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and consequences of climate change.
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Resumé

Der er stor enighed blandt verdens forskere om, at menneskeskabte klimaforan-
dringer påvirker kloden. Derfor blev Parisaftalen, som vil styrke det globale svar
mod klimaforandringer, vedtaget i 2015 af FN. Ét af målene i Parisaftalen er at
sørge for, at temperaturen ikke stiger mere end 2°C sammenlignet med før den
industrielle revolution og at forsøge at begrænse temperaturstigningen til 1.5°C.

Da klimaforandringer vil påvirke lande forskelligt, er det relevant at undersøge,
hvordan forskellige lande med forskellige økonomier vil blive påvirket af kli-
maforandringer. Denne rapport undersøger derfor relationenerne mellem glob-
ale CO2 udledninger, atmosfærisk CO2 koncentration, temperaturafvigelser samt
Bruttonationalprodukt (BNP) per indbygger i forskellige økonomier.

I stedet for at undersøge BNP per indbygger for alle lande deles de op i fire
grupper baseret på Verdensbankens lande grupper: Lav-indkomst, lavere-middel-
indkomst, øvre-middel-indkomst og høj-indkomst økonomier. For at reducere di-
mensionaliteten i hver gruppe anvendes det første principale komponent af lan-
dende i hver gruppe.

Ved anvendelse af tidsrækkeanalyse modelleres de fire tidsrækker. Baseret på tem-
peraturstigninger siden år 1850 forudsiges det, at en temperaturstigning på 1.5°C
og 2°C sammenlignet med før den industrielle revolution vil blive opnået i hen-
holdsvis år 2058 og 2083. Både de globale CO2 udledninger og den atmosfæriske
CO2 koncentration vil fortsætte med at stige. Det første principale komponent
af BNP per indbygger for alle fire grupper vil fortsat stige, og forskellen mellem
grupperne vil blive større, hvilket vil øge den globale ulighed.

For at undersøge en tidsrækkes påvirkning af en anden tidsrække anvendes regres-
sionsmodeller med ARMA fejl. Desuden konstrueres forskellige stier af forudsigelser
for globale CO2 udledninger for at undersøge effekten af at ændre niveauet af CO2

udledninger.

Ved at regressere atmosfærisk CO2 koncentration på globale CO2 udledninger
forudsiges det, at den atmosfæriske CO2 koncentration vil stige endnu hurtigere

vii



viii Resumé

end tidligere. Det samme resultat fås ved at regressere temperaturafvigelser på
atmosfærisk CO2 koncentration: Temperaturen vil stige hurtigere end hidtil, og
dermed er det sandsynligt, at temperaturen er steget med 1.5°C og 2°C før hen-
holdvis år 2058 og 2083.

Ved at regressere det første principale komponent af BNP per indbygger for de fire
grupper på temperaturafvigelser forudsiges det, at en reduktion af globale CO2

udledninger vil reducere den økonomiske vækst i alle typer økonomier. Dette
giver mening, da økonomisk vækst ofte hænger sammen med øget produktion,
som ofte hænger sammen med større CO2 udledninger. Dermed fanger modellen
det positive forhold mellem CO2 udledninger og økonomisk vækst men ikke det
forventede negative forhold mellem temperaturstigninger og økonomisk vækst.
Dette indikerer, at regressionsmodellen med ARMA fejl er for simpel til at fange
det sande forhold mellem klimaforandringer og BNP per indbygger.

Modellerne forudsiger også at forskellen mellem BNP per indbygger i de fire grup-
per vil stige. Da modellen dog ikke tager højde for, at klimaforandringer påvirker
lande forskelligt, og at nogle lande bliver ubeboelige i fremtiden grundet slem
varme og tørke, bliver forskellen mellem forskellige økonomier muligvis endnu
større, end modellen forudsiger.

Da det nuværende niveau af globale CO2 udledninger påvirker de globale tempera-
turer og forårsager klimaforandringer, vil den tidligere og nuværende økonomiske
vækst højst sandsynligt ikke være bæredygtig i fremtiden. Men da de nuværende
økonomiske modeller ikke tager højde for udgifterne fra klimaforandringer eller
indtægterne fra klimavenlige forretningsmuligheder, er der nogle som argumenterer
for, at det er muligt at opnå den samme eller endda en større økonomisk vækst,
der kommer fra klimavenlige tiltag sammenlignet med den økonomiske vækst, der
kommer fra at fortsætte som hidtil.



Preface

This paper has been compiled by Ann-Katrine Kjærsgaard Nielsen in the period
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others who may be interested. The Harvard method is used for references and
abbreviations are introduced in parentheses.
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Chapter 1

Introduction

This chapter is based on [NASA, 2019a], [NASA, 2019b], [NASA, 2019d], [United
Nations, 2015], and [United Nations, 2019].

Small changes in the amount of energy received from the sun due to small vari-
ations in the Earth’s orbit has caused the Earth’s climate to change throughout
history. However, most climate scientists agree that there is more than 95 percent
probability that human activity, such as human-produced greenhouse gasses, has
affected the climate and is causing the Earth to warm roughly ten times faster than
the average rate of ice-age-recovery warming, and at a rate that is unprecedented
over decades to millennia. This is due to certain gasses in the atmosphere, called
greenhouse gasses, blocking heat from escaping. Such greenhouse gases include
carbon dioxide (CO2), methane, and nitrous oxide (N2O). The evidence for green-
house gases affecting the climate has been found in several places, such as tree
rings, coral reefs, layers of sedimentary rocks, and ice cores drawn from Green-
land, Antarctica, and tropical mountain glaciers.

Increased atmospheric greenhouse gas concentration has caused the planet’s av-
erage surface temperature to rise. This rise in temperature has had wide spread
consequences in the form of shrinking ice sheets, decreased snow cover, sea level
rise, declining Arctic sea ice, and more extreme weather events, such as record high
temperature events, severe droughts, and intense rainfall events.

It is estimated that further climate changes will affect regions differently, with
temperature increases benefiting some regions and harming others: The effect will
be determined by, among other things, regions’ ability to mitigate or adopt to
change. However, it is estimated that net annual costs will increase over time as
global temperatures increase.

1



2 Chapter 1. Introduction

The Paris Agreement

Therefore, at COP 21 in Paris, on 12 December 2015, the Parties to the United Na-
tions Framework Convention on Climate Change (UNFCCC) agreed on the global
response to climate change in the form of the Paris Agreement. With the Paris
Agreement the Parties seek to “accelerate and intensify the actions and invest-
ments needed for a sustainable low carbon future.“ [United Nations, 2019]. The
Paris Agreement became effective on 4 November 2016, 30 days after the so-called
“double threshold“, which is ratification by 55 countries that account for at least
55% of global greenhouse gas emissions, had been met. Since then, more countries
have ratified and continue to ratify the Agreement, reaching a total of 185 Parties
as of today.

The Paris Agreement has three aims in order to strengthen the global response to
climate change:

• To hold the temperature increase “well below“ 2°C above pre-industrial lev-
els, that is, the temperature before the industrial revolution, and to pursue
efforts to limit the temperature increase to 1.5°C above pre-industrial levels,

• To increase the ability of countries to deal with the impacts of climate change,

• To make finance flows consistent with a low greenhouse gas emission.

The Paris Agreement recognises that limiting the temperature increase to 1.5°C
or well below 2°C above pre-industrial levels will reduce the risks and impacts
of climate change significantly. However, as it is estimated that temperature in-
creases will benefit some regions and harm others, it is relevant to examine how
countries with different economies will respond to climate changes, even when the
temperature increase is limited.

Problem Statement

This paper examines the effect of global CO2 emissions and the consequential
global warming on the development in Gross Domestic Product (GDP) per capita.
First it examines global CO2 emissions and atmospheric CO2 concentration after
the industrial revolution. Then, using the HadCRUT4 data set of marine and land
temperatures, it examines global temperature changes and makes predictions of
future global temperature changes, more specifically predictions of when global
temperatures have increased 1.5°C and 2°C compared to pre-industrial levels. The
paper then examines GDP per capita for a variety of countries and estimates their
future growth in GDP per capita at the predicted times of global temperature in-
creases of 1.5°C and 2°C. In order to reduce the dimensionality of the data, Prin-
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cipal Component Analysis (PCA) is used, and the first principal component of the
GDP per capita for similar countries is found.

Finally, the paper examines the relationship between global CO2 emissions, atmo-
spheric CO2 concentration, global temperature changes, and development in GDP
per capita, and compares the results of this analysis with the results from the indi-
vidual analyses above.





Chapter 2

Exploratory Data Analysis

This chapter is based on [NASA, 2019a], [Ritchie and Roser, 2019], [Wikipedia,
2019f], and [Morice et al., 2012].

2.1 CO2

CO2 is a minor but very important component of the atmosphere, released both
naturally, for example through volcano eruptions, and through human activities,
such as deforestation and burning fossil fuels. CO2 emissions are often a part
of the discussion about global warming, since evidence suggests that increased
atmospheric greenhouse gas concentration has caused the planets average surface
temperature to rise.1

Figure 2.1 shows the global CO2 emissions from 1751 to 2016 and global average
atmospheric concentration of CO2 from 1600 to 2016.2 The figure illustrates how
the amount of global CO2 emissions has increased explosively since approximately
1960. This explosive growth comes mainly from the development of developing
countries such as China and India, but also from developed countries such as the
United States of America.3

The figure also illustrates how the level of atmospheric CO2 concentration has been
stable at approximately 275 Parts Per Million (PPM) until the late 18th century,
which corresponds to the time before the industrial revolution. The atmospheric
CO2 concentration begins to increase during and after the industrial revolution,

1[NASA, 2019a]
2Data from [Ritchie and Roser, 2019]
3[Ritchie and Roser, 2019]

5



6 Chapter 2. Exploratory Data Analysis
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Figure 2.1: Global CO2 emissions measured in billion tonnes from 1751 to 2016 and
global average long-term atmospheric concentration of CO2 measured in Parts Per
Million (PPM) from 1600 to 2016.

which is the period from approximately 1760 to 1840 where the industry transi-
tioned to new manufacturing processes.4

The atmospheric CO2 concentration has changed naturally through time: During
ice ages atmospheric CO2 concentration has been approximately 200 PPM and be-
tween ice ages it has been approximately 280 PPM. The atmospheric CO2 concen-
tration is now higher than it has been in the past 400,000 years, and it has passed
400 PPM for the first time ever recorded.5

Even though global CO2 emissions have been stabilised during the last few years,
the atmospheric CO2 concentration continues to increase, and it would take a sub-
stantial decrease in global CO2 emissions for the atmospheric CO2 concentration
to stabilise.6 This is due to CO2 accumulating in the atmosphere based on resi-
dence time, which is the time required for emitted CO2 to be removed from the
atmosphere through natural processes in Earth’s carbon cycle.

4[Wikipedia, 2019f]
5[NASA, 2019c]
6[Ritchie and Roser, 2019]



2.2. Temperature 7

From Figure 2.1 it seems that the development in global CO2 emissions first be-
gan around 1960 and not during the industrial revolution. However, this is due to
the explosive increase in the amount of global CO2 emissions in the last 60 years.
Figure 2.2 shows the global CO2 emissions from 1750 to 1900, and, thus, makes it
possible to take a closer look at the development in the CO2 emissions during and
after the industrial revolution. The figure shows how the amount of global CO2
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Figure 2.2: Global CO2 emissions measured in billion tonnes from 1750 to 1900.

emissions before the industrial revolution was stable and close to zero; however, af-
ter the industrial revolution, the amount of global CO2 emissions begins to increase
rapidly, leading to an increase in the global atmospheric CO2 concentration.

2.2 Temperature

As mentioned in Chapter 1, increased atmospheric greenhouse gas concentration
has caused the planet’s average surface temperature to rise. In order to examine
the rise in global average temperature, the HadCRUT4 data set7 is used, which con-
tains monthly surface temperature anomalies globally from 1850 to 2018 relative to
a 1961-1990 reference period in 5° by 5° grids. The surface temperature anoma-
lies are a combination of land temperature anomalies compiled by the Climatic
Research Unit of the University of East Anglia and marina temperature anomalies
compiled by the Met Office Hadley Centre.

Two months of the HadCRUT4 data set is seen in Figure 2.3, which shows the tem-
perature anomalies for January 1850 and January 2018, that is, so-called slices of
the data. The figure shows the 5° by 5° grids in which temperature anomalies have
been measured. The white squares illustrate the grids in which the temperature

7[Morice et al., 2012]
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Figure 2.3: Heatmaps of temperature anomalies in January 1850 and January 2018
relative to a 1961-1990 reference period. The white squares illustrate the grids in
which the temperature measurement was not available at the chosen time.

measurement was not available in the period illustrated in the figure. The grids
that are not white in January 1850, that is, the grids in which the temperature has
been measured, are mostly in Europe and in the Atlantic ocean. In January 2018
there are substantially less white grids, which are mostly in the most northern part
of the northern hemisphere, the most southern part of the southern hemisphere,
and in Africa.

In January 1850 there seems to be temperature anomalies from approximately
−11°C to 7°C and in January 2018 there seems to be temperature anomalies from
approximately −7°C to 10°C. The largest temperature anomalies in January 1850
seem to be in Europe and in January 2018 they seem to be in the north-western
part of Russia and in the area around the border between Russia, Kazakhstan, and
China.
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From the HadCRUT4 data set there can be made illustrations similar to those in
Figure 2.3 for each month from January 1850 to December 2018; however, it is
difficult to gain an overview of the development in the temperature from 1850 to
2018 just from examining each slice of the data. Therefore, a time series has been
created from the data set by taking the medians of regional time series computed
for 100 ensemble member realisations.8 There are several uncertainties in the data
that needs to be taken into account: Measurement, sampling, and coverage un-
certainties in the HadCRUT4 data, which are described in the HadCRUT4 paper9,
and bias from the 100 ensemble member realisations, which is accounted for by
integrating across the distributions they describe.10

Figure 2.4 shows the decadally smoothed time series of global temperature anoma-
lies relative to a 1961-1990 reference period. The figure visualises how the temper-
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Figure 2.4: Temperature anomalies (black solid line) from 1850 to 2018 relative to a
1961-1990 reference period. The red and blue dashed lines represent the lower and
upper bounds of the 95% confidence interval of the combined effects of measurement,
sampling, coverage, and bias uncertainties.

ature anomalies are relative to a 1961-1990 reference period, since the temperature
anomalies in this period are centred around and close to zero. It is also seen that
there tends to be mostly negative temperature anomalies before this reference pe-
riod and only positive temperature anomalies after the reference period, indicating
that the global average surface temperature has increased from 1850 to 2018. In
fact, a temperature anomaly of approximately −0.25°C in 1850 and a temperature
anomaly of almost 0.75°C in 2018 means that there has been an increase in the
temperature of approximately 1°C from the industrial revolution to today, where
most of the increase has happened from 1975 to 2018.

