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Preface
Reading guide

Source reference. This report uses the Vancouver-referring system [1] for ci-
tation. The number in square brackets is the source number. This number is
simultaneously a hyperlink to bibliography.

Figure reference. This report uses �gures and illustrations which are referred
to with a chapter number and a �gure number separated by a period, e.g. 0.1,
where 0 is the chapter and 1 is index of the �gure. An example of this can be
seen in Figure 1.

Figure 1: Sample �gure

Table reference. This report uses tables and these are referred to in a similar
manner to �gures. An example can be seen in Table 1.

Table Item Class 1 Table Item Class 2
Item A Item X
Item B Item Y
Item C Item Z

Table 1: Sample Table

Code listing. This report uses code samples to highlight code for explanations.
An example can be seen in Listing 1.

1 public class HelloWorld {
2

3 public static void main ( String [] args ) {
4 // Prints " Hello , World " to the standard output .
5 System . out . println (" Hello , World ");
6 }
7 }

Listing 1: Java Code Snippet
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Acronyms

This is a list of acronyms used throughout the report. Some of these acronyms may be known
to the reader, but they are included here anyway as a convenience for readers unfamiliar with
them.

AAU Aalborg University

ADWIN Adaptive Windowing

AE Attribute-Enhancement

ALS Alternating Least Squares

AWILDA Adaptive Windowing based Incre-
mental Latent Dirichlet Allocation

BPR Bayesian Personalised Ranking

DCG Discounted Cumulative Gain

ELBO Evidence Lower Bound

FVA Factor Vector Alignment

IMDb Internet Movie Database

ISGD Incremental Stochastic Gradient De-
scent

KL Kullback-Leibler

LDA Latent Dirichlet Allocation

LSI Latent Semantic Indexing

MF Matrix Factorization

ML-100K MovieLens 100K

NLP Natural Language Processing

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition
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1. Introduction
Today many web-based platforms face the problem of information overload:
the abundance of products and documents makes it dif�cult for users to �nd
the items that are relevant to them by traditional means. Sorting through ev-
erything becomes nearly impossible - which is why numerous methods are
being developed that help overcome this problem. Information retrieval sys-
tems are designed to retrieve documents that are highly relevant to the needs
of a user, while information �ltering systems leverage various information to
�lter out information and improve the quality of displayed items. Among in-
formation �ltering systems are recommender systems, which provide users
of a service recommendations for items they might be interested in, often
presented as a list ranked by relevance. Recommender systems are almost
ubiquitous today, some providing movie recommendations on your favourite
movie streaming platforms and others suggesting that you try out a product
that seems to your taste. Recommender systems are a widely studied area
of information �ltering, with a lot of research being stimulated by the Net�ix
Prize competition which began in 2006.

01Intern is a Japanese internship recruitment website. While the service
has plenty of functionality that allows users to formulate queries and search
for relevant jobs, it offers little in terms of providing users with personalised
recommendations. During an internship at the company that offers 01Intern,
Salt Inc., the author had the good fortune of working with a dataset of activ-
ity on 01Intern, with the purpose of developing a recommender system for
the website. While a simple recommender system was proposed, the prob-
lem cannot yet be considered solved, as many aspects of the dataset remain
unexplored.

1.1 Recommender systems

The role of recommender systems is to infer the rating of a user on an item
that the user has not seen. “Item” is the term commonly used to describe the
entities recommended to users, be it movies or news articles[2]. When rec-
ommender systems provide users with recommendations, it is usually in the
form of ranked lists of items a user is likely to be interested in[2].

Most recommender systems use explicit feedback, implicit feedback, or a
combination of both[3], from users as a basis for predictions. Explicit feedback
refers to feedback from users in which their preference for an item is explic-
itly stated. For example, the user might rate a movie on a scale from 1 to 5,
or indicate whether liked an item by pressing a thumbs-up or thumbs-down
button[3]. This may also be in the form of a questionnaire in which a user
makes clear their preferences. Implicit feedback, on the other hand, refers
to feedback for which the user preference is not explicitly stated. Examples
of this include clicking an article, playing a video or scrolling the description
page of a product on an e-commerce website. While implicit feedback is of-
ten considered positive only, methods exist for inferring when feedback is
negative and weighting different feedback types[4].

Recommender systems can take different approaches for making predic-
tions about user ratings. The most notable categories of recommender sys-
tems are those that use content-based �ltering or collaborative �ltering, and
hybrid recommender systems, which combine several approaches to improve
performance. A brief introduction to each of these categories is provided in
the next sections.
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June 14, 2019 1.1. Recommender systems

1.1.1 Content-based �ltering

Content-based �ltering is an approach in which high ratings are predicted for
items similar to those the user has interacted with in the past. Item similar-
ity may for example be computed using different item attributes[2]. A ba-
sic content-based �ltering recommender system may use a pro�le learner to
generate a pro�le for a user, which is then compared to unseen items using a
�ltering component[2]. The pro�le learner can make use of the past interac-
tions of users to infer which properties of items the user �nds interesting.

When comparing different attributes of items, it is important to note that
often users do not consider all attributes equally important. In this scenario,
it may be bene�cial to assign different weights to different properties[5].

Content-based �ltering has several advantages: �rst, it is able to recom-
mend items, which any user has yet to interact with. Secondly, the basis for
recommendation is very transparent: pro�les of users are compared with
item attributes, making the reason for any given recommendation easy to un-
derstand. However, this is also one of the drawbacks of this approach. As
the recommendations are all based on the past interactions of a user, there
is no surprise in the recommendations, a problem known as the serendipity
problem[2]. Furthermore, a pro�le of users is the foundation for recommen-
dations, meaning for a new user ratings cannot be accurately predicted.

1.1.2 Collaborative �ltering

Collaborative �ltering “analyzes relationships between users and interdepen-
dencies among products to identify new user-item associations”[3, p. 43].
Contrary to content-based �ltering, collaborative �ltering approaches do not
consider the attributes of items and users, and instead predict ratings through
patterns in the feedback users provide for items. One popular collaborative-
�ltering method is Matrix Factorization (MF). A simple approach, MF describes
users and items as vectors of latent factors inferred using feedback. Items
whose latent factors align best with the latent factors of a users are those rec-
ommended to a user [3]. In Section 4.3, MF is described in detail.

While collaborative �ltering recommenders are able to provide serendipi-
tous recommendations, a drawback of collaborative �ltering algorithms is the
cold-start problem. The cold-start problem is when no ratings exists for a
user or an item, making it dif�cult to provide accurate recommendations. We
make a distinction between the user cold-start problem, where a user has not
yet rated any items, and the item cold-start problem, where an item has yet
to be rated by any user. Unless explicitly stated, in this report cold start or
cold-start problem refers to the item cold-start problem.

1.1.3 Hybrid recommender systems

Hybrid recommender systems combine several approaches to improve rec-
ommendation quality. Some recommender systems extend collaborative �l-
tering models with item information to overcome the problem of item cold
start. Numerous works suggest the usefulness of alleviating the cold-start
problem using item information for different datasets[6][7]. Hybrid recom-
mender systems may also leverage user information, such as demographics,
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June 14, 2019 1.2. Evaluating recommender systems

to overcome the user cold-start problem[3][8].
Recommender systems have been developed that combine different sources

of information[3]. In [9], a recommender system is proposed to deal with the
item cold-start problem and the user cold-start problem. The recommender
system is shown to outperform baselines when providing recommendations
for new users, recommending new items, and recommending new items to
new users.

1.2 Evaluating recommender systems

A number of different approaches exist for evaluating recommender systems.
Traditionally recommender systems are evaluated using holdout methods, in
which a subset of the set of known ratings is hidden, and the model is trained
on the remaining ratings. The model then scores based on its ability to predict
the items that were hidden [10].

In most real world applications, however, recommender systems are re-
quired to handle data that is continuously generated in order to provide rec-
ommendations[7]. Holdout methods are not well suited for evaluating such
online recommender systems. In online recommendation setting, it is also
important that models are able to process documents at the rate they appear
from the data stream. This means that completely retraining a model at each
step is infeasible for platforms with much activity. The online setting is a less
studied aspect of recommender systems. It is, however, relevant to the 01In-
tern dataset, as the dataset been collected from the 01Intern website, which
exhibits the property of continuously generating data. Different measures for
the evaluation of recommendation in an online setting is described in [11].

1.3 Data streams and concept drift

The task of providing recommendations in an online setting is a type of data
stream mining. An important concept in data stream mining is the notion of
concept drift, which means that the distribution of the modelled data changes
over time. The strategies for adapting to concept drift can be split into the cat-
egories of passive methods and active methods. Passive methods are those
that retrain the method each time an observation is received, which may lead
to signi�cant overhead for large datasets. Active methods, on the other hand,
rely on a drift detection component to detect when a concept drift has oc-
curred. Only when a drift is detected is the model retrained.

1.4 Initial problem

During an earlier semester, the author developed a recommender system for
the 01Intern dataset. The developed recommender system took a simple content-
based approach to rank items. Since collaborative �ltering models generally
outperform content-based �ltering models[3], taking this aspect of the data
into account is likely to lead to improved performance. Furthermore, the pre-
viously developed model was created for a setting where all ratings are known
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June 14, 2019 1.4. Initial problem

from the start - this does not re�ect the online nature of the 01Intern dataset.
The initial problem thus is to develop a suitable recommender system for the
01Intern dataset, that better realises the potential of the dataset. This rec-
ommender system should leverage the relevant aspects of the dataset and
be applicable to an online setting. To get a more general idea of the perfor-
mance of the developed recommender system, we apply it to the widely used
MovieLens 100K (ML-100K) dataset.

In Part II, the 01Intern and ML-100K datasets are analysed in order to fa-
cilitate a better understanding of the characteristics of the datasets. Through
this understanding the subject is delimited with the purpose of being able to
clearly de�ne the problem that characterises the 01Intern dataset in the con-
text of item recommendation.
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2. Datasets
In this section we will describe the datasets used in the evaluation of the pro-
posed recommender system. The two datasets are 01Intern and ML-100K.
With regards to the 01Intern dataset, which has previously been described
in an earlier work[12], we focus on describing the quantitative properties of
the dataset. We summarise the attributes for jobs, corporations and users in
Section 2.1.4. Meanwhile, we describe both the qualitative and quantitative
aspects of the ML-100K dataset in detail.

2.1 01Intern

The 01Intern dataset consists of 1,878 jobs, 30,722 users and the 213,612 unique
interactions between them, collected from the Japanese internship recruit-
ment website 01Intern. In truth, there are approximately 40,000 users and
2,000 jobs, however, the ones for which no interactions exists have been �l-
tered out. The user-interaction matrix1 of the 01Intern dataset is very sparse,
with a density of 213,612

30,722·1,878 = 0.00037%.

2.1.1 Interactions

In the 01Intern dataset, interactions are received through three distinct chan-
nels. Jobs are offered by corporations, and users may view jobs, add jobs to
their favourites and apply for jobs. Jobs, corporations and users each have a
number of unstructured and structured attributes associated with them (e.g.
job description, salary, corporation address or student grade). In a previous
work[12], the attributes of jobs, corporations and users have been described
in detail. In this work the focus is on the qualitative properties of the 01Intern
dataset.

When describing the data we generalise views, favourites and applications
as interactions, but we will also investigate the distribution of the different
types of interactions. Figure 2.1 shows the number of jobs that have more
than a certain number of interactions. For example, consider the bin labelled
150. This bin tells us that just over 500 jobs have at least 150 interactions. Fig-
ure 2.2 is a histogram of interactions by job. The �gures show that the dataset
holds characteristics that can result in item cold-start problems for recom-
mender systems, as a signi�cant number of jobs have been interacted with
only few times: approximately 25 jobs lie in the bin for 0-9 interactions and
more than 60 jobs in the bin for 10-19 interactions. Generally, the fewer rat-
ings an item has, the more dif�cult it is to recommend that item using collab-
orative �ltering methods, as the data does not provide a good basis for rec-
ommendation[6]. In Figure 2.1 the number of jobs above the threshold drops
quickly before 100 interactions - approximately 100 less jobs with each bin -
and then starts to decay. The majority of jobs, speci�cally 955 jobs, thus have
less than 100 interactions (and many much fewer). In Figure 2.2 we see that
nearly 100 jobs have less than 20 interactions. In settings where many items
have only few ratings, leveraging content-based information has been shown
to improve performance [6][9].

1A matrix where each row represents a user, each column represents and item, and each entry
has a value of 1 if the user has interacted with the item in the past, and 0 otherwise.
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June 14, 2019 2.1. 01Intern

Figure 2.1: Column chart of frequency of jobs that have at least a certain num-
ber of interactions

Figure 2.2: Histogram of interactions by job

In Figure 2.3 we see the number of users that have above a certain number
of interactions. There is a large decrease in users every time we move up a bin:
approximately 9,000 as we move from the 0 bin to the 1 bin, then 7,000 as we
move to the next bin and 4,000 for the following. By three interactions, less
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than half the users remain. We also notice how approximately 9,000 users
have no interactions with jobs at all. The interaction bins continue far beyond
the cutoff point. Hence, we can conclude that a small number of users are
responsible for a signi�cant number of the ratings. However, the many users
with few interactions show that the user cold-start problem may indeed also
be an issue for recommender systems for the dataset, as there are not enough
ratings to infer the preferences for the users. Usually, the user cold-start prob-
lem is alleviated by leveraging additional information[8][13].

In fact, if we consider only the users that have had 20 or more interac-
tions with jobs, we are left with only 3,087 users, but 82,681 of the total 213,612
unique ratings remain. 7 of the jobs have been �ltered out, leaving 1871 jobs.
If we compute the density of the user-interaction matrix with the majority of
users �ltered out, the result is 82,681

3,087·1,871 = 1.4315%. This is an increase of den-
sity by several orders of magnitude. Figure 2.4 shows the interactions by user,
similarly to Figure 2.3, but with users with less than 20 ratings cut off.

Figure 2.3: Column chart of frequency of users that have at least a certain num-
ber of interactions

Page 9 of 87



June 14, 2019 2.1. 01Intern

Figure 2.4: Column chart of frequency of users that have at least a certain num-
ber of interactions, zoomed in on the 20-100 range

2.1.2 Interaction channel distribution

As mentioned previously, interactions come from three distinct channels: views,
favourites and applications. Thus far, we have considered these as a single type
of feedback, namely interactions. In Figure 2.5 we see the interaction type
distribution across the three channels. Like previously, each bin contains the
distribution of interaction types for users with more than a certain number of
interactions. Similarly, in Figure 2.6 we see the interaction type distribution
but with the aforementioned cut-off. Something that immediately draws at-
tention is how users can add more items to favourites than they view, as one
would expect users to view an item before making the decision to add it to
their favourites. This is, however, explained by the fact that the view tracking
channel was added much later than the other two channels[12].

In the two �gures we see that for users with lower numbers of interac-
tions, favourites is the more common interaction channel. As the number of
interactions increases, the distribution shifts towards one dominated by the
views channel. One possible explanation for this, is that many users browse
the website anonymously and only register when they want to apply for a job
or add it to their favourites. When users browse the website anonymously,
their view actions are not tied to a user account and thus the views are not
registered. For these users, the views make up less of the total interactions
than for users that browse the site while logged in. Recurring users of the
service are more likely to browse jobs while logged in. The percentage of in-
teractions that come from the applications channel remains more or less the
same over time.
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Figure 2.5: The distribution of interaction types for users with at least a certain
number of interactions

Figure 2.6: The distribution of interaction types for users after the cutoff

2.1.3 Temporality of jobs

Jobs from the 01Intern dataset are characterised by being highly temporal.
Jobs come and go, they are published and become inactive again after they
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are taken. Some jobs are published only once in their lifetime, whereas others
are published again and again as more openings become available. Generally,
jobs initially see a burst of interactions, but popularity soon decreases when
they become occupied.

The temporality of jobs is a complicated problem due to the lack of history
of jobs. While we can see whether a job was available or unavailable at the
time the dataset was exported, we do not know how the availability of jobs
has changed over time. We do, however, know when a job was �rst created.
Consequently, when evaluating a recommender system based on the 01In-
tern dataset, we have to reason about jobs that may not have been available to
users at that time. To give a more concrete example, consider a job that is cre-
ated and published in January 2018. In March, the position becomes occupied
and the job can no longer be applied for. In October the job again is opened
for applications and at the end of November the dataset is exported. In the
dataset, the only information available about the job is that it was published in
January 2018 and open for applications at the end of November. The history
of the job is not tracked and there is no information that the job was unavail-
able from March to October (other than what can be inferred from the set of
applications). Thus when tasked with predicting which jobs a user will apply
for in July, it is assumed that the job was open for applications at this time.
However, in the case of predicting whether a user will interact with the target,
this is less of a problem, as the job can still be viewed and added to favourites.

Figure 2.7: Number of interactions with jobs over time

Figure 2.7 shows the number of interactions �ve jobs received each month
over an 18 month period. The jobs have been selected to be representative of
several categories of job histories at different degrees of popularity.

Three basic categories can be established:
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• singly-published: as mentioned previously, jobs generally are popular
when they are �rst published. This popularity then decreases over time.
Jobs 1473, 1707, and 1864 show this tendency. While the degree of popu-
larity varies, they all show high popularity in their �rst months and then
relatively few interactions afterwards.

• multiply-published: Job 1982 is an example of a job that has been re-
published. In August, 2018 the job is published but the position gets
taken soon after. Later, in November the job is published again and once
more receives a lot of interactions.

• long-term: Job 1320, which receives a relatively stable number of ratings
each month, has remained published over the entire 18 month period.

The fact that many jobs receive applications and then die out further em-
phasises the importance of a content-based �ltering component to alleviate
cold start. Once a job has a suf�cient number of ratings for collaborative �lter-
ing to be effective, they usually soon become occupied and thus less relevant.

2.1.4 Job, corporation, and user attributes

In this section the attributes of jobs, corporations, and users of the 01Intern
dataset are described. As 01Intern is a website targeting a Japanese audience,
the content and item attributes are all in Japanese. The tables containing a
description of each attribute are from the author’s earlier work [12]. Some
attributes are omitted as they are considered too obscure to be meaningful,
e.g. the images displayed to users when viewing a job.

