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Chapter 1

Introduction

The potential of robotics is immense, and on a long enough timeline, the tasks
that robots or automated processes will not be able to solve, are perhaps mostly
limited by imagination. Even in the foreseeable future, the impacts that robotics
and automatic processes can have on society are enormous.

Robots are suitable of handling tasks that are exhausting or tedious to humans.
Additionally, as technology improves, it can simply be cheaper to employ robots
in jobs, previously fulfilled by humans. This development is already apparent in
industries such as manufacturing, logistics, service, and agriculture. Even fields,
such as law, banking, or medicine, which have classically employed highly trained
individuals, have seen areas being overtaken by robotic process automation. How-
ever, robots and automation also come with the potential to take on tasks, which
are unfeasible in different ways for humans to fulfill. Regarding physical robots,
one of the advantages they have over humans, is the ability to be specifically built
for a particular task or environment. This includes environments that are danger-
ous, or simply unreachable for humans, e.g. the depths of the oceans, the Arctic,
outer space, waste facilities, etc. This could mean, that robots are to play a signifi-
cant role in helping solve big global issues like climate change. Robots are and will
also be used more in households. Robots that can accomplish household chores
or assist people with disabilities, comes with the promise of freeing families and
individuals to pursue activities they themselves find meaningful.

One of the challenges to creating intelligent autonomous robots, is enabling
them with the ability to foresee the long-term consequences of actions. The re-
search area of Reinforcement Learning, discussed more in later sections, is one of the
most promising approaches to this problem. This project will focus on the task of
navigation for mobile robots in unknown areas. This first chapter of the project,
will serve as an introduction to the current work, as well as some of the challenges
concerning the topic of the project.

1
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1.1 Background and Motivation

Within the field of machine learning, Reinforcement Learning (RL) proposes a
framework to solve tasks that involve sequential decision making. This sequen-
tial decision making is refered to as a Markov Decision Process (MDP) (Bellman,
1957a). The core concept of RL is to have an artificial agent interact with its en-
vironment and receive cumulative rewards. The interactions are discretized into
timesteps, where at each timestep the environment presents itself in a given state
that the agent can then take into consideration and base an action on. By perform-
ing this action, the environment will transition into the state at the next timestep
and the agent will receive a corresponding reward to taking the given action at
the given state. Using the experience from interactions, the agent should learn to
avoid behavior that yields low cumulative rewards and instead strive to reinforce
the behavior that leads to the highest cumulative rewards. Figure 1.1 shows an
illustration of the agent-environment interaction in a MDP.

Figure 1.1: Illustration of the agent-environment interaction (based on figure from Sutton and Barto,
2018, p. 28). At each timestep t, the agent receives a state st and a reward rt from the environ-
ment. The agent then takes an action at, which yields a new state st+1 and reward rt+1 from the
environment at the next timestep t+ 1.

In recent years, the popularity of RL has increased massively, due to several
successes using RL to solve demanding sequential decision-making tasks. E.g.,
playing the game of Backgammon at a level close to equaling the world’s best hu-
man players (Tesauro, 1995), inverted flight of an autonomous helicopter (Ng et al.,
2004), a robotic arm playing table tennis (Kober, Oztop, and Peters, 2011), playing
Atari videogames at human level or above (Mnih et al., 2015), beating the world
champion in the game of Go (Silver et al., 2017), defeating top professional players
one versus one in the videogame of StarCraft II (Vinyals et al., 2019). Many of these
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successes can also attribute part of the success to the use of deep learning tech-
niques. Deep learning provides a way for the system to build complex concepts
out of simpler concepts, by utilizing Neural Networks (NNs) for nonlinear function
approximation (Goodfellow, Bengio, and Courville, 2016, p. 5). The combination
of RL and deep learning has been given the term deep RL. Of the aforementioned
recent successes using RL, many have been successes where the agent learns to
master a discipline within a virtual environment or simulation. However, when
the agent is a robot acting in the physical world, some additional challenges to
implementing RL arise. The four major challenges, as branded by Kober, Bagnell,
and Peters (2013), are: the curse of dimensionality, the curse of real-world sam-
ples, the curse of under-modeling and model uncertainty, and the curse of goal
specification.

The curse of dimensionality (Bellman, 1957b, p. ix) refers to the enormous
amount of possible state-action pairs, that occur if the state or action-spaces are
high-dimensional or continuous. The curse of real-world samples refers to the dif-
ficulty of gathering data in the physical world. Because exploration is an important
component of the learning process, implementing RL on robots in the real world
can be a safety hazard and may potentially damage expensive equipment. Further-
more, gathering real-world data can also require complex setups of sensors and
software to fully capture the relevant states. Due to these issues, when RL is de-
ployed to the real world, the training of the agent is often done in simulation (Peng
et al., 2017; Pinto et al., 2017; Tobin et al., 2017), or by using an initial policy (e.g.,
human controlled behavior) to improve upon (Levine et al., 2015; Smart and Kael-
bling, 2002). The complications of using simulation to gather data, is what the
curse of under-modeling and model uncertainty refers to. Creating a model that
accurately depicts the robot and its environment well enough to generate useful
data, is a challenging task. Moving from simulation to the physical world is often
referred to as bridging the reality gap. The final curse, the one of goal specification,
refers to the challenges of defining a good reward function that can help shape the
robot towards the desired behavior.

1.2 Thesis Objective

The goal of this project is to create an autonomous two-wheeled robot RL agent,
which can use its onboard camera to navigate novel environments with a map-less
approach. Meaning that no map will be used or created by the agent, it will only
have the possibility to learn from its own experiences. The sole input to the agent
will be a stream of images, captured by the robot’s onboard camera. Furthermore,
the training of the model will be based only on generated data. This means that
a simulated environment must be created, that can mimic the experiences of the
robot when operating in the real world.
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1.2.1 Research Questions

As a result of the completion of the thesis objective above, the following research
questions may be answered:

1. How can a sufficient simulated environment for training the model be cre-
ated? The created environment should not suffer from the curse of under-
modeling and model uncertainty thereby allowing for bridging of the reality
gap following training.

2. What architecture is needed for the model to succeed? The model should
be able to take video frames as input and learn which actions to take based
on this.

3. How can a reward function be created to help shape the desired behavior?
To avoid the curse of goal specification, the rewards received by the agent,
should encourage the desired behavior but should not be over-engineered.

1.3 Related Work

In (Asada et al., 1996) the authors attempt to teach a mobile robot to score goals
by driving a ball into a goal. They do this by using RL on observations, made
by the robot’s onboard camera. However, the camera frames are modified to fit
one of 319 possible states, making the state-space much smaller, than using the
actual camera frames as input. To deal with sparse rewards, the authors introduce
Learning from Easy Missions (LEM) to the early stages of training. LEM refers
to initializing episodes of training with the agent in a very favorable position to
achieve the goal. Hereby maximizing the possibility that the agent, by random,
choses the action(s) which allows it to get the reward for scoring. They also use
simulation during training and end up with the physical robot scoring a goal in
60% of the test trials. Figure 1.2a shows a picture of the used robot together with
the ball and goal.

As stated in section 1.1, an alternative approach to using simulation during
training, is that of using an initial policy from the agent to build on. This approach
was used by Smart and Kaelbling (2002) to train RL agents for mobile robots. In
their paper, the authors divide the learning of the agent into two phases. In the
first phase the agent is merely watching (i.e. gathering state-action samples), while
having no control over the robot’s actions. The robot is instead controlled by a
supplied control policy, which can be either control code or a human teleoperat-
ing the robot. Once the agent has gathered enough samples to control the robot
efficiently, the agent is given control of the robot to continue learning. The authors
test their system with two simple tasks of corridor following and obstacle avoid-
ance. Furthermore, the work dissociates it from this work, by not using an onboard
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(a) A picture of the robot and ball in
front of the goal from Asada et al.
(1996).

(b) An example of the simple environment
used for testing and training by Zhelo et
al. (2018).

(c) Picture of the physical robot hand
(top), and an example of a simulated
hand (bottom) used by OpenAI et al.
(2018)

(d) The simple rectangular room in
which the simulated mobile robot and
ball are spawned used by Lillelund
(2018).

Figure 1.2: Examples of related work.
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camera for observations. Another example of learning from an existing policy is
the work by Henry et al. (2010). Here the authors use example traces of humans
moving through crowded environments, to learn policies that can enable mobile
robots to have human-like behavior, when performing the same task. However, the
approach is only tested in a crowd motion simulator.

Examples where the training phase is done exclusively in simulation before be-
ing applied to a physical robot, is done by OpenAI et al. (2018) and Sadeghi and
Levine (2016). In the work by OpenAI et al. (2018), the authors train a vision-based
RL agent that can perform in-hand object reorientation through control of a hu-
manoid robot hand. The agent is trained in a simulated environment using the
MuJoCo1 physics engine, while rendering training images with the Unity2 game
engine. To bridge the reality gap, the authors use the term domain randomization,
which refers to randomizing different aspects of the simulated environment to en-
able the agent to generalize to the real world. After training, the agent is transfered
to a physical robot hand, in which it successfully performs the task without any
further training. In figure 1.2c, the physical robotic hand as well as one of the
simulated hands used during training are pictured. In the work by Sadeghi and
Levine (2016), an RL agent is trained for collision avoidance for drone flight. The
training is likewise done exclusively through simulation of imagery with domain
randomization, here generated using the 3D modeling suite Blender3. The learned
model is applied to a real drone and fares better than a baseline model in a series
of tests.

In the Master’s thesis by Lillelund (2018), it was proposed that modern game
engines could be used as realistic simulators for robotics. To prove their claim,
The authors also used the game engine Unity to simulate a mobile robot, running
a deep RL model in a simple environment. The simple environment consisted of
a small rectangular room, in which only the robot and a ball would spawn (see
figure 1.2d). The goal of the robot was then to use its camera feed to drive towards
and hit the ball. However, the authors were not successful in having a physical
mobile robot drive towards a similar looking ball, after transferring the model to
it. This was concluded to be caused by the simulated environment not looking the
same as the physical one.

