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Abstract

An important part of digital communication is source coding, i.e. the compression
of a source signal to a digital representation (in bits) that may be transmitted across
a network and used to reconstruct the source signal at a decoder. The main prob-
lem of source coding is to determine the fundamental lowest limit on the data-rate
required to reconstruct the source, while achieving a desired distortion, known
as the rate-distortion function (RDF). However, source codes that achieve perfor-
mance close to these bounds often suffer from long delays and are not suitable
for real-time communication. Therefore, zero-delay (ZD) or instantaneous source
coding is crucial in real-time communication.
In communication over unreliable networks data packets may be lost. Therefore,
where retransmissions are either not possible or permitted, excess bandwidth is
often spent on the channel code to guarantee reliable and satisfactory real-time
communication. As an alternative, multiple descriptions (MDs) facilitate a grace-
ful degradation during partial network failures.
In this contribution, we provide initial results in the combination of ZD- and MD
coding, with two descriptions, in situations with perfect decoder-feedback, and
consider ZDMD coding of stationary scalar Gauss-Markov sources under mean-
squared error distortion constraints. Our five main contributions are:
(1) A novel information-theoretic lower bound on the sum-rate of a ZDMD source
code with decoder feedback, and mutually independent decoder side information.
The bound is given by the sum of; the directed information rate from the source
to the MD reproductions, and the mutual information rate between the MD repro-
ductions. (2) By extension of the previous result, an information-theoretic lower
bound on the operational symmetric ZDMD RDF. (3) Under some technical as-
sumptions, for stationary scalar Gauss-Markov sources the bound on the ZDMD
RDF is minimized by Gaussian test-channel distributions. (4) The optimum Gaus-
sian test-channel distribution is realizable by a double branch test-channel with
two predictive coding loops. This also shows achievability of the lower bound in
a Gaussian coding scheme. (5) Using a simple existing MD quantization scheme,
similar to our ZDMD test-channel realization, numerical simulations show opera-
tional performance within 5 dB of the theoretical distortion limits in the high-rate
scenario.
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Dansk Resumé

Realtidskommunikation i er vigtigt i mange morderne teknologier, f.eks. online
videomøder og kontrolsystemer implementeret over trådløse netværk. I alle disse
scenarier kan der være strenge krav til forsinkelser og pålidelighed.
I dette projekt betragter vi realtids kildekodning, det vil sige komprimering af et
kildesignal til en digital repræsentation (i bits), som transmitteres over et netværk
til en dekoder, der producerer en rekonstruktion af kilden. Den største udfordring
ved dette er at designe et realtids komprimeringssystem, således et kildesignal
kan transmitteres over et upålideligt netværk og genskabes ved dekoderen med en
foreskreven gengivelsesnøjagtighed ved brug af det mindst mulige antal bits.
Kildekodning i relation til informationsteori er kendt som rate-distortion teori. Rate-
distortion teori omhandler bestemmelse af den fundamentalt laveste gennemsnitlige
datarate, som kræves for at genskabe en kilde ved dekoderen mens det ønskede
distortion-kriterie overholdes for en specifik kilde og distortion-mål. Denne fun-
damentale grænse kaldes rate-distortion funktionen (RDF).
De kildekoder, som kan opnå performance tæt på de fundamentale grænser lider
dog ofte under lange signalforsinkelser, hvilket betyder, at signalet komprimeres
og dekodes ikke øjeblikkeligt, når en sample modtages. I realtidskommunikation
skal indkodning og dekodning ske omgående når en sample modtages, vi taler da
om zero-delay (ZD) kodning.
Indkodning og dekodning er ikke de eneste steder i systemet, hvor mulige forsinkel-
ser indtræffer. Når kommunikationen foregår over pakkebaserede netværk, kan
pakketab resultere i betragtelige forsinkelser p.g.a. gentransmittering af tabte
pakker. Derfor, der hvor retransmission ikke er muligt eller tilladt, er det generelt
nødvendigt at bruge urimeligt meget båndbrede på kanalkoden for at garantere
pålidelig kommunikation og tilfredsstillende performance. Som et alternativ kan
indkoderen producere multiple descriptions (MD) af kilden, der facilitere en gradvis
forringelse af rekonstruktionen ved delvise netværksfejl.

I den offentligt tilgængelig litteratur er en samlet teori om zero-delay multiple-
description (ZDMD) kodning stort set ubeskrevet. I dette bidrag præsenterer vi
initierende resultater for kombinationen af ZD- og MD kodning i situationer med
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perfekt feedback fra dekoderen, og betragter ZDMD kodning af stationære skalarer
Gauss-Markov kilder under mean-squared error (MSE) distortion-kriterier.
Vi generaliserer først det klassiske MD scenarie til at inkludere åben-loop dekoder
feedback, det vil sige feedbacken har ingen effekt på kildesignalet, og til at inklud-
ere sideinformation tilgængelig for både indkoder og dekoder. Ud fra dette kon-
struktive setup udleder vi en ny informationsteoretisk nedre grænse på sumraten
for en ZDMD kildekode med dekoder feedback og indbyrdes uafhængig dekoder
sideinformation. Denne nedre grænse udgøres af summen af; den retningsbestemte
informationsrate fra kilde til MD rekonstruktionerne, og den fælles informations-
rate mellem MD rekonstruktionerne.
Vi viser, at denne nye nedre grænse udgør en informationsteoretisk nedre grænse
på den operationelle symmetriske ZDMD RDF. For stationærer skalarer Gauss-
Markov kilder, under tekniske de betingelser af grådig sekventiel kodning og uafhængige
minimum MSE prædiktions residualer, viser vi, at den nedre grænse på den ope-
rationelle ZDMD RDF minimeres af Gaussiske test-kanal fordelinger. Det vil sige,
Gaussiske reproduktionerne er optimale i at minimere raten under samme distortion-
kriterier.
Vi viser desuden, at de optimale Gaussiske test-kanal fordelinger kan realiseres
ved at kombinere prædikativ kodning med en to-grens test-kanal. Endvidere er
disse fordelinger karakteriseret ved løsningen på et optimeringsproblem.
Til sidst, implementere vi et simpelt eksisterende operationelt MD kvantiserings-
system, der kan sammenlignes med vores ZDMD test-kanal realiserings-system.
Dette viser, at det er muligt at opnå operationel distortion-performance approksi-
mativt 5 dB fra de teoretiske nedre grænser.
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Introduction

Real-time communication is desirable in many modern applications e.g. Internet
of Things (IoT) [1], audio transmission for hearing aids [2], stereo audio signals [3],
on-line video conferencing [4], or systems involving feedback, such as networked
control systems (NCS’s) [5]–[7]. All these scenarios may operate under strict re-
quirements on latency and reliability. Particularly, delays play a critical role in the
performance or stability of these systems [8].

This report is concerned with real-time communication of signals across unreliable
networks. The situation is illustrated in Figure 1, where the source signal, X, is
communicated across a possibly wireless network and reproduced at a decoder.
In order to design an appropriate communication system we assume that a signal
model, X(θ), has been determined or specified in advance. In particular we are
concerned with the following auto-regressive (AR) model

Xk = AXk−1 + CWk, k ∈ N, (1)

where A ∈ Rp×p, C ∈ Rp×q are deterministic matrices, X1 ∼ N (0, ΣX1) is the ini-
tial state and Wk ∈ Rq ∼ N (0, ΣW) is a white Gaussian process independent of X1.
Here, the signal model parameters are θ = (A, C, ΣW , ΣX1).
Given the signal model, the relevant source parameters, θ, may then be extracted
from the source signal (e.g., the LPC parameters of a speech signal). Given the
source parameters, the signal is compressed and converted to bits. These bits are
then transmitted across a network to a decoder, which produces an estimate, Y, of
the signal, X. We also assume the decoder output, Y, is available at the encoder in
the form of a feedback signal.1

In this report we do not consider the real-time extraction of source parameters.
Thus, we assume the source is known in the sense that all source parameters and
statistical properties have already been extracted and are available to us. That is,
the source is completely specified by the signal model and its parameter values.
This is illustrated by the dashed square in Figure 1.

1For example this would be the case if the encoder can mimic the decoder in the absence of packet
losses.
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2 Introduction

Source parameter
extraction

Signal, X

Signal model, X(θ)

Data
compression Network Decoder Y

X, θ bits

System of consideration

Figure 1: An overview block diagram relating the problem we consider to a wider system perspec-
tive. In the overall systems, given a signal model, X(θ), initially source parameters, θ, are extracted
from the source signal X. Using the parameters the signal is compressed into a digital (bit) represen-
tation, these bits are then transmitted across an unreliable network to a decoder, that produces an
estimate, Y, of the source signal, X. The compression uses feedback from the previous reproductions.

The main problem is then to design a real-time compression scheme such that the
source, X, may be transmitted across an unreliable network and reproduced at
the decoder while achieving a prescribed degree of fidelity using the minimum
amount of bits. As we assume feedback from decoder to encoder these blocks are
designed in unison.
We further specify the exact problem considered in this report in the last section of
the Introduction and in the Problem Statement. In order to establish the final prob-
lem, we consider in more detail the different aspects of real-time communication
over unreliable networks.

Source Coding

The digital communication of an information source, X, across a noisy channel to
a receiver can, as shown in Figure 2, be split into two main parts: Source encoding
and -decoding, and channel encoding and -decoding [9]. In source coding, the source
is mapped into bits, and from bits to a source estimate [10, p. 4]. In channel coding,
the digital source representation is mapped to a suitable channel input, and from
channel output to a digital representation [10, p. 4]. Delays may occur in any of
these parts as well as in the physical transmission of the signal across the channel.
These delays are additive and may result in arbitrarily long delays.
In this project we consider only the source coding aspect of real-time communica-
tion systems with feedback, and let the concatenation of channel coding and the
channel be a noiseless digital channel with no delay [11, p. 5]. That is, no bit-errors
are introduced in the signal between the source encoder and -decoder.

We are not concerned with any delays due to practical computations. Hence, we
consider source coding in the following discrete-time systems setting. Consider
the general block-diagram representation of a feedback system illustrated in Fig-
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ure 3. In this figure, the systems S1 and S2 represent possibly non-linear and
time-varying systems. All signals in the loop are assumed to be discrete-time pro-
cesses, and all systems and signals share a synchronized “clock”. The delay block
ensures the operational feasibility of the feedback system. Otherwise, output of
either system could be a function of itself.
Since the output of the second system, S2, is fed back as the input to the first
system, S1, and vice-versa, the systems must be causal. That is, the output of ei-
ther system at any time-instant is not a function of any of its future inputs. The
resulting system equations are for each k ∈ N,

Uk = S1

(
Xk−d1

)
, (2)

Yk = S2

(
Uk−d2

)
, (3)

Xk = Yk−1, (4)

where Xn , (X1, . . . Xn) denotes a sequence of n variables, and d1, d2 ∈ N0 are
the delays of S1 and S2. We let d , d1 + d2 and define the system (2)–(4) as a
d-delay feedback system. In a zero-delay system, where d = 0, each output of S2,
i.e. Yk, must be produced at the same time instant the corresponding input of S1,
i.e. Xk, has been processed by S1. Clearly, the system can only be zero-delay if all
components are causal, even in the absence of feedback. Throughout this report
we consider only feedback systems of this type, where the forward channel from
S1 to S2 is instantaneous (zero-delay) and the feedback is strictly causal, i.e. at
least one sample delay.
For source coding inside feedback loops, we may replace S1 with an encoder, S2

with a decoder, and the delay block with any causal feedback system with at least
one sample delay. The link between source encoder and -decoder is considered a
noiseless digital channel [11, p. 5].
The encoder mapping from the source signal to bits consist of a quantization and
mapping of quantization intervals to bits [5], [10]. The key design problem of
source coding is then how to quantize a signal, with the minimum average data-
rate (in bits per sample), while achieving a prescribed degree of fidelity (distor-

X
Source
Encoder

Channel
Encoder

Channel
Channel
Decoder

Source
Decoder

Y

Encoder Decoder

Noiseless digital channel

Figure 2: Block diagram representation of a communication system. Figure inspired by [12].
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S1 S2

z−1

U YX

Figure 3: A general feedback system. The output of the second system, S2, is fed back as the input
to the first system S1.

X
Source
Encoder

Source
Decoder

Y
B

Rate

Distortion

Figure 4: A source coding scenario indicating where rate and distortion are measured. The encoder
encodes the source, X, to the binary descriptions, B, the source decoder then produces an estimate,
Y, of X given the description B. The rate is measured between the encoder output and decoder input,
i.e. the number of bits pr. source symbol transmitted between encoder and decoder. The distortion
is measured between the encoder input and decoder output, i.e. the discrepancy between the source,
X, and its representation, Y.

tion) or performance [5], [13, ch. 10]. A typical performance measure is the mean
squared error (MSE), but other measures are also possible [5], [13, ch. 10]. Figure 4
illustrates where in the source coding scenario the rate and distortion are mea-
sured.

Source coding in the context of information theory is known as rate-distortion the-
ory [13, ch. 10]. Rate-distortion theory is the determination of the fundamental
lowest limit on the average data-rate required to reproduce a source at the decoder
while achieving a desired distortion criteria, for a specific source and distortion
measure, e.g. MSE [8], [13, ch. 10]. This fundamental limit is called the rate-
distortion function (RDF), (see Appendix C) [13, ch. 10].
In rate-distortion theory the input-output relation of source coding is modeled
from channel coding perspective [13]. That is, the mapping from source to repro-
duction is modeled by probability distributions. The (information) rate across the
channel is then given by the so called mutual information, (see Appendix A) [13].
Thus allowing for the definition of an information-theoretic RDF as the minimum
mutual information rate (see Appendix A) across the channel subject to a distor-
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tion constraint. The conditional distributions of the reproductions given the source
input that achieves the lower bound are often called test-channels [13].

Zero Delay

The standard ways to achieve a given rate-distortion performance relies upon ran-
dom codebooks. This requires the coding of arbitrarily long sequences which incur
arbitrarily long delays [5]. Thus, in practice the source encoders and -decoders that
are able to achieve performance close to the fundamental limits often incur long
delays in their end-to-end effect, i.e. the total delay only due to source coding, and
is often non-causal and computationally expensive [5], [8], [14].
Clearly, in near real-time communication the source encoder and -decoder must
have zero-delay. The term zero-delay (ZD) source coding is often used when both
instantaneous encoding and decoding are required [15]. That is, when the re-
construction of each input sample must take place at the same time-instant the
corresponding input sample has been encoded [16]. Hence, the random coding
technique is not applicable in ZD rate-distortion theory.

Single-description ZD rate-distortion theory has been increasingly more popular
in the last decades, due its significance in real-time communication systems and
especially feedback systems. The ZD RDF is generally unknown and hard to de-
termine [8]. Some indicative results on ZD source coding for NCSs, and systems
with- and without feedback may be found in [5]–[8], [16]–[19].
As mentioned, ZD source coders must be causal [20]. However, causality comes
with a price. The results of [16] show, that causal coders increase the bitrate due to
the space-filling loss of “memoryless” quantizers, (see Section 1.6), and the reduced
de-noising capabilities of causal filters. Additionally, imposing ZD increases the
bitrate due to memoryless entropy coding, (see Section 1.6)[16].
The results of [5] establishes a novel information-theoretic lower bound on the av-
erage data-rate for a source coding scheme within a feedback loop by the directed
information rate (see Section 1.2) across the channel. Furthermore, it is shown that
for a given MSE performance constraint of a NCS an achievable upper bound dif-
fers from the lower bound by only 1.254 bits [5], [18].
For open-loop vector Gauss-Markov sources (1), i.e. the source is not inside a feed-
back loop, the optimal operational performance of a ZD source code subject to a
MSE distortion constraint has been shown to be lower bounded by a minimization
of the directed information [21] from the source to the reproductions subject to the
same distortion constraint [5]–[7], [16], [17]. For Gaussian sources the directed in-
formation is further minimized by Gaussian reproductions [8], [18]. Very recently,
Stavrou et al. [8] extending upon the works of [7], [16], [17], showed that the op-
timal test-channel that achieves this lower bound is realizable using a feedback
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Controller Network Plant

Figure 5: A general NCS, where an unstable plant is stabilized by a controller. The controller and
the plant communicate across a possibly wireless network.

realization scheme. Furthermore, [8] extends this to a predictive coding scheme
providing an achievable upper bound. A novel approach in the test-channel of [8]
is to spatially decorrelate the innovation vector process, then by using “reverse-
waterfilling” some dimensions may be deemed inactive. The r active dimensions
are then independently scalar quantized and jointly entropy coded, yielding an
upper bound 0.254r + 1 bits/vector above the lower bound. For high rates the
extra 1 bit vanishes. Finally, for asymptotically large vectors using vector quanti-
zation the upper bound and lower bounds coincide [8]. This almost provides a
full characterization of the ZD RDF for vector Gauss-Markov sources subject to
MSE distortion constraints when either A or C in (1) are full rank and have finite
dimensions. Contrary to standard rate-distortion results where arbitrarily long se-
quences are coded, optimality for the Gaussian ZD RDF is shown for arbitrarily
long vectors.

Multiple Descriptions

The channel in feedback systems may be a wireless network, such as in an NCS
illustrated in Figure 5, where the signals between the controller and the plant are
communicated across a possibly wireless network. Networked communication
adds another possible delay to the feedback scenario, since they are often packet-
based [22].

In packet-based networks, a signal is encoded and transmitted progressively in
data packets, and then reconstructed as the packets are received. However, in
packet-based communication over unreliable networks, packet-loss can result in
substantial delays due to retransmission of lost packets [4], [22]. This packet-loss
is a result of interference, noise, or fading, due to multi-path effects, moving trans-
mitters or receivers2, or blockage of signals [2], [4]. Therefore, in near real-time
communication over unreliable networks, and where retransmissions are either not
possible or not permitted, e.g. due to strict latency constraints, it is generally nec-
essary to use an excessive amount of bandwidth for the required channel code in

2For example a hearing aid user, or a person wearing a wireless microphone



Introduction 7

order to guarantee reliable communications and ensure satisfactory performance.
Thus, source codes that are only useful if all packets are received put too much
faith in the delivery system, whereas the delivery system assumes all packets are
needed at the receiver [22]. As an alternative, the channel code may be replaced
by cleverly designed data packets, called multiple descriptions (MDs). Contrary to
channel codes, MDs would allow for several reproduction qualities at the receivers
and thereby admit a graceful degradation during partial network failures [22]. This
avoids long delays because no retransmission is allowed, hence some compression
(reproduction quality) is sacrificed for an overall lower latency [22].
MD coding is considered, as a joint source-channel coding problem concerned with
lossy encoding for transmission over unreliable channels [2]. By using the appro-
priate source coding techniques, data packets are designed to the conditions of the
channel [22]. Thus, some of the excessive bits used on channel coding may be put
to petter use in the source code.
Despite their potential advantages over channel codes for certain applications, MD
codes are rarely used in practical communication systems with feedback. The rea-
sons are that from a practical point of view, good MD codes are application specific
and hard to design, and from a theoretical point of view, zero-delay MD (ZDMD)
coding and MD coding with feedback remain open and challenging topics.

Figure 6 illustrates the two-description MD coding scenario in both a closed- and
an open-loop system. In both cases the encoder produces two descriptions which
are transmitted across noiseless channels.
The closed-loop scenario remains an open problem. However, the open-loop prob-
lem has been more widely studied in the information-theory literature.
Since MD coding considers several data-rates and distortions, MD rate-distortion
theory is the determination of fundamental limits on a rate-distortion region [22].
In open-loop the achievable MD rate-distortion region is only completely known
in very few cases [23]. El-Gamal and Cover [24] gave an achievable region for two
descriptions and memoryless source. This region was then shown to be tight for
white Gaussian sources with MSE distortion constraints by Ozarow [25].
In the high resolution limit, i.e. high rates, Dragotti [26] characterized the achiev-
able region for stationary (time-correlated) Gaussian sources with MSE distortion
constraints. This was then extended in [27] to the general resolution case for sta-
tionary Gaussian sources. Recently, [23] showed in the symmetric case, i.e. equal
rates and distortions for each individual description, that the MD region for a
colored Gaussian source subject to MSE distortion constraints can be achieved by
predictive coding using filtering.
However, similar to single-description source coding the MD source coders that are
close to the fundamental rate-distortion bounds impose long delays on the end-to-
end processing of information [28]. Also clearly from Figure 6, if MD coding is part
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Encoder Decoder 0

Decoder 1

Decoder 2

F

Y (1)

Y (0)

Y (2)

noiseless channel
X

B(1)

B(2)

Open-loop

Figure 6: MD source coding in a closed-loop. If there is packet-loss on the noiseless channel the
source signal, X, is affected by which descriptions are received at the decoder. The standard open-
loop MD coding is marked by the dashed line. In the open-loop the source is completely specified
prior to the design of the coding scheme.

of closed-loop systems the source encoding and -decoding must be zero-delay.

Zero-Delay Multiple Descriptions

Recently, [28] proposed an analog ZDMD joint source-channel coding scheme, such
that the analog source output is mapped directly into analog channel inputs. Thus,
not suffering from the delays encountered in digital source coding. However, for
analog joint source-channel coding to be effective the source and channel must be
matched, which rarely occurs in practice [29]. Furthermore, most modern commu-
nication systems relies on digital source coding. Thus, analog joint source-channel
coding is only applicable in a very limited amount of settings.
Digital low-delay MD coding for practical audio transmission has been explored
in e.g. [2], [4], [30], as well as for low-delay video coding in [31]. Some initial work
regarding MDs in NCSs may be found in [32]. However, none of these consider
the theoretical limitations of ZDMD coding in a rate-distortion sense.

To the best of the authors’ knowledge there exists no publicly available research in
the field of ZDMD rate-distortion theory neither with or without feedback. There-
fore, in this project we take initial steps towards the unification of ZD- and MD
rate-distortion theory with feedback.

In order to provide a solution towards closed-loop MD coding, we consider the
open-loop ZDMD coding problem illustrated in Figure 7. The MD encoder pro-
duces two descriptions B(i), i = 1, 2, of the source, X. The two descriptions are
transmitted across noiseless channels without packet-loss to the three decoders.
Each decoder produces an estimate Y(i), i = 0, 1, 2, of the source signal, X. The
encoder and decoders must all be zero-delay, such that the end-to-end sample de-
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EncoderX Decoder 0

Decoder 1

Decoder 2

Y (1)

Y (0)

Y (2)

B(1)

B(2)

Figure 7: The open-loop scenario considered in this paper, where the source signal, X, is completely
specified by its statistical properties, there is a noiseless digital channel without packet-loss from
encoder to decoders. There is perfect feedback from the decoder output to the encoder.

lays of all encoder-decoder pairs are zero. The encoder uses perfect feedback from
the decoders to produce the two descriptions. The feedback is perfect in the sense
that it is an undistorted version of the decoder output. This is possible due to
the error-free channels without packet-loss. Thus, contrary to standard MDs the
encoder is aware that all packets are received at the decoder.
We do not consider, the classical closed-loop where feedback from decoder affects
the encoder input. Hence, we assume the source signal to be completely specified
by its statistical properties prior to encoding. Therefore, there is no feedback from
the decoder outputs, Y(i), to the source, X.
Specifically we consider scalar stationary Gaussian sources subject to MSE distor-
tion constraints.





Problem Statement

Research Question

What are the minimum required bitrates in a ZDMD source coding scheme of scalar sta-
tionary Gaussian sources using perfect decoder-feedback subject to MSE distortion con-
straints?

To determine an answer to this research question, we answer the following sub
questions.

Sub Questions

• What is a constructive information-theoretic lower bound on the operational
average data sum-rate of a ZDMD source code using perfect decoder-feedback?

• What is an optimum test-channel for the information-theoretic lower bound?

• What is an operational quantization scheme that extends upon the optimum
test-channel and provides achievable rates and distortions?

• What is the gab between the theoretical lower bound and operational achiev-
able rates and distortions?

Delimitations

We do not consider the determination of source parameters. Thus, we assume all
parameters of the source (1): A, C, ΣW , ΣX1 are deterministic and given. Hence, we
provide an initial solution towards the more general scenario of unknown param-
eters. In order to provide a solution towards vector Gaussian sources, we consider
only the scalar case in this report, hence p = 1 and q = 1 in (1). Furthermore,
we consider only stationary and stable source processes. Thus, providing initial
solutions that may later be generalized to broader scenarios. Finally, we consider
only MSE distortion, since it is the most common distortion measure for continu-
ous sources [13]. Specifically, we do not consider the determination of other useful
distortion measures.

11
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Reading Guide

The main part of this report assumes a certain familiarity with common informa-
tion theory-, source coding- and rate-distortion concepts. Therefore, Appendix A
provides an introduction to the most important information-theoretic concepts for
the analyzes conducted. Appendix B serves as a primer on the ideas behind source
coding, especially lossless source coding, as well as stochastic processes. Finally,
Appendix C serves as a primer on the main results of classical rate-distortion the-
ory.
These appendices assume knowledge of all preceding appendices, i.e. Appendix C
assumes the reader is familiar with the concepts of Appendix A and B. Similarly,
Appendix B assumes knowledge of the concepts in Appendix A. Therefore, read-
ers familiar with certain concepts may skip directly to either appendix.

The rest of the report is organized as follows.
In Chapter 1 we introduce ZD source coding and the results of [8] as background
for our results.
In Chapter 2 we first revisit MD source coding and the results of [25] to further the
background on our derivations. We then formally present our first contribution;
combined ZD- and MD- coding and define the ZDMD problem. We also define the
notion of a ZDMD RDF for symmetric distortions.
In Chapter 3, by generalizing the result of [5] we determine a novel information-
theoretic lower bound on the average data sum-rate of the ZDMD source code in
Figure 7. Using this bound we are able to obtain an information-theoretic lower
bound on the ZDMD RDF. We then show that under certain conditions for scalar
stationary Gaussian sources this lower bound is minimized by jointly Gaussian
MDs.
In Chapter 4 we determine a MD feedback realization scheme for the optimum
Gaussian test-channel distribution for the lower bound on the ZDMD RDF. Utiliz-
ing this, we present a characterization of the Gaussian achievable lower bound as
a solution to an optimization problem.
In Chapter 5 we introduce the staggered predictive quantization scheme of [33]
as an extension of our test-channel to an operational ZDMD coding scheme. Us-
ing numerical simulations we evaluate the performance of the operational scheme
compared to the achievable ZDMD region.
We then discuss and conclude on our results. Finally we consider future directions.



Notation

The following Table 1 provides a list of some common notation used throughout
the report. We do not distinguish between vectors and scalars, however matrices
are denoted by uppercase letters.

Table 1: Table of Notation

Symbol Description

X , Random variable
X , Alphabet for the random variable X
x , Realization of the random variable X

Xn , Sequence of n random variables, (X1, . . . , Xn)

xn , Sequence of n realizations, (x1, . . . , xn)

Y(i) , ith multiple-description reconstruction
Y(i),n , Sequence of n multiple-description reconstructions from the ith

decoder, (Y(i)
1 , . . . , Y(i)

n )

P(x) , Probability distribution of random variable X
p(x) , Probability mass function (PMF) for discrete random variable X
f (x) , Probability density function (PDF) for continuous random vari-

able X
E[·] , Expectation operator

Var[·] , Variance operator
EX [·] , Expectation w.r.t. the distribution on X

EX,Y[·] , Expectation w.r.t. the joint distribution P(x, y)
EP[·] , Expectation w.r.t. the distribution P

X ⊥⊥ Y , When X and Y are independent, i.e. when P(x, y) = P(x)P(y)
X−Y− Z , When the random variables, X, Y, Z form a Markov chain. i.e.

when P(X, Z|Y) = P(X|Y)P(Z|Y)
X
∣∣
W −Y

∣∣
W − Z

∣∣
W , If conditioned upon W, X−Y− Z

13
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In order to determine the fundamental performance limitations of ZDMD codes
we first consider single-description ZD rate-distortion.
This chapter formally defines ZD source coding and extends upon the results in
standard rate-distortion theory. Furthermore, we introduce the result and opti-
mal test-channel realization of [8]. To this end we introduce directed information
and predictive coding as needed. The test-channel of [8] provides the basis for
our ZDMD test-channel realization. Finally we highlight some of the important
differences between ZD source coding and source coding with arbitrary delay.

