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1 INTRODUCT ION

An emerging communication paradigm is to provide low-power and low-complexity
devices with wireless Internet connectivity which is commonly referred to as Internet of
Things (IoT). A challenging task in IoT development is to transform the existing human-
centered communication structure into an object-centered communication system. This
challenge involves redesigning many aspects of the protocol such as data representation
and even changing the physical layer.
It is common to divide the communication system into three distinct services: a

basic stable connection, low-power massive connectivity and reliable communication. In
the 5G standard these are classified as Enhanced Mobile BroadBand (eMBB), massive
Machine-Type Communication (mMTC) and Ultra Reliable Low Latency Communication
(URLLC) [1]. In the traditional view of IoT communication, devices are expected to
generate data packets in the order of bits that are transmitted sporadically which is
consistent with the mMTC scenario and this project focuses only on low-power massive
connectivity. In order to save power, most devices will not be constantly connected
and are therefore required to establish a new connection for every data transmission
[2]. Further, the low-complexity of devices means that short-range multi-hop type
communication systems may not a suitable. For this reason, a cellular communication
structure is expected to play a significant role in IoT connectivity [3]. The performance
of the entire IoT system relies on which technology is used and most prominent cellular
IoT technologies using unlicensed frequency bands are Sigfox and LoRa. Unlicensed
spectrum communication suffers from cross-technology interference and very limited
available bandwidth. Narrowband IoT (NB-IoT) is standard proposed to operate
in the licensed Long-Term Evolution (LTE) spectrum by the 3GPP meaning it is
backed by already-established infrastructure owners and is expected to impact the IoT
connectivity landscape [2, 4]. The potentially massive number of devices attempting to
gain communication access through the Base Station (BS) simultaneously may become
a system bottleneck [2]. Much attention must therefore be paid to reduce signaling
overhead and improve efficiency of detection algorithms in the random access phase.
Random access is used to request uplink allocation from the base station and the random
access procedure has a high impact on device battery life and number of devices that
can be supported concurrently [5].
A typical random access procedure is initiated by a user that has a packet to transmit,

which transmits a random access preamble. The random access preamble is designed
such that the base station is able to efficiently detect the transmitting user and estimate
any timing offset between the user and base-station from the received signal. The timing
offset comprises of propagation time, downlink synchronization errors and channel delay
spread [6].

1.1 PROJECT SCOPE

NB-IoT is a recent standard proposed by the 3rd Generation Partnership Project (3GPP)
to accommodate the emerging number of wireless devices connected to the Internet and
is chosen as the example application in this project. NB-IoT is designed to co-exist with
LTE and provide low-cost and low-power devices with low throughput connectivity.
In NB-IoT random access there are only a relatively small number of different (i.e.,
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2 1. Introduction

orthogonal) random access preambles for users to choose from. Users attempting to
gain channel access at the same time choose preambles in an uncoordinated manner.
It is likely that two or more users choose the same preamble, given a possibly large
number of users and relatively small number of orthogonal preambles. Transmitting
using the same preamble results in colliding packets which results in either discarding
both transmissions or only discarding one. The resulting collision may lead to a user
back-off time of up to almost 9 minutes [7, 8]. The main purpose of the random access
preamble is to make the base station able to detect each transmitting user and estimate
the synchronization parameters, Time of Arrival (ToA) and Carrier Frequency Offset
(CFO), of each user [6, 9].

In order to avoid unnecessary backoff periods and consequently improve channel
utilization and overall capacity of the NB-IoT system, this project seeks to find a method
for multi-user detection and synchronization parameter estimation in the case of packet
collision. The non-coherent addition of colliding signals means that the received signal
is simply a superposition of the individual transmissions and still contain information
from each user. Multi-user detection is a method used to increase capacity by detecting
interference and exploiting it to mitigate its effect on the desired signal [10]. Optimal
multi-user detection methods use the Viterbi algorithm which has a high complexity
which increases exponentially with the number of users. Further, most methods require
exact channel information at the receiver [11]. The optimal multi-user detector is not
used in practice but instead approximation such as Successive Interference Cancellation
(SIC) and turbo receivers are used instead [10]. Methods exist for multi-user detection
but traditional methods have several drawbacks for the scope of this project:

� Optimal decoding has exponentially increasing complexity with the number of
users

� The receiver require channel information of each user
� Multi-user detection methods in literature are not developed for synchronization
and channel estimation

� The receiver requires knowledge of the number of interfering signals

Deep Learning (DL)-based methods are well-suited for tackling algorithm deficit
problems [12] and can utilize non-linear relationships present in the signal to extract
the desired information. DL shows good results for source separation in speech pro-
cessing and is well suited for classification problems such as classifying the number of
interfering signals. DL algorithms are straightforward to develop and are typically not
computationally complex.
In summary this project proposes a DL-based method for separating colliding users,

detecting their number and estimating their respective ToAs and CFOs. The pro-
posed method is validated using simulations which demonstrate significantly improved
performance compared to the conventional approaches.

1.1.1 related work
Several papers have explored methods for activity detection, ToA and CFO estimation
using the NB-IoT Narrowband Physical Random Access CHannel (NPRACH) preamble
structure. As such, [6] estimates the ToA by searching for highest correlation between
the received signal and delayed/frequency-shifted preamble on a grid of possible delays
and frequencies. To reduce the complexity of the algorithm in [6], the ToA and CFO
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are estimated using the residual phase difference between symbol groups and channel
hops in a two-stage procedure in [9]. With the goal to improve the ToA estimation, [13]
suggests a novel hopping pattern that renders more accurate ToA estimation compared
to that achieved with the already defined NB-IoT preamble.

1.2 MACHINE LEARNING IN WIRELESS PHYSICAL LAYER

The application of machine learning has shown promise in the physical layer where
optimal algorithms, e.g., in multi-user networks, tend to be computationally complex.
Neural networks have been previously employed to perform detection and successive
interference cancellation in multi-user CDMA systems [12]. For an overview of deep
learning applied to the wireless physical layer see Appendix B.





2 NARROWBAND IOT

NB-IoT is one of the most prominent cellular techologies to accommodate the emerging
number of wireless devices connected to the internet.
The system bandwidth for NB-IoT is only 180 kHz for both downlink and uplink.

The uplink supports both single tone transmission and multi-tone transmission. Multi-
tone transmission uses SC-FDMA with a sub-carrier spacing of 15 kHz and single-tone
transmission uses a subcarrier spacing of either 15 kHz or 3.75 kHz [6]. The following
description and implementations are limited to the case of single-tone transmission with
a 3.75 kHz subcarrier spacing yielding a total of 48 subcarriers and this project will focus
only on uplink.
NB-IoT specifies three physical layer channels: Narrowband Physical Uplink Shared

CHannel (NPUSCH), Narrowband Physical Downlink Shared CHannel (NPDSCH) and
NPRACH. Particularly interesting for low-complexity IoT devices is NPRACH which
is used to request uplink allocation from the base station.Establishing a connection
using random access is a four step procedure: First the user initiates a connection by
transmitting a random access preamble, the base station transmits a response with
allocated radio resources, the user transmits its identity and finally the base station
transmits a contention resolution to resolve potential colliding users using the same
preamble [13, 14].

2.1 PREAMBLE DESIGN

The inital premable sent by a user should provide enough information to the base station
such that the start of a frame can be precisely determined (ToA estimation) and any
CFO can be accounted for to improve symbol demodulation. The ToA estimation is sent
by the base station to the user to achieve uplink synchronization in the OFDMA system
[6].
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Figure 2.1: Overview of NPRACH preamble and packet structure
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6 2. Narrowband IoT

The preamble format and packet structure is illustrated in Figure 2.1. The preamble
is divided into symbol groups, where each group consists of a Cyclic Prefix (CP) and ε
identical symbols. The value of ε depends on preamble format. The preamble format
is chosen by the user measuring the downlink power to estimate its coverage area [14].
The most common preamble is preamble format 1 with preamble frame structure 0 or 1
which has ε = 5 and a symbol time TSYM = 266.7 µs. The CP period for frame format 0
is TCP = 66.7 µs and TCP = 266.7 µs for frame format 1 [15]. The CP is designed such
that it is long enough to cover the maximum round trip delay to suppress inter-symbol
interference. Therefore one interpretation of allowing adaptive CP selection is for the
user to use the short CP in the range 0-8 km and the long CP in the range 8-35 km [6].
The full preamble consists of 4 repetitions of the symbol group which is again repeated

n = 2J , J = 0, . . . , 7 times for a full preamble length of L = 4× 2J symbol groups. The
repetition of symbol groups occurs within an uplink slot, and the number of repetitions
is decided by the upper Medium Access Control (MAC)-layer depending on estimated
link quality [15]. For simplicity this projects lets J = 2 for all transmissions i.e., four
symbol groups are repeated 4 times.
The user chooses a contiguous set of K = 12, 24, 36 or 48 subcarriers with 3.75 kHz

spacing out of the available 48 subcarriers. This project focuses on preamble frame
structure type 1 where K = 12.
At the start of the NPRACH preamble transmission, the subcarrier of the first symbol

group is chosen at random. After each symbol group the subcarrier will change using a
deterministic channel hopping sequence so in the duration of a preamble there will be
L subcarrier hops. Since the hopping pattern is deterministic, several users choosing
the same initial subcarrier will thus collide for the entirety of the NPRACH preamble
sequence. The number of orthogonal preamble sequences is therefore the number of
allocated NPRACH subcarriers, K [7].
The channel hopping scheme for frame structure type 1 and preamble format 0 is

defined as follows: [15]

where ñRA
sc (i) is the frequency location of the ith symbol group. In the following the

symbol group index will be denoted m and the function which maps symbol groups to
a frequency channel is denoted Ω(m). The function c(n) is a pseudo random sequence
generator that is initialised with the base station ID. This means that the hopping
pattern is deterministic within a cell, but the subcarrier of every 4th symbol group
appears random to neighbouring cells. The above specification means there are two
“levels” of hopping as also illustrated in Figures 2.1 and 2.2. The hopping distance is
1 between symbol groups at m = 0 and m = 1, and between m = 2 and m = 3. The
hopping distance is always 6 between m = 1 and m = 2.
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Figure 2.2: Illustration of active channels and users in the scenario where 4 users all choose different initial subcarriers.
Color indicates user number where no color indicates an inactive channel slot. Horizontal axis is symbol index n
where 5 consecutive symbols correspond to a symbol group. The vertical axis is subcarrier index k.

The channel hopping procedure aids in the estimation of ToA and also reduces inter-
and intra-cell interference [6]. The ToA should be estimated by the base station for
successful uplink signal decoding and it further enables device positioning. Error in the
ToA estimation results in the user not being able to receive the response sent by the base
station. ToA estimation therefore has a great impact on performance in NB-IoT [13].