A final related work is that of Zhelo et al. (2018). In this paper the authors use
an RL agent, with an Intrinsic Curiosity Module (ICM), to tackle the problem of
map-less navigation for mobile robots. Both training and testing is in this work
exclusively done in a simple simulated environment. The simulated environment
consists of a small maze-like map, in which the robot has to use laser sensors to
navigate to a target position (see figure 1.2b).

1MuJoCo website: http://www.mujoco.org
2Unity website: https://unity3d.com
3Blender website: https://www.blender.org

http://www.mujoco.org
https://unity3d.com
https://www.blender.org


Chapter 2

Theoretical Background

This chapter will deal with the underlying theory of the concepts, used in the rest
of the project. The chapter will be comprised of two main sections. Section 2.1:
Deep Learning, and section 2.2: Reinforcement Learning.

As stated in section 1.1, Reinforcement Learning (RL) is a subfield of machine
learning, the same is true for deep learning. Machine learning refers to the field of
study, that enables computers to learn without being explicitly programmed (Samuel,
1959). In traditional programming it is the job of the technician to provide the data
and logic to yield the answers. In machine learning, the technician instead pro-
vides data with expected answers and then has the program learn a model that fits
the examples.

2.1 Deep Learning

The term deep learning regards a system, that allow computers to learn from exam-
ples and gain an understanding of these, in terms of a hierarchy of concepts. In the
hierarchy of concepts, the computer can learn complex representations, by defin-
ing them through their relation to simpler concepts. How these concepts relate to
each other, can be drawn as a deep graph with many layers, hence the name deep
learning (Goodfellow, Bengio, and Courville, 2016, ch. 1).

The feedforward Neural Network (NN) is the quintessential deep learning
model. The goal of a feedforward NN, is to define a mapping y = f(x; ✓), by
learning the parameters, ✓, which provide the best function approximation (Good-
fellow, Bengio, and Courville, 2016, ch. 6).

7
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Figure 2.1: Example of a fully-connected feedforward Neural Network with two hidden layers.

2.1.1 Fully-connected Layers

The perhaps most common layer used in a feedforward NN, is the fully-connected
layer. Figure 2.1 shows an example of a feedforward NN, with two hidden fully
connected layers. The input layer represents the input values x, which is a column
vector of size nx ⇥ 1 (nx 2 N). The input values are then transformed by the first
hidden layer. This is done through a matrix multiplication by W

(1) of size n
h(1) ⇥nx

(n
h(1) 2 N), plus a bias term b

(1) of size n
h(1) , followed by a transformation by the

non-linear activation function g
(1):

h
(1) = g

(1)(W (1)
x+ b

(1)) (2.1)

The output of the layer, h(1), will hereby be of size n
h(1) ⇥ 1. This output will then

serve as the input to the next layer and follow the same transformation process:

h
(2) = g

(2)(W (2)
h
(1) + b

(2)) (2.2)

This process will repeat itself, for as many hidden layers the network has, until the
output layer, which outputs the values, y, in a similar fashion:

y = g
(L)(W (L)

h
(L�1) + b

(L)) (2.3)

Where L is the number of layers the model has.
All of the layers are then trained to minimize the empirical error IS [f ] on sam-

ple data. Usually, the parameters of a NN are updated based on gradient descent
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Figure 2.2: Example of a convolutional layer with an input of a 6⇥ 6⇥ 3 RGB-image with a 3⇥ 3⇥ 3
kernel with no padding and a stride of 1, resulting in a 4⇥ 4⇥ 1 output volume. In the image, the
enclosed area of the input volume is what will be convolved into the enclosed field of the output
volume. This is done by multiplying the enclosed fields with the corresponding field in same position
in the kernel. The results from all the multiplications are then added together into a single value,
which then has the bias term added to it. The resulting value is then the value of the field in the
output volume. The number of channels of the output volume is equal to the number of kernels in
the layer, which, in the depicted example, is one

through the backpropagation algorithm (E. Rumelhart, E. Hinton, and J. Williams,
1986). In the simplest scenario, the algorithm changes its parameters ✓ to fit the
desired function at each iteration (François-Lavet et al., 2018):

✓  ✓� ↵r✓IS [f ] (2.4)

Where ↵ represents the learning rate, i.e. the step size.

2.1.2 Convolutional Layers

A Convolutional Neural Network (CNN) (Lecun and Bengio, 1995) is a specialized
feedforward network, which is particularly suited for processing images, or other
data that has a grid-like arrangement (Goodfellow, Bengio, and Courville, 2016,
ch. 9). When images are the input to a CNN, the first layers will learn to detect
simple patterns, e.g. edges or textures, while following layers can learn more
complex patterns, e.g. parts of objects (Erhan et al., 2009; Olah, Mordvintsev, and
Schubert, 2017). CNN layers consist of kernels (or filters) and bias terms, which are
both learnable. See figure 2.2 for an example of a convolutional layer. The input
volume to a convolutional layer will have the dimension of n(l�1)

H
⇥ n

(l�1)
W

⇥ n
(l�1)
C

,
respectively representing the height, width, and number of channels of the input.
The kernels are then of size k

(l)
H
⇥ k

(l)
W
⇥ n

(l�1)
C

. Notice that the number of channels
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Figure 2.3: Illustrated part of a Recurrent Neural Network (based on figure from Goodfellow, Bengio,
and Courville, 2016, ch. 10). In the left part of the illustration, the input x is passed into the recurrent
layer. The output of the recurrent layer h, is both passed forward to the next layer, as well as being
passed forward through time. Here the black box represents a delay of a single time step. In the
right part, the same network is unfolded, and the nodes are associated with a particular time step.

match the input. The number of bias terms of the layer will be equal to the number
of kernels used in the layer n(l)

C
. Having multiple kernels in the same layer means,

that some of the kernels can learn to detect edges while others detect textures etc.
The output of the layer will then be a volume of dimensions n

(l)
H
⇥ n

(l)
W
⇥ n

(l)
C

. The
height and width of the output layer is calculated by:

n
(l)
H

=
n
(l�1)
H

� k
(l)
H

+ 2p

s
+ 1 (2.5)

n
(l)
W

=
n
(l�1)
W

� k
(l)
W

+ 2p

s
+ 1 (2.6)

Where p represents the amount of zero padding and s represents the stride (Karpa-
thy, 2015). Zero padding is a trick used to control the dimensions of the output
volume. It works by adding rows and columns of zeroes around the input volume.
This is most commonly done to retain the same height and width of the input in
the output volume, without affecting the output values. Stride refers to the num-
ber of fields the kernel should skip, once it is done with a convolution. When the
stride is one, the kernel moves one field at a time.

2.1.3 Recurrent Layers

A Recurrent Neural Network (RNN) is a network specialized for processing a se-
quence of data (Goodfellow, Bengio, and Courville, 2016, ch. 10). Recurrent layers
not only take the current input at time step t into account, but also its own output
from prior time steps. See figure 2.3. This project will utilize a special type of recur-
rent layer, called Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber,
1997). The LSTM layer consists of a number of LSTM cells, depicted in figure 2.4.
LSTM cells are connected recurrently, and on top of passing their output forward
through time, they also pass a term called the cell memory forward through time.
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Figure 2.4: Illustration of a Long Short-term Memory cell (based on figure from Olah, 2015). LSTM
cells are connected recurrently to each other, and pass forward through time the cell state ct, and the
layer output ht. The output is also passed to the next layer of the network. In the illustration, the �’s
represent the sigmoid function, while tanh’s represent the hyperbolic tangent function.

The cell memory stores and passes on information, that can be important at later
time steps. Through a series of gates, the cell can remove and add information to
the cell memory. The input to the gates, is the input at the current time step xt,
concatenated with the cell output in the prior time step ht�1. The concatenated
terms are multiplied by weight terms, then has bias terms added to them, before
being put through the sigmoid function, which maps the function input in the
range from 0 to 1. The gates are given by equations (2.7, 2.8, 2.11). Because of the
output range from 0 to 1, the sigmoid function is in the LSTM cell, used to control
how much of a term to keep or discard by element-wise multiplications.

ft = �(Wf [ht�1, xt] + bf ) (2.7)

ut = �(Wu[ht�1, xt] + bu) (2.8)

c̃t = tanh(Wc[ht�1, xt] + bc) (2.9)

ct = ut ⇤ c̃t + ft ⇤ ct�1 (2.10)

it = �(Wi[ht�1, xt] + bi) (2.11)
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ht = it ⇤ tanh(ct) (2.12)

The first of the gates is called the forget gate, ft. The forget gate is multiplied
element-wise, by the prior cell memory ct�1, hereby determining what of the prior
cell memory to keep, or forget. The next gate is the update gate, ut. The update
gate determines how much of the candidate cell memory c̃t, is added to the cell
memory. The candidate cell memory in (2.9) has, like the gates, learnable weight
and bias terms, but uses the hyperbolic tangent function as a non-linear activation.
The cell memory in (2.10), is then comprised of the remaining prior cell memory
and candidate cell memory. The final gate, the output gate it, determines what of
the new cell memory to output, after it has been through an activation function,
typically the hyperbolic tangent, determining the output ht in (2.12).

2.2 Reinforcement Learning

In the machine learning subfield of RL, it is the program itself that gathers the data
and answers, to learn the rules by a series of interactions. Described in other words,
with the commonly used RL terminology, the agent gathers experiences by taking
actions, which yield rewards, and uses these experiences to form a policy for the
most rewarding behavior in its environment. One of the factors that separates RL
from the other machine learning subfields is consequently, that instead of trying
to learn a hidden structure of the data, RL is simply trying to maximize a reward
signal (Sutton and Barto, 2018, p. 2).

