
Secure Control in the Cloud
Using Multiparty Computation

Andrea Løvemærke
Master’s Thesis
Control & Automation

243774
219817604558

417271607729632
77211255152359182145
04815296494627080323
06646211766534267

487548
439335209116

816563724663467
59514582325227568290
09630495009763367646
13292363533068529

731322
658852813675

215855841597302
41817917477586745435
14445693524899654171
25030605299602791

Copyright © Aalborg University 2019

Frontpage design: Each cloud has a specific colour corresponding to a coloured piece of the lock.
The lock needs shares from each cloud to unlock and reconstruct the secret.
Fun fact: The numbers in the clouds are shares of first degree polynomials of the finite field with
cardinality prime p = 7979490791. Every 10 digits constitute a share. If they are reconstructed in
their respective order the results are 3 1 4 1 5 9 2 6 5 that are the first nine digits of pi.
Created in collaboration with Rasmus Gundorff Sæderup.

ii

Master’s Thesis
Control & Automation

Department of Electronic Systems

Title:
Secure Control in the Cloud
Using Multiparty Computation

Project Period:
February 2019 - June 2019

Project Group:
CA10 - 1037

Student:
Andrea Victoria Tram Løvemærke

Supervisor:
Rafael Wisniewski

Pages:
61

Completion Date:
June 14, 2019

Abstract:
The society of today and even more so in the future relies
on data to reduce resource consumption, wastage and
overall costs. Technologies have been developed such
that devices across different functionalities can com-
municate and make independent decisions to optimize
their individual function. Online control algorithms are
needed to achieve this kind of linked optimization and
automation. However, online servers are not guaranteed
to be trustworthy, leading to great risk when data is re-
leased to third parties in exchange for computed control
actions. It is vital that privacy is preserved and data is
not compromised through acts of terror, to ensure safety
in today’s data-driven society.
This thesis is devoted to securing data within cloud
computed control. Multiparty computation using secret
sharing is investigated as a secure approach where
private data is split into shares. Computing on shares
can be performed on online servers with minimum risk
as the shares individually do not disclose information
about the private data. The data owner can reconstruct
the private result of the secure multiparty computations
with no other party gaining knowledge of the result.
It is investigated how unconstrained and equality con-
strained model predictive control problems can be se-
curely solved in the cloud. The solution utilizes Gaus-
sian elimination without pivoting and has proved to be
useful. The thesis concludes that further research must
be done within this field prior to become suitable for
real life control problems. It does, however, show tre-
mendous potential to becoming epochal for future online
control applications.

Publication of this report’s contents (including citation) without permission from the
author is prohibited.

iii

iv

Preface

This report constitutes the thesis of the Master’s program Control & Automation
at Aalborg University and is authored by Andrea Victoria Tram Løvemærke. The
thesis covers 30 ETCS points and is developed from the 11th of February 2019 to
the 14th of June 2019.

Source referencing complies with the Harvard method and a bibliography with
full citation of the referenced literature is found at the end of the report. Graphs
and figures without a source reference are originals produced in Matlab and Lu-
cidchart, respectively.
All code used for simulations and implementation can be accessed at the GitHub
repository https://github.com/avtl/thesis. The simulation results and the Mat-
lab code used to evaluate the results can moreover be found at this location.

Special gratitude and acknowledgement to my supervisor Rafael Wisniewski for
his extraordinary and highly skilled guidance in this thesis. A great thank you
goes to Katrine Sofie Tjell for her competent assistance and help when needed.
Moreover Rasmus Gundorff Sæderup deserves recognition for his valued contribu-
tion in discussing and solving everyday problems.

Lastly I must express my sincere appreciation to Aalborg University for my edu-
cation in its entirety.

Andrea Victoria Tram Løvemærke,
Aalborg University, June 2019

v

vi

Danish Abstract

I nutidens samfund ønsker vi at få det maksimale ud af vores tid, vores penge og
ressourcer i det hele taget. Således er flere teknologier udviklet med netop denne
ambition - vores telefoner er blevet smarte, vores hjem er blevet delvist smarte og
vores biler bliver i højere grad smarte. Ultimativt vil disse avanceringer udgøre
et smart samfund, hvor alle enheder på tværs af funktionalitet kommunikerer og
tager selvstændige beslutninger for at optimere deres individuelle funktion. Online
reguleringsalgoritmer er nødvendige for at opnå denne form for sammenkædet op-
timering og automatisering. Online servere kan ikke garanteres at være troværdige,
hvorfor det er risikabelt, at data i øjeblikket frigives til disse tredjeparter i bytte
for beregning af reguleringsinput. Data er værdifuldt og af endnu større værdi hvis
dataet betragtes i helhed. Det bør derfor hemmeligholdes for tredjeparter for at
sikre brugerne mod overvågning, manipulation og i værste fald personskade, hvis
ondsindede aktører ønsker at udvirke terror.
Denne specialeafhandling undersøger, hvorledes reguleringsalgoritmer kan bereg-
nes i ’skyen’ uden at data kan aflures eller inficeres.

Først præsenteres indledende teori om sikker distribueret beregning og en secret
sharing metode. Herved kan data splittes op i dele på vilkårlig vis, så delene
enkeltvis ikke har en værdi. Beregninger på disse datadele kan udføres på online
servere uden risiko for at dataet misbruges af tredjeparter, da datadelene hver især
ikke afslører information om det hemmelige data. Datadelene for beregningsres-
ultatet kan rekonstrueres i den enkelte enhed, hvorfor denne vil være den eneste,
der har viden om sit system og reguleringsinput.
Derefter undersøges det, hvordan model prædiktiv reguleringsproblemer kan
beregnes sikkert i ’skyen’. Løsningsforslaget anvender Gaussisk eliminering uden
pivotering og har vist sig brugbar. Det skal dog bemærkes, at en bedre måde
for sikker invertering bør udvikles førend det fulde potentiale for løsningsforslaget
kan udvindes. Parametre der har indflydelse på dette præcisionstab er karak-
teriseret og refleksioner i relation til reguleringsformål er siden beskrevet. Deru-
dover betragtes processeringsomkostningerne for løsningsforslaget i forhold til an-
vendeligheden inden for realtids regulering. Det har vist sig urealiserbart krævende
i forhold til traditionelle beregninger, hvorfor optimering af løsningsforslagets proc-
ceseringsomkostninger bør undersøges.

Distribuerede beregninger og hemmeligholdelse af data er et forskningsområde der
i stigende grad bliver uundværligt, som den teknologiske udvikling, der baseres
på private data, fortsætter. Arbejdet i denne specialeafhandling er initielt og bør
fortsættes.

vii

viii

Notation

:= Definition

In n× n identity matrix

0m×n m× n zero-matrix
?
6= Equality test: returns 1 when not equal
?= Equality test: returns 1 when equal

diag(v) Diagonal matrix ∈ Kn where v = (v1, . . . , vn) are the diagonal entries

a Public (open) value

JaK Private value

A Matrix

a Vector

∧ AND operator

∨ OR operator

û(k + i|k) û at time sample k + i evaluated at time sample k

∗ Schur product (entrywise multiplication)

det An−k Leading principal minor of order k

A|b Augmented system

Abbreviations

SECURE Secure Estimation and Control Using Recursion and Encryption

MPComp Multiparty Computation

MPControl Model Predictive Control

SSS Secret Sharing Scheme

GE Gaussian Elimination

RP Raspberry Pi

TCP Transmission Control Protocol

ix

Nomenclature
Chapter 2

n Number of parties

P1, . . . , Pn Parties

Jx1, . . . , xnK Private information

y Function output

Fp Finite field with cardinality prime p

t Polynomial degree

Ja0, . . . , atK Polynomial coefficients

Js1, . . . , snK Shares of secret s

f(x) Polynomial over Fp of degree t

C Set of n indices of shares

δi(x) Lagrange basis polynomial

r Recombination vector

Chapter 3

A State matrix

B Input matrix

C Output matrix

x(k) State vector

u(k) Control input vector

y(k) Measured output vector

z(k) Controlled output

V (k) Cost function

r(k) Reference signal

Hp Prediction horizon

Hw Window parameter

Hu Control horizon

Q(i) State penalty

R(i) Control input penalty

x

∆U(k) Reformulated change in control input

Q Reformulated state penalty

R Reformulated control input penalty

Θ Based upon system matrices

E(k) Tracking error

G(k) Defined as: 2ΘTQE(k)

H Defined as: ΘTQΘ +R

SQ Square-root matrix of Q

SR Square-root matrix of R

Chapter 4

JAK Private input matrix

JxK Private solution to linear system

JbK Private observation vector

JA′K Modified input matrix

Jb′K Modified observation vector

U Upper Toeplitz matrix

L Lower Toeplitz matrix

JhK Private input value

JtK Private input value

Chapter 5

JdK Private random variable used in semi-secure equality test

Q Field of rational numbers

JzK Private random variable used in secure inversion

Js−1
s K Inverted scaled secret

w Product of secret and private random variable

cs Scaling factor

k Inverted scaled and rounded variable

Chapter 7

e1, e2 Percentage error deviation

σ Standard deviation xi

xii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Multiparty Computation . 3
2.2 Secret Sharing . 5
2.3 Focus of the Thesis . 13

3 Control Problem 15
3.1 Model Predictive Control . 15
3.2 Unconstrained MPControl . 16
3.3 Constrained MPControl . 20

4 Secure Solution 23
4.1 Secure Unconstrained Case . 23
4.2 Solving Linear Systems Securely . 25

5 Simulation 29
5.1 Secure Equality Test . 29
5.2 Subtracting Shares from an Open Value 30
5.3 Secure Inversion . 31

6 Implementation 35
6.1 Network Setup . 35
6.2 Setup Presentation . 37

7 Results 39
7.1 Precision . 39
7.2 Computational Cost . 48

8 Conclusion 51

9 Future Work 53

Bibliography 55

A Protocol 2.2 Example 57

B Secure Matrix Multiplication Example 61

xiii

xiv

Chapter 1. Introduction

1 | Introduction

Aalborg University has a 2016-2021 strategy called Knowledge for the World. A part
of this strategy is to promote innovative interdisciplinary collaboration. To achieve
this six interdisciplinary research projects have been selected by the AAU Executive
Board. Each project aims to determine how to solve a large societal challenge [AAU
Strategy, 2018].
This thesis is part of SECURE that is one of the interdisciplinary research projects.
SECURE is an abbreviation for Secure Estimation and Control Using Recursion
and Encryption. The interdisciplinary research project is lead by Rafael Wisniewski
and integrates another 11 researches from mathematics, signal analysis, automation
and control engineering and techno-anthropology [AAU TANT, 2018].

The focus of SECURE is to develop methods to guarantee the correctness of op-
erational decisions in a data-driven society. Moreover it is essential to ensure the
privacy of the parties involved in the operations [AAU Strategy, 2017].

We live in a modern data-driven society where everything must go faster, smarter,
and always be as convenient for the users as possible. The users’ needs must be
covered immediately as they occur. To do this information about the user is neces-
sary for different systems. Information that is considered private to third parties is
of significant value if leaked. This information could for instance be ones political
orientation, economic status, health situation, location etc. Moreover it shall be
noted that if the information is combined and considered in its entirety, additional
information of great value can be obtained.

A data-driven society requires a large number of parties to collaborate and share
information among each other. These parties are often unknown to the clients and
cannot be guaranteed to be trustworthy.

SECURE aims to tackle the societal challenge of reducing resource consumption,
wastage and overall costs. This requires optimization based on information about
every individual within the society. This constitutes a large risk to the society as
well as the individual citizens. It is therefore essential to develop methods that al-
low secure computations on private data in order to minimize resource consumption
without the risk.
The motivation of the thesis is secure control computations in the cloud for utiliza-
tion of autonomous public transportation.

To achieve fully autonomous public transportation, information on each vehicle such
as location, speed, end-destination, if it is occupied or not, if it needs to be re-
fuelled/recharged etc. is necessary. This information is gathered in the cloud, where
complex control algorithms are processed. The results of these computations must

1 of 61

Chapter 1. Introduction

be delivered as control inputs to each vehicle in real time. The complexity exists
in the number of vehicles, the different paths they are to take depending on the
users’ desired end-locations and the uncontrollable obstacles being humans on foot
or bike in the traffic. The control algorithms must ensure a comfortable ride for the
passengers in an effective manner, where no collisions occur for any of the vehicles.

Figure 1.1: Conceptual image of identical autonomous vehicles securely controlled from the cloud
[Hull, 2017].

The complexity and workload constitute a non-trivial challenge to solve. Moreover
handling this challenging task must be done securely. If a society relies on an
autonomous public transportation system it is crucial to keep it safe. If unauthor-
ised parties obtain information it can be abused. It can reveal a user’s daily routines,
where the user works, how often the user visits the doctor, where friends and family
live etc. Collecting this information can constitute great value to parties with in-
terests that the user may not want to become subject to. Another important aspect
to consider is how to avoid the control algorithms to be compromised as an act of
terror to inflict traffic accidents.

A way to avoid this is by not pursuing this transportation advancement and remain
with manually driven vehicles as of today. However, this is not reasonable nor
satisfying for our modern society, hence this thesis aspires to contribute to applying
secure control algorithms in the cloud as a partial solution to this challenging task.
In the following chapter preliminaries are introduced to provide an understanding
of what is meant by secure cloud computing.

2 of 61

Chapter 2. Preliminaries

2 | Preliminaries

Notice that [Tjell, 2018] is based on [Cramer et al., 2015]. As the thesis adopts the
notation of [Tjell, 2018] it is chosen, where suited, to refer to this work instead of
[Cramer et al., 2015].