In Table 2.1, the attributes of jobs are described. For each attribute a brief
description is provided along with the type of the attribute. Generally, the at-
tributes are either unstructured text attributes, categorical attributes or sets
of properties. The categorical attributes can also be viewed as sets of exactly
one property. It is also clear from the data description that not all attributes
contribute equally to the description of a job. For example, the job type or en-
trusted job detail provide more insight into contents of a job than the required
entry comment attribute.

In Table 2.2, a description of the attributes of corporations is provided. As
in the case of jobs, this set of attributes primarily consists of text attributes
and sets of properties. Again, not all attributes are equally descriptive of the
content. As each job is associated with a corporation, the attributes for cor-
porations can be seen as an extension to the job attributes.

In addition to the attributes for jobs and corporation, the dataset also con-
tains demographic information for users. In Table 2.3, the attributes of users
are described. The attributes primarily provide a description of the educa-
tional background of the user. Such a description may prove useful in deter-
mining what jobs the user is interested in. The majority of the attributes are
in a text format.

2.2 MovieLens 100K

The ML-100K dataset, discussed in [14], is a commonly used machine-learning
dataset, consisting of 100,000 movie ratings by 943 users. Other versions of
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this dataset exists with the number of interactions ranging from 1-20 mil-
lion. The ratings have been collected through the MovieLens website over
the course of seven months. 1,682 movies have been rated in the dataset, with
each rating expressing a user’s preference for a movie. Users with less than 20
ratings have been �ltered out. In addition to the ratings, the dataset also con-
tains information about the movies and demographic information about the
users. This dataset is similar to the 01Intern dataset as there are unstructured
text attributes and structured attributes available for the items, as well as de-
mographic information for the users. While some of this information is not
available in the dataset itself, in Section 2.2.2 a description of how to collect
the information is presented.

2.2.1 Ratings

As opposed the 01Intern dataset, feedback in the ML-100K dataset is received
from a single channel: ratings. Ratings in the dataset are tuples consisting of
a user ID, a movie ID, a 1-5 star rating and a timestamp. The stars express the
user’s preference for a movie with 1 indicating the lowest possible preference
and 5 the highest.

The density of the ML-100K dataset is 100,000
943·1,682 = 6.3046%, meaning that

there is no rating for 93.6954% of the entries of the ratings matrix. This means
that the dataset is signi�cantly denser than other datasets[15][16]. There is a
varying number of ratings for each movie, ranging from as low as a single
rating to 583 ratings. This means that for some items, cold start may pose a
problem for recommender systems.

Figure 2.8 shows the number of movies that have above a certain number
of ratings. One thing that draws attention is how approximately two thirds of
the movies are shown to have at least 10 ratings. Conversely, a third of the
movies have less than 10 ratings. Item cold start can be a problem for rec-
ommender systems modelling these items. For the �rst bin, the number of
movies with more than 0 ratings is 1,682, the total number of movies. For the
next bin, the number of movies is 1,349, a reduction 333. To the next bin there
is a decrease in jobs by 197. The decrease in jobs per bin gradually slows down
as we move up the bins.
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Figure 2.8: Column chart of frequency of movies that have at least a certain
number of ratings

Figure 2.9 shows the number of ratings by user. As mentioned previously,
none of the 943 users have less than 20 ratings. This means that user cold
start is not likely to pose a problem for the ML-100K dataset. On the other
hand, there is great variation in the number of ratings per user. The majority
of users have less than 70 ratings, while about 5% of users have more than 300
ratings.

Furthermore, note that the distribution of stars given to movies is not lin-
ear. Figure 2.10 shows a histogram of the stars by rating. As seen in the �gure,
movies receive much fewer 1-star ratings than any other rating category. 5-
star ratings are given approximately twice as often as 1-star ratings, but are
still nowhere near as common as ratings of 2-4 stars. Users are more likely
to rate movies positively (4-5 stars) than negatively (1-2 stars), with a ratio of
1.3695:1.
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Figure 2.9: Column chart of frequency of users that have at least a certain num-
ber of ratings

Figure 2.10: Histogram of stars by rating

We �nally consider the temporality of movies in the dataset. The ratings
were collected over a seven month period from 1997-09-19 through 1998-04-
22[17]. Of the 1682 movies, 1603 had been released before collection of the
ratings commenced. However, 273 movies were released in 1997 before col-
lection started, some of which were de�nitely still being shown in theatres.

Figure 2.11 shows the ratings received by �ve arbitrarily picked movies per
month over the seven month collection period. The movies were all released
prior to the start of collection. With the exception of “The Truth About Cats &
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Dogs” (movie 111), there does not seem to be a strong correlation between time
and the amount of ratings given. Rather, the number of ratings remains stable
over time. Whereas movie 111 may indicate that recently released movies may
be subject to a burst of popularity, the vast majority of the dataset consists of
older movies to which this does not apply.

However, it should be noted that there is a signi�cant difference in the
popularity of a more recently released movie such as movie 111 and the other
movies, which have been released earlier. Note also that this analysis does
not take into account how the popularity of the MovieLens website may have
changed over time.

Figure 2.11: Number of movie ratings over time

2.2.2 Movie information

The ML-100K dataset contains very limited information about the rated movies.
The information for each movie is limited to a movie title, release date, video
release date, IMDb URL and a set of genres (e.g. action, drama, thriller). To
further limit the available information, the IMDb URLs are no longer valid as
of 2019-03-27 and most movies do not have a video release date assigned.

While the ML-100K dataset in itself contains very limited information, ad-
ditional information is available elsewhere. In [7], the authors use English ab-
stracts of the movies collected from a publicly available set of abstracts from
DBpedia2. These abstracts are unstructured text descriptions of the movies,
that are able to describe the contents of movies in much more detail than, say,
a genre tag.

Internet Movie Database (IMDb) provides data about movies for personal
and non-commercial use[18]. The data contains plenty of useful attributes

2https://wiki.dbpedia.org/
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such as cast, directors and language. The full set of attributes can be seen in
Table 2.4, which is based on the dataset descriptions in [18]. Version speci�c
information and information with limited value has been �ltered out. Table
2.5 describes the available information about people referenced in Table 2.4.

2.2.3 Demographic information

In addition to information about movies, the ML-100K dataset also contains
basic demographic information about the users. Such information may be
useful in providing recommendations based on a pro�le of the user. The avail-
able information about users is summarised in Table 2.6.

2.3 Dataset comparison

In this section we compare the 01Intern and ML-100K datasets. Table 2.7 sum-
marises the similarities and differences between the two datasets.

Whereas the ML-100K user-item interaction matrix is considered sparse,
that of 01Intern is very sparse in comparison. If we consider only the users
with 20 or more ratings in the 01Intern dataset, the density of the matrix be-
comes 1.43%, which is a lot closer to the 6.30% of the ML-100K dataset.

The 01Intern dataset has three channels of interactions: views, favourites
and applications, while ML-100K has only a single channel: ratings. Where
all 01Intern channels can be considered implicit feedback, the feedback of
ML-100K is explicit. This means that models that require feedback are suit-
able for the 01Intern dataset, however, methods such as Matrix Factorisation
are applicable if feedback from users is considered a rating of 1[19]. Methods
designed to train on implicit feedback have been proposed, such as Bayesian
Personalised Ranking (BPR)[20], where items a user has interacted with are
considered preferable to the items the user has not interacted with, but the
lack of feedback for an item does not indicate that the user dislikes the item.

There is an abundance of content information available for both datasets,
however, for ML-100K the majority is not included in the dataset itself. The
data can, however, be acquired elsewhere with little effort.

Ttem cold start might pose a problem in both datasets. User cold start may
be problematic for recommender systems working with the 01Intern dataset,
as for many users there are few ratings to infer a user preference from. In
the ML-100K dataset this is not a problem, as each user has at least 20 ratings.
However, in the setting of online recommendation both the item and user
cold-start problems are problematics, as all users and items not involved in
the initial training of the model will be new at some step in the data stream.
Thus in the online recommendation setting, methods for alleviating cold start
should be considered.

The temporality of items is much more prevalent in the 01Intern dataset.
Most jobs receive the majority of their interactions in the �rst few months,
and jobs often lose their relevancy with time. While one could argue that new
movies are often more relevant than older movies, only very few movies in
the ML-100K dataset can be considered new. Thus, temporality is not of as
high relevance.
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Field Description Field type
Corporation id The id of the corporation offering the internship. The relevant

�elds of corporations are listed in a different table.
Id

Job type The job type of the internship. There are 10 different types of
jobs in the dataset. Job types include sales, engineer and de-
signer.

Enum

Catch copy The catchphrase associated with the internship. This is a text
�eld with the role of catching the attention of users.

Text

Appeal A more detailed description of the internship and what makes
it interesting.

Text

Entrusted job
detail

A description of the tasks interns will be assigned during the
internship.

Text

Grow up skill The skills that interns will develop over the course of the in-
ternship.

Text

Grow up skill
ids

Ids associated with the skills described in the Grow up skill
�eld.

List of ids

Salary detail Information about the salary interns will receive. Text
Quali�cation The quali�cations required for the internship. Text
Working con-
dition

Information about the working hours for the internship. Text

Sticking condi-
tion

This �eld enumerates the conditions that might make the in-
ternship attractive to interns. For example, interns may be able
to use English as a part of the internship or work during the
weekend.

List of ids

Work location The location where the internship takes place. Includes prefec-
ture, city, address and nearest train station.

Text

Required entry
comment

Whether the users are required to write a comment when ap-
plying for the internship.

Boolean

Priority cate-
gory

The priority category to which the internship belongs. Intern-
ships with higher priority are shown earlier in job listings.

Enum

Status The status of the internship, e.g. whether it is open for applica-
tion, temporarily closed or deleted.

Enum

Published The date the job was published. Date

Table 2.1: The relevant �elds of jobs in the 01Intern dataset
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Field Description Field type
Business type The business type id of the corporation Id
Secondary
business type

The secondary business type id, if applicable Id

Corporation
detail

An introduction to the corporation. Text

Business detail A detailed description of the business the corporation con-
ducts.

Text

Employee
count id

The id of the employee count category to which the corpora-
tion belongs. “Between 21 and 50 employees” is an example of
such a category.

Id

President name The name of the president of the corporation. Text
Address The address of corporation main of�ce. Text
Established The date when the corporation was established. Date

Table 2.2: The relevant �elds of corporations in the 01Intern dataset

Field Description Field type
Gender This �eld describes whether the user is male or female. Enum
Address The prefecture and city the user resides in. Text
University The university the user is currently attending. Text
Faculty The faculty at the university to which the user belongs, e.g. the

Faculty of International Relations.
Text

Department The department at the university to which the user belongs, e.g.
the Department of Intercultural Communication.

Text

Status Status of the user, of which there are two: active and delete.
Users with the active status are users that have been created,
can log on and may apply for jobs. These accounts may or may
not be in use. Users with the delete status have been deleted
and may no longer be used.

Enum

Created The date for the creation of the user. Date

Table 2.3: The relevant �elds of users in the 01Intern dataset

Field Description Field type
title The localised title of the movie string
language The language of the title string
titleType The type of the title (e.g. movie or short) string
startYear The release data of a title or in the case of a TV

series, the series start year
string

runtimeMinutes Primary runtime of the title in minutes integer
genres Up to three genres associated with the title array of strings
directors Director(s) of the given title array of ids
writers Writer(s) of the given title array of ids
castAndCrew IDs for cast and crewmembers including job cat-

egory, speci�c job title and character names
arrays of composites

Table 2.4: Collective attributes from the IMDb datasets
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Field Description Field type
primaryName Name by which the person is most often credited string
birthYear The person’s year of birth string
deathYear The person’s year of death, if applicable string
primaryProfession The top-3 professions of the person array of strings

Table 2.5: IMDb person data

Field Description
age Integer age of the user
gender ’M’ or ’F’
occupation String representing the occupation of the user (e.g. salesman,

student or doctor)
zipcode ZIP code associated with the address of the user

Table 2.6: The demographic information in the ML-100K dataset

01Intern ML-100K
Interaction matrix very Sparse sparse
Interaction channels views, favourites and applications ratings
Content information abundant in dataset can be collected
Item cold start potential potential
User cold start potential if online
temporality very relevant less relevant

Table 2.7: Differences between the 01Intern and ML-100K datasets
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3. Problem statement
Through the analysis of the 01Intern and ML-100K datasets we have gained
insights into the characteristics they exhibit. Notably the two datasets are rich
on both structured and unstructured attributes. As both datasets show char-
acteristics that might cause cold-start problems for recommender systems
working with the datasets, the item attributes should be leveraged in the ex-
tent that it is useful in overcoming these problems.

Furthermore, due to the online setting of 01Intern, items should be avail-
able for recommendation soon after they are received in the data stream. This
means both the item and user cold-start problems are present to some extent,
as all items and users will be new at some point in time. Although the user cold
start can be a problem in the case of the 01Intern dataset, the problem will fo-
cus on item cold start. The conclusion of the analysis is the following problem
statement:
How can information about internships be exploited jointly with the user-
internship interactions to alleviate the problem of cold start in an online
recommendation setting?

1. How can the union of structured and unstructured attributes of intern-
ships be leveraged so that rare internships may be recommended to
users?

2. Which internship attributes are most relevant to the users of 01Intern,
and which attributes introduce noise into the distinction between in-
ternships? How do we appropriately balance these attributes?

3. How can collaborative �ltering and content-based �ltering components
be balanced to maximise accuracy of the recommender system?

4. What are the necessary measures that must be taken for the recom-
mender system to be suited for an online setting?
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4. Preliminaries
In this chapter, a number of preliminary methods are described. Notably,
methods for describing different types of attributes, as well as using them for
the task of recommendation, are presented.

4.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA)[21] is a generative probabilistic model for col-
lections of discrete data such as text corpora. Among its uses is its ability to
characterise the documents in a corpus as a mixture of a number of topics.
In this section, a description is provided of the generative model of LDA and
a variational inference algorithm that approximates the posterior probability
of the observed data. A variational Bayes algorithm that processes a corpus in
batch is presented, as well as an online variational inference algorithm, that
is able to iteratively process mini-batches of documents as they are received
from a data stream.

LDA is a topic model, which means it characterises documents as a mix-
ture of the topics they exhibit. Topic models are useful because they allows
us to describe documents more concisely. In a �eld such as Natural Language
Processing (NLP), where we often have to deal with very large amounts of un-
structured text, short, yet representative descriptions are sometimes a crucial
factor for the time it takes to run the algorithm. Examples of such tasks may be
clustering documents or measuring the similarity of documents. Topic mod-
els are not limited to text documents; LDA can be used in many domains
such as collaborative �ltering, content-based image retrieval and bioinfor-
matics[21], in which large amounts of data are also processed. When describ-
ing LDA we consider the concrete domain of text documents in an effort to
improve clarity.

LDA is a Bayesian model operating at three levels, namely the corpus, doc-
uments and words. A corpus consists of M documents, each with its own
mixture of topics, and each document consists of N words, each of which is
generated from a speci�c topic. A graphical representation of LDA can be seen
in Figure 4.1. In the �gure, the plates indicate that the random variables inside
are actually multiple random variables, as the plate is repeated a number of
times. For example, the outer plate is repeated M times, once for each doc-
ument, and thus the topic distribution a document θ is actually M random
variables in the Bayesian network. α is the corpus-level distribution of topics.
Each word w is generated from a speci�c topic z. In the �gure, the node for
w is coloured to indicate that it is an observable variable. Lastly, β is the per-
topic term distribution, that is, the probabilities of each term in the corpus
vocabulary being drawn when the topic is known.

In LDA, when generating each document w the following generative pro-
cess from [21] is assumed:

1. Choose θ ∼ Dir(α)

2. For each word wn inw:

(a) Select a topic zn ∼Multinomial(θ)

(b) Select wn from p(wn|zn, β)
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z w N
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β

Figure 4.1: Graphical representation of the Latent Dirichlet Allocation model

To give a more concrete example of this generative process, let us con-
sider an LDA model that generates descriptions of movies. For simplicity, our
model only has three topics: action, romance and sci-�. When generating a
new description of a movie, we �rst draw θ from the Dirichlet distribution
parameterised by the corpus topic distribution α. After drawing, the topic
mixture may be the following:

Romance
10%

Action

30%

Sci-�

60%

Next, we generate the N words by �rst selecting zn and then selecting wn
the multinomial distribution conditioned on the selected zn and the per-topic
term distribution β. Evidently, given θ topic zn has a higher probability of be-
ing sci-� than action, and the romance topic has the lowest probability of be-
ing selected. Let us assume we select the action topic for zn. When selecting
wn, there is a relatively high probability of selecting the terms “explosion” and
“�ght” given zn = action, while the terms “spaceship” and “kiss” have a com-
paratively low probability of being selected.

As one might notice, in LDA no effort is made to ensure that words appear
in any meaningful order. Rather, the model generates a collection of terms
in which the order plays no role. Such a representation of text documents is
often referred to as a bag of words.

In Figure 4.2 we show that LDA generates a corpus. As mentioned earlier
the strength of topic models lies in being able to provide compact descrip-
tions of the documents they model. As we see at the bottom, however, when
given a corpus we may use Bayesian inference to compute the posterior of the
hidden variables θ and z. However, due to the complexity of the model, the
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LDA
generates

LDA infer
p(θ, z|w,α,β)

Figure 4.2: (Top) LDA generates a corpus using the model parameters α and
β, where α is the topic distribution across the entire corpus and β is the per-
topic term distribution. (Bottom) Given a corpus, the posterior distribution of
the hidden variables θ and z is inferred through Bayesian inference.

posterior distribution is intractable for exact inference. Fortunately, a num-
ber of approximate inference algorithms can be considered for LDA. In the
next Section, we will see how variational Bayesian inference can be used to
approximate the hidden variables.

