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Preface

This project is a Masters Thesis produced by a student on the fourth semester of the Master’s
Programme in Mathematics on Aalborg University. The thesis is produced during the spring
semester in 2019. The project is mainly addressed to students (and others) who already have
a basic understanding of the notion of stochastic processes, random fields, as well as statistical
programming using the programming language R.

The thesis consists of five main chapters. In Chapter 1 we introduce the notion of generalised
functions, as a foundation for the second chapter. In the second chapter, we detail a generalisa-
tion of the usual concept of stochastic processes. In addition to this, we introduce the so-called
generalised random fields, one of which are of central importance in the thesis. In Chapter 3,
we implement the estimation methods detailed in the second chapter, using the programming
language R. In Chapter 4, we utilise the implementations on example data, which is introduced
in Section 3.1. Lastly, in Chapter 5, we discuss the results and provide closing remarks on the
findings of the thesis.

Aalborg University, June 6, 2019

Nicholas Fitzhugh
<nfitzh14@student.aau.dk>
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Introduction

In geostatistics, spatial data is often modelled using so-called random fields. Often these kinds
of models are sufficient. Sometimes, however, a more general model is necessary. The usual ran-
dom fields assume that observations stem from a single point, typically either in R2 or R3, but
data is often collected from an area with non-zero area or volume. Thus it can be useful to step
away from the usual application of the random fields and instead, use the more general so-called
generalised random fields. Generalised random fields are a special case of a generalisation of the
usual notion of stochastic processes.

In the infant years of geostatistics, the work of Georges Matheron gathered much attention and
popularity. In Matheron [1962] and Matheron [1971] the notion of the De Wijs process is first
pioneered, and was, during this time, very popular. As attention to the De Wijs process died
down, an article at the turn of the millennium, McCullagh [2002], sparked interest in the De
Wijs process for practical application. During this period of attention, mathematicians such
as Debashis Modal and Julian Besag show the connection between so-called Gaussian Markov
Random Fields, and the De Wijs process (see, e.g. Besag and Mondal [2005]). On the applica-
tion front, David Clifford and Peter McCullagh utilised the so-called De Wijs plus white noise
process to analyse crop yields in Clifford and McCullagh [2006]. In the later talk, the latter
would refer to the process as a loi du terroir1, because of its supposed universality in modelling
crop yield independently of crop type or season. The abstract for the talk in question can be
seen in McCullagh [2003].

With crop yield data being closely related to nutrients and resources in the soil in which these
crops are planted, one might hypothesise that the gold-standard for crop yield data is applicable
on data describing the contents of soil measurements.

1French for "law of the soil".
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Chapter 1

Generalised Functions

In this chapter we introduce so-called Generalised Functions. Before these can be defined we
must first define so-called test functions. The chapter is based on Schäffler [2018, Chapter 1].

1.1 Test Functions

In the following, let C∞d denote all infinitely differentiable (i.e. smooth) continuous functions
from Rd to R. We define the support of such a function f by

supp(f) = cl
(
{x ∈ Rd : f(x) 6= 0}

)
,

where cl(·) denotes the closure of a set.
We may then define test functions in the following way.

Definition 1.1 (Test Functions). A function ϕ ∈ C∞d is called a test function, if supp(ϕ)
is bounded. The set of test functions from Rd to R is denoted Td.

Note that Td ⊂ C∞d . Let ϕ ∈ Td, and consider the support of the scalar multiple aϕ, which is

supp(aϕ) =

supp(ϕ), a 6= 0
∅, a = 0.

Thus aϕ ∈ Td. Now let ϕ1, ϕ2 ∈ Td, and consider the addition ϕ1 +ϕ2. Considering the support
of the addition of the test functions, we have that

supp(ϕ1 + ϕ2) ⊂ supp(ϕ1) ∪ supp(ϕ2).

Since both supp(ϕ1) and supp(ϕ2) are bounded, it follows that supp(ϕ1 + ϕ2) is bounded, and
thus the addition ϕ1 + ϕ2 is a test function. This, along with other properties which hold
trivially, shows that Td is a vector space.
We now introduce an important definition regarding the meaning of convergence of a sequence
of test functions.

Definition 1.2 (Convergence of Test Functions). Let {ϕi}i∈N be a sequence of test func-
tions. The sequence is said to be convergent to a function ϕ ∈ Td, if

• There exists a bounded set M ⊂ Rd, such that supp(ϕi) ⊂M for all i ∈ N.

3



4 Chapter 1. Generalised Functions

• The sequence {ϕi − ϕ} converges uniformly to the zero function in Rd.

• All partial derivatives of any fixed order of (ϕi − ϕ) converges uniformly to the zero
function in Rd.

It turns out that it is possible to approximate any continuous function, with compact support,
with a sequence of test functions. To prove this, we first introduce the function ψ : Rd → R
defined by,

ψ(x) =

0, when 1 ≤ ‖x‖2,
exp(− 1

1−‖x‖2 ), when 1 > ‖x‖2,

where ‖ · ‖ is the Euclidean norm. Note that ψ is symmetric, and has bounded support. As it
is also smooth, ψ ∈ Td. Let Iψ =

∫
Rd ψ(x)dx <∞. Furthermore, define

ψ1(x) = ψ(x)
Iψ

for x ∈ Rd.

We use these functions to define a function which is central for approximation of continuous
functions using test functions,

ψR(x) = ψ1(x/R)
Rd

(1.1)

with R > 0. The support of ψR is the d-dimensional ball B̄(0, R), thus it is also a test function.
Considering the integral of ψR(x), using integration by substitution and setting y = x

R , we have

∫
Rd
ψR(x)dx =

∫
Rd

ψ1( xR)
Rn

dx =
∫
Rd

ψ1(y)
Rn

det
(
J(y)

)
dy = 1,

since J(y) is the Jacobian matrix of the function x = yR, which is just a matrix with R on the
diagonal.
We can now formulate a theorem about the approximation of continuous functions, with compact
support, using test functions.

Theorem 1.3 (The approximation theorem). Let f : Rd → R be a continuous function
with compact support. For each ε > 0, there exists a function ϕ ∈ Td, such that,

|f(x)− ϕ(x)| < ε, for all x ∈ Rd.

Specifically, defining

ϕR(x) =
∫
Rd
f(u)ψR(u− x)du,

it holds that,

lim
R→0

ϕR(x) = f(x), for all x ∈ Rd,

uniformly.

Proof. The following proof is a more detailed version of the proof for [Schäffler, 2018, Thm.
2.1].
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As f is continuous with compact support, it is also uniformly continuous(see e.g [Poulsen, 2015,
Thm. 6.29]), meaning that for each ε > 0 there exists a δ > 0 such that

|f(x)− f(y)| < ε, for all x, y ∈ Rd with ‖x− y‖ < δ.

Additionally, we have that

ϕR(x) =
∫
Rd
f(u)ψR(u− x)du =

∫
B̄(x,R)

f(u)ψR(u− x)du

= f(y)
∫
B̄(x,R)

ψR(u− x)du = f(y) for some y ∈ B̄(x,R).

where the second equality is due to the support of ψR(u − x) being B̄(x,R), and the third
equality is from the mean value theorem of integrals (see e.g Amann and Escher [2008, Ch.
6.4]). The last equality is due to (1.1).
With R < δ, we have

|f(x)− ϕR| = |f(x)− f(y)| < ε, because ‖x− y‖ ≤ R < δ.

Thus as R→ 0 the function ϕR → f uniformly, proving the result.

For an example of this, consider the function

f(x) =

1− 1
2 |x|, when |x| < 2,

0, when |x| ≥ 2.
(1.2)

Since f(x) is continuous with compact support, we may approximate it using ϕR as defined
in Theorem 1.3. The plot of f(x) can be seen in Figure 1.1. In the plots in Figure 1.2 and
Figure 1.3, we can see that ϕR approximates f(x) better for the lower value of R. Note that
the integral that defines ϕR has been approximated numerically, resulting in the rather jagged
shape in Figure 1.2. For large values of R the function ϕR is a smoothed version of f(x).
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Figure 1.1: Plot of the function f(x) as defined in (1.2)
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Figure 1.2: Plot of the function ϕ1.5(x).
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Figure 1.3: Plot of the function ϕ0.1(x).

Test functions are of central importance in the next section, where so-called functionals are
introduced.

1.2 Functionals

In this section, we introduce the notion of functionals. We define the term in a very general
setting. Before defining functionals, we note that A being a vector space over B, means that,
among other things, A is closed under multiplication with elements of B.

Definition 1.4 (Functional). For a given vector space A over B, a mapping

F : A → B,

is called a functional.

Furthermore, a functional F is said to be linear if for all a ∈ B, and x, y ∈ A,
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F (ax) = aF (x)
F (x+ y) = F (x) + F (y).

With functionals defined in a general setting, we turn our attention to a specific functional. For
this purpose, let f : Rd → R be a locally integrable function, meaning that |f | is integrable on
the closed ball, B̄(x, ε) with centre x and radius ε, for each x ∈ Rd and each ε > 0.

For each such f , we may define the mapping Ff : Td → R, by

Ff (ϕ) =
∫
Rd
f(x)ϕ(x)dx (1.3)

Since Td is a vector space over R, as shown in Section 1.1, the mapping Ff defines a functional.
Furthermore, Ff is a linear functional, since for a ∈ R and ϕ1, ϕ2 ∈ Td we have

Ff (aϕ) = aFf (ϕ)

Ff (ϕ1 + ϕ2) =
∫
Rd
f(x)

(
ϕ1(x) + ϕ2(x)

)
dx = Ff (ϕ1) + Ff (ϕ2).

A functional defined as Ff can be used to give meaning to the derivative of a function which
is not differentiable. We show this in the case where d = 1 in the following way. Suppose
f : R→ R is locally integrable as before, and also differentiable. Suppose furthermore, that the
derivative f ′ is locally integrable, then, using integration by parts, we have∫

R
f ′(x)ϕ(x)dx = [f(x)ϕ(x)]∞−∞ −

∫
R
f(x)ϕ′(x)dx. (1.4)

Since ϕ ∈ T , the set supp(ϕ) is bounded. Thus the first term in (1.4) is zero, and∫
R
f ′(x)ϕ(x)dx = −

∫
R
f(x)ϕ′(x)dx,

meaning Ff ′(ϕ) = −Ff (ϕ′). In the above, the left hand side is defined for differentiable functions
f , but the right hand side is defined for any locally integrable functions f .

Now let ϕ(u) = ψR,x(u), where ψR,x(u) is defined as

ψR,x(u) = ψR(u− x), (1.5)

where ψR is defined as in (1.1).
For a differentiable function f , where f ′ is locally integrable, we have

−Ff (ψ′R,x) = Ff ′(ψR,x) =
∫
R
f ′(u)ψR,x(u)du =

∫
B̄(x,R)

f ′(u)ψR,x(u)du = f ′(y)
∫
B̄(x,R)

ψR,x(u)du

= f ′(y)

for some y ∈ B̄(x,R), where the fourth equality is a result of the mean value theorem for
integrals. Taking the limit as R→ 0, we have that,
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lim
R→0
−Ff (ψ′R,x) = f ′(x), for x ∈ R,

which can be used to approximate the derivative of non-differentiable functions.

We now introduce the notion of continuity of functionals from the set of test functions to the
real numbers.

Definition 1.5 (Continuity of Functionals). A functional F : Td → R is said to be con-
tinuous if

lim
i→∞

F (ϕi) = F (ϕ),

for all sequences {ϕi} which are convergent to a function ϕ ∈ Td(see Definition 1.2).

Using the Definition 1.5 it can be shown that functionals on the form in (1.3) are continuous.

Proposition 1.6. Let f : Rd → R be a locally integrable function. A linear functional
Ff : Td → R on the form,

Ff (ϕ) =
∫
Rd
f(x)ϕ(x)dx,

is continuous.

Proof. This proof is a collection of arguments from [Schäffler, 2018, p.13], where further details
have been added.
The zero function, ϕ(x) = 0 for all x ∈ Rd is a test function, as

supp(ϕ) = ∅,

which is closed and bounded. Thus the functional F is continuous if,

lim
i→∞

F (ϕi) = 0,

for all sequence of test functions which converge to the zero function (see Definition 1.2).

Now let {ϕi}i∈N be some sequence of test functions that converges to the zero function. Then
for some ε > 0

supp(ϕi) ⊆ B(0, ε), for all i ∈ N.

Using this fact, we have that

lim
i→∞
|Ff (ϕi)| = lim

i→∞

∣∣∣∣∫
Rd
f(x)ϕi(x)dx

∣∣∣∣ = lim
i→∞

∣∣∣∣∣
∫
B(0,ε)

f(x)ϕi(x)dx
∣∣∣∣∣

≤ lim
i→∞

∫
B(0,ε)

|f(x)||ϕi(x)|dx ≤ lim
i→∞

(
supx∈B(0,ε)|ϕi(x)|

∫
B(0,ε)

|f(x)|dx
)

= 0,

where the last inequality results from test functions being bounded, and the last equality from
|ϕi| → 0 as i→∞, proving the result.

Next, we see how functionals lead to the definition of so-called generalised functions.
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1.3 Generalised Functions

As discussed in the previous section we can define a continuous and linear functional for a locally
integrable function f , from the space of test functions to the real numbers. This particular
functional is a so-called generalised function, which we now formally define for the space of test
functions.