This chapter introduces concepts that are fundamental in solving the challenges
of secure computing in the cloud. It will later become obvious that the concepts
in this chapter are inevitable and must be known to the reader before the thesis
research can be comprehended. Note, that proofs of the utilized protocols will not
be presented as prior work of SECURE has ensured correctness of the protocols
[Tjell, 2018].

2.1 Multiparty Computation
Secure Multiparty Computation (MPComp) is based on a set of n parties P1, ..., Pn,
that hold private information Jx1, ..., xnK, which must be combined in order to com-
pute the function output y = f(x1, ..., xn). The computation must be done without
the parties learning each others inputs.
The function output must be correct and be the only new information released.
One way to do this is by providing the parties’ private inputs to a trustworthy third
party, whom then computes the function output, see Figure 2.1. The third party
can, however, not be guaranteed to be trustworthy, also known as honest, thus this
is not a reliable way of obtaining the function output.

Phonest

P1

P2

P3P...

Pn

Figure 2.1: Ideal world: Parties shar-
ing their private information with an hon-
est third party to compute the result using
secure communication channels.

P1

P2

P3P...

Pn

Figure 2.2: Real world: Parties distribut-
ing n− 1 shares to each other to obtain the
result without disclosing their private values
using secure communication channels.

Secure MPComp relies on sharing information between the parties, but without re-
vealing their private value. The parties must cooperate to obtain the function out-

3 of 61

Chapter 2. Preliminaries

put, see Figure 2.2. Note, that all communication is assumed to be secure based on
adequate encryption.

To preserve privacy secure protocols are defined and must be followed by all parties.
It shall be noted, that this cannot always be assumed to be respected as corrupt
parties may deviate from the protocol to obtain more information than intended or
to cause an incorrect output. This is known as malicious behaviour and any entity
behaving in such a way is called an adversary.
The adversary attacks a protocol by taking control of a subset of parties, which then
become corrupt. An adversary can be either passive or active. A passive adversary
is a simple adversary where all parties follow the protocol and only private inform-
ation of the corrupted parties is disclosed, see Figure 2.3. An active adversary is
a dynamic adversary where the corrupted subset of parties may arbitrarily deviate
from the protocol aiming to manipulate the function output, see Figure 2.4. [Tjell,
2018, p. 6-7]

...

Share 1

Share 2

Share nPassive

Reconst ruct Secret

...

Share 1

Share 2

Share nAct ive

Reconst ruct Secret

Figure 2.3: Passive adversary: Private information of corrupt parties is disclosed to the adversary
but remains intact. Adversary object is from [Ahkâm, 2017].

...

Share 1

Share 2

Share nPassive

Reconst ruct Secret

...

Share 1

Share 2

Share nAct ive

Reconst ruct Secret

Figure 2.4: Active adversary: Private information of corrupt parties is disclosed and compromised
in order to falsify the reconstructed function output. Adversary object is from [Ahkâm, 2017].

Different protocols exist to ensure security against malicious behaviour. The type of
protocol determines what kind of security is obtained. Passive security can be ob-
tained by simpler protocols compared to active security. Note, that an active secure
protocol protects against both kinds of adversaries, as active adversaries manipulate
inputs to falsify the output. This requires knowledge of the input information, which
is what a passive adversary solely targets.

Before protocols to protect against adversaries can be defined, secure MPComp re-
quires the private values of the parties to be split into shares that individually has

4 of 61

Chapter 2. Preliminaries

no value. The shares are distributed among the parties, but without revealing the
parties’ private information. This is known as secret sharing and will be described
in the following.

2.2 Secret Sharing
Secret sharing is a concept within cryptography that allows a secret to be distributed
among multiple parties without revealing the secret to any of the parties. The secret
is split into multiple shares according to a secret sharing scheme.
The Shamir’s secret sharing scheme (Shamir’s SSS) has been investigated in the
SECURE research project and is deemed adequate for the intended use within this
work.

2.2.1 Shamir’s Secret Sharing Scheme
Shamir’s SSS constructs n shares of a secret s ∈ Fp, using Lagrange polynomials of
degree t < n [Cramer et al., 2015, p. 33-35]. Note, that p is a prime and defines
the cardinality of a finite field. A polynomial f(x) ∈ Fp of degree t < n is secure
for t corrupt parties as these will not be able to reconstruct the secret from their
shares. The secret can, however, easily be reconstructed from shares of any t + 1
or more parties using Lagrange interpolation. It is therefore essential to consider
what polynomial degree will be sufficient to secure data depending on the number
of parties and the value and nature of the data being handled.

The polynomial is constructed such that f(0) equals the secret and the remain-
ing coefficients are random. The Shamir’s SSS protocol is given as:

Protocol 2.1 Shamir’s secret sharing scheme [Tjell, 2018, p. 14]

Input: Let s ∈ Fp be the secret and the polynomial degree be t < n where n is the
number of parties.
Output: The shares Js1,..., snK of s.
1: Select random uniformly distributed polynomial coefficients a1, ..., an ∈ Ftp.
2: Define the polynomial f(x) = a0 +a1x+ ...+atxt ∈ Fp. Note that a0 = s = f(0).

3: Define the shares of s as

s1 = f(1)
...

sn = f(n)

Lagrange interpolation that is used to reconstruct the secret s ∈ Fp is described in
the following.

5 of 61

Chapter 2. Preliminaries

2.2.2 Lagrange Interpolation
Having shares from t + 1 or more parties it is possible to reconstruct the secret
s ∈ Fp. The polynomial of degree t is constructed as [Cramer et al., 2015, p. 33-35]:

f(x) =
∑
i∈C

siδi(x) , (2.1)

where:
f(x) is the polynomial over Fp of degree t,

C is the set of n indices of the shares,

δi(x) is the Lagrange basis polynomial.

Note, that the Lagrange basis polynomial is defined as:

δi(x) =
∏

j∈C,j 6=i

x− j
i− j

. (2.2)

Lagrange interpolation requires t+ 1 points of f(x) to reconstruct the secret shared
by Shamir’s SSS of t-order Lagrange polynomials. The Lagrange basis polynomials
equal either 0 or 1 depending on the indices evaluated upon [Tjell, 2018, p. 15]:

δi(k) =
∏

j∈C,j 6=i

k − j
i− j

= k − 1
i− 1 ...

k − k
i− j

...
k − (t+ 1)
i− (t+ 1) = 0 for k 6= i , (2.3)

δi(i) =
∏

j∈C,j 6=i

i− j
i− j

= 1 . (2.4)

Note, that it is not necessary to reconstruct the entire polynomial f(x) as it is only
the secret that is of interest to reconstruct. The secret is equal to f(0) hence the
Lagrange basis polynomial in Equation 2.2 can be simplified to:

ri = δi(0) =
∏

j∈C,j 6=i

−j
i− j

. (2.5)

All simplified Lagrange basis polynomials are gathered in a recombination vector:

r = [r1, ..., rn] . (2.6)

The recombination vector, r, is independent of f(x) and can therefore be utilized
with all polynomials of degree t < n. This allows Shamir’s SSS, see Protocol 2.1, to
be simplified to:

f(0) =
∑
i∈C

risi . (2.7)

The secret s = f(0) hence Equation 2.7 is sufficient to compute in order to recon-
struct the secret.
A more convenient notation is now introduced.

6 of 61

Chapter 2. Preliminaries

2.2.3 Notation and Protocols
To ease the reading of protocols to come, the simplest and most used notation in
the research field is first presented. The thesis follows the notation of [Cramer et al.,
2015, p. 37-38].

Ja; fKt holds the following information:

• a ∈ Fp is the secret

• f ∈ Fp is a random polynomial

• t < n is the polynomial degree

Note, that the secret a is split into n shares calculated from f(x) [Tjell, 2018, 20-21],
such that:

Ja; fKt = Jf(1), ..., f(n)K . (2.8)

Polynomials can express any secret that is a finite function over a finite field Fp thus
addition and multiplication are the only required operations as these can evaluate
any polynomial [Tjell, 2018, p. 24]. This section presents addition and multiplica-
tion in secure MPComp using Shamir’s SSS.

Operations using the notation:
Given that a, b, c ∈ Fp and f(x) and g(x) are polynomials over Fp.

Ja; fKt + Jb; gKt = Ja+ b; f + gKt , (2.9)
cJa; fKt = Jca; cfKt , (2.10)

Ja; fKt ∗ Jb; gKt = Jab; fgK2t . (2.11)

Note, that ∗ denotes the Schur product [Cramer et al., 2015, p. 14].

It is essential to observe, that the polynomial degree in Equation 2.11 is increased.
The cause for this is illustrated by the derivations:

Ja; fKt ∗ Jb; gKt = Jf(1), ..., f(n)K ∗ Jg(1), ..., g(n)K (2.12)
= Jf(1)g(1), ..., f(n)g(n)K (2.13)
= J(fg)(1), ..., (fg)(n)K (2.14)

(fg)(x) = (a+ a1x+ ...+ atx
t) · (b+ b1x+ ...+ btx

t)
= ab+ (a1b2 + a2b1)x+ ...+ (atbt)x2t . (2.15)

Each term in Equation 2.14 can be expanded as seen in Equation 2.15.
The demonstrated behaviour of increasing polynomial degree is for multiplication of
two private values only. The polynomial degree increases according to the number

7 of 61

Chapter 2. Preliminaries

of private values that are being multiplied, hence the computational challenge can
quickly become immense.

Protocol 2.2 multiplies two private polynomials and outputs the product as a poly-
nomial of degree t.

Protocol 2.2 Multiplication [Tjell, 2018, p. 23]

Input: Let the parties hold Ja; faKt, Jb; fbKt and the degree be t < n
2 .

Output: Jy; fyKt where y = ab.

1: The parties compute

Jab;hK2t = Ja; faKt ∗ Jb; fbKt , (2.16)

where h = fafb that is the 2t degree polynomial according to Equation 2.11.
Note, that h(0) = ab.

2: The party Pi distributes Jh(i); fiKt.
3: The parties compute

n∑
i=1

riJh(i); fiKt = J
n∑
i=1

rih(i);
n∑
i=1

rifiKt , (2.17)

= Jh(0);
n∑
i=1

rifiKt , (2.18)

= Jab;
n∑
i=1

rifiKt , (2.19)

where ri is the ith entry of the recombination vector, see Equation 2.6.
Note, that fy = ∑n

i=1 rifi hence all parties learn Jy; fyK.

Party Pi first multiplies its shares of JaK and JbK. The polynomial fafb = h has the
degree 2t. Party Pi then creates a new polynomial fi(x) = h(i) + c1x + . . . + ctx

t,
where c is a random uniformly distributed variable. Note, that the new polynomial
fi has degree t. Pi distributes its shares of fi(x), such that the parties hold:

f1(x) f2(x) f3(x)

P1 f1(1) f2(1) f3(1)

P2 f1(2) f2(2) f3(2)

P3 f1(3) f2(3) f3(3)

Party Pi uses the recombination vector, see Equation 2.5 and Equation 2.6, to
calculate the resulting shares of ab. The recombination vector is publicly known,

8 of 61

Chapter 2. Preliminaries

thus all parties can utilize it. The resulting shares are determined as follows:
P1 : r1 · f1(1) + r2 · f2(1) + r3 · f3(1) , (2.20)
P2 : r1 · f1(2) + r2 · f2(2) + r3 · f3(2) , (2.21)
P3 : r1 · f1(3) + r2 · f2(3) + r3 · f3(3) . (2.22)

The resulting shares of ab can now be used in future computations in MPComp
without the polynomial degree escalating as the polynomial degree remains t. To
reconstruct the result of the multiplication, the resulting shares are multiplied by
the recombination vector:

ab =r1(r1 · f1(1) + r2 · f2(1) + r3 · f3(1)) (2.23)
+r2(r1 · f1(2) + r2 · f2(2) + r3 · f3(2)) (2.24)
+r3(r1 · f1(3) + r2 · f2(3) + r3 · f3(3)) . (2.25)

An example of Protocol 2.2 is calculated in Appendix A.

Protocol 2.2 is an inefficient multiplication protocol as it relies on distributing shares
between parties, in order to obtain the result. Distributing shares in a real network
require encrypted communication that can be time consuming. Computation time
affects the performance of real time control negatively, thus it is vital to reduce it
as much as possible.
A more efficient method is the Beaver’s triplet multiplication protocol. It relies on
three random variables, which are Jα; fαKt, Jβ; fβKt and Jγ; fγKt, where the Beaver’s
triplet is γ = αβ. The shares α, β ∈ Fp are random uniformly distributed and
unknown to all parties. A Beaver’s triplet is created using the Beaver’s trick:

Protocol 2.3 Beaver’s trick [Tjell, 2018, p. 25-26]

Input: Let the polynomial degree be t < n
2 .

Output: Jα; fαKt , Jβ; fβKt , Jγ; fγKt.

1: The shares Jαi; fαi
Kt and Jβi; fβi

Kt must be distributed by the party Pi
for i = 1, ..., n.
Note, that αi, βi ∈ Fp must by random uniformly distributed.

2: Party Pi computes

Jα;fαKt =
n∑
i=1

Jαi; fαi
Kt , (2.26)

Jβ;fβKt =
n∑
i=1

Jβi; fβi
Kt . (2.27)

3: Lastly all parties compute

Jγ; fγKt = Jα; fαKt ∗ Jβ; fβKt , (2.28)

using Protocol 2.2.