4.1.1 Variational inference for Latent Dirichlet Allocation

For the variational inference algorithm the goal is to �nd an adjustable lower
bound on the log likelihood. In this section, we summarise key ideas of the
variational inference presented in [21], and later [22], with the purpose of ob-
taining a set of parameter update rules that allow us to maximise the so-called
Evidence Lower Bound (ELBO), a lower bound of the log probability of the ob-
served variables[23], and thus �t the model.

In LDA, it is intractable to compute the posterior distribution of the hidden
variables due to the coupling between θ and β in the summation over latent
topics. This coupling arises due to the edges between the θ, z, and w nodes.
One can obtain a family of distributions on the latent variables by dropping
these edges and introducing the free variational parameters, Dirichlet param-
eter γ and multinomial parameters φ, resulting in the model represented in
Figure 4.3. Maximum likelihood estimates of the multinomial parameters as-
sign a probability of 0 to words that did not appear in any of the training doc-
ument, meaning unseen documents will have no probability of being gener-
ated. To cope with this, a solution is to perform Dirichlet smoothing of the
multinomial parameters by assuming that each row of β is drawn from an
exchangeable Dirichlet distribution parameterized by the scalar parameter η.
Therefore, an additional variational parameter λ is introduced into the varia-
tional model.
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Figure 4.3: Graphical representation of the variational distribution used for
inference of the posterior

The problem of �nding a tight lower bound on the log likelihood is de�ned
as follows:

log p(w|α, η) ≥ L(w,φ,γ,λ) , Eq[log p(w, z,θ,β|α, η)]

−Eq[log q(z,θ,β)]
(4.1)

The Kullback-Leibler (KL) divergence is a function that is often “used as a
measure of the similarity between two probability densities”[24, p. 1]. By min-
imising the KL divergence between the variational distribution q(z,θ,β) and
the true posterior p(z,θ,β|w, α, η), one obtains the optimising values of the
variational parameters. Then, computing the derivatives of the KL divergence
and setting them equal to 0, the following update rules for the variational pa-
rameters are obtained:

φdwk ∝ exp{Eq[log θdk] + Eq[log βkw]} (4.2)

γdk = α+
∑
w

φdwkndw (4.3)

λkw = η +
∑
d

ndwφdwk (4.4)

Here, the expectations of log θ and logβ under q are given as

Eq[log θdk] = Ψ(γdk)−Ψ(
∑K
i=1 γdi)

and

Eq[log βkw] = Ψ(λkw)−Ψ(
∑W
i=1 λki),

where Ψ is the digamma function, the logarithmic derivative of the gamma
function Γ.

The variational objective relies only on ndw , that is, the number of times
word w appears in document d. This means that documents can be repre-
sented as the number of times each word appears.
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4.1.2 Batch variational Bayes algorithm

In this section we present the batch variational Bayes inference algorithm pre-
sented in [22]. The algorithm takes as input a training corpus ofD documents
as well as hyperparameters α and η. The algorithm alternates between an ex-
pectation step (E step), in which we optimise the variational parameters ( indi-
cates that the variational parameters are a function of w, which is held �xed)
for each d ∈ D, and a maximisation step (M step), where we maximise Lwith
respect to the model parameters α and β, until L converges.

1 Initialise λ randomly.
2 while relative improvement in L(w,φ,γ,λ) > 0.00001 do
3 E step :
4 for d = 1 toD do
5 Initialize γdk = 1. (The constant 1 is arbitrary.)
6 repeat
7 Set φdwk ∝ exp{Eq [log θdk] + Eq [log βkw]}
8 Set γdk = α+

∑
w φdwkndw

9 until 1
K

∑
k |change in γdk| < 0.00001

10 end for
11 M step :
12 Set λkw = η +

∑
d ndwφdwk

13 end while

Listing 4.1: The batch variational inference algorithm for LDA, as presented in
[22]

In Listing 4.1, the variational Bayes inference algorithm for LDA is shown. As
seen on lines 4-10, we repeatedly update the variational parameters until con-
vergence for each document in the training corpus. The updates performed
are those shown in Equation 4.2 and Equation 4.3. After the expectation step,
the posterior over the per-topic terms, λ, is updated as in Equation 4.4. The
algorithm alternates between the two steps until it converges, measured by
the relative improvement in L.

4.1.3 Online variational inference algorithm

While the batch inference algorithm presented in Section 4.1.2 processes a
text corpus in batch, the online variational Bayes algorithm presented in [22]
has been adapted to a setting, where discrete data documents are received
one at a time.

Indeed, this algorithm is similar to the batch variational Bayes algorithm,
but differs in the following ways:

• Instead of working on a complete training corpus, the algorithm oper-
ates on mini-batches of documents of an arbitrary size, each of which is
processed at a time t.

• At each iteration, instead of performing a full update in accordance with
the update rule in Equation 4.4, the model de�nes the new value for λ
as a weighted average of the current value λ and the optimal value if
corpus only consisted of the mini-batch currently being processed, λ̃.
The weighted average is computed as (1−ρt)λ+ρtλ̃, where ρt is de�ned
as ρτ , (τ0 + t)−κ.
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In the de�nition for ρt, τ0 and κ are constants that control the rate of learn-
ing. τ0 slows down learning for early iterations of the algorithm. κ controls the
rate at which the values for λ̃ in earlier iterations are forgotten. Here, a lower
value for κ leads to faster forgetting of older values. When κ is set to 0, the on-
line inference algorithm for LDA becomes equivalent to the batch variational
Bayes algorithm, as older values are completely forgotten with each iteration.
κ has to satisfy the condition 0.5 ≤ κ < 1 in order to guarantee convergence.
The algorithm for online variational Bayes for LDA is shown in Listing 4.2.
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1 De�ne ρt , (τ0 + t)−κ

2 Initialise λ randomly.
3 for t = 0 to∞ do
4 E step :
5 Initialize γtk = 1. (The constant 1 is arbitrary.)
6 repeat
7 Set φtwk ∝ exp{Eq [log θtk] + Eq [log βkw]}
8 Set γtk = α+

∑
w φtwkntw

9 until 1
K

∑
k |change in γtk| < 0.00001

10 M step :
11 Compute λ̃kw = η +Dntwφtwk
12 Set λ = (1− ρt)λ+ ρtλ̃.
13 end for

Listing 4.2: The online variational inference algorithm for LDA, as presented in
[22]

In [22], experiments are performed to test the effectiveness and ef�ciency
of online LDA. The effectiveness is measured by the perplexity of a held-out
test set of documents, where perplexity is de�ned as “the geometric mean of
the inverse marginal probability of each word in the held-out set of docu-
ments”[22, p. 7]. A lower perplexity score indicates a higher effectiveness of
the model, through being able to generalise documents better. The experi-
ments show that the model achieves the best performance with a batch size
of 4,096 for both of the tested text corpora. However, for batches of 256 to
16,384 documents, there is little difference in terms of document perplexity.
Batches of more than a single document are, however, not a possibility in the
online recommendation setting we assume.

4.2 Adaptive Windowing

Adaptive Windowing (ADWIN) [25] is an active drift detection algorithm that
has gained a lot of interest due to its simplicity and the theoretical perfor-
mance guarantees for the rate of false positives and false negatives it provides
[7]. In ADWIN, instead of using sliding windows with a �xed size, the size is
dynamic and adjusted based on the rate of change in the data being observed.
This saves the user having to guess a time-scale for change [25].

The algorithm keeps a window W of variable size containing bits or real
numbers. This window automatically grows when no change in the distri-
bution of the observed data is detected and shrinks when data changes. In
Section 4.2.1 a naive version of the ADWIN algorithm is presented, and in Sec-
tion 4.2.2 a more ef�cient version, called ADWIN2, is presented. Both variants
take as input a con�dence value δ ∈ (0, 1), which controls the sensitivity of
the algorithm, and a stream of real values x, the values of which are generated
independently according to some distribution Dt, which may change at each
time t. Stream x consists of values x1, x2, ..., xt, ... of which only xt is available
at time t.
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x10 x11x1 x2 x3 x4 x5

x

x9 ...x6 x7 x8

W

W0 W1

Figure 4.4: Example partitioning of sliding window W into subwindows W0

and W1 in ADWIN.

4.2.1 Naive variant

In [25], a naive variant of ADWIN is presented. The algorithm detects drifts by
partitioningW into subwindowsW0 andW1 and checking if the difference of
the averages of the two subwindows is above a threshold εcut. The intuition is
that when two large enough subwindows have average values that are suf�-
ciently different, it indicates that a data drift has occurred. The notion “large
enough” and “suf�ciently different” is de�ned through threshold εcut.

The algorithm tries every possible con�guration of subwindows W0 and
W1. Figure 4.4 illustrates one possible partioning into subwindowsW0 andW1.
In this setting, W contains values x1, x2, ..., x8. W0 contains values x1, x2 and
x3, while W1 contains the remaining �ve values currently in W . Let µ̂W0

and
µ̂W1

be the average value of W0 and W1, respectively. Then, a drift is detected
if the following holds:

|µ̂W0
− µ̂W1

| ≥ εcut

The treshold εcut is de�ned as follows:

εcut =

√
1

2m
· ln 4

δ′
(4.5)

In Equation 4.5, m is the harmonic mean of the size of W0, n0, and the size
of W1, n1, de�ned as m = 1

1/n0+1/n1
. δ′ is de�ned as δ′ = δ

n .

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪ xt (i.e., add xt to the head ofW )
4 repeat Drop elements from the tail of W
5 until |µ̂W0 − µ̂W1 | < εcut holds for every split ofW intoW0 ·W1 =W
6 output µ̂W

Listing 4.3: Naive variant of the ADWIN algorithm, as presented in [25]

In Listing 4.3, the naive variant of the ADWIN algorithm is presented. At
each step t, W �rst grows as a new value is added to its head. If there exists a
partitioning of W into W0 and W1 such that |µ̂W0 − µ̂W1 | ≥ εcut, W will shrink
by dropping elements from its tail until such a partitioning no longer exists, as
seen on line 5. After the repeat-until loop on lines 4-5, the algorithm outputs
the mean of W , µ̂W .
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x

B3B2B1 ...

W

Figure 4.5: The ADWIN2 algorithm stores values in a variant of an exponential
histogram to reduce memory and time complexity

4.2.2 Improving performance with exponential histograms

The naive variant described in Section 4.2.1 partitions W into every possible
con�guration of subwindowsW0 andW1, and thus is computationally expen-
sive. A more ef�cient variant, named ADWIN2, is proposed in [25], which
differs from the naive variant in that it uses an exponential histogram as its
underlying data structure.

The ADWIN2 algorithm is examined in [26]. In an exponential histogram,
the values being inserted are not stored individually, but are assigned to buck-
ets. A bucket contains the sum and the variance of the elements it repre-
sents. Figure 4.5 illustrates the idea of ADWIN2, where new values from x
are inserted into the newest bucket, in this case B3. Whenever a value is in-
serted, buckets may be compressed and smaller buckets may be combined
to form larger buckets. Consequently, newer buckets contain only few ele-
ments, whereas older buckets contain an exponentially growing number of
elements. When an element has been inserted and the buckets updated, drift
detection takes place as in the naive algorithm. In ADWIN2, the subwindows
are created using the buckets of the exponential histogram. This signi�cantly
reduces the complexity to O(log(n)).

Experiments in [25] show that ADWIN2 performs only slightly worse than
the best window for each rate of change and performs far better than any
�xed-size window W , when the rate of change is very different from W .

4.3 Matrix Factorisation

In Section 4.3-4.6, we will take a closer look at MF models. MF models are in-
duced by factorisation of the user-item ratings (or interactions) matrix, and are
popular due to their attractive accuracy and scalability [27]. Furthermore, MF
models allow for the incorporation of additional information sources, such as
implicit feedback or item attributes. In Section 4.5, we explain two approaches
for enhancing a basic MF model with item information. This section and Sec-
tion 4.4 are heavily based on [3].

MF models are latent factor models that decompose the ratings matrix into
two lower-rank matrices P and Q, for users and items respectively. By repre-
senting users and items as vectors of latent factors, we can make predictions
about the missing values of the ratings matrix based on these factors. Each fac-
tor in the latent space measures some characteristic of items in the domain.
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For example, in the case of movie recommendations factors might measure
whether a movie is a comedy or more serious, or whether it is for children or
targets an older audience. Factors might measure less well-de�ned charac-
teristics, or even something that is incomprehensible to humans.

As stated previously, MF decomposes the ratings matrix into lower-rank
matrices P and Q. Let the ratings matrix be an M ×N matrix, where M is the
number of items andN is the number of users. Matrix P then has dimensions
K ×N , where K is the number of latent factors. Similarly, Q has dimensions
K ×M . Each column pu of P and qi of Q, where qi, pu ∈ Rf , corresponds to
the latent factors for a particular user or item. Users and items are mapped
to a joint latent factor space, but the factors can be interpreted differently. An
item factor vector qi represents to which extent item i possesses those factors.
A user factor vector pu indicates the preference of user u for items that have
a high value for each of those factors. With this intuition it is easy to see how
the dot product of vectors pu and qi approximates the rating of user u for item
i. This approximate rating, denoted r̂ui, is as follows:

r̂ui = qᵀi pu (4.6)

u1 u2 · · · un

x1 x1u1
x1u2

· · · x1un
...

...
...

. . .
...

xk xku1
xku2

· · · xkun

P

r11 r21 · · · rn1

r12 r22 · · · rn2
...

...
. . .

...

r1m r2m · · · rnm

x1 · · · xk

i1 x1i1 · · · xki1

i2 x1i2 · · · xki2
...

...
. . .

...

im x1im · · · xkim

Qᵀ

Figure 4.6: Decomposition of the ratings matrix into lower-rank matrices P
and Q. The product, QᵀP , yields the ratings matrix with every entry �lled in.

Figure 4.6 shows how after the decomposition of the ratings matrix into
P and Q, the product QᵀP yields a matrix where each row corresponds to an
item, each column corresponds to a user, and each entry contains an estimate
of the rating for the item by that user. Each column in P and Q corresponds
to a user or an item, while each row corresponds to one of the latent factors
x1, . . . , xk . Since the dimensions ofQᵀ areM ×K and P areK ×N , the prod-
uct has dimensions M × N . Thus, once we have obtained matrices P and Q,
approximating the rating for any user-item pair can be trivially done by com-
puting the dot product of the columns corresponding to that user and item.
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The main problem of MF thus is estimating the lower-rank matrices.
One approach for estimating the lower-rank matrices is Singular Value De-

composition (SVD)[28], which decomposes a rectangular matrixA into a prod-
uct of three matrices:

A = UΣV ∗, (4.7)

where U and V are unitary matrices, whose columns are called the left-
singular and right-singular vectors of A, respectively, and Σ is a rectangular
diagonal matrix, whose diagonal elements are known as the singular values
of A. The problem with conventional SVD is that it requires the matrix to
be complete: in a recommendation setting the ratings matrix is usually very
sparse. In [29], the missing entries of the ratings matrix are �lled in with the
average rating for the user or item in an effort to solve this problem. However,
not only is this computationally expensive; it might also distort the data and is
prone to over�tting.

Another popular approach is to model directly the observed ratings with a
learning objective that minimises the so-called regularised squared error on
the set of known ratings:

min
q∗,p∗

∑
(u,i)∈κ

(rui − qᵀi pu)2 + λ(||qi||2 + ||pu||2), (4.8)

Here, κ is the set of user-item pairs for which a rating is known, λ is a hyper-
parameter that controls the degree of regularisation, and ||qi|| denotes theL2-
norm of vector qi. The regularisation term λ(||qi||2 + ||pu||2) imposes a penalty
on the magnitude of the factor vectors in order to prevent over�tting. Over-
�tting the training data improves prediction accuracy on the training data, but
affects the generalisation power of the model, impairing the prediction accu-
racy on future data.

In some MF models, the the user and item matrices are regularised by dif-
ferent amounts. In this case the learning objective can be written as:

min
q∗,p∗

∑
(u,i)∈κ

(rui − qᵀi pu)2 + λi||qi||2 + λu||pu||2 (4.9)

The number of latent factors K is a parameter that can be adjusted to op-
timise the performance of the model. With a low value for K, the factors are
only able to capture the most important aspects of the data. As we increase the
value for K, we expect to see increasingly obscure characteristics represented
by the factors. In [30], experiments on the Net�ix test set show that prediction
accuracy improves as the number of latent factors is increased across several
MF variants.

4.4 Learning algorithms for Matrix Factorisation

In the next sections we present two approaches for minimising the learning
objective in Equation 4.8. The approaches presented are Stochastic Gradient
Descent (SGD) and Alternating Least Squares (ALS), which are the most suc-
cessful methods to solve this optimisation problem[19].
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4.4.1 Stochastic Gradient Descent

A popular algorithm for optimising the learning objective using SGD is to it-
erate over the set of available ratings and modifying the parameters with each
rating. The approach is popular due to being fast and easy to implement. Ad-
ditionally, an incremental variant[19] has been proposed, which is suited for
recommendation in an online setting.

In this algorithm, with each iteration the parameters are modi�ed in the
opposite direction of the gradient of the learning objective by a magnitude
proportional to the hyperparameter γ, which controls the learning rate. Since
we are modifying the model parameters with every iteration, we use the gra-
dient of the learning objective for a single rating. In the case of the learning
objective from Equation 4.8, we obtain the following gradient for model pa-
rameter pu:

∂

∂pu
(rui − qᵀi pu)2 + λ(||qi||2 + ||pu||2)

= −2qi(rui − qᵀi pu) + 2λpu

(4.10)

Let the prediction error eui be de�ned as follows:

eui , rui − qᵀi pu (4.11)

Then, the gradient can be written as

−2qieui + 2λpu. (4.12)

Since the scalars are absorbed by the hyperparameters, we can write this
simply as

−qieui + λpu. (4.13)

Modifying pu in the opposite direction of the gradient proportionally to γ,
we obtain the following update rule:

pu ← pu + γ(euiqi − λpu) (4.14)

Because the original learning objective is symmetric, we can replace pu
with qi and qi with pu to obtain the update rule for qi:

qi ← qi + γ(euipu − λqi) (4.15)

One obvious advantage of SGD is that by updating the parameters at each
step, rather than with each full iteration, we take advantage of the high spar-
sity of the ratings set. This means that the complexity grows linearly with the
number of known ratings[19].