2.2 BASEBAND MODEL OF NARROWBAND PHYSICAL RANDOM ACCESS CHAN-
NEL

At the receiver the phase of each symbol depends on ToA, denoted τ , the CFO, denoted
∆f and the frequency of the user’s chosen channel with respect to the receiver’s uplink
carrier which is Ω(m). The time-domain signal at the receiver can be expressed as:

s(t) = e−j2πf̂(t)(t−τ(t)) (2.1)

Where: f̂(t) = Ω(m) + ∆f(t) is received frequency with CFO [Hz]
τ(t) is time-varying ToA representing a non-stationary transmission [s]

In the baseband formulation each symbol is represented as a single complex number
and therefore Equation 2.1 is discretized. The total number of symbols in the preamble
(Counting the CP as a symbol) is: Nsym = 4(1 + ε) · 2J = 24 · 4 = 96. For the sake of
simplicity the CFO and ToA are assumed to be constant for each user. The typical FFT
length in LTE is 512 [9], but for simplicity this model lets each sample, n, corresponds
to a symbol. In this model, the contents of the CP are interpreted as a symbol and
therefore no distinction is made between the CP and the ε = 5 repeated symbols in a
symbol group.
The nth time-domain sample represents the nth symbol and the signal from the kth

user is given by:

sk[n] = hk e−2π(fn+∆fk)(nTsym−τk) (2.2)
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Where: h is the complex channel coefficient which is assumed to constant
throughout a transmission

[·]

fn is the subcarrier frequency which is a function of the symbol
group number m: f = Ω(m)

[Hz]

∆f is CFO which is asumed to be constant throughout a transmis-
sion

[Hz]

Tsym is symbol time [s]
τ is a constant ToA representing a stationary user [s]

The received signal at the base station is a superposition of signals from multiple users,
given by

y[n] =
K−1∑
k=0

aksk[n] + w[n], (2.3)

where K is the maximum number of concurrent users, ak ∈ {0, 1} indicates whether the
kth user is active or not, and w[n] ∼ CN (0, 1/ρn) denotes the additive noise with a per
symbol Signal-to-Noise Ratio (SNR) of ρn.

2.2.1 time of arrival
It is chosen to only model the signal for the long CP which corresponds to to distances
between the user and base station within a minimum of r = 8 km and a maximum of
R = 35 km [6]. The users are assumed to be uniformly distributed in the coverage area
of the base station as illustrated in Figure 2.3.

r

R

d

Figure 2.3: Geometry of users distribution.

The distance from the base station to the users d has the following Probability Density
Function (PDF) [16]:

fD(d) = 2d
R2 − r2 , r ≤ d ≤ R, (2.4)

which is used to model the ToA τ = d
c , where c is the propagation speed.

The mean and the variance of the distance can then be found as:

E[D] =
∫ R

r
d · fD(d)dd = 2(r2 + r ·R+R2)

3(r +R) ≈ 24.326 km (2.5)

Var(D) =
∫ R

r
d2 · fD(d) dd− E[D]2 = (r −R)2(r2 + 4r ·R+R2)

18(r +R)2 ≈ 52.767 km2 (2.6)
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According to Equation 2.5 the mean value of τ becomes

E[τ ] = 24.326 km
3× 108 m/s

= 81.1 µs (2.7)

The variance of the ToA is:

Var(τ) = Var(D) ·
(

1
c

)2

= 0.59 ns2 (2.8)

The distribution of the ToA represents a realistic cellular system but is only valid
for stationary transmitters. A more complete model will include the dynamics of ToA
originating from channel sampling time offset and delay spread [6] as well.

2.2.2 carrier frequency offset
The CFO in 2.2 is chosen uniformly at random between −20 and +20 Hz and does not
account for frequency drift [9]. The mean and variance of ∆f are easily derived. The
means and the variances of τ and ∆f are used for feature scaling of the variables for the
neural network as described in section 3.5.1.
The CFO should be estimated already in the downlink cell search procedure and this

model should reflect the residual CFO that is due to imperfect estimation or oscillator
drift. Again this model does not include the dynamic aspect of frequency drift and
motion (Doppler) but rather considers it as a constant offset.

2.2.3 channel gain
The channel coefficient h of the signal model in 2.2 is a complex-valued constant which
accounts for small scale fading: h ∼ CN (0, 1). This means that the average received
signal power is normalized to one. The narrowband channel is modeled as a slowly
varying single-tap Rayleigh fading channel and for this reason, modeled as a single
coefficient [9]. Large scale fading is not included in the model since users already have
knowledge of the downlink SNR and adjust their transmit power accordingly using power
control.

2.2.4 number of active users
The activity indicator ak is modeled as Bernoulli random variable with the probability
of transmitting p and a1, . . . , aK are iid. The number of concurrent active users is

Na =
K∑

k=1
ak ∼ B(K, p), (2.9)

where B is the binomial distribution. The case with K = 4 and p = 0.5 is considered
throughout this project. The probability of exactly k users colliding is then:

Pr(k) =
(
K

k

)
pk(1− p)K−k = 4!

k!(4− k)!p
k(1− p)4−k. (2.10)
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2.3 CONNECTION ESTABLISHMENT IN NB-IOT

When a user is activated it has to select a base station to access the network through
and is considered to be in idle mode. In idle mode the user acquires time and frequency
synchronization using Narrow Band Primary Synchronization Signal (NPSS) which is
a known sequence transmitted in every 6th out of 10 radio subframes. The user can
achieve slot-time synchronization and estimate CFO using correlation between the known
sequence and received signal [17]. Joint time and frequency estimation is costly for low
complexity IoT devices and is therefore often implemented as a two step procedure:
First the timing offset is estimated from the first received NPSS in the presence of CFO,
second the CFO is estimated from subsequent received NPSSs using the estimated timing
offset [17].

Ti
m

e

User BS

NPSS

NSSS

NPBCH

NPRACH (Msg1)

NPDSCH (Msg2)

NPUSCH (Msg3)

NPDSCH (Msg4)

NPUSCH HARQ Ack

NPUSCH (Msg5)

Figure 2.4: Random access procedure of NB-IoT [17]. This work focuses on NPRACH (Msg1).

Before a user can send the NPRACH it needs to be aware of the system configuration
acquired from the base station through the Narrowband Physical Broadcast CHannel
(NPBCH). The time-domain allocation of the NPRACH (Msg1) transmission is defined
by the number of repetitions, n, chosen by the user, and a specific period starting time.
The frequency allocation of the NPRACH transmission is the subset of 12 subcarriers
chosen by the user [17].
The random access procedure in NB-IoT is a 5 message procedure as illustrated in

Figure 2.4. The first message is the NPRACH (Described in section 2.1).
When the base station successfully detects an NPRACH it will respond on NPDSCH

with Msg2 (Random Access Response). The RA Response window starts on the subframe
containing the end of the preamble repetition plus 4 subframes (for preamble format 0 or 1
and n < 64 repetitions) [15]. The response contains a Random Access Preamble identifier,
a Timing Advance (TA) parameter, and allocated radio resource for transmitting Msg3.
The Random Access Preamble identifier is a number calculated from the subframe index
and initial carrier frequency (Ω(0)) of the received NPRACH [8]. The TA is used to
time-align users’ signals at the base station to account for propagation delay. The TA is
an integer number between 0 and 1282 where each integer step corresponds to a time
correction of 16Ts [18]. Ts is a basic unit of time in LTE and is defined as Ts = 32.55 ns,
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resulting in timing corrections in increments of 0.52µs.
Msg3 is the Connection Resume Request in which a user will transmit using the

allocated radio resource in the NPUSCH. Msg3 contains the user identity, a scheduling
request and the user’s power and buffer status [17].
It can happen that two users transmit using the same NPRACH in Msg1 and will

therefore receive the same allocation for Msg3 without the user or base station being
aware that a packet collision occurred.
To resolve potential contentions, the user starts a “Contention Resolution Timer” in

which it expects a Msg4 response for the user identity. The user transmits incremental
parity bits using Hybrid Automatic Repeat Request (HARQ) until the timer reaches
zero or it receives the expected response [7].
In Msg4, the base station has resolved potential contentions and transmits a connection

setup with allocated radio resources or a connection resume message. Both Msg4 and
Msg3 are transmitted using HARQ [7].
In Msg5, the user responds with a connection setup complete or resume complete

message. The resume procedure is used to reduce the number of message exchanges
between user and base station by resuming configurations from a previously established
connection [17].

2.4 TRADITIONAL SYNCHRONIZATION PARAMETER ESTIMATION

From the received NPRACH (MSG1) the BS must detect active users and perform
synchronization parameter estimation.
The Phase-Difference (PD)-based method proposed in [9] utilizes the relationship

between the phase trace of the received signal and the ToA and CFO. Phase differences
between symbols in the received signal are averaged to estimate CFO. The ToA is found
by subtracting the phase contribution due to the estimated CFO from the phase of the
received signal and averaging the phase difference between symbol groups on different
frequencies.
As a benchmark for the detection of the number of users, an amplitude-based estimator

is considered. The mean amplitude of the received signal for different number of colliding
users is compared to the amplitude of the received signal. The closest match then yields
an estimate of the number of colliding users present in the received signal.

2.4.1 estimating the number of active users

The number of active users Na in the received signal can be estimated by comparing the
amplitude of y from Equation 2.3 to the expected amplitude with varying number of
users. The amplitude of the received signal is a sum of Na complex random variables:

ANa =

∣∣∣∣∣∣
Na∑
k=1

hk

∣∣∣∣∣∣ (2.11)

and will therefore vary a lot.
The mean amplitude of the received signal is E

[
|y|
]
and the mean amplitude of a

signal with Na users is E
[
ANa

]
. The estimated number of active users is the closest
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matching value of Na

N̂a = arg min
Na

(∣∣∣∣E[ANa

]
− E

[
|y|
]∣∣∣∣
)
. (2.12)

This is only used as a benchmark for detecting the number of users Na.

2.4.2 estimating carrier frequency offset
The synchronization parameters ∆f and τ can be determined by realizing that the phase
of the received signal is proportional to both CFO and ToA. The method presented in
[9] is a two-step procedure where first the CFO-induced phase is estimated and then
subtracted from the phase of the received signal to estimate the ToA-induced phase.
The phase-trace of a noise-free received signal for user k can be expressed [9]:

βk[n] = −2πτkfn − 2π∆fknTsym + C (2.13)

where C is a random constant phase offset. In practice the phase-trace of the received
signal is not straightforward to obtain due to 2π-ambiguity but the unwrap-function and
complex argument function of the received signal provides a good approximation [9]:

βk[n] = unwrap
(
arg(sk[n])

)
. (2.14)

Phase differences between symbols with the same subcarrier frequency fn can be used
to estimate the phase contribution of the CFO. Symbols groups contain five consecutive
identical symbols which phase-differences should be averaged to reduce noise variance.
Again then the average of all these estimates are used is used to estimate the CFO-induced
phase:

βk,∆f = 1
N

1
4

N−1∑
n=0

4∑
i=1

βk[5n+ i+ 1]− βk[5n+ i]. (2.15)

The CFO estimate of the kth user is then simply

∆̂fk = 1
2πβk,∆f . (2.16)

This estimate is only valid if the phase-trace of the received signal only contains the
contribution from a single user.

2.4.3 estimating time of arrival
The estimated CFO-induced phase is subtracted from the phase-trace of the received
signal:

βk[n] = βk[n]− 2π∆̂fknTsym. (2.17)

Differences when varying the frequency fn of this phase-trace are averaged to filter out
noise and are used to estimate ToA. The phase difference of the same symbol between
channel hopping is proportional to the channel hopping distance and the ToA can be
estimated more accurately using more channel hops.
This two-stage synchronization parameter estimation is computationally efficient and,

the approach decouples detection and estimation [9].
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Another approach which jointly detects users and estimation is presented in [6]. This
method computes the correlation with the received signal and preambles with different
time and frequency corrections to find the point of highest correlation. This 2-D grid
search approach finds the ToA and CFO simultaneously but not very computationally
efficient and does not specify a detection threshold.





3 DEEP LEARN ING EST IMATOR

3.1 DEEP LEARNING BASICS

This section briefly explains the basics of deep learning as used in the estimator described
in the following sections.