1.1 Zero-Delay Source Code

Let Xk ∈ X be a random variable, where X is the alphabet of Xk. We denote a
sequence of random variables by Xk

j , (Xj, Xj+1, . . . , Xk), k ∈ N, and their realiza-

tions by xk
j ∈ X k

j , ×k
i=jXi. For simplicity, if j = 1 we let Xk

1 = Xk. Furthermore,
let {Xk}, Xk ∈ X , be the stochastic process modeling the unknown signal values
for a specific source. We refer to this stochastic process as a source process. We
also often refer to the source process {Xk} as the source. For the source process
{Xk} we denote a realization of the source process by {xk}, xk ∈ X .

Although our main results consider scalar-valued Gauss-Markov sources, we fol-
low the results of [8] and consider vector-valued Gauss-Markov sources in this
chapter. Particularly, we consider sources of the form,

Xk = AXk−1 + CWk, k ∈ N, (1.1)

where A ∈ Rp×p, C ∈ Rp×q are deterministic matrices, X1 ∼ N (0, ΣX1) is the
initial state and Wk ∈ Rq ∼ N (0, ΣW), ΣW = I, is an independent and identically
distributed (IID) Gaussian process independent of X1. Although the results of [8]
consider Xk as being stationary in the limit of k → ∞, we additionally assume the
source is stationary at k = 1, i.e. ΣX1 is the stationary covariance matrix of the
process.

15
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Gauss-Markov
Source

Encoder

Noiseless Digital Channel

Decoder
Xk

Bk ∈ {0, 1}lk
Yk

Figure 1.1: A zero-delay source coding scenario using variable length binary codewords. Inspired
by [8].

We consider a ZD source coding system as depicted in Figure 1.1, where we as-
sume the statistical properties of the vector Gauss-Markov source (1.1) are known.
For every time step, k ∈ N, the encoder observes a new source sample Xk, while
assuming it has already observed the past Xk−1, and produces a single binary code-
word Bk of length lk (in bits) from a predefined set of codewords Bk of at most a
countable number of codewords [8]. Because the source is random, we may con-
sider the codeword, Bk and its length lk as random variables [8]. We assume no
delay on the channel, thus the decoder receives the codeword Bk immediately. The
decoder then produces an estimate Yk of Xk, under the assumption that Yk−1 is
already produced [8]. Both encoder and decoder are assumed to be zero-delay, i.e.
they process information without sample delay.
Summarizing this, we formally define a ZD source code.

Definition 1.1 (Zero-delay source code[8])
For a discrete-time stationary source {Xk}k∈N, Xk ∈ X , a zero-delay source code
consists of a zero-delay encoder and -decoder.
For each time step k let Bk be a predefined set of at most a countable number
of codewords. The zero-delay encoder is specified by the sequence of functions,
{ fk : k ∈ N}, where

fk : Bk−1 ×X k → Bk, (1.2)

and at each time step k ∈ N the encoder outputs a message Bk = fk
(

Bk−1, Xk)

with length lk (in bits), where B1 = f1(X1). The zero-delay decoder is specified by
the sequence of functions {gk : k ∈ N}, where

gk : Bk → Yk. (1.3)

At each time step k ∈ N the decoder generates a reproduction Yk = gk
(

Bk)

assuming Yk−1 has already been generated, with Y1 = g1(B1).
Both the encoder and decoder process information without delay.

The design goal of the ZD source code in Figure 1.4 is to achieve an asymptotic
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average expected distortion that satisfies

lim
n→∞

1
n

n

∑
k=1

E
[
‖Xk −Yk‖2

2

]
≤ D, (1.4)

where D > 0 is a predefined MSE distortion constraints [8].
The objective is to achieve this distortion while minimizing the average expected
data-rate, i.e. the expected total number of bits receiver per symbol at the time the
decoder reproduces {Yk : k ∈ N} [8]. Denote by

Ln ,
n

∑
k=1

lk (1.5)

the total number of bits received by the decoder at the time it generates the estimate
Yn. Similar to the distortion we consider the asymptotic expected rate.

Definition 1.2 (ZD Rate)
Let lk be the length in bits of the k’th encoder output letter in a ZD source code,

then the average expected data-rate of the scheme, measured in bits per source
sample, is

RZD , lim
n→∞

1
n

n

∑
k=1

E [lk] (1.6)

= lim
n→∞

1
n

E [Ln] . (1.7)

The definition of a ZD source code and its rate put great emphasis on the time
steps compared to regular source codes with arbitrary delay. However, we note
that the rate of a ZD source code and classical rate-distortion code (Definition C.1)
is measured in the same way. To see this, we note that in both Definition C.1 and
(1.5), Ln is total number of bits received when Yn is reproduced.
To determine the fundamental performance limits of a ZD code, we first formally
define the notion of an achievable rate for ZD source codes.

Definition 1.3 (ZD achievable rate)
The rate RZD of a zero-delay coding scheme is said to be achievable with respect
to the MSE distortion constraint D > 0, if the asymptotic average expected dis-
tortion satisfies,

lim
n→∞

1
n

n

∑
k=1

E
[
‖Xk −Yk‖2

2

]
≤ D. (1.8)
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The main problem of ZD rate-distortion theory is to determine the fundamental
bound between the set of achievable and non-achievable rate-distortion points for
a given source and distortion measure. That is, determine the minimum achiev-
able rate with respect to a distortion constraint for a given source and distortion
measure. This bound is called the operational zero-delay RDF function. We consider
specifically Gaussian sources subject to MSE distortion constraints.

Definition 1.4 (Gaussian Operational ZD RDF [8])
For a discrete-time stationary Gaussian source process {Xk}, the operational
zero-delay RDF, Rop

ZD(D), is defined as the minimum achievable rate (1.6) with
respect to the asymptotic MSE distortion constraint D > 0, where the infimum is
over all possible zero-delay encoder- and -decoder sequences, { fk}k∈N, {gk}k∈N,
such that (1.8) is satisfied. That is,

Rop
ZD(D) , inf

Bk= fk(Bk−1,Xk), k∈N
Yk=gk(Bk)

lim
n→∞

1
n ∑n

k=1 E [lk] ,

s.t. lim
n→∞

1
n ∑n

k=1 E
[
‖Xk −Yk‖2

2

]
≤ D.

(1.9)

Similarly to the classical RDF (Definition C.6), determining the operational ZD
RDF as defined above is infeasible, since it is determined by a minimization over
all possible operational zero-delay codes, { fk}, {gk} [8].
However, the operational ZD RDF has been shown to be lower bounded by a
minimization of the directed information rate from the source to the reproductions
subject to the same distortion constraint [5]–[7], [16], [17]. Before considering this
bound further, we introduce directed information as first defined by Massey in [21],
and consider some importance results regarding information flow in systems with
feedback. Readers familiar with directed information may skip directly to Sec-
tion 1.3.

1.2 Directed Information

Directed information is defined using conditional mutual informations.

Definition 1.5 (Directed information [21])
The directed information from a sequence of random variables Xn to a sequence
Yn, is defined as

I (Xn → Yn) ,
n

∑
i=1

I
(

Xi; Yi
∣∣Yi−1

)
. (1.10)
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S1 S2

z−1

U YX

Figure 1.2: A general feedback system. The output of the second system, S2, is fed back as the input
to the first system S1.

The directed information measures the amount of information that causally ‘flows’
from the ordered sequence Xn to Yn. To understand the causal nature of directed
information, we compare it to the mutual information (Definition A.9) between the
two sequences Xn, Yn,

I (Xn; Yn) =
n

∑
i=1

I
(

Xn; Yi
∣∣Yi−1

)
, (1.11)

this follows from the chain rule of mutual information (A.22). Each term in the
sum of (1.11) considers the amount of information about the entire sequence Xn

present in Yi, given the past values Yi−1 [34]. Contrary, in the directed information
of (1.10) what matters is only the past and current values of Xn, i.e. Xi [34]. Hence,
the directed information considers only the causally conveyed information from
Xn to Yn.
To further understand the importance of directed information in feedback sys-
tems, recall the general feedback system in Figure 1.2. This system has perfect
causal feedback, such that Xk = Yk−1, and the mutual information between the two
sequences is

I (Xn; Yn) = H (Yn)− H (Yn|Xn)

= H (Yn)− H
(

Yn|Yn−1
)

= H (Yn)− H
(

Yn|Yn−1
)

= H
(

Yn−1
)

.

Hence, the mutual information, I(Xn; Yn), is unable to account for how much in-
formation about Xn has been conveyed to Yn through the forward channel [34].
Therefore, when considering the information flow in feedback- and causal systems
the directed information provides a more meaningful measure than the usual mu-
tual information [21].
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A few more important relationships exists between mutual- and directed informa-
tion. However, for the sake of brevity these are referred to Appendix A.3.
For random process we define the directed information rate as the directed infor-
mation per symbol for asymptotically long sequences.

Definition 1.6 (Directed information rate [5, Def. 4.3])
The directed information rate across a system with random input, X, and random
output, Y, is defined as

Ī∞ (X → Y) , lim
n→∞

1
n

n

∑
i=1

I
(

Xi; Yi|Yi−1
)

. (1.12)

As a final remark, pointed out by Massey; causal dependence is quite different
from probabilistic dependence [21]. Since, whether X causes Y, or Y causes X,
then X and Y will be probabilistic dependent [21], i.e.

P(x, y) 6= P(x)P(y). (1.13)

That is, there is no natural directivity in probabilistic dependence, underlining the
symmetry of mutual information [21]. Hence, if X and Y are signals within a sys-
tem with possible feedback, and P(xk, yk−1) 6= P(xk)P(yk−1), we cannot conclude
a non-causal relationship, since feedback is causal. Therefore, care must be taken
when making conclusions on causality in relation to probabilistic terms.

1.3 Lower Bound

In [5, Theo. 4.1] the directed information rate was shown to be a lower bound on
the operational rate of a source coding scheme inside a feedback loop. Since source
coding inside feedback loops requires ZD, we can state this result also for the ZD
source coding setting in Figure 1.4,

RZD ≥ Ī∞ (X → Y) . (1.14)

We do not consider this result in detail here, since we extend this to the MD sce-
nario in Chapter 3.
Now for Gaussian sources the directed information is further minimized by Gaus-
sian reproductions [8], [18], [35] (see Lemma A.22). Then by the results of [8,
sec. III] we arrive at the following definition of an information theoretic ZD RDF1.

1 We note, that several related or equivalent variants exists in the literature, e.g. non-anticipative
RDF [8], sequential RDF [6], causal RDF [16]. However, we have chosen this name for consistency
with classical rate-distortion theory.
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Definition 1.7 (Gaussian information theoretic ZD RDF)
For the stationary vector-valued Gaussian source model in (1.1) with asymptotic
MSE distortion constraint, D > 0, the Gaussian information theoretic ZD RDF is,

RI
ZD,GM(D) , inf

→
QGP(y∞|x∞)

Ī∞ (X → Y) , (1.15)

s.t. lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D

where
→

QGP(y∞|x∞) denotes the sequence of Gaussian conditional test-channel
distributions {PGP(yk|yk−1, xk) : k ∈ N}.

Using this definition we have by [8, Theo. 1] the following lower bounds.

Lemma 1.8 (Inequalities [8, Theo. 1])
For Gaussian sources with asymptotic MSE distortion constraints, the following
bounds hold.

R(D) ≤ RI
ZD,GM(D) ≤ Rop

ZD(D), (1.16)

where R(D) is the classical RDF (Definition C.6).

One of the main results in [8] is a new feedback realization scheme of the opti-
mal test-channel that achieves the lower bound in (1.15). This feedback realization
scheme is one of the key components of the test-channel we introduce in Chap-
ter 4. Before introducing the test-channel of [8] we give a short introduction to the
predictive coding technique of Differential Pulse Code Modulation (DPCM). Readers
familiar with DPCM may skip directly to Section 1.5.

1.4 Differential Pulse Code Modulation

The objective of DPCM is to convert the coding of dependent source samples into
a series of independent encodings [36]. The time-dependence is removed by ways
of prediction. Define the prediction error process

Uk , Xk − X̂k|k−1, (1.17)

where X̂k|k−1 , E[Xk|Yk−1] is the prediction of Xk from all previously reconstructed
values at time k− 1, Yk−1, we can then write the Gauss-Markov source process as

Xk = Uk + X̂k|k−1. (1.18)
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Xk + Q

Q−1

+KF

. . . Q−1 + Yk

KF

+

Uk Ûk Ûk Ũk

X̂k|k−1

YkX̂k|k−1

−

Ũk

Figure 1.3: Block diagram for predictive coding. Figure inspired by [37, p.114].

The prediction error process Uk is an equivalent process to Xk [37]. Therefore,
instead of coding the source process itself we code (quantize) the error process. A
basic block diagram of DPCM is shown in Figure 1.3, where the process Ûk is the
quantized version of Uk, and Ũk is the reconstructed error process after decoding.
We denote the prediction operation by the Kalman Filter (KF) block. At both the
encoder and decoder, the reconstructed source process is then formed by adding
the reconstructed error process to the prediction, i.e.

Yk = Ũk + X̂k|k−1 (1.19)

Combining (1.19) and (1.17) we see that

Xk −Yk = Uk − Ũk. (1.20)

That is, the error between Xk and Yk is equal to the quantization error introduced
in Uk [37]. Especially, we have that the MSE distortion satisfy

D = E
[
(Xk −Yk)

2
]
= E

[(
Uk − Ũk

)2
]

, (1.21)

hence if we determine a coding scheme for the error process, Uk, that achieves dis-
tortion, D, this distortion is also achieved for the source process Xk.

We note that the process {Uk} has some temporal correlation [8], since it is the
error of predicting Xk from the quantized source Yk−1, and not the infinite past
of the clean source Xk

−∞. Hence, {Uk} is only an estimate of the true innovations
process. We may consider DPCM as closed-loop prediction, and prediction of Xk
from the clean source as open-loop prediction [36].

1.5 Test-Channel Realization

The test-channel realization of [8] builds upon the idea of DPCM. However, since
we are in the test-channel domain, i.e. realization of the optimal Gaussian dis-
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tribution, a pre-scaled Additive White Gaussian Noise (AWGN) is used instead of
quantization.

Lemma 1.9 (Realization of PGP(yk|yk−1, xk) [8, Lemma 1, Theo. 2, Theo. 3])
Consider the minimization problem in (1.15). Suppose either A or B in (1.1) are
full rank. Then the following statements hold.

1. The test-channel PGP(yk|yk−1, xk) is realized by the recursion

Yk = HXk + (I − H)AYk−1 + Zk, k ∈ N, (1.22)

where Zk ∼ N (0, ΣZ),

H , I −ΠΛ−1 � 0, Π � 0, Λ � 0, (1.23a)

ΣZ , ΠHT � 0, (1.23b)

Λ = AΠAT + CCT, (1.23c)

and
Π , E

[
(Xk −Yk) (Xk −Yk)

T
]

, (1.24)

is the stationary reconstruction error covariance matrix.

2. The characterization of RI
ZD(D) is

RI
ZD,GM(D) ,min

Π

1
2

log
|Λ|
|Π| , (1.25)

s.t. 0 ≺ Π � Λ,

tr(Π) ≤ D,

where tr(·) is the trace operator.

We highlight some important features of this recursion realization. The test-channel
realization of (1.22) is illustrated in Figure 1.4. Similar to the DPCM scheme, the
encoder does not directly transmit Xk, instead it sends the zero mean prediction
error process,

Uk , Xk − E
[

Xk|Yk−1
]
= Xk − AYk−1, (1.26)

with covariance matrix Λ, i.e.

E
[
UkUT

k

]
= E

[
(Xk − AYk−1) (Xk − AYk−1)

T
]

(1.27)

= E
[

A (Xk−1 −Yk−1 + CWk) (Xk−1 −Yk−1 + CWk)
T AT

]
(1.28)

= AΠAT + CCT, (1.29)
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Figure 1.4: The optimum test channel of [8]. Figure adapted from [8].

The process Ũk is given as

Ũk = HUk + Zk, (1.30)

with covariance matrix

E
[
ŨkŨT

k

]
= HΛHT + ΠHT. (1.31)

By the scalar pre/post-scaled Gaussian test-channel (C.2) and (1.30), we may view
Ũk as the decoder estimate of Uk. This estimate is then combined with the pre-
diction aYk−1 to yield an estimate Yk of Xk. As in the DPCM scheme we have
that

Π = E
[
(Xk −Yk) (Xk −Yk)

T
]
= E

[(
Uk − Ũk

) (
Uk − Ũk

)T
]

. (1.32)

It was shown in [8] that the optimal solution of (1.25) can be determined by
a semidefinite programming approach. This approach was originally explored
in [17]. Furthermore, it was shown that the test-channel may be realized by a
novel equivalent pre- and post-scaled realization scheme that reveals a reverse-
waterfilling solution on the dimensions of Uk [8]. Finally, contrary to standard
rate-distortion results where arbitrarily long sequences are coded, optimality for
the Gaussian ZD RDF is shown for arbitrarily long vectors [8]. We do not elaborate
further on these results, since we consider ZDMD coding of scalar Gauss-Markov
sources in this report.

For stable and stationary scalar Gauss-Markov sources the Gaussian information
theoretic ZD RDF may be derived directly from (1.25) [8]. This result has also been
derived in e.g. [7], [16].



1.5. Test-Channel Realization 25

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
D

0

1

2

3

4
R 

[b
its

 / 
sy

m
bo

l]

Classic RDF & ZD information RDF for stationary scalar GM(1) source
R(D)
R I

ZD, GM(D)
a = 0.7, 2

W = 1

Figure 1.5: Classical non-causal RDF, R(D), and information theoretic ZD RDF, RI
ZD,GM(D), for a

stationary scalar GM(1) source with MSE distortion constraint.

Lemma 1.10 (RI
ZD,GM for scalar-valued GM(1) process [8])

Consider the scalar case of (1.1) with A = a ∈ R and CWk ∼ N (0, σ2
W). Then

Π = D and Λ = a2D + σ2
W , and (1.25) becomes

RI
ZD,GM(D) =

1
2

log
(

a2D + σ2
W

D

)
=

1
2

log
(

a2 +
σ2

W
D

)
(1.33)

For stationary and stable source, i.e. where |a| < 1, it was shown in [16] that

RI
ZD,GM(D) = 0 for D ≥ Dmax =

σ2
W

1−a2 .

This last result implies, zero rate is transmitted when D is larger than the station-
ary variance of Xk, similar to the case of white Gaussian sources (Lemma C.9).
Figure 1.5 illustrates the information theoretic ZD RDF, RI

ZD,GM(D) (1.33), and the
classical RDF, R(D) (Lemma C.11), for a stable stationary scalar Gauss-Markov
source. We see that the classical non-causal code achieves a smaller distortion for
the same rate compared to the ZD code. Therefore, the standard rate-distortion
region only provides a conservative outer bound on the ZD rate-distortion re-
gion [17].
We consider this rate-gain for non-causal codes in the following section.
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1.6 Non-Causal Rate-Gain

We consider how classical rate-distortion theory achieves a lower rate for the same
distortion compared to ZD source coding.
Classical rate-distortion theory imposes no restrictions in terms of delay or causal-
ity on the source- encoders and decoders. Therefore, we also refer to classical
source coding as non-causal source coding.
We note that the following discussion is often given in terms of a rate-loss suffered
by ZD coding, see e.g. [8], [16]. However, we interpret the difference between ZD-
and classical rate-distortion theory as a rate-gain, that may be obtained if we allow
non-causal codes.

The rate-gain for Gaussian sources with memory due to non-causal source cod-
ing, i.e. the difference between the ZD operational RDF, Rop

ZD(D), and R(D) can
be attributed to three factors [8], [16]: the space-filling loss of causal encoders,
decreased distortion due to non-causal filtering, and entropy coding with memory.

Entropy Coding

We recall from lossless entropy coding [13, Ch.5] (see Section B.2.1), that for a
discrete random variable Û ∈ Û , e.g. the quantized source, that codes constructed
based on Shannon coding give an instantaneous code with expected length that
satisfies

H
(

Û
)
≤ E[l] < H

(
Û
)
+ 1. (1.34)

That is, ZD source coding has an expected length at most one bit above entropy.
Now if we allow non-causal coding we may wait and collect a sequence of random
variables Ûn, and jointly entropy code this sequence and normalize by n, we get

H
(

Ûn
)

n
≤ E [Ln]

n
<

H
(

Ûn
)

n
+

1
n

. (1.35)

Hence, the excess one bit is eliminated for long sequences. Thus, by using memory
and joint entropy coding non-causal source coding has a rate-gain of at most one
bit compared to independent memoryless entropy coding in ZD codes.

Quantization

Test-channels provide constructive proofs for designing optimal source codes. By
designing a coding scheme that generates quantization noise distributed as the
AWGN. However, generating Gaussian noise is difficult.
A popular quantization scheme is dithered quantization [38]. We give a short intro-
duced to dithered quantization, for further details we refer to [10, Ch. 4] for a great
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Figure 1.6: Dithered quantization. The encoder adds the dither, U, to the source sample, X, and
quantizes the sum. The decoder subtracts the dither to produce the reconstruction, Y.

review.
A subtractive dither is a random variable U that is both known at the encoder and
decoder in a lossy source code, and if the final reconstruction is given by [10, sec.
4.1],

Y = Q∆(x + U)−U, (1.36)

where Q∆(·) is a scalar uniform quantizer with bin size ∆.
Figure 1.6 illustrates the dithered quantization scheme. The encoder adds the
dither to the source samples prior to quantization. The decoder then subtracts
this dither from the quantized value.
Dithered quantization may also be combined with DPCM, by replacing the quan-
tizer and decoder inside the prediction loop in Figure 1.3 by a dithered quantiza-
tion scheme.
For a random source X the quantization error can be shown to satisfy[10, Theo. 4.1],

[Q∆ (X + U)−U − X] ∼ Unif
[
−∆

2
,

∆
2

]
. (1.37)

That is, the quantization error is uniformly distributed across the fundamental cell
of the quantizer. The above results may be extend to general lattice quantizers, e.g.
vector quantization.
Now considering the divergence [13, Ch. 8] (Definition A.20) between a uniform
random variable, U, and Gaussian random variable, Z, with equal second moments
σ2

Z = σ2
U = ∆2

12 , we have from Lemma A.21,

D (U‖Z) = h (U)− h(Z) (1.38)

=
1
2

log
(
∆2)− 1

2
log
(

2πe
∆2

12

)
(1.39)

=
1
2

log
(πe

6

)
≈ 0.254 bit, (1.40)

where the base of the logarithm2is 2. This is the so-called space-filling loss [16].
In terms of distortion the space-filling loss translates to approximately 1.5 dB [10,
sec. 5.5.3]. This shows, practical source coding schemes that use independent scalar
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Figure 1.7: Pre- and post-filtered predictive coding test-channel of [36], for a stationary Gaussian
source, Xk, with reconstruction Yk. In the test-channel Zk is a white Gaussian process. Figure
modified from [36].

quantization suffers a rate-loss of 0.254 bit compared to the theoretical performance
limits R(D) [10]. However, by using vector quantization this loss may be reduced,
since in high dimensions the quantization noise “looks” Gaussian, in a divergence
sense [10], [39], [40]. Therefore, in non-causal source coding by using memory we
may reduce this loss, by vector quantization of sequences of random variables. That
is, instead of quantizing each source sample individually, a non-causal quantizer
jointly quantizes long sequences of source samples, and thereby eliminates most of
the space-filling loss.

Filtering

It was shown in [41], that the non-causal RDF of a stationary Gaussian process,
R(D) (Lemma C.11), cannot be achieved by encoding its innovation process di-
rectly, i.e. by open-loop prediction [36]. However, recently [36] showed, that the
RDF can be achieved by a pre- and post-filtered DPCM scheme with entropy coding
and a MSE-optimal closed-loop prediction filter. The pre- and post filters facilitate
reverse water-filling by attenuating frequency components with amplitude above
a “noise-floor” to zero [42], see also Appendix C.4.1 for the reverse water-filling
solution. The optimal test-channel realization scheme is shown Figure 1.7, where
the quantization is replaced by an AWGN channel.
The result of [36] shows, that we may achieve the RDF of a Gaussian source with
memory subject to a MSE distortion constraint by appropriate selection of three
filters and an AWGN channel [36]. The central prediction filter is sequential and
hence causal [36]. However, for the test-channel to be optimal at least one of the
pre- and post filters must be non-causal [36]. Thus, they require delay in practi-
cal implementations. Especially, if the pre-filter is causal then the post-filter must
be non-causal, or vice-versa [36]. Thus, in ZD coding these filters can no longer
be optimal. This results in an increased rate for the same distortion, when using

2Throughout the report we take the base of logarithms to be 2, unless otherwise specified.
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causal coders.
In the essence of Kalman Filtering [43, Ch. 6], if we allow non-causal filters the de-
coder may perform smoothing. That is, use both future and past samples, Ũk′ , k′ > k
to estimate Xk. In a causal filter, the decoder can only estimate Xk using the current
and past samples, Ũk. Thus, the non-causal filter achieves a smaller MSE than the
causal filter. This decrease in distortion for the same rate, may also be interpreted
as a rate-gain at a different distortion.

With this introduction to ZD source coding and the recent results of [8], we next
consider MD coding in more detail before presenting our contributions on ZDMD
coding.
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In this chapter we first revisit MD source coding and the MD rate-distortion region
without delay restrictions. We introduce the fundamental results of El-Gamal and
Cover [24] and Ozarow [25]. Particularly we introduce the novel test-channel of
Ozarow [25], this will play an important role in our test-channel for ZDMD coding.
We then present our first new contribution; the combined definition of ZDMD
source coding, which is not available in the literature. Furthermore, we present the
main problem of determining the ZDMD rate-distortion region.

2.1 Multiple-Description Source Code

The two-description MD source coding problem as illustrated in Figure 2.1 consid-
ers the communication of a single source process {Xk} to three receivers over two
noiseless digital channels [22]. The central decoder, (Decoder 0), receives the in-
formation sent over both channels, while the remaining side decoders (Decoder 1
and -2) receive only the information over their respective channels [22]. The re-
construction process produced by decoder i is denoted {Y(i)

k }, i = 0, 1, 2, and the
associated distortions by Di i = 0, 1, 2 [22]. Furthermore, each channel is associated
with a rate, Ri (in bits per source symbol).
As in classical rate-distortion theory the MD source coding problem considers de-
termining the minimum bitrates required to achieve given distortion constraints
on the three reproductions.
In standard MD rate-distortion theory, we are not concerned with delays. Hence,
similar to classical rate-distortion theory we consider the encoding of n-blocks, xn.
Thus, the formal definition of a MD source code follows as an extension of the
classical rate-distortion code (Definition C.1).

Definition 2.1 (Multiple-description source code[44])
For an n-block, Xn, from a discrete-time stationary source Xk ∈ X , a multiple-
description source code consists of an encoder and three decoders.
For each n ∈ N let B(i)

n i = 1, 2 be two predefined sets of at most a countable

31
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Figure 2.1: The MD source coding scenario with two channels and three receivers. The encoder
transmits information across to noiseless digital channels. The central decoder receives informa-
tion transmitted across both channels, the side decoders receive only the information across their
respective channel.

number of codewords. The encoder is specified by the encoding functions

f (i)n : X n → B(i)n , i = 1, 2. (2.1)

The encoder outputs two messages B(i)
n = f (i)n (Xn) with lengths L(i)

n (in bits). The
decoders are specified by the decoding functions

g(i)n : B(i)
n → Y (i),n, i = 1, 2, (2.2a)

g(0)n : B(1)
n ×B(2)

n → Y (0),n, (2.2b)

where Y (i), i = 0, 1, 2 are the reproduction alphabets.
The three resulting reconstructions are,

Y(i),n = g(i)n

(
f (i)n (Xn)

)
, i = 1, 2, (2.3)

Y(i),n = g(0)n

(
f (1)n (Xn) , f (2)n (Xn)

)
. (2.4)

Since the MD source code produces two descriptions, we may associate the MD
with two rates defined analogously to the single description case (Definition C.3).