The pseudocode for this algorithm can be seen in Listing 4.4. Here, R is
the set of known ratings. The outer loop controls the number of iterations
over R. On line 2, R is shuf�ed in order to avoid cycles when further passes
are made over R[19]. On lines 4-6 we see the parameters being updated for a
single rating < u, i, r >∈ R using the equations that were just presented.
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1 for i = 0 to iterations do
2 shuf�e set of ratings R
3 for < u, i, r >∈ R do
4 eui = rui − qᵀi pu
5 qi ← qi + γ(euipu − λqi)
6 pu ← pu + γ(euiqi − λpu)
7 end for
8 end for

Listing 4.4: Pseudocode for the Stochastic Gradient Descent algorithm

4.4.2 Alternating Least Squares

The learning objective in Equation 4.8 is a biconvex optimisation problem,
which are in general global optimisation problems and may have a large num-
ber of local minima[31]. However, by �xing one of the unknowns, the problem
becomes quadratic and can be solved ef�ciently as a least-squares problem.
This is the approach taken in ALS. We �x P and recompute Q by optimising a
least-squares problem. Then, we �x Q and recompute P in the same manner.
Alternating between �xing each unknown eventually leads to convergence.

Although it has been shown that SGD-based optimisation generally con-
verges faster and has higher accuracy ALS on sparse datasets, ALS is prefer-
able to SGD in two cases [19]. When the system can utilise parallelisation, we
can optimise the learning process by computing the factor vectors in paral-
lel. This is possible because each factor vector is recomputed independently
of the other vectors. The other case where ALS outperforms SGD is when the
dataset is not sparse. One practical example of this is a system centered on im-
plicit feedback. Iterating over the entire dataset is not as ef�cient in this case,
hence why ALS - which does not suffer from this problem - has an advantage.

4.5 Leveraging item information

Pure collaborative-�ltering-based recommender systems suffer from the cold
start problem when certain users or items have only few interactions. In this
case additional information may be included in the model to leverage the
problem. In this section we present two approaches for enhancing the previ-
ously presented MF algorithm with information about items.

4.5.1 Representing attributes with latent factors

One approach proposed in [3] is to represent item attributes by vectors of la-
tent factors, so that an attribute a is associated with the factor vector ya ∈ Rf .
The item information for an item i can thus be represented as the sum of the
factor vectors associated with the attributes that i has:∑

a∈A(i)

ya (4.16)

Here,A(i) is the function that returns the set of attributes for an item i. For
example, in the case of movie recommendations, we may associate each genre
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a movie can belong to with a factor vector. If a movie belongs to the “comedy”
and “action” genres, the factor vector representing that item is the sum of the
factor vectors for comedy and action. More attributes may be included, such
as directors, actors and writers.

By integrating the item information representations into the rating predic-
tion function from Equation 4.6, we get the following:

r̂ui = [qi +
∑
a∈A(i)

ya]ᵀpu (4.17)

This approach has the advantage that weights for different item attributes
are integrated in the model, and the weights users assign to different attributes
do not have to be modelled explicitly. However, the approach is limited in that
we are unable to use existing item similarity measures directly. Furthermore,
non-discrete attributes are dif�cult to model. For example, a continuous at-
tribute such as release year would have to be partitioned into a �nite number
of groups, e.g. ’80s, ’90s and so on. This, in turn, introduces the problem of
selecting the right granularity. To distinguish this method from the method
presented in the next section, we refer to it as Attribute-Enhancement (AE).

4.5.2 Regularising latent factors of similar items to be closer

A different approach for enhancing the matrix factorisation model is pro-
posed in [32]. The idea of the method to regularise the factor vectors of items
with similar content to be more similar. The work builds on [33], in which
the same idea is applied to users: the factor vectors of users with similar tag-
ging histories are regularised to be more similar. To distinguish this method
from the AE method described in the previous section, we refer to it as Factor
Vector Alignment (FVA).

In the method, an arbitrary functionw(i, i′) is used, which models the sim-
ilarity between items i and i′. The intuition of the method is simple: we want to
move the factor vector of items i and i′, which w assigns a high score, "closer"
to each other. On the other hand, items j and j′, which are not similar ac-
cording to w should not be moved closer to each other. A regularisation term
is added that enforces this:

η

M∑
i=1

M∑
i′=1

||qi − qi′ ||2w(i, i′) (4.18)

Here, η controls the extent to which the factor vectors of similar items are
made more similar. With this regularisation term, the Equation 4.9 becomes

min
q∗,p∗

∑
(u,i)∈κ

(rui − qᵀi pu)2 + λi||qi||2 + λu||pu||2

+η

M∑
i=1

M∑
i′=1

||qi − qi′ ||2w(i, i′)

(4.19)

The modi�ed learning objective from Equation 4.19 can be approximated
using the SGD algorithm described in Section 4.4.1, but with new update rules
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for pu and qi. The update rule for pu is largely the same as the update rule in
Equation 4.14, we use separate regularisation hyperparameters λu and λi for
users and items, respectively:

pu ← pu + γ(euiqi − λupu) (4.20)

To �nd the new update rule for qi, we compute the gradient of the learning
objective from Equation 4.19 for a single rating w.r.t. qi:

∂

∂qi
(rui − qᵀi pu) + λi||qi||2 + λu||pu||2 + η

M∑
i′=1

||qi − qi′ ||2w(i, i′)

= −2euipu + 2λiqi + η

M∑
i′=1

2(qi − qi′)w(i, i′)

= −2euipu + 2λiqi + 2η(qi

M∑
i′=1

w(i, i′)−
M∑
i′=1

w(i, i′)qi′)

(4.21)

Again, the scalars are absorbed by the hyperparameters. Taking this into
account, the new update rule for qi becomes:

qi ← qi + γ[euipu − λiqi

−η(qi

M∑
i′=1

w(i, i′)−
M∑
i′=1

w(i, i′)qi′)]
(4.22)

Aside from the modi�ed update rules, the SGD algorithm from Section 4.4.1
remains unchanged.

An attractive property of FVA is that the similarity measure function w is
independent of the matrix factorisation model. However, this also means that
when w computes the similarity of items based on several different item at-
tributes, the weights have to be modelled explicitly. Another obvious advan-
tage of FVA is the ability to accurately model attributes with in�nite possible
values, e.g. continuous attributes such as the price of a ware. In the approach
previously explained, where attributes are represented by factor vectors, the
values of such an attribute have to be reduced to a �nite set of values, e.g.
"< $50", "$50-100" and "> $100" for a price attribute. This introduces the prob-
lem of determining appropriate intervals, which is done independently of the
model. With this approach, we can compare two prices using an arbitrary
function that takes two continuous numbers as input and outputs the degree
of similarity.

A core difference between the AE approach and this approach is that AE
deals with representations of solitary items, while this approach deals with
comparing pairs of items. This has the additional bene�t of making it simple
to compare attributes such as geographical location, an attribute which may
prove dif�cult to represent effectively when taking the AE approach, as the
concept of distance between different locations will not necessarily be cap-
tured by the factor vectors.
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4.6 Incremental Matrix Factorisation

Incremental Stochastic Gradient Descent (ISGD), proposed in [19], is very sim-
ilar to the batch SGD model presented in section 4.4, but with a few important
differences. First, only a single pass is made over the set of ratingsR. Secondly,
unlike batch SGD, R is not shuf�ed. This means that the temporal aspect of R
is maintained. Lastly, the learning algorithm is adapted to positive-only feed-
back by assuming a rating of 1 for every interaction in R. Consequently, the
prediction error is de�ned as eui , 1 − qᵀi pu. Note that in order for the algo-
rithm to able to correctly infer factors for users and items, it is initially trained
until convergence on a set of interactions. Pseudocode for the algorithm for
ISGD is shown in Listing 4.5

1 for < u, i >∈ R do
2 if u /∈ P then
3 pu ← RK
4 pu ∼ N (0, 0.1)
5 end if
6 if i /∈ Q then
7 qi ← RK
8 qi ∼ N (0, 0.1)
9 end if

10 eui = 1− qᵀi pu
11 qi ← qi + γ(euipu − λqi)
12 pu ← pu + γ(euiqi − λpu)
13 end for

Listing 4.5: Pseudocode for the Incremental Stochastic Gradient Descent
algorithm

In the algorithm, the outer for-loop iterates over every rating in the set
of ratings R. As interactions for users which do not yet have factor vector
representations are processed, the factor vectors are added with the initial
values drawn from the multivariate normal distribution, as seen on lines 2-5.
K is the number of latent factors used. Items are given a similar treatment
when they �rst appear, as seen on line 6-9. The update rules for qi and pu
remain unchanged with the exception of the new de�nition of the prediction
error, seen on line 10.

By making only a single pass over the set of ratings after the initial training,
ISGD is an algorithm that can quickly process a lot observation. This makes
ISGD a suitable model for the task of online recommendation, in which the
model must be able to process observations faster than they appear from the
data stream. Another notable advantage is its being able to provide recom-
mendations to new users and for new items, as the model is updated at each
step in time. Models that only occasionally retrain the model in batch are not
able to provide recommendations for items and users added in between two
training phases.
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5. Related Work
In this chapter, a number of works related to the current problem are pre-
sented. A recommender system developed for the 01Intern dataset previ-
ously developed by the author is described, as well as a more sophisticated
approach that combines MF with topic modelling using LDA.

5.1 kNN regression content-based recommender sys-
tem

In a previous work by the author, a purely content-based recommender sys-
tem was proposed, in which each item is ranked based on its content-based
similarity to the user’s rated items [12]. In the model, the similarity between
two items is given by the similarity between different attributes of the items.
Attributes are compared using different functions, which are not part of the
model and are chosen according to the domain and the type of the attributes.
Furthermore, each attribute is assigned a weight to model the characteristic
that users do not consider every attribute equally important.

5.1.1 Prediction model

The model considers the k most similar items K already rated by a user to an
unknown item i. The score for i is given by the score for each item j ∈ K
multiplied by the similarity of i and j:

scorei =
∑
j∈K

rjw(i, j) (5.1)

where rj is the rating given to item j by the user andw(i, j) is the similarity
between items i and j. If the user has rated less than k items, K is the set of
all items rated by the user. In the case where ratings originate from a single
channel of implicit feedback, all items inK have the same rating and thus the
score for i is given by

scorei =
∑
j∈K

w(i, j). (5.2)

The similarity between two items i and i′,w(i, i′), is computed by �rst com-
paring each attribute of i and i′, and then multiplying the resulting vector of
similarity scores by a vector of weights. Let x ∈ Rn be the vector of weights
and aii′ ∈ Rn be the attribute-wise similarity of items i and i′. Then, the sim-
ilarity between items i and i′ is given by

w(i, i′) = xaii′ (5.3)

5.1.2 Computing item similarity

As mentioned previously, the functions used to compare attributes are not
part of the model, but instead depend on the domain, i.e. whether the system
recommends movies or scienti�c articles, and the type of the attributes, i.e.
whether the attributes are structured or unstructured, continuous or discrete.
In [12], the model is applied to the 01Intern dataset, in which items are char-
acterised mainly by unstructured text and categorical attributes, as previously
explained in the Section 2.1.4. Two different similarity measures are used. The
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categorical attributes are compared using the Jaccard similarity, which for two
sets A and B is the ratio between the intersection of the sets to the union of
the sets:

Jaccard(A,B) = |A∩B|
|A∪B|

For example, letA = {Action,Adventure} andB = {Adventure} be sets of
genres for two movies. The Jaccard similarity of A and B then is:

Jaccard(A,B) = |A∩B|
|A∪B| = |{Adventure}|

|{Action,Adventure}| = 1
2 = 0.5 [12]

The unstructured text attributes are represented as vectors in the vector
space model and compared using the so-called cosine similarity measure. In
the vector space model, a text is represented anm-dimensional vector, where
each dimension corresponds to a distinct term from the vocabulary shared
by all texts. Themth dimension characterises the extent to whichmth term of
the vocabulary is represented in the text. To model this, the TF-IDF scheme
is applied. TF-IDF stands for Term Frequency-Inverse Document Frequency,
which are the two characteristics of text documents the scheme is based on.
The scheme assumes that the more frequently a term appears in a text docu-
ment, the more relevant it is to the topic of the document, and that the more
documents a term appears in across a corpus, the more poorly it discriminates
between documents [34].

The term frequency of a term i in a document D is the number of times
i appears in D. The document frequency of a term i across a corpus C is the
number of documents D ∈ C that contain i. Let TFi be the term frequency
of term i, DFi the document frequency of term i, and N the total number of
documents in the corpus. Then, TF−IDFi is given by the following equation:

TF − IDFi = TFi ∗ log( N
DFi

)

The TF-IDF scheme is known for being simple yet effective. Its main strength
is its ability to return documents that “highly relevant to a particular query”[35].

Two unstructured text attributes in vector representation D and D′ are
compared using the cosine similarity measure. The cosine similarity is a mea-
sure of the angle between the two vectors, and thus how related the topics of
the two documents are. This means that for two documents to be considered
equal, the magnitudes need not be the same. The cosine similarity is given by
the following equation:

cos-sim(D,D′) = D·D′

||D||·||D′||

In [12], the model was evaluated in an of�ine context using holdout meth-
ods by selecting randomly a number of ratings to use for prediction, and eval-
uating the model using the remaining ratings. Experiments showed that the
model performed better with a k of 10 or higher, but that setting the value
higher than 10 made little difference. This is partially explained by the fact
that only few users have rated more than 10 items.
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5.2 Adaptive collaborative topic modelling

In [7] an approach is proposed for improving performance and alleviating cold
start in the online recommendation setting, by combining ISGD with content
information modelled using the so-called Adaptive Windowing based Incre-
mental Latent Dirichlet Allocation (AWILDA) algorithm[36], and extension of
LDA. The method, named CoAWILDA, is described in detail in this section.

Experiments in [7] with applying the method to the datasets ML-100K and
plista, a large dataset consisting of approximately 84 million impressions of
70,000 news articles recorded over 4 weeks[15], clearly show the effective-
ness of the model in improving recommendations. Interestingly, in the paper
it is also argued that failing to adapt to concept drifts reduces the contribu-
tion of the topic modelling component to the point where it is outperformed
by ISGD. While it is easy to see that CoAWILDA improves recommendation
quality, it is not immediately clear how the model affects the cold-start prob-
lem. Furthermore, the model only leverages the text representation of the
item, and does not consider additionally item attributes which may further
improve recommendation quality.

5.2.1 Drift detection in topic modelling

AWILDA, proposed in [36], is a topic modelling approach that combines on-
line LDA with ADWIN to detect and adapt to the drifts that may occur when
mining a data stream. The key differences between AWILDA and other topic
modelling algorithms that consider concept drift is that it does not require the
user to determine the scale at which drifts occur and has been adapted to an
online setting.

As argued in [7], a number of methods have been proposed for introducing
a temporal aspect into the LDA model[37][38][39], but require users to arbitrar-
ily choose a size for the time slices used, which is problematic, as drifts may
occur in a smaller or larger window than that selected. [7] argues that there
are methods which do not depend on a speci�c time slice size, such as [40],
but that these require the entire set of data to be known for training, and thus
are not suitable for the online stream setting.

The idea of AWILDA is to process documents with online LDA as they be-
come available, while using ADWIN to whether a drift has occurred at any
given step. When a drift occurs, the model is retrained on the second sub-
window selected by ADWIN.

AWILDA splits the tasks of topic modelling and drift detection into two
different tasks which use each their instance of LDA. For modelling the docu-
ments the instanceLDAm is used. After the initial training, this instance is up-
dated with each new observation. For the task of drift detection, the instance
LDAd is used. The values monitored by ADWIN are the likelihood values of
the observed documents given model LDAd. This instance is trained initially,
but unlike LDAm is not updated with new observations; only when a drift is
detected is the model retrained with the window selected by ADWIN.

Page 41 of 87



June 14, 2019 5.2. Adaptive collaborative topic modelling

1 For each received document w, compute likelihood L = p(w|LDAd).
2 Process Lwith ADWIN. If ADWIN detects a drift from theW =W0 ·W1:
3 Retrain LDAm based on the documents in W_1.
4 Retrain LDAd based on the documents in W_1.
5 Update LDAm with document w.

Listing 5.1: The AWILDA algorithm

Listing 5.1 shows the AWILDA algorithm. At each step, prior to updating
LDAm the likelihood of the observed documentw is computed usingLDAd. If
a drift occurs, bothLDAm andLDAd are retrained on the second subwindow
W1 selected by ADWIN. To “retrain” a model, we reset the value for time t (of
the online LDA algorithm presented in Listing 4.2) and process each document
in window W1

1. Resetting t means that the contribution from the documents
in W1 is weighted higher. This leads to a better modelling of the post-drift
distribution. Finally, LDAm is updated with the observed document w.

5.2.2 The CoAWILDA algorithm

CoAWILDA[7] can be seen as an extension of the model proposed in [36] to
the problem of providing recommendations. The approach combines ISGD
with the content information inferred with AWILDA. Speci�cally, the topics
inferred by AWILDA for a document i are embedded in an item factor vector
εi for that item, resulting in the vector qi used for prediction. The algorithm
takes as input a set of observations consisting of both interactions and new
items.

Interactions in CoAWILDA algorithm take the form of < u, i >, where u
is the ID of the user that interacted with an item with ID i. New items take
the form < i, doci >, where doci is a document representing i processable by
ADWIN. The set of observations is the data stream and hence is sorted accord-
ing to the time of the observation: for items the time the item was added and
for interactions the time the interaction happened. In the case of the ML-100K
dataset, items are "added" according to their release data, while interactions
happen each time an item is rated.

In [7] before applying the algorithm, documents from the datasets are pre-
processed by removing stop words and words that only occur once. The words
are �nally stemmed. The preprocessing results in a smaller vocabulary.