8[Morice et al., 2012]
9[Morice et al., 2012]

10[Morice et al., 2012]
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There seems to be more uncertainty in the beginning of the time series compared
to the end. This could be due to the large amount of missing data in the beginning
of the data set, meaning less coverage, compared to the most resent measurements
as illustrated in Figure 2.3.

2.3 GDP per Capita

Instead of examining each country’s GDP per capita individually, the countries
are divided into four groups: Low-income, lower-middle-income, upper-middle-
income, and high-income economies. These groups are chosen based on the World
Bank Country Groups11. See Appendix A for a list of the countries and the group
they belong to.12 The division of the countries into the four groups is illustrated
in Figure 2.5. The figure illustrates how most of the countries in the low-income

Economy Groups

Low−Income
Upper−Middle−Income

Lower−Middle−Income
High−Income

Figure 2.5: The division of countries into the low-income, lower-middle-income,
upper-middle-income, and high-income economy groups. A list of the countries in
each group can be found in Appendix A.

economy group (blue countries) are located in central Africa, many of the countries
in the lower-middle-income economy group (green countries) are located close to
the equator, many of the countries in the upper-middle-income economy group
(purple countries) are located in South America and Asia, and most of the countries
in the high-income economy group (red countries) are located in North America,
Europe, and Oceania.

11[The World Bank, 2019b]
12Data from [The World Bank, 2019a].
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Approximately 50% of the countries’ GDP per capita data contain missing data.
Countries for which the GDP per capita data contains more than 20% missing
values are excluded from the analysis; in Appendix A these countries’ NA value
is coloured red. Approximately 43% of the countries are removed due to missing
values. The GDP per capita for the remaining countries containing missing values
are imputed.13 The results can be seen in Figure 2.6, which shows the GDP per
capita for the remaining imputed data divided into the four groups.
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Figure 2.6: GDP per capita for low-income, lower-middle-income, upper-middle-
income, and high-income economies measured in thousand US dollars from 1960 to
2017. The division of countries into these categories can be found in Appendix A.

13The “imputeTS” package in R is used for imputation. The missing values for all countries but
one are imputed by a weighted moving average with exponential weighting and window size equal
to 10. The missing values for the United States Virgin Islands are imputed by a weighted moving
average with linear weighting and window size equal to 20. [Moritz, 2018, pp. 4-5, 8-9]
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The figure shows how the division of the countries into the four groups is based
on their level of GDP per capita, since the GDP per capita in 2018 for low-income,
lower-middle-income, upper-middle-income, and high-income economies is be-
tween approximately 250 and 1,250 US dollars, 1,000 and 4,000 US dollars, 4,000
and 14,000 US dollars, and 15,000 and 170,000 US dollars, respectively. In all of
the four groups, drops in the GDP per capita can be seen around 1980, which is
at the time of the second major oil crisis, and around 2008, which is at the time
of the latest financial crisis.14 Apart from these two crises, many of the countries’
GDP per capita in all four groups seem to follow approximately the same growth
trends.

The country with the highest GDP per capita in the low-income economy group,
represented by the pink line, is Syria. The Syrian economy grew in the 1970’s after
General Hafiz al-Assad took power.15 The up-turn in the 1990’s came after the
institution of a series of economic reforms. The data for Syria contained missing
values after 2007, partly because of Syria’s civil war, and has therefore been im-
puted. The country with the lowest GDP per capita, represented by the yellow line,
is Burundi, which is a landlocked, resource-poor country with an underdeveloped
manufacturing sector.16

The country represented by the highest green line in the upper-middle-income
economy group is Equatorial Guinea. The sudden growth in the GDP per capita
came mainly from oil, since Equatorial Guinea has become one of sub-Saharan
Africa’s largest oil producers.17 It has the highest GDP per capita in Africa, how-
ever, the wealth is very uneven, since only few people have benefited from the oil
production.

The two countries with the highest GDP per capita in the high-income economy
group are not surprisingly Monaco and Lichtenstein.

In the lower-middle-income economy group, there are no countries that are ex-
tremely noticeable at the top or bottom as in the other economy groups. Many of
the countries seem to have a sudden increase from around 2005 to approximately
2015.

That many of the countries in all four groups seem to follow approximately the
same growth trends is illustrated in Figure 2.7, which shows the GDP per capita
growth in the four groups. Some countries experience extreme growth in some
years, making it difficult to see the general trends in the data and to compare the
behaviour in the four groups. Therefore, Figure 2.7 is recreated where the countries

14[Wikipedia, 2019a], [Wikipedia, 2019e]
15[Wikipedia, 2019c]
16[Wikipedia, 2019b]
17[Wikipedia, 2019d]
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Figure 2.7: Growth in GDP per capita for low-income, lower-middle-income, upper-
middle-income, and high-income economies measured in percentage from 1961 to
2017.

in each group having extreme fluctuations are excluded.

The green line in the low-income economy group showing the extreme growth
in 2000 represents the GDP per capita growth for the Democratic Republic of the
Congo. The turquoise line in the lower-middle-income economy group showing
the extreme growth in 1974 represents the GDP per capita growth for Kiribati and
the blue line showing the extreme growth in 1981 represents the GDP per capita
growth for Nigeria. The green line in the upper-middle-income economy group
showing the extreme growth in 1965 represents the GDP per capita growth for
Equatorial Guinea. Five countries in the high-income economy group experience
extreme growth in 1974; Kuwait, Brunei, Qatar, Saudi Arabia, and Oman. These
countries are some of the largest oil producers in the world, and experienced large
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growths in their economies in 1974 due to the 1973 oil crisis, where the Organisa-
tion of Arab Petroleum Exporting Countries proclaimed an oil embargo, causing
the oil prices to increase.18

Figure 2.8 shows the result of excluding these countries from Figure 2.7. Note that
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Figure 2.8: Growth in GDP per capita for low-income, lower-middle-income, upper-
middle-income, and high-income economies measured in percentage from 1961 to
2017 excluding the Democratic Republic of the Congo, Nigeria, Kiribati, Equatorial
Guinea, Kuwait, Brunei, Qatar, Saudi Arabia, and Oman.

all four plots in Figure 2.8 now have the same y-axis. The figure illustrates that
most of the countries seem to have the same growth trends despite their economy
group: However, the growths of the countries in the high-income economy group
seem to be more alike than the growths of the countries in the other groups, that
is, there seems to be less variance in the high-income economy group.

18[Wikipedia, 2019a]
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2.3.1 Principal Component Analysis

Modelling and making predictions for the GDP per capita for all countries in the
four groups and examining the relationship between the countries’ GDP per capita
and temperature changes is a lengthy process. Therefore, PCA is used on the
countries’ GDP per capita in each group. PCA is an unsupervised learning method
and a way of presenting high-dimensional data in a lower-dimensional space while
preserving as much variability in the data as possible.19 Using PCA will not only
reduce the dimensionality of the analysis, but also make it easier to compare the
four groups and illustrate their differences.

In order to determine how many principal components to use of the data in each
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Figure 2.9: Cumulative Percentage of variance explained for low-income, lower-
middle-income, upper-middle-income, and high-income economies. The x-axis in-
dicates the number of principal components for each group, which corresponds to the
number of countries in each group.

19See Appendix B for a short introduction to PCA.
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group the Cumulative Percentage of Variance Explained (CPVE) is examined.20

The CPVE for the four groups is shown in Figure 2.9. The figure shows that the
first principal component of the data in each group explains more than 75% of the
variance in the data in that group. More specifically the variance explained by the
first principal component of the low-income, lower-middle-income, upper-middle-
income, and high-income economies is 79.12%, 90.53%, 92.33%, and 93.97%, re-
spectively. The figure also shows that using additional principal components only
increases the CPVE at a slow rate at the expense of increasing the dimension.
Therefore, only the first principal component of each group is used in the analysis
in this paper.

The loading vector for the first principal component of each group can be seen in
Appendix C along with the means and standard deviations used for standardising
the data.

In Table C.1 it is seen that the weights in the loading vector for the low-income
group vary between 0.100 and 0.242, but that most of the weights are very similar,
meaning that the countries are weighted almost equally. This is also the case in
the loading vectors for the lower-middle-income, upper-middle-income, and high-
income groups seen in Tables C.2, C.3, and C.4, respectively, where the weights
vary between 0.180 and 0.200, 0.176 and 0.195, and 0.130 and 0.148. Thus, in
practice the first principal components almost reduce to simple averages.

The tables in Appendix C also illustrate the difference between the GDP per capita
in the four groups. The average of the means in the low-income, lower-middle-
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Figure 2.10: The first principal component of GDP per capita for low-income, lower-
middle-income, upper-middle-income, and high-income economies from 1960 to 2017
shifted to have initial value equal to zero.

20See Appendix B.
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income, upper-middle-income, and high-income groups are approximately 366,
871, 2, 677, and 19, 344 thousand US dollars, respectively.

Figure 2.10 shows the first principal component for the four groups, shifted such
that each principal component has initial value equal to zero. The figure shows that
the developments in the GDP per capita for the lower-middle-income economies
(green solid line) and upper-middle-income economies (purple solid line) are al-
most identical, and that, of the four groups, the GDPs per capita for the high-
income economies (red solid line) have increased the most and the GDPs per capita
for the low-income economies (blue solid line) have increased the least.

During the 1970s the GDP per capita for low-income economies increased at a
higher rate than the GDP per capita for the other groups; however, after approx-
imately 1980 the increase stopped for all groups and the GDP per capita for the
low-income economies decreased until approximately 2000.

The GDP per capita for high-income economies increased at a higher rate than the
GDP per capita for the other groups from approximately 1985 to approximately
1995.

From approximately year 2000 the GDP per capita began to increase for the coun-
tries in all four groups at approximately the same rate. However, the larger increase
in GDP per capita for the high-income economies from approximately 1985 to 1995
means that the countries in the other three groups are not able to catch up to the
high-income economies with regards to development since 1960.





Chapter 3

Linear Time Series Models

This chapter is based on [Fan and Yao, 2017, pp. 33-36].

Often one of the main goals of modelling time series is to use the data of the past
to forecast the future. Being able to do this requires that the underlying process of
the data has time-invariance properties. These properties characterise stationarity.

Definition 3.1 (Weak Stationarity) A time series {xt} is said to be weakly stationary if
E
[
x2

t
]
< ∞ and, for any integer k, neither E[xt] nor Cov(xt, xt+k) depend on t.

The reason for the stationarity in the definition above being called weak, is due to
it being a weak notion of stationarity: For example, {xt} being weakly stationary
does not imply that {x2

t } is weakly stationary. A stronger definition is therefore
stated below.

Definition 3.2 (Strong Stationarity) A time series {xt} is said to be strongly stationary
if the k-dimensional distribution of (x1, . . . , xk) is the same as that of (xt+1, . . . , xt+k) for
any k ≥ 1 and t.

Strong stationarity implies weak stationarity in the cases where E
[
x2

t
]
< ∞. Fur-

thermore, strong stationarity of the time series {xt} implies strong stationarity of
{g(xt)} for any function g.1

Strong stationarity is, however, often too strong of an assumption for real-world
data, and therefore, weak stationarity is often used for determining if a model is
stationary.

1[Fan and Yao, 2017, pp. 35-36]
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3.1 The ARMA Model

This section is based on [Fan and Yao, 2017, pp. 36, 41, 46, 62, 64] and [Shumway
and Stoffer, 2011, pp. 88, 92-95].

One of the most frequently used time series models is the stationary AutoRegres-
sive Moving Average (ARMA) model.

Definition 3.3 (ARMA(p, q)) An ARMA model with the order (p, q), written ARMA(p, q),
is the stationary solution to

xt = φ1xt−1 + · · ·+ φpxt−p + εt + θ1εt−1 + · · ·+ θqεt−q, (3.1)

where p and q are non-negative integers, εt ∼ WN
(
0, σ2), φ1, · · · , φp, θ1, · · · , θq are

parameters, and φp, θq 6= 0.2

The ARMA(p, q) model is created by combining an AutoRegressive (AR) model of
order (p), written AR(p), given by

xt = φ1xt−1 + · · ·+ φpxt−p + εt,

and a Moving Average (MA) model of order (q), written MA(q), given by

xt = εt + θ1εt−1 + · · ·+ θqεt−q.

Definition 3.4 (AR and MA Polynomials) The AR(p) and MA(q) polynomials are
defined as

φ(z) = 1− φ1z− φ2z2 − · · · − φpzp, φp 6= 0,

θ(z) = 1 + θ1z + θ2z2 + · · ·+ θqzq, θq 6= 0,

respectively, where z is a complex number.

Using Definition 3.4, the ARMA(p, q) model in Equation (3.1) can be written as

φ(B)xt = θ(B)εt, (3.2)

where B is the backshift operator defined as

Bkxt = xt−k for k ∈ Z.

It is assumed that the two equations φ(z) = 0 and θ(z) = 0 do not have common
roots, since the common factors from Equation (3.2) then can be cancelled out,
which could mean that (p, q) is not the genuine order of the model.

2εt ∼ WN
(
0, σ2) means that {εt} is a white noise process, which is characterised by ρ(k) =

Corr(εt, εt+k) = 0 for any k 6= 0. That is, a white noise process is a sequence of uncorrelated random
variables with the same mean and variance.



3.1. The ARMA Model 21

Properties of ARMA Models

Definition 3.5 (Causality) An ARMA(p, q) model is said to be causal, if the time series
{xt} can be written as a one-sided linear process:

xt =
∞

∑
j=0

ψjεt−j = ψ(B)εt, (3.3)

where ψ(B) =
∞
∑

j=0
ψjBj,

∞
∑

j=0
|ψj| < ∞, and where ψ0 = 1.