Definition 2.2 (MD Marginal Rates)
For a stationary discrete-time source {Xk}, the marginal rates associated with
MD source code, measured in bits per source symbol, are

Ri , lim
n→∞

1
n

E
[

L(i)
n

]
, i = 1, 2. (2.5)
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We often refer to a MD source code with marginal rates R1, R2 as a rate-(R1, R2)

MD code [23].
For the central reconstruction Y(0) in a MD source code, the rate of the code is the
total rate of the two descriptions. We call this central rate the sum-rate.

Definition 2.3 (Sum-rate)
For a rate-(R1 R2) MD source code the sum-rate, is the sum of the two marginal
rates, R1, R2, i.e. R1 + R2.

In MD rate-distortion theory we also define the notion of an achievable rate pair
in relation to a MSE distortion constraint.

Definition 2.4 (MD achievable rate pair[23])
A rate pair (R1, R2) is said to be achievable with respect to the MSE distortion con-
straints Di > 0, i = 0, 1, 2, if for sufficiently large n, there exists a rate-(R1, R2)

MD coding scheme (2.1)–(2.4), such that the asymptotic average expected distor-
tions satisfy

lim
n→∞

1
n

n

∑
k=1

E
[
‖Xk −Y(i)

k ‖2
2

]
≤ Di, i = 0, 1, 2. (2.6)

The main problem of MD rate-distortion theory is to determine the fundamental
bound between the set of achievable- and non-achievable rates for a given source
and distortion measure subject to given distortion constraints. Since, we consider
multiple rates and distortions, we distinguish more clearly between a rate-region
and distortion-region.

Definition 2.5 (MD rate-region [14])
For the stationary source process {Xk}, Xk ∈ X , the MD rate-region
RX (R1, R2, D0, D1, D2) is the convex closure of all achievable rate pairs (R1, R2)

with respect to the MSE distortion constraints (D0, D1, D2).

Similar to classical rate-distortion theory we may define a MD distortion-region,
DX(R1, R2, D0, D1, D2) as the set of all achievable distortion triplets for a given rate
pair (R1, R2) [14]. The rate- and distortion regions may be considered as inverses
to each other [14]. Therefore, we often just refer to the MD-region for a given
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source and distortion measure.

As mentioned in the introduction, the MD rate-region has only been completely
determined in few cases [23]. We show the important result of Ozarow for white
Gaussian sources. Ozarow’s test-channel has been instrumental in development of
MD rate-distortion theory, and proves useful for our test-channel design.

2.2 MD Coding of White Gaussian Sources

Before stating the result of [25] we consider the early result of El-Gamal and
Cover [24], who determined an outer bound on the achievable rate-region for the
coding of white scalar Gaussian sources subject to MSE distortion constraints.

Definition 2.6 (El-Gamal and Cover region [24], [44])
For a scalar white Gaussian source X ∼ N (0, σ2

X), let (U(1), U(2)) be any pair of
random variables arbitrarily jointly distributed given X via P(u(1), u(2)|x). Then
an achievable rate-region for the MSE distortion constraints D0, D1, D2 > 0 is
given by the convex closure of all (R1, R2) such that

R1 ≥ I
(

X; U(1)
)

, (2.7a)

R2 ≥ I
(

X; U(2)
)

, (2.7b)

R1 + R2 ≥ I
(

X; U(1), U(2)
)
+ I

(
U(1); U(2)

)
, (2.7c)

and

E
[(

X− E
[

X|U(i)
])2
]
≤ Di, i = 1, 2 (2.8)

E
[(

X− E
[

X|U(1), U(2)
])2
]
≤ D0. (2.9)

This region establishes an information-theoretic outer bound on the MD region of
white Gaussian sources. We also refer to this as a lower bound, since it is given in
terms of lower bounds on the marginal rates and the sum-rate.
Similar to classical rate-distortion theory, achievability is established by determin-
ing the optimum test-channel.

The region in Definition 2.6 is not necessarily convex [24]. However, it is possible
to convexify the region by time-sharing [24]. As a simple example, let (R1, R2) and
(R′1, R2) be two achievable rate-pairs, then it is possible to achieve any pair between
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Figure 2.2: Ozarow’s double branch test-channel [25]. The channel noises Z(1), Z(2) are jointly
zero-mean Gaussian.

them by time-sharing between the pairs. That is, let the first encoder operate with
rate R1 a fraction γ (0 ≤ γ ≤ 1) of the time, and the with the other rate R′1 the
remaining 1− γ fraction of the time. Then the average rate of the first encoder is
γR1 + (1− γ)R′1, and it possible to achieve any average rate between R1 and R′1 by
proper choice of γ [45].

2.2.1 Ozarow’s Test-Channel

To show the tightness, i.e. achievability of the lower bound, Ozarow [25] con-
sidered the double-branch test-channel depicted in Figure 2.2. Here, the white
Gaussian source, X ∼ N (0, σ2

X), is the input to two zero-mean AWGN channels.
The output of these channels, U(i) = X + Z(i), provide the two descriptions of the
source, where Z(i) is the noise on the ith channel. The channel noises are indepen-
dent of X with joint distribution

[
Z1

Z2

]
∼ N

(
0,

[
σ2

Z(1) ρσZ(1)σZ(2)

ρσZ(1)σZ(2) σ2
Z(2)

])
. (2.10)

Where the correlation coefficient ρ ∈ [−1, 1]. Hence, covariance between the de-
scriptions is E[U(1)U(1)] = σ2

X + ρσZ(1)σZ(2) . The decoder source reproductions,
Y(i) i = 0, 1, 2, are given as minimum MSE (MMSE) estimates of X given either
U(1), U(2) or both. Since X and U(i), i = 1, 2 are Gaussian, these are linear esti-
mates [10]. Thus, the post scaling coefficients, θi, i = 1, 2, and θC,i i = 1, 2 are the
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appropriate Wiener coefficients [10, Ch. 4][25].
Ignoring the Wiener coefficients the resulting MSE distortion by using the average
of the two descriptions, U(1), U(2), is,

E

[(
X− 1

2

(
U(1) + U(2)

))2
]
=

1
4

E
[(

Z(1) + Z(2)
)2
]
=

1
4
(
σ2

Z(1) + σ2
Z(2) + 2ρσZ(1)σZ(2)

)
.

(2.11)
Clearly, by selecting ρ < 0, it is possible to reduce the MSE. Particularly, in the
symmetric case of σZ(1) = σZ(2) , choosing ρ = −1 yields zero MSE distortion [46].
This justifies the idea of always choosing a negative correlation [46].

The test-channel also provides a constructive proof for designing optimal source
codes by replacing the additive Gaussian noise with a quantization scheme, that
generates quantization noises distributed approximately as Z(i), i = 1, 2 [46]. How-
ever, it is a non-trivial task to achieve high negative correlation [46]. The main focus
of this paper is not designing practical quantizers, therefore we do not consider this
problem any further here.
Now, using the optimal Wiener coefficients

θi =
σ2

X
σ2

X + σ2
Z(i)

, i = 1, 2 (2.12)

θC,i = σ2
X

σ2
Z(i) − ρσZ(1)σZ(2)

σ2
Z(1)σ

2
Z(2)(1− ρ2) + σ2

X

(
σ2

Z(1) + σ2
Z(2) − 2ρσZ(1)σZ(2)

) , i = 1, 2, (2.13)

and evaluating the various MMSE distortions we have [25],

Di =
σ2

Xσ2
Z(i)

σ2
X + σ2

Z(i)

, i = 1, 2, (2.14a)

D0 =
σ2

Xσ2
Z(1)σ

2
Z(2)(1− ρ2)

σ2
Z(1)σ

2
Z(2)(1− ρ2) + σ2

x(σ
2
Z(1) + σ2

Z(2) − 2σZ(1)σZ(2)ρ)
. (2.14b)

Using these equations to determine the optimal noise variances and correlation,
and calculating the mutual informations in the El-Gamal and Cover region (2.7),
the full characterization of the MD region for white Gaussian sources is given in
[25], [44], [47], and stated in the following lemma.
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2.2.2 White Gaussian MD Rate-Region

Lemma 2.7 (Scalar White Gaussian MD region [25], [44], [47])
For a white Gaussian source, Xk ∼ N (0, σ2

X). The achievable MD region is given
by the set of quintuples (R1, R2, D0, D1, D2) that satisfy

Ri ≥
1
2

log
σ2

X
Di

, i = 1, 2 (2.15)

R1 + R2 ≥
1
2

log
σ2

X
D0

+
1
2

log ψ(σ2
X, D0, D1, D2), (2.16)

where

ψ(σ2
X, D0, D1, D2) =





1, if D0 < D1 + D2 − σ2
X

σ2
X D0

D1D2
, if D0 >

(
1

D1
+ 1

D2
− 1

σ2
X

)−1

σ2
X(σ

2
X−D0)

2

D0

(
(σ2

X−D0)2−
(√

(σ2
X−D1)(σ

2
X−D2)−

√
(D1−D0)(D2−D0)

)2
) , otherwise

(2.17)

The two first cases of (2.17) yield so-called “degenerate” distortions and trivial
lower bounds on the sum-rate [44]. Before considering these special cases we focus
on the last non-degenerate case.
For the non-degenerate distortions, by isolating ρ in (2.14b) the lower bound on the
sum-rate can be expressed as,

R1 + R2 ≥
1
2

log
σ4

X
D1D2

− 1
2

log(1− ρ2). (2.18)

This expression allows for a more intuitive interpretation of the bound. Following
(2.14b) as ρ → −1 we can achieve a smaller central distortion. However, by (2.18),
this decrease in distortion comes at the price of a higher sum-rate.
Figure 2.3 shows the MD rate-region for a white Gaussian source subject to MSE
distortion constraints. The figure shows the outer bound (black line) to the set of
achievable rates for given distortion constraints D0, D1, D2. The horizontal and ver-
tical straight line indicate the individually optimum rates of R1 and R2 respectively.
The linear relationship between R1 and R2 (dashed red line) is called the dominant
face of the region. All rate pairs on the dominant face are jointly optimum, i.e. the
sum-rate, R1 + R2, is minimum and constant, thus the slope is 45 degrees. Any
pair inside the region is inferior to all rate pairs on the dominant face in terms
of compression ratio (minimal rates) [44]. Therefore, to determine an optimum
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Figure 2.3: The MD rate-distortion region for a white Gaussian source with variance σ2
X = 1 for

given distortions D1, D2, D0. The bound on the MD rate-region in black and red. Any rate on the
"inside" is achievable.

source code the search can be restricted to pairs on the dominant face without loss
of generality [27]. We can trade-off between the two individual description rates
on the dominant face while always achieving the desired distortions. This is use-
ful if e.g. each channel is associated with a cost (e.g. power consumption). Then
we can allocate more bits to the cheaper link. The shaded achievable rate region
indicate all achievable rate pairs. That is, for any pair of rates (R1, R2) inside the
shaded area there exists a source coding scheme that can achieve the quintuple
(R1, R2, D0, D1, D2).

If we are given a fixed rate budget, i.e. the sum-rate is fixed, (2.18) shows how
we may trade-off between the bits spend on joint refinement and on the side de-
scriptions. That is, by increasing the amount of bits allocated to refinement in the
central decoder, we may achieve a smaller central distortion, at the cost of a higher
side distortion. This trade-off is illustrated in Figure 2.4 for the symmetric case
of D1 = D2 = DS. As the maximum allowed central distortion is decreased, the
minimum achievable side distortion increases, and vice versa. At the end points,
i.e. maximum side- or central distortion we are the bounds of non-degenerate dis-
tortions.
This possible distortion trade-off is useful when designing a source code for a par-
ticular channel. Let each side channel have a packet-loss probability, p, i.e. either
description is lost with probability p. If both descriptions are lost we assume the
packets are retransmitted, but other error concealment methods are possible [33].
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Figure 2.4: Distortion trade-off curve for a scalar white Gaussian source with fixed sum-rate and
symmetric rates R1 = R2, thus D1 = D2 = DS.

Now if one description is lost the resulting distortion is DS, and if both are received
the resulting distortion is D0. Then the average distortion, Dav, is [33]

Dav =
(1− p)2

1− p2 D0 +
2p(1− p)

1− p2 DS. (2.19)

Thus we can minimize the average (expected) distortion by optimizing the distor-
tion/rate allocation according to the given packet-loss probability and sum-rate
constraint. As p increases it is optimal to reduce DS by allocating more bits to the
side descriptions instead of refinement [33].

Degenerate Distortions

As mentioned, the rate of the central decoder and hence central distortion is the
sum-rate. Therefore, for the central distortion constraint, D0, the trivial lower
bound on the sum-rate is R(D0), since R(D0) is the minimum required rate for any
source code (with- or without multiple descriptions) to achieve distortion D0 [44].
Therefore, the first case of (2.17) is known as no excess sum-rate. That is, no excess
rate is spend beyond the trivial lower bound on the sum-rate.

The second case of (2.17) is called no excess marginal rate. Since no excess rate is
spent beyond the trivial lower bounds on the marginal rates, R(Di), i = 1, 2. Here
the dominant face of the MD region generates to a single point [44].
Here 1

D0
+ 1

σ2
x
− 1

D1
− 1

D2
becomes strictly positive as D0 approaches and grows be-

yond min(D1, D2).
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For D0 ≥ min(D1, D2), the lower bound on the sum-rate is obvious, since if the
central distortion constraint is larger than either of the side constraints there is no
reason to use a central decoder. Thus, we do not need to pay the price of higher
sum-rate due to added correlation between descriptions.
This lower bound also takes effect if D0 is not sufficiently smaller than min(D1, D2).
To see this, consider the symmetric case of (2.14). Here D0 < DS even for ρ = 0.
Thus, we can achieve a smaller central distortion D0 < D1, D2 without spending
any excess rate on correlation.
Going forward it can be assumed without loss of generality (WLOG) that we are
in the non-degenerate case [44].

2.3 Symmetric Distortions

The MD rate-region is often given in terms of bounds on the two marginal marginal
rates, R1, R2, and the sum-rate. However, in the symmetric case of R1 = R2 = R
and D1 = D2 = DS we can define an MD equivalent to the single description RDF.

Definition 2.8 (Symmetric MD RDF [23])
The symmetric MD RDF of the stationary source {Xk} is the minimum rate R per
description, that is achievable with respect to the MSE distortions (D0, DS), i.e.

R(D0, DS) , min R
s.t. (R1, R2) = (R, R) ∈ RX (R1, R2, D0, DS, DS) .

(2.20)

Notice that in the symmetric case the sum-rate is equal to two times the symmetric
rate R, i.e.

R1 + R2 = 2R. (2.21)

Thus in the symmetric case, in order to determine an outer bound on the MD
region it suffices to determine a lower bound on the sum-rate. Leading to the
following expression of an operational MD RDF.
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Definition 2.9 (Operational symmetric MD RDF)
The operational symmetric MD RDF of the source {Xk} is the minimum rate per
description, that is achievable with respect to the MSE distortions (D0, DS), i.e.

Rop (D0, DS) , inf lim
n→∞

1
2n

(
E
[

L(1)
n

]
+ E

[
L(2)

n

])

s.t. lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D0 (2.22)

lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ DS, i = 1, 2,

where the infimum is over possible MD encoder- and -decoder sequences
{ f (1)n }n∈N, { f (2)n }n∈N, {g(0)n }n∈N, {g(1)n }n∈N, {g(2)n }n∈N.

With this introduction of MD source coding in place, we formally present our con-
tributions by first defining zero-delay multiple-description (ZDMD) source coding.

2.4 Zero-Delay Multiple-Description Coding

Combining the definition of a ZD source code (Definition 1.1) and a MD source
code (Definition 2.1) we arrive at the following novel definition.

Definition 2.10 (Zero-Delay Multiple-Description Source Code)
For a discrete-time stationary source {Xk}k∈N, Xk ∈ X , a zero-delay multiple-
description (ZDMD) source code consists of a zero-delay encoder and three zero-
delay decoders.
For each time step k ∈ N let B(i)

k i = 1, 2 be two predefined sets of at most a
countable number of codewords.
The zero-delay encoder is specified by the two sequences of functions { f (1)k , f (2)k :
k ∈ N} , where

f (i)k : B(i),k−1 ×X k → B(i)k , i = 1, 2, (2.23)

and at each time step k ∈ N, the encoder outputs the messages,

B(i)
k = f (i)k

(
B(i),k−1, Xk

)
, i = 1, 2, (2.24)

with lengths l(i)k (in bits), where B(i)
1 = f (i)1 (X1).

The zero-delay decoders are specified by the three sequences of functions
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{g(0)k , g(1)k , g(2)k : k ∈ N}, where

g(i)k : B(i),k → Y (i)
k , i = 1, 2 (2.25)

g(0)k : B(1),k ×B(2),k → Y (0)
k . (2.26)

At each time step k ∈ N the decoders generate the outputs,

Y(i)
k = g(i)k

(
B(i),k

)
, i = 1, 2 (2.27)

Y(0)
k = g(0)k

(
B(1),k, B(2),k

)
, (2.28)

assuming Y(i),k−1, i = 0, 1, 2 have already been generated, with

Y(i)
1 = g(i)1

(
B(i)

1

)
, i = 1, 2

Y(0)
1 = g(0)1

(
B(1)

1 , B(2)
1

)
.

All encoders and decoders process information without delay.

Combining the definitions of rates for ZD- (Definition 1.2) and MD source codes
(Definition 2.2), we may define the rate pair of a ZDMD source code.

Definition 2.11 (Rate pair of ZDMD code)
For each time step, k, let l(i)k be the length in bits of the i’th encoder output in
a ZDMD source code. Then the average expected data-rate pair, (RZD,1, RZD,2),
measured in bits per source samples, are the rates

RZD,i = lim
n→∞

1
n

n

∑
k=1

E
[
l(i)k

]
, i = 1, 2. (2.29)

We suppress the ZD notation on the rates, when it is clear from the context, that
we refer to ZDMD coding.
As in both ZD- and MD source coding we define the notion of achievable rates.

Definition 2.12 (ZDMD achievable rate pair)
A rate pair (R1, R2) of a ZDMD coding source code is said to be achievable with
respect to the MSE distortion constraints Di > 0, i = 0, 1, 2, if the asymptotic
average expected distortions per source symbol satisfy

lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ Di, i = 0, 1, 2. (2.30)
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This immediately leads to a generalization of the MD rate-region (Definition 2.5).

Definition 2.13 (ZDMD rate-region)
For the stationary source process {Xk}, Xk ∈ X , the ZDMD rate-region
RZD

X (R1, R2, D0, D1, D2) is the convex closure of all achievable ZD rate pairs
(R1, R2) with respect to the MSE distortion constraints (D0, D1, D2).

For the symmetric case of, R1 = R2 = R and D1 = D2 = DS, we generalize the
symmetric MD RDF (Definition 2.8) to the zero-delay case.

Definition 2.14 (Symmetric ZDMD RDF)
The symmetric ZDMD RDF for a source, {X}, with MSE distortion constraints,
D0, DS > 0, is

Rop
ZD (D0, DS) , inf R

s.t. (RS, RS) ∈ RZD
X (RS, RS, D0, DS, DS) .

(2.31)

That is the minimum rate RS per description, that is achievable with respect to
the distortion pair (D0, DS).

Similar to classical MD case, we express the operational symmetric ZDMD RDF in
terms of the ZD sum-rate.

Definition 2.15 (Operational symmetric ZDMD RDF)
For a discrete-time stationary source {Xk}, Xk ∈ X , with MSE distortion con-
straints, DS ≥ D0 > 0, the operational symmetric ZDMD RDF is

Rop
ZD (D0, DS) , inf lim

n→∞

1
2n

(
E
[

L(1)
n

]
+ E

[
L(2)

n

])

s.t. lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D0 (2.32)

lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ DS, i = 1, 2,

where the infimum is over possible ZDMD encoder- and -decoder sequences
{ f (1)n }n∈N, { f (2)n }n∈N, {g(0)n }n∈N, {g(1)n }n∈N, {g(2)n }n∈N, i.e. that satisfy (2.23)–
(2.28).

We can now formally state and define the problem considered in this report.
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2.5 Problem Definition

In this report we consider symmetric ZDMD source coding with non-degenerate
MSE distortion constraints, DS ≥ D0 > 0, of the stable stationary scalar Gauss-
Markov source process,

Xk = aXk−1 + Wk, k ∈ N, (2.33)

where |a| < 1 is the deterministic correlation coefficient, X1 ∈ R ∼ N (0, σ2
X1
) with

σ2
X1

=
σ2

W
1−a2 is the initial state, and Wk ∈ R ∼ N

(
0, σ2

W
)
, is an IID Gaussian process

independent of X1.
These design requirements are summarized in following optimization problem.

Problem 1 (Operational symmetric scalar Gaussian ZDMD RDF)
For a stable stationary scalar Gauss-Markov source process (2.33), with non-
degenerate MSE distortion constraints, D0, DS > 0, determine the operational
symmetric ZDMD RDF, i.e. solve the optimization problem:

Rop
ZD (D0, DS) = inf lim

n→∞

1
2n

(
E
[

L(1)
n

]
+ E

[
L(2)

n

])

s.t. lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(0)
k

)2
]
≤ D0 (2.34)

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ DS, i = 1, 2,

where the infimum is over possible ZDMD encoder- and -decoder sequences
{ f (1)n }n∈N, { f (2)n }n∈N, {g(0)n }n∈N, {g(1)n }n∈N, {g(2)n }n∈N, i.e. that satisfy (2.23)–
(2.28).

Unfortunately the solution to Problem 1 is very hard to find, since it is determined
by a minimization over all possible operational ZDMD codes. Similar to single de-
scription ZD rate-distortion, the standard MD region only provides a conservative
outer bound on the ZDMD region, due space-filling losses, memoryless entropy
coding and causal filters.
To obtain a solution to Problem 1, following the standard way of rate-distortion
theory, we introduce an information-theoretic lower bound.
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In this chapter we determine a novel information-theoretic lower bound on the
sum-rate of ZDMD source coding with feedback. To do so, we first formally in-
troduce the ZDMD coding scenario with feedback and side information available
to both encoder and decoder1. Using this lower bound we present an information
theoretic-equivalent of the operational symmetric Gaussian ZDMD RDF. Finally,
we show for stationary scalar Gaussian sources under a sequential greedy coding
constraint, how Gaussian reproductions minimize the information-theoretic lower
bound. Thus providing a lower bound to Problem 1.

Usually in rate-distortion theory with side information, the side information is
random information only available at the decoder that is jointly distributed with
the source, and hence useful for improving the source code [13], [48], [49]. This
information could be some type of state information, e.g. the signal-to-noise ration
(SNR) of a wireless relay channel, where the decoder receives multiple noisy ver-
sions of the source signal, and is able to estimate the SNR which is unknown to the
encoder at the time of transmission [48]. By knowledge of the SNR of the channel
the decoder can perform a better estimate of the source.
In this report, we consider the side information to be independent of the source,
and available at both encoder and decoder. Here the side information is some kind
of meta-data independent of the source, e.g. the formatting setup of an email,
that is independent of the email contents itself. Specifically, we may consider the
current independent dither value of a dithered quantizer as information about the
state of the quantizer. By synchronizing random number generators at the encoder
and decoder it would be possible to generate the same dither (side information)
independent of the source at both encoder and decoder [10].

1We emphasize, this is not side information in the information-theoretic sense of multi-terminal-
or Wyner-Ziv source coding, where the side information is unknown and only available at the de-
coder [13, Sec. 15.9][49].

45
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3.1 ZDMD Coding with Feedback

To establish a lower bound on the sum-rate of a ZDMD source code, we recall [8]
showed in the single description case, that the operational ZD RDF may be lower
bounded using a feedback realization scheme. This information theoretic lower
bound on the operational rate was originally establish in [5] in regards to control
system design with data-rate constraints, i.e. source coding inside feedback loops.
However, we do not consider MD source coding inside feedback loops, only MD
coding with perfect decoder feedback. Therefore, we modify the double branch
MD source coding scenario in Figure 2.1 on page 32 to include feedback from the
decoders, and side information.
This constructive technique allows us to directly replace encoder and decoder
blocks with appropriate AWGN channels and predictors when deriving a test-
channel realization in the following chapter.

We consider the open-loop MD source coding problem with feedback shown in
Figure 3.1. Here the source process {Xk} is completely specified by its known sta-
tistical properties. For each time step k ∈ N the ZDMD encoder, E , observes a new
source sample Xk while assuming it has already observed the past sequence Xk−1.
Furthermore the encoder receives the two reproductions from the previous time
step Y(1)

k−1, Y(2)
k−1 while assuming it has already received the past, Y(1),k−2, Y(2),k−2.

The encoder then produces two binary descriptions B(1)
k , B(2)

k . These are trans-
mitted across two zero-delay error-free digital channels to the three reconstruction
decoders, D0, D1, D2. The decoders each produce an estimate, Y(i)

k , i = 0, 1, 2, of
the source, Xk. The feedback channels are assumed to have a one-sample delay to
ensure the operational feasibility of the system.
In the open-loop system, SE ,k is the side information that becomes available at
time-instance k at the encoder, and similarly SDi ,k is the new side information at
reproduction decoder i. The side information is in the sets SE ,k and SDi ,k respec-
tively.
We now define in detail the operations of the different blocks in Figure 3.1. First at
each time step, k, the encoder, E , has available to it all source samples up to time k,
Xk, and previous reproductions, Y(i),k−1, i = 1, 2. We do not need feedback from
the central decoder, since all information regarding Y(0),k−1 is already contained
in (Y(1),k−1, Y(2),k−1). That is, given the side information, the side decoder repro-
ductions are sufficient statistics for the central reproduction. The encoder then
performs lossy source coding and lossless entropy coding to produce the depen-
dent codewords,

(
B(1)

k , B(2)
k

)
= Ek

(
Xk, Y(1),k−1, Y(2),k−1, Sk

E
)

, k ∈ N (3.1)

with length l(i)k i = 1, 2 (in bits).
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Figure 3.1: A general MD source-coding scenario with feedback.

Since the codewords are transmitted across zero-delay error-free digital channels
to the three decoders, the decoders immediately decode the binary codewords and
produce the estimates of Xk,

Y(1)
k = D(1)

k

(
B(1),k, Sk

D1

)
, (3.2a)

Y(2)
k = D(2)

k

(
B(2),k, Sk

D2

)
, (3.2b)

Y(0)
k = D(0)

k

(
B(1),k, B(2),k, Sk

D1
, Sk
D2

)
. (3.2c)

We now define the ZDMD coding problem with feedback.

Definition 3.1 (ZDMD coding problem with feedback)
For a discrete-time stationary source process {Xk}, with non-degenerate MSE
distortion constraints, D0, D1, D2 > 0. Determine the minimum operational rates
R1, R2 of the ZDMD coding scheme with side information (3.1) and (3.2), such
that the asymptotic average expected distortions satisfy

lim
n→∞

1
n

n

∑
k=1

E
[(

Xk −Y(i)
k

)2
]
≤ DS, i = 1, 2. (3.3)

Where the minimum is over all possible ZDMD encoder- and -decoder sequences
{Ek}k∈N, {D(i)

k }k∈N, i = 0, 1, 2 that satisfy (3.1) and (3.2).
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3.2 Lower Bound on Sum-rate

We now study a lower bound on the sum-rate of the ZDMD coding problem with
feedback that depends only on the joint statistics of the source encoder input X and
the decoder outputs Y(i) i = 0, 1, 2. Our derivation of the lower bound requires the
following assumption.