3.1.1 convolutional neural networks
Convolutional Neural Networkss (CNNs) are a specialized type of neural networks which
employs one or more convolution operations. The convolution is defined as:

s[n] =
∞∑

a=−∞
x[a]w[n− a] (3.1)

where the discrete input signal is x and w is called the kernel. A CNN typically has
multiple cascaded convolutions with different kernels and the training procedure attempts
to find the kernels which minimize the loss function.
CNNs have equivariance to translation meaning that the convolution operation will

produce an output shifted in time by the same amount as the input is shifted in time.
For this reason, a CNN can only learn to extract features which are a function of local
interactions and are equivariant to translation. A typical layer in a CNN consists of
three operations: Convolution over the input signal, a non-linear activation function
(typically the Rectified Linear Unit (ReLU) function) and a pooling operation. The
pooling operation replaces the output with a lower-dimensional statistical summary
of the response over a small range such as the average within a neighborhood. This
makes the output representation approximately invariant to small time-shifts. The most
popular pooling-operation is the max-pooling [19]. CNNs are used extensively in image
processing and speech recognition where they are useful for 1-D or 2-D data where local
features affect a particular output. CNNs structures alleviates computation complexity
and storage requirements compared to a feed-forward neural network [20].

3.1.2 loss function
The goal of training a network is minimizing the average loss over training pairs. Each
training pair consists of an input x and a target t: (xn, tn) and all training pairs are
assumed i.i.d. The neural network should be an estimator which uses the input to predict
the target, t̂(x). The general loss function is written `(t, t̂(x)) and a typical example is
squared error `(t, t̂(x)) = (t− t̂(x))2 or cross-entropy for categorical models [12].

3.1.3 learning
When using machine learning to minimize ` this is not solved analytically but instead
addressed by Stochastic Gradient Descent (SGD). The model is defined as a set of
probability distributions parameterized by a vector θ: p(t|x, θ). The learning task can
be defined to obtain a parameter vector θ which can accurately describe this probability
distribution.
Using a maximum likelihood formulation this can be written as maximizing the

log-likelihood [12]:
max ln p(D|θ) (3.2)

15
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where D is the set of training pairs.
Each iteration of the SGD uses a set of training pairs called batches to update θ. The

parameter vector θ is updated in the direction of the gradient of the loss function [12]:

θnew ← θold + γ∆θ ln p(tx|xn, θ)|θ=θold (3.3)

where γ is the learning rate and ∆θ is the nabla operator used to denote the gradient
of ln p(tx|xn, θ) with respect to θ averaged over the training batch. For a multilayered
network the computation of the gradient becomes the backpropagation algorithm [12].
Increasing the number of SGD iterations decreases the loss and iterations are repeated
until sufficient performance is achieved or the loss-function has converged.

3.1.4 hyper-parameters

The learning rate γ is an example of a hyper-parameter which typically must be defined
prior to training the network. Other hyper-parameters include the number of layers to
include in the model, the type of layers, the number of weights in each layer and many
more. Hyper-parameters must be fine-tuned in order to obtain the desired performance
which is a time-consuming task. The hyper-parameters define the architecture and
capacity of the network as well as how the network is trained. A network with too little
capacity will not generalize well and too much capacity increases the risk of over-fitting.
To avoid over-fitting regularization is typically applied which adds a penalty to the loss
function which prevents a priori unlikely values of θ e.g. large weights. To test whether
the model is overfitting to the training data the performance is often tested using a
separate validation set.
In this project the data is generated by a simulation corresponding to an infinitely

large set of available training data D. For each iteration of the SGD process a new
batch is generated by the simulation which means that no training data is used more
than once. This reduces overfitting and eliminates the need for separate training and
validation datasets.

3.2 ESTIMATION PROCEDURE

The goal of the estimator is to use the discrete signal y[n] to estimate the activity
indicator a, ToA τ , CFO ∆f , and channel coefficient h of each user. Since the activity
indicator of each user is a random variable, the total number of active users in the
received signal is unknown. This boils down to a notoriously challenging problem of
source separation with unknown number of users [21]. Deep learning has significantly
improved the field of source separation and the general idea of using deep learning is to
capture non-linear relationship between inputs and corresponding targets that is often
difficult to model with analytically tractable expressions [21]. In this project, estimating
the unknown parameters is dealt with by splitting the problem into:

� Classification of the number of active users; and
� Estimation of ToAs, CFOs and channel coefficients given the number of users.

The two separate tasks are combined such that the synchronization parameters are
accurately estimated for each detected user.
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3.3 ESTIMATION OF THE NUMBER OF USERS

Finding the number of active users, Na, is formulated as a classification problem where
p = OneHot(Na) is a categorical random variable encoded as a one-hot vector specifying
Na. With a one-hot encoding, the true target p = [p0, p1, . . . , pK ] has entry one at index
Na, and zero entries everywhere else. This is different from a typical way of representing
active users where users are ordered in a vector and each index indicates the activity of
a unique user. The number of users Na can then be estimated as the l0 norm of that
sparse vector. In this collision scenario users are transmitting using the same spreading
sequence and are not uniquely distinguishable. For this reason, only the information on
the number of active users is represented in p.
Cross-entropy loss is typically used in classification problems [22], and [23] suggests that

the cross-entropy loss in classification problems leads to faster convergence and better
generalization compared to the Mean Squared Error (MSE). For nonbinary classification,
we typically use softmax cross entropy loss (or negative log-likelihood) expressed as:

`NLL(p,q) = −
K∑

k=0
pk ln qk, (3.4)

where q is a continuous differentiable softmax function:

qk = exp(πk)∑
i exp(πi)

, (3.5)

where [π0, π1, . . . πK ] are the outputs from the last layer of the neural network and
[q0, q1, . . . qK ] represent the a posteriori class probabilities. A hard class prediction could
then be found as arg maxi[πi].
The simple arg max is not differentiable, and thus the softmax approximation of

argmax is used instead [24]. The softmax function is commonly used together with
the negative log-likelihood loss function where it is equivalent to maximum likelihood
estimation and the ln in the loss-function keeps the exponential in the softmax function
from saturating the output [25].
The loss function for estimating the number of users is written:

`p(k,π) = − ln
(

exp(πk)∑
i exp(πi)

)
. (3.6)

and the objective of the training procedure is to minimize `p.

3.4 PARAMETER ESTIMATION

The parameters to be estimated are collected in a vector

xk =
[
τk,∆fk,<[hk],=[hk]

]T
. (3.7)

Note that it was found that representing the complex-valued channel coefficient h by
Cartesian coordinate (i.e., real and imaginary parts) shows superior performance to
phasor representation (i.e, amplitude and phase) as seen in Figure 4.5. For K users, the
respective vectors are collected in a matrix

X = [x0,x1, . . . ,xK−1]. (3.8)
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The neural network seeks to find an estimate X̂ such that E‖X− X̂‖22 is minimal which
is equivalent to a Minimum Mean-Square Error (MMSE) estimator.
The above formulation is sufficient to derive an estimation procedure. However, X

consists of multiple parameters which have values on different scales. When using a
practical optimization algorithm to find an estimate, any scaling difference between the
parameters will affect the impact each value has on the gradient descent step.
To circumvent possible issues arising from error variations across parameters, we

minimize the reconstruction error instead. The actual received signal without additive
noise, s, with the parameters in matrix X can be reconstructed using Equation 2.2. The
reconstruction is conveniently represented using function f(·) such that

s = f(X). (3.9)

For each estimate X̂, the equivalent noise-free signal ŝ is reconstructed and compared
to the actual noise-free received signal s. The noise-free signal is known during the
training procedure and is used so the output of the neural network does not account for
the distribution of the noise. The data fidelity (i.e., reconstruction loss) is quantified
using the MSE metric such that

`r(X, X̂) = E
∥∥∥f(X)− f(X̂)

∥∥∥2

2
= E

∥∥∥s− ŝ
∥∥∥2

2
. (3.10)

The number of concurrent users in each sample is known during training so when
reconstructing the signal ŝ, the contributions from the correct number of users are taken
into account when calculating the reconstruction loss `r for each sample.
The loss function which the neural network seeks to minimize is simply the sum

of Equation 3.4 and Equation 3.10

loss = `p(k,q) + `r(X, X̂). (3.11)

3.5 NETWORK IMPLEMENTATION

An overview of the neural network that estimates both the number of users and synchro-
nization parameters is illustrated in Figure 3.1.
The output of the network is the flattened matrix X and the probability vector π.

For 4 users there are 4 · 4 = 16 parameters in X and 5 possible classes in the number
of users (including the zero users case). The input to the network is processed so as to
extract common features that are subsequently used for multi-task learning, that is, to
detect the number of users and estimate their parameters. The first layer performs a
1-dimensional convolution over the input signal. Since the number of users, ToA, CFO
and channel coefficient all are assumed to be constant throughout a transmission, a
convolution layer is chosen so as to extract translationally invariant features of the input
time-domain signal.
Following a typical CNN structure, batch normalization, non-linear activation and

max-pooling are employed. The convolution layers, activations and pooling layers are
repeated to form a deep neural network. The features found by the convolution layers
are reshaped to a single vector which is then used as input to two individual feedforward
neural networks. One of the networks performs classification and detects the number of
users based on the output of the feature extraction layers. The other network performs
regression with the goal to yield parameters so that the reconstructed signal is as close



3.5. Network Implementation 19

1-D Convolution
Batch-norm, 
ReLu, 
Max-Pool

1-D Convolution
Flatten ReLu

ReLu

ReLu ReLu200@45x1 100@43x1 100@21x1

1x2100
1x1000

1x16

1x1000
1x200

1x21

1x1000

Concatenation

1x5

200@91x12@96x1

Batch-norm, 
ReLu, 
Max-Pool

Figure 3.1: Overview of DNN architecture for detecting and estimating synchronization parameters of up to 4 colliding
users.

as possible to the received signal in the MSE sense. Each feedforward network has two
fully connected layers followed by the ReLU activation and a linear output layer. The
network and automatic differentiation are implemented using the PyTorch framework
[26] and trained using multiple Graphics Processing Units (GPUs).
Another similar network architecture is in Figure 3.2 where each network can either

be trained individually or jointly. By comparing the performance of different network
architectures the network in Figure 3.1 was eventually decided as performing adequately.
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Figure 3.2: Block diagram of network architecture for joint activity detection, ToA and CFO estimation.

3.5.1 scaling
In general the convergence of a neural network is faster if all inputs to all layers have
zero-mean and unit covariance between training examples in the case when all examples
are of equal importance [27]. Weights of a network w are updated according to the error
δ by: w + δx. If x has non-zero mean the updates on all the entries in w will be biased
in a particular direction resulting in inefficient training. The unit covariance ensures
that the learning rate stays consistent between each example and that all input examples
are made equally important [27].
The input to the network y and each parameter in the output X is scaled to have

zero mean and unit variance. In the simulation ToA, CFO and channel coefficient are
all drawn according to the distributions given in the system model and Na is drawn
according to Pr(k) for each sample as described in section 2.2. The variance and mean
of each parameter (CFO, ToA and h) are known in advance and are used to normalize
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the parameters to have mean zero and unit variance. The standardized ToA is given by

τ ′ = τ − E[τ ]
Var(τ) . (3.12)

The CFO, ∆f , is scaled similarly. No normalization is necessary for the channel
coefficients since h ∼ CN (0, 1) and thus no scaling is necessary for the signal y.