Thus, causality implies that the ARMA(p, q) model does not depend on the future,
and that it can be written as a model that only depends on past innovations to
infinity, that is, as an MA(∞) model.

From Definition 3.5 it follows that an ARMA(p, q) model is causal if and only if
the roots of φ(z) lie outside the unit circle; that is, φ(z) = 0 if and only if |z| > 1.3

The coefficients of the linear process given in Equation (3.3) can be determined by
solving

ψ(z) =
∞

∑
j=0

ψjzj =
θ(z)
φ(z)

, |z| ≤ 1.

Definition 3.6 (Invertibility) An ARMA(p, q) model is said to be invertible, if the time
series {xt} can be written as

εt =
∞

∑
j=0

πjxt−j = π(B)xt, (3.4)

where π(B) =
∞
∑

j=0
πjBj,

∞
∑

j=0
|πj| < ∞, and where π0 = 1.

Thus, invertibility implies that an ARMA(p, q) model can be written as a model
that only depends on past values to infinity, that is, as an AR(∞) model. Invert-
ibility is a way of choosing an MA(q) model: Since only the time series can be
observed and not the innovations, the model is chosen such that it can be written
as an AR(∞) model, mimicking the causality property of AR models.4

From Definition 3.6 it follows that an ARMA(p, q) model is invertible if and only
if the roots of θ(z) lie outside the unit circle; that is, θ(z) = 0 if and only if |z| > 1.5

3[Shumway and Stoffer, 2011, p. 95]
4[Shumway and Stoffer, 2011, p. 92]
5[Shumway and Stoffer, 2011, p. 95]
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The coefficients of the linear process given in Equation (3.4) can be determined by
solving

π(z) =
∞

∑
j=0

πjzj =
φ(z)
θ(z)

, |z| ≤ 1.

Parameter Estimation

There are several methods for estimating the parameters of an ARMA(p, q) model.
One method is Gaussian maximum likelihood estimation, which I will briefly in-
troduce.

When estimating the model parameters it is assumed that the model order (p, q)
is known and that the process has mean zero. The idea in Gaussian maximum
likelihood estimation is to assume that {xt} is Gaussian meaning that φ(B)xt =

θ(B)εt, where εt is i.i.d. Gaussian, that is, εt ∼ N(0, σ2) and independent, and then
choose φi, θj, and σ2 that maximise the likelihood function

L(φ, θ, σ2) = fφ,θ,σ2(x1, . . . , xn),

where fφ,θ,σ2 is the simultaneous Gaussian probability density function for the
given ARMA model, and where φ = (φ1, . . . , φp) and θ = (θ1, . . . , θq).

That is, assume that x1, . . . , xn are observations from a Gaussian ARMA(p, q) pro-
cess with mean zero. The value of the likelihood function in the parameters
φ ∈ Rp, θ ∈ Rq, and σ2 ∈ R+ is defined as the density of x = (x1, . . . , xn)T

under the Gaussian model with these parameters:

L(φ, θ, σ2) =
1

(2π)n/2|Σn|1/2 exp
(
−1

2
xTΣ−1

n x
)

,

where |Σn| denotes the determinant of Σn, which is the variance-covariance matrix
of x with the given parameter values. The log-likelihood function is the logarithm
of the likelihood function, yielding

l(φ, θ, σ2) = log(L(φ, θ, σ2))

= −1
2

log (|Σn|)−
1
2

xTΣ−1
n x,

where the constant term is omitted. The maximum likelihood estimator of (φ, θ, σ2)

maximises this quantity.
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3.2 The ARIMA Model

This section is based on [Shumway and Stoffer, 2011, p. 141, 277, 279-280] and
[Pfaff, 2008, pp. 53-54, 57].

Some time series do not meet the conditions required to be classified as ARMA
models, but instead need to be differenced in order to become stationary processes.
Therefore, the class of ARMA models is broadened to include differencing, leading
to the Integrated ARMA (ARIMA) model.

Definition 3.7 (ARIMA(p, d, q)) A process {xt} is said to be an ARIMA model with
order (p, d, q), written ARIMA(p, d, q), if

∇dxt = (1− B)dxt

is ARMA(p, q), where p, d, and q are non-negative integers. In general, the ARIMA(p, d, q)
model is written as

φ(B)(1− B)dxt = θ(B)εt.

Note that an ARMA(p, q) process is also an ARIMA(p, 0, q) process. If d ≥ 1
then the time series {xt} is not stationary, and to obtain a stationary process the
time series needs to be differenced d times. It is said that the time series {xt} is
integrated of order d, and is written {xt} ∼ I(d).

When a time series does not meet the conditions required to be classified as an
ARMA model, it can be difficult to determine whether the process is non-stationary
due to the corresponding AR polynomial having a root on the unit circle, that is,
a unit root, and therefore needs to be differenced, or due to the process having a
time trend and therefore needs to be detrended.6 In the first case, the time series
is I(1) and in the second case the time series is I(0).

Unit root testing can be used in order to determine if the non-stationarity of the
time series is due to a time trend or a root on the unit circle.

3.2.1 Unit Root Testing

As the name suggests, the aim of unit root testing is to test if the AR polynomial
has a root on the unit circle. However, this is not as simple as it appears.

Let {xt} be an AR(1) process, that is, xt = φ1xt−1 + εt. It would be simple to test
for the following hypothesis:

H0 : φ1 = 0, Ha : φ1 6= 0,

6[Pfaff, 2008, p. 53]
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since then a simple t-test could be used:

tφ̂1
=

φ̂1

sd
(
φ̂1
) ∼ t(n− 1).

However, it should be tested if the time series {xt} has a unit root and, therefore,
the following hypothesis needs to be tested:

H0 : φ1 = 1, Ha : −1 < φ1 < 1.

That is, the null hypothesis is that the process has a unit root and the alternative
hypothesis is that the process is stationary and causal. This hypothesis causes
issues for the t-test, since φ1 = 1 means that the process is a random walk and
therefore non-stationary, meaning that the standard deviation of φ1 does not con-
verge to a constant, but instead goes to infinity. This means that tφ̂1

no longer
follows a t-distribution, but instead goes to a non-standard distribution. In order
to limit this paper no further details about the theory behind this is presented.

The solution to this problem is the Dickey-Fuller (DF) test.

In the DF-τ test, the following model is considered:

xt = µ + τt + φ1xt−1 + εt,

which, under the assumption H0 : φ1 = 1, defines a random walk model with drift
and a linear time trend. The model is transformed to

∇xt = µ + τt + γxt−1 + εt, (3.5)

where the assumption now is H0 : γ = 0.

Other versions of the DF test are the DF-µ test, where τ = 0 in Equation (3.5), and
the DF-0 test, where µ = τ = 0 in Equation (3.5).

Since the DF tests are not regular statistical tests in the way that the test statistics
go to non-standard distributions, regular critical values can not be used. Instead
critical values from special simulated tables found for example in [Fuller, 1996]
should be used.

The DF tests mentioned above are based on an AR(1) model, which can sometimes
prove adequate for the time series at hand. However, at other times the regression
in Equation (3.5) is too simple.

The solution to this problem is to use the Augmented Dickey-Fuller (ADF) test,
which uses higher orders of AR processes:
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Every AR(p) model

xt =
p

∑
j=1

φjxt−j + εt

can be rewritten as

∇xt = γxt−1 +
p−1

∑
j=1

γ̃j∇xt−j + εt, (3.6)

where there is a bijection between the parameters φ1, . . . , φp and γ, γ̃1, . . . , γ̃p−1.
Similarly to the DF test, if γ = 0 in Equation (3.6) then the AR polynomial has a
unit root.

There are several ways of choosing the augmentation, p, in Equation (3.6); as a
function of the sample size, using information criteria such as AIC or BIC, or such
that there is no longer any autocorrelation in the residuals.

3.3 Long Memory

This section is based on [Ruppert, 2004, pp. 270-272], [Nielsen and Frederiksen,
2005, pp. 406, 409, 411-412], [Sibbertsen, 2004, p. 476], and [Shumway and Stoffer,
2011, pp. 181-182, 267-270].

The conventional ARMA(p, q) model is often referred to as a short-memory model
because the coefficients in the MA(∞) representation

xt =
∞

∑
j=0

ψjεt−j

obtained by solving
φ(z)ψ(z) = θ(z)

are dominated by exponential decay. This implies that the ACF of the short
memory process goes to zero, ρ(k) → 0, exponentially fast as k → ∞ and that

∞
∑

h=−∞
|γ(h)| < ∞.

If the average of x1, x2, . . . , xn is written as x̄n =
x1 + · · ·+ xn

n
then

Var(x̄n) =
1
n

n

∑
h=−n

(
1− |h|

n

)
γ(h).

Assuming
∞
∑

h=−∞
|γ(h)| < ∞ means that

n

∑
h=−n

(
1− |h|

n

)
γ(h)→

∞

∑
h=−∞

γ(h) for n→ ∞.
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This means that

nVar(x̄n)→
∞

∑
h=−∞

γ(h)

or

Var(x̄n)→
1
n

(
∞

∑
h=−∞

γ(h)

)
+ o

(
1
n

)
.

Thus, for a short memory time series Var(x̄n) goes to zero with the usual speed σ2

n
when the sample size increases, meaning that x̄n is a good estimate of the mean
of the time series. When this is not the case, the advice is often to difference the
time series until it fluctuates around a well-defined mean value and its ACF decays
fairly rapidly to zero. However, differencing can be too severe a modification in
the sense that the non-stationary model might represent an overdifferencing of the
original process.

These stationary time series that do not fulfil
∞
∑

h=−∞
|γ(h)| < ∞ and, therefore, can

not be modelled by ARMA models, instead have
∞
∑

h=−∞
|γ(h)| = ∞. This means that

the calculations of Var(x̄n) do not work and no matter how large the sample size
is, a good estimate can not be made of the mean of the time series.

Furthermore, seen from a prediction point of view, short memory of a time series
implies that after a certain number of lags, the past values can be disregarded from
the prediction without serious consequences. However, when the autocorrelations
do not go to zero fast enough no past values can be disregarded, since their signifi-
cance will be too large, and the prediction will have to include all past information
to infinity in order to be a good prediction.

3.3.1 The ARFIMA Model

Therefore, the concept of differencing in the ARIMA model is expanded to allow-
ing d in Definition 3.7 to be any real number, leading to the Fractionally Integrated
ARMA (ARFIMA) model.

Definition 3.8 (ARFIMA(p, d, q)) A time series {xt} is said to be an ARFIMA model
with order (p, d, q), written ARFIMA(p, d, q), if

∇dxt = (1− B)dxt (3.7)

is ARMA(p, q), where p and q are non-negative integers and d ∈ (−0.5, 0.5).

If d ∈ (0.5, 1), the time series is differenced once, and then d ∈ (−0.5, 0). When d
is negative, it is said that the time series is antipersistent.
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The term (1− B)d in Equation (3.7) is to be interpreted the following way: For d a
positive integer the well-known binomial formula is given by

(x + y)d =
d

∑
j=0

(
d
j

)
xjyd−j.

This formula can be written as

(x + y)d =
∞

∑
j=0

(
d
j

)
xjyd−j (3.8)

if it is implicit that
(

d
j

)
= 0 for d integer and j > d.

When d is not an integer, there is a generalised binomial formula, which shows the
series expansion for powers that are not necessarily positive integers:

(x + y)α =
∞

∑
j=0

(
α

j

)
xjyα−j, (3.9)

where it is assumed that |x| < |y|. If α is a positive integer then Equation (3.9) is
interpreted as Equation (3.8). Letting x = −B, y = 1, and α = d yields

(1− B)d =
∞

∑
j=0

(
d
j

)
(−B)j1d−j = 1 +

∞

∑
j=1

(−1)j
(

d
j

)
Bj. (3.10)

If α is not an integer then
(

α

j

)
is defined using the gamma function as follows:

The gamma function is formally defined as

Γ(x) =
∞∫

0

tx−1e−tdt, f or x 6= 0,−1,−2, . . . .

It follows that Γ(1) = 1 and that the following recursion applying to all x: Γ(x +

1) = xΓ(x). If x is a positive integer, this means that Γ(x + 1) = x!.

A simple closed expression for the gamma function does not exist, however, nor-
mally it is tabulated in the area 0 < x < 1, and then the function value for all
other positive numbers can be found using the recursion formula. For negative
non-integer x, the function values can be found using the reverse of the recursion

formula: Γ(x) =
1
x

Γ(x + 1).

The gamma function can now be used to define the generalised binomial coeffi-
cients: For positive integers d > j, the binomial coefficient is given by(

d
j

)
=

d!
j!(d− j)!

.
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Using the gamma function to rewrite this yields(
d
j

)
=

Γ(d + 1)
Γ(j + 1)Γ(d− j + 1)

. (3.11)

If j is a positive integer and |d| < 1, then using the reverse of the recursion function
on the term Γ(d− j + 1) in the denominator in Equation (3.11) and the recursion
formula on Γ(j− d) yields

Γ(d− j + 1) = (−1)j Γ(d + 1)Γ(−d)
Γ(j− d)

,

and substituting this in Equation (3.11) yields(
d
j

)
= (−1)j Γ(j− d)

Γ(−d)j!
.

Substituting this in Equation (3.10) yields

(1− B)d = 1 +
∞

∑
j=1

Γ(j− d)
Γ(−d)j!

Bj. (3.12)

It can be shown7 that

(1− B)−d =
∞

∑
j=0

Γ(j + d)
Γ(d)j!

Bj. (3.13)

The ARFIMA(0, d, 0) model is given by

(1− B)dxt = εt. (3.14)

Substituting (1− B)d with Equation (3.12) yields

εt = (1− B)dxt = xt +
∞

∑
j=1

Γ(j− d)
Γ(−d)j!

Bjxt = xt +
∞

∑
j=1

πjxt−j,

where πj =
Γ(j− d)
Γ(−d)j!

. Alternatively, the model can be written as an MA(∞) model

by using Equation (3.13):

xt = (1− B)−dεt =
∞

∑
j=0

Γ(j + d)
Γ(d)j!