Assumption 3.2
The systems E ,D(i) i = 0, 1, 2, are causal, described by (3.1)–(3.2), and
({SD1}, {SD2}) ⊥⊥ {Xk}, i.e. the side information is independent of the source
sequence, {Xk}.

We consider this assumption to be reasonable in a ZD scenario, i.e. the encoders
and decoders must be causal and use only past and present symbols, and side
information that is not associated with the transmitted message [5]. Similar to [5]
the channel is the only link between encoder and decoder. However, we further
assume the channel to have perfect feedback.
Furthermore, we require the decoders to be invertible.

Definition 3.3 (Invertible decoder [5, Def. 4.2])
The decoders, D(i), i = 0, 1, 2, defined in (3.2) are said to be invertible if, and

only if, ∀k ∈ N, there exists deterministic mappings G(i)k , i = 0, 1, 2 , such that

B(1),k = G(1)k

(
Y(1)

k , Sk
D1

)
, (3.4a)

B(2),k = G(2)k

(
Y(2)

k , Sk
D2

)
, (3.4b)

(
B(1),k, B(2),k

)
= G(0)k

(
Y(0)

k , Sk
D1

, Sk
D2

)
. (3.4c)

If the decoders are invertible, then for each side decoder, knowledge of the side
information and the output, e.g. (Y(1)

k , Sk
D1
), is equivalent to knowledge of the

side information and the input, (B(1),k, Sk
D1
) [5]. For the single description case, it

is shown in [5], that WLOG we can restrict our attention to invertible decoders.
Furthermore, when minimizing the average data-rate in a causal source coding
scheme, it is optimal to minimize the average data-rate by focusing on schemes
with invertible decoders [5].
The following results and proof are a generalization of [5, Lemma 4.2] to the MD
scenario.



3.2. Lower Bound on Sum-rate 49

Lemma 3.4 (Feedback Markov Chains)
Consider an MD source coding scheme inside a feedback loop as shown in Fig-
ure 3.1. If Assumption 3.2 applies and if the decoders are invertible when given
the side information, then the Markov chain,

Xk∣∣
φ1
−
(

B(1)
k , B(2)

k

) ∣∣
φ1
−Y(0)

k

∣∣
φ1

, k ∈ N, (3.5)

holds, with φ1 =
(

B(1),k−1, B(2),k−1, Sk
D1

, Sk
D2

)
.

Furthermore, let φ2 =
(

B(1),k−1, Sk
D1

)
then,

Y(2)
k

∣∣
φ2
− B(1)

k

∣∣
φ2
−Y(1)

k

∣∣
φ2

, k ∈ N, (3.6)

also holds.
Additionally, for φ3 =

(
B(2),k−1, Sk

D2

)
,

Y(1)
k

∣∣
φ3
− B(2)

k

∣∣
φ3
−Y(2)

k

∣∣
φ3

, k ∈ N, , (3.7)

holds.
Finally, if the decoder side information is mutually independent, i.e.
{SD1} ⊥⊥ {SD2}, the Markov chains,

Y(2),k−1 −Y(1),k−1 − Sk
D1

, k ∈ N, (3.8)

Y(1),k −Y(2),k−1 − Sk
D2

, k ∈ N, (3.9)

hold.

Proof
The Markov chain (3.5) follows, since Y(0)

k depends deterministically upon (B(1),k, B(2),k, Sk
D1

, Sk
D2
).

Similarly, (3.6) holds, since Y(1)
k depends deterministically upon (B(1),k, Sk

D1
). The

Markov chain in (3.7) follows analogously.
By the system equations we have that

(
B(1)

1 , B(2)
1

)
= E1 (X1, ∅, ∅, SE ,1) (3.10)

Y(1)
1 = D(1)

1

(
B(1)

1 , SD1,1

)
(3.11)

Y(2)
1 = D(2)

1

(
B(2)

1 , SD2,1

)
. (3.12)

Since SD1,1 ⊥⊥ SD2,1, it follows that Y(2)
1 ⊥⊥ SD1,1. Furthermore, since SD1,2 ⊥⊥ SD2,1
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then Y(2)
1 ⊥⊥ SD1,2. Hence, (3.8) holds in the initial step. Now in the next time step,

(
B(1)

2 , B(2)
2

)
= E2

(
X2, Y(1)

1 , Y(2)
1 , SE ,2

)
(3.13)

= E2

(
X2,D(1)

1

(
B(1)

1 , SD1,1

)
, Y(2)

1 , SE ,2

)
(3.14)

Y(1)
2 = D(1)

2

(
B(1)

2 , SD1,2

)
(3.15)

Y(2)
2 = D(2)

2

(
B(2)

2 , SD2,2

)
, (3.16)

where we see that Y(2)
2 depends on SD1,1 only through Y(1)

1 . Thus,

Y(2)
2 −Y(1)

1 − SD1,1. (3.17)

By the same arguments as before, we have for the second time step Y(2)
2 ⊥⊥ SD1,2 and

Y(2)
2 ⊥⊥ SD1,3. By the causality of the system components it follows that Y(2),k−1 only

depend on Sk−1
D1

through Y(1),k−1, and by the independence of the side information,
Y(2),k−1 ⊥⊥ SD1,k, thus we get (3.8).
For (3.9), since SD1,1 ⊥⊥ SD2,1, then Y(1)

1 ⊥⊥ SD2,1 and the Markov chain holds in the
initial step. For the next step, since Y(1)

2 depends on SD2,1 only through Y(2)
1 , the

Markov chain holds. Therefore, by the causality of the system components Y(1)
k

only depends on Sk−1
D2

through Y(2),k−1, and because SD1,k ⊥⊥ SD2,k, it follows that

Y(1)
k ⊥⊥ SD2,k. Therefore, (3.9) holds.

�

When using dithered quantization the dither is the side information [50]. For the
correlated noise in relation to Ozarow’s MD test-channel, we do not correlate the
dither signals, but the quantization noise. Thus, the side information of the two
descriptions is mutually independent. Furthermore, for vector quantization there
seems to be no gain from correlating the dither signals [50]. Additionally, if using
MD coding with refinement, i.e. adding a second layer of dithered quantization in
the encoder, this extra dither signal may be included completely in either decoder
side information and still achieve independence. There also seems to be no gain in
correlating this third dither signal with the others [39]. Hence, it is reasonable to
assume the side information is mutually independent.
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We are now ready to state our first main result.

Theorem 3.5 (Lower bound on sum-rate)
Consider a ZDMD source coding problem with feedback (Definition 3.1), as seen
in Figure 3.1. If Assumption 3.2 holds, the decoders are invertible, and the de-
coder side information is mutually independent, then

R1 + R2 ≥ Ī∞

(
X → Y(0)

)
+ Ī

(
Y(1); Y(2)

)
. (3.18)

The second term in (3.18) is the mutual information rate (Definition A.15) between
the side reconstruction processes.
The proof of Theorem 3.5 and the following corollary can be found in Appendix D.

Corollary 3.6 (Alternative lower bound on sum-rate)
Consider a ZDMD source coding problem with feedback (Definition 3.1), as seen
in Figure 3.1. If Assumption 3.2 holds, the decoders are invertible, and the de-
coder side information is mutually independent, then

R1 + R2 ≥ Ī∞

(
X → Y(1), Y(2)

)
+ Ī

(
Y(1); Y(2)

)
(3.19)

Theorem 3.5 and its corollary show, that when imposing zero-delay constraints on
MD coding with feedback, the directed information rate from the source to the
central reconstruction together with the mutual information rate between the side
reconstructions, serve as a lower bound on the associated average data sum-rate.
Thus, relating the operational ZDMD rates to the information-theoretic quantities
of directed- and mutual information rate.
This also shows that the appropriate definition of an information-theoretic sym-
metric ZDMD RDF is given in terms of the directed- and mutual information rate.
To the best of the authors’ knowledge, Theorem 3.5 provides a novel character-
ization between the relationship of the operational sum-rate, and directed- and
mutual information rates, for a ZDMD coding problem with feedback. This result
extends on the novel single-description bound in [5] and the MD results of [24].

In relation to the El-Gamal and Cover region [24] (see Lemma 2.6), our result shows
that the first term in the bound on the ZDMD sum-rate, i.e. the no excess sum-rate,
is given by the directed information rate from the source to side descriptions. That
is, only the causally conveyed information, as would be expected for ZD coding.
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The second term is similar to that of El-Gamal and Cover. That is, the excess rate
must be spend on communicating the mutual information between the side de-
scriptions to reduce the central distortion.

The mutual information term I(Y(1),n; Y(2),n) does not imply a non-causal relation-
ship between Y(1) and Y(2), i.e. that Y(1) might depend on future values of Y(2). It
only implies probabilistic dependence across time [21]. There is feedback between
Y(1) and Y(2), such that information flows between the two descriptions. How-
ever, the information flows in a causal manner, i.e. the past values of Y(1) affect
the future values of Y(2) and vice versa. This is also apparent from the “delayed”
information flow from Y(2),n−1 to Y(1),n in the proof, see (D.7). Therefore, the MD
code must convey this total information flow between the two descriptions to the
central receiver.

3.3 Gaussian Lower Bound

In this section we formally define the information-theoretic symmetric Gaussian
ZDMD RDF, RI

ZD(D0, DS), as a lower bound to Rop
ZD(D0, DS). To this end we present

in more detail the test-channel distribution associated with this minimization. Fi-
nally, we show that Gaussian reproductions minimize the lower bound.

3.3.1 Distributions

We consider a source that generates a stationary sequence Xk = xk ∈ Xk, k ∈ Nn.
The objective is to reproduce or reconstruct the source by Y(i)

k = y(i)k ∈ Y
(i)
k , k ∈ Nn, i = 0, 1, 2,

subject to MSE fidelity criteria d(i)1,n

(
xn, y(i),n

)
, 1

n ∑n
k=1‖xk − y(i)k ‖2

2, i = 0, 1, 2.

Source

We assume the source distribution satisfies conditional independence

P
(

xk|xk−1, y(0),k−1, y(1),k−1, y(2),k−1
)
, P

(
xk|xk−1

)
, k ∈ Nn. (3.20)

This implies there is no feedback from the reproductions, Y(i), to the source X.
Hence, the next source symbol, given the previous symbols, is not further related
to the previous reproductions [21]. We assume the distribution at k = 1 is P(x1).
Furthermore, by Bayes’ rule [8],

P (xn) ,
n

∏
k=1

P(xk|xk−1). (3.21)

For the Gauss-Markov source of process (2.33) this implies {Wk} is independent of
the past reproductions Y(i),k−1, i = 0, 1, 2 [8].



3.3. Gaussian Lower Bound 53

Reproductions

Since there is no feedback from the reproductions to the source, the MD encoder-
decoder pairs from E to Di, i = 0, 1, 2 in Figure 3.1, are causal if, and only if, the
following Markov chain holds [16]:

Xn
k+1 − Xk −

(
Y(0),k, Y(1),k, Y(2),k

)
, ∀k ∈ {1, . . . , n− 1}. (3.22)

Hence, we assume the reproductions are randomly generated according to the
collection of conditional distributions

P
(

y(0)k , y(1)k , y(2)k |y(0),k−1, y(1),k−1, y(2),k−1, xk
)

, k ∈ Nn. (3.23)

For the first time step, k = 1, we assume,

P
(

y(0)1 , y(1)1 , y(2)1 |y(0),0, y(1),0, y(2),0, x1
)
= P

(
y(0)1 , y(1)1 , y(2)1 |x1

)
. (3.24)

3.3.2 Lower Bound

We now formally define the information-theoretic symmetric ZDMD RDF.

Definition 3.7 (Information-Theoretic Symmetric ZDMD RDF)
The information-theoretic symmetric ZDMD RDF, for the stationary Gaussian
source process {Xk}, with MSE distortion constraints, D0, DS ≥ 0, is

RI
ZD (D0, DS) , inf

1
2

Ī∞

(
X → Y(1), Y(2)

)
+

1
2

Ī
(

Y(1); Y(2)
)

,

s.t. lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D0 (3.25)

lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ DS, i = 1, 2,

where the infimum is over all process {Y(i)
k }, i = 0, 1, 2, that satisfy

X∞
k+1 − Xk −

(
Y(0),k, Y(1),k, Y(2),k

)
, ∀k ∈ N. (3.26)

The minimization over all process {Y(i)
k }, i = 0, 1, 2 that satisfy the Markov chain

(3.26), is equivalent to minimization over all sequences of conditional test-channel
distributions {P(y(0)k , y(1)k , y(2)k |y(0),k−1, y(1),k−1, y(2),k−1, xk) : k ∈ N}.
For Gaussian reproductions we have the following optimization problem, which
we show to be an achievable lower bound on Problem 1.
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Problem 2 (Gaussian Information-Theoretic Symmetric ZDMD RDF)
For a stationary Gaussian source {Xk} with MSE distortion constraints,
DS ≥ D0 > 0, the Gaussian information-theoretic symmetric ZDMD RDF is

RI
ZD,GM (D0, DS) , inf

1
2

Ī∞

(
X → Y(1), Y(2)

)
+

1
2

Ī
(

Y(1); Y(2)
)

,

s.t. lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D0 (3.27)

lim
n→∞

1
n

n

∑
k=1

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ DS, i = 1, 2,

where the infimum is over all Gaussian process {Y(i)
k }, i = 0, 1, 2, that satisfy

X∞
k+1 − Xk −

(
Y(0),k, Y(1),k, Y(2),k

)
, ∀k ∈ N. (3.28)

As before, this minimization is equivalent to minimization over all sequences of
Gaussian conditional test-channel distributions

{PGP(y(0)k , y(1)k , y(2)k |y(0),k−1, y(1),k−1, y(2),k−1, xk) : k ∈ N}.

Before showing Gaussian reproductions lower bound the information-theoretic
ZDMD RDF we introduce the following technical conditions required for our proof.

Definition 3.8 (Sequential greedy coding)
Consider the symmetric ZDMD coding problem in Figure 3.1. We say, that we
solve this problem using sequential greedy coding, if sequentially for each time
step k ∈ N: We minimize the bitrate such that the MSE distortion constraints
DS ≥ D0 > 0 are satisfied for each k ∈ N.
That is, sequentially for each k ∈ N, chose the codewords B(i)

k , i = 1, 2 with

minimum codeword lengths l(i)k , i = 1, 2 such that

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D0 (3.29)

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ DS, i = 1, 2. (3.30)

Since in sequential greedy coding we minimize the bitrate for each k ∈ N in the se-
quential order subject to the distortion constraints, this implies for the information
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rates in (3.25), that we minimize the sum

I
(

Xn → Y(1),n, Y(2),n
)
+ I

(
Y(1),n; Y(2),n

)
=

n

∑
k=1

[
I
(

Xk; Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1
)

+ I
(

Y(2)
k ; Y(1)

k |Y(1),k−1, Y(2),k−1
)

+ I
(

Y(1)
k ; Y(2),k−1|Y(1),k−1

)

+ I
(

Y(2)
k ; Y(1),k−1|Y(2),k−1

) ]
,

by sequentially for each k ∈ Nn selecting the optimal test-channel distribution
P
(

y(0), y(1)k , y(2)k |y(1),k−1, y(2),k−1, y(0),k−1, xk
)

subject to the MSE distortion constraints,

E
[∥∥∥Xk −Y(0)

k

∥∥∥
2

2

]
≤ D0 (3.31)

E
[∥∥∥Xk −Y(i)

k

∥∥∥
2

2

]
≤ DS, i = 1, 2,

and fixing this distribution for all following k′ > k.
Furthermore, sequential greedy coding implies, if Ỹ(i)

1 , i = 1, 2 minimizes the initial
mutual informations for k = 1, i.e.

I
(

X1; Y(1)
1 , Y(2)

1

)
+ I

(
Y(2)

1 ; Y(1)
1

)
≥I
(

X1; Ỹ(1)
1 , Ỹ(2)

1

)
+ I

(
Ỹ(2)

1 ; Ỹ(1)
1

)
(3.32)

with equality if Y(i)
1 , i = 1, 2, are distributed as Ỹ(i)

1 , i = 1, 2. Then Y(i)
1 , i = 1, 2,

must be distributed as Ỹ(i)
1 , i = 1, 2, for all k > 1. Particularly for k = 2,

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)
+ I

(
Y(2)

2 ; Y(1)
1 |Y

(2)
1

)

= I
(

X2; Y(1)
2 , Y(2)

2 |Ỹ
(1)
1 , Ỹ(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Ỹ

(1)
1 , Ỹ(2)

1

)
+ I

(
Y(1)

2 ; Ỹ(2)
1 |Ỹ

(1)
1

)
+ I

(
Y(2)

2 ; Ỹ(1)
1 |Ỹ

(2)
1

)
,

where, Ỹ(i)
1 , i = 1, 2, is inserted on both sides of the conditioning. In the Gaussian

source case, we speculate the sequential greedy condition provides the same result
as selecting the optimal joint distribution across all k, i.e. when the distribution of
Y(i)

k is allowed to change for any k′ > k. However, we have not been able to prove
this.
The sequential greedy condition also sits well within the the ZD perspective. Since
we must send the optimum description that minimizes the rate while achieving
the desired distortion at each time step.

We also need the following condition on the MMSE predictors.
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Definition 3.9 (Conditional prediction residual independence)
Let {Xk}k∈N be a stationary source process, and let {Y(1)

k }k∈N and {Y(2)
k }k∈N be

stationary arbitrarily distributed reproduction processes. We say the MMSE re-
production processes have conditional prediction residual independence if the MMSE
prediction residuals satisfy for all k ∈ N,

Y(i)
k − E

[
Y(i)

k |Y(1),k−1, Y(2),k−1
]
⊥⊥
(

Y(1),k−1, Y(2),k−1
)

, i = 1, 2, (3.33)

Y(i)
k − E

[
Y(i)

k |Y(i),k−1
]
⊥⊥ Y(i),k−1, i = 1, 2, (3.34)

Y(i)
k − E

[
Y(i)

2 |Y(j),k−1
]
⊥⊥ Y(j),k−1, i 6= j, i, j ∈ {1, 2}. (3.35)

That is, the residuals are independent of the conditioning prediction variables.

For mutual informations the conditional prediction residual independence implies

I
(

Y(1)
k − E

[
Y(1)

k |Y(1),k−1
]

; Y(2)
k − E

[
Y(2)

k |Y(1),k−1
] ∣∣Y(1),k−1

)

=I
(

Y(1)
k − E

[
Y(1)

k |Y(1),k−1
]

; Y(2)
k − E

[
Y(2)

k |Y(1),k−1
])

.

Particularly, if {Y(i)
k }, i = 1, 2 are Gaussian then the MMSE predictors have condi-

tional prediction residual independence by the orthogonality principle [51, p. 45].
Using these predictors may add to the rate, since we limit the amount of possible
predictors. That is, by not imposing this condition we may achieve a smaller dis-
tortion for the same rate by minimizing over all possible MMSE predictors.

We are now ready to state the other main result of this chapter.

Theorem 3.10 (Gaussian bound for scalar sources)
Let {Xk}k∈N be a stable stationary scalar Gaussian process (2.33), with MSE dis-
tortion constraints, DS ≥ D0 > 0. Then under the sequential greedy coding
condition (Definition 3.8), and if the reproduction sequences {Y(i)

k }, i = 1, 2, sat-
isfy conditional prediction residual independence (Definition 3.9), the following
inequality holds

RI
ZD,GM(D0, DS) ≤ RI

ZD(D0, DS). (3.36)

The proof of Theorem 3.10 can be found in Appendix E.
Theorem 3.10 shows, that for scalar stationary Gaussian sources under sequential
greedy coding and MSE distortion constraints, Gaussian reproduction processes
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minimizes the information theoretic symmetric ZDMD RDF. That is, the mutual
informations between the source and side reproductions, and the mutual infor-
mation between the side reproductions are minimized by Gaussian reproductions.
This would generally be expected, since this is the case for single description ZD
source coding [8]. The main difficulty in showing this, and the reason for the
technical conditions, is the second term of (3.25) and showing that the side repro-
ductions should be jointly Gaussian in all time steps.
To the best of the authors’ knowledge this is a novel result, that has not been
documented in any publicly available literature. Similar results exists for single-
description ZD source coding [8] and for classical MD coding of white Gaussian
sources [52].

Finally, by Theorem 3.5 and Theorem 3.10 we have the following corollary, showing
Problem 2 as a lower bound to Problem 1.

Corollary 3.11
Let {Xk}k∈N be a stable stationary scalar Gaussian process (2.33), with MSE dis-
tortion constraints, DS ≥ D0 > 0. Then under the sequential greedy coding
condition (Definition 3.8), and if the reproduction sequences {Y(i)

k }, i = 1, 2, sat-
isfy conditional prediction residual independence (Definition 3.9), the following
inequalities hold

RI
ZD,GM(D0, DS) ≤ RI

ZD(D0, DS) ≤ Rop
ZD(D0, DS). (3.37)

With this information theoretic lower bound on Rop
ZD(D0, DS), we now derive an

optimal test-channel realization scheme, that achieves the lower bound.
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In this chapter we introduce a feedback realization of the optimal test-channel for
the Gaussian information-theoretic symmetric ZDMD RDF, RI

ZD,GM(D0, DS). This
test-channel is based on the ZDMD coding problem with feedback in Figure 3.1
and the feedback realization scheme of [8] (Section 1.5). Finally, we present a char-
acterization of RI

ZD,GM(D0, DS) as the solution to an optimization problem. This
provides an achievable lower bound to Problem 1 in a Gaussian coding scheme.

4.1 Source Process

We consider the scalar stationary Gauss-Markov source process, Xk, on the form,

Xk+1 = aXk + Wk, k ∈ N (4.1)

where |a| < 1 is the correlation coefficient of the process, X1 ∈ R ∼ N (0, ΣX1)
1

is the initial state with ΣX1 = ΣW
1−a2 , and Wk ∈ R ∼ N (0, ΣW), is an IID Gaussian

process independent of X1.

4.2 Predictive Coding

For each side channel we follow the feedback realization of [8, Theorem 2] as
introduced in Section 1.5. Hence, the reproduction sequence of the optimum test-
channel is realized by

Y(i)
k = hXk + (1− h)aY(i)

k−1 + Z(i)
k , (4.2)

where Z(i)
k ∼ N (0, ΣZS),

h , 1− πSλ−1, (4.3)

ΣZS , πSh, i = 1, 2, (4.4)

λ = a2πS + σ2
W . (4.5)

1For a more consistent notation throughout this chapter, we denote most variances and covari-
ances with uppercase Σ, although all variables are scalar.

59
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Here λ is the variance of side error process,

U(i)
k , Xk − E

[
Xk|Y(i),k−1

]
,

= Xk − aY(i)
k−1, i = 1, 2. (4.6)

Furthermore, πS, is the MSE for the estimation of Xk and U(i)
k , i.e.

πS , E
[(

Xk −Y(i)
k

)2
]
= E

[(
U(i)

k − Ũ(i)
k

)2
]

, i = 1, 2, (4.7)

where Ũ(i)
k is the innovation process,

Ũ(i)
k , Y(i)

k − E
[
Y(i)

k |Y(i),k−1
]

(4.8)

= hU(i)
k + Z(i)

k , i = 1, 2, (4.9)

with variance,

ΣŨ = h2λ + πSh. (4.10)

As in the single-description case the innovation process, Ũ(i)
k i = 1, 2, can be viewed

as the ith side decoders estimate of U(i)
k .

We also define a central description of the innovations as the average of the two
side innovation processes,

VC,k ,
1
2

(
Ũ(1)

k + Ũ(2)
k

)
. (4.11)

Finally, we have that

Z(1)
k ⊥⊥ Z(2)

l ∀k 6= l

Z(i)
k ⊥⊥ Z(i)

l ∀k 6= l, i = 1, 2

Z(i)
k ⊥⊥ U(j)

l ∀k, l, i, j ∈ {1, 2},

and the joint test-channel noise distribution is
[

Z(1)
k

Z(2)
k

]
∼ N (0, ΣZ) , (4.12)

where

ΣZ =

[
πSh ρπSh

ρπSh πSh

]
. (4.13)

Figure 4.1 on page 62 illustrates this feedback realization scheme for the optimum
test-channel. We note that the test-channel in Figure 4.1 differs from the usual MD
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double-branch test-channel, since the encoder does not create the two descriptions
by adding correlated noises directly to the source, i.e. to the same input. Instead the
test-channel consists of two branches each consisting of a DPCM scheme, where
the correlated noises are added to the two already correlated closed-loop predic-
tion error signals.
We also note the clear resemblance between the ZDMD coding problem in Fig-
ure 3.1 and the test-channel in Figure 4.1a. This shows, how the general ZDMD
coding problem and its lower bound provides a constructive result that is conve-
niently extended to an optimum test-channel realization.
Before we discuss the central decoder design, the following lemma provides a
useful list of covariances between the signals in the feedback coding scheme of
Figure 4.1.

Lemma 4.1 (Covariances)
Let {Xk} be a stable stationary scalar Gauss-Markov process as in (4.1) with sta-
tionary variance Var [Xk] = ΣX. Using the feedback coding scheme of Figure 4.1,
then the following covariances hold:

ΣXY , Cov
[

Xk, Y(i)
k

]
=

h
1− a2(1− h)

ΣX, i = 1, 2, (4.14)

ΣXVC , Cov [Xk, VC,k] = h
(
ΣX − a2ΣXY

)
, (4.15)

ΣY , Var
[
Y(i)

k

]
=

h2ΣX + 2a2h (1− h)ΣXY + ΣZS

1− a2(1− h)2 , i = 1, 2, (4.16)

ΣY(1)Y(2) , Cov
[
Y(1)

k , Y(2)
k

]
=

h2ΣX + 2a2h(1− h)ΣXY + ΣZ(1)Z(2)

1− a2(1− h)2 (4.17)

ΣU(1)U(2) , Cov
[
U(1)

k , U(2)
k

]
= ΣX + a2 (ΣY(1)Y(2) − 2ΣXY) (4.18)

ΣUVC , Cov
[
U(i)

k , VC,k

]
=

1
2

h (λ + ΣU(1)U(2)) , i = 1, 2 (4.19)

ΣVC , Var [VC,k] =
1
2
(
ΣŨ + h2ΣU(1)U(2) + ΣZ(1)Z(2)

)
. (4.20)

The proof of Lemma 4.1 can be found in Appendix F.

4.3 Central Decoder Design

The ZDMD encoder creates the two descriptions by pre-scaling and adding cor-
related noises to the two prediction error process, U(1)

k , U(2)
k , resulting in the two

innovation processes, Ũ(1)
k , Ũ(2)

k , as the decoder estimates of U(1)
k , U(2)

k . The central
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Figure 4.1: Feedback realization of the optimum test channel for RI
ZD,GM(D0, DS).
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decoder receives both innovation processes. Since, the additive noises are corre-
lated, the central decoder can provide better estimates of U(1)

k , U(2)
k than either of

the side decoders, resulting in an overall lower central distortion. Therefore, we
start by deriving a joint estimate of the prediction error processes.