Because of the agent’s desire to maximize the reward signal, the trade-off be-
tween exploration and exploitation arises exclusively in RL. On one hand, the agent
has to take actions that exploit what it has already experienced to achieve reward.
On the other hand, the agent has to take actions to explore better action selections
for the future. Both exploration and exploitation must be pursued for the agent, to
learn a good policy (Sutton and Barto, 2018, p. 2). The policy is what determines
the agent’s behavior. In other words, a policy maps the states perceived, by the
agent, to actions.

As stated in section 1.1, the sequential decision making task, that a RL agent
tries to solve, is called a Markov Decision Process (MDP) (Bellman, 1957a). In
MDPs, actions not only impact immediate rewards, but also later states, and thereby
also future rewards (Sutton and Barto, 2018, p. 47). Recall the illustration of the
agent-environment interaction in figure 1.1 on page 2. The agent interacts with its
environment over a series of discrete time steps. At every time step t, the agent
is presented with a state st 2 S of the environment. On the basis of the state, the
agent uses its policy ⇡ 2 P, which is a stochastic rule, to select an action at 2 A.
As a consequence of the action, the agent receives a reward rt+1 given by a re-
ward function R(st, at, st+1) 2 R ⇢ R, which it can use to evaluate the action,
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and as a further consequence, the environment has transitioned to the next state
st+1. The goal of the agent is then to find a policy, that maximizes the expected
sum of rewards, i.e. the return. The expected return for starting in a state s, and
subsequently following a policy ⇡, is given by the value function V

⇡(s) as:

V
⇡(s) = E

 1X

k=0

�
k
rt+k+1

���st = s,⇡

�
(2.13)

Where � represents a parameter called the discount rate. The discount rate’s value
has to be in the range: 0  �  1. The discount rate determines how much
the agent will value future rewards in the present state. If � = 0, the agent will
only value immediate rewards. As � approaches 1, the agent will become more
farsighted, as future rewards will be valued higher. If � = 1, future rewards will
be valued as if they were received immediately (Sutton and Barto, 2018, pp. 54-55).
This definition of expected return, allows for a definition of the optimal expected
return V

⇤(s) as:

V
⇤(s) = max

⇡2P
V

⇡(s) (2.14)

Another commonly used value function in RL, is the action-value function, also
called the Q-value function. The Q-value function is the expected return starting
from state s, taking action a, and then following the policy ⇡:

Q
⇡(s, a) = E

 1X

k=0

�
k
rt+k+1

���st = s, at = a,⇡

�
(2.15)

Similarly, the optimal Q-value function Q
⇤(s, a), can then be defined as:

Q
⇤(s, a) = max

⇡2P
Q

⇡(s, a) (2.16)

To update the estimated Q-value for a given state-action pair, the Q-learning
algorithm (Watkins, 1989) can be used. The update is defined by:

Q(st, at) Q(st, at) + ↵

h
rt+1 + �max

a
Q(st+1, a)�Q(st, at)

i
(2.17)

2.2.1 Partially Observable Problems

While MDPs provide a good formalism, in almost all real-world problems, the full
state is not recognizable, and the agent only receives an observation ot 2 O at
each time step. This is known as a Partially Observable Markov Decision Process
(POMDP) (Sondik, 1978). See illustration in figure 2.5. The given scenario of this
project is also a POMDP, as the agent only gets camera images as observations, and
thus does not necessarily know where the target is placed, or the path to get there.
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Figure 2.5: Illustration of a sequence of interactions in a Partially Observable Markov Decision
Process (POMDP) (based on figure from François-Lavet et al., 2018). The actual dynamics of the
POMDP are hidden, meaning the agent only gets observations of the environment, not the full state.

An approach to constructing policy mappings in a POMDP, is to simply use the
last observation as a state, as if it were in a MDP. However, this will typically lead
to policies that do not capture the system dynamics, as a single observation often
does not contain enough information (François-Lavet et al., 2018). Alternatively,
the agent can use a history, Ht, of previous observations to base its actions on.
One approach is to have the history include all the events, up until time step
t. However, increasing the input also increases the cost of computation and risk
of overfitting (François-Lavet et al., 2018). An additional approach, is the use of
function approximation. As stated in Reinforcement Learning: An Introduction by
Sutton and Barto (2018, p. 197):

"Perhaps surprisingly, extending reinforcement learning to function ap-
proximation also makes it applicable to partially observable problems,
in which the full state is not available to the agent."

By utilizing function approximation, the value functions (2.13, 2.15) could as an
example be computed by NNs, with ✓ representing the NN parameters.

2.2.2 Deep Q-networks

The Deep Q-network (DQN) algorithm (Mnih et al., 2015) was one of the first ma-
jor success of applied deep RL. When published, the DQN algorithm surpassed all
previous algorithms and achieved performance comparable to professional human
game-testers, in a set of 49 Atari 2600 games. The DQN algorithm utilizes a CNN
for function approximation of the Q-value function, to learn rewarding behavior
policies for each of the games. I.e., the parameters learned for the network were
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Algorithm 1: Deep Q-learning with experience replay (Mnih et al., 2015)
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights ✓

Initialize target action-value function Q̂ with random weights ✓
� = ✓

for episode = 1, . . . , M do
Initialize episode
for t = 1, . . . , T do

With probability " select a random action at

otherwise select at = argmaxaQ(st, a; ✓)
Execute action at and observe reward rt+1 and next state st+1

Store transition tuple (st, at, rt+1, st+1) in D

Sample random minibatch of transitions
⇣
sj , aj , rj+1, sj+1

⌘
from D

yj =

(
rj+1 if episode ends at step j + 1

rj+1 + �maxa0 Q̂(sj+1, a0; ✓�) otherwise

Perform a gradient descent step on
⇣
yj �Q(sj , aj ; ✓)

⌘2
with respect

to the network parameters ✓

Every C steps reset Q̂ = Q

different from game to game, but the input, network architecture, and hyper pa-
rameters were the same across the collection of games. To accommodate partial
observability in the games, the four most recent frames where stacked and used
as input to the network. The output of the network was then made to represent
the estimated Q-values, Q(s, a; ✓), for each possible action in the state, where the
state is represented by the input. The reward signal used for DQN, was based on
the scores used in the individual games, where an increase in score would signal
a reward +1, a decrease in score would signal -1, and an unchanged score would
signal 0. This ensured that the reward signal was standardized across the suite of
games. To accommodate the exploration versus exploitation dilemma, DQN takes
advantage of a method termed "-greedy exploration with linear decay. The "-greedy
exploration method simply means, that the agent will select the greedy action, i.e.
the action with the highest estimated Q-value, with probability (1� "), and select
a random action with probability ". The linear decay refers to the "-greedy ex-
ploration value being " = 1 at the beginning of training, and then decaying to a
minimum of " = 0.1 after one million steps. Meaning, that the agent will behave
totally random in the beginning of training and then rely more and more on the
learned Q-values, while still behaving randomly with a probability of 0.1 in the
end.

When DQN selects an action, the action is executed to yield the reward rt+1
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Figure 2.6: Illustration of an Intrinsic Curiosity Module (based on figure from Pathak et al., 2017).
The inverse model to the right, takes the two encoded states �(st) and �(st+1) as input and estimates
the used action ât to transition between the states. The forward model to the left, takes the action
at and the encoded state �(st) as input and estimates the encoding for the next state �̂(st+1). The
difference between the estimated encoding for the state �̂(st+1) and the actual encoding for the state
�(st+1) is used as intrinsic reward rit+1.

and the next image frame, which is then stacked to form the next state st+1. The
transition is then stored in the DQN’s memory, D, as the tuble: (st, at, rt+1, st+1),
and st+1 becomes the next input to the network. To update the network, DQN uses
a method called experience replay. Experience replay means, that at each iteration a
random minibatch of transitions (s, a, r0, s0) ⇠ U (D) is drawn uniformly from the
DQN’s memory. The update at iteration i is then uses the following loss function:

Li(✓i) = E(s,a,r0,s0) ⇠ U(D)

⇣
r
0 + �max

a0
Q̂(s0, a0; ✓�

i
)�Q(s, a; ✓i)

⌘2
�

(2.18)

Where Q̂ is a target network, that uses duplicate parameters, ✓�, of the main net-
work’s parameters, ✓. The duplicates remain fixed for a certain number of updates,
C, at which they are again overwritten by new duplicates of ✓. The full DQN algo-
rithm is presented in algorithm 1.

2.2.3 Intrinsic Curiosity Modules

In many scenarios, rewards are extremely sparse, and as mentioned in section 1.1,
defining a good reward function that can help shape the agent towards desired
behaviour can be challenging. One approach is to use an Intrinsic Curiosity Mod-
ule (ICM) (Pathak et al., 2017), which supplements the standard reward signal by
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adding an extra intrinsic reward signal. The intrinsic reward signal is supposed to
help the agent seek novel situations by giving a positive signal when it encounters
unexpected scenarios. In other words, the intrinsic reward signal is the prediction
error of the agent’s knowledge about its environment. To make predictions, the
agent will utilize two NNs. An illustration of an ICM is presented in figure 2.6.
The first, known as the inverse dynamics model, consists of two submodules. The
first submodule takes a state st as input, and encodes it into a feature vector �(st).
The second submodule takes two subsequent feature encodings �(st), �(st+1) and
outputs an estimated action ât that the agent used to move from st to st+1. Training
the network then amounts to learning the function gI :

ât = gI

⇣
st, st+1; ✓I

⌘
(2.19)

Where ✓I are the network parameters. To update the network parameters, the error
between the predicted and actual actions must be minimized.