Bjεt =
∞

∑
j=0

ψjεt−j,

where ψj =
Γ(j + d)
Γ(d)j!

.

7[Shumway and Stoffer, 2011, p. 269]
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For the ARFIMA(0, d, 0) process in Equation (3.14), where εt is a white noise pro-
cess and |d| < 0.5, it can be shown8 that {xt} is stationary and invertible, and that
its ACF is

ρ(h) =
Γ(h + d)Γ(1− d)
Γ(h− d + 1)Γ(d)

∼ h2d−1,

for large h, meaning that the rate of decay is hyperbolic.9 It follows then for
d ∈ (0, 0.5) that

∞

∑
h=−∞

|ρ(h)| = ∞

Estimation of d

There are several methods for estimating the fractional differencing parameter d.

One parametric method is Gaussian maximum likelihood in the time domain. This
method is similar to the estimation method described in Section 3.1. Assuming
that the time series has zero mean and that the innovations are Gaussian the log-
likelihood function is given by

l(d, φ, θ, σ2) = −1
2

log(|Σn|)−
1
2

xTΣ−1
n x,

where Σn is now also a complicated function of d.

Other estimation methods exist, and among them is the frequently used Geweke-
Porter-Hudak (GPH) Log-Periodogram Regression (LPR), often referred to as the
GPH estimator. Contrary to the Gaussian maximum likelihood method, the GPH
estimator works in the frequency domain, using an approximation to the spectral
denisty.

Definition 3.9 (Spectral Density) If a time series {xt} has an autocovariance γ satisfy-

ing
∞
∑

h=−∞
|γ(h)| < ∞, then the spectral density for {xt} is defined as

f (ω) =
∞

∑
h=−∞

γ(h) exp(−2πiωh),

for −∞ < ω < ∞.

8[Shumway and Stoffer, 2011, p. 26]
9[Shumway and Stoffer, 2011, p. 269]
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Properties of the Spectral Density

Some properties of the spectral density are:

1.
∞
∑

h=−∞
|γ(h)| exp(−2πiωh) < ∞, due to

∞
∑

h=−∞
|γ(h)| < ∞ and

| exp(iθ)| = | cos(θ) + i sin(θ)| =
(
cos2(θ) + sin2(θ)

)1/2
= 1.

2. f is periodic with period 1, due to exp(−2πiωh) being a periodic function of
ω with period 1. This means that the domain of f can be constrained to be
−1/2 ≤ ω ≤ 1/2.

3. f is an even function, that is, f (−ω) = f (ω).

4. f (ω) ≥ 0.

5. γ(h) =
1/2∫
−1/2

exp(2πiωh) f (ω)dω.

Note from item 5 that γ(0) = Var(xt) =
1/2∫
−1/2

f (ω)dω, meaning that the total

variance is the spectral density integrated over all frequencies. Note also that
the autocovariance function γ(h) and the spectral density f (ω) contain the same
information; the autocovariance function contains the information in the form of
lags and the spectral density contains the information in the form of cycles.

Furthermore, note that f (0) =
∞
∑

h=−∞
γ(h). This means that for short memory

processes, where
∞
∑

h=−∞
|γ(h)| < ∞, the spectral density goes to a constant as

the frequency, ω, goes to zero. However, for long memory processes, where
∞
∑

h=−∞
|γ(h)| = ∞, the spectral density goes to infinity when 0 < d < 0.5 and to

zero when −0.5 < d < 0. These scenarios are illustrated in Figure 3.1. The GPH
estimator uses these properties to determine if the time series has long memory.
In the GPH estimator a bandwidth ωmin to ωmax is chosen, where the time series
is examined. However, instead of examining the spectral density, the method uses
the periodogram, which is an estimate of the spectral density. The method then
takes the logarithm of the periodogram, which is illustrated in Figure 3.2.

Thus, instead of examining whether the spectral density goes to zero, a constant,
or infinity in order to determine if the time series has long memory, the GPH
estimator examines the slope of the line resulting from taking the logarithm of
the periodogram in the chosen bandwidth. Moreover, it turns out that the slope
of the logarithm of the periodogram is the estimate for the fractional differencing
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Figure 3.1: Illustrations of the spectral density for an anti persistent time series with
−0.5 < d < 0, a stationary time series with d = 0, and a long memory time series
with 0 < d < 0.5.
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Figure 3.2: Illustrations of the logarithm of the spectral density for an anti persistent
time series with −0.5 < d < 0, a stationary time series with d = 0, and a long memory
time series with 0 < d < 0.5 in the bandwidth ωmin to ωmax.

parameter, d, multiplied by −2.

In this paper the GPH estimator is used to estimate the fractional differencing
parameter d. This is due to the disadvantages of the Gaussian maximum likeli-
hood method in the time domain: The method requires the covariance matrix, Σn,
of the process which is an extensive computation, and parametric time domain
procedures can sometimes have severe bias. This bias of parametric time domain
methods is often alleviated when larger sample sizes are considered, however, the
sample sizes in this paper are not very large. Another disadvantage of parametric
methods is that the number of parameters in the model should be known; thus,
the orders of the AR and MA polynomials need to be assumed. One disadvantage
of the GPH estimator is that the periodogram is used to estimate the spectral den-
sity of the process: The periodogram is not a consistent estimator which causes
difficulties for the estimator. However, the GPH estimator has been showed to out-
perform even correctly specified parametric time domain methods, and it shows a
much lower bias. Furthermore, it does not need to make assumptions about the
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model order, making it more robust.10

3.4 Regression with ARMA Errors

This section is based on [Ruppert and Matteson, 2015, pp. 367-373, 377-380].

The focus of this chapter so far has been on modelling time series only using the
time series itself. However, the purpose of time series analysis is often to examine
the relationship between several time series. This is usually done using multiple
linear regression; however, multiple linear regression assumes that the innovations,
ε, are mutually independent, which is often not the case.11 Therefore, another
method is to use linear regression with ARMA errors. As the name suggests, the
method involves a simple multiple linear regression of one time series on other
time series and then assuming that the errors are correlated; therefore, an ARMA
model is fitted to the residuals of the regression model:

Assume that the relationship between a dependent time series {xt} and b exoge-
nous time series {yt,1}, . . ., {yt,b} is to be examined. Then the linear regression
model with ARMA errors is given by

xt = β1yt,1 + · · ·+ βbyt,b + εt,

where εt is an ARMA process; that is,

φ(B)εt = θ(B)ut,

where ut ∼ WN(0, σ2). As in regular multiple linear regression, the coefficients
β1, . . . , βb signify the effect of changing the exogenous time series, yt,1, . . . , yt,b, on
the dependent time series, xt.

The procedure of fitting a regression model with ARMA errors is to first use mul-
tiple linear regression on the dependent time series and the exogenous time series,
and then fit an ARMA model to the residuals from the multiple linear regression.

In order to make predictions, the procedure is as follows: Make predictions for
the ARMA model fitted to the residuals from the multiple linear regression. Make
predictions for the exogenous time series and add them to the predictions from the
ARMA model.

10[Sibbertsen, 2004, p. 476] and [Nielsen and Frederiksen, 2005, p. 406]
11[Ruppert and Matteson, 2015, p. 367]
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Modelling the Data

In order to determine which model best fits a time series, there are some steps to
consider.

• Plot and examine the time series and its ACF and PACF. Try to determine
if the time series looks stationary and look for trends, seasonal components,
level shifts, extreme values, increasing variance, et cetera. For time series that
do not seem to be stationary, it can be difficult to determine if the time series
has a unit root and should be differenced, or a time trend which should be
removed: Use a unit root test, such as the ADF. The ACF should also indicate
if the time series has long memory.

• Apply relevant transformations to the data such that the residuals look sta-
tionary.

• After having stationarised the data, use the ACF and PACF to determine
preliminary values of p and q.

• Estimate the parameters of the preliminary chosen models.

• Use diagnostic tests to confirm that the residuals of the models behave as
Gaussian white noise.

• Choose p and q.

4.1 Global CO2 Emissions

The global CO2 emission time series in Figure 2.1 does not look stationary. Until
approximately 1960, the time series appears almost linear, however, after 1960 there

33
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appears to be an increasing trend. Taking the logarithm of the time series yields
the result in Figure 4.1. Taking the logarithm of the global CO2 emissions seems
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Figure 4.1: The logarithm of global CO2 emissions measured in billion tonnes from
1750 to 2016.

to have changed the exponential time trend to a linear time trend: However, the
sudden jump in approximately 1960 is still present in the data.

One way of removing this linear time trend with a jump at 1958 and to make the
time series stationary is by fitting the following model to the data

xt = β0 + β11(t>1958) + β2t + β31(t>1958)t.
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Figure 4.2: The residuals from the model in Equation (4.1), where xt is the logarithm
of the global CO2 emissions at time t.
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Fitting this model to the data yields the following significant1 parameter estimates:

xt = −5.181 + 4.715 · 1(t>1958) + 0.036t− 0.015 · 1(t>1958)t. (4.1)

The residuals from the model can be seen in Figure 4.2. The figure shows that the
model has removed the time trend successfully: However, the time series still does
not look completely stationary. This is confirmed by the ACF shown in Figure 4.3.
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Figure 4.3: ACF and PACF for the residual time series in Figure 4.2.

When performing an ADF test on the residuals, the null hypothesis is not rejected,
meaning that it can not be rejected that the residual time series has a unit root. The
differenced residual time series, which now looks stationary, is shown in Figure
4.4. This is confirmed by the ACF and PACF shown in Figure 4.5. The ACF and
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Figure 4.4: The differenced residual time series from 1751 to 2016.

1Using a significance level of 0.05.
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Figure 4.5: ACF and PACF for the differenced residual time series in Figure 4.4.

PACF could indicate an AR(1) model or an MA(1) model since it could be argued
that the ACF is tailing off and the PACF cuts off at lag 1, or it could be argued
that the PACF is tailing off and the ACF cuts off at lag 1. Since these two models
are only preliminary choices, similar models are also fitted, and the best model is
chosen based on BIC and that the residuals behave as white noise. This results in
the best model for the differenced residuals from the global CO2 emission model
in Equation (4.1) being an MA(1) model with the following significant parameter:

xt = εt − 0.149εt−1.

In conclusion, the logarithm of the global CO2 emissions where a time trend and
drift have been removed using the model in Equation (4.1), follows an ARIMA(0, 1, 1)
model.

4.2 Atmospheric CO2 Concentration

The atmospheric CO2 concentration time series in Figure 2.1 does not look sta-
tionary. There seems to be either a time trend in the time series, which should be
removed, or a unit root, meaning that the time series should be differenced.

The following model

xt = β0 + β11(t>1958) + β21(t>1958)t + β3t2 + β41(t>1958)t
2

with the significant parameters

xt = 277.3 + 416.4 · 1(t>1958) − 4.399 · 1(t>1958)t + 0.0009t2 + 0.012 · 1(t>1958)t
2 (4.2)
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Figure 4.6: The residuals from the model in Equation (4.2), where xt is the atmospheric
CO2 concentration at time t.

yields the residuals in Figure 4.6. It is clear that the model in Equation (4.2) has
removed the time trend, however, the ACF and PACF of the residuals seen in Figure
4.7 still indicate some autocorrelation in the time series. This is confirmed by an
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Figure 4.7: ACF and PACF for the residual time series in Figure 4.6.

estimated fractional integration parameter, d, of approximately 0.93: However, as
a d parameter estimate of 0.93 makes the differenced time series antipersistent, it
is chosen to fractionally difference the atmospheric CO2 concentration residuals
with d = 0.49. This yields the time series in Figure 4.8. The ACF and PACF of
the fractionally differenced time series, seen in Figure 4.9, could indicate several
different models, since it could be argued that both the ACF and PACF are tailing
off, indicating an ARMA model. After fitting several different ARMA models to
the time series, the best model for the fractionally differenced atmospheric CO2

concentration residuals is found to be an ARMA(2, 2) model with the following
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Figure 4.8: The fractionally differenced atmospheric CO2 concentration residual time
series from 1751 to 2016, where d = 0.49.
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Figure 4.9: ACF and PACF for the fractionally differenced residual time series in
Figure 4.8.

significant parameters:

xt = 1.822xt−1 − 0.847xt−2 + εt − 0.473εt−1 + 0.181εt−2.

This means that the best model for the atmospheric CO2 concentration residuals is
an ARFIMA(2, 0.49, 2) model.

4.3 Temperature Anomalies

The temperature time series in Figure 2.4 seems to have an upwards-going trend,
that should be removed. In order to remove the time trend, the following model is
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fitted to the data
xt = β0 + β1t + β2t2.

Fitting this model to the temperature time series yields the following significant
parameter estimates:

xt = −0.266− 0.004t + 0.0001t2. (4.3)

The residuals from the model is shown in Figure 4.10. The figure shows that the
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Figure 4.10: The residuals from the model in Equation (4.3), where xt is temperature
anomaly at time t.

time trend has been removed, and the time series looks more stationary: However,
the ACF still indicates some persistence, as seen in Figure 4.11. Differencing the
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Figure 4.11: ACF and PACF for the residual time series in Figure 4.10.

time series one time makes the time series look over-differenced, which is con-
firmed by an estimated fractional integration parameter, d, of approximately 0.77.
As for the atmospheric CO2 concentration, it is chosen to fractionally integrate the
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temperature anomaly residuals with d = 0.49. This yields the time series in Figure
4.12. The time series looks stationary, which is confirmed by the ACF and PACF
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Figure 4.12: The fractionally differenced temperature anomaly residual time series
from 1850 to 2016, where d = 0.49.

shown in Figure 4.13. The ACF and PACF in the figure could indicate several
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Figure 4.13: ACF and PACF for the differenced residual time series in Figure 4.12.

different models, since it could be argued that the ACF is tailing off and that the
PACF cuts off after lags three or five, or it could be argued that both the ACF and
PACF are tailing off. After fitting a range of different models and using BIC and
residual analysis for choosing the best model, it is concluded that the best model
for the fractionally differenced temperature anomaly residuals is an ARMA(3, 3)
model with the following significant parameters:

xt = 2.108xt−1 − 1.725xt−2 + 0.555xt−3 + εt + 0.424εt−1 + 0.678εt−2 + 0.275εt−3,
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meaning that the best model for the temperature anomaly residuals is an
ARFIMA(3, 0.49, 3) model.