9 of 61

Chapter 2. Preliminaries

Note, that the Beaver’s trick in Protocol 2.3 invokes the time consuming multiplic-
ation protocol, Protocol 2.2, to create Beaver’s triplets, thus it is essential that it is
performed as a preprocessing phase. In the case of autonomous public transporta-
tion, creating Beaver’s triplets can for instance be done while the vehicles are parked
and thus not relying on efficient real time control computations. A Beaver’s triplet
can only be used for one multiplication operation thus it is necessary to create suf-
ficiently many triplets to preserve privacy [Tjell, 2018, p. 26].

The Beaver’s triplet multiplication protocol is more efficient than Protocol 2.2, given
that sufficiently many triplets are available, as it broadcasts information that has
been changed by a triplet. Note, that broadcasting a value is defined by letting all
parties know the value, thus encrypted communication is not required.
This allows the parties to compute the function output without distributing shares
among each other. The private product is ultimately obtained by addition. This
will become clear from Protocol 2.4 and supplemental derivations. The Beaver’s
triplet multiplication protocol is presented as follows.

Protocol 2.4 Beaver’s triplet for Multiplication [Tjell, 2018, p. 26]

Input: Let the parties hold Ja; faKt, Jb; fbKt, Jα; fαKt, Jβ; fβKt, Jγ; fγKt, where the
latter three are the Beaver’s triplet.
Output: Jy; fyKt, where y = ab.

1: The parties compute

Jd; fdKt = Ja; faKt − Jα; fαKt , (2.29)
Je; feKt = Jb; fbKt − Jβ; fβKt . (2.30)

2: The parties broadcast d and e.
3: The parties compute

Jy; fyKt = de+ d Jβ; fβKt + Jα; fαKt e+ Jγ; fγKt . (2.31)

All parties learn the function output as each party can compute y = ab from the
broadcast values d and e according to Equation 2.31. As the coefficients of the
Beaver’s triplet are random uniformly distributed, thus are d and e, and the privacy
of a and b is therefore not compromised.
To illustrate that Equation 2.31 returns the product of a and b, the following deriv-
ations are presented.

10 of 61

Chapter 2. Preliminaries

From Equation 2.29-2.30 it is seen that:

d = JaK− JαK JαK = JaK− d JaK = d+ JαK (2.32)
e = JbK− JβK JβK = JbK− e JbK = e+ JβK (2.33)

Hence the product y = ab can be expressed as:

y = ab = (d+ JαK)(e+ JβK) (2.34)
= de+ d JβK + JαK e+ JαKJβK (2.35)
= de+ d JβK + JαK e+ JγK (2.36)

Equation 2.36 is identical to Equation 2.31, hence the Beaver’s triplet for multiplic-
ation has proved not to increase the polynomial degree.

This concludes the description of multiplication of shares on polynomial form. In
the following secure addition is presented.

Addition is a simpler operation, where each party adds its shares and exchanges
the result. This also applies for Shamir’s SSS polynomials, as the corresponding
coefficients in the shared polynomials are simply added with no affect on the poly-
nomial degree. A protocol for this is provided in the following.

Protocol 2.5 Addition [Tjell, 2018, p. 22]

Input: Let the parties hold Ja; faKt, Jb; fbKt and the degree be t < n.
Output: Jy; fyKt where y = a+b.

1: The parties compute

Jy; fyKt = Ja; faKt + Jb; fbKt . (2.37)

Note, that fy = fa + fb.

This concludes the necessary operations for polynomial evaluation in a finite field.
It shall be noted, that the protocols presented are only secure for passive adversar-
ies as corrupt parties can compromise the shares and thus manipulate the output.
According to [Tjell, 2018, section 2.4] different approaches to obtain active security
can be utilized as an addition to the presented protocols in this chapter. The focus
of the thesis must be delimited, thus it does not consider protection against active
adversaries as it has already been investigated within the SECURE project.

Shamir’s SSS and the use of additive polynomial evaluation is exemplified in the
following to improve the reader’s understanding of the concepts.

11 of 61

Chapter 2. Preliminaries

2.2.4 Example
Three parties P1, P2 and P3 are voting approve or not approve to a decision equival-
ent to 1 or 0, respectively. If the sum is greater than half the number of parties, the
decision is approved. As there are three parties there must be at least two parties
voting approve for the decision to be approved. In this example P1 and P2 vote
approve and P3 votes not approve.
Using secure MPComp and Shamir’s SSS the parties P1 and P2 will not know that
P3 voted not approve, hence keeping the vote anonymous.

Shamir’s SSS computes shares based on Lagrange polynomials of degree t. Summing
these polynomials equals a new polynomial of the same degree t.

In this example the polynomial degree is t = 2 as t < n.
The polynomials can for instance be:

f1(x) = 1− 1.5 x+ 0.5 x2 , (2.38)
f2(x) = 1− 3 x+ x2 , (2.39)
f3(x) = 0 + 1.5 x− 0.5 x2 . (2.40)

Note, that f(x) = f1(x) + f2(x) + f3(x) and that f(0) = 2 is the secret.
The coefficients in Equation 2.38-2.40 are random uniformly distributed except from
the secrets. It is defined that the polynomials must go through the parties’ secrets
being either 1 or 0 according to their voting. The three polynomials, Equation 2.38-
2.40, are plotted in Figure 2.5.

Figure 2.5: Equation 2.38-2.40 plotted as an example to illustrate how t + 1 shares are necessary
to reconstruct the secret s ∈ Fp. Note, that the dotted polynomial, f ′

1(x), is an example of how
only t corrupt parties can mistakenly conclude a false answer from P1.

12 of 61

Chapter 2. Preliminaries

Each party privately distributes one share to each of the other parties, such that:
P1 holds the shares f1(1), f2(1) and f3(1) allowing it to compute f(1),
P2 holds the shares f1(2), f2(2) and f3(2) allowing it to compute f(2),
P3 holds the shares f1(3), f2(3) and f3(3) allowing it to compute f(3).

This yields:
f(1) = f1(1) + f2(1) + f3(1) = 0 , (2.41)
f(2) = f1(2) + f2(2) + f3(2) = 0 , (2.42)
f(3) = f1(3) + f2(3) + f3(3) = 2 . (2.43)

Note, that it is necessary to have t+ 1 shares to be able to reconstruct the secret. If
less than t+ 1 parties collude, for example P2 and P3 sharing their information, the
vote of P1 cannot be disclosed. This is due to the existence of various second order
polynomials that satisfy both the shares of P2 and P3 and moreover either f(1) = 0
or f(1) = 1. This prevents t or less corrupt parties to disclose the vote of P1. This
is illustrated in Figure 2.5 by f ′1(x) that is a polynomial, which satisfies the shares
of P2 and P3, but with an incorrect answer of P1’s vote.

Based on Equation 2.41-2.43 the polynomial that reconstructs the secret can be
determined using Lagrange interpolation, see Equation 2.1 and Equation 2.2, as
follows:

0 · x− 2
1− 2 ·

x− 3
1− 3 + 0 · x− 1

2− 1 ·
x− 3
2− 3 + 2 · x− 1

3− 1 ·
x− 2
3− 2 = 2− 3x+ x2 (2.44)

The result of the Lagrange interpolation must equal the polynomial equivalent to
the sum of the parties’ individual polynomials, Equation 2.38-2.40, as:

f(x) = f1(x) + f2(x) + f3(x) = 2− 3x+ x2 . (2.45)

It can be seen that the Lagrange interpolation in Equation 2.44 indeed yields the
same polynomial as the summed polynomial shares, see Equation 2.45.

From the reconstructed polynomial in either Equation 2.44 or Equation 2.45 it
is clear that the result of the vote is f(0) = 2, meaning the decision is approved.
[SimplyScience, 2018]

Based on the preliminary theory on multiparty computation and secret sharing it is
possible to specify the focus of the thesis.

2.3 Focus of the Thesis
The use of the existing protocols within MPComp and secret sharing schemes cannot
fulfil the demands of a solution for an autonomous public transportation system
as there are too many parties (vehicles) to handle. To limit the number of parties

13 of 61

Chapter 2. Preliminaries

within secure MPComp each vehicle must split its data into a limited number of
shares and distribute each share to a cloud server. It decreases the communication
significantly as MPComp and secret sharing usually require the vehicle to distribute
its shares to n − 1 parties, where n for autonomous public transportation will be
tens of thousands of vehicles.
Each cloud server will instead receive one share from each vehicle. The shares in-
dividually reveal nothing about a vehicles’ private data, thus the cloud servers do
not obtain any valued information. This is vital in order to preserve privacy and
moreover the security of the autonomous public transportation system.

This work investigates how control can be securely computed in the cloud using
multiparty computation.
The constellation of parties is delimited to a single vehicle, hereafter referred to as
the data owner, and three cloud servers. The constellation is illustrated in Figure 2.6.

Phonest

P1

P2

P3P...

Pn

Server 1 Server 2 Server 3

Figure 2.6: Three cloud servers and one data owner, being the autonomous vehicle. The dotted
lines between the parties represent secure communication channels.

The constellation of parties can be expanded to include multiple vehicles, if the
thesis determines an attainable approach for secure control computations in the
cloud using MPComp.

The investigated control problem is described in the following chapter.

14 of 61

Chapter 3. Control Problem

3 | Control Problem

Autonomous public transportation is a non-trivial control challenge even without
the considerations of privacy. The thesis investigates how secure control can be fa-
cilitated in the cloud using MPComp. The control strategy itself is not the primary
focus of the research, thus different control strategies can be examined.

It is chosen to investigate how Model Predictive Control (MPControl) can be com-
puted securely as it is a widely used control strategy that handles constrained mul-
tivariable control problems naturally [Maciejowski, 2000, p. 1].
Two MPControl cases are considered to establish the potentials within secure
MPComp. The presented control theory serves the purpose of demonstrating how
the two MPControl cases can be expressed in a form that can be securely solved using
MPComp. Control dynamics and details in general will therefore not be considered
in depth.

Note, that the predefined bold type notation of vectors and matrices is neglected in
this chapter. The chapter presents many lengthy equations of vectors and matrices
that will seem overwhelming, if they are to respect the general notation.

3.1 Model Predictive Control
MPControl optimizes a cost function V (k) over a prediction horizon Hp that yields
a sequence of predicted optimal control inputs û(k), ... , û(k + i). Only the first
sample of the predicted optimal control inputs is applied. A sample time later the
procedure is repeated. This is known as receding horizon [Maciejowski, 2000, p.
7-9]. Figure 3.1 illustrates the principles of this.

Figure 3.1: Receding horizon principles illustrated for three time samples, k, k + 1 and k + i.

15 of 61

Chapter 3. Control Problem

As the thesis is limited in resources, the research strategy is to investigate the
simplest cases as a basis for future work. Further research must be conducted as a
continuation of this work before secure control can be realised in real life.

An unconstrained and a constrained MPControl problem, both with all states meas-
ured, will pose as the control problems of interest. In systems, where not all states
are measured or great amount of noise is present, an observer can advantageously
be implemented. Regarding the derivations to come the measured state vector can
simply be replaced by the estimated state vector if an observer is implemented.

Firstly the unconstrained case is presented.

3.2 Unconstrained MPControl

This section is based on [Maciejowski, 2000, p. 74-79].

Many systems constitute Multiple Input Multiple Output(MIMO) systems that con-
veniently can be formulated on state space form, as:

x(k + 1) = A x(k) +B u(k) , (3.1)
y(k) = Cy x(k) , (3.2)
z(k) = Cz x(k) , (3.3)

where:
A is the state matrix,

B is the system input matrix,

C is the system output matrix,

x is the system state vector,

u is the system input vector,

y is the measured output vector,

z are the controlled output vector.

The cost function in MPControl is a quadratic function that includes weight matrices
to penalize signals to comply with desired performance dynamics. Quadratic func-
tions are often expressed as quadratic forms where xTQx is compactly represented
as ||x||2Q. Note that x must be a vector and Q must be a symmetric matrix.

16 of 61

Chapter 3. Control Problem

The cost function is defined as:

V (k) =
Hp−1∑
i=Hw

∥∥∥∥ẑ(k + i|k)− r(k + i|k)
∥∥∥∥2

Q(i)
+

Hu−1∑
i=0

∥∥∥∥∆û(k + i|k)
∥∥∥∥2

R(i)
, (3.4)

where:
r is the reference,

Hp is the prediction horizon,

Hw is the window parameter,

Hu is the control horizon,

Q(i) is the positive semi definite output penalty matrix,

R(i) is the positive semi definite input penalty matrix.

Note, that ∆û is the change between the predicted future input û(k + i|k) and the
current input u(k), defined as:

∆û(k + i|k) = û(k + i|k)− u(k) . (3.5)

The weighting matrices Q(i) and R(i) penalize the states and the change in control
inputs, respectively, according to a desired performance. The sizes of the horizons
Hp, Hu and Hw and the weighting matrices Q(i) and R(i) are considered tuning
parameters. Choosing the sizes of the horizons must be done, such that:

Hp > Hu,

Hu ≥ slowest system dynamics,
Hw ≥ 1.

Equation 3.4 can be reformulated such that U and Z are expressed in terms of ∆U :

V (k) = ||Z(k)− T (k)||2Q + ||∆U(k)||2R , (3.6)

where:

Z(k) =


ẑ(k +Hw|k)

...

ẑ(k +Hp|k)

 T (k) =


r̂(k +Hw|k)

...

r̂(k +Hp|k)

 ∆U(k) =


∆û(k|k)

...