1While this is not immediately clear from the description of AWILDA in [36], a reply from the
authors in a personal correspondance clarify this.
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1 for observation o ∈ O do
2 if o is a new item < i, doci > then
3 θi ← AWILDA(doci)
4 εi ← RK
5 εi ∼ N (0, λi)
6 qi ← θi + εi
7 end if
8 if o is an interaction < u, i >:
9 if this is the �rst interaction for user u then

10 pu ← RK
11 pu ∼ N (0, λu)
12 end if
13 eui = 1− qᵀi pu
14 pu ← pu + γ(euiqi − λupu)
15 εi ← εi + γ(euipu − λiεi)
16 qi ← θi + εi
17 end if
18 end for

Listing 5.2: The CoAWILDA algorithm

In Figure 5.2, the algorithm for CoAWILDA can be seen. The algorithm
iterates over each observation o from the sorted set of observations O. For
each new item of the form < i, doci >, the doci is processed according to
the AWILDA algorithm described in Section 5.2.1, and the resulting mixture of
topics is stored in vector θi. The item factor vector εi has its values drawn from
the multivariate normal distribution. Contrary to the ISGD algorithm in Listing
4.5, the covariance matrix is the identity matrix scaled by λi, rather than the
constant 0.1. The same applies when new user factor vectors are initialised,
but with λu. Vector qi is then assigned the sum of θi and εi.

If o is a new interaction of the form < u, i >, the �rst algorithm checks if
this is the �rst interaction for user u by checking if vector pu exists. If not, pu is
initialised. Then, parameters pu and εi are updated in the gradient step on lines
13-15. Finally, qi is reassigned with the sum of θi and the updated εi. Like ISGD,
CoAWILDA is initially trained until convergence on a set of observations.
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6. Attribute-enhanced collaborative
topic modelling

In the previous part the 01Intern and ML-100K datasets were analysed. A
number of methods were presented for providing recommendations and po-
tentially alleviating some of the problems identi�ed in the dataset analysis. We
saw how in [7] a successful blend between content-based �ltering and collab-
orative �ltering is achieved with the proposed model CoAWILDA.

In this part, a recommender system is designed for the 01Intern dataset
based on the �ndings from the previous part. We argue for the choice of
methods and present the designed model along with the implementation de-
tails. Finally, we test how the the various components perform for different
tasks: topic modelling, item recommendation and alleviating cold start.

6.1 Unstructured text modelling

In the Section 2.1.4, the attributes of 01Intern dataset were presented. The
unstructured text attributes account for approximately half of the attributes
for jobs. To leverage the available item information, a way of modelling the
unstructured text attributes is needed. In Section 5.1.2, we saw how text at-
tributes can be represented in the vector space model with each term weighted
by the TF-IDF scheme. In Section 4.1, we saw how different types of docu-
ments, including text documents, can be represented as a mixture of topics
using LDA, and in Section 5.2.1 how AWILDA improves LDA for data streams
through the detection of and adaption to drifts. In this section the advantages
and drawbacks of each approach are evaluated with the purpose of �nding
the approach most suitable for recommendation for the 01Intern dataset.

6.1.1 TF-IDF

TF-IDF is a simple, yet effective approach, the main strength of which is being
able to characterise terms that are discriminative for documents. Through
this, it is able to �nd the revelant documents given a query[35]. With regards
to comparing documents, TF-IDF is expected to assign a high similarity score
to pairs of documents that contain rare topics.

In [21], the main drawbacks of TF-IDF are described as “providing a rela-
tively small amount of reduction in description length and revealing little in
the way of inter- or intradocument statistical structure.”

In Section 5.1.2, a method is described for comparing two documents us-
ing the cosine similarity of the TF-IDF-weighted term vectors. This results in a
similarity score between any two items. To use this similarity score in the rec-
ommendation setting, a model is needed that incorporates item information
by pairwise similarity, such as FVA.

However, using an approach such as Latent Semantic Indexing (LSI)[41], in
which the term-document matrix is decomposed using SVD, the compressed
representations of documents can be embedded into the item factor vectors,
as in the CoAWILDA algorithm from in [7]. This approach is not suited for the
online stream setting, as the full term-document matrix is not known at the
beginning of the stream.
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6.1.2 Topic modelling

Latent Dirichlet Allocation is useful in that it better captures the generative
probabilistic semantics[21] than for example TF-IDF and is adaptable for on-
line settings. In [21], the modularity and extensibility of LDA is noted - as a
probabilistic model it may be used directly as part of another model.

The dimensionality reduction is another notable advantage of LDA. The
topics mixtures are a much smaller representation than the original docu-
ments, and as we saw in the CoAWILDA algorithm, the topic mixtures can be
embedded directly into the item factor vectors in matrix factorisation.

As noted in [21], one of the disadvantages of LDA is that for n-gram terms,
because of the bag-of-words approach, LDA might assign different topics to
each element of the n-gram, when in reality they belong to the same topic.

6.1.3 Choice of model

The powerful representativeness of LDA combined with its adaptability to the
online setting make a reasonable choice for modelling the textual attributes
of items of the 01Intern dataset. On the other hand, using TF-IDF with the co-
sine similarity is less attractive due to it requiring a model that incorporates
information by pairwise similarity. Futhermore, the effects on recommenda-
tion quality of using CoAWILDA for a number of datasets are documented in
[7]. Since CoAWILDA is a simple addition to MF, it is also highly extensible:
in [3] a number of extensions to the basic MF model shown in Section 4.3 are
presented. Therefore, the approach from the CoAWILDA model is chosen as
the component used to model the textual attributes.

6.2 Incorporating additional item attributes

In Section 4.5 two methods for incorporating item attributes into MF, AE and
FVA were described. Some of the advantages and drawbacks of each method
were presented.

AE has the attractive property of implicitly weighting different attributes.
In the method, a higher magnitude for an item attribute factor vector means
that the attribute is weighted higher by users. However, a disadvantage of AE is
that the attributes modelled require a �nite set of values. Continuous values
need to be assigned to different intervals, each of which is represented by
an attribute factor vector. The size of the intervals are not re�ected in the
model and thus need to be selected arbitrarily. FVA does not suffer from this
problem, as the similarity of the continuous attributes for a pair of items can
be computed using a suitable function. The main drawback of FVA is that
attribute weighting is not an explicit part of the model, but depends on the
similarity measure being used.

Due to the implicit weighting of attributes and the fact that there are few
non-categorical attributes in the 01Intern dataset, the potential of the FVA
method cannot be fully realised. In the light of this, AE is the more attractive
approach for including information from additional item attributes. Because
AE is a simple extension of MF, it can be combined directly with CoAWILDA.
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6.3 A combined model

In this section a model is proposed that combines CoAWILDA and the acAE
described in Section 4.5.1. The idea is that by combining and appropriately
weighting the textual and structured attributes, the model has more informa-
tion available about the content of an item than when using CoAWILDA. The
method is named CoAWILDA+ to re�ect its roots in the CoAWILDA algorithm.
First, by combining the two methods, ratings are predicted as follows:

r̂ui = [θi + εi +
∑
a∈A(i)

ya]ᵀpu (6.1)

In Equation 6.1, the rating is predicted as the product of the user factor vec-
tor and the sum of the topic mixture θi, the item factor vector εi and attributes
vectors ya for each a ∈ A(i). The following learning objective is proposed, us-
ing the updated rating prediction function and regularising the attribute factor
vectors proportionally to λi:

min
ε∗,ya∗,p∗

∑
(u,i)∈κ

(1− [θi + εi +
∑
a∈A(i)

ya]ᵀpu)2 + λi||εi||2

+λi
∑
a∈A(i)

||ya||2 + λu||pu||2
(6.2)

Let us de�ne the learning objective for a single observations as

L , (1− [θi + εi +
∑
a∈A(i)

ya]ᵀpu)2 + λi||εi||2

+λi
∑
a∈A(i)

||ya||2 + λu||pu||2.
(6.3)

For convenience, we de�ne prediction error eui and the combined contri-
bution from the item factor vector, attribute factor vectors, and the AWILDA
topics for an item ζi as:

eui , 1− r̂ui (6.4)

ζi , qi +
∑
a∈A(i)

ya (6.5)

where qi = θi + εi
As in Section 4.4.1, to obtain the SGD update rules for the parameters pu,

εi and ya, we compute the gradients of the learning objective with respect to
each model parameter, and modify the parameters in opposite direction of
the gradient, proportionally to γ:

δL

δpu
= −2ζieui + 2λupu (6.6)
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As the scalars are absorbed, the following parameter update rule is ob-
tained for pu:

pu ← pu + γ(euiζi − λupu) (6.7)

We use the same approach to obtain the remaining parameter update rules:

δL

δεi
= −2pueui + 2λiεi (6.8)

εi ← εi + γ(euipu − λiεi) (6.9)

δL

δya
= −2pueui + 2λiya, for ya|a ∈ A(i) (6.10)

ya ← ya + γ(euipu − λiya), for ya|a ∈ A(i) (6.11)

Having obtained the parameter update rules for learning objective L, the
CoAWILDA+ algorithm is proposed. Listing 6.1 shows the CoAWILDA+ algo-
rithm in full. Similarly to CoAWILDA, the algorithm takes as input a stream of
observations O. Like in CoAWILDA, the set of observations is sorted by the
time of observation. The main differences are the updated prediction func-
tion r̂ui and that the algorithm uses and maintains a set of factor vectors for
attributes y. Items are processed as in CoAWILDA, however, on lines 6-11 fac-
tor vectors for the attributes in i are initialised, if it is the �rst time they are
seen. When a new interaction is processed, pu and εi are updated according
to the update rules in Equation 6.7 and Equation 6.9, respectively. Addition-
ally, for each attribute a possessed by i, attribute factor vector ya is updated
according to the update rule in Equation 6.11, as seen on lines 22-24.
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1 for observation o ∈ O do
2 if o is a new item < i, doci > then
3 θi ← AWILDA(doci)
4 εi ← RK
5 εi ∼ N (0, λi)
6 for a ∈ A(i) do
7 if this is the �rst item with attribute a then
8 ya ← RK
9 ya ∼ N (0, λi)

10 end if
11 end for
12 qi ← θi + εi
13 end if
14 if o is an interaction < u, i >:
15 if this is the �rst interaction for user u then
16 pu ← RK
17 pu ∼ N (0, λu)
18 end if
19 eui = 1− r̂ui

20 pu ← pu + γ(euiζi − λupu)
21 εi ← εi + γ(euipu − λiεi)
22 for a ∈ A(i) do
23 ya ← ya + γ(euipu − λiya)
24 end for
25 qi ← θi + εi
26 end if
27 end for

Listing 6.1: The CoAWILDA+ algorithm

6.4 Implementation details

In the previous section, a model CoAWILDA+, which combines CoAWILDA
with AE, was described. The author has implemented the model in Scala us-
ing a number of existing Java libraries. For the sake of subsequent evaluations
of the model being reproducible, the implementation details of the imple-
mented model are described in this section.

6.4.1 Interactions

In Section 2.1.1 it has been described that feedback in the 01Intern dataset are
of three different types: views, favourites and applications. CoAWILDA+, like
ISGD, used postive-only feedback and does not distinguish between different
types of feedback. Hence, for the task of recommendation the three feedback
channels are considered a single source of feedback, interactions.

In some cases users have interacted with a speci�c item in more than one
way. For example, a user might �rst add an item to their list of favourites and
later apply for that same job. In the case where an interaction < u, i > is
present in multiple channels, only the �rst instance of < u, i > to appear in
the data stream is considered. The interactions from the other channels are
not taken into account.
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6.4.2 Attributes used in the implementation

In this section the item attributes used for recommendation are described. A
subset of the full set of attributes are used for recommendation. The attributes
are characterised as either textual descriptions or tags.

doci, which is used for the topic modelling, is the concatenation of a num-
ber of the textual descriptions deemed most relevant. The unstructured text
attributes used are catch copy, appeal, entrusted job detail and quali�cation.
The relevance of the selected textual descriptions is subject to tests.

For the tags, which are the attributes modelled by the AE component of
the model, a number of structured attributes are used:

• Job type

• Business type

• Prefecture

• City

• Sticking conditions

While more of the attributes described in Section may prove useful in a
recommendation setting, these are not considered due to time constraints.

6.4.3 Document preprocessing

As in [7], the documents of the 01Intern and ML-100K datasets are prepro-
cessed, before they are used for topic modelling. The preprocessing consists
of converting the text description for each document into a bag of words, con-
sisting of useful terms. For example, punctuation marks are of little relevance
to the topic of a document and are stripped stripped from the documents. For
�nding the appropriate terms for the documents, a different approach is used
for each dataset. This is mainly prompted by the different languages of the
datasets: Japanese for the 01Intern dataset and English for ML-100K.

For the Japanese documents, Kuromoji [42], a Japanese morphological anal-
yser, is used to lemmatise words and perform part-of-speech tagging. Part-
of-speech tagging here means inferring the word category to which each word
in the document belongs. This is used to determine which words are useful
and should be used as terms in the bag of words.

Upon processing a document using Kuromoji, it is represented list of to-
kens, where each token provides meaningful insights about the words, such
as the base form and part-of-speech tagging. The base form of each word are
the terms that may be used in a bag of words, although for some words, a base
form is not available - in this case the original word is used instead. What de-
termines if a word is used in the bag of words is the part-of-speech tagging.
Words that are characterised by the following are not included in the bag of
words for each document:

• 記号 (symbols)

• 助動詞 (auxiliary verbs)
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• 動詞 (verbs) labelled非自立 (not independent)

• 助詞 (particles)

For the English documents, words have been stemmed using the Porter-
Stemmer from the Apache OpenNLP library[43].

For both datasets, when applicable, terms have been converted to lower
case. Furthermore, stop words are removed from documents in each lan-
guage by using an English list of stop words and a Japanese list of stop words.
The complete lists of stop words can be found in Appendix B.

6.4.4 Existing implementations used

As mentioned in the previous section, the Apache OpenNLP and Kuromoji
libraries are used for the tasks of lemmatisation and stemming. Additional
libraries are used for the implementation of the AWILDA component. An im-
plementation of ADWIN found in the MOA library[44] is used. It is an imple-
mentation of the more ef�cient ADWIN2 algorithm described in Section 4.2.2.
For the topic modelling, a direct implementation of online LDA as described
in [22], jolda1, is used. The implementation has been modi�ed slightly in order
to:

• allow for t to be reset when a drift is detected by ADWIN

• be able to approximate the likelihood for a set of documents, without
also updating the model

These modi�cations are necessary for the implementation to be compat-
ible with the AWILDA algorithm, as the likelihood of a new document must
be approximated before the model is updated, so that it is possible to adapt to
potential drifts before updating the model with the document.

6.4.5 Initial training of the model

Before the model is able to meaningfully infer factors for the users and items
that arrive in the stream of observations, it must initially be trained on a set of
the observations. During this initial training phase, the new items in the set of
observations are used by AWILDA to initially train models LDAm and LDAd,
using the batch variational inference algorithm. Following this, the CoAW-
ILDA+ model is trained on the interactions in the set of observations until it
converges or reaches a max number of iterations. The max number of itera-
tions is set to 10,000. The criteria for convergence is when the relative change
in average error is less than 10−8.

1GitHub repository: https://github.com/miberk/jolda
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In this chapter the developed recommender system is evaluated. In particu-
lar, a separate evaluation of topic modelling component is carried out, before
the recommender system is evaluated in an online stream setting using two
different evaluation measures. Finally, the ability of the recommender system
to alleviate cold start is assessed.

7.1 Topic modelling evaluation

In this section the implementation of AWILDA is evaluated with a focus on
the 01Intern dataset. The purpose is to establish an overview of the effective-
ness of the algorithm: how well it is able to model the data and whether the
inferred topics bring out characteristics of the documents. Additionally, we
analyse how drift detection affects the topic mixtures for documents and the
relationship between different documents. The number of topics k is set to 10.
Preliminary experiments have shown similar patterns appear when choosing
different values for k such as 20 or 50. The hyperparameters of the models
are determined using grid search over the parameter space and optimal values
are listed where relevant.

7.1.1 Perplexity of topic models

In Section 4.1.3, perplexity is presented as a measure that can be used to evalu-
ate the the ability of a model to generalise documents. Formally, the perplexity
of a set of unseen documents Dtest is de�ned as

perplexity(Dtest) = exp{−
∑M
d=1 log p(wd)∑M

d=1Nd
} (7.1)

where M is the number of documents in Dtest and the probability of wd
is approximated according to the variational inference described in Section
4.1.1.

To measure how well AWILDA models documents, we measure its per-
formance in terms of perplexity. To assess the contribution of the drift de-
tection component that distinguishes AWILDA from online LDA, both topic
models are evaluated. To obtain suitable values for the model hyperparame-
ters, a grid search of the parameter space is performed. For the grid search,
success is measured by a lower average perplexity. Note that due to time con-
straints, the grid search is not thorough and more optimal values may exist.
Since AWILDA is an extension of LDA, we �rst �nd values for the hyperpa-
rameters of LDA. Performing the grid search, we obtain values τ = 1024 and
κ = 1. Following this we adjust δ to further optimise the average perplexity,
and obtain δ = 0.01.

Following the experimental protocol in [7], we measure the performance
of the topic model by �rst approximating the likelihood and computing the
perplexity of a document and then processing it with the model, repeating this
process for each document in the stream of documents. In order to smooth
the scores, they are reported as a moving average of a sliding window of 200
observations. To initialise the topic model, it is initially trained on the �rst 20%
of the document stream. Following this, the documents in the remaining 80%
of the document stream are evaluated one by one.
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Figure 7.1: Comparison of the performance of AWILDA and online LDA on the
01Intern dataset, measured as the average perplexity of a sliding window. Each
red line indicates a drift detected by AWILDA.