Definition 1.7 (Generalised Functions from Td). A linear and continuous functional
F : Td → Rd is called a generalised function. Furthermore, if there exists a locally integrable
function, f , such that F = Ff , then F is called a regular generalised function.

The set of generalised function from Td is denoted Gd.
Defining the scalar multiple, and addition of generalised function as

aF (ϕ) = F (aϕ), for a ∈ R, ϕ ∈ Td, F ∈ Gd
(F +G)(ϕ) = F (ϕ) +G(ϕ), for ϕ ∈ Td, F,G ∈ Gd,

the space Gd is a vector space over R, as all the other requirements are trivially satisfied.
The so-called Dirac distribution, δx0

1, is an example of a generalised function. The Dirac
distribution is defined as

δx0(ϕ) = ϕ(x0), for ϕ ∈ Td and x0 ∈ Rd.

This generalised function is an example of a generalised function, which is not a regular gener-
alised function. We formulate this minor result as a proposition.

Proposition 1.8. The Dirac distribution, δx0(ϕ) = ϕ(x0), is not a regular generalised func-
tion.

Proof. This proof is a collection of arguments from [Schäffler, 2018, p.16], where more detail
has been added.
We prove the proposition by contradiction. Therefore assume that there exists a locally inte-
grable function, f , such that∫

Rd
f(x)ϕ(x)dx = ϕ(x0), for all ϕ ∈ Td, (1.6)

i.e we assume that the Dirac distribution is a regular generalised function. Since f is locally
integrable, then for all x ∈ Rd and all ε > 0∫

B̄(x,ε)
|f(u)|du = dx <∞.

Thus there exists a small ε such that dx < 1. Consider now the function ψε,x0 defined as in
(1.5), which is a test function for all ε > 0. Thus by the assumption in (1.6), we must have,∫

Rd
f(x)ψε,x0(x)dx = ψε,x0(x0).

1Some authors prefer the terminology ’distributions’ to refer to generalised functions, however there is no
relation to cumulative distribution functions.
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However,∫
Rd
f(x)ψε,x0(x)dx ≤

∣∣∣∣∫
Rd
f(x)ψε,x0(x)dx

∣∣∣∣ ≤ ∫
Rd
|f(x)ψε,x0(x)|dx

≤ supB̄(x0,ε)|ψε,x0(x)|
∫
B̄(x0,ε)

|f(x)|dx = ψε,x0(x0)dx0 < ψε,x0(x0),

where third inequality is a result of |f(x)ψε,x0(x)| ≤ supB̄(x0,ε)|ψε,x0(x)||f(x)| for all x ∈ Rd.
This proves the result.



Chapter 2

Generalised Stochastic Processes

In this chapter, we seek to define the De Wijs process, and therefore also the concept of so-called
generalised random fields, which is a special case of so-called generalised stochastic processes.

2.1 Generalised Stochastic Processes

This section is based on [Schäffler, 2018, Chapter 2.1]. In this section, we define a stochastic
process in a very general setting.

Definition 2.1 (Stochastic Processes). Let (Ω,F , P ) be a probability space, let (Γ,G) be a
measurable space and let I be some non-empty set. Then

Z : Ω× I → Γ

is called a stochastic process with index-set I, if Z(·, i) is a F −G measurable function for any
fixed i ∈ I.

For a fixed ω ∈ Ω we call the mapping i 7→ Z(ω, i) the path of Z, and if this function is contin-
uous for all ω ∈ Ω we say that Z has continuous paths (or almost surely continuous paths if it
only holds for almost all ω ∈ Ω). We usually suppress the dependence on ω and denote Z(ω, i)
simply as Z(i).

Note that the notion of stochastic processes in Definition 2.1 is a very general one. Often the
term stochastic process is used to refer only to the case where the index-set is a subset of R.
A stochastic process where the index-set is D ⊆ Rd is called a random field. Thus a stochastic
process is usually thought of as a special case of a random field, where d = 1, but with Definition
2.1 a random field is a special case of stochastic processes.
Before proceeding we introduce the notion of a modification.

Definition 2.2 (Modification). Let Z and Y be stochastic processes with index-set I. Y is
said to be a modification of Z if

P
(
Z(i) = Y (i)

)
= 1, for all i ∈ I.

When Y is a modification of Z, then obviously Z is also a modification of Y .

11



12 Chapter 2. Generalised Stochastic Processes

As we see in Definition 2.1 we can choose the index set of a stochastic process to be any non-
empty set. Specifically, we may choose I = Td, to obtain random variables indexed over test
functions. This is used to define the notion of generalised stochastic processes, but first, we need
to define the notion of continuity for the test-function-indexed stochastic process.

Definition 2.3 (Continuity for Test-function-indexed Stochastic Process). Let Z be
a stochastic process with index set Td. Then Z is said to be continuous if

lim
k→∞

E
[
g
(
Z(ϕ1k), . . . , Z(ϕmk)

)]
= E

[
g
(
Z(ϕ1), . . . , Z(ϕm)

)]
,

for any bounded function g : Rm → R and for any m sequences of test-functions such that
ϕik → ϕi for k → ∞ and i = 1, . . . ,m (by ϕik → ϕi we mean convergence in the sense of
Definition 1.5).

This now enables us to define generalised stochastic processes

Definition 2.4 (Generalised Stochastic Processes). Let Z be a stochastic process with
index-set Td. If Z is continuous and

Z(aϕ+ bψ) = aZ(ϕ) + bZ(ψ),

almost surely for all a, b ∈ R and ϕ,ψ ∈ Td, then Z is said to be a generalised stochastic
process.

It is clear that from Definition 2.1 generalised stochastic process are not generalisations of
stochastic processes. Rather they get their name for different reasons. For a fixed ω ∈ Ω we
have that a generalised stochastic process Z(ω, ·) is a functional, and thus if Z has continuous
paths, Z(ω, ·) is a generalised function for any ω ∈ Ω. In fact it turns out, that for any
generalised stochastic process, there exists a modification which has continuous paths (in the
sense of Definition 1.5) [Dawson, 1970, Theorem 2.1]. We define the mean- and covariance-
functional as we would have for a random field,

m(ϕ) = E
[
Z(ϕ)

]
, C(ϕ,ψ) = Cov

[
Z(ϕ), Z(ψ)

]
.

Furthermore we note that, as usual, the covariance-functional is symmetric, bi-linear and positive
semi-definite, meaning that

m∑
i=1

m∑
j=1

aiajC(ϕi, ϕj) ≥ 0,

for all a1, . . . , am ∈ Rm and ϕ1, . . . , ϕm ∈ Td.
Now let ϕ1, . . . , ϕn ∈ Td, and let F1,...,n be the distribution function of (Z(ϕ1), . . . , Z(ϕn)). Then
F1,...,n is said to be a finite-dimensional distribution of the generalised stochastic process, Z. If
all finite dimensional distributions of Z are Gaussian, then Z is said to be a Gaussian generalised
stochastic process. With this we can show the following theorem.

Theorem 2.5. Let m : Td → R be a continuous linear functional, and let C : T 2
d → R

be a symmetric bi-linear and positive semi-definite functional. Then there exists a Gaussian
generalised stochastic process, Z, which satisfies

E
[
Z(ϕ)

]
= m(ϕ), for all ϕ ∈ Td,
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and
Cov

[
Z(ϕ), Z(ψ)

]
= C(ϕ,ψ), for all ϕ,ψ ∈ Td.

Proof. Suppose we have ϕ1, . . . , ϕn ∈ Td. In order to prove the results, we need to show the
following:

(i) The distribution is a valid Gaussian distribution, i.e

Σ =


C(ϕ1, ϕ1) · · · C(ϕ1, ϕn)

... . . . ...
C(ϕn, ϕ1) · · · C(ϕn, ϕn)


is positive semidefinite for any choice of ϕ1, . . . , ϕn.

(ii) There exists a stochastic process, Z, with index-set Td such that
Z(ϕ1)

...
Z(ϕn)

 ∼ N


m(ϕ1)

...
m(ϕn)

 ,

C(ϕ1, ϕ1) · · · C(ϕ1, ϕn)

... . . . ...
C(ϕn, ϕ1) · · · C(ϕn, ϕn)


 ,

for any ϕ1, . . . , ϕn ∈ Td.

(iii) Z(aϕ+ bψ) = aZ(ϕ) + bZ(ψ) almost surely for all ϕ,ψ ∈ Td and a, b ∈ R.

(iv) Z is continuous.

Define a random vector X : Ω→ Rn such that

X ∼ N (m,Σ) ,

where

m =


m(ϕ1)

...
m(ϕn)

 , Σ =


C(ϕ1, ϕ1) · · · C(ϕ1, ϕn)

... . . . ...
C(ϕn, ϕ1) · · · C(ϕn, ϕn)

 .
The matrix is positive semidefinite, since for arbitrary functions ϕ1, . . . , ϕn ∈ Td we get that for
a,∈ Rn

a>Σa =
n∑
i=1

n∑
j=1

aiajC(ϕi, ϕj) ≥ 0,

and thus Σ is a positive semi-definite matrix, which proves (i). Furthermore we get that (ii)
holds by Kolmogorov’s existence theorem. To prove (iii) choose arbitrary ϕ,ψ ∈ Td and a, b ∈ R.
To prove that Z(aϕ + bψ) = aZ(ϕ) + bZ(ψ) almost surely we consider the random variable
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)
. First we note that

Var
[
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)]
= Var

[
Z(aϕ+ bψ)

]
+ Var

[
aZ(ϕ) + bZ(ψ)

]
− 2Cov

[
Z(aϕ+ bψ), aZ(ϕ) + bZ(ψ)

]
. (2.1)



14 Chapter 2. Generalised Stochastic Processes

We now express each term in (2.1) in terms of the covariance function of Z. By construction we
get

Var
[
Z(aϕ+ bψ)

]
= C(aϕ+ bψ, aϕ+ bψ). (2.2)

The second term can be expanded as follows

Var
[
aZ(ϕ) + bZ(ψ)

]
= a2Var

[
Z(ϕ)

]
+ b2Var

[
Z(ψ)

]
+ 2abCov

[
Z(ϕ), Z(ψ)

]
= a2C(ϕ,ϕ) + b2C(ψ,ψ) + 2abC(ϕ,ψ)
= C(aϕ+ bψ, aϕ+ bψ). (2.3)

Finally, for the third term we get

Cov
[
Z(aϕ+ bψ), aZ(ϕ) + bZ(ψ)

]
= aCov

[
Z(aϕ+ bψ), Z(ϕ)

]
+ bCov

[
Z(aϕ+ bψ), Z(ψ)

]
= aC(aϕ+ bψ, ϕ) + bC(aϕ+ bψ, ψ)
= C(aϕ+ bψ, aϕ+ bψ). (2.4)

Now by inserting (2.2), (2.3) and (2.4) into (2.1) we get that

Var
[
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)]
= 0,

which means that Z(aϕ+ bψ)−
(
aZ(ϕ) + bZ(ψ)

)
is constant almost surely. By examining the

mean we get

E
[
Z(aϕ+ bψ)−

(
aZ(ϕ) + bZ(ψ)

)]
= m(aϕ+ bψ)−m(aϕ)− bm(aψ) = 0,

and thus Z(aϕ+ bψ)−
(
aZ(ϕ) + bZ(ψ)

)
= 0 almost surely, proving (iii).

To show (iv) we note that if we have sequences of test-functions {ϕik}k∈N, i = 1, . . . , n, such
that ϕik → ϕi for i = 1, . . . , n, then(

m(ϕnk), . . . ,m(ϕnk)
)> → (

m(ϕ1), . . . ,m(ϕn)
)>
, for k →∞,

and 
C(ϕ1k, ϕ1k) · · · C(ϕ1k, ϕnk)

... . . . ...
C(ϕnk, ϕ1k) · · · C(ϕnk, ϕnk)

→

C(ϕ1, ϕ1) · · · C(ϕ1, ϕn)

... . . . ...
C(ϕn, ϕ1) · · · C(ϕn, ϕn)

 , for k →∞,

due to the continuity of m and C. This means that

(Z(ϕik), . . . , Z(ϕnk))>
d→ (Z(ϕ1), . . . , Z(ϕn))>, for k →∞,

and thus by Portmanteau’s Lemma [Rongfeng, Theorem 1.3] it follows that

E
[
g(Z(ϕik), . . . , Z(ϕnk))

]
→ E

[
g(Z(ϕ1), . . . , Z(ϕn))

]
, for k →∞,

for any continuous bounded function Rn → R. This shows that Z is continuous by Definition
2.3, and thus it is a generalised stochastic process.

We can give meaning to the notion of a derivative of a test function indexed generalised stochastic
function, in the following way.



2.1. Generalised Stochastic Processes 15

Definition 2.6 (Derivative of a generalised stochastic process). Let X(ϕ) with ϕ ∈ Td
be a generalised stochastic process on a probability space (Ω,F , P ). Then the generalised
stochastic process −X(ϕ′) with ϕ ∈ Td, is called the derivative of X(ϕ). The derivative is
often denoted X ′(ϕ).