Furthermore, an additional NN, known as the forward dynamics model, is
trained. The additional network takes an action at, and a feature vector �(st) as
inputs, and use these to predict an estimated feature encoding of the subsequent
state �̂(st+1). Training the network then amounts to learning the function gF :

�̂(st+1) = gF

⇣
�(st), at; ✓F

⌘
(2.20)

Where ✓F represents the network parameters. To update the parameters, the fol-
lowing loss function must be minimized:

LF

⇣
�̂(st+1),�(st+1)

⌘
=

1

2
||�̂(st+1)� �(st+1)||

2
2 (2.21)

The intrinsic reward signal ri, is then computed as:

r
i

t+1 =
⌘

2
||�̂(st+1)� �(st+1)||

2
2 (2.22)

Where ⌘ represents a scaling factor ⌘ > 0.





Chapter 3

Methodology

As stated in chapter 1, the goal of this report is to create an autonomous two-
wheeled robot RL agent, which can use its onboard camera to navigate novel envi-
ronments with a map-less approach. The robot used in this report, is a Turtlebot21

with an onboard Asus Xtion Pro Live camera. This chapter will consider the devel-
opment and implementation of the created system. The first section of the chapter,
will regard the simulated environment, created for training the RL agent. The
following section will then involve the development and architecture of the RL
model.

3.1 The Simulated Environment

As stated in section 1.1, because exploration is an important component of the RL
process, implementing RL on physical robots can be extremely expensive or even
cause safety hazards. To circumvent this, this project will use the approach in
which the RL agent gathers experience and learns its model based on simulated
data. In the scenario of this project, the robot uses its onboard camera to gather
observations of the environment’s state. It is therefore the image data from the
camera, which will have to be simulated. Even though the Turtlebot has an on-
board computational device, the RL model will run from an external computer.
This will allow for more computation, as well as making the process of testing and
debugging more transparent and easier. For this to work, communication between
the robot and the external computer must be established. To implement the com-
munication, the middleware ROS (Robot Operating System), in the Kinetic Kame
release2 (Open Source Robotics Foundation, 2016), will be used. ROS is a collec-
tion of tools, libraries, and conventions, and it is commonly used by both academia

1Turtlebot2 information at: https://www.turtlebot.com/turtlebot2/
2Available at: http://wiki.ros.org/kinetic
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Figure 3.1: Comparison between the physical robot (left) and the simulated version (right).

and industry for research and commercial use. In this project, ROS takes care of
distributing information between entities of the system, such as providing the RL
model with the image frames, captured by the robot’s onboard camera.

As the ambition is to learn a model from simulated data, which can also work
in a real environment, the simulated data will have to resemble real data closely
enough for the agent to generalize. In other words, the images generated through
simulation should, to the agent, not appear very different, from images captured
by the physical camera. The simulated data therefore requires software that has
the capability of rendering images. Within the ROS framework the 3D dynamics
simulation software Gazebo3 is included. Yet, Gazebo does not directly allow for
photo-realistic rendering. As the robot will rely solely on its camera, as a percep-
tion to its surroundings, the camera feed generated in simulation should have the
possibility of emulating images captured in real life as close as possible. An area
that has seen rapid development in terms of photo-realistic rendering in recent
years is video games. To benefit from this, the game-engine Unity4 (Unity Tech-
nologies, 2018) will be used to create the simulated environment. With help from
the open source library ROS# (Bischoff, 2018), communication between ROS and
Unity is available. In figure 3.1 a side-by-side comparison between the physical
robot and its simulated counterpart is shown.

The environment in which the physical robot will operate in, is an indoor office-
like environment at Aalborg University Copenhagen, the simulated environment
will therefore have to reflect this. One approach to creating the simulated environ-
ment in which the agent has to train, could therefore be to make an exact replica of

3Gazebo website: http://gazebosim.org
4Available at: https://unity3d.com/unity

http://gazebosim.org
https://unity3d.com/unity
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Figure 3.2: Examples of environments with domain randomization.

the physical environment with the same sizes, colors, textures, furniture, lighting
conditions, etc. However, getting all these elements correct in simulation would
be very time-consuming, and furthermore, the agent would only learn how to
behave in these specific conditions. Another approach is that of domain random-
ization (Sadeghi and Levine, 2016; Tobin et al., 2017), which has proven to be a
promising technique, when transferring from images created in simulation to real
images, or in other words, bridging the so-called reality gap.

For this project, the goal of the agent will be to locate a target object located some-
where in the environment. The training will be conducted in an episodic manner,
where the episode will end if one of the following conditions are true:

1. The robot has moved into the position of the target.

2. The robot has crashed into one of the walls or obstacles.

3. The robot has used more than a prespecified number of steps without solving
the task.

3.1.1 Domain Randomization

The concept behind domain randomization (Tobin et al., 2017), is to randomize
different aspects of the environment, which the agent encounters during training.



22 Chapter 3. Methodology

Figure 3.3: Examples of the A* algorithm finding the shortest path between the robot and the target
object. The path between the agent and the target object is marked with black tiles. Red tiles are
blocked.

By randomizing these different aspects of the environment, the hope is that the
agent will have experienced enough different versions of the environment, that it
will only give importance to the aspects that actually matter for it to achieve its
goal. Then, when the agent is transferred to the real world, the changes should
similarly appear to be yet another simulated variation, allowing for the agent to
generalize. Examples of this approach proving successful:

1. Tobin et al. (2017) used domain randomization to train an object detector in
simulation, that was then applied to have a physical robot arm pick up the
detected objects.

2. Sadeghi and Levine (2016) used domain randomization to train an agent for
collision avoidance in drone flight.

3. Peng et al. (2017) used domain randomization with the focus of randomizing
the dynamics, to have a robotic arm push an object into goal positions.

The randomization of the environment will take place before the beginning of
each episode, meaning that the randomized aspects will remain unchanged for
the duration of the episode. To elaborate on the point made above, when the
agent relies on the real-world images, they should simply appear to reflect yet
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another randomized episode of training. The following aspects of the domain are
randomized at each episode of training:

• The size of the generated map.

• Number of rooms in the generated map.

• Sizes of the generated rooms.

• Lighting direction and color.

• Furniture types, placements, and colors.

• Placement and size of doorways.

• Textures and colors of walls, floors, and ceilings.

• Starting location of the robot.

• Location of the target object.

Examples of generated environments can be seen in figure 3.2.
While randomization of the dynamics used by the simulator has been shown

to also be useful (Peng et al., 2017), it is excluded for now, to limit the complexity
of learning a model. However, it could be included as further development, as it
could help create a more robust model.

To generate the rooms in the environment, a procedure for generating uncon-
strained rectangles within a rectangle from Valenzuela and Wang (2001) is fol-
lowed. The generation is nonetheless not completely unconstrained, as the rooms
have to be big enough to fit the robot. After the rooms have been created door-
ways are added. Since the rooms generated are all rectangle, the doorways have a
chance of covering the whole wall between two rooms. By allowing for this, there
is a possibility of creating rooms that have more than four corners. Once the walls
and doorways have been added to the environment, the robot, target object, and
furniture is added. To guarantee that the environment created for each episode is
solvable, i.e. the robot has an unblocked pathway from its spawning point to the
goal object, the A* algorithm (Hart, Nilsson, and Raphael, 1968) is implemented.
The A* algorithm finds the shortest path around the obstacles from the robot to
the target object avoiding obstacles, as shown in figure 3.3. If the algorithm fails
to find a path, a new environment is generated. The target object chosen for this
project is a small pyramid roughly the same height as the robot. As shown in fig-
ure 3.4a, the pyramid has four sides each colored in a solid color. The attributes of
the pyramid are chosen to make it easy to recreate it from cardboard in the real-
world. To encourage the RL agent towards only searching for this specific target,
and not just any pyramidic shaped object, an extra pyramid of the same dimen-
sions is added to the simulated environment. The other pyramid is also randomly
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(a) The target pyramid seen from sides
and above.

(b) The obstacle pyramid seen from
sides and above.

Figure 3.4: The simulated pyramids.

Algorithm 2: Episodic generation of environment

while Solvable is false do
Randomly initialize map height H
Randomly initialize map width W

Create empty list of rooms L

Add room of size H ⇥W to L

Randomly initialize desired number of rooms n

while L length < n do
Choose a room R randomly from L

Choose vertical or horizontal slizing direction randomly
Choose a random position to cut R in the chosen direction
Perform the cut, generating two sub-rooms R1 and R2

Replace R with R1 and R2 in L

Randomly place doorways between rooms
Randomly place robot
Randomly place target
Randomly place obstacles
Use A* to find path between robot and target
if Path found then

Environment = true

placed at the beginning of each episode and will be considered an obstacle on the
same terms as the furniture. The extra pyramid is only distinguishable from the
target pyramid by its textures, as displayed in figure 3.4b. In algorithm 2, there is
a walkthrough of the procedure of generating the environments.

3.2 The Reinforcement Learning Implementation

This section will regard the choices made for the implementation of the RL agent.
The model learned from the interactions between the RL agent and the environ-
ment, will be what determines the agent’s policy and decides the robot’s behavior.
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The model will have to map the agent’s sensory input, i.e. the visual input from
the robot’s onboard camera, to the motor output of the robot’s two wheels.