In Figure 7.1, a comparison of the reported average perplexity values of the
sliding window for AWILDA and LDA on the 01Intern dataset is shown. In
the �gure, a vertical red line indicates that a drift was detected by AWILDA
at this time. On the y-axis is the reported perplexity of the window and on
the x-axis is the position of the current value in the array of reported values
in percentage . A drift is detected at approximately 200 documents into the
stream (not zero, as the �rst reported value required 200 documents to have
been processed). Following this, the reported values for AWILDA are lower
than those for LDA, although not by much. It is not until around 45% into the
values that the differences start to become more noticeable. At the 68% mark,
another drift is detected, followed by two more. With each of these drifts the
difference in performance between AWILDA and LDA grows bigger.
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Figure 7.2: Comparison of the performance of AWILDA and online LDA on the
ML dataset.

In Figure 7.2, AWILDA and LDA are compared for the ML-100K dataset.
Here, no drift is detected until around the 20% mark, but here the perfor-
mance of AWILDA is improved noticeably over that of LDA. Three more drifts
are detected and with each, AWILDA continues to outperform LDA.

Comparing the performance of the topic models for the two datasets, the
contribution of the drift detection from AWILDA becomes apparent at a much
earlier time for the ML-100K dataset. From the time where the �rst drift is de-
tected, AWILDA consistently performs better than LDA. For the 01Intern the
difference is negligible at times. Additionally, the difference in performance
between AWILDA and LDA is generally greater for the ML-100K dataset than
for the 01Intern dataset. However, it is clear that drift detection improves abil-
ity to model the documents for both datasets.

7.1.2 Document topics

In the previous section the ability of AWILDA and LDA to model the docu-
ments was evaluated. While the evaluation revealed differences in the perfor-
mance of the models, it did not provide any insights into the topics inferred.
In this section, we take a closer look at the inferred topics and how documents
are represented in terms of these topics.

To gain insights into the topics and documents, we follow the evaluation
setting described in the previous section and capture the state of the topic
model and the documents at certain interesting points in time. First, we assess
the topics after the initial learning of the model. In an experiment in Section
7.1.4, we compare the state of the model right before and after a drift occurs.
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The values used for the hyperparameters are similarly the same as in the pre-
vious experiment.

Topic 1 enterprise→ 0.0188, human→ 0.0146, work→ 0.0133, can→
0.0133, life→ 0.012, growth→ 0.0103, of�ce→ 0.0096, and→
0.0095, company→ 0.0085, experience→ 0.008,

Topic 2 design→ 0.0301, web*→ 0.0288, can→ 0.015, site→ 0.0132,
service→ 0.0113, designer→ 0.0109, job→ 0.0092, creation→
0.0089, student→ 0.0083, development→ 0.0079,

Topic 3 human→ 0.0124, life→ 0.0106, enterprise→ 0.0096, duties→
0.009, service→ 0.0087, go→ 0.0086, can→ 0.0079, planning
→ 0.0075, project→ 0.0074, job→ 0.0072, -like→ 0.007,

Topic 4 sales → 0.04, -like → 0.0123, can → 0.0109, enterprise →
0.0098, go→ 0.0094, experience→ 0.0085, service→ 0.0084,
proposal→ 0.0082, shop→ 0.0081, management→ 0.0074,

Topic 5 human→ 0.0192, enterprise→ 0.0156, industry→ 0.0126, ex-
perience→ 0.0112, job→ 0.0099, can→ 0.0093, life→ 0.0091,
company→ 0.0081, duties→ 0.0081, person→ 0.0073,

Topic 6 development → 0.0371, experience → 0.0212, engineer →
0.0146, project→ 0.0146, service→ 0.0133, app→ 0.0086, life
→ 0.0085, skill→ 0.0081, web*→ 0.0081, human→ 0.0076,

Topic 7 project→ 0.0155, enterprise→ 0.0121, human→ 0.0112, plan-
ning → 0.0103, site → 0.0097, can → 0.0089, business →
0.0087, administration→ 0.0079, marketing→ 0.0078, duties
→ 0.0076,

Topic 8 job→ 0.0118, experience→ 0.0107, human→ 0.0103, creation
→ 0.0099, can → 0.0097, duties → 0.0088, environment →
0.0073, life→ 0.0073, -like→ 0.0069, game→ 0.0068,

Topic 9 service→ 0.0217, web*→ 0.0139, can→ 0.0139, skill→ 0.0109,
job → 0.0092, article → 0.0088, user → 0.0085, study →
0.0079, experience→ 0.0079, company→ 0.0077,

Topic 10 service → 0.0207, web* → 0.0111, can → 0.0091, human →
0.0089, -like→ 0.0082, media→ 0.0077, education→ 0.0076,
experience→ 0.0074, project→ 0.0066, duties→ 0.0065,

Table 7.1: The 10 most popular terms for each topic inferred using LDA

Table 7.1 shows the 10 most popular terms for each of the 10 topics inferred
using LDA, sorted by their probability of being generated. The terms are listed
in the formatw → p, wherew is the term and p is the probability of generating
w from that topic. As the documents in 01Intern dataset are in Japanese, the
terms have been translated into English. A sample of the original Japanese
terms for the topics can be found in Appendix A. If a term ends with a “*”,
it means that the term has not been translated from its original form in the
Japanese document. This is the case with the term “web”, which is used as it
appears in many of the documents.

It is clear that the top 10 lists for the topics have a lot of terms in com-
mon - for example, the terms “job” and “web*” appear in �ve of the 10 topics.
This is explained by the fact that due to the domain of the dataset, most doc-
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Topic 4 Topic 6 Topic 7 Topic 8 Topic 10
“Business” “Engineer-

ing”
“Global” “Entertain-

ment”
“Steering”

sales development project reception service
student experience enterprise game goal
growth engineer human human user
venture project planning environment vision
personnel skill site sustenance year
ability app Japan more than media
real estate technology business support education
proposal university

student
administration cast new

shop make marketing mobile woman
management system overseas domain day

Table 7.2: Some of the most popular terms for �ve of the LDA topics. Terms
that poorly discriminate the topics have been removed.

uments, no matter their topic mixture, contain these terms. Aside from this,
some topics have clear distinguishing features and are understandable to hu-
mans: Topic 2 is about graphic design1 and Topic 6 is about engineering.

To see how documents can be represented as a mixture of different top-
ics, we investigate how the different terms in a document are generated by a
speci�c topic. That a term is “generated by a speci�c topic” here means that
this topic has the highest probability of generating the topic.

We turn our attention to a speci�c document, titled “Recommended for
science students! Internship where you can learn rapid big data processing
skill”, which we will from here on out refer to as Job A. In Table 7.2, a selection
of terms from the �ve topics most represented in the topic mixture of Job A
are shown. The terms shown are generally some of the most popular terms
for each topic, but terms that poorly discriminate the topics have been left
out. Each of the �ve topics is summarised with a title, that is common for
most of the words in the topic. Additionally, each topic is assigned a colour:
the purpose of this is to be able to clearly highlight using the colour by which
topic each term in Job A is generated.

Documents in the 01Intern dataset are rather large, due to being composed
of several text attributes. For this reason, only a segment of the document for
Job A is provided. In Figure 7.3, a sample of the document for Job A is shown,
with relevant terms highlighted by the colour of the topic they are generated
by. In a few cases, multiple Japanese terms have been translated into a single
term in English; in these cases, the term has the colour for both topics, as is
the case with the term “gain”. Here, the original terms are generated by both
topic 4 and topic 10.

Consider another job, titled “2 days a week OK! Learn Java as a server-side
engineer!” which we refer to as Job B. This job has the topic mixture shown
in Figure 7.4. The �gure shows that the most prominent topic in Job B is Topic

1If one ventures beyond the �rst 10 terms, “photoshop” and “illustrator” are some of the �rst
terms to appear.
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This is an engineering job where you can gain insights about
server side development and databases. You will be developing
a web service, Zealup, designed for companies. Zealup is a goal
management tool which supervises if individual effort properly
leads to the overall goal of the company. For example, when de-
veloping a web service, diverse roles such as development, mar-
keting and support are necessary. The innovative service tries to
achieve an overall goal of organisation, which is completing the
service, by sharing how much achievements by individuals with
different roles affect completion of the service among everyone.

Figure 7.3: Job description for Job A, with terms generated by each topic high-
lighted

6: Engineering. Topics 1, 2, 4, 8 and 9 make up the rest of the signi�cant bit
of the topic mixture, each with approximately the same degree of presence.
When considering the sample of Job B in Figure 7.5, which corresponds to
the quali�cation attribute (the required quali�cations for the job), it becomes
clear why Engineering is the most represented topic for Job B. Not all of the
topics that make up the signi�cant part of the topic mixture are represented
in the sample; however, they can be identi�ed in the rest of the document.

7.1.3 Similar documents

In this section, an analysis of how the topic mixtures for different documents
relate to each other. Using Job A as a starting point, a comparison is made
to the three jobs with the most similar topic mixtures. The similarity of topic
mixtures is measured using the Euclidean distance.

In Table 7.3, the three jobs with the most similar topic mixtures are shown.
For each job, the job title, distance to Job A, and a chart illustrating the topic
mixture are shown. It is immediately clear from the job titles that these jobs
are related to engineering and computer science.

For all of the jobs, Topic 6 is the most dominant topic. For none of the jobs
the difference in Topic 6 differs by no more than 1%. For the remaining topics,
the difference is greater, and some of the jobs consist of topics that Job A does
not exhibit. However, it is easy to see that even disregarding Topic 6, the jobs
in the list all show similarities to Job A.

Interestingly, Job A and the most similar job Job B are signi�cantly repre-
sented by Topic 1 and Topic 4. Both of these jobs are, in addition to engineer-
ing, related to business and the growth of companies; both Topic 1 and Topic
4 relate to economics, which may explain why Job A is more similar to Job B
with regards to Topic 1 and Topic 4 than to the 2nd and 3rd most similar jobs,
which focus more on the development of games and services, respectively. In
addition, Job A and Job B are both related to big data analysis. This reveals that
the topic model is able to capture noteworthy aspects of the documents with
as few as 10 topics.
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Distance Job title Topic mixture
0.1784 Recommended for

science students!
Internship where you
can learn rapid big
data processing skill

1

9.39%

4

17.23%
6

36.66%

8

13.08%

9

11.35% 10

12.05%

0.1803 Development of vari-
ous popular games!

1
3.84%

2

11.41%

4

4.35%

5

5.18%
6

38.32%

7

1.01%

8

16.99%

9

7.145% 10

11.69%

0.2166 Engage in the devel-
opment of various
popular services

2
6.19%

3

5.70%

4

4.88%

5

4.14%
6

37.98%

7

4.16%

8

9.54%

9

12.72% 10

14.62%

Table 7.3: The three jobs with topic mixtures most similar to Job A
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1

10.99%

2

11.09%

4

11.09%

6
37.62%

7

1.33%

8

13.35% 9

14.37%

Figure 7.4: Topic mixture for Job A

Experience developing web applications (sample apps etc. also
OK)
Experience using the Linux OS Basic understanding of algorithms
and data structures
Development experience using the C language/Ruby on Rails

Figure 7.5: Required quali�cations for Job B, with terms generated by each
topic highlighted

7.1.4 Effects of drift adaption

In this �nal section of the evaluation of the topic modelling component of
CoAWILDA+, the effects of drift adaption are analysed. The purpose is to es-
tablish an overview of how drift adaption affects which terms are generated
by which topics and how the relationships between related documents are in-
�uenced. Speci�cally, we analyse the effects of the �rst drift that occurs when
following the protocol described in Section 7.1.1.

In Figure 7.6 the 10 terms most likely to be generated by Topic 4 before and
after the occurred as shown. The top of the �gure shows the 10 terms before
the drift occurs, while the bottom shows the terms after the drift has occurred.

The drift adaption has a noticeable effect on the terms generated by Topic
4. A change occurs in the probability the terms have of being generated by the
topic, although not by much. This results in a reordering of some of the terms
in the list, however, the 10 most popular terms remain the same, as no new
terms appear in the list. This is as one would expect; the topics do not change
radically from what was inferred during the initial training of the model, even
when a drift occurs.

However, if we consider for example the top 500 terms, the differences
become more noticeable, as the relative change in probability may be bigger
for words with a lower probability of being generated. We see a similar pattern

Page 59 of 87



June 14, 2019 7.1. Topic modelling evaluation

sales → 0.0378, -like → 0.0119, can → 0.0107, enterprise → 0.0102, go →
0.0096, experience → 0.0091, management → 0.0084, planning → 0.0083,
service→ 0.0078, shop→ 0.0076

↓
sales → 0.0367, -like → 0.0117, can → 0.0105, enterprise → 0.0103, go →
0.0097, experience→ 0.0096, management→ 0.0092, shop→ 0.008, plan-
ning→ 0.008, service→ 0.0076

Figure 7.6: Effect of drifts on the top 10 terms most likely to be generated from
Topic 4. The top part of the �gure are the terms just before the drift occurs,
while the bottom part are the terms after retraining the model following the
drift.

1

10.99%

2

11.09%

4

11.09%

6
37.62%

7

1.33%

8

13.35% 9

14.37%

→

1

10.38%

2

7.96%

4

7.40%

6
44.05%

7

1.18%

8

14.23% 9

14.64%

Figure 7.7: The effect of drift adaption on the topic distribution. On the left
is the topic mixture for job A, on the right we see what the topic distribution
would be, if we were to process the document using the post-drift LDA model.

for the other topics.
To see how drift adaption affects the topic mixtures of modelled docu-

ments and the relationship between similar documents, a simple experiment
is set up in which the topic mixture of a document is inferred before a drift oc-
curs, and then again for the same document after the drift has occurred. The
purpose of the experiment is to see if the drift adaption has any signi�cant
effect on the balance between different topics and whether the most similar
documents remain the same or change.

Figure 7.7 shows the topic mixture for Job A before the drift occurs (left)
and after the drift has occurred (right). The drift has a noticeable effect on
all of the topics: Topic 6 accounts for 6% more of the mixture after the drift.
Meanwhile, Topic 2 and Topic 4 each account for approximately 3% less. The
contribution of the remaining topics also shifts, but not by as much - generally
by less than 1%.
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To see how this shift in topic mixture affects the relationships between
jobs, the jobs most similar to the topic mixture from before and after the drift
are computed. Table 7.4 shows the 10 most similar jobs before the drift occurs,
while Table 7.5 shows the 10 most similar jobs after drift adaption. The names
in bold in Table 7.5 indicate that these jobs were also part of the 10 most similar
jobs before the drift was detected. Note that only the topic mixture of Job
A is recomputed after the drift occurs, not of any of the other jobs. This is
because the purpose is to �nd out how jobs added after the drift relate to the
jobs that have already had their topic mixtures inferred. This better re�ects
the CoAWILDA+ algorithm, where the topics for items are not recomputed
even after a drift is detected; only the topics of jobs added after are affected
by the drift adaption.

Of the 10 most popular jobs after the drift adaption, seven were also part
of pre-drift 10 most similar jobs. However, the distance between Job A and
the jobs in the list changes, causing a reordering of the jobs in the list. One
of the jobs for which the similarity changes the most is the one titled “We
support human resource education for big companies. System development
engineers wanted!”. The distance between this job and Job A changes from
0.2255 before the drift to 0.1828 after. In conclusion, the drift adaption has an
effect on the relationship between the topic mixtures for jobs.

Distance Job title
0.1784 Recommended for science students! Internship which you can

learn rapid big data processing skill
0.1803 Development of various popular games!
0.2166 Engage in the development of various popular services
0.2255 We support human resource education for big companies.

System development engineers wanted!
0.2384 Engineers wanted to make website with HTML and CSS
0.246 Average age of 24! Let’s learn system development in a stylish

of�ce in Ebisu!
0.2483 No experience needed. Internship where you can learn the ba-

sics from an engineer who previously worked at Rakuten
0.2511 Learn PHP and Javascript in practice, if you have a basic knowl-

edge!
0.2534 Statistic analysis/big data application. Engineers needed for

software development!
0.2607 Spread popular products all over the world. Internship for cre-

ation of EC sites

Table 7.4: The 10 most similar jobs to job A before a drift is detected.

7.2 Recommender system evaluation

In this section, a number of recommender systems are evaluated. The stream
of observations for each document is used for prequential evaluation, using
the evaluation protocol described in [7]. Unfortunately, as the author has not
been able to acquire suitable hyperparameters for AE and CoAWILDA+ due
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Distance Job title
0.1797 Development of various popular games!
0.1828 We support human resource education for big companies.

System development engineers wanted!
0.1930 Recommended for science students! Internship which you

can learn rapid big data processing skill
0.2097 Average age of 24! Let’s learn system development in a stylish

of�ce in Ebisu!
0.212 Engage in the development of various popular services
0.2317 Why not try developing news apps or TV program apps?
0.2324 Learn PHP and Javascript in practice, if you have a basic

knowledge!
0.2416 Experience programming in practice widely from HTML to

server side!
0.26 Statistic analysis/big data application. Engineers needed for

software development!
0.2796 Internship during where you develop portal sites run by our

own company. You can learn from CTO who previously worked
at Rakuten

Table 7.5: The 10 most similar jobs to job A after drift adaption. The job titles in
bold indicate that the job was also in the top 10 before the drift was detected.

to time constraints, these models are left out. Instead the focus of the evalu-
ation is on CoAWILDA, which is evaluated alongside several baselines. A set
of different evaluation measures are used to highlight different aspects of the
performance of the recommender systems.

7.2.1 Evaluation protocol

In [45], an evaluation protocol is proposed for evaluating recommender sys-
tems in an online setting. This is the protocol used for evaluating CoAWILDA
in [7]. The protocol is designed for recommender systems that require an ini-
tial training phase. The protocol consists of three distinct phases:

1. Batch train: in this phase, the model is initialised using a subset consist-
ing of a number of the �rst observations from the data stream

2. Stream train: this phase ensures a smooth transition between the initial
training of the model and the online test phase

3. Stream test and train: in this �nal phase the model is evaluated using a
prequential approach, in which each observation is �rst used to test the
model, and subsequently used to train the model

Since the goal is to test the performance of the recommender system in the
online setting, the online evaluation should not take place immediately after
the batch training of the model. The second phase exists to avoid a temporal
gap in the data, which is undesirable as temporal aspects are relevant to some
models[45].
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The datasets are partitioned into three subsets to be used by the different
phases of the evaluation protocol. Following the setting in [7], both datasets
are split in the following way: batch train uses the �rst 20% of observations,
stream train uses the next 30%, and stream test and train uses the remaining
50% of observations.