Consider now a generalised stochastic process X(ϕ) with ϕ ∈ Td and E[X(ϕ)] < ∞ for all
ϕ ∈ Td, and recall that the mean value, m(·), is a functional from Td to R. Then,

E[X ′(ϕ)] = E[−X(ϕ′)] = −m(ϕ′) = m′(ϕ), (2.5)

where the last equality is a result of (1.4). A similar result is true for the covariance functional,
C ′ of X ′, as for ϕ,ψ ∈ Td, we have

C ′(ϕ,ψ) = E[(X ′(ϕ)−m′(ϕ))(X ′(ψ)−m′(ψ))] (2.6)
= E[(X(ϕ′)−m(ϕ′))(X(ψ′)−m(ψ′))]
= C(ϕ′, ψ′).

We now turn our attention to an important property of generalised stochastic processes, namely
second-order stationarity.

Definition 2.7 (Second-order stationarity). A generalised stochastic process, Z, is called
a second-order stationary stochastic process if

m(ϕ) = m,

for all ϕ ∈ Td, and there exists a function C̃ such that

C(ϕ,ψ) = C̃(τ) for all ϕ,ψ ∈ Td,

where τ = ϕ− ψ.

An example of a non-second-order stationary generalised stochastic process is a Brownian Mo-
tion, which we first define as a stochastic process in the ordinary sense.

Definition 2.8 (Brownian Motion). Let Bt with t ∈ [0,∞) be a stochastic process with

E[Bt] = 0, for all t ∈ [0,∞),
Cov(Bt, Bs) = min(t, s), for all t, s ∈ [0,∞).

Then Bt is called a Brownian Motion.

We now represent a Brownian Motion as a generalised stochastic process, defined by

B(ϕ, ω) =
∫ ∞

0
Bt(ω)ϕ(t)dt, (2.7)

where Bt is a Brownian motion as defined in Definition 2.8, and ϕ ∈ T1. Note that an analogous
definition of B(ϕ) is possible for ϕ ∈ Td, but for simplicity we focus on the case where d = 1.
Consider now the mean of B(ϕ), we get

E[B(ϕ)] = E
[∫ ∞

0
Bt(ω)ϕ(t)dt

]
=
∫ ∫ ∞

0
Bt(ω)ϕ(t)dtdFt(x),
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where Ft(x) is finite dimensional distribution function of Bt. By Tonelli’s theorem (see eg [Berg
and Madsen]), we may switch the order of integration, yielding∫ ∫ ∞

0
Bt(ω)ϕ(t)dtdFt(x) =

∫ ∞
0

∫
Bt(ω)dFt(x)ϕ(t)dt =

∫ ∞
0

E[Bt(ω)]ϕ(t)dt = 0,

for all ϕ ∈ T1. The covariance functional is given by

C(ϕ,ψ) =
∫ ∞

0

∫ ∞
0

min(t, s)ϕ(t)ψ(s)dtds.

We can now introduce a theorem regarding the derivative of a Brownian Motion.

Theorem 2.9 (Derivative of a Brownian Motion). Let B(ϕ) with ϕ ∈ T1 be a Gaussian
generalised stochastic process on a probability space (Ω,F , P ) with mean value functional

m(ϕ) = 0, for all ϕ ∈ T1,

and covariance functional

C(ϕ,ψ) =
∫ ∞

0

∫ ∞
0

min(t, s)ϕ(t)ψ(s)dtds, for all ϕ,ψ ∈ T1.

Then the derivative, B′(ϕ), of B(ϕ) is a Gaussian generalised stochastic process with mean
value functional

m′(ϕ) = 0, for all ϕ ∈ T1,

and covariance functional
C ′(ϕ,ψ) =

∫ ∞
0

ϕ(t)ψ(s)dtds,

where ϕ,ψ ∈ T1.

Proof. The following proof is a more detailed and adapted version of the proof in [Schäffler,
2018, Thm 2.4]. Recall that B′(ϕ) = −B(ϕ′) by Definition 2.6. Thus, since B(ϕ) is Gaussian,
B′(ϕ) is also Gaussian. We now consider the mean and covariance of B′(ϕ). The mean is,

m′(ϕ) = −m(ϕ′) = 0,

by (2.5).
To determine the covariance function of B′(ϕ) we start by considering the covariance function
of B(ϕ) which can be separated into two terms as

C(ϕ,ψ) =
∫ ∞

0

∫ s

0
tϕ(t)ψ(s)dtds+

∫ ∞
0

∫ t

0
sϕ(t)ψ(s)dsdt

=
∫ ∞

0
ψ(s)

∫ s

0
tϕ(t)dtds+

∫ ∞
0

ϕ(t)
∫ t

0
sψ(s)dsdt. (2.8)

To complete the proof we use integration by parts multiple times, therefore recall that∫ b

a
u(t)v′(t)dt = [v(t)u(t)]ba −

∫ b

a
u′(t)v(t)dt.

Consider now the second term of (2.8). Using integration by parts, and setting v′(t) = ϕ(t) and
u(t) =

∫ t
0 sψ(s)ds, we have that
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∫ ∞
0

ϕ(t)
∫ t

0
sψ(s)dsdt =

∫ ∞
0

u(t)v′(t)dt = [v(t)u(t)]∞0 −
∫ ∞

0
u′(t)v(t)dt

=
∫ ∞

0
ϕ(s)ds

∫ ∞
0

sψ(s)ds−
∫ ∞

0
tψ(t)

∫ t

0
ϕ(s)dsdt.

Defining the function Φ(t) =
∫ t

0 ϕ(s)ds, we get

∫ ∞
0

ϕ(s)ds
∫ ∞

0
sψ(s)ds−

∫ ∞
0

tψ(t)
∫ t

0
ϕ(s)dsdt =

∫ ∞
0

(Φ(∞)− Φ(t))ψ(t)tdt.

Performing integration by parts analogously on the first term of (2.8) we have

C(ϕ,ψ) =
∫ ∞

0
(Φ(∞)− Φ(t))ψ(t)t+ (Ψ(∞)−Ψ(t))ϕ(t)tdt,

where Ψ(t) =
∫ t

0 ψ(s)ds. We now use integration by parts once more, with u(t) = t and
v′(t) = (Φ(∞)−Φ(t))ψ(t)+(Ψ(∞)−Ψ(t))ϕ(t). Noting that v(t) = −(Φ(∞)−Φ(t))(Ψ(∞)−Ψ(t))
we have

C(ϕ,ψ) = [u(t)v(t)]∞0 +
∫ ∞

0
v(t)u′(t)dt

= lim
t→∞

(u(t)v(t)) +
∫ ∞

0
v(t)u′(t)dt

=
∫ ∞

0
(Φ(∞) + Φ(t))(Ψ(∞)−Ψ(t))dt,

where the third equality is a result of v′(t)→ 0 as t→∞.

Recall that Φ(t) and Ψ(t) are the antiderivative of ϕ(t) and ψ(t), respectively. The covariance
functional of B′(ϕ) is then

C ′(ϕ,ψ) = C(ϕ′, ψ′) =
∫ ∞

0

(∫ ∞
0

ϕ′(s)ds−
∫ t

0
ϕ′(s)ds

)(∫ ∞
0

ψ′(s)ds−
∫ t

0
ψ′(s)ds

)

=
∫ ∞

0

(
ϕ(∞)− ϕ(t)

) (
ψ(∞)− ψ(t)

)
=
∫ ∞

0
ϕ(t)ψ(t)dt,

where the first equality is due to (2.6), and the last equality is a result of ϕ and ψ having
compact support. This proves the result.

The derivative of a Brownian Motion constitutes another interesting process, which now formally
define for d = 1.

Definition 2.10 (Gaussian Discrete White Noise Process). Let X be a generalised
stochastic process with index-set T1. If X(ϕ) has,

E[X(ϕ)] = 0, for all ϕ ∈ T1,

and
C(ϕ,ψ) =

∫ ∞
−∞

ϕ(t)ψ(t)dt, for all ϕ,ψ ∈ T1,
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then X is called a Gaussian white noise process on R.

A Gaussian white noise process is a generalised stochastic process with independent values. In
other words, for two test functions ϕ and ψ with supp(ϕ) ∩ supp(ψ) = ∅,

C(ϕ,ψ) =
∫ ∞
−∞

ϕ(t)ψ(t)dt = 0.

A Gaussian white noise process will be used later.

2.2 Generalised Random Fields

This section is based on Mondal [2015].

In this section we introduce the notion of generalised random fields. These objects are used to
model more complex structures than traditional random fields. When modelling a data-set with
random fields, it is assumed that the data is sampled at infinitesimally sized points. Of course
this is an abstraction, and in reality the area sampled has a non-zero area. In order to facilitate
a model that takes this into account, we introduce set-indexed random fields.

Definition 2.11 (Set-indexed Random Fields). Let (X,G, µ) be measure space and denote
Gµ = {A ∈ G : µ(A) < ∞}. Then a stochastic process, Z, with index-set Gµ, is called a set-
indexed random field over G and µ.

In order to obtain the situation described above the definition, suppose that Y is an integrable
random field on Rd. Then we can define a set-indicated random field over the Borel σ-algebra
and the Lebesgue measure as follows. For any bounded set A ⊂ Rd we define

Z(ω,A) =
∫
A
Y (ω, x)dx. (2.9)

Of course Definition 2.11 also allows other constructions. Henceforth, unless otherwise specified,
we only consider set-indicated random fields over the Borel sigma-algebra and the Lebesgue
measure. In this project we seek to describe the so-called De Wijs process. This can only be
defined on contrasts of set-indicated random fields. In order to handle this theoretically we need
a different class of stochastic processes indexed on measures. First denote M(X,G) as the set
of all signed measures on the measurable space (X,G). Then denote M = {µ ∈ M(Rd,Bd) :
µ(Rd) = 0}, where Bd is the d-dimensional Borel sigma-algebra. It is easy to check thatM is a
vector space, which gives rise to the following definition.

Definition 2.12 (Generalised Random Fields). Let Z be a stochastic process with index-
set S. Z is called a generalised random field if S is a subspace of M, and if it satisfies
that

Z(aµ+ bν) = aZ(µ) + bZ(ν),

for all µ, ν ∈ S and a, b ∈ R.

A generalised random field can be used to model contrasts over set indexed random fields as
follows. We can define a generalised random field as

W (ω, µ) =
∫
Y (ω, x)dµ(x).
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When a generalised random field has this form, we call Y the underlying random field. Now let
Z be defined as in (2.9) and let A,B ∈ Rd with |A| = |B|, where | · | is the Lebesgue measure.
Suppose µ is a signed measure on (Rd,Bd) with density 1A − 1B with respect to the Lebesgue
measure. Then we have

µ(Rd) =
∫

1A(x)dx−
∫

1B(x)dx = |A| − |B| = 0,

and thus we get

W (ω, µ) =
∫
Y (ω, x)dµ(x) =

∫
Y (ω, x)(1A(x)− 1B(x))dx

=
∫
A
Y (ω, x)dx−

∫
B
Y (ω, x)dx = Z(ω,A)− Z(ω,B).

If we were to restrictW to the set of measures µ ∈M with a test-function as density with respect
to the Lebesgue measure, we would have a generalised stochastic process where Z(µ) = Z(ϕ)
with an abuse of notation, when ϕ is the density for µ. That is

W (ω, ϕ) =
∫
Y (ω, x)ϕ(x)dx, (2.10)

for all ϕ ∈ Td. It is easily seen that the space of measures inM with a test-function as density
with respect to the Lebesgue measure is vector space. Thus it is possible to construct a process
that is both a generalised stochastic process and a generalised random field.
The usual covariance function may not be sufficient to model the covariance-structure of gener-
alised random fields. Instead a different but related object is used.

Definition 2.13 (Generalised Covariance Function). Let Z be a generalised random field,
where E

[
Z(µ)

]
= 0 for all µ ∈M. Then a symmetric function K(·, ·) which satisfies

Cov
[
Z(µ), Z(ν)

]
=
∫ ∫

K(x, y)dµ(x)ν(y),

is called a generalised covariance function (GCF) for Z.

If a generalised random field is second-order stationary, we can write K(y − x) := K(x, y) with
abuse of notation. If furthermore K(‖x− y‖) = K(x, y), then the generalised random field is
said to be isotropic.

It turns out that the notion of GCFs for intrinsic random fields of order k, which are examined
in Jensen and Fitzhugh [2018], is a special case of Definition 2.13. We can define Λk as the space
of allowable discrete measures of order k, i.e signed measures on the form

λ(A) =
m∑
i=1

λiδxi(A),

where x1, . . . , xm ∈ Rd are distinct points, δxi is the Dirac-measure centered at xi and λ1, . . . , λm ∈
R are chosen such that

m∑
i=1

λiP (xi) = 0,

for any polynomial P with deg(P ) ≤ k. We now define a stochastic process with index-set Λk
as

Z(λ) =
m∑
i=1

λiZ̃(xi),
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where Z̃ is a random field over Rd. Since Λk is a subspace ofM, Z is a generalised random field.
It is worth noting that the notion of intrinsic random fields of order k defined using random fields
over Rd (see Jensen and Fitzhugh [2018, Definition 1.12]), is equivalent to requiring that Z is
stationary. In other words, for λ, µ ∈ Λk with λ(A) =

∑m
i=1 λiδxi(A) and µ(A) =

∑m
i=1 µiδyi(A)

we get that

Cov
[
Z(λ), Z(µ)

]
=
∫ ∫

K(y − x)dλ(y)µ(x) =
m∑
i=1

m∑
j=1

λiµjK(yj − xi).