4.4 GDP per Capita

The first principal component for low-income, lower-middle-income, upper-middle-
income, and high-income economies are very similar as seen in Figure 2.10. This
means, that the process for finding the model that fits each time series best is
also similar for the four groups. None of the four time series in Figure 2.10 seem
stationary, since they all have an upwards-going trend.

The following models are used to remove the time trend in each time series:

Low-Income: xt = −4.159 + 0.004t2,

Lower-Middle-Income: xt = −4.244− 0.093t + 0.006t2,

Upper-Middle-Income: xt = −4.435− 0.096t + 0.006t2,

High-Income: xt = −7.423 + 0.006t2.

(4.4)

Note that all of the models include a significant intercept, which might seem sur-
prising when looking at Figure 2.10. This is due to the four time series having
mean zero and therefore they do not intercept zero at the beginning of the data;
however, in Figure 2.10 each time series has been shifted to have initial value equal
to zero in order to make it easier to compare their development.

The residuals from the models above are shown in Figure 4.14. The figure illus-
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Figure 4.14: The residuals from the models in Equation (4.4) of the first principal
component for low-income, lower-middle-income, upper-middle-income, and high-
income economies from 1961 to 2017.
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trates how the models in Equation (4.4) have removed the time trend from each
time series, however, they do not look completely stationary. This is confirmed by
the ACF and PACF, shown in Figure 4.15 for the residuals of the model for the
low-income economies. The ACF and PACF plots for the residuals from the other
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Figure 4.15: ACF and PACF for the residual time series in Figure 4.14 for the low-
income economies.

models look similar to those from the low-income economies. Differencing the
residual time series yields the results shown in Figure 4.16. The time series seem
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Figure 4.16: The difference of the residual time series in Figure 4.14 from 1961 to 2017.

more stationary now, which is confirmed by by the ACFs and PACFS for the times
series, which are shown in Figure 4.17.

In order to determine preliminary values of p and q, these ACFs and PACs are
examined.
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Figure 4.17: ACF and PACF for the differenced first principal component residuals in
Figure 4.16 for low-income, lower-middle-income, upper-middle-income, and high-
income economies.
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4.4.1 Low-Income Economies

For the low-income economies, the ACF and PACF could indicate an AR(1) model
or an MA(1) model, since it could be argued that the ACF is tailing off and the
PACF cuts off at lag one, or it could be argued that the PACF is tailing off and
the ACF cuts off at lag one. Since these two models are only preliminary choices
similar models are also fitted and the best model is chosen based on BIC and a
residual analysis. This results in the best model for the differenced residuals being
an MA(1) model with the following parameter:

xt = εt + 0.376εt,

meaning that the best model for the residuals from the model for the first principal
component for the low-income economies is an ARIMA(0, 1, 1) model.

4.4.2 Lower-Middle-Income Economies

For the lower-middle-income economies, the ACF and PACF could also indicate an
AR(1) model or an MA(1) model, since it could be argued that the ACF is tailing
off and the PACF cuts off at lag one, or that the PACF is tailing off and the ACF
cuts off at lag one. After fitting similar models, it is concluded that the best model
for the differenced residuals is an AR(1) model with the following parameter:

xt = 0.356xt−1 + εt.

This means that the best model for the residuals from the model for the first
principal component for the lower-middle-income economies is an ARIMA(1, 1, 0)
model.

4.4.3 Upper-Middle-Income Economies

The ACF and PACF for the differenced first principal component residuals for the
upper-middle-income economies are very similar to those for the lower-middle-
income economies. Therefore, the ACF and PACF for the upper-middle-income
economies indicate the same models as for the lower-middle-income economies;
that is, an AR(1) model or an MA(1) model. Similarly to the lower-middle-income
economies, the best model for the differenced data for the upper-middle-income
economies is an AR(1) model with the following parameter:

xt = 0.262xt−1 + εt,

meaning that the best model for the residuals from the model for the first principal
component for the upper-middle-income economies is an ARIMA(1, 1, 0) model.
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4.4.4 High-Income Economies

For the high-income economies, the ACF and PACF could indicate an AR(3) model
or an MA(1) model. The best model for the differenced data ends up being a
MA(2) model with the following parameters:

xt = εt + 0.318εt−1 − 0.259εt−2,

which means that the best model for the residuals from the model for the first
principal component for the high-income economies is an ARIMA(0, 1, 2) model.

The following boxes sum up the models chosen for the time series:

Global CO2 Emissions
xt = Global CO2 Emissions at time t
yt = log(xt) + 5.181− 4.715 · 1(t>1958) − 0.036t + 0.015 · 1(t>1985)t
zt = yt − yt−1
zt = εt − 0.149εt−1

Atmospheric CO2 Concentration
xt = Atmospheric CO2 Concentration at time t
yt = xt − 277.3− 416.4 · 1(t>1958) + 4.399 · 1(t>1958)t− 0.0009t2 − 0.012 · 1(t>1958)t2

zt = (1− B)0.49yt
zt = 1.822zt−1 − 0.847zt−2 + εt − 0.473εt−1 + 0.181εt−2

Temperature Anomalies
xt = Temperature Anomaly at time t
yt = xt + 0.266 + 0.004t− 0.0001t2

zt = (1− B)0.49yt
zt = 2.108zt−1 − 1.725zt−2 + 0.555zt−3 + εt + 0.424εt−1 + 0.678εt−2 + 0.275εt−3

GDP per Capita for Low-Income Economies
xt = First Principal Component for Low-Income Economies at time t
yt = xt + 4.159− 0.004t2

zt = yt − yt−1
zt = εt + 0.376εt−1

GDP per Capita for Lower-Middle-Income Economies
xt = First Principal Component for Lower-Middle-Income Economies at time t
yt = xt + 4.244 + 0.093t− 0.006t2

zt = yt − yt−1
zt = 0.356zt−1 + εt
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GDP per Capita for Upper-Middle-Income Economies
xt = First Principal Component for Upper-Middle-Income Economies at time t
yt = xt + 4.435 + 0.096t− 0.006t2

zt = yt − yt−1
zt = 0.262zt−1 + εt

GDP per Capita for High-Income Economies
xt = First Principal Component for High-Income Economies at time t
yt = xt + 7.423− 0.006t2

zt = yt − yt−1
zt = εt + 0.318εt−1 − 0.259εt−2



Chapter 5

Predictions

Temperature Anomalies

The models from Chapter 4 can now be used to predict the future development
in CO2, temperature, and GDP per capita. First the temperature anomaly model
is used to predict when the temperature has increased 1.5°C and 2°C compared
to pre-industrial levels. Since the temperature anomaly in 1850 was −0.274°C,
the temperature has increased 1.5°C when the temperature anomaly has reached
−0.274 + 1.5 = 1.226°C, and the temperature has increased 2°C when the tem-
perature anomaly has reached −0.274 + 2 = 1.726°C. Using the model fitted to
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Figure 5.1: Temperature anomalies (black solid line) from 1850 to 2018 and tempera-
ture anomaly predictions (black dashed line) from 2019 to 2100. The horizontal grey
line illustrates 0°C, the horizontal blue line illustrates 1.226°C, that is, a temperature
increase of 1.5°C, and the horizontal red line illustrates 1.726°C, that is, a temperature
increase of 2°C.
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the temperature anomaly data in Chapter 4 to make predictions yields the tem-
perature anomaly predictions seen in Figure 5.1, where the horizontal blue line
illustrates 1.226°C and the horizontal red line illustrates 1.726°C, that is, temper-
ature increases of 1.5°C and 2°C, respectively. The temperature anomaly predic-
tions intersect 1.226°C between 2057 and 2058, meaning that the temperature has
increased 1.5°C compared to pre-industrial levels in 2058 according to the model
fitted in Chapter 4, and the temperature anomaly predictions intersect 1.726°C be-
tween 2082 and 2083, meaning that the temperature has increased 2°C compared
to pre-industrial levels in 2083.

After having determined the years in which the temperature has increased 1.5°C
and 2°C compared to pre-industrial levels, predictions for the other time series can
be made and their behaviour examined in these years.

Global CO2 Emissions

The predictions of the global CO2 emissions can be seen in Figure 5.2. The fig-
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Figure 5.2: Global CO2 emissions (black line) from 1751 to 2016 and global CO2
emission predictions (black dashed line) from 2017 to 2100. The horizontal blue line
illustrates the global CO2 emissions in 2058, and the horizontal red line illustrates the
global CO2 emissions in 2083.

ure illustrates how the global CO2 emissions continue to increase rapidly since
the exponential growth trend continues. By 2058 the global CO2 emissions will
have reached approximately 410 billion tonnes and by 2083 they will have reached
approximately 669 billion tonnes unless the current development is changed.



5.1. Regression with ARMA errors 49

Atmospheric CO2 Concentration

The predictions of the atmospheric CO2 concentration can be seen in Figure 5.3.
The atmospheric CO2 concentration also continues to increase, and in 2058 the

300

400

500

600

700

1750 1800 1850 1900 1950 2000 2050 2100
Year

P
ar

ts
 P

er
 M

ill
io

n

Atmospheric CO2 Concentration
Prediction

Atmospheric CO2 Concentration

Figure 5.3: Atmospheric CO2 concentration (black line) from 1750 to 2016 and at-
mospheric CO2 concentration predictions (black dashed line) from 2017 to 2100. The
horizontal blue line illustrates the atmospheric CO2 concentration in 2058, and the
horizontal red line illustrates the atmospheric CO2 concentration in 2083.

atmospheric CO2 concentration will be approximately 511 PPM and in 2083 it will
be approximately 599 PPM.

GDP per Capita

The predictions of the development in the first principal component for low-income,
lower-middle-income, upper-middle-income, and high-income economies can be
seen in Figure 5.4. The figure illustrates how the first principal component for
all four groups will continue their upwards-going trend, however, the rate of in-
crease seems to be higher for the high-income, upper-middle-income, and lower-
middle-income groups and lower for the low-income group. This means that
higher-income economies will continue to have larger increases in GDP per capita
compared to low-income economies, and that the difference between development
in higher-income and low-income economies will continue to grow.

5.1 Regression with ARMA errors

The predictions for each time series made so far are only based on the time series
itself and do not incorporate information about the development in the other time
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Figure 5.4: First principal component for low-income, lower-middle-income, upper-
middle-income, and high-income economies (coloured solid lines) from 1960 to 2017
and predictions of the time series (soloured dashed lines) from 2018 to 2100. The
vertical blue line illustrates 2058, and the vertical red line illustrates 2083.

series. Thus, in order to examine the effect of one time series on another, regression
models with ARMA errors are used, which where introduced in Section 3.4.

When fitting a regression model with ARMA errors, the time series in the model
should be stationary. However, it would be preferred to also include the time
trends in each time series, since it is hoped that the time trend in the exogenous
time series can help explain the time trend in the dependent time series. Therefore,
instead of using the original time series in the regression models, the stationary
data that is used to fit the ARMA models in Chapter 4 is used, where each time
series’ time trend is added again. For example, for the global CO2 emissions, the
data defined as zt in the box at the end of Chapter 4 is used, where the inverse
of the transformations used in order to transform the data from xt to yt, which
is the step where the time trend is removed, is applied. This means that the first
difference still is applied to the data, but the time trend has been added again. This
new data is refered to as the stationary data with time trend.

As in Chapter 4, the choice of an ARMA model fitted to the residuals from the
regression model is based on BIC and that the residuals from the ARMA model
behave as white noise.
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Global CO2 Emissions

In order to determine the effect of global CO2 emissions on temperature changes,
different paths of changes in global CO2 emissions are predicted. This will aid
in determining if reducing global CO2 emissions will have an effect on climate
changes and if temperature changes will have an effect on economic growth. In
Figure 5.5 the different prediction paths are showed in the form of the stationary
data with time trend. The dashed line (Prediction) illustrates the predictions based
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Figure 5.5: Stationary global CO2 emissions with time trend (black solid line) from
1752 to 2016 and global CO2 emission predictions from Figure 5.2 based on the
ARMA(0, 1) model fitted in Chapter 4 with time trend (black dashed line) from 2017
to 2100. Prediction Halved (black dotted line) illustrates the prediction path where
the increase in the predictions has been halved. Prediction Constant (black dotted
and dashed line) illustrates the prediction path where the global CO2 emissions con-
tinue to be at the same level as in 2016. Prediction Decrease (black long-dashed line)
illustrates the prediction path where the global CO2 emissions decrease to half of the
current level. All predictions are from 2017 to 2100.

on the ARMA(0, 1) model fitted in Chapter 4. These are the predictions which are
also illustrated in Figure 5.2, however, in Figure 5.5 the data and predictions are
transformed to be stationary with time trend.

Prediction Halved, which is the second prediction path from the top, illustrated
by the dotted line, is constructed using the predictions mentioned above from the
ARMA(0, 1) model illustrated as the dashed line in the same figure: The increase
in the global CO2 emissions during the prediction period is halved, such that in the
space of the stationary data with time trend, the increase in the prediction period
is now approximately 680− 189 = 491 billion tonnes compared to an increase in
the original predictions of approximately 1171− 189 = 982 = 491 · 2 billion tonnes.

Prediction Constant, which is the third prediction path from the top, illustrated
by the dotted and dashed line, is where the global CO2 emissions continue at the
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same level as in 2016, which is the last observation in the data set. In the space of
the stationary data with time trend, this level is approximately 189 billion tonnes.

Prediction Decrease, which is the fourth and final prediction path, illustrated by
the long-dashed line, is also based on the predictions from the ARMA(0, 1) model:
The increases in the global CO2 emissions during the prediction period has been
subtracted from the 2016 level, such that the global CO2 emissions are decreasing
instead of increasing, until it reaches half of the level in 2016, which in the space
of the stationary data with time trend is approximately 189/2 ≈ 95 billion tonnes.

Atmospheric CO2 Concentration

After having constructed different prediction paths for the global CO2 emissions,
the effects of this on the atmospheric CO2 concentration can be examined. Fitting
a regression model on the atmospheric CO2 concentration with global CO2 emis-
sions as exogenous variable and fitting an ARMA model to the residuals yields the
following parameters, where {xt} is the atmospheric CO2 concentration, {yt} is
global CO2 emissions, and {ut} is white noise:

xt = 288.678 + 0.572yt + εt,

where {εt} follows an ARMA(1, 1) process given by

εt = 0.982εt−1 + ut − 0.219ut−1.

