρe−γ‖c(S ,δ)+Z‖2

2−nη , (C.87)

where γ = ρβ
1+2σ(Ka,s,1−α)2P′ρβ

− ρλ and

η = ρ
2 ln

(
1 + 2σ(K′a, s′, 1− α)2P′λ

)
+ 1

2 ln
(
1 + 2σ(Ka, s, 1− α)2P′ρβ

)
.

We now take expectation over c(S , δ) which has variance (s(α − 1) + Ks)P′.
In (C.87) only the factor e−γ‖c(S ,δ)+Z‖2

2 depend on c(S , δ). Using the identity in
Theorem 6.2 we get

Ec(S ,δ)

[
e−γ‖c(S ,δ)+Z‖2

2 |Ka, s, Z
]
=

e
−γ‖Z‖22

1+2(s(α−1)+Ks)P′γ

(1 + 2(s(α− 1) + Ks)P′γ)n/2 . (C.88)

Similarly to before we use (C.88) in (C.87) to get

P
[
Fa(K′a, s′)|Ka, s, Z

]
≤ (Ma − 1)ρe−Γ‖Z‖2

2−nν, (C.89)
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where Γ = γ
1+2(s(α−1)+Ks)P′γ and ν = η + 1

2 ln(1 + 2(s(α − 1) + Ks)P′γ). We take
expectation over Z using the identity in Theorem 6.2 one last time to get

P
[
Fa(K′a, s′)|Ka, s

]
≤ e−nξa , (C.90)

where ξa = max0≤ρ≤1,0<λ
ρ
n ln(Ma − 1) + τ and τ = 1

2 ln(1 + 2Γ) + ν.
We now apply the union bound to bound the probability of union Fa as

P [Fa|Ka, s] = min

(
K

∑
K′a=0

K′a

∑
s′=0

e−nξa , 1

)
. (C.91)

Now we take expectation jointly over Ka and s. We do this by using the joint
conditional probability PKa,Ks|K. This is given as

PKa,Ks|K(Ka, Ks) =
K!

(Ka + Ks + K)!(K− Ka)!(K− Ks)!
pKa

d (1− pd)
K−Ka pKs

s (1− ps)K−Ks

(pd + (1− pd)ps)K .

(C.92)
Using that s = Ka + Ks − K we get

P [Fa] ≤
K

∑
Ka=0

K

∑
Ks=K−Ka

PKa,Ks|K(Ka, Ks)min

(
K

∑
K′a=0

K′a

∑
s′=0

e−nξa , 1

)
, (C.93)

where we can restrict the summation over Ks to from K−Ka to K since if K is active
and Ka are transmitting alarm messages then at least K− Ka must be transmitting
standard messages, thus the probability for Ks outside this range is zero.

Finally we remember the assumption that the K devices are satisfy the power
constraint P. The probability of this is not the case is give as Kp1 = KP

[
Q > nP

P′
]

for Q ∼ χ2
n.

�

C.7 Proof of Lemma 8.2

Generate the Ms = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). Let Wi be the codeword

selected by the i’th device. Due to the symmetry in the devices and the uniform se-
lection of messages we assume without loss of generality that the Ks = K standard
devices transmit standard messages S = {1, 2 . . . Ks}. In this case there is no alarm
thus there are no superpositions. That is Ka = s = 0 and the vector δ = 0. For
convenience we define c(S) = ∑i∈S ci = c(S , 0). We have the power constraint P
thus if ‖ci‖2

2 > nP for device i, i ∈ S the device must transmit Xi = 0. We initially
assume that all the generated codewords do fulfill the power constraint such that
Xi = ci, i ∈ S . The received vector Y can then be espressed as Y = c(S) + Z.

Now let W ′ ∈ Ma be some non-transmitted alarm message and let 1 ≤ K′a ≤ K
and 0 ≤ s′ ≤ K′a be integers. The by the definition of the decoder (8.1) we can then
define a false positive event as

Ffp(W ′, K′a, s′) = {
∥∥c(S)− σ(K′a, s′, 1− α)cW ′ + Z

∥∥2
2 < ‖c(S) + Z‖2

2}. (C.94)
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Additionally we define the unions

Ffp(K′a, s′) =
⋃

W ′∈Ma

Ffp(W ′, K′a, s′), (C.95)

and
Ffp =

⋃

1≤K′a≤K
0≤s′≤K′a

Ffp(K′a, s′). (C.96)

We have that P
[
Efp|¬A

]
= P

[
Ffp
]

under the assumption that all the generated
codewords fulfill the power constraint. Similar to the proof of the other error
probability bounds in Appendix C we use the Chernoff bound (Theorem 6.1) and
the identity in Theorem 6.2. We take expectation over cW ′ while conditioning on
c(S) and the noise Z. We get

P
[
Ffp(W ′, K′a, s′)|c(S), Z

]
≤ eλ‖c(S)+Z‖2

2EcW′

[
e−λ‖c(S)−σ(K′a,s′,1−α)cW′+Z‖2

2

]
(C.97)