3.2.1 ROS Messaging

As stated earlier, ROS will handle the communication between entities of the sys-
tem. In the given scenario, ROS will therefore need to send images captured by
the robot to the computer running the RL model and send messages for driving
the wheels from the computer back to the robot. Fortunately, ROS is built to han-
dle this and has several predefined message types available for communication.
The communication in ROS, revolves around the concept of publishers and sub-
scribers. To send and receive messages in ROS, first a ROS Master must be set
up. The ROS Master provides information to the rest of the nodes in the system,
about which information is currently available. To send information, a topic and a
message type must be defined first. Then, publishers can publish messages to the
topic and subscribers can subscribe to the topic to receive the published messages.
The message type used to send the images, is in ROS called compressed image and
are contained in the sensor messages category. The image data is sent as an array
of 8-bit unsigned integers. 8-bit unsigned integers can represent values ranging
from 0 to 255, which incidentally matches the red, green, and blue pixel values
in an RGB image. The message type used for sending movement commands to
the robot, are called twist messages and are contained in the geometry messages
category. The twist messages consist of two three dimensional vectors representing
velocity, with one representing linear velocity and the other representing angular
velocity. As the Turtlebot only has two wheels that can rotate around one axis,
only the linear velocity along the x-axis and the angular velocity along the z-axis
are relevant, the rest of the velocity values will be zero. The twist messages will
be published to the cmd_vel (command velocity) topic, which a hardware driver on
the robot subscribes to. The hardware driver will then translate the velocities into
a speed for each of the robot’s two wheels respectively. In addition to the twist and
compressed image messages, this project will also use messages of type string from
the category of standard messages. The string message type simply represents a
sequence of characters, as it conventionally does in programming languages. In
this project, the string messages are used to send information about the reward the
agent receives and if an episode is done by fulfilling one of the conditions listed in
section 3.1.1.

3.2.2 Defining the Reinforcement Learning Problem

As stated in section 3.2.1, only a value for linear velocity along the x-axis and a
value for angular velocity along the z-axis are needed to drive the robot. The out-
put of the RL model should therefore determine these values. In other words, the
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Table 3.1: Twist message values for the discretised action space

Linear velocity along x-axis Angular velocity along z-axis Outcome

0.0 0.0 Robot is stopped
1.0 0.0 Robot drives straight forward
-1.0 0.0 Robot drives straight backward
0.0 1.0 Robot rotates counterclockwise
0.0 -1.0 Robot rotates clockwise
1.0 1.0 Robot drives forward to the left
1.0 -1.0 Robot drives forward to the right
-1.0 1.0 Robot drives backward to the right
-1.0 -1.0 Robot drives backward to the left

two values together represent the action chosen by the agent at a given timestep,
and it is the job of the model to determine this action. One approach to determine
the action could simply be to have the model directly output two values, which
represent the linear and angular velocities respectively. Another approach, could
be to make the model estimate the value of actions, as given by the Q-value func-
tion in (2.15). The first approach is known as a policy gradient method, because the
model directly maps the state to the estimated optimal action, thereby acting as a
policy. The second approach is known as an action-value method, since the model
maps the state to estimated values for performing the possible actions (Sutton and
Barto, 2018, p. 321). However, the action-value methods immediately come with
a caveat. Because the action space is continuous, it is not possible for the model
to output an estimated value for each possible action. A solution to this, could be
to discretize the action space. However, by doing so, the term coined the curse of
dimensionality by Bellman (1957b) arises. For example, if the linear velocity along
the x-axis were discretized from -1 to 1 in steps of 0.1 and the angular velocity
around the z-axis were discretized from -1 to 1 in steps of 0.1, then the total num-
ber of actions would be 400. Policy gradient methods are capable of handling
continuous action spaces (Sutton and Barto, 2018, p. 335), but come with their own
disadvantages. As stated by OpenAI et al. (2017):

". . . getting good results via policy gradient methods is challenging be-
cause they are sensitive to the choice of stepsize — too small, and
progress is hopelessly slow; too large and the signal is overwhelmed
by the noise, or one might see catastrophic drops in performance. They
also often have very poor sample efficiency, taking millions (or billions)
of timesteps to learn simple tasks."

Given the time constraints of this project, the action-value method Deep Q-network
(DQN), presented in section 2.2.2, is used. However, one simple change will
be made. Instead of resetting the target Q-network’s parameters, ✓

�, to the Q-
network’s parameters, ✓, every C steps, the ✓

� parameters will instead be updated
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Figure 3.5: Illustration of the used Deep Recurrent Q-network model architecture. The Long Short-
term Memory layer takes the output from the convolutional layers and is unrolled over the last 16
timesteps.

a small step towards ✓ at each timestep, as given by formula 3.1. This was shown
by Lillicrap et al. (2016) to improve the stability of learning.

✓
�
 ⌧✓+ (1� ⌧ )✓� (3.1)

Where ⌧ ⌧ 1.
The DQN algorithm is highly sample efficient, because it can use the same sam-

ple to update its parameters, ✓, multiple times through experience replay. However,
if more time were available, a policy gradient method might fit the scenario better.
Using the DQN algorithm comes with the consequence of discretizing the action
space. To avoid having a very large action space, which would require an abun-
dance of exploration from the agent, the possible actions are limited to nine options
presented in table 3.1.

3.2.3 The Model Architecture

Now both the input and the output of the model is defined. The input is images
and the output is a column vector with estimated Q-values for each possible ac-
tion. The type of agent used will be the DQN presented in 2.2.2. However, there
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is a missing piece to the puzzle. As it is, the DQN maps observations to a Q-
value for each possible action. However, as observations simply are images, the
environment is only partially observable and there is nothing in the observations
to indicate time. Therefore, the agent will have nothing stored from timestep to
timestep, which suggests what has happened so far during the episode. In other
words, the observations are disassociated, and the agent merely classifies an ob-
servation to one of the nine actions. This will prove a problem, as the environment
and target object placement are randomly generated. The agent therefore needs
to take into consideration, which areas it has already searched for the target ob-
ject. This is where recurrent layers, as presented in section 2.1.3, prove useful.
Adding recurrence to the DQN where shown by Hausknecht and Stone (2015) to
help better estimate the underlying state, s, of an environment by an observa-
tion, o. The recurrent version of the DQN is simply known as a Deep Recurrent
Q-network (DRQN) (Hausknecht and Stone, 2015). With the introduction of the
recurrent layer, all the building blocks for the model architecture are now present.
The model, presented in figure 3.5, will take RGB images of size 60⇥ 80 as input.
Even though the onboard camera is capable of taking pictures of size 480⇥ 640,
the images are drastically downsized in a measure to reduce training time, given
the time constraints of this project. In figure 3.6 a comparison between a 480⇥ 640
image and the downsized 60 ⇥ 80 version is shown, which shows that it is still
possible to make out the features of the image, although some of the finer details
are lost. The input image is processed by three convolutional layers, as done by
Mnih et al. (2015); Hausknecht and Stone (2015), before being fed to a Long Short-
term Memory (LSTM) layer, presented in 2.1.3. Then, three fully-connected layers
are used, presented in section 2.1.1, to finally give the output of nine Q-values.
All layers except the LSTM and final fully-connected layers use the Rectified Lin-
ear Unit (ReLU) (Nair and Hinton, 2010) function as non-linear activations. The
LSTM layer uses the hyperbolic tangent as a non-linearity whereas the final fully-
connected layer simply uses the identity function. The LSTM layer will use the
last 16 timesteps to determine the output, making the network a recurrent network
of type many-to-one, because it uses multiple input observations to determine one
action at every timestep.

3.2.4 Dealing with Sparse Rewards

As stated in section 1.1, the curse of goal specification refers to the challenges of
defining a good reward function, that can help shape the agent towards the desired
behavior. As the reward function must be manually programmed, the problem
arises when designing and implementing the reward function develops into a task,
that approaches the complexity of manually designing the agent’s policy, which is
what RL promises to avoid. This project will therefore keep the reward function
simple and instead test other strategies to help shape the desired behavior.
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Figure 3.6: Comparison between the fullsize 480⇥ 640 image (left) and the downsized 60⇥ 80 image
(right).

In the scenario given by this project, the agent will only receive positive rein-
forcement, if it drives into the target object. This means that the rewards in the
given scenario are extremely sparse. Furthermore, the agent will receive a penalty,
i.e. a negative reward, if the agent crashes into the walls or obstacles in the envi-
ronment. Additionally, one extra feature is added to the reward function, at every
timestep the agent will receive a small step penalty. The step penalty is put in place
to encourage the agent to solve the task as fast as possible, i.e. if the agent solves
the task in two different episodes, then the episode where the agent used the fewest
steps will have a greater cumulative reward.

As the task at hand, is for the agent to locate the target object, the behavior
which should be encouraged, is one where the agent actively tries to discover
unseen areas of the environment, until it locates the target. To encourage this, the
Intrinsic Curiosity Module (ICM), presented in section 2.2.3, is implemented. The
ICM grants the agent with intrinsic rewards, that increase the more unforeseen the
consequences of the agent’s actions are. When the agent encounters unseen areas
of the environment, it is much harder to predict what the next observation will
be, hence the agent will receive a bigger intrinsic reward. The agent will also still
receive the normal rewards given by the environment, to distinguish, these will be
referred to as extrinsic rewards. An illustration of the ICM is found in figure 2.6 on
page 16. To map the observations into feature vectors �(ot), the ICM uses a series
of four convolutional layers, each with 32 kernels of kernel size 3⇥ 3 and a stride
of 2. Exponential Linear Unit (ELU) (Clevert, Unterthiner, and Hochreiter, 2016)
non-linearity is used after the convolutional layers as done by Pathak et al. (2017).
The dimensionality of �(ot) will be 256. For the inverse model part of the ICM, the
two feature vectors �(ot) and �(ot+1) are concatenated and fed as input to a fully-
connected layer with 256 units and the ReLU non-linearity. This is followed by
another fully-connected layer with nine units, that uses the Softmax as activation
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function. The output can thus be interpreted as probabilities for which of the nine
actions the model estimates the agent has taken. For the forward model part of
the ICM, the feature vector �(ot), and the actual action taken at the timestep, at,
are concatenated and fed through two fully-connected layers with 256 units. As
the forward model part of the ICM tries to estimate the feature vector �(ot+1), the
output of the fully-connected layers has to have the same dimensionality as the
feature vector.