∆û(k +Hu − 1|k)



Q =



Q(Hw) 0 . . . 0

0 Q(Hw + 1) . . . 0
...

0 0 . . . Q(Hp)


R =



R(0) 0 . . . 0

0 R(1) . . . 0
...

0 0 . . . R(Hu − 1)


17 of 61

Chapter 3. Control Problem

The controlled output Z(k) can be expressed as:

Z(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) , (3.7)

where the matrices Ψ, Υ and Θ, which are based on the system matrices A, B and
C, are suitable matrices according to [Maciejowski, 2000, p. 75]. Note, that this
work will not dwell in the details of these matrices, as the focus of the thesis is to
determine a final form of the control problem for secure cloud computations.

The tracking error is defined as:

E(k) = T (k)−Ψx(k)−Υu(k − 1) . (3.8)

Based on Equation 3.7 and Equation 3.8 the cost function in Equation 3.6 can be
rewritten as follows:

V (k) = ||Θ∆U(k)− E(k)||2Q + ||∆U(k)||2R (3.9)
= (∆U(k)TΘT − E(k)T) · Q(Θ∆U(k)− E(k)) + ∆U(k)TR∆U(k) (3.10)
= E(k)TQE(k)− 2∆U(k)TΘTQE(k) + ∆U(k)T (ΘTQΘ +R)∆U(k) . (3.11)

Note, that the format of Equation 3.11 corresponds to:

const−∆U(k)TG(k) + ∆U(k)TH∆U(k) , (3.12)

where:

G(k) = 2ΘTQE(k) , H = ΘTQΘ +R .

The optimal control input is found by taking the gradient of the cost function in
Equation 3.12, which yields:

∇∆U(k)V (k) = ∂V (k)
∂∆U(k) = −G(k) + 2H∆U(k) , (3.13)

∆Uopt = 1
2H

−1G(k) . (3.14)

Note, that the optimal solution is not guaranteed to be a global optimal. It is
therefore necessary to take the second derivative with respect to ∆U(k), known as
the Hessian. The solution is a global minimum when the Hessian is positive-definite.
The Hessian is determined as:

H = ∂2V

∂∆U(k)2 = 2H = 2(ΘTQΘ +R) . (3.15)

18 of 61

Chapter 3. Control Problem

The matrix H may be ill-conditioned as Θ often is, thus computing the inverse in
Equation 3.14 must be avoided. A suitable method is least-squares which requires
the square-root matrices of Q and R, such that:

STQSQ = Q , (3.16)
STRSR = R , (3.17)

where:
SQ is the square-root matrix of Q,

SR is the square-root matrix of R.

The method of determining SQ and SR depends on the situation of the matrices. If
Q and/or R are:

• Diagonal matrices: take the square root of each entry.

• Positive-definite: use the Cholesky algorithm.

• Semi-definite: use Singular Value Decomposition (SVD).

According to [Maciejowski, 2000, p. 77], let

M(k) :=

SQΘ∆U(k)− E(k)

SR∆U(k)

 . (3.18)

It is claimed, that:

V (k) = ||M(k)||2 . (3.19)

The correctness of Equation 3.19 is demonstrated by the following derivations:∣∣∣∣∣∣
∣∣∣∣∣∣
SQ(Θ∆U(k)− E(k))

SR∆U(k)


∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
SQ(Z(k)− T (k))

SR∆U(k)


∣∣∣∣∣∣
∣∣∣∣∣∣
2

= (Z(k)− T (k))TSTQSQ(Z(k)− T (k)) + ∆U(k)TSTRSR∆U(k)
= ||Z(k)− T (k)||2Q + ||∆U(k)||2R
= V (k) . (3.20)

Taking the square, see Equation 3.20, yields a non-negative cost function, thus its
minimum must be zero. The least squares solution that minimizes the cost function
V (k) can therefore be written as:SQ(Θ∆U(k)− E(k))

SR∆U(k)

 = 0 . (3.21)

19 of 61

Chapter 3. Control Problem

Equation 3.21 can be rewritten, as:SQΘ

SR

∆U(k) =

SQE(k)

0

 . (3.22)

Note, that Equation 3.22 has the form Ax = b and can be solved as a linear system.
The solution is the predicted optimal control input ∆U(k). It is desired to compute
the solution securely, hence standard operations cannot be utilized. Considerations
on how to obtain a secure solution is presented in chapter 4.

3.3 Constrained MPControl

MPControl with constraints is a more realistic control problem as the constraints
serves the purpose of attaining a satisfying dynamic performance of a system.
It is desirable to operate close to the constraints to optimize performance, however,
with a margin to allow unexpected disturbances to be handled. Constraints on
actuator slew rate, actuator range and on the controlled variable are expressed in
Equation 3.23, 3.24 and 3.25, respectively.

E

∆U(k)

1

 ≤ 0 where ∆U(k) =
[
∆û(k|k)T ...∆û(k +Hu − 1|k)T

]T
, (3.23)

F

U(k)

1

 ≤ 0 where U(k) =
[
û(k|k)T ...û(k +Hu − 1|k)T

]T
, (3.24)

G

Z(k)

1

 ≤ 0 where Z(k) =
[
ẑ(k +Hw|k)T ...ẑ(k +Hp|k)T

]T
. (3.25)

Similar to the cost function that was reformulated in the previous section the con-
straints must also be reformulated in terms of ∆U . The reader is referred to [Ma-
ciejowski, 2000, p. 81-83] for the derivations. The resulting constraints are the
following: 

F

ΓΘ

W

∆U(k) ≤


−F1u(k − 1)− f

−Γ(Ψx(k) + Υu(k − 1))− g

w

 . (3.26)

The constraints in Equation 3.26 are linear inequality constraints to the quadratic
minimization problem:

min
∆U(k)

V (k) = −∆U(k)TG + ∆U(k)TH∆U(k) , (3.27)

which constitutes a convex optimization problem.

20 of 61

Chapter 3. Control Problem

Solving constrained MPControl problems is most often done using software solvers
such as Yalmip or the CVX toolbox in Matlab. It is not feasible to utilize these
solvers in a secure way, hence solving the optimization problem must be done dif-
ferently.

The constrained MPControl optimization problem can be formulated as a classic
Quadratic Programming (QP) problem according to [Maciejowski, 2000, p. 84-86].

A standard QP problem is given as:

min
θ

f(θ) = 1
2θ

TΨ θ + ψT θ , (3.28)

s.t:
g(θ) = Ωaθ − ωa . (3.29)

Assuming that the constraints are active constraints and hence equality constraints,
the optimization problem can be solved using Lagrange multipliers.

The optimization problem then becomes:

min
θ,λ

L(θ, λ) , (3.30)

where:
L(θ, λ) = f(θ) + λ(g(θ))

= 1
2θ

TΨθ + ψT θ + λ(Ωaθ − ωa) .

The partial derivatives are:

∇θL(θ, λ) = Ψθ + ψ + ΩT
a λ , (3.31)

∇λL(θ, λ) = Ωaθ − ωa . (3.32)

Equation 3.31 and 3.32 can be put on matrix form:Ψ ΩT
a

Ωa 0


θ
λ

 =

−ψ
ωa

 . (3.33)

It is seen that Equation 3.33 is a linear system similarly to the unconstrained case
thus solving either case securely can be obtained by the same approach. Note, that
the set of active constraints will change in practice thus switching between multiple
linear controllers must be utilized [Maciejowski, 2000, p. 86-88].

The focus of the thesis is delimited to investigate how control inputs can be com-
puted securely thus further details on active constrained MPControl will not be given.

This chapter has presented how unconstrained and equality constrained MPControl
problems can be expressed as linear systems. Considerations on how to solve linear
systems securely are presented in the following chapter.

21 of 61

Chapter 3. Control Problem

22 of 61

Chapter 4. Secure Solution

4 | Secure Solution

Chapter 3 concludes that both unconstrained and equality constrained MPControl
problems can be formulated as linear systems. Determining a solution to such
systems must be done securely using MPComp. It is important to consider what
information within the control algorithms that must be kept private. Different
levels of privacy can be chosen depending on the content of the data being handled.
The levels of privacy can be:

High: private plant dynamics, private states, private control inputs.

Medium: private states, private control inputs.

Low: private control inputs.

The level of privacy chosen to study is the maximum level where no information of
the system nor its control actions are disclosed.

This is not a trivial task, as a number of parties each hold data that must be kept
private, while at the same time collaborating to compute shares of the solution.
Note, that it is only the autonomous vehicle being the data owner, that must learn
the result of the secure computations. How this can be achieved is presented in this
chapter.

This chapter describes the linear system of the unconstrained case. First JAK, here-
after referred to as the input matrix, and JbK, hereafter referred to as the observation
vector, are determined securely. Afterwards a generic approach for solving a linear
system is presented. The method is applicable for both the unconstrained and the
equality constrained case.

4.1 Secure Unconstrained Case
Recap, that the optimal control input can be formulated on the standard form
A x = b, see Equation 3.22 in chapter 3, where:
A corresponds to SQΘ,

x corresponds to ∆U(k),

b corresponds to SRE(k).

The solution to the linear system is the control input ∆U(k) that must be kept
private according to the chosen level of privacy. The collaborating parties that
compute ∆U(k) are therefore not allowed to learn the result. To ensure this, the

23 of 61

Chapter 4. Secure Solution

parties must return their individual shares of the result to the data owner. The data
owner then reconstructs the private result and is the only one learning it.

The square-root matrices SQ and SR are formed based on the weighting matrices Q
and R, respectively. If the square-root matrices are not diagonal matrices either the
Cholesky algorithm or an SVD approach must be utilized. This is tricky to compute
securely. It is deemed acceptable to compute the square-root matrices openly as the
penalties on the states and control inputs do not reveal information of great value
in itself. Note, that this may not always be the case.

By having derived the square-root matrices openly, it is possible to securely de-
termine the input matrix A and the observation vector b.

The input matrix A is the product SQΘ, where Θ is part of the system dynamics
and must be kept private. For a matrix to be private all its entries must be private:

JAK =

Ja11K Ja12K

Ja21K Ja22K

 . (4.1)

The JAK matrix is obtained by securely computing SQJΘK using Beaver’s triplet
multiplication, see Protocol 2.4 in chapter 2.

Note, that the secure multiplication method can handle matrices if the triplets are
modified. The triplets must be matrices of similar dimensions as the matrices they
are multiplied by. The secure Beaver’s triplet multiplication method is modified as
follows:

JABK = DE + DJβK + JαKE + JγK , (4.2)

where JαK, JβK and JγK form a triplet of matrices. JAK, JBK, D and E are matrices
corresponding to the JaK, JbK, d and e variables in the Beaver’s triplet multiplica-
tion protocol. Equation 2.34-2.36 in chapter 2 demonstrate the correctness of the
Beaver’s triplet multiplication method. The derivations are true for matrix op-
erations thus matrix multiplication using Beaver’s triplets is valid. Note, that as
matrices do not commute the multiplication arrangement in Equation 4.2 is specific.
A two dimensional example is presented in Appendix B to demonstrate the method.

The b vector is the product SRE(k), where the tracking error E(k) = T (k) −
Ψx(k)−Υu(k − 1) must be computed securely as it depends on the private states,
the private the previous control inputs and the private system dynamics. The pro-
tocol for secure computation of the observation vector JbK is listed in Protocol 4.1.

24 of 61

Chapter 4. Secure Solution

Protocol 4.1 Solving JbK = SR · JE(k)K

Input: The states Jx(k)K, the previous control inputs Ju(k − 1)K, the system
references JT (k)K, the system dynamics JΥK, JΨK and the open square-matrix SR.
Output: The shares Jb1, ..., bnK of JbK.

1: JΨxprodK = JΨK · Jx(k)K
2: JΥuprod.K = JΥK · Ju(k − 1)K
3: JE(k)K = JT (k)K− JΨxprodK− JΥuprodK
4: JbK = SR · JE(k)K

In chapter 2 only secure operations for addition and multiplication were presented
as these can describe any polynomial. The subtraction in Protocol 4.1 line 3 remains
secure due to the following.
Let sa and sb be two secrets distributed among n parties, then:

JsaK = Jsa1, sa2, . . . , sanK , (4.3)
JsbK = Jsb1, sb2, . . . , sbnK , (4.4)

JsaK− JsbK = Jsa1 − sb1, sa2 − sb2, . . . , san − sbnK . (4.5)

The result of reconstructing the local subtractions of shares is equivalent to the
subtraction of the two secrets.

As the derivations of JAK and JbK have been determined, a solution to the lin-
ear system must be computed. This is non-trivial to do as it must be done securely.

A paper [Bouman and Vreede, 2018] on secure linear algebra suggests a method
for solving JAKJxK = JbK over a finite field in MPComp using Guassian elimination.
It is deemed suitable to solve the MPControl problems of the thesis and is introduced
in the following section.

4.2 Solving Linear Systems Securely
The objective is to solve JAK · JxK=JbK for JxK, where JAK ∈ Fm×np and JbK ∈ Fn×`p .
Gaussian elimination can be used to solve a linear system by shifting and reducing
the rows until it becomes row echelon form.

Row echelon form is defined as the resulting matrix from Gaussian elimination,
where zero-rows are placed last in the matrix.

25 of 61

Chapter 4. Secure Solution

Moreover the pivot of each row must be on the left hand side of the leading entry,
also known as the pivot of the row below it [Weisstein, 2018], as:

a1 0 0 0

0 a2 0 0

0 0 0 a3

 .

Note, that the leading entries can be any values as it is not reduced row echelon
form that otherwise requires the entries to be 1.

The protocol suggested in [Bouman and Vreede, 2018] can securely solve linear
systems without pivoting for both over- and underdetermined systems of unknown
rank. This is an important feature as it decreases the computational complexity
that otherwise occurs when solved using MPComp. The secure protocol is moreover
capable of solving for multiple JbK vectors [Bouman and Vreede, 2018]. This is how-
ever not pursued as it is simply an extension of the same principles.