4 RESULTS

The neural network is trained using samples generated with up to K = 4 concurrent
users and at an SNR of 10 dB. New batches are generated for every step in the training
procedure, and for this reason the over-fitting is suppressed as no training instance is ever
used twice. The learning rate is found using empirical trials to 0.0001 which provides
steady convergence of the loss function. Each batch consists of 50,000 realizations of
y from Equation 2.3. The batch size is chosen as large as possible using the available
Video Random Access Memory (VRAM) on the GPUs. Intuitively the size of each batch
is linked to the accuracy of each gradient descent step and is therefore chosen as large
as possible.
The stochastic optimization method based on adaptive momentum (ADAM) [28] is

used due its effectiveness and popularity in recent deep learning research. A total of
20,000 different batches are used in training. In general the number of batches used are
increased until the loss converges or sufficient results are achieved.
In Figures 4.1 and 4.2, the estimation of collision multiplicity is shown for the proposed

classification method compared to the simple amplitude-based method described in
section 2.4.1. As colliding signals will add non-coherently, the amplitude of the signal is
not a good indicator on collision multiplicity. Using the proposed estimator 1 and 2 users
are successfully identified with 98.1 % and 92.9 % at an SNR of 10 dB and the estimation
accuracy decreases with the number of concurrent users. The amplitude-based method
successfully identified 1 and 2 users with 44.8 % and 30.2 % accuracy but is better at
estimating 0 and 4 users. The proposed method often miss-classifies a signal containing
4 colliding users as resulting from transmissions of 3 users. Further, the classification
accuracy depends on the SNR used during training. Training at testing using the same
SNR provides better results.
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(a) Proposedmethod: 84.4% total accuracy at 10 dB SNR.
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Figure 4.1: Confusion matrices for estimating the multiplicity of collisions comparing the neural network classifier
with a simple classifier based on the amplitude of the received signal.
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Figure 4.2: Accuracy of estimating the number of colliding users. A signal is deemed correctly detected if the number
of users are estimated correctly. The NN estimator is trained for signals with 10 dB SNR.

The accuracy of the parameter estimation X̂ is found by comparing with the target
X. Since the loss function defined in Equation 3.10 only depends on the reconstruction
error, the estimated parameters in X̂ are arbitrarily ordered across users. To compare
the output with the target X the parameters are chosen to be ordered according to the
estimated amplitudes. In cases where the estimated amplitudes are similar, the ordering
may be wrong which leads to an artificially high error when evaluating performance
for multiple users. Any of the parameters can be used to dictate the ordering but the
amplitude is chosen as it is linked to SNR at the receiver in practice.
The Root-Mean-Square Error (RMSE) of each parameter in X̂ is calculated as:

RMSEk =
√
E
[
‖ek‖22

]
, (4.1)

where e.g. the estimation error of τ is: ek = τk − τ̂k. The RMSE of the proposed neural
network-based estimator is the average of all RMSEs up to user k:

RMSENN,k = 1
k

k∑
i=1

RMSEi. (4.2)

The performance of the neural network estimator is to be compared with the con-
ventional estimator described in section 2.4. The conventional estimator is only able
to estimate a single set of parameters, regardless of the actual number of users k. The
error of the conventional estimator is therefore measured as the estimate which has the
smallest error over all actual sets of parameters in X, e.g. the estimated ToA error is

eτ,PD = min
k

(|τk − τ̂PD|). (4.3)

This gives the conventional estimator an artificial advantage.
The RMSE of ToA and CFO estimation with a varying number of users are shown

in Figures 4.3 and 4.4. The neural network-based estimator shows lower estimation
error for both ToA and CFO compared to the PD-based estimator even for a single
user. For two users the proposed estimator is superior to the conventional estimator
when estimating ToA. At 10 dB the proposed estimator has an RMSE of 2.88µs and
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Figure 4.3: RMSE of ToA estimation across SNRs.

4 6 8 10 12 14 16 18
SNR  [dB]

0

5

10

15

20

25

30

35

40

45

CF
O 

es
tim

at
io

n 
RM

SE
 [H

z]

NN estimator, 1 user
PD-based estimator, 1 user
NN estimator, 2 users
PD-based estimator, 2 users

NN estimator, 3 users
PD-based estimator, 3 users
NN estimator, 4 users
PD-based estimator, 4 users

Figure 4.4: RMSE of CFOs estimation across SNRs.

3.44Hz for a single user compared to 16.20µs and 7.98Hz for the conventional estimator.
The relatively high RMSE of the conventional estimator is likely due to the noise which
causes wrong phase unwrapping at low SNRs [9].
To explore the accuracy of the conventional and the proposed estimator the distribution

of the errors are plotted in Figures 4.6a and 4.6b. The model is trained with the number
of users varying from 0-4 but for exploring the results Cumulative Distribution Functions
(CDFs) are shown for signals with each number of collisions individually. It is seen
that there is a clear advantage using the NN estimator for 1 user but the performance
advantage is not convincing for multiple users. This is believed attributed to the
unfair advantage of the conventional estimator where estimates are chosen as the closest
matching value across all different users.
ToA and CFO both show similar distributions and it better performance can be achieved

by including more capacity in the network and fine-tuning of the hyper-parameters.
The convergence of the loss function during training of a network trained for a single

user transmission is seen in Figure 4.7 along with the CDF of estimation error. This
shows the excellent performance that can be achieved even at high SNR.
The accuracy in estimating the channel coefficient h is shown in Figure 4.5. The

RMSE is 0.101 for the in-phase part and 0.103 for the quadrature part for a single user.
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The RMSE shows a similar trend as in ToA and CFO estimation with deteriorating
performance as the number of concurrent users increases.

4 6 8 10 12 14 16 18
SNR  [dB]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ch

an
ne

l c
oe

ffi
cie

nt
 e

st
im

at
io

n 
RM

SE
NN estimator, 1 user
NN estimator, 2 users
NN estimator, 3 users
NN estimator, 4 users
NN estimator using phasor representation, 1 user

Figure 4.5: RMSE of channel coefficient estimation across SNRs.

Overall the proposed method presents considerably improved performance compared to
the traditional estimator in scenarios with a single, as well as multiple users. Despite the
success of the numerical results, they are far from the theoretical achievable performance
bound as derived in Appendix A implying that there are still opportunities for further
enhancements.
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Figure 4.6: Distribution of estimation errors for the conventional and proposed estimator.
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5 AUTO-ENCODER

Current communication systems are optimized block by block for performance in relation
to a model [29]. A novel concept is to consider the communication system in an end-to-
end manner and jointly optimize both the blocks within the transmitter and receiver
as well as optimizing the transmitter and receiver structure jointly. In [29] an end-to-
end auto-encoder is proposed to derive modulation and coding schemes which shows
performance comparative to state-of-the art communication methods. The channel is
treated as a layer in a the neural network and encoder and decoder are both neural
networks. Applications of an auto-encoder applied to the physical layer of a wireless
communication systems shows great promise [30] and for this reason, are considered
applied to preamble encoding and decoding.
The general auto-encoder attempts to reconstruct the given input based on a latent

representation called h. Traditionally it is designed for dimensionality reduction and
feature learning where h is a much lower dimensionality space. In its simplest form the
encoder h = f(x) produces the latent representation and the decoder reconstructs the
input from the latent representation x̂ = g(f(x)). In the noise-free scenario x̂ = x [19].
A modern application for auto-encoders is the Denoising Auto-Encoder (DAE) where

the decoder predicts the original input based on a corrupted sample [19]. In this project
a modified DAE is used to find a preamble sequence and decoding method jointly. The
computational graph for the auto-encoder structure is illustrated in Figure 5.1.

Figure 5.1: Structure of auto-encoder mapping the input x to latent variable y using the function f (encoder). The
corruption process is the simple Additive White Gaussian Noise (AWGN) channel producing y + w. The function g
(decoder) takes the corrupted latent variable to create a reconstruction of the input x̂. The learning process attempts
to minimize the scalar reconstruction error described by the loss L.

The DAE maps the input:

xk =
[
τk,∆fk,<[hk],=[hk]

]T
(5.1)

to a transmitted preamble sequence y = f(x) where f(·) is a parametric function of
frequency hopping pattern and symbol sequence. The typical DAE has the corruption
process applied to the input space x but in this context the corruption process applied
to the latent representation. Only the simple AWGN channel is considered where the
corruption process is C(ỹ|y) = y + w where w ∼ CN (0, 1/ρ).

27



28 5. Auto-encoder

The decoder is a deep neural network which takes the corrupted latent representation
ỹ as input to reconstruct the input x with minimum error. The reconstruction loss is
calculated by some function L(·), such as the l2 norm.

L(x, g(f(x) + w)) = L(x, g(ỹ)) = L(x, x̂) (5.2)

The training process attempts to minimize this loss by updating the weights in f(·) and
g(·).

5.1 ENCODING

The preamble sequence in NB-IoT is a deterministic channel hopping pattern pre-
determined by the initial sub-carrier and the QPSK-symbol 1 + 0j is continuously
repeated. The encoding seeks to find a different channel hopping pattern and symbol
sequence which enables the decoder to provide a more accurate estimate of ToA, CFO
and channel coefficient.
The function f(·) is used similarly as in Equation 3.9 where the transmitted sequence

is:
y = f(x, f , s) = h e−2π(f+∆f)(nTsym−τ) � s (5.3)

Where: f is a vector containing frequency hopping pattern [Hz]
s is a vector containing symbol sequence [·]
� is component-wise multiplication [·]

The frequency pattern f and symbol sequence s are fixed sequences that are valid for all
x and are only adjusted during the training procedure to “discover” a superior preamble
sequence. Once a well-suited preamble sequence is found, the preamble sequence should
remain fixed for all future transmissions. f and s are implemented as learnable parameters
that are updated according to their gradients with a learning rate of γ = 1× 10−4.

5.2 DECODING

Decoding refers to detection and synchronization parameter estimation. In practice
decoding happens at the BS where it is unknown whether a transmission has occurred
or not. In this set-up the encoder and decoder are a joint operation and therefore
coordinated such that the decoding each transmission is always decoded.
The corrupted received signal ỹ is the input to the decoder function g(·)

g(ỹ) = x̂. (5.4)

The decoder is a neural network and the same pre-trained network from section 3.5
can be used as initialization. However, for the sake of simplicity to demonstrate the
concept a simple feedforward neural network is used and the input signal consists only
of 1 user. Figure 5.2 shows the development of the frequency pattern which is found
throughout the training process. In Figure 5.2a an example of the NB-IoT NPRACH
frequency pattern is illustrated and the encoding function is initialized with this pattern.
In Figure 5.2b is the frequency pattern found after 100 iterations. It is seen that the
frequency pattern does not converge towards an orderly sequence and is not restricted
to the 12 frequency channels defined by the NB-IoT standard. This is a limitation in
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the implementation which requires learnable parameters to be differentiable. In this
implementation the parameters are continuous and further development should address
how to make frequency and symbol pattern adhere to the pre-defined discrete subcarriers
and symbols.
Note that the current NPRACH sequence is designed to minimize the Peak-to-Average

Power Ratio (PAPR) compared to Zadoff–Chu sequence used in LTE. When tweaking the
preamble sequence the NPRACH PAPR will become worse which is a trade-off between
performance and power. When using the auto-encoder the best estimation performance
is 4.38µs and 6.00Hz at 10 dB after 100 000 iterations. This is not improved compared
to the NN estimator using the NPRACH pattern which is the performance goal. Further
development is necessary since it is believed the method still has basis for achieving
superior performance.
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(b) Learned frequency pattern using auto-encoder initialized with NB-IoT frequency hopping pattern
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(c) Learned frequency pattern using auto-encoder after 100 000 training iterations

Figure 5.2: Development of frequency pattern throughout auto-encoder training



6 D ISCUSS ION AND
CONCLUS ION

6.1 FUTURE IMPROVEMENTS

In an actual implementation much attention should be made to ensure that the data
used to train the model is representative. The performance guarantees that can be
provided using machine learning are only numerical using the available data. Either
real-world data or realistic models of dynamics should be included in the model.
The deep neural network model should be able to estimate ToA and CFO in real time.