A problem that may occur in scenarios with sparse rewards, is that the agent
only rarely, or even never, encounters positive rewards to learn from. To combat
this problem, two additional tricks will be used during training. The first trick is
known as Learning from Easy Missions (LEM) (Asada et al., 1996), as mentioned in
section 1.3. The concept behind LEM, is to start the training phase with episodes
where the agent is in a favorable position to solve its task. This maximizes the
possibility that the agent, by random, will solve its task and receive the positive
reward, even though it has not yet learned anything about the environment. In this
project, the target will be placed in the same room as the agent at the beginning of
the episode, when LEM is active. Thus, making it more likely that the agent will
randomly drive into the target.

The second trick that will be implemented to combat sparse rewards is Hind-
sight Experience Replay (HER) (Andrychowicz et al., 2017). HER makes an impor-
tant assumption of the state, which is that the task or goal of the episode is a part
of it. The concept behind HER is to store alternative memories in the agent’s replay
buffer. In addition to the actual transitions encountered during an episode, HER
also stores transitions where the goal of the episode is changed to be the outcome
of the episode. E.g. if the goal of the agent was to end up in position x but it
ended up in position y, then in the alternative transitions, the goal of the episode
would be changed to ending up in position y, thus creating a memory of a success-
ful episode. As it is, HER is not applicable to the scenario of this project. In this
project, the goal is not part of the observations the agent receives. Furthermore,
it would require a very complex implementation to change the transitions when
creating altered memories, i.e., since the observations are images, the target object
would have to be edited into the agent’s end position for all observations of the
episode. With Visual Hindsight Experience Replay (VHER) Sahni et al. (2019) cre-
ated a model, that takes the approach of editing the goal into images from failed
trajectories. This is done by training a generative adversarial network on obser-
vations of the goal, where its relative location to the agent is explicitly known.
However, this project will propose a much simpler version of VHER, which will
be refered to as Naïve Visual Hindsight Experience Replay (NVHER). Instead of
editing encountered observations, the NVHER approach is simply to replay an un-
successful episode with some minor alterations. The agent and environment will
be initialized in the same way as the unsuccessful episode, except for the target
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(a) Episode i: the agent performs a
sequence of nine actions but fails to
locate the target within the step limit.
Consequently, the agent does not
encounter any positive rewards during
the episode.

(b) Episode i+1: the environment is ini-
tialized with everything as in the be-
ginning of episode i except the target
which is placed in the agent’s end posi-
tion from episode i. The agent is made
to redo the same sequence of actions as
it did in episode i, thus ending up in the
position of the target, thereby encoun-
tering a positive reward.

Figure 3.7: Illustration of Naïve Visual Hindsight Experience Replay. The agent is represented by A
and the target object is represented by T. The arrows represent the actions taken by the agent at each
timestep, while the dark gray circles mark the position of the agent after taking an action. The red
circle is the position of the agent at the end of the episode.

object which will be placed at the agent’s end position from the previous episode.
Furthermore, instead of following a policy, the agent will be made to repeat the
exact same sequence of actions, as it did in the unsuccessful episode. By doing so,
the agent will end up in the same position as the target object and all the obser-
vation images taken during the episode, will have the target object in the correct
positions. See figure 3.7 for an illustration of NVHER.

3.3 The Training Set Up

To test the potential of the developed system, two agent types are trained on a
limited version of the environment. The first agent type will be a DRQN agent,
whereas the second will be a curious DRQN agent, i.e. a DRQN agent with an
ICM. Both agents will be trained with both LEM and NVHER implemented. The
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Figure 3.8: Different views of the limited test environment.

limited version of the environment consists of three connected rooms, with obsta-
cles scattered across them. In the limited environment, the only aspect changing
from episode to episode is the location of the target object, i.e. colors, lighting con-
ditions, obstacle placements, agent starting location, map size, number of rooms,
doorways, and textures do not change between episodes. See figure 3.8 for a pic-
ture of the environment. The environment is limited in these ways, to test the
potential of the developed system as the time constraints of the project, will not al-
low for training agents in the full version of the environment. However, the limited
environment used is chosen because it represents the challenges of the full envi-
ronment well, i.e., as the environment consists of three rooms and the target object
is randomly placed, the agent still has to explore unseen areas until it locates the
target on an episodic basis. However, agents trained in the limited environment
will have no grounds for deployment in a real-world environment, as the domain
randomization is non-present, and the agents therefore will be specialized to the
features of the limited environment.

Even though the reward function is very simple, some choices still have to be
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Figure 3.9: Graph showing the relationships between the ROS nodes during the training of the
curious Deep Recurrent Q-network agent. The rosbridge websocket node handles the communication
to and from the Unity application.

made. First of all, the maximum allowed number of steps the agent can per episode
will be defined, as it is important for the rewards given by the environment. For
the limited test environment, the maximum number of allowed steps will be 150.
The number is chosen because it provides the agent with enough steps to search
the entire map for the target object, while still requiring it to be efficient. Finding
the right step penalty, i.e. the negative extrinsic reward the agent receives at each
step, was due to some experimentation. Because the curious DRQN agent receives
an intrinsic reward from its ICM at each timestep, the step penalty should have a
greater absolute value, unless the agent encounters something truly unexpected.
This is because it would be undesirable if the agent learns, that it is better to stay
alive for as long as possible than it is to quickly locate the target. After some initial
tuning of the ICM, the intrinsic reward seems to settle around 0.25 for predictable
outcomes. Therefore, the step penalty is set to -1. This way, the agent will still yield
negative rewards at each timestep, unless it encounters an unforeseen consequence
of its actions. By determining the step penalty, the remaining rewards can be
determined. As the episode ends if the agent hits a wall or obstacle, the penalty
for hitting a wall or obstacle is set to -150. This way, it will always be more desirable
for the agent to stay alive, than to hit a wall or obstacle. If the penalty were smaller,
the agent might learn a suicide behavior, because it deems it better to drive into
something and end the episode early, than to stay alive and yields the negative
rewards of this. Similarly, the positive reward for hitting the target object is set to
150, causing all episodes where the agent is successful in having a return greater
or equal to zero.

As stated in section 3.1, the simulated environment is made with Unity and
everything handling events related to the environment is scripted with C#, as this
is the language Unity natively uses. All communication between entities of the
system is, as stated in section 3.2.1, handled by ROS, and all the programming
relating to the RL agents is made with Python 2.7, as this is supported natively
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by ROS. Furthermore, Python has access to the libraries Keras5 (Chollet, 2015) and
Tensorflow6 (Abadi et al., 2015), which provide deep learning functionalities. In
figure 3.9 there is an overview of the nodes in the system publishing and subscrib-
ing to information, as described in section 3.2.1. However, an additional topic is
added to help with the handling of NVHER. The Unity system publishes an order
to redo an episode to the redo topic, if the agent ended the previous episode in a
position where the target object can be placed. The agent subscribes to the topic
and will redo its previous sequence of actions in the following episode, if an order
is received.

As seen in figure 3.9, both the agent and the Unity system publish and subscribe
to the done topic. This is because the agent system keeps track on the number of
steps used in the episode, while the Unity system tracks collisions between the
agent and its surroundings. Therefore, both systems can publish an end to an
episode and both systems need to know when a new episode is to begin.

Both the DRQN and the curious DRQN will use "-greedy exploration with
linear decay. Starting with an initial value of " = 1 that decays to " = 0.1 after
76750 steps, where it remains fixed. The reasoning behind not having " decay
over a longer period of a million steps as done by Mnih et al. (2015), is that the
number of steps during training of the limited environment will not come close to
a million. Therefore, the agent should also try to exploit its understanding of the
environment and not just explore.

An overview of the code developed for the project is found in appendix A.

5Keras website: https://keras.io
6Tensorflow website: https://www.tensorflow.org

https://keras.io
https://www.tensorflow.org
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Results and Discussion

The Deep Recurrent Q-network (DRQN) agent and the curious DRQN agent have,
before the project hand in deadline, trained for a combined total of 140 hours and
13 minutes in the limited version of the environment. The results presented in this
chapter, will be the outcome of this training period, which will serve as a basis for
the discussion.

4.1 Training Results

During the training period, both of the agent types have managed to complete
slightly more than 4000 episodes each. The results of these training episodes can
be seen in figure 4.1. From figure 4.1a, it is evident that neither of the agents have
learned a satisfying policy from their training. In fact, the figure shows that both
agents have had a tendency to get a smaller return from each episode, as training
has progressed. However, as seen in figure 4.1b, as training has progressed, both
of the agents have seen a tendency to stay alive for more steps during episodes.
The downside of staying alive for longer, is that the return of the episode will be
much lower if the agent collides with the walls or an obstacle later in the episode.
This is due to the step penalty. However, if only rewards received from colliding
with either walls, obstacles, or the goal target are considered, the agents show a
tendency of improvement, as shown in figure 4.1c. This means, that, as training
progressed, the agents had more episodes in which they either located the target,
or did not collide with anything for the full 150 steps of the episode.

Even though the training of the agents is still in the early stages, e.g. Pathak
et al. (2017) train a curiosity driven agent in a 3D environment for millions of steps,
there have been signs of early policies for the agents. For instance, both the agents
seemed to adopt an early policy of not moving, possibly because experience replay
would have shown that standing still, at worst, can yield a negative reward of the
step penalty. For the curious agent, this policy seemed to evolve into spinning in
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(a) The relationship between the num-
ber and training episodes and the re-
turn, i.e. the accumulated reward dur-
ing an episode, displayed as a moving
average over the last 100 episodes.

(b) The relationship between the num-
ber and training episodes and the steps
taken by the agent per episode, dis-
played as a moving average over the last
100 episodes.

(c) The relationship between the num-
ber and training episodes and the re-
turn without the step penalty, displayed
as a moving average over the last 400
episodes.