A precondition to consider prior to utilizing the protocol suggested in [Bouman
and Vreede, 2018] is that the linear system must be solvable, which requires:

rank JAK = rank JAK | JbK . (4.6)

Moreover to solve a linear system by Gaussian elimination without pivoting, the
JAK matrix must have generic rank profile [Bouman and Vreede, 2018]. To increase
the probability of satisfying this precondition, Toeplitz matrices can advantageously
be used to modify the system such that JA′K = UJAKL and Jb′K = UJbK. A lemma
states that the probability that JA′K = UJAKL has generic rank profile is greater
than 1−µ(µ+1)/p where µ = min(m,n) and p is the cardinality of Fp [Bouman and
Vreede, 2018]. Note, that as the protocol does not require the rank to be known, µ
is an upper bound for the rank of JAK.

The Toeplitz matrices take form as follows:

U :=



1 u2 u3 . . . um

0 1 u2 . . . um−1

0 0 1

0 0 0 . . . u2

0 0 0 0 1


, L :=



1 0 0 0 0

`1 1 0 0 0

`3 `2 1 0 0
... 0

`n `n−1 . . . `2 1


. (4.7)

The Toeplitz matrices U and L are constructed such that the non-zero entries un and
`n, hereafter referred to as the Toeplitz entries, are random independent uniformly
distributed variables within the finite field Fp [Kaltofen and Saunders, 1991].

26 of 61

Chapter 4. Secure Solution

Generic rank profile is ensured if the leading principal minor of JA′K for all k ∈ [r]
are non-zero [Bouman and Vreede, 2018], where r is the rank of JA′K. The leading
principal minor is the determinant of a minor where n − k rows and columns have
been removed, as:

det JA′n−kK where JA′n−kK =


Ja′1,1K . . . Ja′1,n−kK

...

Ja′n−k,1K . . . Ja′n−k,n−kK

 .

To exemplify this the leading principal minors of a 3 × 3 matrix with rank r = 2
thus k = 1, 2 are presented.

For k = 1:

det JA′2K where JA′2K =

Ja′11K Ja′12K

Ja′21K Ja′22K

 .
For k = 2:

det JA′1K where JA′1K = Ja′11K .

If non of the leading principal minors are zero the precondition is satisfied.

Before utilizing the protocol suggested in [Bouman and Vreede, 2018] securely, it
is computed openly in Matlab to verify its correctness. Open computations are
defined by not using MPComp hence no privacy is preserved.

The protocol has proven to yield the correct output when computed openly and
is thus verified. It will be utilized to securely solve private linear systems within
the thesis. The secure protocol is seen in Protocol 4.2 on the following page and is
hereafter referred to as the secure GE protocol.

27 of 61

Chapter 4. Secure Solution

Protocol 4.2 Secure GE protocol [Bouman and Vreede, 2018]

Input: JAK ∈ Fm×np , JbK ∈ Fn×`p , Toeplitz matrices U, L ∈ Fm×np and
JhK = J1K, JtK = J1K.
Output: The shares Jx1, ..., xnK of JxK ∈ Fn×`p .

1: JCK =

Iµ×mUJAKL Iµ×mUJbK

[In] 0n×`

 where µ = min(m,n)

2: for k in range (0, µ):
3: JrkK= (Jck,kK

?
6= 0)

4: Jcµ+k,kK = JhK
5: JfkK = JhK
6: JtK = JtK · JhK
7: JhK = JhK · (Jck,kK + 1− JrkK)

8: for i in range (0, µ+ k):
9: for j in range (k + 1, n+ `):
10: if i 6= k ∧ (i ≤ µ ∨ j ≤ n):

11: Jci,jK =
(((

(Jck,kK + 1− JrkK) Jck,jK
)))
·

 Jci,jK

−Jci,kK



12:

 JxK
 = JCK where JxK ∈ Fn×`p

13: JgK = (JtK · JhK)−1

14: JxK = JgK · JtK L In×µdiag(JfK) JxK

15: return JxK

Note, that the protocol is presented with zero based indexing and inclusive-exclusive
range syntax.
The inputs to the protocol are the private JAK and JbK, two variables JhK and JtK
and lastly the open Toeplitz matrices U and L.

The secure GE protocol must be simulated with multiple threads to test its util-
ity before implementing it on a real network of multiple servers. The simulation
implementation of the secure GE protocol is described in the following chapter.

28 of 61

Chapter 5. Simulation

5 | Simulation

This chapter describes in detail the multi thread simulation implementation of
the most significant computations of the secure GE protocol, see Protocol 4.2 in
chapter 4.

To verify the simulation implementation each secure computation is compared to
the corresponding open Matlab computation, which has previously proved to yield
correct results, see chapter 4. To be able to compare the result of each secure com-
putation with its corresponding open computation in Matlab, it is necessary to
broadcast and reconstruct the result of each computation from the secure GE pro-
tocol. This is a preventive measure as the simulation invokes multiple sub protocols
in multiple threads simultaneously that must sync in order to achieve correct shares.

The multi thread simulation of the secure GE protocol is implemented as Python3
programming. The virtual setup is one data owner and three cloud servers. The
simulation implementation is limited to handle square input matrices of order 2.
Note, that the simulation implementation has been successfully implemented and
the code can be accessed on: https://github.com/avtl/thesis/simulation. The most
interesting computations within the secure GE protocol in regards to MPComp is
discussed in detail as follows.

5.1 Secure Equality Test

Secure GE protocol, line 3: JrkK= (Jck,kK
?
6= 0)

The protocol invokes equality testing. The paper [Bouman and Vreede, 2018] that
suggests the secure GE protocol refers to the paper [Nishide and Ohta, 2007] for
secure equality testing. This is, however, a rather complex method. Considering
the context that the equality testing must be used within, it can be justified to
implement a simpler method. It is essential not to reveal the true value of the entry
Jck,kK as it is based on the private input matrix JAK and the open Toeplitz matrices,
see line 1 in Protocol 4.2. The result of the equality test can be argued to have
very little value, thus this information can be disclosed without compromising the
privacy of the private inputs. Note, that the information revealed is the equality
test results of the 1, . . . , µ diagonal entries of JCK.

A method for semi-secure equality testing is implemented by having the data owner
distribute shares of a secret positive random variable JdK. If the entry Jck,kK is dif-
ferent from zero, multiplying it by a secret positive random variable will not affect
the result of the equality test. The product of Jck,kK · JdK is then broadcast and
reconstructed. If the equality is true it returns 1 and 0 otherwise.

29 of 61

Chapter 5. Simulation

The result of the equality test is split into shares and distributed to the cloud
servers. This is superfluous as the result is reconstructed based on broadcast values.
It is, however, implemented this way as it mimics an ideal implementation, though
it is for now disclosed information.

5.2 Subtracting Shares from an Open Value
Secure GE protocol, line 7: JhK = JhK · (Jck,kK + 1− JrkK)
First consider the operations within the parentheses. The boolean array rk stores
the result from the equality test in line 3. Note, that it is not private due to a
semi-secure equality test. If the entry Jck,kK is different from zero, rk is one. When
subtracted from one, no contribution is added to the entry Jck,kK. However, if Jck,kK
is zero, the equality test in line 3 returns false and rk will instead be zero. This
ensures that whenever the entry Jck,kK is zero, the JhK variable will not be multiplied
by zero. Note, that rk can be subtracted from 1 though 1 is not split into shares,
based on the assertion:

1 ?= J1K ⇒ True . (5.1)

The coefficients of the shares’ polynomial are chosen randomly within a finite field
Fp. Recall that a share polynomial is defined as:

f(x) = a+ a1x+ . . .+ atx
t , (5.2)

where the secret s is the polynomial evaluated at zero, s = f(0) = a. In principle,
all coefficients can be zero except a that has to be the secret, as:

f(x) = 1 + 0 · x+ . . .+ 0 · xt . (5.3)

Evaluating Equation 5.3 to different values does not change the function output that
will always be 1.
An example of three shares illustrates this:

f(1) = 1 , (5.4)
f(2) = 1 , (5.5)
f(3) = 1 . (5.6)

Reconstructing the secret of Equation 5.3 based on Equation 5.4-5.6 is redundant, as
it is easily seen that the secret is 1 as s = f(0) = a = 1. It is however reconstructed
by Lagrange interpolation using Equation 2.7 from chapter 2, to demonstrate the
correctness of the assertion.

−2
1− 2 ·

−3
1− 3 · 1 + −1

2− 1 ·
−3

2− 3 · 1 + −1
3− 1 ·

−2
3− 2 · 1

= 3− 3 + 1 = 1 . (5.7)

30 of 61

Chapter 5. Simulation

From Equation 5.7 it can be seen that treating J1K simply as shares of all 1 is in fact
accurate.

Ultimately the two shares within the parentheses can be summed locally by each
party without distorting the result of the later reconstruction, as presented:

JsaK = Jsa1, sa2, . . . , sanK , (5.8)
JsbK = Jsb1, sb2, . . . , sbnK , (5.9)

JsaK + JsbK = Jsa1 + sb1, sa2 + sb2, . . . , san + sbnK , (5.10)

where sa and sb are two secrets distributed among n parties.
When the content within the parentheses is derived it must be multiplied with JhK.
Secure multiplication is computed using the Beaver’s triplet multiplication protocol,
see Protocol 2.4 in chapter 2.

5.3 Secure Inversion
Secure GE protocol, line 13: JgK = (JtK · JhK)−1

Another computation that is not trivial to implement is the inversion of the product
of two shares that are multiplied using the Beaver’s triplet multiplication protocol.
Note, that the inverse of each share does not comply with the inverse of the secret
when reconstructed:

JsK−1 6= Js−1
1 , s−1

2 , . . . , s−1
n K . (5.11)

Within the SECURE research project a method for secure inversion has been in-
vestigated and implemented by [Tjell, 2018]. It inverts a private variable by integer
division based on bit sequences. Integer division means that two integers are divided
and the result is rounded to the nearest integer. Before transforming the result into
an integer it must be scaled in order to limit the precision loss. As the shares are
private, it is impossible to ensure appropriate scaling. This is defined as blind scal-
ing. As the method is vulnerable, already known to the SECURE project and based
on bit sequences that have not been investigated in the thesis, this method is not
utilized for secure inversion.

The paper [Bouman and Vreede, 2018] that suggests the secure GE protocol refers
to the paper [Bar-Ilan and Beaver, 1989] for a secure inversion method. The inver-
sion method presented in [Bar-Ilan and Beaver, 1989] securely multiplies the secret,
which must be inverted, with a private random variable different from zero and
broadcasts the result. It is afterwards openly inverted in the field of rational num-
bers Q. The secret is not revealed as the random variable is private thus its effect
on the value that is broadcast is unknown. The inversion method is seen in Protocol
5.1. The inputs are the secret JsK, in this case equivalent to the private product of
JtK · JhK, and the private random variable JzK.

31 of 61

Chapter 5. Simulation

Protocol 5.1 Secure inversion protocol

Input: A secret Js; fsKt, a random variable Jz; fzKt and a scaling factor cs.
Output: The inverted scaled secret Js−1; fsKt · cs = Js−1

c ; fscKt.

1: Party Pi computes

Jwi; fwiKt = Jsi; fsiKt · Jzi; fziKt , (5.12)

using the Beaver’s triplet multiplication protocol.
2: Party Pi broadcasts Jwi; fwiKt .
3: Mapping

f : Fp → Q ,

f(Jwi; fwiKt) = w , (5.13)

by reconstructing w from the broadcast shares.
4: Compute w−1 openly.
5: Scale and round to nearest integer as: k = [w−1 · cs].
6: Mapping

g : Q→ Fp ,
g(k) = (ki; fki)t , (5.14)

where (ki; fki)t is the ith share of k.
Note, that as k is not secret parentheses are used instead of brackets.

7: Each party holds (ki; fki)t.
8: Party Pi computes

Js−1
si ; fsiKt = (ki; fki)t ∗ Jzi; fziKt , (5.15)

using the Beaver’s triplet multiplication protocol.

The following derivations show that multiplying the random variable JzK with the
inverted, scaled and rounded variable k yields the inverted scaled secret Js−1

s K.

32 of 61

Chapter 5. Simulation

Note that the notation is simplified, such that Equation 5.15 is equivalent to Equa-
tion 5.16.

Js−1
s K = k ∗ JzK (5.16)

= [cs · w−1] ∗ JzK (5.17)
= cs · (JsK ∗ JzK)−1 ∗ JzK (5.18)
= cs · Js−1K ∗ Jz−1K ∗ JzK (5.19)
= cs · Js−1K = Js−1

s K (5.20)

The inversion variable w maps from the finite field Fp to the field of rational numbers
Q and to the finite field Fp again, presented as follows:

Fp −→ Q −→ Q −→ Fp
JwK −→ w −→ [w−1

s] −→ k (5.21)

From Equation 5.21 it is seen that the private variable JwK is mapped from Fp by
broadcasting and reconstruction, such that it becomes an open value within Q. It is
then inverted by division and scaled to minimize precision loss before it is rounded
to nearest integer. The inverted, scaled and rounded variable k = [w−1

s] is then
mapped from Q→ Fp where it is used within the secure GE protocol.