This is equivalent to Jensen and Fitzhugh [2018, Definition 1.16].
In this project we do not prove that the GCF of a generalised random field exists, but for a
proof of the special case of a generalised random field with index-set Λk and a k+ 1 times mean
square differentiable underlying random field over R, see Jensen and Fitzhugh [2018, Theorem
1.18].

Consider the Gaussian Discrete white noise process, as defined in Definition 2.10. We can
interpret such a process as a generalised random field, by arguments in the next section, indexed
over measures µ with test-functions as density wrt the Lebesgue measure. We can see that such
a process has the Dirac delta function as its generalised covariance function, as for a measure µ
with density ϕ(x) and another measure ν with density ψ(y) we have

Cov(Z(µ), Z(ν)) =
∫ ∫

δx−ydµ(x)ν(y) =
∫ ∫

δx−yϕ(x)ψ(y)dxdy

=
∫
ϕ(x)ψ(x)dx

is exactly the covariance function in Definition 2.10. In the above, the second equality is a result
of the properties of the dirac delta function, where∫

δx−yψ(y)dy = ψ(x).

Relation between index-sets

As we have now seen, we are considering stochastic processes with multiple different types of
index-sets. Specifically, we have measures, test-functions and sets. We will now show the relation
between these types of index-sets. Before we do this, we introduce the general class of stochastic
processes. Note that this class is mostly uninteresting in the context of this project.

Definition 2.14 (Measure indexed stochastic process). Let (X,G, µ) be a measure space.
A stochastic process, Z, with index-set of all signed measures on the measurable space (X,G),
i.e M(X,G), is called a Measure indexed stochastic process.

We can now show that all previously introduced stochastic processes can be presented as mea-
sure indexed stochastic processes.

A generalised stochastic process, as defined in Definition 2.4, can be written as a measure
indexed stochastic process, as we may consider measures, µ, with test-functions, ϕ, as densities
wrt. the Lebesgue measure. We can then define Z(ω, ϕ) = Z(ω, µ).
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For a random field defined on sets A ⊂ Rd, we may consider this a measure-indexed
stochastic process with measures that have the indicator function, 1A(x), as density. In this
way, we can define Z(ω,A) = Z(ω, µ).

It is easily seen that generalised random fields are measure indexed stochastic processes,
with an additional restriction that the measures, µ, satisfy that µ(Rd) = 0.

We can now show additional overlaps in the definitions of generalised random fields, generalised
stochastic processes, and set-indexed random fields.

Generalised random fields and generalised stochastic process overlap in the following way.
Recall that generalised random fields are defined on measures, µ, where µ(Rd) = 0. A gener-
alised stochastic process can, therefore, be viewed as a generalised random field by restricting
the index-set to test-functions which integrates to zero on Rd. Likewise, a generalised random
field can be viewed as a generalised stochastic process, by restricting the index-set to measures
which have test-functions as density wrt the Lebesgue measure.

Set-indexed random fields and generalised stochastic processes overlap in the following
way. We can express a generalised stochastic process as a set-indexed random field by defining
(with an abuse of notation) Z(ω, ϕ) = Z(ω,Supp(ϕ)), and vice versa.

Lastly, it is possible to express a set-indexed random field as a generalised random field,
however, this would be a fairly trivial object, since for a measure with density 1A with respect
to the Lebesgue measure it holds that

µ(Rd) =
∫

dµ =
∫

1A(x)dx = |A|.

This means that to express a set-indexed random field as a generalised random field, it would
require restricting the index-set to only Borel sets with measure zero, that is countable unions
of points in Rd.
The relations between the different objects discussed here are summarised in Figure 2.1.
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Figure 2.1: Figure showing the relation between measure-indexed stochastic processes, generalised random
fields, generalised stochastic processes and set-indexed random fields.
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2.3 De Wijs Process

In this section we introduce the process which is of central importance in the thesis. This process
is a generalised random field with a particular GCF.

Definition 2.15 (De Wijs Process). Let Z be a Gaussian generalised random field with
index-set W, which is the set of all measures µ ∈M that satisfy∫ ∫

| log‖x− y‖ |dµ+(x)dµ+(y) <∞,

where µ+(A) = |µ(A)| for all A ∈ Bd. Z is called the De Wijs process if it is stationary,
isotropic, self-similar and has GCF
K(x, y) = − log‖x− y‖, that is

Cov
[
Z(µ), Z(ν)

]
= −

∫ ∫
log‖x− y‖ dµ(x)dν(y),

for all µ, ν ∈ W.

Note that the property of self-similarity in this context means that the covariance is preserved
under scaling. In some literature, self-similar has a different meaning. We further note that by
Definition 2.12 the index set of a generalised random field must be a subspace ofM. This means
that in order for the De Wijs process to be well defined, we must show that W is a subspace of
M. Obviously W ⊂M, so we need to show that W is a vector-space. For this purpose we state
Mattner [1997, Corollary 2.5], here formulated as a lemma.

Lemma 2.16. Let f be an infinitely differentiable function such that (−1)nf (n) is non-constant
and non-negative everywhere for n ≥ k for some non-negative integer k. Then the set

Mf (Rd) =
{
µ ∈M(Rd) :

∫ ∫
|f(‖x− y‖)|dµ+(x)dµ+(y) <∞, and

∫
xαdµ(x) = 0, for |α| ≤ k − 1

}

where M(Rd) is the set of all signed Radon measures on Rd, is a vector space. Furthermore
we have that

〈µ, ν〉 =
∫ ∫

f(‖y − x‖)dµ(x)dν(y)

is positive definite on Mf (Rd), that is 〈µ, µ〉 > 0 for all µ where µ(A) 6= 0 for any A ∈ Bd.

We do not prove this result in this project. We now define the notion of Radon measures for
clarity.

Definition 2.17 (Radon measure). Let (X,Bd) be a measurable space, where X ⊂ Rd and
Bd is the d-dimensional Borel σ − algebra. A Borel measure µ : Bd → R is a Radon measure
if for all compact subsets K ⊆ X, µ(K) <∞.

Applying Lemma 2.16 gives the following proposition.

Proposition 2.18. The De Wijs process is well-defined or, equivalently, W is a vector space.
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Proof. Let f(r) = − log r. Thus we have that f(r) < 0 for r > 1, and since

f (n) = (−1)n (n− 1)!
rn

,

when n ≥ 1 = k, we have that (−1)nf (n)(r) > 0 for all r ∈ (0,∞). This means that we can
choose k = 1 |α| = 0, and thus we getMf (Rd) =W, which is a vector space by Lemma 2.16.

By Lemma 2.16 we also get that

〈µ, ν〉 = −
∫ ∫

log‖y − x‖ dµ(x)dν(y)

is positive definite. We now state Mattner [1997, Corollary 2.4]

Proposition 2.19. Let f be an infinitely differentiable function such that (−1)nf (n) is non-
constant and non-negative everywhere for n ≥ k for some non-negative integer k, and let µ be
a measure in M(Rd) that is not constantly zero, which satisfies∫

Rd
xαdµ(x) = 0 (2.11)

for |α| ≤ k − 1. Then we get that∫
Rd

∫
Rd
f(‖x− y‖2)dµ(x)dµ(y) > 0. (2.12)

We note that the function − log(
√
r) satisfies the conditions of Proposition 2.19 with k = 1. We

also note that when k = 1 the condition in (2.11) amounts to µ(Rd) = 0, thus the measures
satisfying this condition are all non-zero measures inM. Applying the proposition to − log

√
r

then implies that 〈µ, µ〉 = 0 if and only if µ(A) = 0 for all A ∈ Bd. This means that W is a
normed inner product space, with norm

‖µ‖W = 〈µ, µ〉1/2.

It is now straight-forward to show the existence of the de Wijs process. First we note that the
covariance-function

C(µ, ν) = −
∫ ∫

log(‖x− y‖)dµ(x)dν(y) (2.13)

is positive definite. Thus by using the same arguments as in (i), (ii) and (iii) in the proof
of Theorem 2.5 we can show that there exists a generalised random field such that for any
µ1, . . . , µn ∈ W we have

Z(µ1)
...

Z(µn)

 ∼ N


m(µ1)

...
m(µn)

 ,

C(µ1, µ1) · · · C(µ1, µn)

... . . . ...
C(µn, µ1) · · · C(µn, µn)


 ,

where C is given as in (2.13) and m can be any linear functional which maps form W to R, and
where Z(aµ + bν) = aZ(µ) + bZ(ν) almost surely. In order to show that the de Wijs process
exists, it suffices to show that C is preserved under translation, rotation and scaling, and that
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there exists choices of m that is also preserved under translation, rotation and scaling. Denoting
µh(A) = µ(A+ h) for a h ∈ Rd we get

C(µh, νh) = −
∫ ∫

log‖x− y‖dµh(x)dνh(y)

= −
∫ ∫

log
∥∥(x̃− h)− (ỹ − h)

∥∥dµh(x̃− h)dνh(ỹ − h)

= −
∫ ∫

log‖x̃− ỹ‖dµ(x̃)dν(ỹ) = C(µ, ν),

where the second equality comes from performing the change of variable x̃ = x + h. Denoting
µR(A) = µ(RA) whereR is a rotation matrix, it follows from similar arguments that C(µR, νR) =
C(µ, ν). Finally we show that the covariance function is invariant under changes of scale.
Denoting µa(A) = µ(aA) for a ∈ R we get

C(µa, νa) = −
∫ ∫

log‖x− y‖dµa(x)dνa(y)

= −
∫ ∫

log
∥∥(x̃− ỹ)/a

∥∥dµa(x̃/a)dνa(ỹ/a)

= −
∫ ∫

log
∥∥(x̃− ỹ)

∥∥dµ(x̃)dν(ỹ) +
∫ ∫

log |a|dµ(x̃)dν(ỹ)

= C(µ, ν),

where the second equality comes from performing the change of variable x̃ = ax and the final
equality comes from the fact that∫ ∫

log |a|dµ(x̃)dν(ỹ) = log |a|
∫ ∫

dµ(x̃)dν(ỹ) = 0,

since ∫
dµ(x̃) = µ(Rd) = 0.

We have now shown that there exists a Gaussian generalised random field with the same covari-
ance functional as the de Wijs process, and that this covariance functional is invariant under
translation, rotations and scaling. In order for such a generalised random field to be the de
Wijs process, it must be stationary, isotropic and self-similar. Since all the finite dimensional
distributions are Gaussians it is sufficient to show that there exists a valid mean functional which
is invariant under translations, rotations and scaling. This is trivial since we may choose

m(µ) = 0, for all µ ∈ W.

Lastly we note that we cannot choose the mean functional to be constantly non-zero. To see this
we note the requirement of linearity of the mean functional. Now suppose that m(µ) = c 6= 0
for all µ ∈ W and choose a, b ∈ R such that a+ b 6= 1. Then we get

c = m(aµ+ bν) = am(µ) + bm(ν) = (a+ b)c,

which is a contradiction. Thus a constantly non-zero mean functional is not a valid choice of
mean functional.
We can investigate when a symmetric function, K, is a valid GCF. Recall from Definition 2.13
that a symmetric function K is called a GCF for a generalised random field Z, if it satisfies that

Cov(Z(µ), Z(ν)) =
∫ ∫

K(x, y)dµdν.
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Let Y =
∑k
i=1 aiZ(µi), where µi are measures such that µi(Rd) = 0 and ai ∈ R for all i. Then

we have

Var(Y ) = Var

 k∑
i=1

aiZ(µi)

 =
k∑
i=1

k∑
j=1

aiajCov(Z(µi), Z(µj)) ≥ 0.

Using the definition of the GCF we furthermore get

k∑
i=1

k∑
j=1

aiaj

∫ ∫
K(x, y)dµidµj =

∫ ∫
K(x, y)

k∑
i=1

k∑
j=1

aiajdµidµj .

Denoting µ̃1(x) =
∑k
i=0 aiµi(x) and µ̃2(y) =

∑k
j=0 aiµi(y) we have the requirement that the

GCF, K, satisfies ∫ ∫
K(x, y)dµ̃1dµ̃2 ≥ 0.

It is possible to determine if a given parametrisation of K satisfies this criterion, using Lemma
2.16.
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2.4 Restricted Maximum Likelihood Estimation of Covariance
Structure

In this section, we describe a method for estimating the covariance structure of a generalised
random field. In particular, we wish to derive the likelihood for the so-called De Wijs plus white
noise process, which we first formally define.

Definition 2.20 (The De Wijs plus White Noise Process). Let Z be a generalised
random field. Suppose Z has generalised covariance function

K(x− y) = σ2
0δx−y − σ2

1 log(‖x− y‖),

where σ0, σ1 > 0, and δ is Diracs delta function. Then Z is called the De Wijs plus white
noise process.

A model of the GCF, as in Definition 2.20, which is a combination of two GCF models (white
noise and De Wijs) is typically refered to as a conformal model in the literature(see e.g. [Clifford
and McCullagh, 2006]).

Suppose now that, we have observed n data points indexed by sets, Ai ⊂ Rd for i = 1, . . . , n.
We assume that such data is an average of a random field in a specific area, i.e. we assume that
we observe

Y (Ai) =
∫
Ai

Y (x)dx.