Using a Software-Defined Radio (SDR) wideband signals can be captured and processed
in real-time. AIR-T is an SDR specifically designed for deep learning deployment that
combines an AD9371 transceiver with an FPGA for signal processing and a GPU for
deep learning [31].

6.2 THE PERFORMANCE OF DL IN NB-IOT

The goal of this project is to find a method to increase system capacity. The increase in
number of supported users is therefore investigated. The number of concurrent users
each cell supports will be limited by the number of allocated channels and user traffic
pattern. In NB-IoT there are 48 available channels for NPRACH for each cell. This
gives an average traffic intensity of 13 erlangs according to the Erlang B loss system at a
required probability of blocking less than 1% [32].
It is assumed that each users has an average holding time of 50ms corresponding to

the periodicity of the normal NPRACH transmission. The traffic pattern is assumed to
consist of independent users transmitting once every 10th second which gives a channel
usage per user:

360 Transmission/h · 50 ms = 5.0× 10−3 erlangs (6.1)

Since the system can support 13 erlangs in total the maximum number of users are:

13 erlangs
5.0× 10−3 erlangs

= 2600 users (6.2)

Using a simple model for user activity and only accounting for the normal NPRACH
configuration a total of 2600 users can be supported simultaneously if NPRACH trans-
mission are rejected in the case of collisions.
When using the proposed estimation procedure not only will synchronization be more

accurate but simultaneous preamble transmissions can be detected which improves
the access probability. 2 user transmissions are detected correctly 93 % of the time
which effectively increases the available number of random access preambles by 93
%. This increase of successfully transmitted preambles, can be used to allocate fewer
NPRACH resources, reduce access delay since collision induced back-offs will be reduced
or increase the number of supported users to 5018. However, this project does not
consider limitations of NPUSCH resources which may prove to be a bottleneck for the
RA process.
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32 6. Discussion and conclusion

The intuition behind being able to detect and decode identical simultaneous preamble
transmissions is to exploit diversity in user locations, specific channel conditions and
oscillator imperfections to realize multiplexing.
When the base station detects multiple preambles, users are not separable by any ID

and the RAR (MSG2) cannot be specifically addressed to each user. A procedure to
associate each response to each user will be to have individual users estimate distance
from the BS using the reference signal. The estimated distance is used by the user to
approximate a scope of TA which it can use to select the RAR with the closest matching
TA.

6.3 CONCLUSION

This project considers the problem of separating colliding NB-IoT users that choose the
same random access preamble in the NPRACH scheme, and propose a method to detect
the number of colliding users and estimate their ToA, CFO and channel gains. Motivated
by recent success in leveraging learning-based methods for addressing problems related
to physical layer communications [12], the proposed method builds upon deep learning
framework. In particular, the method jointly detects the number of active users and
estimates their parameters, with the aim to improve the capacity of the critical random
access phase by not discarding interfering signals in order to utilize channel resources
better, which in turn reduces back-off periods. In addition to handling much richer class
of scenarios, the proposed method outperforms [9] in their own scenario where users
transmit orthogonal preambles and do not collide.
The method is demonstrated in NB-IoT NPRACH where the number of orthogonal

preambles is limited ensuring the proposed method is practical in IoT systems currently
being deployed. The estimation error of a conventional approach in NB-IoT is compared
to the performance of the proposed scheme. Traditional synchronization methods fail
in the case of collisions with high Signal-to-Interference Ratio (SIR) whereas, with the
proposed algorithm users can be distinguished and respective synchronization parameters
can still be estimated with a reasonable performance.
Deep learning is a promising tool for developing joint estimation procedures, which

are notoriously difficult in traditional model-based methods, and enables separation
of synchronization parameters even when users transmit using the same preamble. A
deep learning building block the denoising auto-encoder, is applied in a novel concept
to discover an alternative superior preamble sequence. The found preamble sequence
reflects the distribution of the input data but further works is required to to achieve
an increase in performance compared to the neural network estimator. Although deep
learning-based estimation will lead to sub-optimal estimators compared to an analytically
derived joint estimator, it allows for practical, straightforward development and efficient
computation.
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A) CRAMÉR–RAO LOWER
BOUND

The achievable precision of an unbiased estimators may be given by the lower bound on
the variance of the estimation, called the Cramér–Rao lower Bound (CRB) [33]. The
CRB is used as reference to compare the performance of the traditional estimator and
the deep learning estimator in chapter 3.
The observed vector r depends on the synchronization parameters: ∆f the carrier

frequency offset, τ the ToA and the channel carrier phase θ which are desired to be
estimated. For practical reasons the challenging case of a joint estimation of τ,∆f, θ
is overlooked and the CRB can be derived for an estimator of a single parameter and
treating the other parameters as unwanted parameters. In the general case a single
element of ∆f, τ, θ, is denoted λ and is assumed deterministic while other elements are
random variables collected in a vector u. The vector u is assumed to have a known PDF
that does not depend on λ.
The CRB is formulated as:

CRB(λ) = 1

Er

[(
δ ln p(r|λ)

δλ

)2
] (A.1)

Equation A.1 is often difficult to evaluate and therefore a different bound, the Modified
Cramér–Rao Bound (MCRB) is considered instead [34]:

MCRB(λ) = 1

Er

[(
δ ln p(r|u,λ)

δλ

)2
] (A.2)

Generally MCRB(λ) ≤ CRB(λ) meaning it is a more loose bound. However, for most
practical applications is still useful [34].
For the Gaussian channel it is much easier to derive the conditional probability p(r|u, λ)

than evaluating p(r|λ).
The received complex signal waveform with additive noise can be written:

r(t) = s(t) + w(t) (A.3)

where s(t) is the information signal as described in Equation 2.1 and w(t) is additive
noise distributed according to a complex normal distribution.
p(r|u, λ) is replaced by the likelihood function Λ(λ,u) and after some manipulation

Equation A.2 becomes [34]:

MCRB(λ) = N0

Eu

∫
T0

∣∣∣∣∣δs(t)δλ

∣∣∣∣∣
2

dt

 (A.4)

where N0 is the noise variance.
Going from the general case of estimating λ to the specialised case of estimating CFO,

∆f , by setting λ = ∆f and u = u∆f = {τ, θ}. The integral in the denominator can be
evaluated to:
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∫
T0

∣∣∣∣∣δs(t)δ∆f

∣∣∣∣∣
2

dt =
∫

T0

∣∣∣∣∣∣δe
−j2π(f+∆f)(t−τ)

δv

∣∣∣∣∣∣
2

dt (A.5)

=
∫

T0
4π2 |t− τ |2 dt (A.6)

According to Equation A.4 the expectation should be calculated over u∆f that is over
both θ and τ . However, Equation A.5 does not depend on θ and the limitations is only
calculated over τ .

Eτ

[∫
T0

4π2 (t− τ)2 dt

]
= 4π2Eτ

[∫
T0

(t− τ)2 dt

]
(A.7)

= 4π2Eτ

[∫ NT

0
(t− τ)2 dt

]
(A.8)

where NT is the length of T0. A simple case can be assumed where τ ∼ U(a, b) and the
expectation can be evaluated to:

= 4π2Eτ

[
(NT )3

3 − τ(NT )2 + τ2(NT )
]

(A.9)

= 2
3π

2(2a2(NT ) + 2ab(NT )− 3a(NT )2 + 2b2(NT )− 3b(NT )2 + 2(NT )3) (A.10)

setting limits a = 0 and b = NT we get:

= 2π2(NT )3

3 (A.11)

Finally, to summarize we calculated the denominator of the MCRB in Equation A.4:

Eu∆f

∫
T0

∣∣∣∣∣δs(t)δ∆f

∣∣∣∣∣
2

dt

 = 2π2(NT )3

3 (A.12)

The SNR, Es/N0 is normalized according to symbol period T , and is therefore omitted.
From Equation A.4 we have:

MCRB(∆f) = 3N0
2π2N3 (A.13)

This states that the a lower bound on estimation error is a simple analytical expression
which is a function of (normalized) SNR and number of samples. The MCRB can be
similarly derived for MCRB(τ) and MCRB(θ) but the derivation is not included here.
The expression is used to provide perspective on performance in Table A.1.
The derived expression uses a simple model that does not account for the channel

coefficient as used in the model in Equation 2.2. The frequency is normalized to the
interval [−1/2, 1/2] and the expression is used to compare performance between the
PD-based (section 2.4) and the NN estimator (section 3.2). The number of samples is
chosen to N = 96 samples and the SNR is 10 dB .
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Table A.1: Performance comparison with MCRB, traditional estimator and NN estimator.

MCRB Error variance of tradi-
tional estimator

Error variance of NN esti-
mator

1.7× 10−8 0.78 2.8× 10−2

It is seen that both estimator are far from the achievable performance bound.
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Literature Study on Deep Learning for the Wireless
Physical Layer

Mads Helge Jespersen

I. OVERVIEW

This is not a comprehensive review of state of the art on
deep learning for the physical layer but this is the areas that
deep learning has been applied to the physical layer, examples
of successful implementations and ideas for research areas to
focus on.

The overview paper [1] presents the progress in the field
well and provides advice on when to use ML with a set of
criteria. Most importantly the model at hand should be either
model deficit or algorithm deficit.

a) Model deficit: No mathematical model, conventional
design methods not applicable. Statistical performance guar-
antees cannot be provided. The algorithm can only be relied
upon so far data used is trusted to be representative for the
whole set of possible realizations.

b) Algorithm deficit: A mathematical model is available
but algorithms are either too complex to derive or too com-
putationally complex to be implemented. Neural networks has
possibility to yield lower-complexity solutions. A computer
simulation can be carried out to obtain numerical performance
guarantees.

A. Possible directions

1) End-to-end Constellation Design and Detection: Moti-
vation can be decoding in non-coherent scenario (algorithm
deficit) or transmission through a non-linear medium or non-
linear transceiver chain (algorithm deficit). Research has con-
ducted to derive maximum likelihood decoders from simu-
lation samples in non-coherent MIMO communication (Un-
known CSI) and in a two-way relay network. Most simulations
assume perfect frequency synchronization between transmitter
and receiver but vary the channel coefficient between symbols.
Commonly methods are restricted to only training for one strict
channel scenario and will probably perform poorly in different
channel conditions.

2) Machine Learning for Emerging Communication Tech-
nologies: The research area to focus on can be identified by
finding an application for ML in one of following emerg-
ing technologies: mmWave, Massive Connectivity, Massive
MIMO.

Current mmWave front end design suffers from being very
expensive, bad efficiency and non-linearity [2]. Non-linearity
of amplifiers could be accounted for by pre-distortion but a
neural network receiver might also give better performance.
Expensive receiver chain can be alleviated by using low-
resolution ADCs and phase shifter (1 or 2 bit). Effect of these

can be hard to account for in an algorithm and maybe a ML
algorithm can perform better.