The predictions for the stationary atmospheric CO2 concentration with time trend
including information about the global CO2 emissions can be seen in Figure 5.6.
The grey solid line (Original Prediction) illustrates the predictions based on the
ARMA(2, 2) model fitted in Chapter 4 in the space of the stationary data with
time trend, thus, they do not include information about global CO2 emissions. The
remaining four predictions; Prediction, Prediction Halved, Prediction Constant,
and Prediction Decrease are predictions from the regression model with ARMA
errors using the four prediction paths for the global CO2 emissions showed in
Figure 5.5.

Figure 5.6 illustrates how changing the global CO2 emissions will affect the atmo-
spheric CO2 concentration. Continuing to increase the global CO2 emissions will
cause the atmospheric CO2 concentration to increase at an even higher rate than
in the past. Halving the global CO2 emissions will only cause the atmospheric
CO2 concentration to increase at a lower rate until approximately 2058, after which
it will increase at a higher rate than in the past, causing the prediction path for
Prediction Halved to pass the prediction path for Original Prediction at the begin-
ning of the next century. However, limiting the global CO2 emissions will have a
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Figure 5.6: Stationary atmospheric CO2 concentration with time trend (black solid
line) from 1752 to 2016 and atmospheric CO2 concentration predictions from Figure
5.3 based on the ARMA(2, 2) model fitted in Chapter 4 with time trend (grey solid
line) from 2017 to 2100. Prediction (black dashed line), Prediction Halved (black dot-
ted line), Prediction Constant (black dotted and dashed line), and Prediction Decrease
(black long-dashed line) illustrate the predictions made by using the global CO2 emis-
sion prediction paths in the regression model with ARMA errors. All predictions are
from 2017 to 2100.

positive effect on the atmospheric CO2 concentration: Stopping the increase in the
global CO2 emissions or even decreasing global CO2 emissions will have an instant
positive effect on the atmospheric CO2 concentration. However, as mentioned in
Chapter 2 the atmospheric CO2 concentration will continue to increase even if the
global CO2 emissions are stabilised, and it would take a substantial decrease in
the global CO2 emissions for the atmospheric CO2 concentration to stabilise. This
is not apparent from the regression model with ARMA errors, indicating that the
fitted model is too simple for the atmospheric CO2 concentration.

Temperature Anomalies

Fitting a regression model on the temperature anomalies with atmospheric CO2

concentration as exogenous variable and fitting an ARMA model to the residuals
yields the following parameters, where {xt} is the temperature anomalies, {yt} is
atmospheric CO2 concentration, and {ut} is white noise:

xt = −2.938 + 0.009yt + εt,

where {εt} follows an ARMA(3, 3) process given by

εt = 2.179εt−1 − 1.821εt−2 + 0.621εt−3 + ut + 0.395ut−1 + 0.708ut−2 + 0.290ut−3.
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The predictions for the stationary temperature anomalies with time trend based on
the different predictions paths for the atmospheric CO2 concentration can be seen
in Figure 5.7. Again the grey solid line (Original Prediction) illustrates the temper-
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Figure 5.7: Stationary temperature anomalies with time trend (black solid line) from
1850 to 2016 and temperature anomaly predictions from Figure 5.1 based on the
ARMA(3, 3) model fitted in Chapter 4 with added time trend (grey solid line) from
2017 to 2100. Prediction (black dashed line), Prediction Halved (black dotted line),
Prediction Constant (black dotted and dashed line), and Prediction Decrease (black
long-dashed line) illustrate the predictions made by using the atmospheric CO2 con-
centration prediction paths in the regression model with ARMA errors. All predic-
tions are from 2017 to 2100.

ature anomaly predictions based on the ARMA(3, 3) model fitted in Chapter 4 in
the space of the stationary data with time trend. The four other prediction paths
illustrate the predictions based on the regression model with ARMA errors using
the four prediction paths for the atmospheric CO2 concentration showed in Figure
5.6 that are based on the global CO2 emission predictions showed in Figure 5.5.

Figure 5.7 illustrates the difference between the temperature predictions that do not
include information about atmospheric CO2 concentration (Original Prediction)
and the predictions from the regression model with ARMA errors. It is seen that
continuing the current increase in global CO2 emissions will cause the temperature
to increase even faster than in the past. Furthermore, halving the increase in global
CO2 emissions will not limit the increase in the atmospheric CO2 concentration
enough in order to limit the temperature increase; the result will still be that the
temperature will rise faster compared to the past.

In the beginning of this chapter, predictions for the temperature anomalies based
on the development in the temperature from 1850 to 2018 were made. Based on
those predictions, it was concluded that the temperature will have increased 1.5°C
compared to pre-industrial levels in 2058 and 2°C in 2083. However, since includ-
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ing information about global CO2 emissions and atmospheric CO2 concentration
causes the temperature predictions to change, it is likely that the temperature will
have increased 1.5°C and 2°C before these years, if global CO2 emissions are not
limited.

The predictions from the regression model with ARMA errors indicate that limiting
or decrease the global CO2 emissions will have a positive effect on temperature
changes.

GDP per Capita

Fitting a regression model on the first principal component for low-income, lower-
middle-income, upper-middle-income, and high-income economies with temper-
ature anomalies as exogenous variable and fitting ARMA models to the residuals
yields the following results, where {xt} is the first principal component for the
four economy groups, {yt} is temperature anomalies, and {ut} is white noise:

Low-Income Economies:

xt = −3.913 + 16.738yt + εt,

where {εt} follows an ARMA(1, 1) process given by

εt = 0.901εt−1 + ut − 0.347yt−1.

Lower-Middle-Income Economies:

xt = −4.956 + 21.094yt + εt,

where {εt} follows and AR(1) process given by

εt = 0.923εt−1 + ut.

Upper-Middle-Income Economies:

xt = −5.163 + 21.855yt + εt,

where {εt} follows an ARMA(1, 1) process given by

εt = 0.945εt−1 + ut − 0.247ut−1.

High-Income Economies:

xt = −7.075 + 29.941yt + εt,

where {εt} follows an ARMA(1, 1) process given by

εt = 0.914εt−1 + ut − 0.367ut−1.
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As expected the intercept decreases from the low-income economies to the high-
income economies. Furthermore, the slope parameters associated with the tem-
perature anomalies are all positive and increase from the low-income economies
to the high-income economies. In all four groups except the lower-middle-income
economies, where the residuals are modelled using an AR(1) model, the residuals
from the regression models are modelled using an ARMA(1, 1) model.
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Figure 5.8: Stationary first principal components for the low-income, lower-middle-
income, upper-middle-income, and high-income economies with time trend (coloured
solid lines) from 1961 to 2016 and first principal component predictions from Figure
5.4 based on the ARMA models fitted in Chapter 4 with added time trend (grey
solid lines) from 2017 to 2100. Prediction (coloured dashed lines), Prediction Halved
(coloured dotted lines), Prediction Constant (coloured dashed and dotted lines), and
Prediction Constant (coloured long-dashed lines) illustrate the predictions made by
using the temperature anomaly prediction paths in the regression models with ARMA
errors. All predictions are from 2017 to 2100.
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The predictions for the stationary first principal component for low-income, lower-
middle-income, upper-middle-income, and high-income economies with time trends
can be seen in Figure 5.8. The figure both illustrates the predictions that are based
on the ARMA models fitted in Chapter 4 in the space of the stationary data with
time trend (grey solid lines) and the predictions based on the regression models
with ARMA errors using the four prediction paths for the temperature anomalies
showed in Figure 5.7 that are based on the atmospheric CO2 concentration and
global CO2 emissions.

In the figure it is seen that the predictions from the regression models with ARMA
errors are fairly close to the predictions based only on the first principal component
time series for all four groups. The figure suggests that limiting the increase in
global CO2 emissions would limit the increase in the development in the GDP per
capita. This makes sense, since growth in a country is associated with the level
of CO2 emissions: Economic growth is defined by the growth of the goods and
services produced by an economy over time. Producing more goods will often
increase the CO2 emissions. Moreover, as an economy produces more goods its
demand for energy increases, and it therefore needs to increase its energy supply,
also leading to an increase in CO2 emissions, since much of the energy in many
countries comes from burning fossil fuels. Furthermore, in some countries, the
development is driven by deforestation of forests or jungles in order to increase
agriculture. The combustion or burning of the harvested trees is a large contributor
to CO2 emissions, and since trees absorb CO2 in their photosynthesis, they help
remove CO2 from the atmosphere. As forests are harvested, there are less tress to
absorb CO2 leading to a higher atmospheric CO2 concentration.

Thus, the regression models with ARMA errors for the first principal components
for the GDP per capita captures the positive relationship between CO2 emissions
and economic growth, and not the negative effect that climate change has on some
countries. This indicates that the regression model with ARMA errors only in-
cluding temperature anomalies is too simple, and that other variables should be
included in order to understand the effect of temperature increase on growth in
GDP per capita. Such variables could be variables measuring the consequences
of climate change, such as sea level rise and the cost of preventing and repairing
the damage that follows from this, the cost and number of extreme events, such
as severe droughts, extreme precipitation, and more frequent and larger storms,
expenses following from climate migration, changes in precipitation affecting agri-
culture, and so on.

Figure 5.9 illustrates the same data and predictions as Figure 5.8, however, instead
of illustrating each economy group separately with all predictions, Figure 5.9 illus-
trates each prediction path separately for all four groups. The four prediction paths
illustrated in the four subplots are the predictions from the regression models with
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Figure 5.9: Stationary first principal components for the low-income, lower-middle-
income, upper-middle-income, and high-income economies with time trend (coloured
solid lines) from 1961 to 2016. Prediction (coloured dashed lines), Prediction Halved
(coloured dotted lines), Prediction Constant (coloured dashed and dotted lines), and
Prediction Constant (coloured long-dashed lines) illustrate the predictions made by
using the temperature anomaly prediction paths in the regression models with ARMA
errors. All predictions are from 2017 to 2100.

ARMA errors using the four prediction paths for the temperature anomalies in
Figure 5.7.

Figure 5.9 indicates that the gap between the development in GDP per capita for
different economy groups should become smaller as global CO2 emissions are lim-
ited. This makes sense since many of the countries in the high-income, upper-
middle-income, and lower-middle-income economy groups are the ones that are
emitting most of the global CO2, and being forced to reduce the CO2 emissions
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would have a larger effect on these countries than the countries in the low-income
group, which would decrease the gap between the development in the four econ-
omy groups.

The figure also shows how continuing the increase in global CO2 emissions as in
the past will make the gap between development in the four groups much larger
in the future, meaning that the global inequality will increase. The Paris Agree-
ment has high emphasis on this inequality, urging developed countries to support
developing countries in the implementation of the Paris Agreement. However, the
model does not take into account that climate change does not have the same effect
on all countries, and that some countries may become uninhabitable in the future
due to severe heat events and droughts. This is to a great extend the case for many
countries in Africa that are close to the equator.1 As seen in Figure 2.5, the low-
income economy group contains most of the countries in the middle of Africa close
to the equator, meaning that many of the people living in these countries may be-
come climate migrants which will affect both the countries they come from and the
countries that they will migrate to. This means that the gap between high-income
and low-income economies might become even larger than Figure 5.9 indicates.

Furthermore, it has been shown that the consequences of temperature changes
due to increased greenhouse gas emissions have increased growth in cool coun-
tries, which are mostly high-income economies, and decreased growth in warm
countries, which are mostly low-income economies, in the period from 1961 to
2010.2 Thus, temperature changes have already increased the inequality between
low-income and high-income economies. This is also apparent from the param-
eters in the regression models with ARMA errors fitted in this section: The ef-
fect of temperature increases on development in GDP per capita in high-income
economies is almost twice as large as the effect on low-income economies. This
makes the discussion about high-income economies aiding low-income economies
in implementing climate friendly initiatives and fulfilling the Paris Agreement even
more relevant, since higher-income economies are responsible for a large part of
the global CO2 emissions that are negatively affecting the growth in low-income
economies.

Even though many countries have begun the procedure of phasing out the use of
fossil fuels for producing energy, and use renewable energy instead, it is probably
infeasible to continue the same growth without increasing the CO2 emissions in
the near future. And since the current level of global CO2 emissions is affecting
the global temperature and causing climate changes which will have serious con-
sequences affecting many economies, such as climate migration, extreme events,

1[Torelli, 2017]
2[Diffenbaugh and Burke, 2019]
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and precipitation changes affecting agriculture, the economic growth of the past is
unlikely to be sustainable in the future.

However, some argue that it is possible to obtain the same economic growth in a
climate friendly way as the growth that would be obtained by business as usual.
This is due to the present economic models not being adequate in relation to the
consequences of climate changes. There are many climate friendly business oppor-
tunities in areas such as rapid technological innovation, sustainable infrastructure
investment, increased resource productivity, energy, cities, food and land use, wa-
ter, and industry. Furthermore, the present economic models do not take into
account the expenses following from continuing to emit CO2 in order to grow the
economy: Disasters triggered by weather- and climate-related hazards were re-
sponsible for thousands of deaths and billion dollar losses in 2017. Climate change
will lead to more frequent and more extreme events, including floods, droughts,
and heat waves. Nor do the economic models include the positive effects of new
technological advances, preservation of essential natural capital, and the full health
benefits of cleaner air and a safer climate.3

To sum up, most of the models applied in this paper are too simple to capture
the relationship between CO2, temperature changes, and GDP per capita, and they
should include more known information about the causes and consequences of
climate change.

3[The New Climate Economy, 2019]



Chapter 6

Summary

After the industrial revolution, the amount of global CO2 emissions begins to in-
crease, and since approximately 1960 it has increased explosively. This has caused
the atmospheric CO2 concentration to increase, and the atmospheric CO2 concen-
tration is now higher than it has been in the past 400,000 years. Increased at-
mospheric greenhouse gas concentration has caused the planet’s average surface
temperature to rise: The temperature anomalies, which are relative to a 1961-1990
reference period, have increased approximately 1°C from 1850 to 2018.