To model such data using the De Wijs plus white noise process, we must find a way to interpret
the data as a realisation of a generalised random field. Recall that such random fields are
indexed using measures, µ, where µ(Rd) = 0. We make this interpretation using contrasts of
the observed data, such that we interpret

Z(µi) = Y (Ai)− Y (A1) =
∫
Y (x)[1Ai+1 − 1A1 ](x)dx =

∫
Y (x)dµi(x),

where i = 2, . . . , n as i = 1 is uninteresting. Note that in this section, we work with contrasts
of the type above, but more general contrasts are also an option. Note that it is necessary to
assume that Y (x) has a constant mean, as Z must have zero mean by the arguments of the last
section. We furthermore assume that Y is Gaussian.
We now have a generalised random field Z indexed over measures µi for i = 2, . . . , n, where µi
has the density 1Ai(x)− 1A1(x) wrt the Lebesgue measure. Notice that working with contrasts,
in the way above, where the mean structure is eliminated, is reminiscent of Restricted Maximum
Likelihood (REML) estimation, which we now briefly present in a general setting.

Restricted Maximum Likelihood Estimation in General

The main of idea of REML estimation is to apply a linear transformation to data, in order to
eliminate the mean value structure. In other words, let Y be an n × 1 stochastic vector, with
E[Y ] = µ ∈ span(X). Now let A be an (n−m)×n matrix with columns that span the orthogonal
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complement of span(X). Considering the matrix multiplication Z = AY , we have that

E[Z] = AE[Y ] = 0
Cov(Z) = ACov(Y )A>.

After the linear transformation is applied, we perform ordinary maximum likelihood estimation
of the parameters. Typically, one would write up the profile log-likelihood instead of the ordinary
likelihood, eliminating parameters, not of interest. A strength of REML estimation is that it
produces unbiased estimates.

2.4.1 REML for the De Wijs plus White Noise process

In this subsection, we derive the log-likelihood of the De Wijs plus white noise process as defined
in Definition 2.20.
Recall that we interpret contrasts of data, as realisations of a zero-mean Gaussian generalised
random field indexed using measures µi which have density 1Ai(x)− 1A1(x) wrt. the Lebesgue
measure for i = 2, . . . , n. We now show that this setup results in a positive definite covariance
matrix. Note that other contrasts are possible and that this will be addressed later.

Positive Definiteness of the covariance matrix

Since Z is Gaussian, we can write up its likelihood, by computing the covariance matrix. How-
ever, for the likelihood to be defined, the covariance matrix must be positive definite, and thus
invertible. To show that this is the case for the De Wijs plus white noise process, we must show
that

a>Cov(Z)a =
n∑
i=2

n∑
j=2

aiajCov(Z(µi), Z(µi)) > 0

Specifically for the De Wijs plus white noise process we have by Definition 2.20 that

Cov(Z(µi), Z(µj)) = σ2
0

∫ ∫
δx−ydµidµj − σ2

1

∫ ∫
log(‖x− y‖)dµidµj . (2.14)

Therefore we must show that,
n∑
i=2

n∑
j=2

aiajσ
2
0

∫ ∫
δx−ydµidµj −

n∑
i=2

n∑
j=2

aiajσ
2
1

∫ ∫
log(‖x− y‖)dµidµj > 0

We can explicitly compute the first term of (2.14), using the densities of the measure. First note
that the Dirac delta function has the useful property that,∫

Aj

δx−ydx = 1Aj (y).

We therefore have that

σ2
0

∫ ∫
δx−ydµidµj = σ2

0

( ∫
Ai

∫
Aj

δx−ydxdy −
∫
A1

∫
Aj

δx−ydxdy

−
∫
Ai

∫
A1
δx−ydxdy +

∫
A1

∫
A1
δx−ydxdy

)
= σ2

0
(
|Ai ∩Aj | − |A1 ∩Aj | − |Ai ∩A1|+ |Ai|

)
,
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where the second and third terms are zero, since i, j 6= 1. Writing the above on matrix form,
and recalling that i, j = 2, . . . , n, we obtain the matrix

σ2
0|Ai|

(
I(n−1) + 1(n−1)1>(n−1)

)
,

which is a positive definite matrix, because the addition in the parentheses results in a positive
definite matrix.

It remains to be shown that

−
n∑
i=2

n∑
j=2

aiajσ
2
1

∫ ∫
log(‖x− y‖)dµidµj > 0.

This can be shown by the arguments from Section 2.3, which we outline here again. We may
switch the summation and integration such that

−
n∑
i=2

n∑
j=2

aiajσ
2
1

∫ ∫
log(‖x− y‖)dµidµj =

∫ ∫
− log(‖x− y‖)

n∑
i=2

n∑
j=2

aiajdµi(x)dµj(y).

Denoting µ̃(x) =
∑n
i=2 aiµi(x) and µ̃(y) =

∑n
i=2 ajµj(y) we have∫ ∫

− log(‖x− y‖)
n∑
i=2

n∑
j=2

aiajdµi(x)dµj(y) =
∫ ∫

− log(‖x− y‖)µ̃(x)µ̃(y) > 0,

by Lemma 2.16, since µ̃(x) and µ̃(y) are Radon measures (see Definition 2.17). Thus the matrix
Cov(Z) is positive definite.

Computing the covariance matrix

Having shown the positive definiteness of Cov(Z) we now compute it explicitly. Recall from
earlier that

Cov(Z(µi), Z(µj)) = σ2
0
(
|Ai ∩Aj |+ |Ai|

)
− σ2

1

∫ ∫
log(‖x− y‖)dµidµj , (2.15)

for i, j = 2, . . . , n. We now consider the second term. In the following we use the notation

Iij =
∫
Ai

∫
Aj

log(‖x− y‖)dxdy.

Using the densities of the index measures, we have

−σ2
1

∫ ∫
log(‖x− y‖)dµidµj = σ2

1(−Iij + I1j + Ii1 − I11). (2.16)

We can thus write the covariance matrix of Z as

Cov(Z) = σ2
0|Ai|

(
I + 11>

)
+ σ2

1V, (2.17)

where the entrances of V are

Vi,j = −Iij + I1j + Ii1 − I11

To compute the matrix V , we thus need to compute Iij for i, j = 1, . . . , n. There are a variety
of ways to approximate Iij , and we show two different approaches in the next subsection.
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Approximating integrals over subsets of Rd

In this subsection we present different approaches in approximating the integral∫
Ai

∫
Aj

log(‖x− y‖)dxdy, (2.18)

where Ai and Aj for i, j = 1, . . . , n, are subsets of Rd.

The first approach is reminiscent of Riemann approximation. We split the computation into
two cases when i = j and when i 6= j.
For i 6= j we approximate the integral by∫

Ai

∫
Aj

log(‖x− y‖)dxdy = |Ai||Aj | log(
∥∥xi − yj∥∥),

where xi and yi are representative points in Ai and Aj , respectively. This approach is more
troublesome when i = j, as the negative logarithm tends to infinity as the distance between
representative points is small. Instead we consider the area Ai, and take the representative
points xi and yi to be points with the furthest possible distance in Ai We denote the logarithm
of this distance as k. Note that this quite possibly results in a small approximation of the
integral. Using this approximation the entrances of the matrix V become

Vij = −|Ai||Aj | log(
∥∥xi − yj∥∥) + |Ai|2

(
log(

∥∥x1 − yj
∥∥) + log(‖xi − y1‖)

)
− |A1|2k.

The diagonal of V is given by

Vii = −2|Ai|2k + 2|A1||Ai| log(‖x1 − yi‖).

The second approach of approximating the integral, is using Monte Carlo methods. Consider
the integral in (2.18), and assume that p(x) and q(y) are the densities of uniform distributions
in Ai and Aj , respectively. Multiplying and dividing, we have∫

Ai

∫
Aj

log(‖x− y‖)dxdy =
∫
Ai

∫
Aj

log(‖x− y‖)
p(x)q(y) p(x)q(y)dxdy.

We can thus perceive the integral as

E
[

log(‖x− y‖)
p(x)q(y)

]
= |Ai||Aj |E[log(‖x− y‖)],

since the uniform densities are simply the reciprocal of the volume of the area in question. We
can approximate the mean value by simulating n points, xi, in Ai and, yi in Aj , uniformly.
Afterwards, we approximate the mean value using the empirical mean, i.e we use the approxi-
mation

∫
Ai

∫
Aj

log(‖x− y‖)dxdy ≈ |Ai||Aj |
1
n

n∑
i=1

log(‖xi − yi‖). (2.19)

Since this is an approximation, it would be useful to asses the accuracy of the approximation.
This can be done by computing the empirical standard error of the Monte Carlo estimate.
Denoting the estimate in (2.19) as Q, we can compute

s2 = 1
n− 1

n∑
i=1

(|Ai||Aj | log(‖xi − yi‖)−Q)2.
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Then the variance of the estimate is approximately,

Var(Q) ≈ s2

n
.

We can then compare the size of the estimate with the empirical variance to asses the accuracy
of the estimate.

Likelihood of the covariance parameters

Recall that Z is Gaussian, and since the covariance matrix is positive definite, Z has a
Gaussian likelihood. Let z be a realisation of Z and let Ψ be the covariance matrix in (2.17),
then since E[Z] = 0 the log-likelihood is

l(Ψ) = −1
2 log(|Ψ|)− 1

2z
>Ψ−1z (2.20)

As the covariance matrix Ψ of Z is a function of σ2
0 and σ2

1, we have

l(σ2
0, σ

2
1) = −1

2 log(|Ψ(σ2
0, σ

2
1)|)− 1

2z
>Ψ(σ2

0, σ
2
1)−1z. (2.21)

It is possible to derive a profile log-likelihood by considering a ratio of the parameters. We can
re-parametrise the covariance matrix in (2.17), as

Cov(Z) = σ2
0|Ai|

(
I + 11>

)
− σ2

1V = σ2
0

(
|Ai|

(
I + 11>

)
− σ2

1
σ2

0
V

)
= σ2

0Φ(τ), (2.22)

where τ = σ2
1
σ2

0
. Inserting the re-parametrisation in (2.20), we get the log-likelihood

l(σ2
0, τ) = −n− 1

2 log(σ2
0)− 1

2 log(|Φ(τ)|)− 1
2σ2

0
z>Φ(τ)−1z. (2.23)

We can find the profile log-likelihood of τ by maximising the log-likelihood wrt σ2
0. The partial

derivative wrt σ2
0 is

∂

∂σ2
0
l(σ2

0, τ) = −n− 1
2σ2

0
+ 1

2σ4
0
z>Φ(τ)−1z. (2.24)

Setting (2.24) equal to zero, and isolating σ2
0 we get the estimator

σ̂2
0(τ) = 1

n− 1z
>Φ(τ)−1z. (2.25)

Plugging the estimator back into (2.23), we get the profile log-likelihood for τ

l(σ̂2
0(τ), τ) = −n− 1

2 log
( 1
n− 1z

>Φ(τ)−1z

)
− 1

2 log(|Φ(τ)|)− 1
2
n− 1

1
1

z>Φ(τ)−1z
z>Φ(τ)−1z

= −n− 1
2 log

( 1
n− 1z

>Φ(τ)−1z

)
− 1

2 log(|Φ(τ)|)− n− 1
2 .

As the last term is constant, we get that the profile log-likelihood of τ is proportional to

l(σ̂2
0(τ), τ) ∝ −n− 1

2 log
( 1
n− 1z

>Φ(τ)−1z

)
− 1

2 log(|Φ(τ)|), (2.26)

which can be maximized to find the estimate τ̂ , and thereafter σ̂2
0 by utilising (2.25).
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The Gaussian Generalised Covariance Function

While the De Wijs plus white noise process, is of central importance is this thesis, it is of course
possible to apply alternative parametrisations of the GCF. The simplest choice of model for the
GCF is the so-called Gaussian GCF, where the GCF is modelled by the isotropic function

K(‖x− y‖) = e−a‖x−y‖.

This model depends only on a single positive parameter a ∈ R.
To determine if the function satisfies the conditions in Lemma 2.16, we compute the partial
derivatives. Let t =‖x− y‖, then

K ′(t) = e−at(−a)

K(2)(t) = e−ata2

For arbitrary order, n, of differentiation we have

dn

dtn
K(t) = e−at(−1)nan.

Therefore, we have that for all positive integers n,

(−1)n d
n

dtn
K(t) = e−at(−1)2nan > 0, for all t ∈ R, a > 0,

thus satisfying the conditions Lemma 2.16 and constituting a valid model for the GCF of a
generalised random field, Z. Note that the Gaussian GCF is the name of the GCF, and does
not imply that the generalised random fields in question needs to be Gaussian.

2.5 Alternative choice of contrasts

In Section 2.4, we introduce REML estimation of a De Wijs plus white noise process. We do this
for a specific choice of contrasts of data, namely subtracting a specific value from the remaining
data. This type of contrast was merely an arbitrary choice, and other contrasts are possible. In
this section, we show that other contrasts result in a positive definite covariance matrix.

Recall from the start of Section 2.4 that we have observed n data-points interpreted to be from
the set-indexed random field

Y (Ai) =
∫
Ai

Y (x)dx.

To be able to model such data, using generalised random fields, we interpret said generalised
random field, as contrasts of the set-indexed random field. Note that the sets all have the same
volume. Let x1, . . . , xM ∈ Rn, such that 1>n xi = 0 for i = 1, . . . ,M . We can define measures

µk(B) =
∫
B

n∑
i=1

(xk)i1Ai(x)dx, where k = 1, . . . ,M.