In [45], the authors mention that a problem with recommendation using
the evaluation protocol is that sometimes the model evaluated will be tasked
with computing recommendations for a user for which no observations exist.
In this case, the testing for this observation is skipped and the recommender
system is trained on the model. The same approach is taken for this eval-
uation. We require at least one rating for a user before the recommender
system can make predictions. An alternative approach is to provide recom-
mendations using a just initialised user factor vector. For the task of evaluating
recommender systems with an emphasis on the user cold-start problem, this
is more relevant.

When evaluating a model on a dataset, prequential evaluation is used at
each step in the stream test and train phase. An average of all the observations
tested is kept throughout the evaluation of the model. To see how the models
perform over time, the average value is reported each time another 10% of the
subset has been processed.

7.2.2 Evaluation measures

The evaluation measures used are the Discounted Cumulative Gain (DCG) and
Recall@k. In the prequential evaluation setting, where the set of rated items
consists only of a single item, the Recall@k measure simply returns 1 if the
item is present in the k �rst recommendations, and 0 otherwise[11]. DCG@Ni
scores a list of recommendations based on the rank at which the observed
item appears. If the item appears earlier in the list of recommendations, a
higher score is received. DCG@Ni is given by the following formula:

DCG@Ni =
1

log2(rank(i) + 1)
(7.2)

7.2.3 Models evaluated

For comparison, a number of models are evaluated alongside CoAWILDA. The
purpose of this is to be able to establish an idea of how the model performs
in general, and what its strengths and weaknesses are. The models evaluated
are the following:

• MF: a basic matrix factorisation implementation as described in Section
4.3, with no added item or user information

• CoAWILDA: an implementation of CoAWILDA with the same imple-
mentation details described in Section 6.4

• CoLDA: Like CoAWILDA, but instead of AWILDA, pure online LDA is
used

• kNN regression: the pure content-based �ltering approach explained in
Section 5.1
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• Random: random ordering of the available items the user has not yet
interacted with. The random recommender is evaluated 100 time to re-
duce noise in the results. The random recommender is not included in
most evaluation results, as it signi�cantly distorts the charts

For the kNN regression recommender the same item attributes are used
when computing the similarity of items as those used in CoAWILDA+. For the
exact settings of the kNN regression recommender, refer to Appendix C.

7.2.4 01Intern

For the 01Intern, the evaluation is not based on the full dataset, but a variant
that cuts off users with less than 20 ratings, as the focus is on the item cold-
start problem. The cut-off is used to reduce the noise from users with only
few ratings.

In the charts of the evaluation results, the values of the y-axis are the mean
score for the tested observations at each point in time. The values of x-axis are
what percentage of the stream test and train subset has been processed at that
point.

Figure 7.8 shows the evaluation result for the 01Intern dataset measured
using DCG@Ni. Surprisingly, the kNN regression recommender consistently
scores highest out of all the recommender systems. The kNN recommender is
closely followed by CoAWILDA and AWILDA whose performance are approx-
imately the same. Towards the end of the stream, CoAWILDA and AWILDA
have both caught up to the kNN regression recommender in terms of perfor-
mance. The simple MF model performs signi�cantly worse than the models
leveraging item information, consistently scoring about 0.01 less than CoAW-
ILDA and LDA. MF, like CoAWILDA and AWILDA, improves in performance
as more of the stream is processed. Worst of all is the random recommenda-
tions recommender, which scores 0.03 less than the other models. Like the
kNN recommender, its performance does not improve as more of the stream
is process. This is only natural, as the random recommendations model is not
updated as new observations are encountered.

Figure 7.8: Evaluation of the recommender systems on the 01Intern dataset
using Discounted Cumulative Gain @Ni.
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In Figure 7.9 the Recall@k scores of the models for different values of k
are shown. The values for k are 5, 10, 50 and 100. These are the same values
used in [7]. The different sizes of the recommendation lists allows us to mea-
sure how the models perform when the item relevance is important in a very
small set of recommendations, and when a larger set of items is considered.
The performance of the models is generally the same as in Figure 7.8, with
MF performing worse than the models that take into account item attributes.
However, for Recall@50 and Recall@100, CoAWILDA and CoLDA start to out-
perform kNN regression about half way through the dataset. This highlights an
interesting characteristic of the content-based kNN regression recommender:
as it recommends the items most similar to the items already rated by a user,
when this approach is successful the recommendations will often be ranked
very high in the list. The more serendipitous hybrid recommender systems
are less successful for this task, although they achieve a better overall score
when k is more relaxed.

While it is possible to see that CoAWILDA outperforms AWILDA, it is not
by much. This may be explained by the distribution being rather stable over
time. After the initial training of the model two drifts are discovered, but since
they are discovered soon after the initial training, the effect of retraining is not
as strong.

Figure 7.9: Evaluation of the recommender systems on the 01Intern dataset
using Recall.

The optimal amount of regularisation used by MF, CoAWILDA and CoLDA
for the 01Intern dataset is set rather low. For the three models, λu and λi is set
0.0005. This is very different from the regularisation parameters suggested
for the ML-100K dataset in [7]. A possible explanation for this is that the ratings
processed throughout the three phases are quite representative of the overall
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dataset: it is capturing the important properties of the data without over�tting.
If more regularisation is used the model becomes general, but this results in
certain useful properties getting lost.

7.2.5 MovieLens 100K

Because 1,600 movies are in the batch train subset of the stream of observa-
tions, it unlikely that the drift detection mechanism of CoAWILDA will have
an effect on recommendation quality. In a personal correspondence with the
authors of [7], it was clari�ed that in the evaluation described in the paper the
batch train subset accounts for approximately 1,200 of the items. It is unclear
to the author what has resulted in this difference. However, to closer mimic
the setup in [7], AWILDA is initialised with approximately 75% of the batch
train subset (corresponding to 1200 items) and for the remaining 25% of items,
AWILDA is updated with one item at a time. Using this setup, a contribution
from the drift adaption may manifest itself.

For the ML-100K dataset, the kNN regression recommender is not evalu-
ated. This is because its implementation is speci�c to the domain of 01Intern;
adapting the model for the ML-100K dataset would require major refactoring.

Figure 7.10 shows the results of evaluating the models on the ML-100K
dataset using DCG@Ni. The ordering of which models perform best is the
same as for 01Intern dataset. The trends for CoAWILDA and AWILDA are more
stable than for the 01Intern dataset, where performance increased over time.
In Figure 7.11 the evaluation using the Recall measures are shown. These evalu-
ations show similar characteristics, with CoAWILDA outperforming AWILDA.
However, towards the end of the stream, their performance is approximately
the same.

Figure 7.10: Evaluation of the recommender systems on the ML-100K dataset
using Discounted Cumulative Gain @Ni.
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Figure 7.11: Evaluation of the recommender systems on the ML-100K dataset
using Recall.

7.3 Effect on cold-start problem

For the task of highlighting the usefulness of the models in alleviating cold
start, the Recall@k measure is used to evaluate speci�cally the observations
in which the item has below a certain number of ratings rmax. For example,
by setting rmax = 0, only entirely new items, for which no ratings exist, are
considered. We refer to this evaluation measure as Recall(new)@k.

In Figure 7.12, the Recall(new)@10 is shown. The values of the y-axis is the
ratio of total number of correct predictions across the entire stream to the
maximum possible correct preditions; in other words it is the percentage of
correct predictions. On the x-axis are the maximum number of ratings an item
can have in order for it to be considered “new”. MF and CoAWILDA are eval-
uated based on the ability to provide correct predictions for items with less
than or equal to 0, 5 and 10 ratings. It is clear from the Figure that CoAWILDA
outperforms MF, however, it is not by much. When predicting completely
new items, CoAWILDA has a success rate of about 0.9%.
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Figure 7.12: Evaluation of the recommender systems on the 01Intern dataset
using Discounted Cumulative Gain @Ni.

In Figure 7.13, the results for Recall(new)@50 are shown. Again, the differ-
ence in performance between MF and CoAWILDA is not that large: about 1%
for each value of rmax. This may indicate that for the 01Intern dataset some of
the contribution from CoAWILDA lies not in the alleviation of cold start, but
in the overall prediction of items.

Figure 7.13: Evaluation of the recommender systems on the 01Intern dataset
using Recall.
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8. Discussion
In this chapter the �ndings from and problems encountered during the project
are discussed. The questions that have not been answered over the course of
the project are also presented.

8.1 Potential con�icts in recommendation model

One of the potential issues with the developed CoAWILDA+ model is the fact
that factor vectors derived from different attributes are embedded in the same
item factor vector. The factor vectors in question are the topics θi inferred for
an item i and attributes vectors of y. This potential issue may arise because
θi and the vectors ya where a ∈ A(i) are embedded into the same item factor
vector qi. While this is not necessarily problematic, in the case where θi and
the sum of the ya vectors pull in opposite directions, the contribution from
each approach may be reduced, and in the worst case they may each neu-
tralise the contribution from the counterpart.

It remains unclear from the results whether this is the case. This question
is one that merits further research, in future work with CoAWILDA+.

8.2 Effect of drift detection

Evaluations of the effects of drift adaption for topic modelling were performed
in Section 7.1.1 and Section 7.1.4. Later, in Section 7.2.4, the effect of drift adap-
tion for online recommendation was evaluated.

Experiments in Section 7.1.1 show that drift adaption can result in a lower
average perplexity score, and thus a better �t of the modelled data. This sup-
ports the arguments in [7] that AWILDA results in a better �t of the mod-
elled data, through providing empirical evidence of its effect on the 01Intern
dataset. Furthermore, the online prequential evaluation of CoAWILDA on the
01Intern dataset show better results than for CoLDA, which does not adapt to
drifts.

In the evaluation of the effects on topic modelling in Section 7.1.4, it was
argued that drift adaption results in change in the relationships between the
topic mixtures of documents, for which the topic mixtures are inferred prior
to the drift, and those where inference takes place after. While it is likely that
the topics inferred for post-drift documents are more accurate, as the model
better �ts the data, this may also result in in the topic mixtures of the post-drift
documents being closer to or further from the pre-drift documents.

An interesting question that remains unanswered is how much of the in-
crease in performance for CoAWILDA that can be attributed to the better
modelling through drift adaption, and how much can be attributed to the shift
in the topic mixtures, which can be seen as a form of “forgetting” older items.
In [45] it is shown that forgetting older ratings when using MF can be bene-
�cial. Forgetting in this context means to leave ratings out when retraining
the model. It is likely that forgetting older items can similarly be bene�cial to
recommendation quality.
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8.3 The user cold-start problem

In the 01Intern dataset, the vast majority of users have few interactions which
means that user cold start might pose a serious problem for recommender
systems working with the dataset. In this project, there has been no effort to
alleviate this problem, as the focus has been on the item cold-start problem in
accordance with the problem statement. However, as it is a signi�cant char-
acteristic of 01Intern dataset it is a problem that is subject to further research.

In Section 2.1.4, it was shown that the 01Intern dataset contains a number of
attributes for users in addition to those for items. Leveraging these attributes
is a potential approach to alleviating the user cold-start problem. As described
in [3], the AE approach used in the developed solution can be applied to user
attributes as well. If the goal is to maximise performance using the 01Intern
dataset in its original form, that is, without �ltering out users with few ratings,
this approach can be considered.

8.4 Sources of error

In this section, the sources of error associated with the experiments in this
project are discussed. The most obvious of these is incomplete optimisation
of the hyperparameters. The fact that each model cannot be guaranteed to
be in an optimal con�guration means that less con�dence can be put in the
conclusions drawn during this project.

The hyperparameters κ and τ0 used in online LDA have not been deter-
mined as part of the grid search for the optimal hyperparameters for each rec-
ommender system. Rather, the hyperparameters were optimised separately
for the task of evaluating the effectiveness of the topic models. In the evalu-
ation of the recommender systems, the set of documents to initially train on
is much larger than in the evaluation of the topic models. As there is a dif-
ference between the stream setting in which the recommender systems are
evaluated and the setting in which the topic models are evaluated, the recom-
mender systems may have been evaluated with suboptimal hyperparameters
for the topic model components.

The approach used to evaluate recommender systems on the ML-100K
dataset was modi�ed in attempt to reproduce the evaluations described in
ML-100K. The modi�ed approach trains the topic model incrementally on
part of the batch train subset, as described in Section 7.2.5. While this con-
tributes to the analysis the effect of drift detection (by signi�cantly increasing
the potential of a drift occurring), it may have unwanted effects. Hence, this is
listed as a potential source of error.
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9. Conclusion
In this chapter, progress made and discoveries made during this project are
summarised. The project as a whole is �rst summarised, after which the par-
tial conclusions presented in the report are summarised. The conclusion an-
swers, to some extent, the questions posed in the problem statement in Chap-
ter 3.

Over the course of this project the model CoAWILDA+ has been developed.
CoAWILDA+ is a model that stems from the idea of combining different types
of item attributes with the advantages that collaborative �ltering offers, in an
effort to alleviate the cold start problem. CoAWILDA+ combines topic mod-
elling of text documents using AWILDA with the AE model, which is a simple
modi�cation of the MF to include info for item attributes. The topic modelling
component, AWILDA, is evaluated separately with purpose of identifying the
characteristics of drift detection. A set of recommender systems is evaluated
in online setting, with an emphasis on determining how well they perform on
cold-start recommendation.

9.1 Alleviating cold start

The cold-start problem is usually handled by including in the model of a rec-
ommender system information about the items to be recommended. In Chap-
ter 4, different methods for including item information for recommendation
were examined. In Chapter 5, the method CoAWILDA was introduced, which
elegantly combines MF with topic modelling to alleviate the problem of cold
start. Following this, the CoAWILDA+ model was proposed, to combine the at-
tractive properties of CoAWILDA and AE. Due to an incomplete hyperparam-
eter optimisation for the CoAWILDA+ model, the performance of the model
was not evaluated. The usefulness of CoAWILDA+ remains an unanswered
question.

Findings from evaluation of the other recommender systems indicate that
CoAWILDA is to some extent a successful approach to the alleviation of the
cold start problem for the 01Intern dataset. CoAWILDA only makes use of the
documents representing each item, and does not leverage additional item at-
tributes. However, as concluded in Section 7.3, CoAWILDA still achieves per-
formance gains over basic MF for the task of cold-start recommendation.

9.2 Attribute weighting

The question of which attributes are most relevant to users of 01Intern re-
mains unanswered. As experiments with AE and CoAWILDA+ were unsucces-
ful, no attribute factor vectors have been obtained. As a consequence, there
is no information about attributes that can be used to solve this sub-problem.
The answer may be found by optimising the hyperparameters for CoAWILDA+
and seeing which attributes display great magnitudes and which do not.

9.3 Balancing contribution from different compo-
nents

An approach that may be able to balance different attributes is AE presented in
Section 4.5.1. As the attribute factor vectors are an integrated part of the MF,
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the weights are implicitly inferred during training. However, as the method
has not been evaluated for the 01Intern dataset, no points can be made about
the effectiveness of the method.

9.4 Online recommendation

A necessary property of recommender systems for the online setting is being
able to process observations at the same rate at which they appear. ISGD, de-
scribed in Section 4.6, and the extension, CoAWILDA, are both models suited
for the online recommendation setting. Both models perform a single-step
model update with each observation received. Only occasionally, when a drift
is detected, does CoAWILDA train on several observation at a single step in
time. This makes it simple for the models to keep up with data streams.

In Section 7.1.1, arguments were made for the usefulness of drift detection
when using topic model on a data stream. When adapting to drift, the model
was able to better �t the data. As we saw in Section 7.2, the improved topic
modelling carried over to recommendations, as the topic model was part of
the evaluated recommender system.

Page 73 of 87



Part V

Closing

Page 74 of 87



Bibliography
[1] Wikipedia. (2015). Vancouver reference system. English, Wikipedia, [On-

line]. Available: http://en.wikipedia.org/wiki/Vancouver_
system (visited on Nov. 30, 2017).

[2] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: Introduction
and challenges”, in Recommender systems handbook, Springer, 2015,
pp. 1–34.

[3] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems”, Computer, no. 8, pp. 30–37, 2009.

[4] L. Peska and P. Vojtas, “Negative implicit feedback in e-commerce rec-
ommender systems”, in Proceedings of the 3rd International Confer-
ence on Web Intelligence, Mining and Semantics, ser. WIMS ’13, Madrid,
Spain: ACM, 2013, 45:1–45:4, ISBN: 978-1-4503-1850-1. DOI: 10.1145/
2479787.2479800. [Online]. Available: http://doi.acm.org/10.
1145/2479787.2479800.

[5] S. Debnath, N. Ganguly, and P. Mitra, “Feature weighting in content based
recommendation system using social network analysis”, in Proceedings
of the 17th international conference on World Wide Web, ACM, 2008,
pp. 1041–1042.

[6] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and
metrics for cold-start recommendations”, in Proceedings of the 25th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, ACM, 2002, pp. 253–260.

[7] M. Al-Ghossein, P.-A. Murena, T. Abdessalem, A. Barré, and A. Cornuéjols,
“Adaptive collaborative topic modeling for online recommendation”, in
Proceedings of the 12th ACM Conference on Recommender Systems,
ACM, 2018, pp. 338–346.

[8] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing cold-start prob-
lem in recommendation systems”, in Proceedings of the 2nd interna-
tional conference on Ubiquitous information management and com-
munication, ACM, 2008, pp. 208–211.

[9] S.-T. Park and W. Chu, “Pairwise preference regression for cold-start
recommendation”, in Proceedings of the third ACM conference on Rec-
ommender systems, ACM, 2009, pp. 21–28.

[10] A. Gunawardana and G. Shani, “Evaluating recommender systems”, in
Recommender Systems Handbook, F. Ricci, L. Rokach, and B. Shapira,
Eds. Boston, MA: Springer US, 2015, pp. 265–308, ISBN: 978-1-4899-7637-
6. DOI: 10 . 1007 / 978 - 1 - 4899 - 7637 - 6 _ 8. [Online]. Available:
https://doi.org/10.1007/978-1-4899-7637-6_8.