= eλ‖c(S)+Z‖2
2

e
−λ‖c(S)+Z‖22

1+2σ(K′a,s′ ,1−α)2P′λ

(1 + 2σ(K′a, s′, 1− α)2P′λ)n/2 (C.98)

= e−β‖c(S)+Z‖2
2− n

2 ln(1+2σ(K′a,s′,1−α)2P′λ), (C.99)

where β = λ
1+2σ(K′a,s′,1−α)2P′λ − λ. We then use Gallager’s ρ-trick to bound the

probability of the union Ffp(K′a, s′) over messages W ′. Due to the codewords being
generate independently and according to the same distribution (Gaussian) we get
Ma equal terms

P
[
Ffp(K′a, s′)|c(S), Z

]
≤ Mρ

ae−ρβ‖c(S)+Z‖2
2−

ρn
2 ln(1+2σ(K′a,s′,1−α)2P′λ) (C.100)

We then use the identity in Theorem 6.2 again to take expectation over c(S) which
has variance KP′. We get

P
[
Ffp(K′a, s′)|Z

]
≤ Mρ

ae−γ‖Z‖2
2−nν, (C.101)

where γ = ρβ
1+2KP′ρβ and ν = ρ

2 ln(1 + 2σ(K′a, s′, 1− α)2P′λ + 1
2 ln(1 + 2KP′ρβ). We

use the identity from Theorem 6.2 one last time to take expectation over Z. We get

P
[
Ffp(K′a, s′)

]
≤ e−nξfp , (C.102)

where ξfp = max0≤ρ≤1,0<λ− ρ
n ln(Ma) + τ and τ = ν + 1

2 ln(1 + 2γ). Finally we use
the union bound to to get

P
[
Ffp
]
≤ min

(
K

∑
K′a

K′a

∑
s′=0

e−nξfp , 1

)
. (C.103)

�





Appendix D

Estimating Ka and s

When using superposition encoding (α 6= 0) as described in Section 7.1 the decoder
initially outputs the estimated alarm message Ŵ according to (8.1). Additionally
the decoder estimates the number of alarm messages K̂a and the number of super-
positions ŝ. These two are used to subtract the alarm message from the received
signal in a SIC faction as in (8.2) to decode the standard messages as in (8.3). We
assume that the decoding of standard messages is only possible if Ŵ, K̂a and ŝ all
are estimated correctly, i.e. YSIC is pure standard messages plus noise.

In a practical setting we impose strict reliability requirements on the estimated
alarm message Ŵ, but not on K̂a and ŝ. We therefore consider the probability of
wrongly estimating Ka and s given the alarm message is correctly decoded, i.e.
Ŵ = W0 for W0 ∈ Ma being the transmitted alarm message. That is, we consider
the probability P

[
K̂a 6= Ka, ŝ 6= s|Ŵ = W0

]
.

Generate the Ma + Ms = M codewords c1, . . . , cM
i.i.d.∼ N (0, P′ In). Let Wj be

the codeword selected by the j’th device. Due to the symmetry in the devices
and the uniform selection of messages we assume without loss of generality that
devices 1, . . . Ka are transmitting the alarm message w0 = 1 = w1 = w2 = · · · =
wKa . Assume that the standard messages are S = {Ka + 1, . . . , K} i.e. the first Ks

standard codewords. Let δ ∈ {0, 1}Ks be the vector indicating which s standard
messages are transmittted with an alarm message using superposition. The signal
with the alarm messages correctly subtracted is pure standard messages given as
Ys = c(S , δ) + Z, where c(S , δ) = ∑i∈S

√
α

δci as in Section 8.1.
Fix 0 ≤ K′a ≤ K and 0 ≤ s′ ≤ K′a such that either K′a 6= Ka or s′ 6= s (or both).

We define error event as the event

Fe(K′a, s′) =
{∥∥(σ(Ka, s, 1− α)− σ(K′a, s′, 1− α)

)
c1 + Ys

∥∥2
2 < ‖Ys‖2

2

}
, (D.1)

where σ(Ks, s, x) = s(
√

x− 1) + Ka). Equation (D.1) follows from the definition of
the decoder conditioned on w0 = 1 is known. Furthermore we define the union of
events

Fe =
⋃

0≤K′a≤K, K′a 6=Ka
0≤s′≤K′a, s′ 6=s′

Fe(K′a, s′). (D.2)

We have that P [Fe] = P
[
K̂a 6= Ka, ŝ 6= s|Ŵ = 1

]
under the assumption that the
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power constraint is satisfied.
We proceed by conditioning on all parameters and average over the alarm code-

word c1 using the Chernoff bound (Theorem 6.1) and the identity in Theorem 6.2.
For details of the general approach see the proof of Lemma 6.3. We get the bound