To ensure that the mappings are injective, the following conditions must be sat-
isfied:

w ≤ p− 1 : Fp → Q , (5.22)
[w−1

s] ≤ p− 1 : Q→ Fp , (5.23)

where p is the cardinality prime of the finite field Fp. If the conditions are not
satisfied wrap-around occurs. As MPComp works within the finite field Fp, wrap-
around is defined as when a value is larger than p− 1.
An example, where wrap-around causes a mapping to be not injective, is presented
as follows:

f : Q→ F5 ,

f(6) = 1 , (5.24)
g : F5 → Q ,

f(1) = 1 . (5.25)

The mapping in Equation 5.24 is not injective, as the mapping in Equation 5.25
does not equal 6.

The product w of the random variable JzK and the secret JsK must satisfy the con-
dition for injective mapping Fp → Q, see Equation 5.22, as it shall be inverted

33 of 61

Chapter 5. Simulation

by division in the field of rational numbers Q. As the data owner that distributes
shares of its private data knows JsK, it can determine an upper bound for the range,
which the random uniformly distributed JzK variable is generated within, such that
w ≤ p− 1. This will ensure, that the open value w does not wrap-around and that
the mapping Fp → Q will be injective.

To satisfy the condition for injective mapping Q→ Fp, see Equation 5.23, the scaling
factor cs must be smaller than p− 1 as any inversion will yield a value less than 1,
hence the scaled outcome cannot exceed p− 1. The precision of the scaled inverted
variable [w−1

s] is compromised and therefore forwards precision loss to the inverted
scaled secret Js−1

s K. It is, however, preferable in contrast to a faulty inversion result
due to wrap-around when mapping to the finite field Fp.

Protocol 5.1 is an insufficient inversion method as it operates within multiple fields,
where a small scaling factor is required to ensure injective mapping. The fixed scal-
ing introduces precision loss and Protocol 5.1 thus fails to provide exact inverting.

As the inversion method utilized in [Tjell, 2018] was found to be vulnerable due
to blind scaling and Protocol 5.1 suffers precision loss, it is preferable to utilize
another inversion method. It is, however, left for future work to research a more
precise inversion method within finite field arithmetic as the thesis investigates the
secure GE protocol in a control context. It is therefore chosen to invoke Protocol
5.1 for secure inversion despite the precision loss. The precision loss ultimately af-
fects the output of the secure GE protocol. This will be considered and discussed
in chapter 7.

This completes the description of the simulation implementation of the secure GE
protocol that solves linear systems securely.

The secure GE protocol and its subprotocols must be implemented on multiple
servers that constitute a real network. This is presented in the following chapter.

34 of 61

Chapter 6. Implementation

6 | Implementation

The secure GE protocol for solving linear systems securely must be implemented on
a network of multiple parties to prove its feasibility. Note, that the communication
channels between the parties are assumed to be secure based on appropriate encryp-
tion. Data encryption is a task of great complexity in itself, thus it is not realized in
the implementation as the focus of the thesis is secure MPComp in a control context.
The network setup is firstly described followed by a visual presentation of the im-
plemented network.

6.1 Network Setup
The implemented MPComp network consists of one data owner being the autonomous
vehicle and three cloud servers that must be fully connected. The data owner holds
an unsolved private linear system and must obtain the solution without any other
party learning it. The process is illustrated in Figure 6.1.

End

Data Owner Cloud Servers

Establish connect ion between all part ies

Create shares

Dist r ibute shares

Get shares

Comute secure
GE protocol

Transmit shares of
result

Reconst ruct result

Start

Figure 6.1: Conceptual diagram of the actions in relation to each other between the data owner
and the parrallel cloud servers.

First connection between all parties must be established. Then the data owner
distributes shares of its linear system to the cloud servers. It moreover distributes
shares of a random inversion variable and Beaver’s triplets for secure multiplications.

35 of 61

Chapter 6. Implementation

Note, that as this network only has one data owner to compute secure solutions for,
the data owner can generate and distribute Beaver’s triplets itself. In a real life
implementation with many autonomous vehicles, an individual server must generate
and distribute the Beaver’s triplets to the cloud servers, as the triplets are private.

When the cloud servers have received shares from the data owner they compute the
secure GE protocol and returns their share of the result to the data owner. The
data owner then reconstruct the secret that is the solution to the linear system.
Figure 6.1 illustrates how the different actions are arranged according to when they
occur between the data owner and the parallel cloud servers.

Each party in the network must be a computing device. The Raspberry Pi (RP)
single board computers are chosen to constitute the computing servers of the net-
work. The RPs each have a display interface to visualize the secure computational
process of solving linear systems between the parties.
Different from the multi thread simulations in chapter 5 the RP network must actual
communicate between one another in order to compute the outcome of the secure
GE protocol.

The implemented network is wired and fully connected using a switch, as illustrated
in Figure 6.2.

Switch

RP 0 RP 1

 RP 3 RP 2

Figure 6.2: Network of four Raspberry Pi computers with wired TCP communication using
Ethernet cables and a switch.

Note, that cloud computations are obviously based on wireless communication. The
purpose of the implementation is to prove the secure GE protocol’s feasibility in a
real network, thus wired communication is reasonable to utilize.

The communication chosen to be utilized is the connection oriented Transmission
Control Protocol (TCP). It is important that all transmitted data is received, as

36 of 61

Chapter 6. Implementation

MPComp relies on a majority of shares to compute correct outputs, which TCP guar-
antees [Tanenbaum and Wetherall, 2011, p. 47]. Note, that missing some shares are
not necessarily problematic, as the Shamir’s SSS only requires t + 1 shares to be
able to reconstruct a secret. This suggests that a connectionless protocol can be suc-
cessfully used to achieve correct MPComp results, even if some shares are lost in the
communication. A connectionless protocol is, however, not chosen as the amount of
missing shares, tolerable within Shamir’s SSS, is preserved to handle corrupt parties
rather than communication errors.

TCP is based on sending acknowledgements when data has been successfully re-
ceived. This introduces transit delays [Tanenbaum and Wetherall, 2011, p. 36] and
can become extensive for MPComp as the secure computations are many compared
to open computing. The computational cost of the secure GE protocol in relation
to open Gaussian elimination is presented and discussed in chapter 7.

The following section presents the network setup from a spectator’s perspective.

6.2 Setup Presentation
In order to visualize the interaction between the cloud servers and the data owner,
each party displays different operations while executing the secure GE protocol.

Figure 6.3 displays the data owner’s RP interface.

Figure 6.3: Depiction of the display of the RP that constitutes the data owner. The data owner
distributes shares to the cloud servers.

First a connection must be successfully established between all parties. The linear
system that must be securely solved is then printed such that the spectator can
cross-check the impending solution. According to chapter 4, preconditions must
be satisfied to ensure that the linear system is solvable and that the secure GE
protocol is applicable. In this case the preconditions are satisfied and it is stated
on the data owner’s display. The data owner can therefore proceed and thus creates
and distributes shares to the cloud servers.

37 of 61

Chapter 6. Implementation

Figure 6.4: Depiction of the display of one of the three RPs that constitutes a cloud server. The
cloud servers compute the secure GE protocol.

One of the three cloud servers’ RP display is depicted in Figure 6.4. First the
cloud server is identified. Then connection is established, similar to the data owner.
Each cloud then receives shares from the data owner, from which the cloud servers
compute the secure GE protocol. For the sake of providing insights to the spectator
the shares of the computed result are displayed. Note, that the shares are private
and must not be broadcast as anyone will then be able to reconstruct the private
result. The shares of the computed result are lastly send to the data owner.

Figure 6.5: Depiction of the display of the RP that constitutes the data owner. The data owner
reconstructs the result.

The data owner reconstructs the private result and displays it for the purpose of
allowing the spectator to cross-check the solution, see Figure 6.5.

The secure GE protocol has been successfully implemented in a network consist-
ing of one data owner and three cloud servers. The code can be accessed on:
https://github.com/avtl/thesis/RPnetwork.

As the simulation implementation and the RP network implementation of the se-
cure GE protocol have been described, the results are presented and discussed in
the following chapter.

38 of 61

Chapter 7. Results

7 | Results

This chapter presents the results of the secure GE protocol for solving linear systems
in order to solve unconstrained and equality constrained MPControl problems.
In chapter 5 it was concluded that the inversion method used within the secure
GE protocol, see Protocol 4.2, introduces precision loss. The output of the secure
GE protocol is consequently approximate solutions of linear systems. The preci-
sion loss and what causes it are firstly presented, followed by an evaluation of the
computational cost of secure computations in relation to real time control feasibility.

7.1 Precision
This section presents the results of multi thread simulations of the secure GE pro-
tocol. First a description of the variables that influence the precision is presen-
ted followed by simulations of one linear system with different simulation settings.
Based on the simulation results the security and applicability of secure GE protocol
is discussed. Two additional linear system are afterwards simulated to examine
the influence the linear system may have in relation to the secure GE protocol’s
applicability.

7.1.1 Influencing Variables
The leading principal minor of JA′K = UJAKL and the rank of JAK |JbK must satisfy
the preconditions of the secure GE protocol to ensure its applicability, see chapter 4.
The Toeplitz matrices U and L are generated with independent uniformly distrib-
uted random variables within the finite field Fp. The secure GE protocol performs
Gaussian elimination on the modified system of JA′K = UJAKL and Jb′K = UJbK as
it has a probability greater than 1 − µ(µ + 1)/p of satisfying the leading principal
minor precondition.

The precision loss in the secure GE protocol’s output is caused by an insufficient
inversion method, see Protocol 5.1, that is invoked before the system modification
in the secure GE protocol is revoked. This means that the contributions of the
Toeplitz matrices are not entirely revoked, thus the range of the random independent
uniformly distributed Toeplitz entries affects the output. It is anticipated that the
larger the entries are, the larger the precision loss will be, as the lack of revocation
will be more dominating due to the multiplication of larger entries. The insufficient
inversion method relies on a random variable, hereafter referred to as the inversion
variable, which also affects the output. The inversion variable is multiplied by the
private value that must be inverted. The product is scaled by a fixed value smaller
than p−1 to avoid wrap-around and faulty outputs. The scaling introduces precision
loss and as the scaling is the fixed, the larger the inversion variable is the larger the

39 of 61

Chapter 7. Results

precision loss will be.
The influence of both the Toeplitz matrices and the inversion variable are examined
in the following section.

7.1.2 One Linear System with Different Simulation Settings
One linear system is simulated with four different simulation settings to evaluate
the influence, that the ranges of the Toeplitz entries and the inversion variable have
on the precision.
Note, that all simulations are done using the cardinality prime p = 792606555396977.
All simulation settings are simulated 1000 times.

The linear system is:

JAK =

J2K J3K

J4K J9K

 , JbK =

 J6K

J15K

 , solution: JxK =

J1.5K

J1K

 . (7.1)

The Toeplitz entries and the inversion variable are initially generated as random
integers in the small range [1; 9] as listed in Table 7.1.

Computations Toeplitz entries Inversion variable

1000 [1; 9] [1; 9]

Table 7.1: Number of computations and the ranges that the Toeplitz entries and the inversion
variable are randomely generated within.

The percentage error deviations of the approximate solutions are determined as:

ei = Xi − xi
Xi

· 100 , (7.2)

where:
Xi is the true solution for i ∈ {1, 2}, see Equation 7.1,

xi is the approximate solution for i ∈ {1, 2}.

The distributions of the percentage error deviations e1 and e2 can be seen in Fig-
ure 7.1 and Figure 7.2, respectively. The figures illustrate the lower and upper
bounds that outline the interval that the secure GE protocol outcome with 95 %
probability will fall within.

40 of 61

Chapter 7. Results

Figure 7.1: Distribution of the percentage error deviation e1 based on the simulation setting
listed in Table 7.1.

Figure 7.2: Distribution of the percentage error deviation e2 based on the simulation setting
listed in Table 7.1.

41 of 61

Chapter 7. Results

First, notice how the distributions are almost identical. This is because the secure
GE protocol computes both solutions of the two dimensional linear system using
the same Toeplitz matrices and the same inversion variable, as it utilizes Gaussian
elimination.

The 95 % lower and upper bounds for the data sets are almost symmetric and
approximately ±0.005 %. This means that 5 % of the computed outcomes will de-
viate more than ±0.005 % of the true solution Xi.
The standard deviations are:

σ(e1) = 2.275 · 10−3 ,

σ(e2) = 2.275 · 10−3 .

As the distributions are almost identical the standard deviations are also approxim-
ately identical.
The level of tolerable precision loss depends on the control application the solutions
must be used within. The presented values are a relative measure used to gain know-
ledge of how the ranges of the Toeplitz entries and the inversion variable influence
the precision.
The precision loss of the presented results is very small as anticipated, as the Toep-
litz entries and the inversion variable have been generated randomly within the small
range [1; 9]. It is interesting to examine how larger ranges affect the precision.

First the range of the Toeplitz entries is increased to [1; 50] followed by increas-
ing the range of the random inversion variable to [1; 50] as seen in Table 7.2.

Setting Computations Toeplitz entries Inversion variable

a 1000 [1; 50] [1; 9]

b 1000 [1; 9] [1; 50]

Table 7.2: Setting ID, number of computations and the ranges that the Toeplitz entries and the
inversion variable are randomely generated within.

As the distributions for the initial simulation setting in Table 7.1 are almost identical,
see Figure 7.1 and Figure 7.2, it is chosen to only present the distribution of e1 for
each simulation setting. Note, that all distributions can be accessed on:
https://github.com/avtl/thesis/MATLAB.

The distributions of the two different simulation settings a and b are seen in Fig-
ure 7.3 and Figure 7.4, respectively.

42 of 61

Chapter 7. Results

Figure 7.3: Distribution of e1 based on simulation setting a from Table 7.2.

Figure 7.4: Distribution of e1 based on simulation setting b from Table 7.2.