We see that these measures satisfy

µk(Rd) =
∫
Rd

n∑
i=1

(xk)i1Ai(x)dx =
n∑
i=1

(xk)i|Ai| = |A|
n∑
i=1

(xk) = 0, for k = 1, . . . ,M,



32 Chapter 2. Generalised Stochastic Processes

We note that these are Radon measures. Let Z be generalised random field with GCF, K(x, y),
and these measures as indices. Then, by Definition 2.13, the covariance is

Cov(Z(µi), Z(µj)) =
∫ ∫

K(x, y)dµidµj , (2.27)

for i = 1, . . . ,M and j = 1, . . . ,M . Suppose now that Z is a De Wijs plus white noise process,
i.e

K(x, y) = σ2
0δx−y − σ2

1 log(‖x− y‖).
Inserting into (2.27), we have

Cov(Z(µi), Z(µj)) = σ2
0

∫ ∫
δx−ydµidµj + σ2

1

∫ ∫
− log(‖x− y‖)dµidµj .

Using the densities of the measures, we can rewrite the above covariance as

Cov(Z(µi), Z(µj)) = σ2
0

∫ ∫
δx−y

 n∑
m=1

(xi)m1Am(x)

 n∑
k=1

(xj)k1Ak
(y)

dxdy

+σ2
1

∫ ∫
− log(‖x− y‖)

 n∑
m=1

(xi)m1Am(x)

 n∑
k=1

(xj)k1Ak
(y)

 dxdy

Using the notation
Dmk =

∫
Am

∫
Ak

δx−ydxdy,

and
Lmk =

∫
Am

∫
Ak

log(‖x− y‖)dxdy,

we can further rewrite the covariance as

Cov(Z(µi), Z(µj)) = σ2
0

n∑
m=1

n∑
k=1

(xi)m(xj)kDmk − σ2
1

n∑
m=1

n∑
k=1

(xi)m(xj)kLmk. (2.28)

This implies that the covariance matrix of Z is

Cov(Z) = σ2
0TDT

> + σ2
1TLT

>, (2.29)

where the matrix L is matrix containing the values −Lmk, and T is a M ×n matrix whose rows
are the vectors xi for i = 1, . . . ,M . Furthermore, the matrix D contains the values dmk. Note
that D = |A|I, where |A| is the common area of the sets Ai, since

dmk = |Am ∩Ak| =

|A|, when m = k.

0, when m 6= k.

Consider now the second term of (2.29). For this term to be positive definite, we require that
the matrix T has full rank. This implies that M is at most n − 1, as T must be span the null
space of the vector 1n. Coincidently, this also ensures that the first term is positive definite,
as the identity matrix is positive definite. We already know that the matrix TLT> is positive
definite, which is a result of the arguments in Section 2.4, and of Lemma 2.16.
We have thus shown that other contrasts also result in positive definite covariance-matrices.
The contrasts must only be orthogonal on the vector 1n. Note that the REML estimates are
invariant under a different choice of contrasts. The invariance is because if both T and T ′ both
span the orthogonal complement to the vector 1n, then there exists an invertible matrix P such
that T = T ′P . For more details on the invariance of REML estimates under different contrasts,
see Waagepetersen [2019].
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2.6 Variogram Estimation of covariance parameters

In this section, we describe an estimation procedure of the covariance structure, using the so-
called variogram and semi-variogram.
A variogram is an object, which is typically of central importance in practical analysis of ordinary
random fields. We now define the object for generalised random fields.

Definition 2.21 (Variogram of Generalised Random Fields). Let Z be a generalised
random field with index set A ⊆M. The variogram of Z is

2γ(µ, ν) = Var
[
Z(µ)− Z(ν)

]
,

for µ, ν ∈ A.

The function γ is called the semi-variogram. For a given GCF, K(x, y), of a generalised random
field Z, the variogram can be written as

2γ(µ, ν) = Var
[
Z(µ)− Z(ν)

]
= Cov(Z(µ), Z(µ)) + Cov(Z(ν), Z(ν))− 2Cov(Z(µ), Z(ν)).

Using Definition 2.13, we have

2γ(µ, ν) =
∫ ∫

K(x, y)dµdµ+
∫ ∫

K(x, y)dνdν − 2
∫ ∫

K(x, y)dµdν. (2.30)

Now let Z be an generalised random field, with index set as in Section 2.4, and GCF

K(x, y) = σ2
0δx−y − σ2

1 log(‖x− y‖).

We can compute the variogram of Z explicitly using (2.30). Recall from Section 2.4, that the
GCF above yields the covariance,

Cov(Z(µi), Z(µj)) = σ2
0
(
|Ai ∩Aj |+ |Ai|

)
− σ2

1

∫ ∫
log(‖x− y‖)dµidµj . (2.31)

Recall, earlier we use the notation∫
Ai

∫
Aj

log(‖x− y‖)dxdy = Iij .

We note that Iii = Ijj for i, j = 1, . . . , n, and we denote this value M . By (2.30), and using
(2.31), the variogram for Z is

2γ(µi, µj) = 2σ2
0|Ai| − σ2

1 (M − I1i − Ii1 +M) + 2σ2
0|Aj | − σ2

1
(
M − I1j − Ij1 +M

)
− 2

[
σ2

0|Ai| − σ2
1
(
Iij − I1i − Ij1 +M

)]
Expanding the above yields

2γ(µi, µj) = 2σ2
0|Ai|+ 2σ2

1Iij + 2σ2
1I1j + 2σ2

1Ii1 + 2σ2
1I11

− σ2
1Iii − σ2

1I1i − σ2
1Ii1 − σ2

1I11 − σ2
1Ijj − σ2

1I1j − σ2
1Ij1 − σ2

1I11

= 2σ2
0|Ai|+ 2σ2

1(Iij −M).

Since the areas Ai are identical for all i, the integral Iij is only dependent on the difference
vector between the sets Ai and Aj . In Section 2.4 we briefly discussed ways of approximating
Iij . Suppose we use the first discussed approach. Then we get the variogram
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2γ(µi, µj) = 2σ2
0|Ai|+ 2σ2

1(|Ai||Aj | log(
∥∥xi − yj∥∥)−M),

where xi and yj are representative points in the sets Ai and Aj , respectively. This can be seen
as a function of the distance between xi and yi. We therefore have the variogram as the function

2γ(h) = 2σ2
0|A|+ 2σ2

1(|A|2 log(h)−M), (2.32)

where |A| is the volume of the sets |Ai| for all i. Note that the value of M can be estimated
using Monte Carlo methods, as discussed in Section 2.4.

We have now used the relation between the GCF and the variogram to compute what we
will call a variogram model, i.e. the function in (2.32). It is then possible to estimate the
covariance parameters by fitting the variogram model to the empirical variogram. Suppose
that the generalised random field Z is indexed using the measures µi as in Section 2.4. Assume
furthermore that there is an underlying set indexed random field, Y , and we have n observations,
Y (Ai) for i = 1, . . . , n. We then see that the variogram of Z is

2γ(µi, µj) = Var
[
Z(µi)− Z(µj)

]
= Var

[
Y (Ai)− Y (Aj)

]
= E[(Y (Ai)− Y (Aj))2],

Since the variogram model in (2.32) is only dependent on the distance between Ai and Aj , the
same must be true of the mean square difference of Y . In order to compute the variogram for a
given distance h, we introduce the set S(h) as the set of pairs (i, j) where ‖xi − yj‖ = h, where
xi and yj are representative points of the sets Ai and Aj , respectively, and where both Y (Ai)
and Y (Aj) have been observed. Using this set we can estimate the empirical variogram as

γ̂(h) = 1
|S(h)|

∑
(i,j)∈S(h)

(Y (Ai)− Y (Aj))2.

Note that γ̂(0) = 0. After computing the empirical variogram, it is possible to fit the parameters
of the variogram model in (2.32), using a goodness-of-fit criteria as, for example, least squares.



Chapter 3

Implementation

3.1 Data Introduction

In this project, we define the De Wijs plus white noise process and seek to apply this model to a
particular dataset. The dataset in question contains measurements of the contents in soil from
Barro Colorado Island in Panama. Specifically, the contents are aluminium, boron, calcium,
copper, iron, potassium, magnesium, manganese, sodium, phosphorus, sulphur, zinc, ammo-
nium, nitrate, nitrogen, mineralised ammonium, mineralised nitrate, mineralised nitrogen and
the pH-value of the soil.

A location for each measurement is known, and we call these centre points. The sample points
are mainly located on a regularly spaced grid, with a spacing of 50 meters. However, sample
points between the grid points are also used, resulting in 300 observation in the dataset. The
locations of the samples can be seen in the plot below.
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Figure 3.1: Locations of the measurements of soil data.

At each sampling point, three different samples are obtained, all within a radius of 1 meter of
each centre point. Note that the exact locations of the three samples are unknown. Each sample
is obtained using a so-called LaMotte soil sampling tube [Harms et al., 2004], which is a round
tube, extracting a cylinder-shaped sample with a diameter of 2.5 cm and a depth of 30.5 cm.
The three samples have a total volume of 0.00044 m3. Since the exact locations of three samples
are unknown, we can approximate the sample area by a single pillar with the same volume.
This pillar can have the same height of 30.5 cm, and the side lengths must be approximately
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3.8 cm to preserve the volume. These pillars are centred at the centre points. For more detailed
information about how the data has been obtained, see Harms et al. [2004].

In the following sections, this dataset is referred to as the bcicov-dataset, and the data are
used as observations of the underlying random field, Y , where the generalised random field,
Z, is interpreted as contrasts hereof, as in Section 2.4. In other words, in what follows, the
observation of Y (A1) is the first observation in the bcicov-dataset, and so on.

3.2 REML estimation of covariance parameters for soil data

In this section we describe the implementation of the estimation method described in Section
2.4. In other words, we wish to perform REML estimation of the covariance parameters of De
Wijs plus white noise process, denoted Z in the following, as defined in Section 2.4. We assume
a generalised covariance structure on the form

K(x− y) = σ2
0δx−y − σ2

1 log(‖x− y‖), (3.1)

where σ0, σ1 > 0. Recall that this assumption results in the positive definite covariance matrix

Cov(Z) = σ2
0|Ai|

(
I + 11>

)
− σ2

1V, (3.2)

where V is a (n− 1)× (n− 1) matrix with entrances given by (2.16).
In order to write up the log-likelihood function, as in (2.26), we estimate the matrix V using
Monte Carlo methods as in (2.19). In order to do this, we first implement a function which
approximates the integral ∫

Ai

∫
Aj

log(‖x− y‖)dxdy, (3.3)

for fixed i and j. Note that the in the implementation of the function, a specific shape, and
dimension of the sets Ai is assumed. Specifically, we assume Ai to be a square pillar, with a
height of 30.5 cm and a side length of 3.8 cm.
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1 MCEst <- function (Ai , Aj , n){
2 points <- matrix (NA , n*2, 3)
3

4 for(i in 1: nrow( points )/2){
5 points [i ,1] <- runif (1, Ai [1] -0.0187 , Ai [1]+0.0187)
6 points [i ,2] <- runif (1, Ai [2] -0.0187 , Ai [2]+0.0187)
7 points [i ,3] <- runif (1 ,0 ,0.305)
8 }
9 for(i in (nrow( points )/2+1):nrow( points )){

10 points [i ,1] <- runif (1, Aj [1] -0.0187 , Aj [1]+0.0187)
11 points [i ,2] <- runif (1, Aj [2] -0.0187 , Aj [2]+0.0187)
12 points [i ,3] <- runif (1 ,0 ,0.305)
13 }
14 Est <- A^2/n*sum( unlist ( lapply (1:n,
15 function (x){log(Norm( points [x,] - points [n+x ,]))})))
16 S2 <- 1/(n -1)*sum( unlist ( lapply (1:n,
17 function (x){(A^2*log(Norm( points [x,] - points [n+x ,])) - Est)^2})))
18 return (list(Est = Est , n=n, S2=S2/n))
19 }

Code 3.1: A function approximating (3.3) using Monte Carlo methods for areas Ai and Aj , where centre
points of these areas are given as inputs.

The function MCEst in Code 3.1 takes three inputs. The first two are the centre points of the
areas Ai and Aj around which the points used in the approximation are simulated. The third
input determines the number of points to simulate in each area. Note also that A is the volume of
the index sets (0.00044 m3). The simulation part of the function consists of two for-loops. The
first of these constructs the n points in the area Ai, by simulating the x-coordinate, y-coordinate
and z-coordinate (depth of sample), uniformly. The second loop does the same for the area Aj .
Finally, the approximation is computed as

∫
Ai

∫
Aj

log(‖x− y‖)dxdy ≈ |Ai||Aj |
1
n

n∑
m=1

log(‖xm − ym‖),

where xm is a simulated point in Ai and ym is a simulated point in Aj . Lastly, we also compute
the empirical variance of the estimate, by computing the mean squared difference of the sampled
points and the estimate. In order to approximate the integral for all i and j, we use a for-loop
as follows.

20 Est.mat <- matrix (NA , 300 ,300)
21

22 for (i in 1:300) {
23 for (j in 1:i) {
24 Est.mat[i,j] <- MCEst(as. numeric ( bcicov [i ,1:2]) ,
25 as. numeric ( bcicov [j ,1:2]) , n)
26 }
27 }

Code 3.2: Monte Carlo approximation of the integral in (3.3) for all i and j.
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Using these approximations, we can construct the matrix V , as given in (2.16), using Code 3.3.