Figure 4.1: Graphical illustrations of the training results. The blue line represents the Deep Recurrent
Q-network agent, while the orange line represents the curious Deep Recurrent Q-network agent.

place. The reason for this could be, that the outcome of spinning is much harder
for the Intrinsic Curiosity Module (ICM) to predict than the outcome of standing
entirely still, therefore yielding a higher intrinsic reward. However, as the robot’s
initial position at the beginning of the episodes is close to a corner, and the robot’s
behavior is largely influenced by "-greedy exploration, especially in early episodes,
these policies often lead to failure, as the randomness of "-greedy exploration can
easily move the robot in a way, which leads directly into one of the walls.
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4.2 Naïve Visual Hindsight Experience Replay

During the training period, the Naïve Visual Hindsight Experience Replay (NVHER)
trick, has only been utilized 23 and 15 times for the DRQN and the curious DRQN
agents respectively. The low amount of utilizations is due to the fact that NVHER
only will be set in motion, if the agent ended the previous episode without a colli-
sion, either with the target, walls, or obstacles, and ended the episode in a position
with enough space around it for the target to be safely placed there the following
episode. Furthermore, it has been observed that NVHER does not always result
in a successful episode when applied in the current system. This is caused by the
timing of sending messages within the system not being 100 % consistent from
episode to episode. In the way the system currently works, when the agent system
receives an observation image from the Unity simulation, the agent stops subscrib-
ing to the flow of observation images, while it computes the action to take next
and does a run-through of experience replay. Then, the action is published, and
the system re-subscribes to receive the next observation image. A contributing
factor to NVHER not always working could therefore be, that, during the replay
episodes of NVHER, there is no need to compute the action to take, making the
system able to run slightly faster than when it has to compute the action.

4.3 Dynamics Randomization

As the system is in its current form, the physical dynamics in the simulation re-
main fixed from episode to episode. Therefore, dynamics randomization could be
added to the space of domain randomizations, as future development. The addi-
tion of randomized dynamics to the simulations should make the trained agents
more adaptable to different real-world environments. E.g., the most optimal pol-
icy for driving on a smooth surface is not necessarily the same when driving on a
carpet. The use of dynamics randomization to train policies capable of adapting to
unfamiliar dynamics, were proven possible by Peng et al. (2017). In their experi-
ments, a RL agent is tasked with controlling a robotic arm, to push an object into a
target position. The agent is trained only through simulations, in which the phys-
ical properties of the robotic arm and the object is randomized. The agent is then
transferred to a physical setup, and proceeds to solve the task with real objects.

4.4 Increase to Actions and Observations

As discussed in section 3.2.2, action-value methods like DRQN are not particu-
larly suited for scenarios with continuing action spaces. This was for this project
solved by heavily limiting and discretizing the action space. However, the lim-
ited action space comes with the cost of greatly reducing the amount of possible
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policies for the agent. This means that very favorably possible policies for the
given environment, might be lost in the current setup. Therefore, future develop-
ments on the system should see the introduction of a state-of-the-art policy gradi-
ent method, capable of handling a continuous action space, like Proximal Policy
Optimization (PPO) (Schulman et al., 2017). Similarly, the input images used for
the current model are heavily downscaled when comparing to the full capabilities
of the robot’s camera. Future developments could therefore also see an increase to
these input images, allowing the agent more details per observation received.

4.5 Future Development

Many of the improvements to the system discussed above, would require more
training episodes, for the agents to improve from them. However, a very limiting
aspect of the current system is that the simulations run in real-time. The training
is therefore slow, and the most important future development of the system is to
improve the speed of training. One approach to solve this, would be to implement
a way for the system to simulate physics faster than real-time. Another approach
could be to have several agents training in parallel. This could be done by gen-
erating more environments at the same time in Unity. Each environment would
have its own agent training in it, and each of the agents would have their own
streams of observations and actions. Implementing separate information streams
is straightforward with the ROS messaging system, which also allows for having
more computers connected to the system through a shared network.

Interesting additional future work could be adding humans to the simulations.
These could also be randomized in colors, sizes, textures, and placement, as well as
having their joints in randomized positions. Furthermore, the simulated humans
could be made to move during simulations. Hereby, the agents would have to plan
routes around the environment taking future positions of humans into account. As
the system is set up at the moment, the agent is only trained to locate the specific
goal object from training. However, it would be much preferable if there was a
possibility to specify which object the agent should locate from time to time. This
could be done by adding the desired object as input to observations and then have
the different objects present during training, or a pre-trained object detector could
be integrated into the system.
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Conclusion

This project has investigated the possibilities of creating an autonomous robot Re-
inforcement Learning (RL) agent for map-less navigation in novel environments,
with the constraint of using only its onboard camera as an exteroceptive sensor to
observe the surrounding environment. Furthermore, the training of the agent was
required to be solely based on simulated data. The reasoning behind only using
simulated data, were based on the risks associated with gathering explorative RL
data from physical robots, such as being costly and a potential safety hazard.

The first problem to be addressed, was how the simulated data for training the
agent should be generated. Because the agent only was to sense its surrounding
environment through a camera, the simulated data were to be images. The game-
engine Unity were therefore chosen to simulate the data, for its capabilities with
photo-realistic rendering. A model of the environment was to be made in Unity,
were the agent, on an episodic basis, could attempt to locate a target object without
colliding with walls or obstacles.

One of the difficulties arising when applying RL to robotics, as according to
Kober, Bagnell, and Peters (2013), is the curse of under-modeling and model un-
certainty, which refers to the challenges of generating data that sufficiently depicts
the real-world counterpart. To battle this curse and allow for future bridging of
the reality gap, the concept of domain randomization was built into the simulation
system.

To control the agent the middleware ROS was implemented. ROS allowed for
communication between entities of the system, i.e. sending messages between
Unity and the RL system during training or sending messages between the robot
and the computer running the RL system for the real-world test. The messages
used to control the agent consisted of a linear and an angular velocity, which was
then mapped to the robot’s wheels.

The choice was then to either use a policy gradient method and have the agent
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directly output the velocities, or to use an action-value method an discretize the
action space, and have the agent estimate the values of taking the different actions.
Given the better sample efficiency and considering the time constraints, the action-
value method DQN were chosen and the action space was discretized to only nine
possible actions. Similarly, the input pictures were also downscaled, in a measure
to reduce training time. Given the partial observability of the environment a Long
Short-term Memory (LSTM) layer was added to the method, effectively making the
model a Deep Recurrent Q-network (DRQN).

The reward function of the environment was kept simple, with only positive and
negative rewards for colliding with the target object or obstacles respectively, and
a small penalty for each step taken, to encourage speed of solving the task. Be-
cause of the sparse rewards of the environment, other strategies were pursued to
encourage the agent into learning a satisfying behavior. To encourage the agent
to explore unseen areas an Intrinsic Curiosity Module (ICM) were implemented,
which provides the agent with an intrinsic reward signal corresponding to how
unpredictable the outcomes of the agent’s actions is. Two additional tricks were
implemented to battle sparse rewards. The first was the concept of Learning from
Easy Missions (LEM), which, for this project, involved placing the target object
in the same room as the agent, to improve the chance of the agent colliding with
it during training. The second trick saw the introduction of the concept labeled
Naïve Visual Hindsight Experience Replay (NVHER), in which training episodes
were controlled to generate a successful outcome. This was done by placing the
target object in the position which the agent ended the previous episode in. The
agent was then made to repeat the same sequence of actions as it did in the prior
episode, hereby making the agent collide with the target object. However, subse-
quent testing showed that NVHER were unreliable for the given system.

To test the potential of the developed system, a test with a limited version of the
environment were sat in motion. In the limited version of the environment, only
the starting position of the target object would change from episode to episode.
The limited version should make it faster for the agent to learn a satisfying policy
but come at the cost of not being applicable to test on the physical robot.

A DRQN agent and a DRQN with an ICM agent was trained for slightly more
than 4000 episodes each in the limited environment. The results showed no signifi-
cantly difference between the agents, with neither of them having developed satis-
fying policies after the training period. Still, with training of just 4000 episodes it is
still in its early stages, and subtle signs of improvement were seen. However, with
the time constraints of the project no further training were pursued. Therefore,
there were not made any tests on the physical robot, as no agent with a policy to
justify this were trained before project hand in.
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The biggest issue with the simulation system in the current version, is that it
only allows for training the agent in real time. The most important future de-
velopment of the system is therefore to implement a way to gather training data
faster.





Bibliography

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. url: https : / / www .
tensorflow.org/.

Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-
ter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba
(2017). “Hindsight Experience Replay”. In: CoRR abs/1707.01495. arXiv: 1707.
01495. url: http://arxiv.org/abs/1707.01495.

Asada, Minoru, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda (1996).
“Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforce-
ment Learning”. In: Machine Learning 23.2, pp. 279–303. issn: 1573-0565. doi:
10.1023/A:1018237008823. url: https://doi.org/10.1023/A:1018237008823.

Bellman, Richard (1957a). “A Markovian Decision Process”. In: Indiana University
Mathematics Journal 6, p. 15. doi: 10.1512/iumj.1957.6.56038.

— (1957b). Dynamic Programming. 1st ed. Princeton, NJ, USA: Princeton University
Press.

Bischoff, Martin (2018). Announcing ROS#. url: https://rosindustrial.org/
news/2018/1/8/announcing-ros.

Chollet, François et al. (2015). Keras. https://keras.io.
Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter (2016). “Fast and

Accurate Deep Network Learning by Exponential Linear Units (ELUs)”. In: 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. url: http://arxiv.org/abs/
1511.07289.

E. Rumelhart, David, Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
Representations by Back Propagating Errors”. In: Nature 323, pp. 533–536. doi:
10.1038/323533a0.

Erhan, Dumitru, Yoshua Bengio, Aaron Courville, and Pascal Vincent (2009). Visu-
alizing Higher-Layer Features of a Deep Network. Tech. rep. 1341. Also presented at
the ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.
University of Montreal.