4.3.1 Joint Estimation of Error Process

At each time step, k, the central decoder receives the two innovation processes
Ũ(1)

k , Ũ(2)
k . By taking the average of these we get the central innovations description

VC,k. In the central decoder, the MMSE estimator of U(i)
k given VC,k is then[51],

Û(i)
k , E

[
U(i)

k |VC,k

]
= ΘUVC,k, (4.21)

where
ΘU , ΣUVC Σ−1

VC
. (4.22)

4.3.2 Joint Estimation of Source

Using the central decoder estimates of U(1)
k , U(2)

k we can now provide a better esti-

mate of the source Xk. Initially, for each side-decoder prediction, aY(i)
k−1, let

Y(i,C)
k , Û(i)

k + aY(i)
k−1, i = 1, 2, (4.23)

= ΘUVC,k + aY(i)
k−1, (4.24)

be the improved central estimates of Xk for each side-decoder prediction. However,
since Y(1) and Y(2) are also correlated we can improve the central decoder estimate
Xk by taking the following average, which is not necessarily the optimal estimator,

Y(0,C)
k ,

1
2

(
Y(1,C)

k + Y(2,C)
k

)
(4.25)

=
1
2

(
Û(1)

k + aY(1)
k−1 + Û(2)

k + aY(2)
k−1

)
, (4.26)

= ΘUVC,k +
1
2

a
(

Y(1)
k−1 + Y(2)

k−1

)
. (4.27)

4.3.3 MMSE Estimate Using Y(0,C)

The central source description, Y(0,C)
k is not the joint MMSE estimate of Xk, since

we only take an average in (4.27). The joint MMSE estimate of Xk given Y(0,C)
k is

Y(0)
k , E

[
Xk|Y(0,C)

k

]
= Θ0Y(0,C)

k , (4.28)
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with MSE
π0 = ΣX − Σ2

XY(0,C)Σ−1
Y(0,C) , (4.29)

where

Θ0 ,
ΣXY(0,C)

ΣY(0,C)
, (4.30)

ΣXY(0,C) , Cov
[

Xk, Y(0,C)
k

]
, (4.31)

ΣY(0,C) , Var
[
Y(0,C)

k

]
. (4.32)

The covariance between Xk and Y(0,C)
k as well as the variance of Y(0,C)

k is given in
the following lemma.

Lemma 4.2 (Central-reproduction covariances)
Let {Xk} be a stable stationary scalar Gauss-Markov process as in (4.1). Using
the feedback coding scheme of Figure 4.1, and joint decoder description (4.27),
the following covariances hold

ΣXY(0,C) = ΘUΣXVC + a2ΣXY (4.33)

ΣY(0,C) = Θ2
UΣVC +

1
2

a2 (ΣY + ΣY(1)Y(2))

+ a2hΘU (ΣXY − ΣY(1)Y(2)) , (4.34)

where ΘU is defined in (4.22), and ΣVC , ΣXVC , ΣXY, ΣY, ΣY(1)Y(2) are defined in
Lemma 4.1.

The proof of Lemma 4.2 can be found in Appendix G.
The central decoder design is illustrated in Figure 4.1b. For each time step k, the
central decoder takes the two innovation processes, Ũ(i)

k , i = 1, 2 as input. These
are averaged to create the central description VC,k. In the previous time step, the
local side decoders produced the side reconstructions, Y(i)

k−1, i = 1, 2, such that the

central decoder has the predictions aY(i)
k−1 i = 1, 2 available when producing the

central estimate, Y(0)
k , according to equations (4.27) and (4.28).

4.4 Rates

We now determine the achievable sum-rate for the test channel.
Initially using Corollary 3.6, we have for each time step k the mutual informations



4.5. Scalar Lower Bound Theorem 65

in the definition of RI
ZD,GM(D0, DS) (3.27),

I
(

Xk; Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1
)
+ I

(
Y(2)

k ; Y(1),k|Y(2),k−1
)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

.

(4.35)

Expressing the mutual informations using the differential entropy, we have

(4.35) = h
(

Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1
)
− h

(
Y(1)

k , Y(2)
k |Y(1),k−1, Y(2),k−1, Xk

)

+ h
(

Y(2)
k |Y(2),k−1

)
− h

(
Y(2)

k |Y(1),k, Y(2),k−1
)

+ I
(

Y(1)
k ; Y(2),k−1|Y(1),k−1

)

= h
(

Y(1)
k |Y(1),k−1, Y(2),k−1

)
− h

(
Y(1)

k , Y(2)
k |Y(1),k−1, Y(2),k−1, Xk

)

+ h
(

Y(2)
k |Y(2),k−1

)
+ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

= h
(

Y(2)
k |Y(2),k−1

)
+ h

(
Y(1)

k |Y(1),k−1
)
− h

(
Y(1)

k , Y(2)
k |Y(1),k−1, Y(2),k−1, Xk

)
.

Comparing the test channel of Figure 4.1 to the general ZDMD source coding
scenario with feedback in Figure 3.1, we have

h
(

Y(i)
k |Y(i),k−1

)
= h

(
Ũ(i)

k

)
=

1
2

log (2πeλh) (4.36)

and

h
(

Y(1)
k , Y(2)

k |Y(1),k−1, Y(2),k−1, Xk
)
= h

(
Z(1)

k , Z(2)
k

)
=

1
2

log (2πe|ΣZ|)

=
1
2

log
(
2πe

(
π2

Sh2 (1− ρ2))) .

(4.37)

Thus, the achievable symmetric sum-rate is,

R1 + R2 =
1
2

log (2πeλh) +
1
2

log (2πeλh)

− 1
2

log
(
2πe

(
π2

Sh2 (1− ρ2))) (4.38)

=
1
2

log
λ2h2

π2
Sh2 (1− ρ2)

(4.39)

= log
λ

πS
− 1

2
log
(
1− ρ2) . (4.40)

4.5 Scalar Lower Bound Theorem

Summarizing the above derivations we present the following characterization of
the Gaussian information theoretic symmetric ZDMD RDF.
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Theorem 4.3 (Characterization of RI
ZD,GM(D0, DS))

Consider the stationary scalar AR(1) process of (4.1). Given non-degenerate
MSE distortion constraints, (DS, D0), where 0 < D0 ≤ Ds ≤ ΣX, the Gaussian
information-theoretic symmetric ZDMD RDF, RI

ZD,GM(D0, DS), is characterized
by the solution to the following optimization problem.

minimize
{πS,ρ0}

1
2 log λ

πS
− 1

4 log
(
1− ρ2

0
)

subject to −1 ≤ ρ0 ≤ 0
0 ≤ πS ≤ λ

0 ≤ πi ≤ Di, i = 0, S,

(Pscalar)

where

λ = a2πS + σ2
W , (4.41)

π0 = ΣX − Σ2
XY(0,C)Σ−1

Y(0,C) , (4.42)

and ΣXY(0,C) , ΣY(0,C) are defined in Lemma 4.2.

Remark 4.4 (Uniqueness of optimal solution)
We argue that the optimal solution to (Pscalar) should be unique.
Firstly, the objective function in (Pscalar) can be shown to be convex in πS and
ρ0. Furthermore, the slope of the objective is negative for all πS < 0 and
−1 < ρ0 ≤ 0. Thus, it decreases monotonically towards a minimum.
Additionally, for non-degenerate distortions there should be equality in the dis-
tortions bounds, and since every ρ0 indicates a certain trade-off point on the
dominant face of the rate-distortion region, the minimum should be unique for
every fixed ρ0.
Thus, we conjecture the minimum to be unique. However, we have not yet been
able to finally prove the uniqueness of the optimal solution to (Pscalar).

This completes the theoretical work on the lower bound to Problem 1, as the solu-
tion to (Pscalar). Thus, for stationary scalar Gaussian sources in a Gaussian coding
scheme, i.e. a source code that achieves the correctly distributed Gaussian noise,
we have determined an achievable lower bound to Rop

ZD(D0, DS), characterized by
the (unique) solution to an optimization problem.

We now compare this theoretical lower bound to an operational achievable perfor-
mance.
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This chapter introduces the simple ZDMD coding scheme of [33]. Although this
scheme was not developed specifically for ZDMD only MD coding, it serves as a
proof of concept, showing that we are able to achieve different rate-distortion pairs
inside the ZDMD achievable region. We do not attempt to achieve the lower bound
or derive an exact upper bound.
We give a short introduction to MD coding schemes in general, and introduce the
concept of staggered quantization. We then introduce the coding scheme of [33]
implemented in this report.
Through numerical simulations we show, it is possible to achieve operational per-
formance within 3 dB to 5 dB of the theoretical lower bound in the high-rate sce-
nario using this simple quantization scheme.

Test-channels in general provide a basis for the design of practical coding schemes.
For example, the AWGN channels in Ozarow’s test-channel may be replaced by
quantizers producing quantization noise distributed similar to the test-channel
noises. However, it is a non-trivial task to produce quantization noise with high
negative correlation in practice [46].
One possibility is to use staggered scalar uniform quantization, that is two iden-
tical uniform quantizers, one per channel, with an offset of half a cell size [46].
Using staggered quantization it is possible to achieve a maximum noise correla-
tion of −1/2 [50]. However, this correlation cannot increase any further, not even
by using dithered quantizers with correlated dithers [50].
There exists some schemes, not designed by direct consideration of Ozarow’s test-
channel, that are able to achieve correlation that tends towards −1 [46]. The delta-
sigma quantization scheme [53] uses multiple quantizers and noise shaping. How-
ever this scheme also requires up-sampling of the source signal, and is thus not
useful for ZDMD coding. In the high-rate scenario and when the side- to central
distortion ratio is high (DS/D0 � 1), so-called index-assignments achieve high cor-
relation by high-rate quantization and a non-linear mapping, that maps each fine
grid point to two descriptions [54]. However, it is not easy to design and adjust
the redundancy in the index assignment scheme [55]. In [56] a modified MD scalar

67
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quantizer scheme is developed using two-stage quantization with staggered quan-
tizers. This scheme avoids the index-assignment problem and still achieves the
same high-rate performance.
These schemes and many other MD coding schemes in general produce two de-
scriptions with the desired correlation by direct operations on the source signal.
Similar to Ozarow’s test-channel where correlated noise is added directly to the
source signal. However, our ZDMD test-channel forms two prediction error sig-
nals and adds test-channel noise to these signals. Thus, we form two descriptions
from two correlated signals. Therefore, many existing schemes are not directly
applicable to our test-channel. This is somewhat expected, since ZDMD coding is
mostly an unexplored problem until now.
Fortunately, the scheme of [33] considers specifically MD predictive coding by ex-
tending upon the work of [56]. The very simple scheme in [33] is developed for
the high-rate scenario and shows good performance. This scheme aligns well with
our test-channel, since it performs staggered quantization of two prediction error
process, and uses a refinement layer for further central distortion gain. We do not
modify this scheme in any particularly way, but introduce it as a very simple proof
of concept, showing we may achieve good operational performance in ZDMD cod-
ing using very simple techniques.
The scheme in [33] uses two DPCM schemes with staggered quantization and a
second-stage refinement quantizer. Before introducing the scheme we give a short
introduction to staggered quantization.

5.1 Staggered Quantizers

Consider a white Gaussian source process Xk ∼ N (0, σ2
X). The idea behind stag-

gered quantizers is to overlap the quantization intervals of two identical uniform
quantizers, such that the two staggered quantizer outputs may be combined to re-
fine each other.
Let,

Q1,∆(x) = Round
( x

∆

)
· ∆ (5.1)

Q2,∆(x) = Round
(

x + δ

∆

)
· ∆− δ, (5.2)

be two staggered scalar uniform quantizers, where ∆ is the step size of the two
quantizers, and δ is the offset between the quantizers. Denote by,

Y(i)
k = Qi,∆(Xk), i = 1, 2, (5.3)

the output of the two quantizers for the source input Xk. Then the resulting quan-
tization intervals and their overlap are shown in Figure 5.1.
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Y
(1)
k

Y
(2)
k

•

•

Xk

X

X

δ∆

Figure 5.1: Quantizer partitions for Xk using two staggered uniform quantizers.

For sufficiently high rates, (i.e. small ∆), the source is approximately uniformly
distributed within each quantizer cell [10]. Hence, the optimal reconstruction of
Xk using the two staggered quantizer outputs is 1

2 (Y
(1)
k +Y(2)

k ), i.e. the midpoint of
the intersection between the cells that Xk belongs to [33]. Let

EC,k = Xk −
1
2
(Y(1)

k + Y(2)
k ), (5.4)

be the error signal when using the midpoint reconstruction. Then, under the high
rate assumption the MSE of this central reconstruction is [33]

E
[
E2

C,k
]
=

δ

∆
δ2

12
+

∆− δ

∆
(∆− δ)2

12
(5.5)

=
1

12∆

(
δ3 + (∆− δ)3

)
(5.6)

The MSE is then minimized when the quantizer overlap is δ = ∆/2 [33]. Particu-
larly, the MMSE is

D0 = E
[
E2

C,k
]
=

1
4

∆2

12
=

1
4

DS (5.7)

where DS is the MSE of the first stage quantizer errors,

E(i)
k = Xk −Y(i)

k , i = 1, 2, (5.8)

that is,

DS = E
[(

E(i)
k

)2
]
=

∆2

12
. (5.9)

Thus, using the central reconstruction of the two staggered quantizers there is
a gain of DS/D0 = 6 dB compared to the individual reconstructions [50]. This,
shows, the advantage of staggered quantization, since this gain is achieved without
spending any extra bits on improving the central reconstruction.
Finally, it can be shown that the correlation of the quantization noises, E(i)

k i = 1, 2
is ρ = −1/2 [50].
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5.2 The Scheme of [33]

The scheme in [33] is derived for the main source process of consideration in this
report. That is, the scalar stationary first-order Gauss-Markov sources of the form,

Xk = aXk−1 + Wk, k ∈ N (5.10)

where |a| < 1 is the correlation coefficient of the process, X1 ∈ R ∼ N
(

0, σ2
X1

)

is the initial state with σ2
X1

=
σ2

W
1−a2 , and Wk ∈ R ∼ N

(
0, σ2

W
)
, is an IID Gaussian

sequence independent of X1.

The main idea of [33] is to use two DPCM encoders with staggered quantizers, Q1

and Q2 in a base layer and a third second-stage refinement quantizer Q0.
Since quantization in the DPCM encoders is applied to the prediction error signals,
U(1)

k , U(2)
k , and not on Xk, simple staggered quantizers will not generate the desired

partitions for Xk. This happens because

Xk = U(i)
k + X̂(i)

k|k−1, i = 1, 2, (5.11)

results in the quantizer partitions for Xk and U(i)
k being shifted by the DPCM pre-

diction X̂(i)
k|k−1 [33]. Hence, the prediction step must be designed along with the

quantizers [33].
For a given prediction X̂(i)

k|k−1 the resulting partitions on Xk should be as in Fig-
ure 5.1. That is, with optimal quantization bin overlap of ∆/2. We can guarantee
this if the predictions satisfy X(1)

k|k−1 − X(2)
k|k−1 = ±∆/2 [33]. Therefore, the solution

proposed in [33] is to use the sub-optimal predictors Y(i)
k−1 instead of the optimal

predictors aY(i)
k−1, i.e. letting

U(i)
k = Xk −Y(i)

k−1, i = 1, 2, (5.12)

as seen in Figure 5.2. Then Y(1)
k−1 −Y(2)

k−1 = ±∆/2, since X(1)
k|k−1 = Y(1)

k−1. Thus, if the
offset is optimal at time k− 1 it will be optimal at time k [33]. Therefore, the optimal
shifted quantizer need only be used in the first time step if we let Y(i)

0 = 0, i = 1, 2,
and then use non-staggered identical uniform quantizers for all k > 1 [33].

5.2.1 Optimal Predictors

If we use the optimal predictors in the scheme of [33] and want to maintain
Y(1)

k −Y(2)
k = ±∆/2 for all k, then the quantizers must be offset by

δ = sign
(

Y(1)
k−1 −Y(2)

k−1

) (1− a)∆
2

, (5.13)
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Xk ∈ R

+ Q1 EC

Q−1
1

+z−1 1/2

Q0+ EC 1 : 2
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+ U

(1)
k U

∆,(1)
k

−

Y
(1)
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Y
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−
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Q−1
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+z−1 1/2

Packet2
+

U
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∆,(2)
k

−
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−

Y
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Figure 5.2: The two-stage staggered DPCM quantization scheme. The two first-stage quantizers Q1
and Q2 are staggered identical uniform quantizers. Here EC denotes lossless (entropy) encoders. The
binary description packets are formed by entropy coding each side quantizer output and splitting
the entropy coded second stage quantizer output in two. Figure modified from [33].

for all k [33]. This may be achieved by fixing the partition for Q1 and shifting that
of Q2 for each k [33].
However, this results in a 1 bit increase in the entropy of U∆,(2)

k , i.e. the quan-

tized U(2)
k . As remarked in [33]; if only the second description is available, Y(1)

k−1 is

unknown and an extra bit about the sign of Y(1)
k−1 − Y(2)

k−1 must be included in the

second description to reconstruct U(2)
k and Y(2)

k from U∆,(2)
k . This will significantly

reduce the coding efficiency of the method, especially at low rates.
This added extra bit makes it impossible to have symmetric rates. Although the
side distortions are the same. Furthermore, since ZD source coding already suffers
from an increased bitrate we do not use the optimal predictors. Using either pre-
diction (non-optimal and optimal) and the appropriate shift the resulting quantizer
noise correlation is −1/2. If we do not shift the partition for each k in the optimal
prediction scenario, the resulting correlation is approximately zero.

5.2.2 Prediction Error Covariance

For high-rate quantization the source is approximately uniformly distributed within
each quantization cell [10]. Therefore, it is common to model the quantization error
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as a uniform noise independent of the quantizer input [10], i.e.

U(i)
k −Qi,∆S

(
U(i)

k

)
= Z(i)

k ∼ U
(
−∆S

2
,

∆S

2

)
, (5.14)

where we denote the first-stage quantizer intervals by ∆S. Therefore, for high rates
the error in the first stage quantizers is uniform with variance,

ΣZS =
∆2

S
12

. (5.15)

However, this model is strictly speaking untrue for deterministic quantization [10],
i.e. with no dithering. Using dithered quantization this model can be shown to
be accurate for any quantization resolution [10]. Although the effect of the dither
subsides for higher rates [10].
The uniform additive noise model provides a great analysis tool for determining
covariances for different signals in the quantization scheme. Since the reproduc-
tions may be modeled as,

Y(i)
k = Qi,∆S

(
U(i)

k

)
+ Y(i)

k−1 (5.16)

= U(i)
k + Y(i)

k−1 + Z(i)
k

= Xk −Y(i)
k−1 + Y(i)

k−1 + Z(i)
k

= Xk + Z(i)
k ,

and

DS = E
[(

Xk −Y(i)
k

)2
]
=

∆2
S

12
. (5.17)

Our test-channel (4.2) recovers this model by using the non-optimal predictor (i.e.
letting a = 1) and not using a pre-scaled channel (i.e. letting h = 1).
The prediction error variance is,

λ = Var
[
U(i)

k

]
= Var

[
Xk −Y(i)

k−1

]

= Var
[

Xk −
(

Xk−1 + Z(i)
k−1

)]

= Var
[

aXk−1 + Wk −
(

Xk−1 + Z(i)
k−1

)]

= (a− 1)2σ2
X + σ2

W + ΣZS

=
2

1 + a
σ2

W +
∆2

S
12

, (5.18)

where the last equality follows by the stationary variance of Xk. Finally, the central
decoder reconstructs Xk as

Y(0)
k = Q0,∆0 (EC,k) +

1
2

(
Y(1)

k + Y(2)
K

)
, (5.19)
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where ∆0 is the quantizer bin size of the second-stage quantizer. For high rate
quantization, since the input to the second-stage quantizer is approximately uni-
form with variance [33]

σ2
E,C =

DS

4
. (5.20)

5.2.3 Choosing step size

Before conducting a simulation study using this quantization scheme, we highlight
how the quantization bin sizes relate to the description rates.
Let RS be the rate of the first-stage quantizers, Q1, Q2, and R0 be the rate of
the second-stage (central) quantizer, Q0. Then the average sum-rate, or rate per
description, R, is given as

R = RS +
R0

2
. (5.21)

This also provides an intuitive interpretation of no excess marginal rate as the case
when R0 = 0. Thus, the transmitted packets contain no excess bits other than the
side-description bits.
For high rate quantization of the prediction error signal U(i)

k , the coding rates are
given by the discrete entropy of the quantized prediction errors [46], i.e.

RS = H
(

U∆S,(i)
)
≈ h

(
U(i)

)
− log ∆S, (5.22)

where U∆S,(i) is the quantized version of U(i), and the last approximation follows
from Lemma A.23. Inserting, the variance of U(i), λ, we may then isolate ∆S for a
desired rate RS. The resulting side distortion is then

D̂S =
∆2

S
12

. (5.23)

Similarly for a desired second stage quantizer rate R0,

R0 = H
(

E∆0
C

)
≈ h (EC)− log ∆0. (5.24)

Isolating the quantizer step-size, ∆0,

∆0 ≈ 2−R0

√
12σ2

EC
= 2−R0

√
3D̂S, (5.25)

since EC is uniform with variance D̂S
4 . Thus, for high rates the resulting central

distortion is

D̂0 =
∆2

0
12

= 2−2R0
D̂S

4
. (5.26)



74 Chapter 5. Simple Quantization Scheme

5.3 Simulation Study

In this section we perform two simulation studies to validate our theoretical frame-
work in Chapter 4 in relation to the operational quantization scheme.
In all simulations we consider stationary scalar Gauss-Markov sources of the form
(5.10). All simulations are conducted by fixing the rate per description R. Then,
for each rate-pair, RS, R0, satisfying the rate constraint R the practical quan-
tizer step sizes are determined according to (5.22) and (5.25), such that the op-
erational rate per description, Rop, is approximately equal to the constraint, i.e.
Rop ≈ R. From simulations we have seen there is an approximate rate-loss of
0.1 bits/sample/description due to the approximation of step sizes in (5.22) and
(5.25). We have accounted for this when choosing the step sizes, such that Rop ap-
proximates R with greater accuracy. For lower rates this difference is higher, hence
we consider only the high-rate scenario.
We consider N source samples, that are independently coded and decoded by the
operational quantization scheme, and M Monte-Carlo simulations for each rate-
pair R0, RS.
The numerical distortions are obtained by

D̂i =
1
N

N

∑
i=k

(
Xk −Y(i)

k

)2
, i = 0, 1, 2,

D̂S =
D̂1 + D̂2

2
,

where Y(i)
k i = 0, 1, 2 are the reconstructions for the kth input sample Xk, and are

obtained according to (5.19) and (5.16). The operational coding rates are deter-
mined by the discrete entropies

R̂i = H
({

U∆S,(i)
k

}N

k=1

)
, i = 1, 2,

R̂S =
R̂1 + R̂2

2
,

R̂0 = H
({

E∆0
C,k

}N

k=1

)
,

where the entropies are determined from the empirical probabilities, which are
obtained based on the histograms of {U∆S,(i)

k }N
k=1, i = 1, 2 and {E∆0

C,k}N
k=1.

The theoretical distortion limits for a given rate R are determined by fixing the
objective function value in (Pscalar), i.e. letting

R =
1
2

log
a2πS + σ2

W
πS

− 1
4

log
(
1− ρ2

0
)

(5.27)

and determining the corresponding ρ0 and central distortion π0 for a grid of side
distortions, πS.
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Table 5.1: Simulation Parameters for distortion trade-off curve in Figure 5.3.

Source parameters Symbol Values

Source correlation coefficient a 0.9
Source innovation variance σ2

W 1
Initial value variance σ2

X1
1

1−0.92

Simulation parameters Symbol Values

Rate per description R 5 bits/sample
Time samples N 500 000
Monte-Carlo simulations M 4

5.3.1 Distortion Trade-Off at Fixed Rate

We consider the trade-off between the side- and central distortions, DS, D0 for a
fixed rate per description, R = 5 bits/sample. We compare the theoretical lower
bound on the distortions to the operational distortions obtained using the practical
quantization scheme. The source and simulation parameters are listed in Table 5.1.
The resulting theoretical and operational distortion curves are shown in Figure 5.3.
The figure shows the theoretical lower bound (black curve) on the achievable dis-
tortion region, and the operational achievable distortion pairs (dashed blue curve),
for the fixed rate per description R = 5 bits/sample. The operational curve lies
approximately 5 dB above the theoretical lower bound. Both curves show, if we
decrease the central distortion we must increase the side distortion, and vice-versa,
if we want to main the same rate R. This shows, we are able to trade-off between
the side- and central distortion by varying the bit allocation in the first- and second
stage quantizers.

The 5 dB distortion loss corresponds to a total rate loss of approximately 0.83 bits/sample,
for the sum-rate, or equivalently 0.415 bits/sample/description. Some of this loss
can be attributed to the space-filling loss of the uniform quantizers, which is ap-
proximately 1.5 dB, or of 0.254 bits/sample per quantizer. Thus, the refinement
scheme suffers from the space-filling loss of three quantizers [50]. Furthermore,
there is a loss due to the non-optimal linear predictors, however this loss is mini-
mal in the high-rate scenario [33].
The sudden bend in the operational curve can be attributed to a possible alphabet
change, i.e. for certain rates and hence quantization bin sizes, the quantized signals
have an increased alphabet size, due to smaller bin sizes.
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Figure 5.3: The central distortion, D0, versus side distortion, DS for ZDMD coding of a GM(1) source
with a = 0.9 and unit variance at R = 5 bits/sample/description. Simulation parameters in Table 5.1.

5.3.2 Distortion versus Distortion-Ratio for Multiple Fixed Rates

We next consider how the side- and central distortions, D0, DS, vary with the dis-
tortion ratio γ , D0/DS for different fixed rates R. Using the previously described
procedure for the fixed rates R ∈ {4, 5, 6}bits/sample/description, we obtain the
distortion curves in Figure 5.4, the simulation parameters are listed in Table 5.2.
Figure 5.4a shows the side distortion, DS, in relation to the distortion-ratio γ for
varying rates, similarly Figure 5.4b shows the central distortion, D0, in relation to
the distortion-ratio γ for the same rates. In both figures, dashed curves indicate
operational distortions and ratios, and solid curves indicate theoretical bounds.

For any particular rate and distortion-ratio in Figure 5.4, the central distortion, D0,
is always lower than side distortion, DS. Also as the rate per description increases
both distortions decrease for all distortion-ratios. Lower ratios imply lower central
distortion, D0, at the cost of a higher side distortion DS. This was also seen in
Figure 5.3. Figure 5.4 shows, this trend is independent of the rate.
Furthermore, the plots in Figure 5.4 show, that by increasing the rate per descrip-
tion for any fixed ratio, we can increase the performance in both central- and side
distortion.
The maximum operational distortion ratio is limited to approximately 1/4. Since
by (5.26) at no excess marginal rate, i.e. when R0 = 0, we have that D0/DS ≈ 1/4.
Hence, to evaluate higher distortion-ratios we would need to perform non-optimal
central reconstructions, or decrease the quantizer offsets away from the optimum
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Figure 5.4: (a) Side distortion, DS, and (b) central distortion, D0, versus distortion-ratio
D0/DS for ZDMD coding of a GM(1) source with a = 0.9 and unit variance at R ∈
{4, 5, 6}bits/sample/description. Simulation parameters in Table 5.2.

Table 5.2: Simulation Parameters for distortion versus distortion-ratio curves in Figure 5.4.

Source parameters Symbol Values

Source correlation coefficient a 0.9
Source innovation variance σ2

W 1
Initial value variance σ2

X1
1

1−0.92

Simulation parameters Symbol Values

Rate per description R {4, 5, 4} bits/sample
Time samples N 500 000
Monte-Carlo simulations M 4
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Table 5.3: Two operational- and theoretical distortion pairs for a fixed rate per description
R = 5 bits/sample.

Operational Theoretical

D̂0 D̂S γ̂ D0 DS γ

−36 dB −25 dB 0.08 −36.0 dB −30.0 dB 0.25
−36 dB −25 dB 0.08 −38.5 dB −27.5 dB 0.08

half bin size.

For a given rate and distortion-ratio, the operational curves in Figure 5.4 are all
approximately 2.5 dB above the theoretical bounds, with a slightly better perfor-
mance at higher rates. This loss can again be attributed to the space-filling loss
and non-optimal predictors.
We notice, this loss seems to be half of that seen when plotting DS versus D0 in
Figure 5.3. However, for a given ratio there are two curves in Figure 5.4, one for
each of DS and D0. Thus, the total distortion loss at a give ratio is 5 dB. Therefore,
the apparent splitting of the loss can be attributed to a 2.5 dB loss for each of DS
and D0 at a given ratio. To illustrate this, we consider for R = 5 bits/sample the
two operational and theoretical distortions pairs in Table 5.3.For a fixed operational
distortion pair (D̂0, D̂S) and thereby fixed γ̂, we consider corresponding different
theoretical distortions. If we let D0 = D̂0, there is a distortion loss of 5 dB for the
side distortion, DS. However, to achieve γ = γ̂ the previously considered theo-
retical distortions must both change because of the distortion loss, and we see a
distortion loss of 2.5 dB for each of D0 and DS.