43 of 61

Chapter 7. Results

The distribution of setting a in Figure 7.3 has a large percentage error deviation
compared to the distribution of setting b in Figure 7.4. The simulation setting a,
where the Toeplitz entries are random variables in the range [1;50], yields a large
precision loss. The 95 % of the samples lie within the range [-2.588 %; 2.675 %]
compared to the much smaller range [-0.034 %; 0.031 %] of simulation setting b.

The standard deviations are:

σ(ae1) =1.245 ,
σ(be1) =0.015 .

The standard deviations also affirm the dominant influence that the increased range
of the Toeplitz entries has on the precision. The standard deviation of setting a
is more than 80 times lager than the standard deviation of setting b. This is be-
cause both the Toeplitz matrices U and L contribute to the modified input matrix
JA′K = UJAKL. Their influence is therefore expected to be larger than the inversion
variable that is only once multiplied with a single variable.

How the ranges of the random variables relate to the secure GE protocol’s security
and applicability is considered in the following section.

7.1.3 Security and Applicability
It has been established that the ranges of the Toeplitz entries and the inversion
variable influence the precision of the secure GE protocol’s output. Increasing the
range of the random Toeplitz entries affects the precision loss immensely compared
to increasing the range of the inversion variable.
The precision loss occurs due to an insufficient inversion method that is invoked in
the secure GE protocol.

The range of the random inversion variable influences the level of security as the
inversion variable is multiplied by private information that is then broadcast. If the
interval is small it is more likely that over time tendencies can be intercepted and
private information may be disclosed.

The Toeplitz matrices are not secret, thus the range of the Toeplitz entries do
not influence the level of security. The Toeplitz matrices, however, are used to in-
crease the probability that the secure GE protocol is applicable and hence capable
of producing a solution. The probability is greater than 1 − µ(µ + 1)/p, according
to [Bouman and Vreede, 2018], if the Toeplitz entries are generated with random
independent uniformly distributed variables within the finite field with cardinality
prime p.
The previous section simulated the secure GE protocol using Toeplitz entries ran-
ging from [1; 9] and [1; 50] instead of [1; p− 1]. This should certainly decrease the
probability of satisfying the aforementioned precondition for the secure GE protocol.

44 of 61

Chapter 7. Results

The variable µ is the order of the square input matrix JAK, which is 2 in this case.
This suggests that variables [1; 6] must yield a fail precondition of JA′K. The linear
system in Equation 7.1 has been simulated 2000 times in total using the Toeplitz
entries range [1; 9]. According to the probability stated in [Bouman and Vreede,
2018], it is reasonable to expect approximately 2/3 of the simulations to fail. How-
ever, no simulation failed. Neither did any of the 1000 simulations using the [1; 50]
range for the Toeplitz entries. This indicates that the lower bounds are not tight.
It may, however, be the linear system that has favourable conditions, thus different
linear systems must be considered. This is done in a later section.

Until an adequate method for secure inversion is developed, it is not justifiable
to use Toeplitz entries generated with random variables from a large range due to
disruptive precision loss. It is interesting to examine if the [1; 9] range of the Toeplitz
entries will produce failed outputs when utilized with other linear systems. Before
investigate other linear systems, the system in Equation 7.1 is lastly simulated using
the ranges seen in Table 7.3, which constitute a compromise between precision and
security.

Setting Computations Toeplitz entries Inversion variable

c 1000 [1; 9] [1; 500]

Table 7.3: Number of computations and the ranges that the Toeplitz entries and inversion variable
are randomely generated within.

Figure 7.5: Distribution of e1 based on simulation setting c from Table 7.3.

45 of 61

Chapter 7. Results

The standard deviation of the distribution in Figure 7.5 is:

σ(ce1) = 0.121 .

It can be seen that 95 % of the data lie within [-0.284 %; 0.244 %] error deviation
of the true solution X1 and has a standard deviation of approximately 0.12. It is
moreover relevant to notice, that no simulation result is faulty despite the small
ranged Toeplitz entries.
The simulation setting c is with no further inquiry utilized to simulate different
linear systems.

7.1.4 Different Linear Systems
Two additional linear systems are considered to investigate the applicability of the
secure GE protocol using small ranged Toeplitz entries.

System 1 is given as:

JAK =

J5K J2K

J6K J3K

 , JbK =

 J2K

J12K

 , solution: JxK =

J−6K

J16K

 . (7.3)

System 2 is given as:

JAK =

 J2K J2K

J−3K J2K

 , JbK =

 J12K

J−3K

 , solution: JxK =

J3K

J3K

 . (7.4)

Note, that the systems have been chosen such that system 1’s solutions include a
negative value and that system 2’s input matrix and observation vector include neg-
ative values. This is done to ensure that the secure GE protocol is applicable for
linear systems independent on the existence of negative values without distinction
of where these entries occur in the linear systems.

The distributions of system 1 and system 2 with the final simulation setting c is
seen in Figure 7.6 and Figure 7.7, respectively.

46 of 61

Chapter 7. Results

Figure 7.6: Distribution of e1 of sytem 1 based on simulation setting c from Table 7.3.

Figure 7.7: Distribution of e1 of system 2 based on simulation setting c from Table 7.3.

47 of 61

Chapter 7. Results

The 95 % lower and upper bounds are:

System 1: [−0.022 %; 0.024 %] ,
System 2: [−0.017 %; 0.015 %] .

The standard deviations are:

System 1: σ(e1) = 10.215 · 10−3 ,

System 2: σ(e1) = 6.879 · 10−3 .

Based on the distributions and the standard deviations it can be seen that the small
ranged Toeplitz entries do not produce faulty outputs. It can be deduced that the
probability for successful application of the secure GE protocol is not a tight bound
as the probability has proven to be much greater than 1 − µ(µ + 1)/p. The paper
[Bouman and Vreede, 2018] states that the probability is greater than 1−µ(µ+1)/p,
which is certainly true, though it can be further restricted to present a more reliable
probability bound.

The secure GE protocol for solving linear systems of both positive and negative
values has demonstrated to be applicable.

The precision loss of the secure GE protocol and what causes it have been presented
and discussed. Now follows considerations on the computational cost of the secure
GE protocol.

7.2 Computational Cost
It is essential to consider the computational cost of the secure GE protocol to ad-
dress its feasibility within real time control applications. MPComp performs many
additional computations compared to open computing. Many computations within
the secure GE protocol require shares to be distributed between the collaborating
parties to preserve privacy.

It is chosen to compare the computation time of regular open Gaussian elimination
and the secure GE protocol.

7.2.1 Computation Time
Computation time is a relative measure as it depends on the specifications of the
machines that compute the open and secure results. Moreover simultaneous activ-
ities may influence the computational speed, as the processing power is distributed
among the running activities. It is therefore important that the computation times
are obtained by the same machines with no unnecessary activities running while tim-
ing the open and the secure computations. Comparing computation times provides a

48 of 61

Chapter 7. Results

reasonable indication of what the additional computational cost is for solving linear
systems securely.

The secure GE protocol is computed within the implemented RP network rather
than as a multiple thread simulation. The RP network includes communication
latency different from the simulation. Communication latency is vital to consider in
regards to the feasibility of MPComp in real time control.
To ensure comparability of the measured computation times, the open Gaussian
elimination must also be computed on the RPs.
All computations are done in Python, such that different programming languages,
and thus different kernels, do not influence the comparison differently. It is moreover
the same linear system, see Equation 7.1, that the open and secure Gaussian elim-
ination must solve to ensure a fair comparison.

Note, that the secure GE protocol utilizes Beaver’s triplets for secure multiplica-
tion. Generating these and distributing them among the collaborating parties are
done in a preprocessing phase. The preprocessing phase can be executed when there
is no need for efficient MPComp e.g. when an autonomous vehicle is parked, thus it
is not included in the computation time of the secure GE protocol.

As computation time is influenced by simultaneous activities within the comput-
ing machine, all computations will be performed 10 times and the average will be
used for comparison.

The average computation times for open Gaussian elimination for the individual
RPs are:

RP 0, cloud server: 2.061 · 10−3 seconds

PR 1, cloud server: 2.071 · 10−3 seconds

RP 2, cloud server: 2.053 · 10−3 seconds

RP 3, autonomous vehicle: 2.227 · 10−3 seconds

The open Gaussian elimination computations are run on each RP as the computa-
tion time of the secure GE protocol depends on the computational speed of all four
RPs. If one RP is delaying the computation of the secure GE protocol it must be
considered in the comparison. The computation times of the four RPs are there-
fore averaged to most reliably represent the computation time for open Gaussian
elimination.

49 of 61

Chapter 7. Results

The average computation time of open Gaussian elimination for the four RPs is:

RPs average: 2.114 · 10−3 seconds

Timing the secure GE protocol requires the programming script for each party to
be started manually. The cloud servers are started first as the secure GE protocol
and the timing first start when the data owner is started.

The average computation time of the secure GE protocol is:

Secure GE protocol: 3.092 seconds

The ratio between the computation time of the open and the secure Gaussian elim-
ination is:

3.092 s
2.114 · 10−3 s ≈ 1463 (7.5)

This is immensely expensive, especially when considering the fact that the commu-
nication is wired and does not include delays caused by complex encryption, packet
loss and retransmissions. This will be the case in real life implementation and must
be expected to have even greater computational costs than what has been seen in
the wired RP network. Considerations on computational costs are presented in the
following.

7.2.2 Considerations on Computational Costs
It is not surprising that the computation time for solving linear systems using the
secure GE protocol is greater than by open Gaussian elimination. MPComp performs
many additional computations that depends on the distribution of shares between
parties.

The computation time ratio is, however, not satisfying seen from a real time control
perspective, as the control inputs will simply not be computed fast enough to obtain
any desired performance in most applications.
Computational efficiency has not been a focus in this thesis, however, the Beaver’s
triplet multiplication protocol with improved efficiency has been utilized.
Research in optimizing MPComp efficiency is a research topic in itself. The reader is
referred to [Polychroniadou, 2016] if one is interested in gaining knowledge within
this line of research.

Before real time control can be realized securely in the cloud, further research into
MPComp efficiency within a control context must be conducted.

This finalizes the presentation and discussion of the results. The thesis conclusion
is presented next.

50 of 61

Chapter 8. Conclusion

8 | Conclusion

The focus of this thesis has been to research how control can be securely computed
in the cloud. The unconstrained and equality constrained MPControl problems can
take form as linear systems that can be solved using Gaussian elimination. MPComp
using secret sharing was investigated to utilize secure Gaussian elimination as a
solution to the control problems of interest.
The secure GE protocol was simulated and the simulation results were considered
and discussed. Due to an insufficient inversion method, precision loss was introduced
and affected the solutions computed by the secure GE protocol.
The secure GE protocol was moreover successfully implemented on a network of four
RPs. The computation time for the implemented secure GE protocol was compared
with the average computation time of open Gaussian elimination of the RPs. The
computational cost for solving linear systems securely compared with open com-
putations was approximately 1463:1. This ratio is infeasible in a real time control
context, especially as it does not include all aspects of communication latency as
the RP network was wired.
It is therefore vital that efficiency of MPComp is considered and optimized before it
can be used to securely solve real time control problems.

The thesis constitutes initial research into the field of secure control computations
using MPComp. This field shows immense potential and should be investigated fur-
ther.

51 of 61

Chapter 8. Conclusion

52 of 61

Chapter 9. Future Work

9 | Future Work

This chapter presents perspectives for future research as a continuation of this work.

• In chapter 5 it was established that the implemented inversion method, which
the secure GE protocol invokes, is insufficient in providing exact inverting.
It operates within multiple fields where a small scaling factor is required to
ensure injective mapping. The fixed scaling introduces precision loss of the
inverted variable and the precision loss affects the output of the secure GE
protocol. Further research into secure inversion methods within finite field
arithmetic must be conducted in order to realise the full potential of the secure
GE protocol.

• The focus of the thesis was delimited to only consider the unconstrained and
equality constrained MPControl problems. They are both theoretical problems.
No systems can exist without constraints and equality constrained problems
are prone to be time variant, hence switching between a set of equality con-
strained controllers is necessary. Switching in secure MPComp must be in-
vestigated. It requires comparison which the SECURE project is currently
researching. Moreover the inequality constrained MPControl problem must be
solved securely. This is a non trivial extension of this work as it is currently
solved using software solvers in the industry. These methods are hard to con-
vert to secure MPComp protocols. If future research accomplishes to solve
inequality constrained MPControl it will be ground breaking for the industry
and its security.

• In any control problem solved securely using MPComp, latency must be stud-
ied as it is problematic in real time control problems with considerably fast
dynamics. Control of an autonomous vehicle requires immensely fast computa-
tions. Adding latency due to MPComp and encrypted wireless communication
to the secure control challenge poses an even greater challenge. Moreover data
packets must be expected to be lost occasionally thus this must be accounted
for in the secure solution. These perspectives must be researched in order to
eventually achieve secure control computations in the cloud for systems with
fast dynamics.

Further research must be conducted within this field prior to become suitable for
real life control problems. It has, however, demonstrated great potential to become
epochal in future control applications where security is a priority.

53 of 61

Chapter 9. Future Work

54 of 61

Bibliography

Bibliography

AAU Strategy (2017). Secure estimation and control using recursion
and encryption (secure). https://www.strategi.aau.dk/Forskning/Tv%C3%
A6rvidenskabelige+forskningsprojekter/SECURE/. [Online; accessed 23-
February-2019].

AAU Strategy (2018). Tværvidenskabelige forskningsprojek-
ter udvalgt. https://www.strategi.aau.dk/aktuelt/nyhed/
tvaervidenskabelige-forskningsprojekter-udvalgt.cid336771. [Online;
accessed 23-February-2019].