43

https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://doi.org/10.1023/A:1018237008823
https://doi.org/10.1023/A:1018237008823
https://doi.org/10.1512/iumj.1957.6.56038
https://rosindustrial.org/news/2018/1/8/announcing-ros
https://rosindustrial.org/news/2018/1/8/announcing-ros
https://keras.io
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.1038/323533a0


44 Bibliography

François-Lavet, Vincent, Peter Henderson, Riashat Islam, Marc G. Bellemare, and
Joelle Pineau (2018). “An Introduction to Deep Reinforcement Learning”. In:
CoRR abs/1811.12560. arXiv: 1811.12560. url: http://arxiv.org/abs/1811.
12560.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science
and Cybernetics 4.2, pp. 100–107. issn: 0536-1567. doi: 10.1109/TSSC.1968.
300136.

Hausknecht, Matthew J. and Peter Stone (2015). “Deep Recurrent Q-Learning for
Partially Observable MDPs”. In: CoRR abs/1507.06527. arXiv: 1507.06527. url:
http://arxiv.org/abs/1507.06527.

Henry, Peter, Christian Vollmer, Brian Ferris, and Dieter Fox (2010). “Learning to
navigate through crowded environments”. In: 2010 IEEE International Conference
on Robotics and Automation, pp. 981–986.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-term Memory”. In:
Neural computation 9, pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

Karpathy, Andrej (2015). Convolutional Neural Networks: Architectures, Convolution /
Pooling Layers. url: http://cs231n.github.io/convolutional-networks/.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Opti-
mization”. In: 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. url: http:
//arxiv.org/abs/1412.6980.

Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement Learning in
Robotics: A Survey”. In: The International Journal of Robotics Research 32, pp. 1238–
1274. doi: 10.1177/0278364913495721.

Kober, Jens, Erhan Oztop, and Jan Peters (2011). “Reinforcement Learning to Ad-
just Robot Movements to New Situations”. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume Three. IJ-
CAI’11. Barcelona, Catalonia, Spain: AAAI Press, pp. 2650–2655. isbn: 978-1-
57735-515-1. doi: 10.5591/978-1-57735-516-8/IJCAI11-441. url: http:
//dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-441.

Lecun, Yann and Yoshua Bengio (1995). “Convolutional networks for images, speech,
and time-series”. English (US). In: The handbook of brain theory and neural net-
works. Ed. by M.A. Arbib. MIT Press.

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (2015). “End-to-
End Training of Deep Visuomotor Policies”. In: CoRR abs/1504.00702. arXiv:
1504.00702. url: http://arxiv.org/abs/1504.00702.

http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
http://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1507.06527
https://doi.org/10.1162/neco.1997.9.8.1735
http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1177/0278364913495721
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-441
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-441
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-441
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702


Bibliography 45

Lillelund, Christoffer Bredo (2018). “Transferring Deep Reinforcement Learning
from a Game Engine Simulation for Robots”. English. MA thesis. Copenhagen:
Aalborg University Copenhagen - AAU.

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra (2016). “Continuous control with
deep reinforcement learning”. In: url: http://arxiv.org/abs/1509.02971.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518.7540, pp. 529–533. issn: 00280836. url: http://dx.
doi.org/10.1038/nature14236.

Nair, Vinod and Geoffrey E. Hinton (2010). “Rectified Linear Units Improve Re-
stricted Boltzmann Machines”. In: Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning. ICML’10. Haifa, Israel: Om-
nipress, pp. 807–814. isbn: 978-1-60558-907-7. url: http : / / dl . acm . org /
citation.cfm?id=3104322.3104425.

Ng, A.Y., A Coates, M Diel, Varun Ganapathi, J Schulte, B Tse, E Berger, and E
Liang (2004). “Inverted autonomous helicopter flight via reinforcement learn-
ing”. In: Proceedings of the International Symposium on Experimental Robotics.

Olah, Chris (2015). Understanding LSTM Networks. url: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

Olah, Chris, Alexander Mordvintsev, and Ludwig Schubert (2017). “Feature Visu-
alization”. In: Distill. https://distill.pub/2017/feature-visualization. doi: 10.
23915/distill.00007.

Open Source Robotics Foundation (2016). ROS. Version Kinetic Kame. url: http:
//wiki.ros.org/kinetic.

OpenAI, John Schulman, Oleg Klimov, Filip Wolski, Prafulla Dhariwal, and Alec
Radford (2017). Proximal Policy Optimization. url: https://openai.com/blog/
openai-baselines-ppo/.

OpenAI et al. (2018). “Learning Dexterous In-Hand Manipulation”. In: CoRR. url:
http://arxiv.org/abs/1808.00177.

Pathak, Deepak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell (2017). “Curiosity-
driven Exploration by Self-supervised Prediction”. In: ICML.

Peng, Xue Bin, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel (2017).
“Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”. In:
CoRR abs/1710.06537. arXiv: 1710.06537. url: http://arxiv.org/abs/1710.
06537.

Pinto, Lerrel, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter
Abbeel (2017). “Asymmetric Actor Critic for Image-Based Robot Learning”. In:
CoRR abs/1710.06542. arXiv: 1710.06542. url: http://arxiv.org/abs/1710.
06542.

http://arxiv.org/abs/1509.02971
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00007
http://wiki.ros.org/kinetic
http://wiki.ros.org/kinetic
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542


46 Bibliography

Sadeghi, Fereshteh and Sergey Levine (2016). “(CAD)$ˆ2$RL: Real Single-Image
Flight without a Single Real Image”. In: CoRR abs/1611.04201. arXiv: 1611.
04201. url: http://arxiv.org/abs/1611.04201.

Sahni, Himanshu, Toby Buckley, Pieter Abbeel, and Ilya Kuzovkin (2019). “Visual
Hindsight Experience Replay”. In: CoRR abs/1901.11529.

Samuel, Arthur L. (1959). “Some Studies in Machine Learning Using the Game of
Checkers”. In: IBM Journal of Research and Development 3, pp. 210–229.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov
(2017). “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347.
arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

Silver, David et al. (2017). “Mastering the game of Go without human knowledge”.
In: Nature 550, pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

Smart, William D. and Leslie Pack Kaelbling (2002). “Effective Reinforcement Learn-
ing for Mobile Robots”. In:

Sondik, Edward (1978). “The Optimal Control of Partially Observable Markov Pro-
cess over the Infinite Horizon: Discounted Costs”. In: Operations Research 26,
pp. 282–304. doi: 10.1287/opre.26.2.282.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduc-
tion. Second. The MIT Press. url: http://incompleteideas.net/book/the-
book-2nd.html.

Tesauro, Gerald (1995). “Temporal Difference Learning and TD-Gammon”. In: Com-
mun. ACM 38.3, pp. 58–68. issn: 0001-0782. doi: 10.1145/203330.203343. url:
http://doi.acm.org/10.1145/203330.203343.

Tobin, Joshua, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel (2017). “Domain Randomization for Transferring Deep Neural
Networks from Simulation to the Real World”. In: CoRR abs/1703.06907. arXiv:
1703.06907. url: http://arxiv.org/abs/1703.06907.

Unity Technologies (2018). Unity. Version 2018.3. url: https://unity.com.
Valenzuela, Christine L. and Pearl Y. Wang (2001). “Data Set Generation for Rect-

angular Placement Problems”. In: European Journal for Operational Research 2001,
pp. 16–20.

Vinyals, Oriol et al. (2019). AlphaStar: Mastering the Real-Time Strategy Game Star-
Craft II. https://deepmind.com/blog/alphastar-mastering-real-time-
strategy-game-starcraft-ii/.

Watkins, Christopher John Cornish Hellaby (1989). “Learning from Delayed Re-
wards”. PhD thesis. Cambridge, UK: King’s College. url: http://www.cs.
rhul.ac.uk/~chrisw/new_thesis.pdf.

Zhelo, Oleksii, Jingwei Zhang, Lei Tai, Ming Liu, and Wolfram Burgard (2018).
“Curiosity-driven Exploration for Mapless Navigation with Deep Reinforce-
ment Learning”. In: CoRR abs/1804.00456. arXiv: 1804.00456. url: http://
arxiv.org/abs/1804.00456.

http://arxiv.org/abs/1611.04201
http://arxiv.org/abs/1611.04201
http://arxiv.org/abs/1611.04201
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1287/opre.26.2.282
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1145/203330.203343
http://doi.acm.org/10.1145/203330.203343
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://unity.com
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://arxiv.org/abs/1804.00456
http://arxiv.org/abs/1804.00456
http://arxiv.org/abs/1804.00456

	Front page
	English title page
	Danish title page
	Nomenclature
	Acronyms

	Contents
	Preface
	1 Introduction
	1.1 Background and Motivation
	1.2 Thesis Objective
	1.2.1 Research Questions

	1.3 Related Work

	2 Theoretical Background
	2.1 Deep Learning
	2.1.1 Fully-connected Layers
	2.1.2 Convolutional Layers
	2.1.3 Recurrent Layers

	2.2 Reinforcement Learning
	2.2.1 Partially Observable Problems
	2.2.2 Deep Q-networks
	2.2.3 Intrinsic Curiosity Modules


	3 Methodology
	3.1 The Simulated Environment
	3.1.1 Domain Randomization

	3.2 The Reinforcement Learning Implementation
	3.2.1 ROS Messaging
	3.2.2 Defining the Reinforcement Learning Problem
	3.2.3 The Model Architecture
	3.2.4 Dealing with Sparse Rewards

	3.3 The Training Set Up

	4 Results and Discussion
	4.1 Training Results
	4.2 nvher
	4.3 Dynamics Randomization
	4.4 Increase to Actions and Observations
	4.5 Future Development

	5 Conclusion
	Bibliography
	A Overview of Developed Code
	B Additional Graphs
	C Training Hyperparameters