From the rate-distortion performances in Figures 5.3 and 5.4, we see for high rates
that the simple quantization scheme of [33] is able to achieve performance close
to the theoretical ZDMD lower bounds derived in the previous chapters. Hence,
we are able operate along the theoretical bounds for ZDMD coding of stationary
scalar Gaussian sources using simple techniques. Particularly, we are able to trade-
off both rates and distortions. This provides proof of concept, that it is possible to
derive operational quantization schemes that may achieve performance close to our
lower bounds. The simulation results also provide indication of an upper bound on
the optimal operational performance limits of ZDMD coding of stationary scalar
Gauss-Markov sources.



Discussion

We now discuss some important aspects of our derivations and simulation results.
Particularly, we focus on the assumptions made in the information-theoretic lower
bound derivation, and how the test-channel generalizes to an operational quanti-
zation scheme. Initially we consider the delimitation to symmetric distortions.

Symmetric Distortions

By restricting our research to symmetric ZDMD coding we are able to define a
ZDMD RDF. For the more general case of asymmetric rates this is not possible,
and we must consider a rate- and distortion-region. However, by restriction our
research to the symmetric case we have derive novel indicative results. Thus, we
solve a simpler initial problem, that may then more easily be extended to the gen-
eral asymmetric case.

Theoretical Lower Bound

In order to derive an information theoretic lower bound on the symmetric ZDMD
RDF for scalar stationary Gaussian sources in Theorem 3.10, we have made some
technical assumptions.

Sequential Greedy Coding

The main assumption was the use of sequential greedy coding (Definition 3.8). This
implies, at each time step we must encode a source sample such that the rates are
minimized and the distortion constraints are achieved. However, this might lead
to an increased rate, since we must achieve the desired distortion performance in
each time step and not just in the asymptotic average. Hence, for some source
samples excess bits might have to be spend to ensure the distortion constraints are
achieved.
The reason for this technical assumption is its implication from an information-
theoretic or probabilistic point of view. That is, the test-channel distribution of
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a particular reconstruction given the current and past inputs should remain un-
changed once it has been selected. It seems plausible that sequential greedy coding
provides the same ZDMD information rates as jointly selecting the optimal test-
channel distribution over all time steps. Since from a ZD perspective all source
samples must be encoded and transmitted immediately without delay, thus their
respective reconstruction distributions are selected only once. However, this re-
mains an open problem for future research.

Conditional Prediction Residual Independence

The second technical assumption for the proof ofTheorem 3.10 was conditional
prediction residual independence (Definition 3.9). This assumption states that the
reconstruction MMSE prediction residuals are independent of the prediction vari-
ables. By the orthogonality principle the MMSE residuals are uncorrelated with
the prediction variables [51], [57]. For Gaussian variables this implies indepen-
dence [58]. However, for non-Gaussian reconstructions this might also result in a
rate loss, since we limit the MMSE predictors to those that have prediction residual
independence.

Theorem 3.10 provides a lower bound on

Ī∞

(
X → Y(1), Y(2)

)
+ Ī

(
Y(1); Y(2)

)
, (5.28)

for a Gaussian source process subject to MSE distortion constraints. The reason for
the previous assumptions is to minimize the excess information rate Ī(Y(1); Y(2)),
and show the reconstructions, Y(1), Y(2), should be jointly Gaussian, when they are
jointly Gaussian with source. The main intuition behind disregarding the assump-
tions of sequential greedy coding and conditional residual independence follows
from the results of [8]. Since by the results of [8] we have for a Gaussian source
process {Xk},

Ī∞

(
X → Y(1), Y(2)

)
≥ Ī∞

(
X → Y(1)

G , Y(2)
G

)
, (5.29)

with equality if {Y(1)
k , Y(2)

k } are jointly Gaussian with {Xk}. Therefore, it seems
reasonable Y(1), Y(2) should also be jointly in the second term of (5.28). However,
we have not able to prove this.

Independent Side Information

To derive the information-theoretic lower bound on the sum-rate for the MD cod-
ing problem with feedback in Figure 3.1, we assume the decoder side information
is mutually independent. This assumption ensures the side-decoder reproduction,
Y(1)

k is independent of the side information belonging to the other decoder, Sk
D2

,
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when the previous reproductions, Y(2),k−1 are given, and vice-versa for reproduc-
tion Y(2)

k . Therefore, if using dependent or common side information, the results of
Section 3.2 warrant further investigation. Although, for common side information
it seems reasonable that the bounds should remain widely unchanged.
For staggered dithered quantizers, the dithers must be dependent to maintain cor-
rect partitions [50]. Hence, violating the assumption of mutually independent side
information. However, for dithered quantization the encoder side information also
includes the dither signal [5], hence all side information is available at all decoders
and the encoder. Thus, no excess information about the side information needs
to be transmitted. If this is not the case bounds may be formulated such that the
dependency on the side information is explicit. In [59] an achievable region is de-
rived for MD coding without feedback and with common side information, in the
classic distributed information-theoretic sense. The bounds of [59] are similar to
those of El-Gamal and Cover [24] with an added dependency upon the unknown
side information in the involved mutual informations. Hence, this results could
provide a basis for extending the results of Section 3.2 to the case of unknown- or
dependent side information.

Simulation Results

The main design problem of MD coding is determining the trade-off between
spending bits on decreasing the side distortion or the central distortion [22]. This
is apparent in the operational scheme in Figure 5.2, where rate-splitting is used at
the second-stage quantizer to the generate the two data packets. When only one
description is received this rate-splitting results in excess bits going waste, since
these cannot be used without the other description. This technique is also known
as unequal error protection (UEP) [22].
Our results show that we are able to provide this trade-off also in ZDMD cod-
ing, while achieving performance near the theoretical limits. For MD coding of
white Gaussian sources, with fixed side distortion and no delay constraints, the
maximum difference between the UEP achievable region and the MD region is
approximately 4.18 dB [22]. For ZDMD coding of Gaussian sources with memory
in the high-rate scenario, we achieve operational performance within 5 dB of the-
oretical lower bounds. Thus, using the simple scheme in [33] for ZDMD coding,
we achieve performances within reason of the theoretical limits. However, fur-
ther improvements must be made to derive a quantization scheme for the low-rate
scenario.



82 Discussion

Test-Channel and Operational Scheme Design

We note a few important remarks relating our test-channel in Figure 4.1 to the
practical quantization scheme in Figure 5.2. This discussion also highlights some
of the difficulties in generalizing our test-channel to a practical quantizer design.

In order to fully determine the operational symmetric ZDMD RDF, Rop
ZD(D0, DS),

we must show the information-theoretic lower bound, RI
ZD(D0, DS) can be achieved

by an operational quantization scheme. The usual rate-distortion technique is to
derive an explicit upper bound on Rop

ZD(D0, DS) using RI
ZD(D0, DS) then showing

these bounds coincide in an asymptotic sense [8].
To this end, we have derived a test-channel showing the achievability of the lower
bound in a Gaussian coding scheme. However, we have not shown the Gaussian
test-channel distributions are achievable by an operational quantization scheme.
Particularly, we have not yet been able to derive an exact upper bound.
Instead, to show proof of concept, we employed an already existing quantization
scheme from the literature [33]. This scheme was selected based on its simplicity
and resemblance to our test-channel, since both “schemes” use two closed-loop
predictions to remove dependence across time, and then use correlated “noise” to
encode the resulting error-process. However, the AWGN is only a model for the
desired distribution. Since it is difficult to generate noise with the desired correla-
tion, the AWGN model loses some interpretability when relating to the quantiza-
tion scheme in Figure 5.2. This is especially apparent in the central decoder design,
and when determining an exact upper bound.

Central Reconstruction Design

In the operational quantization scheme we do not add correlated quantization
noise in the sense of the test-channel. Instead, the quantizer outputs are designed
to achieve a performance corresponding to a specific correlation in the test-channel,
e.g. staggered bins, that increase the central reconstruction performance by using
the appropriate reconstruction method. This performance equals that of using
noise with a correlation of −1/2 [50]. To further improve the performance a sec-
ond refinement layer is added. Thus, achieving performance approximating that
of arbitrary correlation. Additionally, since we use deterministic quantizers (no
dithering) the quantizer outputs are deterministic for a given input.
Furthermore, the quantizers are designed such that the partition on the source, X,
is staggered, not the partitions on the prediction errors. Hence, the “correlated
noise” loses further interpretability. At the beginning of Section 4.3 on page 61, we
ague that because the innovation processes are created by addition of correlated
noise, the central decoder may remove some of this noise, since it receives both
descriptions. However, this argument loses its merit in the operational scheme,
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since the two quantizers are not designed such that the quantized prediction er-
rors, U∆S,(i)

k , i = 1, 2, improve upon each other. Instead these are designed to
improve the reconstruction of Xk. Especially, as shown previously, by construction
it is optimal to take an average of Y(i)

k i = 1, 2 at the central decoder.
Therefore, for this particular quantization scheme, there is no gain in using the
central decoder design in Figure 4.1b to reduce the “noise” added to the prediction
error processes. Additionally, at high rates the optimal decoder design in the test-
channel has a limited effect compared to just taking an average of Y(i)

k , i = 1, 2, at

the central decoder, and performing a MMSE estimate of Xk given 1
2 (Y

(1)
k + Y(2)

k ).
To see this, we note for high rates, as πS → 0 then ΘU → 1 in (4.22), which
further implies Y(0,C)

k → 1
2 (Y

(1) + Y(2)
k ) in (4.27). Therefore, for high rates aver-

aging the side reconstructions and scaling by the appropriate Wiener coefficient
is optimal also in the test-channel derivations in Section 4.3. Thus, as shown by
the simulation results, a ZDMD quantization scheme for general resolution, may
be designing by a more simple approach not relying heavily on the test-channel
of Figure 4.1b. However, at lower resolutions the non-optimal predictors result
in larger distortion penalties, and other ways of generating staggered partitions
might be advantageous.

Upper Bound

The previous section highlights some of the inherit difficulty in designing quan-
tization schemes that achieve a desired performance. For single-description ZD
coding the operational realization scheme of [8] replaces the AWGN channel in
Figure 1.4 with an entropy coded dithered scalar quantizer(ECDQ) [10], where the
quantization bin size is chosen according to the optimum test-channel distribution.
Since the ZDMD test-channel is not easily converted to an operational quantization
scheme by replacing Gaussian noises with uniform noises, further work is needed
tp derive upper bounds on the achievable performance. That is, since we do not
simply replace the AWGN channels with ECDQs, the space-filling- and entropy
coding losses suffered in scaler uniform quantizers are not easily shown to be the
upper bounding factors. Therefore, modifying the test-channel by either the dif-
ferential form of Ozarow’s test-channel [23] or using three AWGN channels [44],
[50] to generate the desired distribution might prove beneficial. Specifically the
results in [23] show, that for MD coding of colored Gaussian sources, without de-
lay restrictions, it possible to separate the part responsible for exploiting memory
(DPCM) from the part controlling the MD coding parameters, i.e. noise shaping.
However, the scheme in [23] achieves this by up-sampling the source signal, hence
modifications are needed to extend this result to ZDMD coding.





Conclusion

We have determined initial results combining ZD- and MD coding theory, with the
extended notion of feedback from the decoders.
In this work we studied the open-loop ZDMD source coding problem with perfect
perfect decoder-feedback and side information available to both encoder and de-
coder. Using this constructive system, we show in a novel result, that the average
data sum-rate is lower bounded by the sum of the directed information rate from
the source, X, to the side descriptions, Y(1), Y(2), and the mutual information rate
between the side descriptions. This provides a novel relation between information
theory and the operational ZDMD coding rates.
This novel bound provides an information-theoretic lower bound to the operational
symmetric ZDMD RDF, Rop

ZD(D0, DS). For scalar stationary Gaussian sources sub-
ject to the technical constraints of sequential greedy coding and conditional resid-
ual independence, this information-theoretic lower bound is minimized by Gaus-
sian reproductions, i.e. the optimum test-channel distributions are Gaussian.
Furthermore, we show the optimum test-channel of the Gaussian information-
theoretic lower bound is determined by a feedback realization scheme utilizing
predictive coding and correlated Gaussian noises. This shows, the information-
theoretic lower bound for first-order stationary scalar Gauss-Markov sources is
achieveable in a Gaussian coding scheme. Additionally, the optimum Gaussian
test-channel distribution is characterized by the solution to an optimization prob-
lem.
We have not yet been able to extended the test-channel into an operational quan-
tization scheme that allows for an exact upper bound on the optimum operational
performance limits.
Operational achievable results are determined for the high-rate scenario by utiliz-
ing the simple quantization scheme of [33], resembling our test-channel to some
extent. Using this simple quantization scheme, it is possible to achieve opera-
tional distortions within 5 dB of the theoretical lower bounds for varying descrip-
tion rates.
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Future Research

We have shown several indicative results on ZDMD rate-distortion theory with
feedback. However, many interesting and unexplored directions remain.

The main future direction for ZDMD coding involves generalization of the main
results in Theorem 3.10 and the test-channel to Gaussian vector sources.
For Gaussian vector sources, early work by the authors indicate that the test-
channel in Chapter 4 may be generalized to the vector case in a similar manner to
that of [8]. However, much work still remains in determining proper test-channel
noise correlation. Furthermore, the novel result regarding ZDMD of scalar process
in Theorem 3.10 must be extended to the vector case.
We speculate the sequential greedy coding condition is only technical for the proof
of Theorem 3.10. However, this has not yet been proven.

We have only derived an achievable lower bound in a Gaussian coding scheme.
Therefore, it remains an open problem to show operational achievability of the
lower bound. Hence, deriving an operational scheme that achieves the lower
bound asymptotically, or provides an exact upper bound on the operational per-
formance is an future research area.

Extension of our results to asymmetric ZDMD coding is also of great interest, since
many scenarios involving MDs use asymmetric rates and distortions.

ZD coding is of particular importance in NCSs. Therefore, it is interesting to ex-
tend our results to closed-loop systems. Here the goal would be to determine the
fundamental performance limitations of controlled processes under communica-
tion constraints using unreliable channels. To this end it seems reasonable to first
determine performance limits of ZDMD with packet losses.
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A | Information Theory

This appendix introduces some essential information theoretic definitions and re-
sults that are used throughout the report.

A.1 Discrete Entropy

Initially we introduce the entropy of a random variable, as a measure of the uncer-
tainty about the random variable.

Definition A.1 (Discrete Entropy [13, p. 14])
The discrete entropy, H(X), of a discrete random variable, X ∈ X , with probability
mass function (PMF) p(x), is defined as

H (X) , − ∑
x∈X

p(x) log p(x). (A.1)

The base of the logarithm determines the unit of entropy, i.e. if the base is 2 the
entropy is expressed in bits, if the base is e the entropy is measured in nats [13,
p. 14]. Throughout this report we take the base of logarithms to be 2, unless other-
wise specified. We use the convention 0 log 0 = 0, since by continuity x log x → 0
as x → 0[13, p. 14].
The discrete entropy is a functional of the distribution of X, i.e. it does not depend
on the values taken by random variable [13, p. 14].
The discrete entropy can also be considered a measure of the amount of informa-
tion on average required to describe a random variable (see Appendix B.2.1).
From (A.1) we see that the discrete entropy may be defined as [13, p. 14],

H(X) , −EX [log p(X)] . (A.2)

An immediate result from the definition of discrete entropy and the fact that
0 ≤ p(x) ≤ 1 for all x ∈ X is [13, Lemma 2.1.1],

H(X) ≥ 0. (A.3)
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That is, the discrete entropy is always non-negative. Especially, it is zero if X is
deterministic.
The discrete entropy is maximized by the uniform distribution.

Lemma A.2 (Entropy maximization [13, Theorem 2.6.4])
Let X ∈ X be a discrete random variable, and let |X | denote the cardinality of
X . Then

H(X) ≤ log|X |, (A.4)

with equality if, and only if, X has a uniform distribution over X .

We may also define the joint- and conditional entropy of jointly distributed discrete
random variables.

Definition A.3 (Joint- and conditional entropy [13, p. 16])
Let (X, Y) be a pair of discrete random variables with a joint distribution1 p(x, y).
Then the joint entropy, H(X, Y), is defined as

H(X, Y) , −EX,Y [log p(X, Y)] . (A.5)

The conditional entropy, H(X|Y) is defined as,

H(X|Y) , −EX,Y [log p(X|Y)] . (A.6)

For a sequence of random variables Xn we have the following useful result.

Lemma A.4 (Chain rule for entropy [13, Theorem 2.5.1])
For a sequence of discrete random variables Xn with joint distribution p(xn),
then

H(Xn) =
n

∑
i=1

H(Xi|Xi−1). (A.7)

Particularly for two random variables, (X, Y) [13, p. 17],

H (X, Y) = H (X) + H (Y|X) . (A.8)

An important property, that will become useful in the squeal is that conditioning
reduces entropy.

1We usually denote probability distributions by uppercase P. However, to emphasize this is a
discrete distribution we use the lowercase notation usually reserved for a PMF.
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Lemma A.5 (Conditioning reduces entropy [13, Theorem 2.6.5])

H(X|Y) ≤ H(X), (A.9)

with equality if, and only if, X and Y are independent.

This shows, that the knowledge of one random variable cannot increase the uncer-
tainty about another. Intuitively, knowing the temperature today cannot increase
our uncertainty about the weather tomorrow.
This leads to the following upper bound on the joint entropy.

Lemma A.6 (Independence bound [13, Theorem 2.6.6])
Let Xn be a drawn according to p(xn). Then

H (Xn) ≤
n

∑
i=1

H (Xi) , (A.10)

with equality if, and only if, all Xi are mutually independent, or all deterministic.

Another useful measure to be used in the following is the Kullback-Leibler divergence.

Definition A.7 (Kullback-Leibler divergence [13, p. 19])
The Kullback-Leibler divergence, D (p‖q), between two probability mass functions
p(x) and q(x) is defined as

D(p‖q) , ∑
x∈X

p(x) log
p(x)
q(x)

(A.11)

= Ep

[
log

p(X)

q(X)

]
. (A.12)

Where we let 0 log 0
0 = 0, 0 log 0

q = 0 and p log p
0 = ∞ [13, p. 19].

Kullback-Leibler divergence is also known as relative entropy or information diver-
gence. We use the terms information divergence and divergence interchangeably.
The divergence is a measure of the inefficiency in assuming the distribution of
X is q when the true distribution is p. That is, if we used the distribution q to
construct a source code for X, we would need on average H(p) + D(p‖q) bits to
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describe X, compared to the H(p) bits needed for a code constructed using true
distribution [13, p. 19]. The quantity H(p) + D(p‖q) is also known as the cross-
entropy [60]. The cross-entropy is often used as a loss function in Machine Learning
algorithms [60], since we may also consider divergence as the “distance” between
two distributions. Hence, the purpose of the Machine Learning algorithm is to
make the estimated distribution q as close as possible to p. However, divergence
is not a true distance, since it does not satisfy the triangle inequality and is not
symmetric [13, p. 19]
An important property of divergence is its non-negativity.

Lemma A.8 (Information inequality [13, Theorem 2.6.3])
Let p(x), q(x) be two probability mass functions for the discrete random variable
X ∈ X . Then

D (p‖q) ≥ 0, (A.13)

with equality if, and only if, p(x) = q(x) ∀x ∈ X .

Using information divergence we now define the most important information mea-
sure for our purposes; mutual information.

Definition A.9 (Mutual Information [13, p. 19-20])
For a pair of random variables, (X, Y) with joint distribution p(x, y) and marginal
distributions p(x), p(y), the mutual information is defined as

I(X; Y) , D (p(x, y)‖p(x)p(y)) (A.14)

= Ep(x,y)

[
log

p(X, Y)
p(X)p(Y)

]
. (A.15)

The mutual information is a measure of the amount of information one random
variable carries about another [13, p. 19]. Especially, it follows from (A.16) in the
following Lemma A.10, that the mutual information is considered the reduction in
uncertainty of one variable due to knowledge of the other [13, p. 19]. The Venn
diagram in Figure A.1 illustrates the relationship between entropy and mutual
information. Particularly, the mutual information is the intersection between the
information in X and Y [13, p. 22]. A few useful ways to express the mutual
information in terms of entropy is given in the following lemma.
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Figure A.1: Relationship between mutual information and entropy. Figure from [13, p. 22].

Lemma A.10 (Mutual Information and Entropy [13, Theorem 2.4.1])

I(X; Y) = H(X)− H(X|Y) (A.16)

I(X; Y) = H(X) + H(Y)− H(X, Y) (A.17)

I(X; Y) = I(Y; X) (A.18)

I(X; X) = H(X) Only for discrete X (A.19)

By the non-negative of the information divergence the mutual information is also
non-negative.

Lemma A.11 (Non-negativity of mutual information [13, sec. 2.6])
For any two random variables, X, Y,

I (X; Y) ≥ 0, (A.20)

with equality if and only if X ⊥⊥ Y.

For a proof see the corollary to [13, Theorem 2.6.3].
Similar to entropy we may define conditional mutual information.
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Definition A.12 (Conditional mutual information [13, p. 23])
The conditional mutual information of random variables X and Y given Z is defined
by

I(X; Y|Z) = H(X|Z)− H(X|Y, Z). (A.21)

For a sequence of random variables, Xn, we have the following useful chain rule of
mutual information.

Lemma A.13 (Chain rule for mutual information [13, Theorem 2.5.2])
For a sequence of random variables, Xn and the random variable, Y,

I (Xn; Y) =
n

∑
i=1

I
(

Xi; Y|Xi−1
)

. (A.22)

Particularly, for three random variables we have that

I (X; Y, Z) = I (X; Y) + I (X; Z|Y) . (A.23)

Which leads to the following useful identity

I (X; Y, Z) = I (X; Y) + I (X; Z) + I (Y; Z|X)− I (Y; Z) . (A.24)

An important information theoretic result is the data processing inequality .

Lemma A.14 (Data processing inequalities [13, sec. 2.8])
If the Markov chain X−Y− Z holds, then

I (X; Y) ≥ I (X; Z) , (A.25)

with equality if and only if X− Z−Y.
If the Markov chain X

∣∣
W −Y

∣∣
W − Z

∣∣
W holds, then

I (X; Y|W) ≥ I (X; Z|W) , (A.26)

with equality if and only if X
∣∣
W − Z

∣∣
W −Y

∣∣
W .

The proof of (A.25) is found in [13, sec. 2.8].
The proof of (A.26) follows by a straightforward extension of the proof in [13, sec.
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2.8] to the conditional case.
This shows, that no processing of Y, either deterministic or random, can increase
the information Y contains about X [13, sec. 2.8]. Thus, we may only lose informa-
tion due to processing.

Finally we define the mutual information rate between random process, as the mu-
tual information per symbol for asymptotically long sequences.

Definition A.15 (Mutual information rate [12, Eq. 7.3.9])
The mutual information rate between two random processes {Xk} and {Yk} is

defined as
Ī (X; Y) , lim

n→∞

1
n

I (Xn; Yn) . (A.27)

A.2 Differential Entropy

We now introduce differential entropy as the entropy of continuous random vari-
ables. Many of the definitions and results for discrete entropy easily extend to
differential entropy. However, some care must be taken [13, p. 243].
Many of the following statements involve integrals, which we may not always ex-
ists. Hence, all results should be extended by the statement if it exists [13, p. 243].

Definition A.16 (Differential Entropy [13, p. 243])
The differential entropy, h(X), of a continuous random variable X ∈ X with prob-
ability density function (PDF) f (x) is defined as

h(X) , −
∫

S
f (x) log f (x)dx, (A.28)

where S is the support of X, i.e. those xX for which f (x) > 0.

Similar to the discrete case, the differential entropy depends only on the PDF
f (x) [13, p. 243].

Contrary to discrete entropy, the differential entropy can be negative. To see this,
consider the following example.
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Example A.17 (Uniform distribution)
Let X be a uniform random variable on the interval [0, a], i.e. X ∼ U [0, a], then

h(X) = −
∫ a

0

1
a

log
1
a
= log a. (A.29)

Now if a < 1, it follows from (A.29) that the differential entropy is negative.

More importantly we note that the differential entropy may be infinite or nega-
tively infinite.

The definition of joint- and conditional differential entropy follow analogously to
the discrete case [13, sec. 8.4]. The chain rule also extends to the continuous case.
However, care must be taken if any entropies are infinite.
We consider ZDMD source coding of stationary Gaussian processes. Thus, we
often need the entropy of Gaussian random variables.

Lemma A.18 (Entropy of multivariate Gaussian [13, Theorem 8.4.1])
Let the sequence of random variables Xn have a multivariate Gaussian distribu-
tion with mean µ and covariance matrix Σ, i.e. Xn ∼ N (µ, Σ). Then

h(Xn) =
1
2

log
(
(2πe)n |Σ|

)
, (A.30)

where |Σ| denotes the determinant of Σ.

In fact the Gaussian distribution maximizes the differential entropy across all dis-
tributions with the same covariance.

Lemma A.19 ([13, Theorem 8.6.5])
Let X ∈ Rn be a random vector with zero mean and covariance matrix
Σ = E[XXT]. Then

h(X) ≤ 1
2

log
(
(2πe)n |Σ|

)
, (A.31)

with equality if, and only if, X ∼ N (0, Σ).

Thus for continuous random variables under a covariance constraint the Gaussian
distribution requires the longest average description length.
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We highlight the definition of Kullback-Leibler divergence also in the continuous
case.

Definition A.20 (Kullback-Leibler divergence [13, p. 251])
The Kullback-Leibler divergence between two densities f and g is defined by,

D( f ‖g) =
∫

f log
f
g

. (A.32)

Where by continuity we let 0 log 0
0 = 0 [13, p. 251]. It is important to notice that

the divergence is only finite if the support of f is contained in the support of g [13,
p. 251]. Otherwise we have f (x) log f (x)

0 for some x, which is infinite.
Mutual information for continuous random variables then follows analogously to
the discrete case. The properties of divergence and mutual information are the
same as in the discrete case [13, p. 251]. Particularly the divergence is zero if f = g
almost everywhere.

An interesting result expressing the “Gaussanity” of a random variables may be
expressed in terms of the information divergence.

Lemma A.21 ([13, p.254-255])
Let X be a continuous random variable with arbitrary distribution, and let XG
be a Gaussian random variable with second order moments equal to those of X.
Then

D (X‖XG) = h (XG)− h (X) . (A.33)

The lemma follows from the proof of [13, Theo. 8.6.5].
For the random variable X, this expresses the information loss experienced by
assuming X is Gaussian with second moments equal to those of X.
Another interesting result of Gaussian random variables is related to the mutual
information.

Lemma A.22 (Gaussian Mutual Information Minimization [35, Theo. 1.8.6])
Let Xn

G be a sequence of jointly Gaussian random variables. Furthermore, let
Ym and YG

m be sequences of random variables such that the second moments of
(Xn

G, Ym) and (Xn
G, Ym

G ) are equal, and (Xn
G, Ym

G ) is jointly Gaussian. Then

I(Xn
G; Ym) ≥ I(Xn

G; Ym
G ). (A.34)
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f(x)

xxi

∆

Figure A.2: Quantization of a continuous random variable. Figure modified from [13].

This shows, for a Gaussian random variable, XG, and a covariance constraint, the
mutual information I(XG; Y) is minimized when Y is jointly Gaussian with X.
That is, similarly to Gaussian random variables having the highest uncertainty
individually, under a covariance constraint. Gaussian random variables also have
have the most uncertainty about each other, under a covariance constraint.