Instead of examining each country’s GDP per capita individually, the countries
are divided into four groups: Low-income, lower-middle-income, upper-middle-
income, and high-income economies, based on the World Bank Country Groups.
The countries for which the GDP per capita data contains more than 20% missing
values are excluded from the analysis and the remaining data are imputed.

Many of the countries’ GDP per capita in all four groups seem to follow approxi-
mately the same growth trends. Furthermore, modelling and making predictions
for the GDP per capita for all countries is a lengthy process: Therefore, principal
component analysis is used on the countries’ GDP per capita in each group. Based
on the percentage of variance explained by each principal component, only the first
principal component of each group is used in the analysis in this paper.

Time series analysis is used to model and make predictions for the time series in
this paper. None of the time series seem stationary. Therefore, their time trend is
removed and the residuals for each time series is examined. The residuals for the
atmospheric CO2 concentration and temperature anomalies show long memory,
so ARFIMA models are fitted to them with differencing parameter d = 0.49. The
residuals for the global CO2 emissions and first principal components are fitted
using ARIMA models with d = 1.
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From predictions from these models the following is concluded: The temperature
has increased 1.5°C and 2°C compared to pre-industrial levels in 2058 and 2083,
respectively. The global CO2 emissions continue to increase rapidly and by 2058
and 2083 the global CO2 emissions will have reached approximately 410 and 669
billion tonnes, respectively. The atmospheric CO2 concentration also continues to
increase, and in 2058 and 2083 it will be approximately 511 and 599 PPM, respec-
tively. The first principal component for all four groups continue their upwards-
going trend, however, the rate of increase seems to be higher for the high-income,
upper-middle-income, and lower-middle-income groups and lower for the low-
income group, meaning that the difference between higher-income and low-income
economies will continue to grow.

In order to examine the effect of one time series on another, regression models
with ARMA errors are used on the differenced or fractionally differenced residuals
where the time trend of each time series has been added again, and in order to
determine the effect of global CO2 emissions on temperature changes, different
prediction paths for global CO2 emissions are constructed.

Predictions of the atmospheric CO2 concentration including information about
global CO2 emissions indicate that continuing to increase the global CO2 emis-
sions will cause the atmospheric CO2 concentration to increase at an even higher
rate than in the past. However, as the model does not capture some key character-
istics of CO2 accumulation in the atmosphere, it is likely too simple.

Predictions of temperature anomalies including information about atmospheric
CO2 concentration indicate that the temperature will increase even faster than in
the past. Thus, it is possible that the temperature will increase 1.5°C and 2°C
compared to pre-industrial levels before 2058 and 2083, respectively.

Predictions of the first principal component for low-income, lower-middle-income,
upper-middle-income, and high-income economies including information about
temperature anomalies indicate that limiting the increase in global CO2 emissions
would limit the increase in the GDP per capita. This makes sense, since economic
growth is defined by the growth of the goods and services produced by an econ-
omy over time, and producing more goods will often increase the CO2 emissions,
both due to increased energy demand and the possible need for deforestation.
Thus, the model captures the positive relationship between CO2 emissions and
economic growth, and not the negative effect that climate change has on some
countries. This indicates that the model is too simple, and that other variables
should be included in order to understand the effect of temperature increase on
growth in GDP per capita.

The predictions also indicate that continuing the increase in global CO2 emis-
sions as in the past will make the gap between development in the four groups
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larger in the future, meaning that the global inequality will increase. However,
the model does not take into account that climate change does not have the same
effect on all countries, and that some countries may become uninhabitable in the
future due to severe heat and droughts. This is the case for many countries in
the low-income economy group meaning that the gap between high-income and
low-income economies might become even larger.

Since the current level of global CO2 emissions is affecting the global temperature
and causing climate changes which will have serious consequences affecting many
economies, the economic growth of the past is unlikely to be sustainable in the
future. However, as the present economic models do not take into account the
expenses of climate change following from continuing to emit CO2 in order to grow
the economy, or the many climate friendly business opportunities and positive
effects of a safer climate, some argue that it is possible to obtain the same economic
growth in a climate friendly way as the growth that would be obtained by business
as usual.

To sum up, several of the models applied in this paper are too simple to capture
the true relationship between CO2, temperature changes, and GDP per capita, and
they should include more known information about the causes and consequences
of climate change.





Chapter 7

Discussion

This paper uses long memory models in order to model the atmospheric CO2

concentration and the temperature anomalies; however, it does not consider the
reasons for the data showing long memory. One could examine each time series
in greater detail in order to determine, what has caused the data to show long
memory, such as structural breaks, for example in global CO2 emissions and at-
mospheric CO2 concentration caused by the industrial revolution, or aggregations,
for example in global temperature anomalies, which are compiled by aggregating
several temperature anomaly time series from around the globe.

This paper chooses to divide countries into four groups based on the World Bank
Country Groups: Low-income, lower-middle-income, upper-middle-income, and
high-income economies. This division is based purely on the level of GDP per
capita. Instead of using this method for dividing the countries into groups, one
could have chosen a number of different divisions, for example division based on
the level of development in each country, division based on geographic location,
or a mixture of these.

Moreover, since it has been shown that the northern and southern hemisphere are
affected differently by climate change, one could examine southern hemisphere
temperature anomalies and northern hemisphere temperature anomalies instead
of the global temperature anomalies, and combine this with a division of countries
based on geographic location.1

Regression models with ARMA errors are used to examine the relationship be-
tween time series. The model assumes that the explanatory time series are exoge-
nous: However, one would expect that the time series in this paper will have an
effect on each other; therefore, one could instead create a system between the time

1[Freedman, 2013]
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series, and examine how global CO2 emissions and atmospheric CO2 concentration
affect temperature anomalies, how temperature anomalies affect GDP per capita,
and how the development in GDP per capita affects global CO2 emissions, etc.
Such a system, shown in Figure 7.1, could also give an indication of the effect of
including climate change in a country’s fiscal policies, for example by introducing
a tax on CO2 emissions.

Atmospheric CO2

Concentration

GDP per

Capita

Global CO2

Emissions

Temperature

Anomalies

Figure 7.1: System between global CO2 emissions, atmospheric CO2 concentration,
temperature anomalies, and GDP per capital

The analysis in this paper indicates that the regression model with ARMA errors
of the atmospheric CO2 concentration on global CO2 emissions is too simple, since
a change in global CO2 emissions has an instant effect on atmospheric CO2 con-
centration according to the model. However, since CO2 persists in the atmosphere
for 50 to 200 years, atmospheric CO2 concentration will continue to increase even
though the global CO2 emissions are stabilised.2 One solution could be to add
more lags of global CO2 emissions to the regression model with ARMA errors.

Moreover, the analysis in this paper indicates that the regression model with
ARMA errors for the first principal component for GDP per capita that only in-
cludes temperature anomalies as exogenous variables is too simple to capture the
effect of temperature changes on GDP per capita. There are many things affect-
ing the climate and the economy, such as precipitation, natural disasters, extreme
events, climate migrants, macroeconomic variables, etc., which should be included
in the model in order to understand the true effect of climate change on different
economies.

2[NASA, 2019c] and [Ritchie and Roser, 2019]
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Appendix A

GDP per Capita Data

Country Economy Class NA’s (%)

Afghanistan Low-Income 34.48
Albania Upper-Middle-Income 41.38
Algeria Upper-Middle-Income 0.00
American Samoa Upper-Middle-Income 72.41
Andorra High-Income 17.24
Angola Lower-Middle-Income 34.48
Antigua and Barbuda High-Income 29.31
Argentina High-Income 3.45
Armenia Upper-Middle-Income 51.72
Aruba High-Income 44.83
Australia High-Income 0.00
Austria High-Income 0.00
Azerbaijan Upper-Middle-Income 51.72
The Bahamas High-Income 0.00
Bahrain High-Income 34.48
Bangladesh Lower-Middle-Income 0.00
Barbados High-Income 24.14
Belarus Upper-Middle-Income 51.72
Belgium High-Income 0.00

Table A.1: Countries used to construct the principal components of GDP per capita.
The table includes the name of the country, the economy class, and the percentage of
NA’s in each country’s GDP per capita. Countries with more than 20% missing values
are excluded from the principal component analysis and their NA value is coloured
red.
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Country Economy Class NA’s (%)

Belize Upper-Middle-Income 0.00
Benin Low-Income 0.00
Bermuda High-Income 6.90
Bhutan Lower-Middle-Income 34.48
Bolivia Lower-Middle-Income 0.00
Bosnia and Herzegovina Upper-Middle-Income 58.62
Botswana Upper-Middle-Income 0.00
Brazil Upper-Middle-Income 0.00
British Virgin Islands High-Income 100.00
Brunei High-Income 8.62
Bulgaria Upper-Middle-Income 34.48
Burkina Faso Low-Income 0.00
Burundi Low-Income 0.00
Cabo Verde Lower-Middle-Income 34.48
Cambodia Lower-Middle-Income 31.03
Cameroon Lower-Middle-Income 0.00
Canada High-Income 0.00
Cayman Islands High-Income 96.55
Central African Republic Low-Income 0.00
Chad Low-Income 0.00
Channel Islands High-Income 82.76
Chile High-Income 0.00
China Upper-Middle-Income 0.00
Colombia Upper-Middle-Income 0.00
Comoros Low-Income 34.48
Democratic Republic of the Congo Low-Income 0.00
Republic of the Congo Lower-Middle-Income 0.00
Costa Rica Upper-Middle-Income 0.00
Côte d’Ivoire Lower-Middle-Income 0.00
Croatia High-Income 60.34
Cuba Upper-Middle-Income 17.24
Curacao High-Income 100.00
Cyprus High-Income 25.86
Czech Republic High-Income 51.72
Denmark High-Income 0.00
Djibouti Lower-Middle-Income 44.83
Dominica Upper-Middle-Income 29.31
The Dominican Republic Upper-Middle-Income 0.00
Ecuador Upper-Middle-Income 0.00
Egypt Lower-Middle-Income 8.62

Table A.2: Countries used to construct the principal components of GDP per capita.
The table includes the name of the country, the economy class, and the percentage of
NA’s in each country’s GDP per capita. Countries with more than 20% missing values
are excluded from the principal component analysis and their NA value is coloured
red.
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Country Economy Class NA’s (%)

El Salvador Lower-Middle-Income 8.62
Equatorial Guinea Upper-Middle-Income 6.90
Eritrea Low-Income 65.52
Estonia High-Income 60.34
Ethiopia Low-Income 36.21
Faroe Islands High-Income 68.97
Fiji Upper-Middle-Income 0.00
Finland High-Income 0.00
France High-Income 0.00
French Polynesia High-Income 37.93
Gabon Upper-Middle-Income 0.00
Gambia Low-Income 10.34
Georgia Upper-Middle-Income 51.72
Germany High-Income 17.24
Ghana Lower-Middle-Income 0.00
Gibraltar High-Income 100.00
Greece High-Income 0.00
Greenland High-Income 18.97
Grenada Upper-Middle-Income 29.31
Guam High-Income 72.41
Guatemala Upper-Middle-Income 0.00
Guinea Low-Income 44.83
Guinea-Bissau Low-Income 17.24
Guyana Upper-Middle-Income 0.00
Haiti Low-Income 0.00
Honduras Lower-Middle-Income 0.00
Hong Kong High-Income 0.00
Hungary High-Income 53.45
Iceland High-Income 0.00
India Lower-Middle-Income 0.00
Indonesia Lower-Middle-Income 12.07
Iran Upper-Middle-Income 3.45
Iraq Upper-Middle-Income 27.59
Ireland High-Income 0.00
Isle of Man High-Income 62.07
Israel High-Income 0.00
Italy High-Income 0.00
Jamaica Upper-Middle-Income 0.00
Japan High-Income 0.00
Jordan Upper-Middle-Income 8.62

Table A.3: Countries used to construct the principal components of GDP per capita.
The table includes the name of the country, the economy class, and the percentage of
NA’s in each country’s GDP per capita. Countries with more than 20% missing values
are excluded from the principal component analysis and their NA value is coloured
red.
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Country Economy Class NA’s (%)

Kazakhstan Upper-Middle-Income 51.72
Kenya Lower-Middle-Income 0.00
Kiribati Lower-Middle-Income 17.24
North Korea Low-Income 100.00
South Korea High-Income 0.00
Kosovo Lower-Middle-Income 68.97
Kuwait High-Income 13.79
Kyrgyz Republic Lower-Middle-Income 51.72
Laos Lower-Middle-Income 41.38
Latvia High-Income 60.34
Lebanon Upper-Middle-Income 48.28
Lesotho Lower-Middle-Income 0.00
Liberia Low-Income 68.97
Libya Upper-Middle-Income 51.72
Liechtenstein High-Income 18.97
Lithuania High-Income 60.34
Luxembourg High-Income 0.00
Macao High-Income 37.93
North Macedonia Upper-Middle-Income 51.72
Madagascar Low-Income 0.00
Malawi Low-Income 0.00
Malaysia Upper-Middle-Income 0.00
Maldives Upper-Middle-Income 34.48
Mali Low-Income 12.07
Malta High-Income 17.24
Marshall Islands Upper-Middle-Income 36.21
Mauritania Lower-Middle-Income 0.00
Mauritius Upper-Middle-Income 27.59
Mexico Upper-Middle-Income 0.00
Micronesia Lower-Middle-Income 43.10
Moldova Lower-Middle-Income 60.34
Monaco High-Income 18.97
Mongolia Lower-Middle-Income 36.21
Montenegro Upper-Middle-Income 68.97
Morocco Lower-Middle-Income 0.00
Mozambique Low-Income 34.48
Myanmar Lower-Middle-Income 68.97
Namibia Upper-Middle-Income 34.48
Nauru Upper-Middle-Income 81.03
Nepal Low-Income 0.00

Table A.4: Countries used to construct the principal components of GDP per capita.
The table includes the name of the country, the economy class, and the percentage of
NA’s in each country’s GDP per capita. Countries with more than 20% missing values
are excluded from the principal component analysis and their NA value is coloured
red.
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Country Economy Class NA’s (%)