[11] E. Frigó, R. Pálovics, D. Kelen, L. Kocsis, and A. Benczúr, “Online ranking
prediction in non-stationary environments”, 2017.

[12] V. H. Haugan, “Feature weighting in content-based recommender sys-
tems using bayesian personalized ranking”, 2019.

[13] Y. Yu, C. Wang, and Y. Gao, “Attributes coupling based item enhanced
matrix factorization technique for recommender systems”, arXiv preprint
arXiv:1405.0770, 2014.

[14] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context”, Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, p. 19, 2016.

Page 75 of 87

http://en.wikipedia.org/wiki/Vancouver_system
http://en.wikipedia.org/wiki/Vancouver_system
https://doi.org/10.1145/2479787.2479800
https://doi.org/10.1145/2479787.2479800
http://doi.acm.org/10.1145/2479787.2479800
http://doi.acm.org/10.1145/2479787.2479800
https://doi.org/10.1007/978-1-4899-7637-6_8
https://doi.org/10.1007/978-1-4899-7637-6_8


June 14, 2019 Bibliography

[15] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz, “The plista dataset”, 2013.

[16] J. Bennett, S. Lanning, et al., “The net�ix prize”, in Proceedings of KDD
cup and workshop, New York, NY, USA., vol. 2007, 2007, p. 35.

[17] GroupLens. (1998). Movielens 100k dataset, [Online]. Available: https:
//grouplens.org/datasets/movielens/100k/ (visited on Mar. 25,
2019).

[18] IMDb. (1990-2019). Imdb datasets, [Online]. Available: https://www.
imdb.com/interfaces/ (visited on Apr. 8, 2019).

[19] J. Vinagre, A. Jorge, and J. Gama, “Fast incremental matrix factorization
for recommendation with positive-only feedback”, Jul. 2014, pp. 459–
470. DOI: 10.1007/978-3-319-08786-3_41.

[20] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback”, in Proceedings
of the twenty-�fth conference on uncertainty in arti�cial intelligence,
AUAI Press, 2009, pp. 452–461.

[21] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation”, Journal
of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[22] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent dirichlet
allocation”, in advances in neural information processing systems, 2010,
pp. 856–864.

[23] X. Yang, “Understanding the variational lower bound”, 2017.

[24] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler diver-
gence between gaussian mixture models”, in 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP ’07,
vol. 4, Apr. 2007, pp. IV-317-IV-320. DOI: 10.1109/ICASSP.2007.
366913.

[25] A. Bifet and R. Gavalda, “Learning from time-changing data with adap-
tive windowing”, in Proceedings of the 2007 SIAM international confer-
ence on data mining, SIAM, 2007, pp. 443–448.

[26] P. M. Grulich, R. Saitenmacher, J. Traub, S. Breß, T. Rabl, and V. Markl,
“Scalable detection of concept drifts on data streams with parallel adap-
tive windowing.”, in EDBT, 2018, pp. 477–480.

[27] Y. Koren and R. Bell, “Advances in collaborative �ltering”, in Recom-
mender systems handbook, Springer, 2015, pp. 77–118.

[28] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix”, Journal of the Society for Industrial and Applied
Mathematics, Series B: Numerical Analysis, vol. 2, no. 2, pp. 205–224,
1965.

[29] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimension-
ality reduction in recommender system-a case study”, Minnesota Univ
Minneapolis Dept of Computer Science, Tech. Rep., 2000.

[30] Y. Koren, “Factorization meets the neighborhood: A multifaceted col-
laborative �ltering model”, in Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM,
2008, pp. 426–434.

Page 76 of 87

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
https://www.imdb.com/interfaces/
https://www.imdb.com/interfaces/
https://doi.org/10.1007/978-3-319-08786-3_41
https://doi.org/10.1109/ICASSP.2007.366913
https://doi.org/10.1109/ICASSP.2007.366913


June 14, 2019 Bibliography

[31] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization
with biconvex functions: A survey and extensions”, Math. Meth. of OR,
vol. 66, pp. 373–407, 2007.

[32] J. Nguyen and M. Zhu, “Content-boosted matrix factorization techniques
for recommender systems”, Statistical Analysis and Data Mining: The
ASA Data Science Journal, vol. 6, no. 4, pp. 286–301, 2013.

[33] Y. Zhen, W.-J. Li, and D.-Y. Yeung, “Tagico�: Tag informed collaborative
�ltering”, in Proceedings of the third ACM conference on Recommender
systems, ACM, 2009, pp. 69–76.

[34] R. Van Meteren and M. Van Someren, “Using content-based �ltering for
recommendation”, in Proceedings of the Machine Learning in the New
Information Age: MLnet/ECML2000 Workshop, 2000, pp. 47–56.

[35] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries”, in Proceedings of the �rst instructional conference on ma-
chine learning, Piscataway, NJ, vol. 242, 2003, pp. 133–142.

[36] P.-A. Murena, M. Al-Ghossein, T. Abdessalem, and A. Cornuéjols, “Adap-
tive window strategy for topic modeling in document streams”, in 2018
International Joint Conference on Neural Networks (IJCNN), IEEE, 2018,
pp. 1–7.

[37] D. M. Blei and J. D. Lafferty, “Dynamic topic models”, in Proceedings of
the 23rd international conference on Machine learning, ACM, 2006, pp. 113–
120.

[38] L. Du, W. L. Buntine, and H. Jin, “Sequential latent dirichlet allocation:
Discover underlying topic structures within a document”, in 2010 IEEE
International Conference on Data Mining, IEEE, 2010, pp. 148–157.

[39] T. L. Grif�ths and M. Steyvers, “Finding scienti�c topics”, Proceedings of
the National academy of Sciences, vol. 101, no. suppl 1, pp. 5228–5235,
2004.

[40] X. Wang and A. McCallum, “Topics over time: A non-markov continuous-
time model of topical trends”, in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM,
2006, pp. 424–433.

[41] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man, “Indexing by latent semantic analysis”, Journal of the American so-
ciety for information science, vol. 41, no. 6, pp. 391–407, 1990.

[42] Atilika. (). About kuromoji, [Online]. Available: http://www.atilika.
org/ (visited on Dec. 10, 2018).

[43] T. A. S. Foundation. (2017). The apache opennlp library. English, [Online].
Available: https://opennlp.apache.org/ (visited on Jun. 12, 2019).

[44] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: massive online
analysis”, Journal of Machine Learning Research, vol. 11, pp. 1601–1604,
2010. [Online]. Available: http : / / portal . acm . org / citation .
cfm?id=1859903.

[45] P. Matuszyk and M. Spiliopoulou, “Selective forgetting for incremental
matrix factorization in recommender systems”, in International Con-
ference on Discovery Science, Springer, 2014, pp. 204–215.

Page 77 of 87

http://www.atilika.org/
http://www.atilika.org/
https://opennlp.apache.org/
http://portal.acm.org/citation.cfm?id=1859903
http://portal.acm.org/citation.cfm?id=1859903


List of Figures
1 Sample �gure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

2.1 Column chart of frequency of jobs that have at least a certain
number of interactions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Histogram of interactions by job . . . . . . . . . . . . . . . . . . . 8
2.3 Column chart of frequency of users that have at least a certain

number of interactions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Column chart of frequency of users that have at least a certain

number of interactions, zoomed in on the 20-100 range . . . . 10
2.5 The distribution of interaction types for users with at least a cer-

tain number of interactions . . . . . . . . . . . . . . . . . . . . . . 11
2.6 The distribution of interaction types for users after the cutoff . 11
2.7 Number of interactions with jobs over time . . . . . . . . . . . . 12
2.8 Column chart of frequency of movies that have at least a certain

number of ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Column chart of frequency of users that have at least a certain

number of ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Histogram of stars by rating . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Number of movie ratings over time . . . . . . . . . . . . . . . . . 17

4.1 Graphical representation of the Latent Dirichlet Allocation model 24
4.2 (Top) LDA generates a corpus using the model parametersα and

β, whereα is the topic distribution across the entire corpus and
β is the per-topic term distribution. (Bottom) Given a corpus,
the posterior distribution of the hidden variables θ and z is in-
ferred through Bayesian inference. . . . . . . . . . . . . . . . . . 25

4.3 Graphical representation of the variational distribution used for
inference of the posterior . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Example partitioning of sliding windowW into subwindowsW0

and W1 in ADWIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 The ADWIN2 algorithm stores values in a variant of an expo-

nential histogram to reduce memory and time complexity . . . 31
4.6 Decomposition of the ratings matrix into lower-rank matrices

P and Q. The product, QᵀP , yields the ratings matrix with every
entry �lled in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Comparison of the performance of AWILDA and online LDA on
the 01Intern dataset, measured as the average perplexity of a
sliding window. Each red line indicates a drift detected by AW-
ILDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Comparison of the performance of AWILDA and online LDA on
the ML dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Job description for Job A, with terms generated by each topic
highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4 Topic mixture for Job A . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 Required quali�cations for Job B, with terms generated by each

topic highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6 Effect of drifts on the top 10 terms most likely to be generated

from Topic 4. The top part of the �gure are the terms just be-
fore the drift occurs, while the bottom part are the terms after
retraining the model following the drift. . . . . . . . . . . . . . . 60

Page 78 of 87



June 14, 2019 List of Figures

7.7 The effect of drift adaption on the topic distribution. On the left
is the topic mixture for job A, on the right we see what the topic
distribution would be, if we were to process the document us-
ing the post-drift LDA model. . . . . . . . . . . . . . . . . . . . . . 60

7.8 Evaluation of the recommender systems on the 01Intern dataset
using Discounted Cumulative Gain @Ni. . . . . . . . . . . . . . . 64

7.9 Evaluation of the recommender systems on the 01Intern dataset
using Recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.10 Evaluation of the recommender systems on the ML-100K dataset
using Discounted Cumulative Gain @Ni. . . . . . . . . . . . . . . 66

7.11 Evaluation of the recommender systems on the ML-100K dataset
using Recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.12 Evaluation of the recommender systems on the 01Intern dataset
using Discounted Cumulative Gain @Ni. . . . . . . . . . . . . . . 68

7.13 Evaluation of the recommender systems on the 01Intern dataset
using Recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 A sample of the original Japanese terms for Topic 1. . . . . . . . 84
A.2 A sample of the original Japanese job description for Job A. . . 84

B.1 The list of Japanese stop words . . . . . . . . . . . . . . . . . . . . 86
B.2 The list of English stop words . . . . . . . . . . . . . . . . . . . . . 86

Page 79 of 87



List of Tables
1 Sample Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

2.1 The relevant �elds of jobs in the 01Intern dataset . . . . . . . . . 19
2.2 The relevant �elds of corporations in the 01Intern dataset . . . 20
2.3 The relevant �elds of users in the 01Intern dataset . . . . . . . . 20
2.4 Collective attributes from the IMDb datasets . . . . . . . . . . . . 20
2.5 IMDb person data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 The demographic information in the ML-100K dataset . . . . . 21
2.7 Differences between the 01Intern and ML-100K datasets . . . . 21

7.1 The 10 most popular terms for each topic inferred using LDA . 55
7.2 Some of the most popular terms for �ve of the LDA topics. Terms

that poorly discriminate the topics have been removed. . . . . . 56
7.3 The three jobs with topic mixtures most similar to Job A . . . . 58
7.4 The 10 most similar jobs to job A before a drift is detected. . . . 61
7.5 The 10 most similar jobs to job A after drift adaption. The job

titles in bold indicate that the job was also in the top 10 before
the drift was detected. . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.1 The weight and similarity measure used for each attribute in the
kNN regression recommender . . . . . . . . . . . . . . . . . . . . 87

Page 80 of 87



List of Listings
1 Java Code Snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
4.1 The batch variational inference algorithm for LDA, as presented

in [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The online variational inference algorithm for LDA, as presented

in [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Naive variant of the ADWIN algorithm, as presented in [25] . . 30
4.4 Pseudocode for the Stochastic Gradient Descent algorithm . . . 35
4.5 Pseudocode for the Incremental Stochastic Gradient Descent

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 The AWILDA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 The CoAWILDA algorithm . . . . . . . . . . . . . . . . . . . . . . . 43
6.1 The CoAWILDA+ algorithm . . . . . . . . . . . . . . . . . . . . . . 49

Page 81 of 87



Part VI

Appendix

Page 82 of 87



A. Original terms and documents
This chapter includes the original terms and documents from the 01Intern
dataset.
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ジ->0,003] [制作->0,003] [不動産->0,003] [応募->0,0029] [新->0,0029] [業
務->0,0028] [運営->0,0028] [社会->0,0028] [アップ->0,0028] [主->0,0027]
[一->0,0027] [素敵->0,0027] [紹介->0,0027] [層->0,0027] [場->0,0026] [様-
>0,0026] [ばかり->0,0026] [知->0,0026] [是非->0,0025] [行->0,0025] [楽-
>0,0025] [本気->0,0025] [長期->0,0025] [世界->0,0024] [web->0,0024] [エン
ジニア->0,0024] [通->0,0024] [現在->0,0024] [ちゃん->0,0024] [月->0,0023]
[もちろん->0,0023] [生活->0,0023] [学生->0,0023] [得意->0,0023] [創業-
>0,0022] [以上->0,0022] [知識->0,0022] [マッチ->0,0022] [組->0,0022] [しっ
かり->0,0022] [ただ->0,0022] [アイディア->0,0022] [可能->0,0022] [自社-
>0,0021] [がる->0,0021] [にとって->0,0021] [技術->0,0021] [海外->0,0021] [責
任->0,0021] [物件->0,0021] [作->0,0021] [自由->0,0021] [文章->0,0021] [優秀-
>0,0021] [立->0,002] [開拓->0,002] [提案->0,002] [魅力->0,002] [自->0,002]
[今->0,002] [家->0,002] [はず->0,002] [高->0,002] [価値->0,002] [関->0,002]
[最初->0,0019] [感->0,0019] [中心->0,0019] [話->0,0019] [roots->0,0019] [通
信->0,0019] [マーケティング->0,0019] [集->0,0019] [分野->0,0019] [つける-
>0,0019] [化->0,0019] [人生->0,0018] [意識->0,0018]

Figure A.1: A sample of the original Japanese terms for Topic 1.

サーバサイド、DBについての見識を身につけられるエンジニア業務です。み
なさんには企業向けWebサービス「Zealup」の開発をお任せします。
Zealupは、個人の努力が会社全体の目標にきちんと繋がっているかを管理す
る目標管理ツール。例えば、Webサービスを開発する上でも、開発、マーケ
ティング、サポートなど必要な役割は様々。役割が違う個人の成果が、サー
ビス完成にどれ位影響してるのかを全員で共有することで、組織全体の目標
であるサービス完成を達成しようというこれまでにないサービスです。

Figure A.2: A sample of the original Japanese job description for Job A.
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B. Lists of stop words
In this section the lists of stop words used for removal of stop words in doc-
uments are presented. The list of Japanese stop words can be seen in Figure
B.1 and the list of English stop words can be seen in Figure B.2. The English
list of stop words is from the Natural Language Toolkit1, while the Japanese
list is from the Stopwords ISO GitHub repository2, with a few domain speci�c
additions.

1https://www.nltk.org/
2https://github.com/stopwords-iso
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June 14, 2019

あそこ,あっ,あの,あのかた,あの人,あり,あります,ある,あれ,い,いう,います,い
る,う,うち,え,お,および,おり,おります,か,かつて,から,が,き,ここ,こちら,こと,こ
の,これ,これら,さ,さらに,し,しかし,する,ず,せ,せる,そこ,そして,その,その他,そ
の後,それ,それぞれ,それで,た,ただし,たち,ため,たり,だ,だっ,だれ,つ,て,で,で
き,できる,です,では,でも,と,という,といった,とき,ところ,として,とともに,と
も,と共に,どこ,どの,な,ない,なお,なかっ,ながら,なく,なっ,など,なに,なら,な
り,なる,なん,に,において,における,について,にて,によって,により,による,に
対して,に対する,に関する,の,ので,のみ,は,ば,へ,ほか,ほとんど,ほど,ます,ま
た,または,まで,も,もの,ものの,や,よう,より,ら,られ,られる,れ,れる,を,ん,何,及
び,彼,彼女,我々,特に,私,私達,貴方,貴方方,方,インターン,インターンシップ

Figure B.1: The list of Japanese stop words

i,me,my,myself,we,our,ours,ourselves,you,your,yours,yourself,yourselves,he,
him,his,himself,she,her,hers,herself,it,its,itself,they,them,their,theirs,
themselves,what,which,who,whom,this,that,these,those,am,is,are,was,were,be,
been,being,have,has,had,having,do,does,did,doing,a,an,the,and,but,if,or,
because,as,until,while,of,at,by,for,with,about,against,between,into,through,
during,before,after,above,below,to,from,up,down,in,out,on,off,over,under,
again,further,then,once,here,there,when,where,why,how,all,any,both,each,few,
more,most,other,some,such,no,nor,not,only,own,same,so,than,too,very,s,t,can,
will,just,don,should,now

Figure B.2: The list of English stop words
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C. kNN regression recommender set-
tings

In this section the settings of the kNN regression recommender, which was
used as a baseline in the evaluation of CoAWILDA+, are described. As a good
trade-off between accuracy and performance, k is assigned the value 10. In
Table C.1, the weights assigned to different attributes x, and the similarity mea-
sures used for comparing them aii′ are shown.

x Attribute aii′

0.1884 Job type Jaccard similarity
0.0253 Business type Jaccard similarity
1.0 Appeal Cosine similarity/TF-IDF
0.4965 Entrusted job detail Cosine similarity/TF-IDF
0.07361 Quali�cation Cosine similarity/TF-IDF
0.0011 Sticking condition Jaccard similarity
0.7841 Work prefecture Jaccard similarity
0.0682 Work city Jaccard similarity

Table C.1: The weight and similarity measure used for each attribute in the
kNN regression recommender
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