Only a few papers investigate the applicability of machine
learning in massive connectivity [3], for this reason there
is a high probability of publication using this is as project
motivation. MERL work has focused on a CDMA decoding
in presence of a structured jammer with deep learning with
initial good results in cases where a matched filter method
does not work [4].

There are few ML applications in the emerging LPWAN
technologies such as LoRa, SigFox and NB-IoT.

3) Apply the latest development within Machine Learning
to a Wireless Problem: Adversarial training is a very popular
method training robust neural networks. The same concept can
be used to create a robust jamming resistant communication.
Adversarial neural networks could also be used for encryption
and decryption in relay networks.

Two recent trends in deep learning are attention networks
and Generative Adversarial Networks (GANs).

II. CHANNEL DETECTION AND DECODING

Design of a channel decoder based on samples is only
possible if the channel is stationary over a long period of time,
meaning it does not change too rapidly over time (fast fading).
Could be made possible for fast fading channels of channel
estimation is part of the learning process [1].

Model deficit: Molecular communication [5] Algorithm
deficit: Strong non-linearities: Satellite communication, op-
tical communications, modulation schemes such as continuous
phase modulation or in multi-user networks [1].

A. Paper [5]

1) Purpose: Detection algorithm in the unexplored molec-
ular communication channel.

2) Challenges: It is a realistic scenario with strong ISI
and the channel is not memoryless which requires sequence
detection.

3) Methods: A molecular communication experimental
platform is established to generate an adequate dataset by
repeatedly transmitting a consecutive sequence of N symbols
from M possible types. Chemical signals, acids (representing
bit-0), and bases (representing bit-1) are used to encode pH
level information.

The detector is implemented using LSTM network, a typical
algorithm for sequence processing belonging to RNN trained
using the acquired experimental samples.
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4) Results: LSTM based detector shows outstanding per-
formance in a communication system with ISI

5) Conclusion: A sequence based estimator should be used
in case of ISI. DL is promising when there is no model for
the physical channel.

B. Paper: [6]

1) Purpose: Deep neural network for channel decoding
(NND).

2) Challenges: Should learn a decoding structure rather
than learning to classify 2k different codewords. Block lengths
are normally long but complexity of training increases expo-
nentially with k.

3) Methods: Compares neural network decoding perfor-
mance on polar block codes and random codes.

4) Results: NND for polar codes show possibility for
generalization but not for random codes. The BER for a large
NND is worse than MAP decoder for both random codes and
polar codes. Neural network is able to generalize from a certain
fixed SNR at training to any arbitrary SNR.

5) Conclusion: High decoding complexity and only
achieves MAP for very short block lengths. But could possibly
be improved with RNN and parallelized computation. Deep
learning for channel decoding does not seem too promising.

C. Paper [7]

1) Purpose: Considers a MIMO channel with known chan-
nel matrix H. Goal is to apply deep machine learning in the
classical MIMO detection. Can be used as an example where
deep learning can be used to trade off some of the exactness of
an existing algorithm provides with faster computation times.

2) Challenges: Maximum likelihood already has really
good performance but high computational complexity. A sub-
optimal implementation is desired.

3) Methods: Unfolding an iterative projected gradient de-
scent method. Each iteration is represented as a layer in a
neural network.

4) Results: Tested against a fixed channel model and a
varying channel model with H drawn from a known distribu-
tion. Perforns promising both in fixed channels and a varying
channel scenario. Performance is comparable to the advanced
detector ”semidefinite relaxation (SDR)” but computation is
30x faster.

D. Paper: [8]

1) Purpose: Channel estimation and signal detection use
traditional communication solutions as initialization and uses
DL networks to refine the coarse inputs.

2) Methods: Calls implementation ComNet. CE subnet first
estimates OFDM channel from pilot symbols using LS. SD
obtains ZF (zero forcing) estimate of the transmitted symbol.
The obtained estimate, along with the estimated channel and
received signal to the DL model to further refine the symbol
estimates.

3) Results: Performs comparably to traditional decoding
however, OFDM implementation allows symbols to be de-
coded when the CP is removed. Related works: Equalization
and synchronization in OFDM.

E. Idea

Inspired by OFDM detection papers as [8], an mmWave
model-driven receiver can be developed that uses expert
knowledge to replace receiver blocks. NN can learn to com-
pensate for non-linearities of mmWave components.

F. Idea

Most neural network detection methods are only created
for a stationary channel. Work can be made to extend some of
the already developed ML receiver detection methods to many
different channel conditions.

III. END-TO-END COMMUNICATION SYSTEM DESIGN

A. Paper [9]:

Rethinking the communication system which is currently
optimized block by block for performance in relation to a
model [10] proposes an end-to-end autoencoder to derive
modulation and decoding schemes which shows performance
comparative to traditional communication systems. The chan-
nel is treated as a layer in the neural network and therefore
its differentiable functional form is needed. A functional form
will always be a simplification which does not factor in all
impairments of a real system such as hardware imperfections,
varying channel conditions. Since the applications of deep
learning in the physical layer shows great promise we need
a model which can robustly account for these situations [9]

1) Purpose: To make an end-to-end communication ap-
proach which does not need a functional description of the
channel.

2) Challenges: Needs channel gradients in order to perform
backpropagation (optimization).

3) Related work: Previous work have circumvented a func-
tional model using a two-phase training alternative. One ap-
proach has trained on a functional model and fine-tuned neural
network parameters using a realistic channel [11]. Realizations
of a realistic channel has been approximated using a GAN.
Another approach applied supervised learning at the receiver
and reinforcement learning at the transmitter.

4) Methods: Use a stochastic approximation technique to
approximate gradients for the model called Simultaneous
perturbation stochastic approximation that does not require
knowledge of exact channel model.

5) Results: Achieves the theoretical BER for an AWGN
channel without any assumption about the channel model but
takes more epochs to converge compared to the case where
channel model is known.

6) Conclusion: Successful end-to-end design is created
when channel model is not a available or gradient calculation
is too complex.
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B. Paper [11]

1) Purpose: Communication system solely composed of
NNs using unsynchronized SDRs.

2) Challenges: Does not know functional channel. Training
data is obtained from over-the-air transmissions. Needs to deal
with a continuous transmission with ISI and synchronization
issues.

3) Methods: Two phase procedure. First: train the autoen-
coder using a stochastic channel model that should approx-
imate as closely as possible the behavior of the expected
channel. Second: transmitter sends a large number of messages
over the actual channel and the corresponding IQ-samples are
recorded at the receiver. These samples, together with the
corresponding message indices, are then used as a labeled data
set for supervised finetuning of the receiver. Can be seen as
an way to speed-up the training.

4) Results: Performance comes close to a well designed
conventional system. (What is the purpose if it is worse?)

5) Conclusion: First prototype of its kind. Does not work
in varying channel conditions. Could be achieved by sporadic
transmission of known messages or a very robust error-
correcting code that would allow gathering a fine-tuning
dataset on the fly.

C. Idea

1) Purpose: Find actual channel measurements to use as
channel impairments: h(z). Set up conventional transmitter-
receiver and compare performance to neural network receiver.

2) Challenges: Channel model should represent all effects
such as synchronization, fast fading, slow fading, additive
noise.

3) Methods: Setup random symbol transmissions. Capture
high resolution raw (unsynchronized, unequalized) signal (us-
ing SDR or spectrum analyzer) along with actual transmitted
symbol (training data)). Learn the representation that maps the
received signal back to symbols. Will be difficult because of
ISI and varying channel conditions. Need a fixed block length
as input.

Should account for many varying channel scenarios but this
can turn out to be difficult. Areas of interest could be to create
a clustering of channel conditions for which a subset of end-
to-end networks are trained.

4) Extension: More channel realizations can be generated
using a GAN which should capture the effects of the real
channel. Does not need to map to discrete symbols. Could
also be used for analogue transmissions since it will just be a
regression problem.

D. Idea

Transmission of analogue sequences is not really considered
in literature. The continuous nature of a neural network
makes it straightforward to treat the communication prob-
lem as a high-dimensional regression problem. Continuous
phase modulation is notoriously difficult and could be used
in combination with analogue sequence transmissions. The
application can be audio transmission, video transmission
(multi-cast streaming) or continuous sensor data transmission.

E. Implementation Practices

Paper [12] by Toshiki, Toshiaki and Ye (MERL) will be
used for inspiration for practical considerations.

Their DNN fails to learn multiplication between received
signal and channel coefficients. Therefore the original input
and the multiplication is used as input to the DNN. This
increase of input dimensions may delay the convergence of
DNN.

Mini-batch size: 128. 128x1000 pseudo random bits with the
same channel coefficients over a mini-batch while Gaussian
noise varies from sample to sample.

BER may not be appropriate performance measure for
demodulation performance since practical systems use soft
decision error-correction.

Trained DNN at every 5 dB, can be regarded as adaptive
selection of mapping depending on the channel SNR.

Almost all papers I have read use Adam for stochastic
optimization in DNN.

Sees good performance attributed to the DNN flexibly
controlling the transmission rate depending on the channel
condition at low SNRs. But is bad performance is expected at
high SNRs since amplify and forward is maximum likelihood
decision and DNN only approximates the ML decision with a
non-linear function.

Assumes perfect synchronization and stable channel condi-
tions. Only goal is to choose the constellation points.

Amplitude and phase information in signal constellation can
be useless for unknown CSI.

Complex inputs are almost always represented as a one heat
vector which is a concatenation of the real part and imaginary
part.

IV. FULL-DUPLEX COMMUNICATION

A. Paper [13]

1) Purpose: Learn to cancel self-interference for a full-
duplex link in order to overcome the model deficit in the non-
linear transmitter-receiver chain.

2) Challenges: Self interference is present at the receiver
after the analog cancellation stage. Typically linear cancella-
tion is used but this is usually not sufficient due to non-linear
effects created by various transceiver impairments. Polynomial
non-linear canceller comes with high implementation com-
plexity.

3) Related work: The author is not aware of any SI
cancellation in full-duplex radios in the literature using neural
networks.

4) Methods: Using measured samples from a hardware
testbed. IQ imbalance and PA non-linearities are normally
the dominant non-linearities. Better performance is found if
a linear-cancellation method is first applied to the received
signal and then used as an input to the neural network.

5) Results: Matches the performance of the polynomial
non-linear canceller with significantly lower computational
complexity.

6) Conclusion: Reduces computation by 36% compared to
polynomial non-linear canceller
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V. CDMA/GRANT FREE RANDOM ACCESS/MASSIVE
CONNECTIVITY

Neural networks were employed in order to perform detec-
tion and intra-user (and mostly linear) successive interference
cancellation in multi-user CDMA systems in:

B. Aazhang, B. P. Paris, and G. C. Orsak, Neural networks for multiuser
detection in code-division multiple-access communications, IEEE Trans. Com-
mun., vol. 40, no. 7, pp. 1212-1222, Jul 1992

M.-H. Yang, J.-L. Chen, and P.-Y. Cheng, Successive interference cancel-
lation receiver with neural network compensation in the CDMA systems, in
Asilomar Conference on Signals, Systems and Computers, vol. 2, Oct 2000,
pp. 1417-1420.

B. Geevarghese, J. Thomas, G. Ninan, and A. Francis, CDMA in- ter-
ference cancellation techniques using neural networks in rayleigh channels,
in International Conference on Information Communication and Embedded
Systems (ICICES), Feb 2013, pp. 856-860.

VI. MODULATION CLASSIFICATION

Algorithm deficit, complex problem, optimal solutions are
hard. Has been attempted many times with OK results.

VII. UNSUPERVISED MACHINE LEARNING

Step 1: Model selection. Select a model (family of distri-
butions parameterized by a vector θ.)