AAU TANT (2018). Project: Secure estimation and control us-
ing recursion and encryption (secure). https://www.tant.aau.
dk/energy-environment-sustainability-future-making/Projects/
project-secure/. [Online; accessed 23-February-2019].

Ahkâm (2017). Icon vector hacker. https://www.freeiconspng.com/img/37219.
[Online; accessed 18-May-2019].

Bar-Ilan, J. and Beaver, D. (1989). Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proceedings of the eighth annual
ACM Symposium on Principles of distributed computing, pages 201–209. ACM.

Bouman, N. J. and Vreede, N. d. (2018). New Protocols for Secure Linear Algebra:
Pivoting-Free Elimination and Fast Block-Recursive Matrix Decomposition. Tech-
nische Universiteit Eindhoven the Netherlands.

Cramer, R., Damgård, I. B., and Nielsen, J. B. (2015). Secure multiparty computa-
tion. Cambridge University Press.

Hull, R. (2017). Photo in Introduction. https://www.thisismoney.co.uk/money/
cars/article-4095614/Driverless-cars-increase-congestion-UK-roads.
html. [Online; accessed 27-February-2019].

Kaltofen, E. and Saunders, D. (1991). On wiedemann’s method of solving sparse
linear systems.

Maciejowski, J. M. (2000). Predictive control: with constraints. Prentice Hall, an
imprint of Pearson Education.

Nishide, T. and Ohta, K. (2007). Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In International Workshop on
Public Key Cryptography, pages 343–360. Springer.

Polychroniadou, A. (2016). On the Communication and Round Complexity of Secure
Computation. Aarhus University.

55 of 61

https://www.strategi.aau.dk/Forskning/Tv%C3%A6rvidenskabelige+forskningsprojekter/SECURE/
https://www.strategi.aau.dk/Forskning/Tv%C3%A6rvidenskabelige+forskningsprojekter/SECURE/
https://www.strategi.aau.dk/aktuelt/nyhed/tvaervidenskabelige-forskningsprojekter-udvalgt.cid336771
https://www.strategi.aau.dk/aktuelt/nyhed/tvaervidenskabelige-forskningsprojekter-udvalgt.cid336771
https://www.tant.aau.dk/energy-environment-sustainability-future-making/Projects/project-secure/
https://www.tant.aau.dk/energy-environment-sustainability-future-making/Projects/project-secure/
https://www.tant.aau.dk/energy-environment-sustainability-future-making/Projects/project-secure/
 https://www.freeiconspng.com/img/37219
 https://www.thisismoney.co.uk/money/cars/article-4095614/Driverless-cars-increase-congestion-UK-roads.html
 https://www.thisismoney.co.uk/money/cars/article-4095614/Driverless-cars-increase-congestion-UK-roads.html
 https://www.thisismoney.co.uk/money/cars/article-4095614/Driverless-cars-increase-congestion-UK-roads.html

Bibliography

SimplyScience, Y. (2018). Basics of secure multiparty computation. https://www.
youtube.com/watch?v=_mDlLKgiFDY&t=590s. [Online; accessed 15-February-
2019].

Tanenbaum, A. S. and Wetherall, D. J. (2011). Computer Networks, 5th edition.
Pearson Education.

Tjell, K. S. (2018). Privacy Preserving Control Using Multiparty Computation.
Aalborg University.

Weisstein, E. W. (2018). Pivoting. http://mathworld.wolfram.com/Pivoting.
html. [Online; accessed 2-May-2019].

56 of 61

 https://www.youtube.com/watch?v=_mDlLKgiFDY&t=590s
 https://www.youtube.com/watch?v=_mDlLKgiFDY&t=590s
 http://mathworld.wolfram.com/Pivoting.html
 http://mathworld.wolfram.com/Pivoting.html

Appendix A. Protocol 2.2 Example

A | Protocol 2.2 Example

An example of secure multiplication using Protocol 2.2 from chapter 2 is presented,
as finite field arithmetic can perhaps seem a bit confusing if one is not familiar.

Number of parties: n = 3.
Polynomial degree: t = 1.
Finite field cardinality prime: p = 7.
This example multiplies Ja; faK and Jb; fbK. The secrets are a = 2 and b = 3.

Recall that according to the polynomial definition of Shamir’s SSS a first degree
polynomial is defined as:

fs(x) = s+ c1x , (A.1)

where s is the secret and c1 is a random uniformly distributed variable.

In this example the polynomials are:

fa(x) = 2 + x , (A.2)
fb(x) = 3 + 2x . (A.3)

As the calculations are done within the finite field F7 the shares must be calculated
using modulo 7. The parties hold the shares:

fa(x) fb(x)

P1 2 + 1 mod 7 = 3 3 + 2 · 1 mod 7 = 5

P2 2 + 2 mod 7 = 4 3 + 2 · 2 mod 7 = 0

P3 2 + 3 mod 7 = 5 3 + 2 · 3 mod 7 = 2

Consider P3’s share of fb for instance. It is calculated as follows:

fb(3) = 3 + 2 · 3 =9 , (A.4)
9 mod 7 =2 . (A.5)

In finite field arithmetic 9 divided by 7 leaves a quotient of 1 and a remainder of 2,
thus the result is 2.

With the basics covered the secure multiplication protocol is now presented.

57 of 61

Appendix A. Protocol 2.2 Example

Protocol 2.2
Step 1: The parties compute

Jab;hK2t = Ja; faKt ∗ Jb; fbKt , (A.6)

where h = fafb that is a 2t degree polynomial. Note, that h(0) = ab.

Pi multiplies the shares ai and bi, as follows:

P1 : h(1) = fa(1) · fb(1) = 3 · 5 mod 7 = 1 , (A.7)
P2 : h(2) = fa(2) · fb(2) = 4 · 0 mod 7 = 0 , (A.8)
P3 : h(3) = fa(3) · fb(3) = 5 · 2 mod 7 = 3 . (A.9)

Step 2: Pi distributes Jh(i); fiKt.

Note, that fi(x) where i =1,2,3 is defined as:

fi(x) = h(i) + dx , (A.10)

where d is a random uniformly distributed variable according to the polynomial
definition of Shamir’s SSS.

In this example Pi creates fi(x) as:

P1 : f1(x) = 1 + 1x , (A.11)
P2 : f2(x) = 0 + 3x , (A.12)
P3 : f3(x) = 3 + 1x . (A.13)

Party Pi distributes its shares calculated from fi(x), such that the parties hold:

f1(x) f2(x) f3(x)

P1 f1(1) f2(1) f3(1)

P2 f1(2) f2(2) f3(2)

P3 f1(3) f2(3) f3(3)

In this example the shares are as follows:

f1(x) f2(x) f3(x)

P1 1 + 1 · 1 mod 7 = 2 0 + 3 · 1 mod 7 = 3 3 + 1 · 1 mod 7 = 4

P2 1 + 1 · 2 mod 7 = 3 0 + 3 · 2 mod 7 = 6 3 + 1 · 2 mod 7 = 5

P3 1 + 1 · 3 mod 7 = 4 0 + 3 · 3 mod 7 = 2 3 + 1 · 3 mod 7 = 6

58 of 61

Appendix A. Protocol 2.2 Example

Step 3: The parties compute

J
n∑
i=1

rih(i);
n∑
i=1

rifiKt . (A.14)

The recombination vector is used in order to reconstruct the secret result hidden in
the shares. Recall that each entry of the recombination vector is defined as:

ri = δi(0) =
∏

j∈C,j 6=i

−j
i− j

, (A.15)

where C is the set of n indices of the shares.

The entries of the recombination vector are:

r1 =
(−2

1− 2 ·
−3

1− 3

)
mod 7 = 2 · 5 mod 7 = 3 , (A.16)

r2 =
(−1

2− 1 ·
−3

2− 3

)
mod 7 = 6 · 3 mod 7 = 4 , (A.17)

r3 =
(−1

3− 1 ·
−2

3− 2

)
mod 7 = 3 · 5 mod 7 = 1 . (A.18)

To support the unfamiliar reader the approach for solving Equation A.16-A.18 is
explained step by step.

Consider r3 in Equation A.18 where the first fraction is -1/2. One may immedi-
ately think that it equals -0.5. This is not the case in finite field arithmetic. Instead
the fraction must be expressed according to finite field arithmetic, as:

−1
2 mod 7 = 6

2 . (A.19)

An intuitive way of thinking about modular division is by considering the inverse,
such that:

6
2 mod 7 = 6 · 1

2 mod 7 . (A.20)

When a value is multiplied by its inverse it equals one. This is used to determine
the finite field arithmetic value of -1/2 in Equation A.20, as:

2 · vinv mod 7 = 1 . (A.21)

Values to modulo 7 that equals 1 are:

7 · 0 + 1 mod 7 7 · 1 + 1 mod 7 7 · 2 + 1 mod 7 7 · 3 + 1 mod 7 7 · 4 + 1 mod 7

1 8 15 22 36

Table A.1: The first five mod 7 rounds that equal 1.

59 of 61

Appendix A. Protocol 2.2 Example

The inverse of 2 is determined by finding a value in Table A.1 that is divisible by 2.
In this case 8 is a multiple of 2 by 4 times. Thus:

1
2 mod 7 = 4 . (A.22)

The first fraction of r3 in Equation A.18 equals:
−1
2 mod 7 = 6

2 mod 7 = 6 · 4 mod 7 = 3 . (A.23)

Similarly the second fraction of r3 in Equation A.18 is determined as:
−2
1 mod 7 = 5

1 mod 7 = 5 · 1 mod 7 = 5 . (A.24)

The resulting entry of the recombination vector, r3, is thus 3 · 5 mod 7 = 1 as seen
in Equation A.18.

According to the protocol Pi calculates the resulting shares of ab, as follows:

P1 : r1 · f1(1) + r2 · f2(1) + r3 · f3(1) , (A.25)
P2 : r1 · f1(2) + r2 · f2(2) + r3 · f3(2) , (A.26)
P3 : r1 · f1(3) + r2 · f2(3) + r3 · f3(3) . (A.27)

(A.28)

In this example the resulting shares are:

P1 : 3 · (1 + 1 · 1) + 4 · (3 · 1) + 1 · (3 + 1 · 1) mod 7 = 1 , (A.29)
P2 : 3 · (1 + 1 · 2) + 4 · (3 · 2) + 1 · (3 + 1 · 2) mod 7 = 3 , (A.30)
P3 : 3 · (1 + 1 · 3) + 4 · (3 · 3) + 1 · (3 + 1 · 3) mod 7 = 5 . (A.31)

Note, that redundant parentheses and multiplication by one appears in Equa-
tion A.29-A.31 for the sake of traceability of the polynomial evaluations and the
recombination vector’s entries to help the reader.

This finalizes Protocol 2.2.

If one is interested in checking if the resulting shares yield the correct product
of a and b, the recombination vector is utilized, as:

P1 : 3 · 1 mod 7 = 3 , (A.32)
P2 : 4 · 3 mod 7 = 5 , (A.33)
P3 : 1 · 5 mod 7 = 5 . (A.34)

The product ab can be reconstructed by summing the resulting shares that have
been multiplied with the recombination vector, see Equation A.32-A.34, as follows:

ab = 3 + 5 + 5 mod 7 = 6 . (A.35)

The multiplication result in Equation A.35 is indeed correct.

60 of 61

Appendix B. Secure Matrix Multiplication Example

B | Secure Matrix Multiplication
Example

Let JAK and JBK be two private matrices. Note, that the calculations are done
within the finite field with cardinality prime p = 7.

JAK =

J2K J3K

J1K J2K

 , JBK =

J3K J1K

J2K J3K

 . (B.1)

The matrix product yields:

JABK =

J5K J4K

J0K J0K

 . (B.2)

The JαK and JβK are random uniformly distributed and JγK = JαKJβK. The triplet
can for instance be:

JαK =

J2K J2K

J1K J3K

 , JβK =

J3K J4K

J2K J1K

 , JγK =

 J3K J3K

J2K J0K

 . (B.3)

Recall from chapter 4, that:

JABK = DE + DJβK + JαKE + JγK . (B.4)

The matrices D and E are broadcast and thus open matrices. They are determined
as follows:

D = JAK− JαK =

J0K J1K

J0K J6K

 , E = JBK− JβK =

J0K J4K

J0K J2K

 . (B.5)

Equation B.4 yields:J0K J2K

J0K J5K

+

J2K J1K

J5K J6K

+

J0K J5K

J0K J3K

+

J3K J3K

J2K J0K

 =

J5K J4K

J0K J0K

 . (B.6)

The result of secure matrix multiplication in Equation B.6 is equal to the open
matrix product in Equation B.2.

61 of 61

Department of Electronic Systems
Fredrik Bajers Vej 7C

9220 Aalborg Øst

Secure Control in the Cloud Using Multiparty Computation
Andrea Victoria Tram Løvemærke

Control & Automation - Master’s Thesis
June 2019

Secure Control in the Cloud
Using Multiparty Computation

	TableofContent
	Introduction
	Preliminaries
	Multiparty Computation
	Secret Sharing
	Focus of the Thesis

	Control Problem
	Model Predictive Control
	Unconstrained MPControl
	Constrained MPControl

	Secure Solution
	Secure Unconstrained Case
	Solving Linear Systems Securely

	Simulation
	Secure Equality Test
	Subtracting Shares from an Open Value
	Secure Inversion

	Implementation
	Network Setup
	Setup Presentation

	Results
	Precision
	Computational Cost

	Conclusion
	Future Work
	Bibliography
	Protocol 2.2 Example
	Secure Matrix Multiplication Example