A.2.1 Relation to Discrete Entropy

We highlight an important result relating discrete- and differential entropy through
quantization. The following derivation is found in [13, sec. 8.3].
Let X be a continuous random variable with density f (x). We then quantize X
by dividing the range of X into intervals of length ∆ as illustrated in Figure A.2.
Assuming f (x) is continuous in each bin, we have by the mean value theorem [61],
there exists a point xi in each bin such that

f (xi)∆ =
∫ (i+1)∆

i∆
f (x)dx. (A.35)

Defining the quantized version of X as

X∆ = xi if i∆ ≤ X ≤ (i + 1)∆, (A.36)

we have the following result

Lemma A.23 ([13, Theorem 8.3.1])
If the density f (x) of the random variable X is Riemann integrable, then

H
(

X∆
)
+ log ∆→ h(X), as ∆→ 0. (A.37)
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This shows, the entropy of an n-bit quantization of a continuous random variable
is approximately h(X) + n. Particularly, h(x) + n is the average number of bits
required to describe X to n-bit accuracy [13, p. 249].
This result proves useful when determining the quantization bin sizes in the prac-
tical implementation of a source code (Chapter 5).

A.3 Directed Information

We now consider some important results of directed information. An introduction
to directed information is given in Section 1.2.

Definition A.24 (Directed information [21])
The directed information from a sequence of random variables Xn to a sequence
Yn, is defined as

I (Xn → Yn) ,
n

∑
i=1

I
(

Xi; Yi
∣∣Yi−1

)
. (A.38)

Initially, by the non-negativity of mutual information (A.20), the directed informa-
tion is also non-negative [21]

0 ≤ I (Xn → Yn) . (A.39)

More importantly, the directed informations is always less than or equal to the
mutual information,

I (Xn → Yn) ≤ I (Xn; Yn) , (A.40)

with equality if, and only if, there is no feedback from Yn to Xn. Furthermore, a
conservation law for mutual information was derived in [62],

I (Xn; Yn) = I (Xn → Yn) + I
(

0 ∗Yn−1 → Xn
)

, (A.41)

where 0∗Yn−1 denotes the concatenation of 0 and Yn−1, that is 0∗Yn−1 = (0, Y1, . . . , Yn−1).
This ensures synchronization of sequences on a common clock. Also 0 ∗ Yn−1 and
Yn−1 are equivalent sequences in mutual information expressions [62].
We see from (A.41) that the mutual information may be split into a feedforward
information flow, I(Xn → Yn), and a feedback flow I(0 ∗ Yn−1 → Xn). Thus, em-
phasizing the equality between mutual- and directed information if, and only if,
there is no feedback from Y to X, i.e. when the second term of (A.41) is zero.
Particularly, this holds if [62]

H
(

Xk|Xk−1, Yk−1
)
= H

(
Xk|Xk−1

)
, 2 ≤ k ≤ n. (A.42)
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That is, when X is independent of the past of Y given its own past [63], i.e when
the Markov chain,

Yk−1 − Xk−1 − Xk, (A.43)

holds for all k [63].



B | Source coding

This appendix introduces the primary concepts of source coding. Initially we con-
sider how sources may be modeled using stochastic processes in Section B.1. We
then focus in more detail on source coding in Section B.2, especially lossless source
coding. We also mention how quantization in particular is considered lossy source
coding.
This appendix assumes the reader is familiar with the basic concepts of entropy, as
introduced in Appendix A.

B.1 Sources

When transmitting an analog or continuous valued signal across a wireless net-
work to a receiver, the source signal must be compressed using a source coding
scheme. However, as designers of the compression scheme, we do not know the
source signal in advance. Therefore, the source signal is often modeled as a ran-
dom process [64]. If reasonable assumptions are made with respect to the source of
information, the performance of source coding schemes can then be characterized
based on probabilistic averages [64]. The exact source signal, given as a realization
of the stochastic process, is only available when the actual encoding happens.
As an example, when encoding a speech signal, the exact words and sounds are
unknown prior to being spoken. Thus, the encoder must be designed based an
appropriate model. When the speech signal is spoken, we are able to sample this
signal and encode using the previously designed scheme.
Let {Xk}, Xk ∈ X , be the stochastic process modeling the unknown signal values
for specific source. We refer to this stochastic process as a source process. We also
often refer to the source process {Xk} as the source.
For the source process {Xk} we denote a realization of the source process by {xk},
xk ∈ X . When performing encoding we do so on a realization of the source pro-
cess.

107



108 Appendix B. Source coding

B.1.1 Stochastic Processes

We highlight a few aspects of stochastic processes, that are important to the overall
context of source coding. For further studies of stochastic processes the interested
reader is referred to e.g. [43], [57], [58], [64].
A stochastic process may be considered either one- or two-sided.

Definition B.1 (One- and two-sided stochastic process)
A discrete-time stochastic process {Xk} is said to be one-sided if k ∈ N.
The stochastic process, {Xk} is said to be two-sided if k ∈ Z.

We consider only stationary processes in this report.

Definition B.2 (Stationary stochastic process [43])
A discrete-time stochastic process {Xk}k∈Z Xk ∈ X is said to be (strict sense)
stationary if the statistical properties of every collection of random variables

(Xk1 , . . . , XkN ), (B.1)

is identical to that of the time shifted set

(Xk1+l , . . . , XkN+l). (B.2)

That is, if

P(Xk1 ≤ x1, . . . , XkN ≤ xN) = P(Xk1+l ≤ x1, . . . , XkN+l ≤ xN), (B.3)

for all N ∈ N, all time points k1, . . . , kN ∈, all numbers xN ∈ X N and all time
shifts l ∈ Z. Where P is the N’th-order distribution function of the stochastic
process.

Although this definition considers two-sided processes, the same definition applies
to one-sided processes.
There is an important relation between stationarity and one- or two-sided pro-
cesses. Consider the AR(1)-process,

Xk = aXk−1 + Wk, (B.4)

where |a| < 1, and {Wk} is an independent and identically distributed (IID) pro-
cess. If this is a one-sided process, i.e. k ∈ N, the initial state is X1 with variance
Var[X1] = σ2

X1
. Then depending on the value of σ2

X1
the variance of X2 is different
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from that of X1 and the process is not stationary. However, we may consider this
process to be stationary in the limit of k → ∞, as the distribution of the source
“settles”.
If the process was two-sided, i.e. {Xk}k∈Z, then by similar arguments the process
will be stationary for k > 0, since it has already been “running” since the infinite
past. Therefore, we may consider a stationary source process as a two-side pro-
cess {Xk}k∈Z, where we only encode the stationary part from time k > 0, {Xk}k∈N.
Thus, we consider the infinite past {Xk}0

k=−∞ to be available for determining the
statistics of the source.
Particularly, the variance of a stationary AR(1) process is

σ2
X =

σ2
W

1− a2 , (B.5)

where σ2
W is the variance of the IID process {Wk}. Thus, in the one-sided case if

σ2
X1

is equal to (B.5), the process is stationary.

In this report we consider the special class of Gaussian processes.

Definition B.3 (Gaussian process [64])
A continuous-valued discrete-time stochastic process {Xk}k∈N is said to be a
Gaussian process if all sequences, Xn

m, n ≥ m, n, m ∈ N, have a jointly Gaussian
distribution.

If the source process {Xk} is Gaussian, we often refer to the source as a Gaussian
source. Particularly, we are interested in Gauss-Markov (GM) process, i.e. processes
that are both Gaussian and Markov [64].
The statistical properties of a stationary Gauss-Markov process, {Xk} is completely
characterized by its mean, µX, its variance, σ2

X, and its correlation coefficient a [64].
We refer to these as the statistics of the source. As mentioned in the project delimi-
tations, we consider all these statistics to be determined beforehand by the infinite
past of the source. That is, the main source process considered in this report is the
stable stationary scalar Gauss-Markov source process,

Xk = aXk−1 + Wk, k ∈ N, (B.6)

where |a| < 1 is the deterministic correlation coefficient, X1 ∈ R ∼ N (0, σ2
X1
) is the

initial state with σ2
X1

=
σ2

W
1−a2 , and Wk ∈ R ∼ N (0, σ2

W), is an IID Gaussian process
independent of X1.
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xn Lossy encoder
mapping, Q

Lossless
encoding, C

Lossless
decoding, C−1

Decoder
mapping, Q−1 yn

Rate, R

Distortion, D

ik bn ik

Source Encoder Source Decoder

Figure B.1: A block diagram of a typical source coding system. The encoder encodes the source,
x, to the binary descriptions, b, the source decoder then produces an estimate, y, of x given the
description b. The rate is measured between the encoder output and decoder input, i.e. the number
of bits transmitting between encoder and decoder. The distortion is measured between the encoder
input and decoder output, i.e. the discrepancy between the source, x, and its representation, y.
Figure modified from [64, Fig. 4.1].

B.2 Source Coding

In the following we do not consider any particular source, and give a general in-
troduction to source coding.
The block diagram in Figure B.1 illustrates a lossy source coding system with an
encoder and decoder. The encoder maps a given set of source symbols xn to the
binary codeword bn of length Ln. The decoder then maps the binary codeword into
a sequence of source reproductions yn. The encoder is split into a lossy mapping,
Q, that maps the source sequence to a sequence of indexes, ik, from a countable
alphabet, and a lossless mapping that converts the indexes to a codeword bn [64,
sec. 4.1]. The irreversible and thus lossy mapping, Q, is any mapping that pro-
duces a set of indexes of a countable alphabet [64, sec. 4.1]. The decoder is also
split into a lossless decoding, C−1, which inverts the codewords bn back to the in-
dexes ik, and the mapping Q−1 produces the estimates yn of xn from the indexes
ik [64, sec 4.1].
To further understand these concepts, we initially consider lossy- and lossless cod-
ing independently from each other.

B.2.1 Lossless Source Coding

Lossless source coding or data compression is the compression of data without
loss. That is, a source is encoded such that a perfect reconstruction is possible at
the decoder, i.e. there is no distortion between the source and reconstruction. This
is achieved by removing redundant information from the source.
In lossless source coding the source is already available in a discrete-valued (digi-
tal) form [10, p. 4], and is compressed to a shorter binary representation. Hence,
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lossless coding is relative to the fact that some loss might have already occurred.

Initially we define a lossless code.

Definition B.4 (Binary Lossless Source code [13, p. 103][64, sec. 3.2])
For a stationary discrete-valued discrete-time stochastic process {Xk}, where
Xk ∈ X , a binary lossless source code, C : X → 2∗, is mapping from X to the
set of finite-length binary strings, 2∗.
C(x) denotes the codeword corresponding to the symbol x ∈ X and l(x) denotes
the length of C(x) (in bits).

A lossless code need not be binary, it may be any D-ary code, i.e. a mapping to the
set of finite-length strings from a D-ary alphabet [13, p. 103].
The codeword for a sequence of realizations xn ∈ X n is defined as,

C(xn) , C(x1)C(x2) · · ·C(xn), (B.7)

i.e. the concatenation of the codewords corresponding to each xi.
We consider only the important class of uniquely decodable codes.

Definition B.5 (Uniquely decodable code [13, p. 105])
A code C is uniquely decodable if

xn 6= x̃n ⇒ C(xn) 6= C(x̃n). (B.8)

That is, any encoded string can come from only one possible source string.
An important measure for the effectiveness of a source code is the expected length
(in bits).

Definition B.6 (Expected length [13, p. 104])
The expected length, L(C) of a source code C(x) for the random variable X with
PMF, p(x), is

L(C) , ∑
x∈X

p(x)l(x) (B.9)

= E [l(X)] . (B.10)

The goal of lossless source coding is to design a source code that minimize the
expected codeword length, L, while ensuring unique decodability of each message
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xn, given their codeword C(xn) [64, sec. 3.2].

In fixed-length coding all elements of the source alphabet X are mapped into binary
codewords of equal length, l. There are 2l such codewords. Therefore, the mini-
mum length of l is dlog2|X |e, where |X | is the cardinality of X , and d·e denotes
rounding up to the nearest integer. [10, p. 84]
Fixed-length coding is also referred to as fixed-rate or resolution constrained coding.
The rate is fixed, since for a time-varying source all source symbols are encoded
using the same amount of bits for all time steps. The resolution is constrained by
the finite number of source values representable by l bits.

An alternative to fixed-rate coding is variable-rate or variable-length coding. Since
the source probability distribution is rarely uniform, variable rate-coding takes ad-
vantage of this by assigning shorter codewords to highly probable symbols, and
longer codewords to rare symbols [10, p. 84]. Thereby, the average codeword
length is reduced compared to fixed-rate codes. However, this also results in high
peak rates, which may be undesirable in certain scenarios.
Some variable rate uniquely decodable codes include Huffman codes [13, sec. 5.6]
and Shannon codes [13, sec. 5.9]. For each x ∈ X Shannon codes assigns the
codeword lengths

lS(x) =
⌈

log
1

p(x)

⌉
. (B.11)

Here the rounding up adds at most 1 bit to the length [10, p. 85]. Ignoring this
rounding up, the expected length is equal to the source entropy. Thus, the follow-
ing important bounds can be given on the expected length of an optimal code.

Lemma B.7 (Bounds on optimal code length [13, Theo. 5.4.1])
Let l∗1 , . . . , l∗m be the optimal codewords lengths of a binary source code for a
discrete source X ∈ X where m = |X |, and let L∗ be the associated expected
length of an optimal code. Then

H(X) ≤ L∗ < H(X) + 1. (B.12)

The bounds show, that the optimal expected length of a binary source code is
within 1 bit of the entropy of the source. In particular no lossless coding scheme
can achieve an expected length below entropy. Therefore, a variable-rate code is
also said to be entropy constrained, or created using entropy coding.
This also shows, why the entropy may be considered a measure of the amount of
information on average required to describe a random variable.
It is possible to achieve an expected length per symbol arbitrarily close to the



B.2. Source Coding 113

entropy by coding of large block lengths [13, p. 114]. Let Xn ∈ X n be a sequence
of n random variables drawn IID according to p(x). Let Ln be the length of the
codeword, C(xn), associated with the realization xn, i.e.

Ln =
n

∑
k=1

l(xk). (B.13)

Then define
Ln , E [Ln] , (B.14)

as the expected length of the codeword for a sequence of n source symbol. Then,
since X1, . . . , Xn are IID, we have that H (Xn) = nH(X), thus

H(X) ≤ Ln

n
< H(X) +

1
n

, (B.15)

and the overhead per source symbol vanishes as the block length n tends to infin-
ity [13, p. 114].
This technique of coding long sequences is the main idea behind standard rate-
distortion theory proofs. By relying on the encoding of arbitrarily long sequences
it is possible to achieve operational performance close to the information theoretic
lower bounds. However, this implies long delays in the practical encoding. Thus,
we cannot rely on these techniques in zero-delay source coding.

The Huffman code can be shown to be optimal in the sense that it achieves a min-
imum expected length for asymptotically long sequences compared to any other
uniquely decodable code [13, sec. 5.8]. However, it is not better than any other
code on any particular source sequence [13, p. 130]. Furthermore, it can be shown
that Shannon codes are competitively optimal, i.e. no other code can do better than
a Shannon code most of the time [13, p. 132].

B.2.2 Lossy Source Coding

Lossy source coding is compression with loss. That is, a source signal is encoded
such that a perfect reconstruction is no longer possible at the decoder. For exam-
ple, if the source process is continuous-valued it cannot be completely represented
by indexes of a countable alphabet, hence the encoder mapping Q cannot be re-
versible [64, sec. 4.1].
Here a tolerable discrepancy between the source and the decoder estimate is achieved
by removing irrelevant information. The lossy mapping could be e.g. scalar quan-
tization, vector quantization or predictive coding.
In quantization a continuous valued source is compressed into a discrete set of
values. For the random source sequence Xn the discrete set of indexes Ik, are
discrete random variables. However, this discrete set may not be equiprobable.
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Hence, it can be additionally compressed using lossless entropy coding [10, p. 85].
That is, we may encode the quantizer output, Q(X), such that it approaches the
entropy, H(Q(X)) [10, p. 85]. Thus, source coding is, as illustrated in Figure B.1,
the combination of quantization and entropy coding.



C | Rate-Distortion Theory

This appendix introduces classical rate-distortion theory as the determination of
the fundamental limits between the minimum required bitrate to represent a source
subject to a given fidelity criterion, with no restrictions in terms of delay.
Initially a rate-distortion code is introduced. We then define the operational rate-
distortion function as the fundamental optimal performance of a rate-distortion
code. This is extended to the information rate-distortion function, which provides
a more tractable way of the determining the operational performance limits. Fi-
nally we state the rate-distortion function for Gaussian sources with- and without
memory.
This appendix assumes the reader is familiar with the concepts of information
theory (Appendix A) and source coding (Appendix B).

C.1 Rate-Distortion Coding

A rate-distortion code combines lossy- and lossless source coding into one map-
ping, that maps source symbols directly into binary codewords. Thus, when defin-
ing a source code we ignore the usual split between lossy- and lossless coding.

Definition C.1 (Rate-distortion code [13], [64])
For an n-block, Xn, from a discrete-time stationary source Xk ∈ X , a rate-
distortion code consists of an encoder and decoder.
For each n ∈ N let Bn be a predefined set of at most a countable number of
codewords. The encoder is specified by the encoding function,

fn : X n → Bn. (C.1)

The encoder outputs a message Bn = fn (Xn) with length Ln (in bits). The decoder
is specified by the decoding function,

gn : Bn → Yn, (C.2)

where Y is the reproduction alphabet, the decoder produces the reproduction
Yn = gn( fn(Xn)).

115



116 Appendix C. Rate-Distortion Theory

C.1.1 Distortion

In lossy source coding the reproduction symbols, yn, are not necessarily the same
as the source symbols, xn. Therefore, we need a measure for how well the re-
productions approximate the source. Such a measure should be smaller for better
approximations, and zero for perfect reconstructions.

Definition C.2 (Distortion [13, p. 305])
Let xn ∈ X n be a sequence of source symbols and yn ∈ Yn be a sequence of
reproduction symbols, then the fidelity criterion between the sequences is defined
as

dn (xn, yn) =
1
n

n

∑
i=1

d (xi, yi) , (C.3)

where the single letter distortion measure d : X × Y → R+ is a mapping from
the set of source alphabet-reproduction alphabet pairs to the nonnegative real
numbers [13, p. 304].
The (expected) distortion between the sequences is defined as

D = EX,Y [dn (Xn, Yn)] . (C.4)

The single letter distortion, d(x, y), is a measure of the cost of representing the
source symbol x by the reproduction symbol y [13, p. 304]. Different distortion
measures exists, however we consider only the squared-error distortion,

d(x, y) = ‖x− y‖2
2, (C.5)

in this report. Squared error is the most popular distortion measure for continuous
source alphabets [13, p. 305]. However, it is not an appropriate measure when con-
sidering speech and image sources. The task of finding a distortion measure that
is analytically manageable and also physically meaningful is a daunting one, e.g.
determining numerically the intelligibility of speech [12, p. 7]. Since we consider
only Gaussian source signals, the squared distortion is sufficient for our purposes.
The (expected) distortion (C.4) is the average expected distortion of the elements
in a finite sequence [13, p. 305]. However, to better evaluate the performance of
a source code we are interested in the average expected distortion for very long
sequences, i.e.

lim
n→∞

EX,Y [dn (Xn, Yn)] . (C.6)

C.1.2 Rate

As mentioned, the distortion is not the only measure for the effectiveness of a
source code. Another important measure is the bitrate.
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For an n-block rate-distortion code we define the average data-rate, rn (xn, yn), as the
average number of bits per input symbol, i.e. [64]

rn (xn, yn) ,
1
n

Ln. (C.7)

Similar to the distortion, we are not interested in the data-rate of any particular
finite sequence. Instead we consider the asymptotic expected rate.

Definition C.3 (Rate)
For a stationary discrete-time source {Xk}, the average expected data-rate associ-
ated with the n-block rate-distortion code, measured in bits per source symbol,
is

R , lim
n→∞

1
n

E [Ln] . (C.8)

That is, the rate is the expected length per source symbol for arbitrarily long se-
quences. We use the terms rate and average expected data-rate interchangeably
throughout the paper.
As illustrated in Figure B.1, the rate is measured between the source encoder and
-decoder, and the distortion is measured between the source signal, {Xk}, and the
reproduction, {Yk}.

C.2 Rate-Distortion Function

We are now ready to consider the optimal performance of a source code. To this
end we first formally define achievable rates and distortions.

Definition C.4 (Achievable rate-distortion pair [13], [64])
For a given source process {Xk}. A rate-distortion pair (R, D) is said to be
achievable if there exists a sequence of rate-distortion codes {( fn, gn)}n∈N such
that

lim
n→∞

1
n

E [Ln] ≤ R, (C.9)

lim
n→∞

1
n

EX [dn (Xn, gn( fn(Xn)))] ≤ D. (C.10)
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Remark C.5
A rate-distortion code with rate R is said to be achievable with respect to the
distortion D if the asymptotic average expected distortion satisfies (C.10).
Similarly, a rate-distortion code with distortion D is said to be achievable with
respect to the rate R if the asymptotic average expected data-rate satisfies (C.9).

For a given source process {Xk} a set of achievable rate-distortion pairs constitutes
a rate-distortion region [13, p. 306].
The main problem of rate-distortion theory is to determine the fundamental bound
between the set of achievable and non-achievable rate-distortion points for a given
source and distortion measure. That is, determine the minimum rate, R, required
to describe the source, X, such that (C.10) is satisfied [64].
The fundamental bound on the rate is called the operational rate-distortion function.

Definition C.6 (Operational RDF [13], [64])
For a stationary source process {Xk}, the operational rate-distortion function
(RDF), Rop(D), is defined as the minimum achievable rate (C.8) with respect
to the asymptotic distortion constraint D > 0, where the infimum is over all
possible encoder- and -decoder sequences, { fn}n∈N, {gn}n∈N, such that (C.10) is
satisfied. That is,

Rop(D) , inf
{ fn},{gn}

lim
n→∞

1
n

E [Ln] , (C.11)

s.t. lim
n→∞

1
n

EX [dn (Xn, gn( fn(Xn)))] ≤ D.

The relationship between the achievable rate-distortion pairs and the operational
RDF is illustrated in Figure C.1 for a white scalar Gaussian source.
The inverse of the operational RDF is the called the operational distortion-rate func-
tion, it is the minimum achievable distortion, D, given that the source is encoded
such that (C.9) is satisfied [64].

C.3 Information Rate-Distortion Function

For a given source process {Xk} determining the operational RDF as defined in
(C.11) is infeasible, since it is a minimization over all possible operational codes.
As an alternative, the information rate-distortion function, introduced originally by
Shannon [9], is a more tractable measure for determining the performance bound
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Figure C.1: Operational rate-distortion function for a scalar Gaussian source, with mean-squared
error distortion measure (dark blue curve), as the boundary of the region of achievable rate-distortion
points (shaded region).

of lossy source codes [64].

For a random source process {Xk} the output of a lossy source coding scheme is
described by the reproduction process {Yk}. The properties of this mapping can
be modeled by a conditional distribution PQ(y|x) induced by the source code [64].
Such that for an n-block of source samples Xn, the properties of the source code
is described by PQ(yn|xn) [64], here superscript Q denotes the dependence on the
source code.
Particularly the sequence of binary codewords {Bk} is a random process. There-
fore, by (B.12)

1
n

Ln ≥ HQ(βn) =
1
n

IQ (Bn; Bn) ≥ IQ (Xn; Yn) , (C.12)

where the last inequality follows from the Data Processing Inequality (A.25) (Defi-
nition A.14). Thus, by (C.8) and (C.12),

R ≥ lim
n→∞

IQ (Xn; Yn) = ĪQ(X; Y), (C.13)

where the last equality follows from the definition of mutual information rate
(A.27). The distortion associated with an n-block of source symbols is completely
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determined by the conditional distribution PQ(yn|xn) [64]. The mapping induced
by the source code may be considered a special case of any random mapping [64].
Therefore, if a particular source code achieves a distortion constraint D > 0, the
mutual information rate ĪQ(X; Y) of this source code, cannot be smaller than the
smallest possible information rate, Ī(X; Y), that can be achieved using any random
mapping P(yn|xn), that also achieves the distortion constraint D.
This lower bound motivates the definition of the information rate-distortion func-
tion.

Definition C.7 (Information rate-distortion function [12], [36])
For a stationary source process, {Xk}k∈N, with distribution P(xn) and with re-
production sequence {Yk}k∈N, the information rate-distortion function, RI(D), is
defined as the minimum mutual information rate between X and Y, where the
infimum is over all sequences of conditional distributions, {P(yn|xn)}n∈N, such
that the asymptotic average expected distortion constraint, D > 0, is satisfied.
That is,

RI(D) , inf
{P(yn|xn)}

Ī(X; Y)

s.t. lim
n→∞

1
n EX,Y [dn (Xn, Yn)] ≤ D.

(C.14)

From a channel-coding perspective, the source is the input to some channel, which
introduces errors, and the output of the channel describes the reconstructed source.
The channel errors model the errors that occur due to performing a lossy source
coding operation such as quantization. Therefore, the sequence of conditional dis-
tributions {P(yn|xn)} is called the test-channel [13, sec. 10.3].
For a source with distribution P(xn), the channel generates the output according to
the conditional distribution P(yn|xn), such that the joint distribution, P(xn, yn) =

P(yn|xn)P(xn), satisfies the asymptotic expected distortion constraint. The test-
channel that realizes the infimum of the mutual information rate is called the opti-
mum test-channel [36].

By the lower bound in (C.13) and the definition of the information RDF, it follows
that any code that achieves a distortion D, for a source X, has an operational
rate, R, greater than or equal to the information RDF, RI(D), for the source X.
However, for many sources and distortions measures it can be shown that the
optimal operational rate is in fact equal to the optimal information rate.

Theorem C.8 (Fundamental source coding theorem [13, Theorem 10.2.1])

Rop(D) = RI(D) (C.15)
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For a proof see e.g [13, Ch. 10].
This result is very useful, since to determine the operational RDF, we need only
determine the optimum test-channel distribution, and thereafter determine a cod-
ing scheme that achieves this distribution.
Following this result we denote the classical RDF by R(D), i.e. we do not distin-
guish between information- and operational rate.
The proof of the theorem itself involves using random codebooks generated by
considering long sequences of source symbols. This is not possible in zero-delay
coding. Hence, this result does not necessarily hold for the zero-delay RDF. There-
fore, we do not consider the details of the proof. Instead we consider some of the
aspects of determining the optimum test-channel.

C.4 Gaussian RDF

As an illustrative example of how test-channels are used in determining the RDF
we consider the RDF of a white Gaussian source.

Lemma C.9 (White Gaussian RDF [13, Theo. 10.3.2])
The RDF for a white Gaussian source X ∼ N (0, σ2

X), with MSE distortion con-
straints D > 0, is

R(D) =

{
1
2 log σ2

X
D , 0 < D ≤ σ2

X,

0, D > σ2
X.

(C.16)

Proof
By the fundamental theorem of rate-distortion theory, and since we consider inde-
pendent and identically distributed (IID) Gaussian variables,

R(D) = min
f (y|x): EX,Y [(Y−X)2]≤D

I(X; Y). (C.17)

To determine the RDF we first find a lower bound, and then show this bound is
achievable. It can be shown that

I(X; Y) ≥ 1
2

log
σ2

X
D

, (C.18)

by using E[(Y− X)2] ≤ D, and the facts that conditioning reduces entropy and the
Gaussian distribution maximizes entropy [13, p. 311]. Thus,

R(D) ≥ 1
2

log
σ2

X
D

. (C.19)
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φXk + θ Yk

Zk

Figure C.2: Pre/post-scaled test-channel for scalar Gaussian IID process.