Netherlands High-Income 0.00
New Caledonia High-Income 37.93
New Zealand High-Income 0.00
Nicaragua Lower-Middle-Income 0.00
Niger Low-Income 0.00
Nigeria Lower-Middle-Income 0.00
The Northern Mariana Islands High-Income 72.41
Norway High-Income 0.00
Oman High-Income 8.62
Pakistan Lower-Middle-Income 0.00
Palau High-Income 68.97
Panama High-Income 0.00
Papua New Guinea Lower-Middle-Income 0.00
Paraguay Upper-Middle-Income 8.62
Peru Upper-Middle-Income 0.00
Philippines Lower-Middle-Income 0.00
Poland High-Income 51.72
Portugal High-Income 0.00
Puerto Rico High-Income 1.72
Qatar High-Income 17.24
Romania Upper-Middle-Income 46.55
Russia Upper-Middle-Income 50.00
Rwanda Low-Income 0.00
Samoa Upper-Middle-Income 37.93
San Marino High-Income 67.24
São Tomé and Príncipe Lower-Middle-Income 70.69
Saudi Arabia High-Income 13.79
Senegal Low-Income 0.00
Serbia Upper-Middle-Income 60.34
Seychelles High-Income 0.00
Sierra Leone Low-Income 0.00
Singapore High-Income 0.00
Sint Maarten High-Income 100.00
Slovakia High-Income 51.72
Slovenia High-Income 60.34
Solomon Islands Lower-Middle-Income 13.79
Somalia Low-Income 91.38
South Africa Upper-Middle-Income 0.00
South Sudan Low-Income 89.66
Spain High-Income 0.00

Table A.5: Countries used to construct the principal components of GDP per capita.
The table includes the name of the country, the economy class, and the percentage of
NA’s in each country’s GDP per capita. Countries with more than 20% missing values
are excluded from the principal component analysis and their NA value is coloured
red.
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Country Economy Class NA’s (%)

Sri Lanka Lower-Middle-Income 0.00
Saint Kitts and Nevis High-Income 0.00
Saint Lucia Upper-Middle-Income 29.31
Saint Martin French part High-Income 100.00
Saint Vincent and the Grenadines Upper-Middle-Income 0.00
Sudan Lower-Middle-Income 0.00
Suriname Upper-Middle-Income 0.00
Swaziland Lower-Middle-Income 0.00
Sweden High-Income 0.00
Switzerland High-Income 17.24
Syria Low-Income 17.24
Tajikistan Low-Income 51.72
Tanzania Low-Income 48.28
Thailand Upper-Middle-Income 0.00
Timor-Leste Lower-Middle-Income 68.97
Togo Low-Income 0.00
Tonga Lower-Middle-Income 25.86
Trinidad and Tobago High-Income 0.00
Tunisia Lower-Middle-Income 8.62
Turkey Upper-Middle-Income 0.00
Turkmenistan Upper-Middle-Income 46.55
Turks and Caicos Islands High-Income 100.00
Tuvalu Upper-Middle-Income 51.72
Uganda Low-Income 0.00
Ukraine Lower-Middle-Income 48.28
United Arab Emirates High-Income 25.86
United Kingdom High-Income 0.00
United States High-Income 0.00
Uruguay High-Income 0.00
Uzbekistan Lower-Middle-Income 51.72
Vanuatu Lower-Middle-Income 32.76
Venezuela Upper-Middle-Income 5.17
Vietnam Lower-Middle-Income 43.10
The United States Virgin Islands High-Income 17.24
West Bank and Gaza Strip Lower-Middle-Income 58.62
Yemen Low-Income 51.72
Zambia Lower-Middle-Income 0.00
Zimbabwe Low-Income 0.00

Table A.6: Countries used to construct the principal components of GDP per capita.
The table includes the name of the country, the economy class, and the percentage of
NA’s in each country’s GDP per capita. Countries with more than 20% missing values
are excluded from the principal component analysis and their NA value is coloured
red.



Appendix B

Principal Component Analysis

This appendix is based on [James et al., 2013, pp. 374-377, 380-384], [Jolliffe, 2002,
pp. 1-6], and [Fan and Yao, 2017, pp. 275-277].

Principal Component Analysis (PCA) is a dimensionality reduction method that
tries to present the original data in a lower-dimensional space, while keeping as
much information about the original data as possible.

Let X be a centred T× d matrix consisting of T observations of d random variables
and let zi = Xφi be a linear combination of the columns of X, where φi is called
the i’th loading vector. Then the sample variance of zi is given by

1
T

zT
i zi =

1
T
(Xφi)

>(Xφi)

= φ>i

(
1
T

X>X
)

φi. (B.1)

The main idea of the i’th principal component is to maximise the sample variance
of zi with respect to φi subject to the the constraint that ‖φi‖ = 1 and φT

i φj = 0
for j = 1, . . . , i− 1.

The maximisation problem for the first principal component is given by

max
φ

(
φ>

(
1
T

X>X
)

φ

)
, s.t. ‖φ‖ = 1,

which is solved using the Lagrange function defined as

L(φ, λ) = φ>
(

1
T

X>X
)

φ + λ
(

φ>φ− 1
)

.
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The partial derivatives are then given by

∂L(φ, λ)

∂λ
= φ>φ− 1

∂L(φ, λ)

∂φ
= 2φ>

(
1
T

X>X
)
+ 2λφ>,

and setting them equal to zero yields

φ>φ = 1 (B.2)

φ>
(

1
T

X>X
)
= λφ>. (B.3)

Equation (B.2) is one of the constraints of the optimisation problem, and Equation

(B.3) states that φ is an eigenvector of
1
T

X>X with corresponding eigenvalue λ. The
first loading vector is the eigenvector with the largest eigenvalue since substituting
Equation (B.3) into the sample variance in Equation (B.1) yields

φ>
(

1
T

X>X
)

φ = λφ>φ

= λ.
(B.4)

Since
1
T

X>X is a symmetric and positive semidefinite matrix then the eigenvector

basis is orthogonal1 and there is at most min(T − 1, d) principal components.2 It
follows from this and Equation (B.4) that the eigenvalues are non-negative, which
ensures that the sample variance does not become negative.

Since any scalar multiplication of an eigenvector with corresponding eigenvalue λ

is still an eigenvector with corresponding eigenvalue λ, the scalar multiplication
of an eigenvector still satisfies Equation (B.3). This means that Equation (B.2) can
be satisfied by scaling the eigenvector; that is, if ‖φ‖ = c 6= 1 then choose the

eigenvector
1√
c

φ as the loading vector.

Thus, finding the i’th loading vector amounts to finding the scaled eigenvector with
the i’th largest eigenvalue since this ensures that this i’th loading vector maximises
the sample variance given that it has to be orthogonal to the previous i− 1 loading
vectors.

Geometric Interpretation and Proportion of Variance Explained

One way of visualising the projection of the original data onto the subspace spanned
by the loading vectors is as follows: The k-dimensional hyperplane spanned by the

1See [Lankham et al., 2016, p. 151].
2See [James et al., 2013, p. 377].
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k first loading vectors provides the best k-dimensional approximation of the origi-
nal data in terms of the squared Euclidean distance.3 Thus, the loading vector cor-
responding to the first principal component defines the line in the d-dimensional
space that is closest to the T observations, and the first principal component is then
the vector containing the projected points rotated onto the real line.
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Figure B.1: Figure B.1(a) shows 90 simulated points together with the plane spanned
by the loading vectors of the first two principal components. Figure B.1(b) shows the
two first principal components plotted against each other. These figures are taken
from [James et al., 2013, p. 380].

Figure B.1 illustrates with d = 3 how the first two principal components loading
vectors span the two-dimensional hyperplane that minimises the Euclidian dis-
tance to the simulated points.

A common method for choosing the number of principal components is to measure
the percentage of variance explained by each component. Let K be the maximum
number of principal components and let λ1 > · · · > λK be the ordered eigenval-

ues of
1
T

X>X. The variance of the k’th principal component is λk and thus the
percentage of variance explained by the k’th principal component is

PVEk =
λk

K
∑

i=1
λi

,

and the variance explained by the first k principal components is simply the cumu-
lative sum of the percentage of variance explained by these principal component,

3See [James et al., 2013, p. 379].
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that is,

CPVEk =

k
∑

i=1
λi

K
∑

i=1
λi

.

Thus, in order to determine the number of principal components to use one can
plot CPVEk for k = 1, . . . , K and choose to use the smallest number of principal
components that are required in order to explain a sizeable amount of variation in
the data.

Finally, it is worth mentioning that since it is undesirable for the principal compo-
nents to depend on the scaling of the variables, one typically scales each variable
to have mean zero and standard deviation one before performing PCA.



Appendix C

First Principal Components

Low-Income Economies
Country Loading Vector Mean Standard Deviation

Benin 0.238 384 250
Burkina Faso 0.242 283 186
Burundi 0.208 162 72
Central African Republic 0.199 282 131
Chad 0.222 341 284
Democratic Republic of the Congo 0.100 307 129
Gambia 0.171 399 231
Guinea-Bissau 0.228 268 184
Haiti 0.234 345 234
Madagascar 0.216 284 101
Malawi 0.229 192 115
Mali 0.238 309 247
Nepal 0.231 244 213
Niger 0.213 247 87
Rwanda 0.240 270 204
Senegal 0.237 740 340
Sierra Leone 0.217 264 141
Syria 0.220 1098 583
Togo 0.239 322 156
Uganda 0.226 274 175
Zimbabwe 0.186 662 297

Table C.1: The loading vector of the first principal component along with the means
and standard deviations measured in thousand US dollars used for standardising the
GDP per capita for the countries in the low-income economy group.
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Lower-Middle-Income Economies
Country Loading Vector Mean Standard Deviation

Bangladesh 0.193 376 326
Bolivia 0.198 995 850
Cameroon 0.180 761 444
Republic of the Congo 0.186 1036 836
Côte d’Ivoire 0.180 781 397
Egypt 0.196 1033 960
El Salvador 0.194 1422 1145
Ghana 0.191 587 557
Honduras 0.193 1023 655
India 0.199 498 492
Indonesia 0.199 999 1142
Kenya 0.198 464 377
Kiribati 0.185 822 444
Lesotho 0.196 451 388
Mauritania 0.197 563 366
Morocco 0.197 1258 958
Nicaragua 0.193 838 559
Nigeria 0.185 913 867
Pakistan 0.200 497 404
Papua New Guinea 0.196 916 765
Philippines 0.200 966 814
Solomon Islands 0.181 890 566
Sri Lanka 0.196 960 1153
Sudan 0.190 660 664
Swaziland 0.192 1390 1160
Tunisia 0.191 1795 1357
Zambia 0.186 631 443

Table C.2: The loading vector of the first principal component along with the means
and standard deviations measured in thousand US dollars used for standardising the
GDP per capita for the countries in the lower-middle-income economy group.
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Upper-Middle-Income Economies
Country Loading Vector Mean Standard Deviation

Algeria 0.185 2071 1543
Belize 0.184 2245 1610
Botswana 0.192 2574 2444
Brazil 0.191 3685 3615
China 0.182 1495 2423
Colombia 0.194 2272 2261
Costa Rica 0.193 3311 3345
Cuba 0.193 2812 2067
The Dominican Republic 0.194 2173 2062
Ecuador 0.193 2213 1742
Equatorial Guinea 0.176 4063 6926
Fiji 0.191 2110 1479
Gabon 0.179 4400 2879
Guatemala 0.193 1413 1110
Guyana 0.187 1195 1236
Iran 0.177 2530 1998
Jamaica 0.187 2323 1608
Jordan 0.191 1715 1162
Malaysia 0.195 3525 3343
Mexico 0.185 4215 3405
Paraguay 0.192 1790 1705
Peru 0.193 2038 1891
South Africa 0.188 3068 2069
Saint Vincent and the Grenadines 0.189 2623 2397
Suriname 0.186 2788 2638
Thailand 0.193 1939 1949
Turkey 0.194 3784 3885
Venezuela 0.191 4589 4171

Table C.3: The loading vector of the first principal component along with the means
and standard deviations measured in thousand US dollars used for standardising the
GDP per capita for the countries in the upper-middle-income economy group.
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High-Income Economies
Country Loading Vector Mean Standard Deviation

Andorra 0.145 18 540 14 555
Argentina 0.135 5081 3926
Australia 0.145 20 676 19 052
Austria 0.148 20 735 17 307
The Bahamas 0.140 14 269 11 191
Belgium 0.148 19 898 15 742
Bermuda 0.146 35 952 32 828
Brunei 0.137 16 192 12 644
Canada 0.148 20 395 15 797
Chile 0.143 4723 4759
Denmark 0.148 25 776 20 778
Finland 0.147 20 886 16 839
France 0.147 19 053 14 341
Germany 0.147 20 349 15 256
Greece 0.142 10 493 8949
Greenland 0.148 18 144 16 043
Hong Kong 0.144 15 693 14 118
Iceland 0.143 24 038 19 554
Ireland 0.145 20 871 21 934
Israel 0.146 13 933 11 630
Italy 0.145 16 279 12 948
Japan 0.135 21 589 16 462
South Korea 0.147 8819 9394
Kuwait 0.136 18 062 14 081
Lichtenstein 0.148 58 892 56 046
Luxembourg 0.148 41 361 39 116
Malta 0.148 8678 8200
Monaco 0.148 75 407 55 053
Netherlands 0.148 21 865 17 819
New Zealand 0.146 15 003 12 946
Norway 0.147 33 540 31 838
Oman 0.145 7185 6588
Panama 0.135 3954 3730
Portugal 0.147 8948 8156
Puerto Rico 0.147 11 309 9921
Qatar 0.138 28 284 25 935
Saudi Arabia 0.130 9529 7132
Seychelles 0.146 5443 4876
Singapore 0.146 17 893 18 572
Spain 0.147 12 590 11 078
Saint Kitts and Nevis 0.147 6269 6009
Sweden 0.148 24 885 18 574
Switzerland 0.147 33 853 27 313
Trinidad and Tobago 0.141 6746 6197
United Kingdom 0.146 19 208 16 042
United States 0.147 24 785 17 998
Uruguay 0.137 4892 4825
The United States Virgin Islands 0.144 17 546 14 320

Table C.4: The loading vector of the first principal component along with the means
and standard deviations measured in thousand US dollars used for standardising the
GDP per capita for the countries in the high-income economy group.
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