28 MC <- Est.mat + t(Est.mat) - diag(Est.mat)
29 V <- matrix (NA ,299 ,299)
30 for (i in 2:300) {
31 for (j in 2:300) {
32 V[i-1,j -1] <- -MC[i,j] + MC[1,j] + MC[i ,1] - MC [1 ,1]
33 }
34 }

Code 3.3: Construction of the matrix V using Monte Carlo approximations as in (2.19).

In order to define the log-likelihood as a function of τ as in (2.26), we first define the matrix Φ
as in (2.22) in Code 3.4. As previously, A is the volume of the areas Ai, for i = 1, . . . , n.

35 Phi <- function (tau){
36 A*(eye (299) + 1) + tau*V
37 }

Code 3.4: A function returning the matrix Φ(τ) as in (2.22), for a specific value of τ .

Note that due to the way the V matrix is constructed, the second term is added and not
subtracted. Using this function, we can implement the estimator of σ2

0 as a function of the
parameter τ . This is done in Code 3.5. Note that y.tilde contains the contrasts of data, which
is interpreted as a realisation of Z.

38 sigma0 .est <- function (tau){
39 t(y.tilde)%*%solve(Phi(tau))%*%y.tilde/dim(Phi(tau))[1]
40 }

Code 3.5: A function returning the estimate of σ2
0 for a given value of τ .

Having implemented the functions Phi and sigma0.est, we can now implement the log-likelihood
as given in (2.26), which is done in Code 3.6.

41 likelihood <- function (tau){
42 d <- as. numeric ( determinant (Phi(tau), logarithm = TRUE)$ modulus )
43 l <- -dim(Phi(tau))[1]/2*log( sigma0 .est(tau)) - 1/2*d
44 return (l)
45 }

Code 3.6: Implementation of the log likelihood function as a function of the parameter τ , as in (2.26).

Now, maximum likelihood estimates of the parameter τ can be obtained. Afterwards, the esti-
mate of σ2

0 can be obtained by plugging the estimate of τ in the function sigma0.est in Code 3.5.
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Note that only positive values of τ should be considered, as the likelihood is undefined otherwise.

When using the alternate parametrisation of the GCF presented in a subsection in Section 2.4,
a number of challenges arises. Firstly, note that for a generalised random field, Z, with index
set as in Section 2.4, which has the GCF

K(x, y) = σ2
0δx−y + e−σ

2
1‖x−y‖, (3.4)

we must eventually compute the integral∫
Ai

∫
Aj

e−σ
2
1‖x−y‖dxdy.

Since it is not possible separate the parameter σ2
1 from the integral, the computation is vastly

different from the previously discussed case. Firstly, it it not possible to derive the profile
log-likelihood is the same way as above. Secondly, the approximations of the integral using
Monte Carlo methods is not feasible, as in Code 3.1. This is because the parameter σ2

1 cannot
be separated from the integral, and thus the integral must be approximated for all values of
σ2

1 for which the covariance is to be computed. To mitigate this problem we use a method of
approximation which was also discussed in Section 2.4. We use the approximation∫

Ai

∫
Aj

e−σ
2
1‖x−y‖dxdy ≈ |Ai||Aj |e−σ

2
1‖xi−yj‖,

where xi and yj are representative points in the sets |Ai| and |Aj |, respectively. Using this
approximation we can implement the covariance matrix as a function of σ2

0 and σ2
1 as in Code

3.7.

46 cov <- function (sigma0 , sigma1 ){
47 V <- matrix (NA ,299 ,299)
48 for (i in 2:300) {
49 for (j in 2:300) {
50 if (i==j){
51 V[i-1,j -1] <- 2*A^2*k^ sigma1 - 2*A^2*exp.dist [1,i]^ sigma1
52 }else{
53 V[i-1,j -1] <- A*exp.dist[i,j]^ sigma1
54 - A^2*(exp.dist [1,j]^ sigma1 + exp.dist[i ,1]^ sigma1 ) + A^2*k^

sigma1
55 }
56 }
57 }
58 sigma0 *A*(eye (299) + 1) + V
59 }

Code 3.7: Function returning the covariance matrix, using the GCF in (3.4) for values of σ2
0 and σ2

1 given as
input.

Note that in Code 3.7, the notation exp.dist[i,j] is the value e−‖xi−yj‖, where xi and yj are
representative points in the sets Ai and Aj , respectively.
Using the function defined in Code 3.7, we can define the log-likelihood as function of the
parameters σ2

0 and σ2
1 as is done in Code 3.8.
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61 likelihood <- function (s){
62 c <- exp(s)
63 co <- cov(c[1],c[2])
64 d <- as. numeric ( determinant (co , logarithm = TRUE)$ modulus )
65 l <- -1/2*t(y.tilde)%*%solve(co)%*%y.tilde - 1/2*d
66 return (-l)
67 }

Code 3.8: The log-likelihood for a generalised random field with the GCF in (3.4) for given parameters σ2
0 and

σ2
1 .

Note that the function in Code 3.8 returns the negative log-likelihood, and minimising this is
equivalent to maximising the log-likelihood. Maximum likelihood estimates can be found using,
for example, the function optim in R, which minimises multidimensional objective functions.



3.3. Variogram Estimation of the covariance parameters 41

3.3 Variogram Estimation of the covariance parameters

In this section, we detail the implementation of variogram estimation of covariance parameters.
We do this for the GCF model in (3.1), and with the bcicov-dataset in mind. As such, some
parts may only be applicable to this dataset.

As we have shown in Section 2.6 that for a De Wijs plus white noise process, Z, with index set
as in Section 2.4, the variogram can be seen as a function of distance

2γ(h) = 2σ2
0|A|+ 2σ2

1(|A|2 log(h)−M), (3.5)

where |A| is the volume of the sets |Ai| for all i, and M is the approximation of the integral Iij
from Section 2.4. This value is approximated before defining any of the following functions. We
can define this variogram model as is done in Code 3.9.

1 Var_Model <- function (h, sigma0 , sigma1 ){
2 if(h==0){
3 m <- M
4 }else{
5 m <- log(h)*A^2
6 }
7 return ( sigma0 *A+ sigma1 *(m-M))
8 }

Code 3.9: An implementation of the model of the variogram in (3.5).

In Code 3.9, the function takes three inputs. The first is the distance h, as in (3.5). The second
and third inputs are the parameter σ2

0 and σ2
1. Note that the parameter sigma0 is actually

the squared parameter σ2
0 in (3.5), and likewise for the parameter sigma1. The if-statement is

implemented since if h = 0 the logarithm log(h) is undefined, which is problematic. To mitigate
this, we implement a temporary variable m, which is set to log(h) for h > 0. For h = 0 we set
this variable to M.
In order to estimate the covariance parameters σ2

0 and σ2
1 from the variogram model above, we

must fit the variogram to the empirical variogram. Therefore we must implement a function
which computes the empirical variogram for a given value of h. Recall from Section 2.6 that we
can compute the empirical variogram for a given value of h as

γ̂(h) = 1
|S(h)|

∑
(i,j)∈S(h)

(Y (Ai)− Y (Aj))2, (3.6)

where Y are observations of the underlying random field of Z. Before we are able to implement a
function which computes the empirical variogram for a given value h, we first compute a matrix
containing the distances ‖xi − yj‖, where xi and yj are representative points for Ai and Aj ,
respective, for all integer values i and j, which both range from 1 to 300 for the bcicov-dataset.
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9 dist <- matrix (NA , 300 ,300); temp <- 1
10 for (i in 1:300) {
11 for(j in 1:i){
12 if(i!=j){
13 dist[i,j] <- Norm(as. numeric ( bcicov [i ,1:2] - bcicov [j ,1:2]) )
14 }
15 }
16 }
17 dist[which(is.na(dist))] <- 0

Code 3.10: Constructing a matrix where entry (i, j) is the distance between Ai and Aj .

In Code 3.11 we implement a function which computes the empirical variogram for a value of h
given as input.

18 variogram <- function (h, y, DistMat ){
19 sum <- 0
20 n <- 0
21 for (i in 1: nrow( bcicov )){
22 ind <- which( DistMat [i ,]==h)
23 l <- length (ind)
24 if(l!=0){
25 for (j in ind){
26 sum <- sum + (y[i] - y[j])^2
27 }
28 n <- n + l
29 }
30 }
31 out <- 1/n*sum
32 return (out)
33 }

Code 3.11: A function which, for a given value of h, computes the empirical variogram γ̂(h).

The function variogram from Code 3.11 takes three inputs. The first is the distance h for which
the empirical variogram is to be computed. The second input, y, is a n×1 vector containing the
data. Lastly, the third input is a n× n matrix, Dist.mat which contains the distances between
the locations of the data in y, and this must therefore be computed beforehand.

The main part of the variogram-function in Code 3.11 is formed by a for-loop. For each value
in the data-vector y, it is checked which values are exactly a distance of h away. The indices of
these values are stored in the variable ind. After this, we check the length of the variable ind, to
see if any observations lie at the distance of h in question. If there are not any values at this dis-
tance, the value in question should not contribute to the sum in (3.6), and we consider the next
value in y. However, if there are values at the distance of h, we compute the squared difference
using these points and count the number of points using the counter n. When the for-loop has
been run through, the counter n attains exactly the value |S(h)|, which we then divide the sum
by, in order to obtain the empirical variogram. Note that if, for a given distance h, no data is
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available the function outputs NaN. Note also, that this implementation was checked against the
Variogram-function from the nlme-package, and the two functions give identical results, which
we show later.

As noted previously, we implement the variogram specifically for the values of the bcicov-
dataset. We therefore know the largest possible distance is hmax = 1051.19. Having computed
the distance matrix dist.mat, we note that many distances are unique.
We can now implement a function which fits the variogram model to the empirical variogram,
by minimizing the Root Mean Square Error (RMSE) between these.

36 VarEst <- function (data , obs. points ){
37 dist <- matrix (NA , 300 ,300); temp <- 1
38 for (i in 1:300) {
39 for(j in 1:i){
40 if(i!=j){
41 dist[i,j] <- Norm(as. numeric (obs. points [i,] - obs. points [j ,]))
42 }
43 }
44 }
45 dist[which(is.na(dist))] <- 0
46 dist. ordered <- sort(as. numeric (dist))
47 distances <- unique (dist. ordered )
48 var <- unlist ( mclapply (distances ,
49 function (x){ variogram (x, data = data , DistMat = dist)}, mc.

cores = 4))
50

51 obj.fun <- function (c){
52 s <- exp(c)
53 sigma0 <- s[1]; sigma1 <- s[2]
54 modvar <<- unlist ( lapply (distances ,
55 function (x){Var_Model(x, sigma0 , sigma1 )}))
56 return (sqrt(mse(modvar , var)))
57 }
58 opt <- optim(obj.fun , par=c(10 ,10))
59 return (list(coef=exp(opt$par), OptVal =opt$value)
60 }

Code 3.12: A function fitting the variogram model in Code 3.9 to the empirical variogram, which is computed
for the values of h in the vector distances.

In Code 3.12, the function VarEst starts by constructing the distance matrix as done in Code
3.10. After doing this, the empirical variogram is computed for a data-vector given as input,
at the distances in the vector distances. After this, we define a function which, for a given
value of the parameters σ2

0 and σ2
1, computes the RMSE between the variogram model and

the empirical variogram. We can minimize this function to obtain estimates of the covariance
parameters which minimize the RMSE between the variogram model and the empirical estimate
of the variogram. Such minimization can be performed in R, using the function optim. Note
that the parameters have been transformed, to ensure that the estimates are positive. Note
furthermore, that the empirical variogram must be computed before using the function. The
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variable var is the empirical variogram computed at the values of h in the matrix distances.
The function outputs the estimate of the parameters and the optimal RMSE value.



Chapter 4

Data Analysis

In this chapter, we analyse the bcicov-dataset introduced in Section 3.1, using the implementa-
tion described in Chapter 3. In this chapter, we display results from the usage of the implemented
functions and state any problem that may occur. Any such problems will be discussed in Chapter
5.

4.1 Maximum likelihood estimation of covariance parameters

In this section, we utilise the implementation of the REML estimation of covariance parameters
presented in Section 3.2.

As mentioned in Section 3.1, the dataset contains 19 columns, each containing 300 measurements.
Considering the first resource of the dataset, namely Aluminium, it is quickly evident that
maximum likelihood estimation for this resource is troublesome. Using optimisation algorithms
to maximise the profile log-likelihood, results in the upper bound of the maximisation interval
being returned as the maximising point, and changing the interval does not mitigate this. This
indicates that the log-likelihood is not bounded. A plot of the profile log-likelihood can be seen
in Figure 4.1.
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Figure 4.1: Plot of the profile log-likelihood of τ for Aluminium in the bcicov-dataset.

The profile log-likelihood levels out to eventually becomes flat. This results in an estimate of
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the parameter which is not unique, i.e. other estimates result in the same profile log-likelihood
value. As a result of this, the optimal parameters cannot be identified for Aluminium.

Considering the other resources in the bcicov-dataset, it is quickly evident that the flatness
of the profile log-likelihood is a reoccurring problem. To investigate this behaviour further, we
simulate data using known covariance parameters to see if the behaviour persists. The simulation
can be performed using Code 4.1.