P
[
Fe(K′a, s′)|Ka, Ks, s, Ys

]
≤ eλ‖Ys‖Ec1

[
e−λ‖(σ(Ka,s,1−α)−σ(K′a,s′,1−α))c1+Ys‖22

]
(D.3)

= eλ‖Ys‖ e
−λ‖Ys‖22

1+2(σ(Ka,s,1−α)−σ(K′a,s′ ,1−α))2P′λ

(1 + 2 (σ(Ka, s, 1− α)− σ(K′a, s′, 1− α))2 P′λ)n/2

(D.4)

= e−β‖Ys‖− n
2 ln(1+2(σ(Ka,s,1−α)−σ(K′a,s′,1−α))2P′λ) (D.5)

e−β‖Ys‖−nν, (D.6)

where β = λ

1+2(σ(Ka,s,1−α)−σ(K′a,s′,1−α))2P′λ
− λ,

ν = 1
2 ln(1 + 2 (σ(Ka, s, 1− α)− σ(K′a, s′, 1− α))2 P′λ) and λ > 0. The inequal-

ity (D.3) follows from the Chernoff bound, (D.4) follows from the Identity in The-
orem 6.2 and (D.5) follows from moving the denominator inside the exponential.

We now take expectation with respect to Ys by initially taking expectation over
the sum of codewords c(S, δKs) using the identity in Theorem 6.2 again

P
[
Fe(K′a, s′)|Ka, Ks, s, Z

]
≤ e

−β‖Z‖22
1+2(s(α−1)+Ks)P′β

(1 + 2(s(α− 1) + Ks)P′β)n/2 e−nν (D.7)

= e−γ‖Z‖2
2−nτ, (D.8)

where γ = β
1+2σ(Ks,s,α)P′β and τ = ν + 1

2 ln(1 + 2(s(α− 1) + Ks)P′β). We then take
expectation over Z using the identity in Theorem 6.2 one last time to get

P
[
Fe(K′a, s′)|Ka, Ks, s

]
≤ e−nξe , (D.9)

where ξe = max0<λ
1
2 ln(1 + 2γ) + τ. We then take union over all possible wrong

K′a and s′

P [Fe|Ka, Ks, s] ≤ min




K

∑
K′a=0

K′a 6=Ka

K′a

∑
s′=0
s′ 6=s

e−nξe , 1


 (D.10)

For a K-users channel the distribution of Ka and Ks also describes the distribution
of s since s = Ka + Ks − K. We therefore get the bound

P
[
K̂a 6= Ka, ŝ 6= s|Ŵ = 1

]
≤

K

∑
Ka=0

K

∑
Ks=K−Ka

PKa,Ks|K(Ka, Ks)min




K

∑
K′a=0

K′a 6=Ka

K′a

∑
s′=0
s′ 6=s

e−nξe , 1


 ,

(D.11)
The distribution PKa,Ks|K is given as (C.92) in Appendix C.6.
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Figure D.1: Evaluation of the average bound in (D.11) over K for a fixed total number of devices
N = 20 for α ∈ [0, 1]. Blocklength n = 30 000, pd = ps = 0.2, Ma = 23 and Ms = 2100.

Now unfortunately (D.11) does not provide useful bounds since in many cases
the bound in (D.10) will be one. An evaluation of the average bound in (D.11)
over K for different α-values shows that the bound is close to one unless α = 0 or
α = 1, see Figure D.1. The reason for this is that when estimating Ka and s the
decoder (8.1) uses the scaling σ(Ka, s, α). Whenever α 6= 0 (or 1) the different com-
binations of Ka and s can provide close to the same scaling of the alarm codeword.
For example the received signal might "look" like it contain 3 times an alarm mes-
sage where 1 one of them is transmitted with a superposition. This might "look"
almost the same as if 5 devices transmitted an alarm message and 4 of them trans-
mitted with a superposition. This depend on the value of α. Using the bound union
bound in (D.10) means that all these likely combinations of K′a and s′ are added up
and ultimately provides unuseful bounds. This is a problem since we assume that
the standard messages can only be decoded if the alarm message is correctly sub-
tracted from the received signal. Just be cause the bounds says that Ka and s cannot
be reliably estimated does not mean that it is a problem in practice. The reason
for the bounds of estimating Ka ans s wrongly is that there might be some wrong
K′a, s′ that result in almost the correct subtraction of the alarm message. Therefore,
even tough the alarm messages is not completely correctly subtracted form the re-
ceived signal it might be close thus retaining a reasonable chance of decoding the
standard message. This is not reflected when assuming that no standard messages
can be decoded when the alarm message is not correctly subtracted.

It is possible to derive bounds for the probability of decoding the standard
messages when the alarm message is not subtracted correctly, but the many com-
binations if Ka and s would make this numerically infeasible to evaluate. We can
therefore not provide sufficient conditions for the existence of ARA codes using
H-NOMA with α 6= 1. In Chapter 8 we consider necessary conditions.
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