Step 2: Learning. Data should be used to choose the value
for the parameter vector θ.

Step 3: Model is applied to carry out the task of interest.
e.g. Clustering, dimensionality reduction or generation of new
samples.

A. Autoencoders

The transmitted input message x has an intermediate repre-
sentation z which is the received signal and the output should
match the input. ML should only be used if a model or an al-
gorithm deficit exists. Algorithm deficit: Non-linear dynamical
models (optical links), multiple access channels with sparse
transmission codes and joint source channel coding.

End-to-end communication described in Section III-A has
examples of auto-encoder use.

Auto-encoders can also be used to compress Channel State
Information (CSI) for Frequency Division Duplex (FDD) links.

B. Generative models

1) Channel realizations [14]: Example: Learn to generate
samples from a given channel. Reasonable for scenarios that
lack straightforward channel models. Can be used to mimic
and identify non-linear channels for satellite communications.
Can be generally used to augment a dataset used for training.

2) Detecting anomalies by learning the typical distribution
of features: Can be used for spectrum sensing, identifying
covert transmissions.
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Abstract—The central challenge in supporting massive IoT
connectivity is the uncoordinated, random access by sporadically
active devices. The random access protocol and activity detection
have been widely studied, while the auxiliary procedures, such
as synchronization, channel estimation and equalization, have
received much less attention. However, once the protocol is fixed,
the access performance can only be improved by a more effective
receiver, through more accurate execution of the auxiliary
procedures. This motivates the pursuit of joint synchronization
and channel estimation, rather than the traditional approach
of handling them separately. The prohibitive complexity of the
conventional analytical solutions leads us to employ the tools of
deep learning in this paper. Specifically, the proposed method
is applied to the random access protocol of Narrowband IoT
(NB-IoT), preserving its standard preamble structure. We ob-
tain excellent performance in estimating Time-of-Arrival (ToA),
Carrier-Frequency Offset (CFO), channel gain and collision
multiplicity from a received mixture of transmissions. The
proposed estimator achieves a ToA Root-Mean-Square Error
(RMSE) of 0.99 µs and a CFO RMSE of 1.61 Hz at 10 dB
Signal-to-Noise Ratio (SNR), whereas a conventional estimator
using two cascaded stages have RMSEs of 15.85 µs and 8.05 Hz,
respectively.

Index Terms—Deep learning, IoT standards, massive random
access, joint estimation

I. INTRODUCTION

A massive number of devices are expected to be connected
to the Internet and several standards have been proposed to
enable connectivity of low-complexity devices operating over
a shared wireless channel. Most prominent technologies are
Sigfox, LoRa and Narrowband IoT (NB-IoT) [1]. In Internet
of Things (IoT) applications, the random access procedure
has a high impact on device battery life and number of
devices that can be supported concurrently [2]. Random access
is used to request uplink allocation from the base station
without requiring users to be constantly connected to the
base station. Most IoT data packets are on the order of bits
and users transmit them sporadically by establishing a new
connection for every transmission. Establishing a connection
using random access is a four step procedure [3], [4], which
is initiated by a user that has packet to transmit by sending
a random access preamble. The random access preamble
is designed such that the base station is able to efficiently
detect the transmitting user and estimate any timing offset
between the user and base-station from the received signal.

The first author performed this work as an intern at MERL.

The timing offset comprises of propagation time, downlink
synchronization errors and channel delay spread [5].

NB-IoT is a recent standard proposed by the 3rd Generation
Partnership Project (3GPP) to accommodate the emerging
number of wireless devices connected to the Internet. It is
designed to co-exist with Long-Term Evolution (LTE) and
provide low-cost and low-power devices with low throughput
connectivity. The random access procedure in the NB-IoT
is initiated by the Narrowband Physical Random Access
CHannel (NPRACH). The NB-IoT has a system bandwidth
of 180 kHz that accommodates 48 orthogonal channels from
which a user attempting to establish a connection chooses one
at random. If NB-IoT users choose different (i.e., orthogonal)
preambles, the base station is able to estimate Time of Arrival
(ToA) and Carrier Frequency Offset (CFO) of each user [5],
[6]. However, given a possibly large number of users and
relatively small number of orthogonal preambles, it is likely
that two or more users choose the same preamble. The
resulting collision may lead to a user back-off time of up
to almost 9 minutes [7], [8]. In order to avoid unnecessary
backoff periods and consequently improve channel utilization
and overall capacity of the NB-IoT system, we propose in
this paper a Deep Learning (DL)-based method for separating
colliding users, detecting their number and estimating their
respective ToAs and CFOs. We validate the proposed method
using simulations and demonstrate significantly improved
performance compared to the conventional approaches.

A. Related Work

Several papers have explored methods for activity detec-
tion, ToA and CFO estimation using the NB-IoT NPRACH
preamble structure. As such, [5] estimates the ToA by search-
ing for highest correlation between the received signal and
delayed/frequency-shifted preamble on a grid of possible
delays and frequencies. To reduce the complexity of the
algorithm in [5], the ToA and CFO are estimated using the
residual phase difference between symbol groups and channel
hops in a two-stage procedure in [6]. With the goal to improve
the ToA estimation, [4] suggests a novel hopping pattern
that renders more accurate ToA estimation compared to that
achieved with the already defined NB-IoT preamble.

We consider in this paper a problem of separating colliding
NB-IoT users that choose the same random access preamble
in the NPRACH scheme, and propose a method to detect
the number of colliding users and estimate their ToA, CFO
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Fig. 1. Overview of NPRACH preamble and packet structure.

and channel gains. Motivated by recent success in leveraging
learning-based methods for addressing problems related to
physical layer communications [9], our method builds upon
deep learning framework. In particular, we jointly detect
the number of active users and estimate their parameters,
with the aim to improve the capacity of the critical random
access phase by not discarding interfering signals in order to
utilize channel resources better, which in turn reduces back-off
periods. In addition to handling much richer class of scenarios,
the proposed method outperforms [6] in their own scenario
where users transmit orthogonal preambles and do not collide.
In comparison to [4], the random access preamble in this
work is as suggested by the NB-IoT standard, ensuring the
proposed method is practical in the NB-IoT systems currently
being deployed. Finally, looking outside the NB-IoT scope,
we believe that this work is the first application of deep
learning techniques for user separation in massive connectivity
systems.

II. NB-IOT RANDOM ACCESS PREAMBLE DESIGN

The preamble format and packet structure are illustrated in
Fig. 1. The preamble is divided into symbol groups, where
each group consists of a Cyclic Prefix (CP) and ε identical
symbols. The value of ε depends on preamble format. The
preamble format is chosen by the user based on the downlink
power measurement to estimate its coverage area [3].

The most common preamble format is format 1 with
preamble frame structure 0 or 1, which has ε = 5 and a
symbol time TSYM = 266.7 µs. The CP period for frame
format 0 is TCP = 66.7 µs and TCP = 266.7 µs for frame
format 1 [10]. The CP is designed such that it is long enough
to cover the maximum round trip delay to suppress Inter-
Symbol Interference (ISI). Therefore one interpretation of
allowing adaptive CP selection is for the user to use the short
CP in the range 0–8 km and the long CP in the range 8–35 km
[5].

The full preamble consists of 4 repetitions of the symbol
group which is again repeated n = 2J , J = 0, . . . , 7 times

for a full preamble length of L = 4 × 2J symbol groups.
The repetition of the symbol groups occurs within an uplink
slot, and the number of repetitions is decided by the upper
Medium Access Control (MAC)-layer depending on estimated
link quality [10]. For simplicity we consider J = 2, i.e., four
symbol groups are repeated 4 times.

Before transmission, the user chooses a contiguous set of
N = 12, 24, 36 or 48 subcarriers with 3.75 kHz spacing out
of the available 48 subcarriers. This paper focuses on the
preamble frame structure type 1 where N = 12. At the start
of the NPRACH preamble transmission, the subcarrier of the
first symbol group is chosen at random. After each symbol
group the subcarrier will change using a deterministic channel
hopping sequence so in the duration of a preamble there will
be L subcarrier hops. Since the hopping pattern is determinis-
tic, several users choosing the same initial subcarrier will thus
collide for the entirety of the NPRACH preamble sequence.
The number of orthogonal preamble sequences is therefore
the number of allocated NPRACH subcarriers, K [7].

For frame structure type 1 and preamble format 0, two “lev-
els” of hopping are employed as shown in Fig. 1. The hopping
pattern is deterministic within a cell, but the subcarrier of
every 4th symbol group appears random to neighbouring cells.
The hopping procedure aids in the estimation of ToA and also
reduces inter- and intra-cell interference [5]. The ToA should
be estimated by the base station for successful uplink signal
decoding and it further enables device positioning. Error in
the ToA estimation results in the user being unable to receive
the response sent by the base station. ToA estimation therefore
has a great impact on performance in NB-IoT [4].

III. SYSTEM MODEL

The received signal at the base station is a superposition of
signals from multiple users, given by

y[n] =
K−1∑

k=0

aksk[n] + w[n], (1)

where K is the maximum number of concurrent users, ak ∈
{0, 1} indicates whether the kth user is active or not, and
w[n] ∼ CN (0, 1/ρn) denotes the additive noise with a per
symbol Signal-to-Noise Ratio (SNR) of ρn.

At the receiver, the phase of each symbol depends on the
ToA τ , the CFO ∆f (which gives the frequency of the user’s
chosen channel with respect to the receiver’s uplink carrier
frequency f ), and the channel rotation given by arg(h), where
h is the complex-valued channel coefficient. These parameters
are assumed to be independent across users and denoted by
τk, ∆fk and hk for each user k.

The signal from the kth user is given by

sk[n] = hk e−2π(fn+∆fk)(nTsym−τk), (2)

where Tsym is the symbol duration. The signal model is
limited to only considering a single preamble sequence for the
sake of simplicity. This means that the sub-carrier frequency
pattern fn is predetermined and identical for all instances of
s.
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The typical FFT length in LTE is 512 [6], but for simplicity
we describe that each sample, n, corresponds to a symbol.
In this model, the contents of the CP are interpreted as a
symbol and therefore no distinction is made between the CP
and the ε = 5 repeated symbols in a symbol group. This signal
model may be valid only for the long CP which corresponds to
distances between the user and base station within a minimum
of r = 8 km and a maximum of R = 35 km [5]. The users
are assumed to be uniformly distributed in the coverage area
of the base station as illustrated in Fig. 2. The distance from
the base station to the users d has the following Probability
Density Function (PDF) [11]:

fD(d) =
2d

R2 − r2
, r ≤ d ≤ R, (3)

which is used to model the ToA τ = d
c , where c is the

propagation speed.
The channel coefficient h of the signal model in (2) is

a complex-valued constant which accounts for small scale
fading: h ∼ CN (0, 1). This means that the average received
signal power is normalized to one. The narrowband channel is
modeled as a slowly varying single-tap Rayleigh fading chan-
nel and for this reason, modeled as a single coefficient [6].
Large scale fading is not included in the model since users
already have knowledge of the downlink SNR and adjust their
transmit power accordingly using power control.

The CFO in (2) is chosen uniformly at random between
−20 and +20 Hz [6]. For the sake of simplicity, the CFO
and ToA are assumed to be constant throughout an entire
NPRACH transmission for each user.