Now, we need to determine the conditional density, f (y|x), that achieves this lower
bound. We can do this using the Additive White Gaussian Noise (AWGN) test-
channel [10],

Y = θ(φX + Z), (C.20)

where Z ∼ N (0, σ2
Z), and the coefficients φ, θ and σ2

Z are any triplet that satisfy [10],

φθ = 1− D
σ2

X
, and σ2

Z =
φ

θ
D. (C.21)

The test-channel is illustrated in Figure C.2.
It is then straightforward to check that this distribution has equality in (C.18), and
E[(Y− X)2] = D, thus achieving the bound in (C.19).
Now if D > σ2

X we chose Y = E[X] = 0 with probability 1, hence achieving
R(D) = 0, and a MSE of E[(Y− X)2] = σ2

X < D [13].

�

The pre/post-scaled test-channel in (C.20) proves to be very useful. It provides a
constructive proof that shows if we can create a coding scheme with the correct
scalings and that achieves Gaussian noise with the correct variance, this scheme
will achieve the RDF.

C.4.1 Water-Filling

For the case of m independent Gaussian sources, we have the following interesting
solution. Which can be considered a generalization of the previous solution to the
coding of m parallel Gaussian sources.

Lemma C.10 (Parallel Gaussian sources [13, Theo. 10.3.3])
Let Xi ∼ N (0, σ2

Xi
), i = 1, 2, . . . , m, be independent Gaussian random variables,

and let the distortion measure be d(xm, ym) = ∑m
i=1(xi − yi)

2. Then the RDF is
given by

R(D) =
m

∑
i=1

1
2

log
σ2

i
Di

, (C.22)
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Figure C.3: Reverse water-filling for independent Gaussian random variables. Here
σ2

Yi
= σ2

Xi
− Di = σ2

Xi
−min{θ, σ2

Xi
}. Figure modified from [13].

where

Di =

{
θ if θ < σ2

Xi
,

σ2
Xi

if θ ≥ σ2
Xi

,
(C.23)

where θ is chosen such that ∑m
i=1 Di = D.

For a proof see [13, sec. 10.3.3].
This is the so-called reverse water-filling solution, which is illustrated in Figure C.3.
Here the water-level, θ, is chosen such that when only describing those variables
with a variance greater θ, the distortion constraint is met [13]. That is, no bits are
used to code variables with variance less than θ [13]. The resulting distribution of
the independent reproductions, Yi, is

Yi ∼ N
(
0, σ2

Yi

)
, (C.24)

and E[(Xi − Yi)
2] = Di, where Di = min{θ, σ2

Xi
}. The reconstruction variances

satisfy σ2
Yi

= σ2
Xi
− Di, i.e. reconstruction variances are zero for those variables

with variance lower than θ. The reconstructions satisfy the so called backwards
test-channel [13], since for each i, we have

Xi = Yi + Zi, (C.25)

where Zi ∼ N (0, Di) is independent of Yi. This ensures equality for each distortion
Di, and equality between I(Xi; Yi) and R(Di).
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For the general case of a multivariate Gaussian vector, a similar solution is obtained
by reverse water-filling on the eigenvalues of the covariance matrix [13]. By an
application of the Szegö Limit Theorem [12], [65], a Gaussian stochastic process
can be represented by an integral of independent Gaussian processes at various
frequencies [12], [13]. Thus, the previous water-filling solution may be generalized
further to stationary Gaussian sources with memory [13].

Lemma C.11 (Stationary Gaussian RDF [12, Theorem 4.5.3])
For a stationary Gaussian source with Power Spectral Density [57] (PSD) SX(ejω),
and with MSE distortion constraint D > 0, the RDF is given by the solution to
the reverse water-filing equations

R(D) =
1

4π

∫ π

−π
max

{
0, log

(
SX(ejω)

θ

)}
dω (C.26a)

D =
1

2π

∫ π

−π
min

{
θ, SX(ejω)

}
dω. (C.26b)

For a proof see e.g. [64].
Particularly for first-order Gauss-Markov sources, the RDF may expressed analyt-
ically, for 0 < D ≤ Dmax = σ2

w
1−a
1+a . Where Dmax is the minimum value of the PSD

for a scalar stationary GM(1) source [64].

Lemma C.12 (Gauss-Markov RDF [64])
For a stationary stable scalar zero-mean Gauss-Markov source (B.6) with MSE
distortion constraint 0 < D ≤ σ2

w
1−a
1+a , the RDF is

R(D) =
1
2

log
σ2

W(1− a2)

D
. (C.27)

Figure C.4 illustrates the parametric water-filling solution on the spectrum. The
figure shows the PSD of the source, SX(ejω) (blue), the water-level θ (green), and
the resulting reconstruction error spectrum (dashed black). Similar to before, the
water-level marks the “noise-floor” of the coding scheme. All frequency compo-
nents with amplitude below θ are not coded. Thus, zero rate is used on these
frequency components. Hence, only frequency components with amplitude above
θ are coded.
This water-filling solution provides a frequency-domain test-channel, where only
the frequency components with amplitude above the “noise-floor”, θ, needs to be
coded.
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Figure C.4: Reverse water-filling on the spectrum of stationary Gaussian processes. Figure modified
from [64].

Pre-filterXk + + + Post-Filter
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Ũk
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Figure C.5: Pre- and post-filtered predictive coding test-channel of [36], for a stationary Gaussian
source, Xk, with reconstruction Yk. In the test-channel Zk is a white Gaussian process. Figure
modified from [36].

Quite recently it was shown in [36], that the optimum water-filling solution may be
achieved in a time-domain test-channel using a predictive coding scheme with pre-
and post filters not only for small but for all distortion levels. This test-channel is
shown in Figure C.5. We do not go into detail of the derivation of this test-channel.
For a short discussion of this test-channel in relation to zero-delay source coding
see Section 1.6.





D | Proof of Theorem 3.5 and Corol-
lary 3.6

D.1 Proof of Theorem 3.5

Proof
First, since the expected length of a uniquely decodable code is lower bounded by
its entropy [13, Ch. 5], we have that

E
[
l(i)k

]
≥ H

(
B(1)

k |B(i),k−1, Sk
Di

)
, i = 1, 2 (D.1)

since B(i),k−1 and Sk
Di

are already available at decoder i before the reception of B(i)
k .

Thus,

E
[
l(1)k

]
+ E

[
l(2)k

]
≥ H

(
B(1)

k |B(1),k−1, Sk
D1

)
+ H

(
B(2)

k |B(2),k−1, Sk
D2

)

(a)
≥ H

(
B(1)

k |B(1),k−1, Sk
D1

)
+ H

(
B(2)

k |B(2),k−1, Sk
D2

)

− H
(

B(1)
k , B(2)

k |B(1),k−1, B(2),k−1, Xk, Sk
D1

, Sk
D2

)

(b)
= H

(
B(1)

k |B(1),k−1, Sk
D1

)
− H

(
B(1)

k , B(2)
k |B(1),k−1, B(2),k−1, Sk

D1
, Sk
D2

)

+ H
(

B(2)
k |B(2),k−1, Sk

D2

)
+ I

(
Xk; B(1)

k , B(2)
k |B(1),k−1, B(2),k−1, Sk

D1
, Sk
D2

)

(c)
= H

(
B(1)

k |B(1),k−1, Sk
D1

)
+ H

(
B(2)

k |B(2),k−1, Sk
D2

)
− H

(
B(1)

k |B(1),k−1, B(2),k−1, Sk
D1

, Sk
D2

)

− H
(

B(2)
k |B(1),k, B(2),k−1, Sk

D1
, Sk
D2

)
+ I

(
Xk; B(1)

k , B(2)
k |B(1),k−1, B(2),k−1, Sk

D1
, Sk
D2

)

(d)
= I

(
Xk; B(1)

k , B(2)
k |B(1),k−1, B(2),k−1, Sk

D1
, Sk
D2

)

+ I
(

B(2)
k ; B(1),k, Sk

D1
|B(2),k−1, Sk

D2

)

+ I
(

B(1)
k ; B(2),k−1, Sk

D2
|B(1),k−1, Sk

D1

)
, (D.2)

where (a) follows from the non-negativity of discrete entropy. Step (b) follows from
the definition of conditional mutual information, (c) by the chain rule for discrete
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entropy, and (d) by the definition of conditional mutual information.
Consider the first term in (D.2),

I
(

Xk; B(1)
k , B(2)

k

∣∣B(1),k−1, B(2),k−1, Sk
D1

, Sk
D2

)
(e1)
= I

(
Xk; B(1)

k , B(2)
k

∣∣Y(0),k−1, Sk
D1

, Sk
D2

)

(e2)
≥ I

(
Xk; Y(0)

k

∣∣Y(0),k−1, Sk
D1

, Sk
D2

)

(e3)
= I

(
Xk; Y(0),k, Sk

D1
, Sk
D2

)

− I
(

Xk; Y(0),k−1, Sk
D1

, Sk
D2

)

(e4)
≥ I

(
Xk; Y(0),k

)
− I

(
Xk; Y(0),k−1, Sk

D1
, Sk
D2

)

(e5)
= I

(
Xk; Y(0)

k

∣∣Y(0),k−1
)

− I
(

Xk; Sk
D1

, Sk
D2

∣∣Y(0),k−1
)

(e6)
= I

(
Xk; Y(0)

k

∣∣Y(0),k−1
)

, (D.3)

where (e1) follows since the decoders are invertible given the side information,
(e2) follows from the DPI (A.26), the invertible decoders, and (3.5), (e3) by the chain
rule of mutual information, (e4) since by the non-negativity of mutual information,
removing a variable can only decrease the mutual information, (e5) by the chain
rule, and (e6) since the side information is assumed to be independent of X.
For the second term in (D.2),

I
(

B(2)
k ; B(1),k, Sk

D1

∣∣B(2),k−1, Sk
D2

)
(f1)
= I

(
B(2)

k ; Y(1),k, Sk
D1

∣∣Y(2),k−1, Sk
D2

)

(f2)
≥ I

(
Y(2)

k ; Y(1),k, Sk
D1

∣∣Y(2),k−1, Sk
D2

)

(f3)
≥ I

(
Y(2)

k ; Y(1),k∣∣Y(2),k−1, Sk
D2

)

(f4)
= I

(
Y(2)

k , Sk
D2

; Y(1),k∣∣Y(2),k−1
)
− I

(
Sk
D2

; Y(1),k∣∣Y(2),k−1
)

(f5)
≥ I

(
Y(2)

k ; Y(1),k∣∣Y(2),k−1
)
− I

(
Sk
D2

; Y(1),k∣∣Y(2),k−1
)

(f6)
= I

(
Y(2)

k ; Y(1),k∣∣Y(2),k−1
)

, (D.4)

where (f1) follows since the decoders are invertible, and (f2) from (A.26) and (3.7),
(f3) since conditional mutual information is non-negative, removing a term on the
left side of the conditioning can only decrease the mutual information, (f4) follows
from the chain rule, (f5) is similar to (f3), finally step (f6) follows from (3.9) and the
mutual information is zero for independent variables.
For the third term in (D.2) we have through similar derivations using the Markov
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chains (3.6) and (3.8),

I
(

B(1)
k ; B(2),k−1, Sk

D2
|B(1),k−1, Sk

D1

)
≥ I

(
Y(1)

k ; Y(2),k−1|Y(1),k−1
)

. (D.5)

Then by (D.2)–(D.5),

E
[
l(1)k

]
+ E

[
l(2)k

]
≥ I

(
Xk; Y(0)

k |Y(0),k−1
)
+ I

(
Y(2)

k ; Y(1),k|Y(2),k−1
)

+ I
(

Y(1)
k ; Y(2),k−1|Y(1),k−1

)
(D.6)

Summing over k we have by the definition of directed information (Definition 1.5),

n

∑
k=1

(
E
[
l(1)k

]
+ E

[
l(2)k

])
≥ I

(
Xn → Y(0),n

)
+ I

(
Y(1),n → Y(2),n

)
+ I

(
Y(2),n−1 → Y(1),n

)

= I
(

Xn → Y(0),n
)
+ I

(
Y(1),n → Y(2),n

)
+ I

(
0 ∗Y(2),n−1 → Y(1),n

)

= I
(

Xn → Y(0),n
)
+ I

(
Y(1),n; Y(2),n

)
, (D.7)

where the last equality follows from the conservation of information [62, Prop. 2]
(or see Appendix A.3). The lower bound (3.18) now follows by dividing by n and
taking the limit as n→ ∞.

�

D.2 Proof of Corollary 3.6

Proof
This follows directly from the proof of Theorem 3.5, by changing Y(0) to

(
Y(1), Y(1)

)

in steps (e1)–(e6).

�
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Proof
Recall

Ī∞

(
X → Y(1), Y(2)

)
+ Ī
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)
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n→∞

1
n
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1
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where
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,

and
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.

For each time step k ∈ N, using the chain rule (A.22), we have that,

I
(
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k ; Y(1),k|Y(2),k−1

)
+ I
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.

k=1:

Consider the first time step,

I
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X1; Y(1)
1 , Y(2)

1 |∅
)
+ I

(
Y(2)

1 ; Y(1)
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)
+ I
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1
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(E.1)

Since we are in the first time step, we can consider X1 as a sample from a white
Gaussian process with distributionN (0, Var[X1]). Therefore, the coding of X1 must
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adhere to the non-causal lower bound on the rate, i.e. we can never do better than
the non-causal, arbitrary delay, tight lower bound of El-Gamal and Cover [24].
Now

I
(

X1; Y(1)
1 , Y(2)

1

)
+ I

(
Y(2)

1 ; Y(1)
1

) (a)
≥ I
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X1; Y(1)
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1,G

)
+ I

(
Y(2)

1 ; Y(1)
1

)
(E.2)
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+ I
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1

)
, (E.3)

where subscript G denotes Gaussian random variables, and (a) follows from Lemma A.22
with equality if Y(1), Y(2) are jointly Gaussian. The last equality follows from the
identity (A.24).
Considering the difference between the last two terms,
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where the last equality follows from (A.33). If Y(1)
1 and Y(2)

1 are marginally Gaus-
sian, then
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with equality if Y(1)
1 , Y(2)

1 are jointly Gaussian.
If Y(1)

1 , Y(2)
1 are jointly Gaussian, then they are also marginally Gaussian, and (E.5)

is zero.
Finally, we consider if the difference (E.5) can be negative.
We have that,
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where for X1 a scalar random variable from an IID process, we recognize the first
three terms as the El-Gamal and Cover region [24], which was shown to be tight
for scalar IID Gaussian processes. Thus, the difference (E.5) can never be negative,
since it would violate the tightness of the lower bound.
Therefore,
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with equality if Y(1)
1 , Y(2)

1 are jointly Gaussian.

k=2:

Now for the next time step of k = 2, we consider
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However, we just showed that to be optimal in the first step Y(1)
1 , Y(2)

1 should be
jointly Gaussian. Therefore, under the sequential greedy condition we have that

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)
+ I

(
Y(2)

2 ; Y(1)
1 |Y

(2)
1

)

= I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1,G, Y(2)

1,G

)
+ I

(
Y(1)

2 ; Y(2)
1,G|Y

(1)
1,G

)
+ I

(
Y(2)

2 ; Y(1)
1,G|Y

(2)
1,G

)

(E.9)

Let

W2 , X2 − E
[

X2|Y(1)
1,G, Y(2)

1,G

]
(E.10)

U(i)
2 , Y(i)

2 − E
[
Y(i)

2 |Y
(1)
1,G, Y(2)

1,G

]
, i = 1, 2 (E.11)

be the residuals for the MMSE predictions of X2, Y(1)
2 , Y(2)

2 given Y(1)
1,G, Y(2)

1,G. Then,
considering the first two terms in (E.9) we have that

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1,G, Y(2)

1,G

)
= I

(
W2; U(1)

2 , U(2)
2 |Y

(1)
1,G, Y(2)

1,G

)

+ I
(

U(2)
2 ; U(1)

2 |Y
(1)
1,G, Y(2)

1,G

)

By the orthogonality principle, the residuals of the MMSE estimators are uncorre-
lated with hte conditioning variables, Y(1)

1,G, Y(2)
1,G [51]. Therefore, since X2 is Gaus-

sian, W2 is Gaussian and independent of Y(1)
1,G, Y(2)

1,G.
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By the conditional residual independence assumption, U(i)
2 , i = 1, 2 are assumed

independent of Y(1)
1,G, Y(2)

1,G, which is true for Gaussian Y(i)
2 . Therefore,

I
(

W2; U(1)
2 , U(2)

2 |Y
(1)
1,G, Y(2)

1,G

)
+ I

(
U(2)

2 ; U(1)
2 |Y

(1)
1,G, Y(2)

1,G

)
= I

(
W2; U(1)

2 , U(2)
2

)
+ I

(
U(2)

2 ; U(1)
2

)
.

Using the same technique and arguments as in the first time step, we can lower
bound these two terms

I
(

W2; U(1)
2 , U(2)

2

)
+ I

(
U(2)

2 ; U(1)
2

)
≥ I

(
W2; U(1)

2,G, U(2)
2,G

)
+ I

(
U(2)

2,G; U(1)
2,G

)
(E.12)

with equality if U(1)
2 , U(2)

2 are jointly Gaussian, or equivalently when Y(1)
2 , Y(2)

2 are
jointly Gaussian.
Now consider the last two terms in (E.9),

I
(

Y(1)
2 ; Y(2)

1,G|Y
(1)
1,G

)
+ I

(
Y(2)

2 ; Y(1)
1,G|Y

(2)
1,G

)
= I

(
Y(1)

2 − E
[
Y(1)

2 |Y
(1)
1,G

]
; Y(2)

1,G − E
[
Y(2)

1,G|Y
(1)
1,G

] ∣∣∣∣Y
(1)
1,G

)

+ I
(

Y(2)
2 − E

[
Y(2)

2 |Y
(2)
1,G

]
; Y(1)

1,G − E
[
Y(1)

1,G|Y
(2)
1,G

] ∣∣∣∣Y
(2)
1,G

)

(b)
= I

(
Y(1)

2 − E
[
Y(1)

2 |Y
(1)
1,G

]
; Y(2)

1,G − E
[
Y(2)

1,G|Y
(1)
1,G

])

+ I
(

Y(2)
2 − E

[
Y(2)

2 |Y
(2)
1,G

]
; Y(1)

1,G − E
[
Y(1)

1,G|Y
(2)
1,G

])
,

where (b) follows, since we assume conditional prediction residual independence
of the MMSE predictors. Since the residuals on the right side of the mutual infor-
mations are Gaussian, the mutual informations are minimized if the residuals on
the left, Y(i)

2 − E
[
Y(i)

2 |Y
(i)
1,G

]
, i = 1, 2 are Gaussian. That is, when Y(i)

2 , i = 1, 2 are
Gaussian. Thus,

I
(

X2; Y(1)
2 , Y(2)

2 |Y
(1)
1 , Y(2)

1

)
+ I

(
Y(2)

2 ; Y(1)
2 |Y

(1)
1 , Y(2)

1

)
+ I

(
Y(1)

2 ; Y(2)
1 |Y

(1)
1

)

+ I
(

Y(2)
2 ; Y(1)

1 |Y
(2)
1

)

≥ I
(

X2; Y(1)
2,G, Y(2)

2,G|Y
(1)
1,G, Y(2)

1,G

)
+ I

(
Y(2)

2,G; Y(1)
2,G|Y

(1)
1,G, Y(2)

1,G

)
+ I

(
Y(1)

2,G; Y(2)
1,G|Y

(1)
1,G

)

+ I
(

Y(2)
2,G; Y(1)

1,G|Y
(2)
1,G

)
(E.13)

with equality if Y(1)
2 , Y(2)

2 are jointly Gaussian, given that Y(1)
1 , Y(2)

1 are jointly Gaus-
sian, which they are by the sequential greedy assumption.
The result now follows by induction on k, and taking the limit.
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Proof
For the first covariance, ΣXY,

Cov
[

Xk, Y(i)
k

]
= Cov

[
Xk, hXk + (1− h)aY(i)

k−1 + Z(i)
k

]

(a1)
= hΣX + a(1− h)Cov

[
Xk, Y(i)

k−1

]

= hΣX + a(1− h)Cov
[

aXk−1 + bWk, Y(i)
k−1

]

(a2)
= hΣX + a2(1− h)Cov

[
Xk−1, Y(i)

k−1

]

here (a1) follows by the properties of covariance [58, Prop. 3.22] and since Z(i)
k is

independent of all other signals, and similarly for (a2) since Wk is independent of
all other signals. Since Xk is stationary and Yk is stationary then

ΣXY , Cov
[

Xk, Y(i)
k

]
= Cov

[
Xk−1, Y(i)

k−1

]
. (F.1)

Hence, in the scalar case we can solve for ΣXY,

ΣXY =
h

1− a2(1− h)
ΣX. (F.2)

This proves (4.14).
Now consider

Cov [Xk, VC,k]
(b1)
= Cov

[
Xk,

1
2

(
hU(1)

k + hU(2)
k + Z(1)

k + Z(2)
k

)]

(b2)
=

1
2

h
(

Cov
[

Xk, U(1)
k

]
+ Cov

[
Xk, U(2)

k

])

(b3)
= h(ΣX − a2ΣXY) (F.3)

where (b1) follows by definition of VC,k, (b2) by the properties of covariance [58,
Prop. 3.22] and because Z(i)

k is independent of all other signals, and step (b3)
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follows since

Cov
[

Xk, U(i)
k

]
= Cov

[
Xk, Xk − aY(i)

k−1

]

= ΣX − a Cov[Xk, Y(i)
k−1]

= ΣX − a Cov[aXk−1 + Wk, Y(i)
k−1]

= ΣX − a2ΣXY. (F.4)

This proves (4.15).
For ΣY we have that

Var
[
Y(i)

k

]
= Var

[
hXk + (1− h)aY(i)

k−1 + Z(i)
k

]

(c1)
= Var

[
hXk + (1− h)aY(i)

k−1

]
+ ΣZS

(c2)
= h2ΣX + a2(1− h)2 Var

[
Y(i)

k−1

]
+ 2ah(1− h)Cov [Xk, Yk−1] + ΣZS ,

(c3)
= h2ΣX + a2(1− h)2 Var

[
Y(i)

k−1

]
+ 2a2h(1− h)ΣXY + ΣZS ,

where (c1) follows by the independence of Z(i)
k , (c2) by the properties of the vari-

ance [58, Prop. 3.21], and (c3) since Xk = aXk−1 + bWk. Then since Y(i)
k is stationary,

ΣY , Var
[
Y(i)

k

]
= Var

[
Y(i)

k−1

]
, (F.5)

and we can solve for ΣY,

ΣY =
h2ΣX + 2a2h(1− h)ΣXY + ΣZS

1− a2(1− h)2 . (F.6)

For ΣY(1)Y(2) , we have that

Cov
[
Y(1)

k , Y(2)
k

]
= Cov

[
hXk + (1− h)aY(1)

k−1 + Z(1)
k , hXk + (1− h)aY(2)

k−1 + Z(2)
k

]

= h2ΣX + ΣZ(1)Z(2) + a2(1− h)2 Cov
[
Y(1)

k−1, Y(2)
k−1

]
+ 2a2h(1− h)ΣXY,

and by the stationary argument, we can solve for ΣY(1)Y(2) ,

ΣY(1)Y(2) =
h2ΣX + 2a2h(1− h)ΣXY + ΣZ(1)Z(2)

1− a2(1− h)2 . (F.7)

We are now concerned with determining the covariance between U(1) and U(2).
For each side channel we have that

U(i)
k = Xk − aY(i)

k−1
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therefore

Cov
[
U(1)

k , U(2)
k

]
= Cov

[
Xk − aY(1)

k−1, Xk − aY(2)
k−1

]

= ΣX + a2ΣY(1)Y(2) − 2a Cov
[

Xk, Y(1)
k−1

]

= ΣX + a2ΣY(1)Y(2) − 2a2ΣXY

= ΣX + a2 (ΣY(1)Y(2) − 2ΣXY) (F.8)

Finally,

Var [VC,k] =
1
4

Var
[
Ũ(1)

k + Ũ(2)
k

]

=
1
4

(
Var

[
Ũ(1)

k

]
+ Var

[
Ũ(1)

k

]
+ 2 Cov

[
Ũ(1)

k , Ũ(2)
k

])

=
1
2

(
ΣŨ + Cov

[
Ũ(1)

k , Ũ(2)
k

])
, (F.9)

where

Cov
[
Ũ(1)

k , Ũ(2)
k

]
= Cov

[
hU(1)

k + Z(1)
k , hU(2)

k + Z(2)
k

]

= h2ΣU(1)U(2) + ΣZ(1)Z(2) . (F.10)
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Proof
Firstly, we have that

Cov
[

Xk, Y(0,C)
k

]
(a1)
= Cov

[
Xk, ΘαVC,k +

1
2

a
(

Y(1)
k−1 + Y(2)

k−1

)]
,

(a2)
= Θα Cov [Xk, VC,k] +

1
2

a Cov
[

Xk, Y(1)
k−1 + Y(2)

k−1

]
,

(a3)
= ΘαΣXVC + a2ΣXY, (G.1)

where (a1) follows by definition of Y(0,C), (a2) by the properties of covariance [58,
Prop. 3.22], and (a3) since we are in the symmetric case, and by definition of Xk
and the covariances. This proves (4.33).
For the second covariance,

Var
[
Y(0,C)

k

]
(b1)
= Var [ΘαVC,k] + Var

[
1
2

a
(

Y(1)
k−1 + Y(2)

k−1

)]
+ 2 Cov

[
ΘαVC,k,

1
2

a
(

Y(1)
k−1 + Y(2)

k−1

)]
,

(b2)
= Θ2

αΣVC +
1
4

a2 Var
[
Y(1)

k−1 + Y(2)
k−1

]
+ aΘα Cov

[
VC,k, Y(1)

k−1 + Y(2)
k−1

]
,

(b3)
= Θ2

αΣVC +
1
4

a2
(

Var
[
Y(1)

k−1

]
+ Var

[
Y(2)

k−1

]
+ 2 Cov

[
Y(1)

k−1, Y(2)
k−1

])

+ aΘα

(
Cov

[
VC,k, Y(1)

k−1

]
+ Cov

[
VC,kY(2)

k−1

])
,

(b4)
= Θ2

αΣVC +
1
2

a2
(

ΣY + ΣY(1),Y(2)

)

+ aΘα

(
Cov

[
VC,k, Y(1)

k−1

]
+ Cov

[
VC,kY(2)

k−1

])
, (G.2)

where (b1) follows from the properties of variance [58, Prop. 3.21], (b2) by the
definition of ΣVC , (b3) by the properties of variance and covariance, and (b4) follows
because Y(i)

k is stationary and we are in the symmetric case. Now considered the
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last terms in (G.2).

Cov
[
VC,k, Y(1)

k−1

]
(c1)
= Cov

[
1
2

(
α̃
(1)
k + α̃

(2)
k

)
, Y(1)

k−1

]
,

(c2)
=

1
2

Cov
[
α̃
(2)
k , Y(1)

k−1

]

(c3)
=

1
2

Cov
[

hα
(2)
k + Z(2)

k , Y(1)
k−1

]

(c4)
=

1
2

h Cov
[
α
(2)
k , Y(1)

k−1

]

(c5)
=

1
2

h Cov
[

Xk − aY(2)
k−1, Y(1)

k−1

]

(c6)
=

1
2

h (aΣXY − aΣY(1)Y(2)) (G.3)

where (c1) follows by the definition of VC,k, (c2) since α̃(1) is orthogonal to Y(1)
k−1, (c3)

by definition α̃(2), (c4) since Z(i)
k , is independent of all other signals, (c5) definition

of α(2), and (c6) by the definition of Xk and the covariances.
Since we are the symmetric case, then by (G.3) and (G.2), we have

Var
[
Y(0,C)

k

]
= Θ2

αΣVC +
1
2

a2
(

ΣY + ΣY(1),Y(2)

)

+ Θαha2 (ΣXY − ΣY(1)Y(2)) . (G.4)
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