1 mu <- rep (0 ,299)
2 Cov <- function (sigma , tau){
3 sigma*(A*(eye (299) + 1) + tau*V)
4 }
5 Sigma <- Cov (1 ,1)
6 z <- mvrnorm (1,mu ,Sigma)

Code 4.1: Simulating a single realisation of a zero mean multivariate normal distribution with covariance
parameters σ2

0 = 1 and σ2
1 = 1.

Recall that the generalised random field, Z, has zero mean and covariance structure as in (2.17).
In Code 4.1 we define the covariance matrix as a function of the parameters, and compute the
covariance matrix for the specific parameter choices σ2

0 = 1 and τ = 1. Lastly, we simulate a
single realisation of a multivariate normal distribution using this covariance matrix, and a zero
mean vector. The simulated values are denoted z. Note that z is a vector of contrasts. Using
the implementations of Section 3.2, we can compute and plot the profile log-likelihood, as was
done with the resources in the bcicov-dataset. A plot of the profile log-likelihood can be seen
in Figure 4.2.
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Figure 4.2: A plot of the profile log-likelihood of the parameter τ for simulated data.

We see that the profile log-likelihood is not flat, and it clearly has a maximum point. Using
an optimisation function returns the estimate τ̂ = 1.022, which is close enough to the true
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parameter to be acceptable. Simulating a new realisation and using an optimisation function
again, yields the estimate τ̂ = 0.09, which is far from the true value. Even using the function
for simulated data, seems to yield estimates that vary a lot. In order to asses, the function
we simulate multiple realisations and compute the mean of the estimate for each realisation.
Suppose we do this 100 times. The mean estimate is then τ̂mean = 14.73, which is not close.
Computing the variance of the estimated parameters, we see that this is 1073.88, which is very
high. Setting the true parameter value to τ = 10, and simulating 1000 realisations, yield the
mean of the estimates to be τ̂mean = 19.08, and the variance of the estimate is 998.22.
It seems then that the implemented functions are not accurate for simulated data, and when
used on the bcicov-dataset, the profile log-likelihood quickly becomes flat. Later we attempt
to explain this behaviour.
Using an alternate parametrisation of the GCF, as discussed in Section 2.4 and implemented in
Section 3.2, results in log-likelihood functions that briefly increase and quickly become flat, and
this parametrisation is therefore not useful.
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4.2 Variogram Estimation of Covariance Parameters

In Section 3.3 we implement a function which, given a data-vector as input, estimates the co-
variance parameters σ2

0 and σ2
1 by fitting a variogram model to the empirical variogram. The

function is implemented to only utilise the values in the bcicov-dataset. We can now use the
function VarEst from Code 3.12 to estimate the value of the covariance parameters for the var-
ious resources in the bcicov-dataset.

The estimates for the covariance parameters can be seen in Figure 4.1.

Resource σ̂2
0 σ̂2

1 RMSE
Al 266681820.90 298801.55 316903.81
B 223.11 419718.88 2.26
Ca 2516058996.63 45042.86 2734135.78
Cu 14034.77 2364830.78 22.59
Fe 12320096.80 179379.58 14409.63
K 26573856.90 150266.40 27933.27
Mg 98382181.49 357212.35 140446.85
Mn 79652420.83 86217.11 75456.42
Na 13562659.74 94488.13 12197.71
P 14029.85 1.26 16.43
S 141636.66 48189.38 367.20
Zn 0.18 25044968.54 85.38
NH4 238769.46 26785984.69 353.36
NO3 23623.47 25364428.34 91.45
total.N 156322.88 63431266.83 358.23
min.NH4 1.88 265830679.29 711.54
min.NO3 817640.48 38657.08 1087.40
min.N 0.18 580038003.75 1898.16
pH 109.67 119478.19 0.42

Table 4.1: Estimates of covariance parameters, all found using an optimization algorithm with the same initial
parameters.

Many of the estimates seem very large. We can asses the validity of estimates visually by
comparing the variogram model and the empirical variogram. Consider the second row of Table
4.1, namely the estimates for Boron. In Code 4.2 we compute the empirical variogram and the
variogram model using the VarEst-function from Section 3.3.

1 B <- VarEst ( bcicov $B, bcicov [ ,1:2])
2 dist. ordered <- sort(round(as. numeric (dist.mat) ,0))
3 distances <- unique (dist. ordered )
4 mod.plot <- sapply (distances , function (i){Var_Model(i, B$coef [1], B$coef

[2]) })

Code 4.2: Computation of the variogram model and empirical variogram using the VarEst-function.
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A plot of these can be seen in Figure 4.3.
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Figure 4.3: Plot of the empirical variogram (circles), and the variogram model (red line) for estimated
parameters for Boron.

Note that for clarity purposes, we round the h-values, such that the plots become less cluttered.
It can be seen in Figure 4.3, that the variogram model fits the empirical variogram quite well.
However, the values of the empirical variogram vary a lot. Notice that some of the large values
of the empirical variogram appear to be outliers, as a majority of the values are smaller. Note
that the estimated parameters for Boron result in a rather small RMSE of 2.26, which may be
due to that the values of the empirical variogram vary a lot. This may also be due to the scale
of the data, as this is small for Boron. Consider now the variogram for Aluminium, which can
be seen in Figure 4.4.
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Figure 4.4: Plot of the empirical variogram (circles), and the variogram model (red line) for estimated
parameters for Aluminium.

The fitted variogram model for Aluminium arguably fits as well to the empirical variogram, as
was the case with Boron. However, note the large outliers. Note also, that the minimised RMSE
is 316903.81.
As the variogram-function was implemented in Section 3.3, we check the function to make sure
it is error free. We do this by computing the empirical variogram for Aluminium, using both the
variogram-function, and the "native" variogram function, from the nlme-package. The plots of
both can be seen in Figure 4.5 and Figure 4.6.
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Figure 4.5: Plot of the empirical variogram,
computed using the

variogram-function implemented in
Section 3.3.
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Figure 4.6: Plot of the empirical variogram,
computed using the

variogram-function from the
nlme-package.
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As was done with REML estimation, we check the accuracy of the implementation of variogram
estimation using simulated data. Setting the true parameters to σ2

0 = 1 and σ2
1 = 1, we can

obtain multiple estimates and compute the mean of these using Code 4.3.

1 sim.est <- matrix (0, ncol =2, nrow =20)
2 for (i in 1:20) {
3 z <- c(1, mvrnorm (1,mu ,Sigma) + 1)
4 Z.vario <- VarEst (z, obs. points = bcicov [ ,1:2])
5 sim.est[i,] <- Z.vario$coef
6 print(i)
7 }
8 mean(sim.est [ ,1]); mean(sim.est [ ,2])

Code 4.3: Obtaining multiple estimates using simulated data, and computing the mean of these, to asses
accuracy of implemented estimation method.

We obtain the mean estimates σ̂2
0 = 0.0057 and σ̂2

1 = 375.04. We see that the estimate for σ2
0 is

not at all close to the true value. The same is true for σ̂2
1. Suppose now, that we set the true

values of the covariance parameters to σ2
0 = 10000 and σ2

1 = 10000. Simulating again, we get
that the mean estimates are σ̂2

0 = 9675.81 and σ̂2
1 = 255145.2. The estimate for σ2

0 is close to
the true value. Computing the empirical standard error of the estimates yields 1996, meaning
that the variogram-function is relatively accurate in estimating the parameter σ2

0 when the true
value of this parameter is high. As for the parameter σ2

1, much is left to be desired.





Chapter 5

Discussion and Conclusions

In Chapter 3 we present two implementations of methods, which estimate covariance parameters
of the De Wijs plus white noise process, as presented in Section 2.4. Specifically, in Section 3.2
we present an implementation of Restricted Maximum Likelihood estimation(REML), and in
Section 3.3 we present variogram estimation.

In the practical application of the implementation of REML estimation, a problem occurs. The
profile log-likelihood increases quickly as τ increases, but quickly hereafter it becomes flat. This
behaviour is evident for all resources in the bcicov-dataset, but the initial increase varies. This
may be due to a few reasons. In Clifford and McCullagh [2006], the De Wijs plus white noise
model is used to analyse crop yield data. The geometric layout of the data used in the article
is different from the geometric layout of the bcicov-dataset. In the article, the areas associated
with data measurements are large and relatively closely grouped. In the bcicov-dataset, this
is not the case. The soil data measurements are associated with small sets that are very far
apart. It is possible to check whether this contributes to the problem with the REML estimation.
To do this, we exclude the data points that do not lie on the grid and pretend that the sets
associated with each measurement are a 50 × 50 square. The areas are now larger, and the
distances between areas are zero. We can use a method presented by Clifford [2005] to compute
the matrix V in the covariance in (2.17). Doing this, we have a profile log-likelihood as in Figure
5.1.
We can see in Figure 5.1 that this does not mitigate the flatness of the profile log-likelihood.
Instead, this seems to have made the problem worse, as the profile log-likelihood increases more
quickly than was the case before.
Another cause of trouble is the covariance matrix itself. In Section 2.4, we show that the De Wijs
plus white noise process results in a positive definite (and thus invertible) covariance matrix.
This is of course also the case in practice, but the determinant of the covariance matrix is so
small that, for small values of τ , it is indistinguishable from zero. This could make the inversion
of the covariance inaccurate, which would affect the profile log-likelihood.
The covariance matrix consists of the scaled addition of two matrices. The first of which is a
matrix of ones, with two on the diagonal, i.e. the diagonal is equal to two times the other elements
of the matrix. The second matrix is the matrix V , which consist of differences of approximations
of integrals. Looking at the elements of this matrix, it is evident, that the diagonal elements are
approximately equal to the other elements times two. The two matrices are thus approximately
equal up to scale with a constant. This can mean that the parameters σ2

0 and σ2
1, are not
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Figure 5.1: A plot of the profile log-likelihood when expanding the index sets of the underlying random field.

separable and that it is possible that only their sum can be estimated. Furthermore, the matrix
V consists of values which are approximated using Monte Carlo methods. The code in Code
3.1, makes it possible to compute the empirical variance of the estimates. These are in the order
of 10−23, which when compared to the estimates themselves (order of 10−9), indicates that the
estimates are relatively accurate.
In regards to the contrasts, we have seen that there many different options. In this project, we
have focused on one specific contrast, namely subtracting the first value of the dataset, from the
remaining values. This was a choice which was made earlier in the writing process, and it was
an arbitrary one at that. Both REML estimation and variogram estimation was derived for this
specific contrast. It is doubtful that when looking at the measurements of soil contents, one is
only interested in the difference between a measurement and the first measurement. Therefore,
the choice to implement the estimation theory for only this contrasts is not optimal. Some other
contrasts where attempted used in the implementation, but even though these should result in
a positive definite covariance, computationally some were singular. Because of this, the choice
was made to continue to focus on a single contrast.
Since the REML estimation of the covariance parameters did not prove feasible, variogram es-
timation was introduced to estimate the parameters. This approach was then implemented in
R, with some parts of the implemented function only working for the dataset introduced in
Section 3.1. During the usage of this function, some problems arose. One would expect that the
variance of the difference between two variables would increase as the distance increases. This
is not always the case, as shown by Figure 4.4, where the variance seems to remain constant,
despite a few outliers. It would seem that this is a property of this particular resource in the
bcicov-dataset. Another thing to note in regards to the estimation of the covariance parameters
is that the values of the empirical variogram are quite spread. It is therefore difficult to asses
that goodness-of-fit of the model to the empirical variogram. To do this, we use RMSE, but
other measures can also be used. In order to check whether the unexpected behaviour of the em-
pirical variogram is a result of an error in the implementation, we compare the self-implemented
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function with a native R-function. The two functions return identical values, and we conclude
that the variogram-function from Section 3.3 performs as desired. In the context of fitting
a variogram model to the empirical variogram, we use numerical optimisation through the R
function optim. Such methods are often inaccurate, and, depending on the form of the objective
function, can return different results for different starting values.

Due to time constraints, some aspects of this thesis are merely briefly introduced or outlined.
If one had more time, a more comprehensive simulation study could be undertaken, instead of
the brief usage in this thesis in order to asses the correctness of the implemented functions.
Likewise, as it seems that the data analysed using the implemented functions is not necessarily
suited to this kind of analysis, other datasets could be analysed. Another point of interest is the
apparent Markov property of the De Wijs process, discussed in Mondal [2015], which was not
at all mentioned in this thesis. Lastly, some kind of spatial interpolation (i.e. kriging) using the
De Wijs plus white noise process, could be considered.

In conclusion, in Chapter 1, we introduce the notion of generalised function as the foundation on
which to introduce generalised stochastic processes. In Chapter 2, we introduce the generalised
stochastic process, which allows for more general index set, than the conventional notion of a
stochastic process. A special case of the generalised stochastic processes are the generalised
random fields, one case of which is of particular interest in this report, namely the De Wijs plus
white noise process. For this process (and a modification hereof), we introduced REML esti-
mation of covariance parameters and implemented this approach in the statistical programming
language R. Some problems arose while using the implementation. It seems that the data in
question is not suited for this process, as simulated data using a known covariance structure re-
sulted in REML estimates, and the example data resulted in flat profile log-likelihood. Using the
variogram estimation method from Section 2.6, similar yields unexpected results and behaviour
of the empirical variogram for some resources, which may support this conclusion. Additionally,
inaccuracy in the estimation of the covariance parameters using variogram may be due to the
numerical methods used for fitting a variogram model to the empirical variogram.
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