The activity indicator ak is modeled as Bernoulli random
variable with the probability of transmitting p and a1, . . . , aK
are iid. The number of concurrent active users is

Na =

K∑

k=1

ak ∼ B(K, p), (4)

where B is the binomial distribution. We consider the case
with K = 4 and p = 0.5 throughout the paper. The probability
of exactly k users colliding is then:

Pr(k) =

(
K

k

)
pk(1−p)K−k =

4!

k!(4− k)!
pk(1−p)4−k. (5)

IV. DEEP LEARNING ESTIMATOR

The goal of the estimator is to use the discrete signal y[n]
to estimate the activity indicator a, ToA τ , CFO ∆f , and

channel coefficient h of each user. Since the activity indicator
of each user is a random variable, the total number of active
users in the received signal is unknown. This boils down
to a notoriously challenging problem of source separation
with unknown number of users [12]. Deep learning has
significantly improved the field of source separation and the
general idea of using deep learning is to capture non-linear
relationship between inputs and corresponding targets that is
often difficult to model with analytically tractable expressions
[12]. In this paper, estimating the unknown parameters is dealt
with by splitting the problem into:
• Classification of the number of active users; and
• Estimation of ToAs, CFOs and channel coefficients given

the number of users.
The two separate tasks are combined such that the synchro-
nization parameters are accurately estimated for each detected
user.

A. Estimation of the Number of Users

Finding the number of active users, Na, is formulated
as a classification problem where p = OneHot(Na) is a
categorical random variable encoded as a one-hot vector
specifying Na. With a one-hot encoding, the true target
p = [p0, p1, . . . , pK ] has entry one at index Na, and zero
entries everywhere else. This is different from a typical way
of representing active users where users are ordered in a
vector and each index indicates the activity of a unique user.
The number of users Na can then be estimated as the l0
norm of that sparse vector. In this collision scenario users are
transmitting using the same spreading sequence and are not
uniquely distinguishable. For this reason, only the information
on the number of active users is represented in p.

Cross-entropy loss is typically used in classification prob-
lems [13], and [14] suggests that the cross-entropy loss in
classification problems leads to faster convergence and better
generalization compared to the Mean Squared Error (MSE).
For nonbinary classification, we typically use softmax cross
entropy loss (or negative log-likelihood) expressed as:

`NLL(p,q) = −
K∑

k=0

pk log qk, (6)

where q is a continuous differentiable softmax function:

qk =
exp(πk)∑
i exp(πi)

, (7)

where [π0, π1, . . . πK ] are the outputs from the last layer of the
neural network and [q0, q1, . . . qK ] represent the a posteriori
class probabilities. A hard class prediction could then be found
as arg maxi[πi].

B. Parameter Estimation

The parameters to be estimated are collected in a vector

xk =
[
τk,∆fk,<[hk],=[hk]

]T
. (8)

Note that it was found that representing the complex-valued
channel coefficient h by Cartesian coordinate (i.e., real and
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Fig. 3. Overview of DNN architecture for estimating synchronization parameters of up to 4 colliding users.

imaginary parts) shows superior performance to phasor rep-
resentation (i.e, amplitude and phase) as seen in Fig. 7. For
K users, the respective vectors are collected in a matrix

X = [x0,x1, . . . ,xK−1]. (9)

The neural network seeks to find an estimate X̂ such that
E‖X − X̂‖22 is minimal which is equivalent to a Minimum
Mean-Square Error (MMSE) estimator.

The above formulation is sufficient to derive an estimation
procedure. However, X consists of multiple parameters which
have values on different scales. When using a practical opti-
mization algorithm to find an estimate, any scaling difference
between the parameters will affect the impact each value has
on the gradient descent step.

To circumvent possible issues arising from error varia-
tions across parameters, we minimize the reconstruction error
instead. The actual received signal without additive noise,
s, with the parameters in matrix X can be reconstructed
using (2). The reconstruction is conveniently represented using
function f(·) such that s = f(X).

For each estimate X̂, the equivalent noise-free signal ŝ is
reconstructed and compared to the actual noise-free received
signal s. The noise-free signal is known during the training
procedure and is used so the output of the neural network
does not account for the distribution of the noise. The data
fidelity (i.e., reconstruction loss) is quantified using the MSE
metric such that

`r(X, X̂) = E
∥∥f(X)− f(X̂)

∥∥2

2
= E

∥∥s− ŝ
∥∥2

2
. (10)

The number of concurrent users in each sample is known
during training so when reconstructing the signal ŝ, the
contributions from the correct number of users are taken into
account when calculating the reconstruction loss `r for each
sample.

The loss function which the neural network seeks to mini-
mize is simply the sum of (6) and (10)

loss = `p(k,q) + `r(X, X̂). (11)

C. Network Implementation

An overview of the neural network that estimates both the
number of users and synchronization parameters is illustrated
in Fig. 3. The input to the network is the received signal which
consists of 4 NPRACH repetitions each with L(ε+1) symbol

periods. The total number of samples in the received signal
is: NrepL(ε + 1) = 4 · 4 · (5 + 1) = 96, where the real and
imaginary parts are represented in 2 individual channels.

The output of the network is the flattened matrix X and
the probability vector π. For 4 users there are 4 · 4 = 16
parameters in X and 5 possible classes in the number of
users (including the zero users case). The input to the net-
work is processed so as to extract common features that are
subsequently used for multi-task learning, that is, to detect the
number of users and estimate their parameters. The first layer
performs a 1-dimensional convolution over the input signal.
Since the number of users, ToA, CFO and channel coefficient
all are assumed to be constant throughout a transmission, a
convolution layer is chosen so as to extract translationally
invariant features of the input time-domain signal.

Following a typical CNN structure, batch normalization,
non-linear activation and max-pooling are employed. The
convolution layers, activations and pooling layers are repeated
to form a deep neural network. The features found by the con-
volution layers are reshaped to a single vector which is then
used as input to two individual feedforward neural networks.
One of the networks performs classification and detects the
number of users based on the output of the feature extraction
layers. The other network performs regression with the goal
to yield parameters so that the reconstructed signal is as close
as possible to the received signal in the MSE sense. Each
feedforward network has two fully connected layers followed
by the Rectified Linear Unit (ReLU) activation and a linear
output layer. The network and automatic differentiation are
implemented using the PyTorch framework [15] and trained
using multiple Graphics Processing Units (GPUs).

In the simulation ToA, CFO and channel coefficient are
all drawn according to the distributions given in the system
model and Na is drawn according to Pr(k) for each sample.
The input to the network y and each parameter in the output
X is scaled to have zero mean and unit variance. In general
the convergence of a neural network is faster if all inputs
to all layers have zero-mean and unit covariance between
training examples in the case when all examples are of equal
importance [16]. From the system model the variance and
mean of each parameter (CFO, ToA and h) are known and
used to normalize the parameters to have mean zero and unit
variance. The mean and variance of τ can be derived from (3)
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NN estimator is trained for signals with 10 dB SNR.

and the standardized ToA is given by

τ ′ =
τ − E[τ ]

Var(τ)
. (12)

The CFO, ∆f , is scaled similarly. No normalization is neces-
sary for the channel coefficients since h ∼ CN (0, 1) and thus
no scaling is necessary for the signal y.

V. ESTIMATION RESULTS

A. Traditional Methods

The phase-difference based method proposed in [6] utilizes
the relationship between the phase trace of the received signal
and the ToA and CFO. Phase differences between symbols in
the received signal are averaged to estimate CFO. The ToA
is found by subtracting the phase due to the estimated CFO
from the phase of the received signal and averaging the phase
difference between symbol groups on different frequencies.

As a benchmark for the detection of the number of users, an
amplitude-based estimator is considered. The mean amplitude
of the received signal for different number of colliding users is
compared to the amplitude of the received signal. The closest
match then yields an estimate of the number of colliding users
present in the received signal.

B. Simulation

The neural network is trained using samples generated with
up to K = 4 concurrent users and at an SNR of 10 dB. New
batches are generated for every step in the training procedure.
The learning rate is 0.0001 and each batch consists of 50,000
realizations of y from (1). The stochastic optimization method
based on adaptive momentum (ADAM) [17] is used and a total
of 20,000 different batches are used in training.

In Fig. 4, the estimation of collision multiplicity is shown
for the proposed classification method compared to a simple
amplitude-based method. As colliding signals will add non-
coherently, the amplitude of the signal is not a good indicator
on collision multiplicity. 1 and 2 users are successfully
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identified with 98.0 % and 93.2 % at an SNR of 10 dB and the
estimation accuracy decreases with the number of concurrent
users. The proposed method often miss-classifies a signal
containing 4 colliding users as resulting from transmissions
of 3 users.

Since the loss function only depends on the reconstruction
error, the estimated parameters in X̂ are arbitrarily ordered
across users. To compare the output with the target X the
parameters are ordered according to the estimated amplitudes.
In cases where the estimated amplitudes are similar, the
ordering may be wrong which leads to an artificially high
error when evaluating performance for multiple users.

The RMSE of each parameter in X is calculated as:

RMSEk =
√

E
[
‖ek‖22

]
, (13)

where e.g. the estimation error of τ is: ek = τk − τ̂k. The
RMSE of the proposed neural network-based estimator is the
average of all RMSEs up to user k:

RMSENN,k =
1

k

k∑

i=1

RMSEi. (14)

The conventional estimator is only able to estimate a single
set of parameters, regardless of the actual number of users k.
The error of the conventional estimator is therefore measured
as the estimate which has the smallest error over all actual
sets of parameters in X, e.g. the estimated ToA error is

eτ,PD = min
k

(|τk − τ̂PD|). (15)

This gives the conventional estimator an artificial advantage.
The RMSE of ToA and CFO estimation with a varying

number of users are shown in Figures 5 and 6. The neural
network-based estimator shows lower estimation error for both
ToA and CFO compared to the phase-difference-based estima-
tor even for a single user. For two users the proposed estimator
is superior to the conventional estimator when estimating ToA.
At 10 dB the proposed estimator has an RMSE of 0.99 µs and
1.61 Hz for a single user compared to 15.85 µs and 8.05 Hz
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for the conventional estimator. The relatively high RMSE of
the conventional estimator is likely due to the noise which
causes wrong phase unwrapping at low SNRs [6].

The accuracy in estimating the channel coefficient h is
shown in Fig. 7. The RMSE is 0.101 for the in-phase part and
0.103 for the quadrature part for a single user. The RMSE
shows a similar trend as in ToA and CFO estimation with
deteriorating performance as the number of concurrent users
increases.

Overall the proposed method presents considerably im-
proved performance compared to the traditional estimator in
scenarios with a single, as well as multiple users.

VI. DISCUSSION AND CONCLUSION

We proposed a novel approach to synchronization and chan-
nel estimation. The system model consists of a superposition
of an unknown number of users transmitting with the same
preamble sequence. Deep learning is used to classify the
multiplicity of collisions and estimate ToA, CFO and the
channel coefficients for all user simultaneously.

The method is demonstrated in NB-IoT NPRACH where
the number of orthogonal preambles is limited. The estimation

error of a conventional approach in NB-IoT is compared to the
performance of the proposed scheme. Traditional synchroniza-
tion methods fail in the case of collisions with high Signal-to-
Interference Ratio (SIR) whereas, with the proposed algorithm
users can be distinguished and respective synchronization pa-
rameters can still be estimated with a reasonable performance.

Deep learning is a promising tool for developing joint
estimation procedures, which are notoriously difficult in tra-
ditional model-based methods, and enables separation of syn-
chronization parameters even when users transmit using the
same preamble. Although deep learning-based estimation will
lead to sub-optimal estimators compared to an analytically
derived joint estimator, it allows for practical, straightforward
development and efficient computation.
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