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Stimulating sustainable development goals’ implementation and conservation action 

Predicting future land use and land cover change in the Virunga National Park 

By: Mads Christensen 

Abstract 

The United Nations 2030 Agenda for Sustainable Development and the Sustainable Development Goals 

(SDG’s) presents a roadmap and a concerted platform of action towards achieving sustainable and inclusive 

development, leaving no one behind, while preventing environmental degradation and loss of natural 

resources. However, population growth, increased urbanisation, deforestation and rapid economic 

development has decidedly modified the surface of the earth, resulting in dramatic land cover changes, which 

continue to cause significant degradation of environmental attributes and threaten planetary boundaries. In 

order to reshape policies and management frameworks, conforming to the objectives of the SDG’s, it is 

paramount to understand the driving mechanisms of land use changes and determine future patterns of change. 

The Virunga National Park is located in the surrounding area of the contentious North Kivu province in the 

north-eastern part of the Democratic Republic of the Congo and has been the scene of near-constant conflict, 

exploitation and extreme poverty. While contributing to the livelihoods of millions of people in one of the 

most densely populated regions in Africa, efforts to conserve this globally significant ecosystem and its 

catchment areas is threatened by uncontrolled agricultural expansion, natural resource extraction and 

deforestation. Thus, the Virunga National Park catchment has experienced significant land cover changes, 

which continues to undermine, not just the integrity of the national park, but the foundation of millions of 

livelihoods who depends on its ecosystem services.  

This study aims to assess and quantify future land cover changes in the Virunga catchment by simulating a 

future landscape for the SDG target year of 2030, in order to provide evidence to support data-based decision-

making processes conforming to the requirements of the SDG’s. The study follows six sequential steps: (1) 

Creation of three land cover maps from 2010, 2015 and 2019 derived from satellite images; (2) Land change 

analysis by cross-tabulation of land cover maps; (3) Sub-model creation and identification of explanatory 

variables and dataset creation for each variable; (4) Calculation of transition potentials of major transitions 

within the case study area using machine learning algorithms; (5) Change quantification and prediction using 

Markov Chain analysis; (6) prediction of a 2030 land cover.  

The model was successfully able to simulate future land cover and land use changes and dynamics and goes 

on to conclude that agricultural expansion and urban development is expected to significantly reduce Virunga’s 

forest and open land areas in the next 11 years. Accessibility in terms of landscape topography and proximity 

to existing human activities are concluded to be primary drivers of forest cover change. Drawing on these 

conclusions, the discussion provides recommendations and reflections on how the predicted future land cover 
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changes can be used to support and underpin policy frameworks towards achieving the SDG’s and the 2030 

Agenda for Sustainable Development.   

Keywords: Land cover modelling, Remote Sensing, Machine Learning, Sustainable Development Goals, 

Virunga National Park.   
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Stimulering og implementering af verdensmålene for bæredygtig udvikling  

Forudsigelse af den fremtidige arealanvendelse i Virunga National Parken 

Af: Mads Christensen 

Resumé 

De Forenede Nationers 2030 dagsorden for bæredygtig udvikling og de 17 Verdensmål (SDG) fremlægger en 

klar køreplan og en samordnet handlingsplan for at opnå en mere bæredygtig og inkluderende udvikling, som 

samtidig forebygger miljøforringelse og tab af naturressourcer. Men befolkningstilvækst, øget urbanisering, 

skovrydning og hurtig økonomisk udvikling har ændret jordens overflade, hvilket har resulteret i dramatiske 

ændringer i arealanvendelse som fortsat medfører en betydelig forringelse af miljøet og dets naturressourcer 

og således truer planetens økologiske balance. For at omforme politikker og ledelsesrammer i 

overensstemmelse med SDG'erne er det afgørende at forstå drivmekanismerne bag de processer som forårsager 

negative ændringer i arealanvendelsen. 

Virunga National Parken er beliggende i et omstridt område i den nordlige Kivu-provins i den nordøstlige del 

af Den Demokratiske Republik Congo, og den har været genstand for næsten konstant konflikt, udnyttelse og 

ekstrem fattigdom. På trods af at området bidrager til millioner af menneskers levebrød i en af de mest 

tætbefolket regioner i Afrika, er bestræbelserne på at bevare dette globalt vigtige økosystem og dets nærområde 

truet af ukontrolleret landbrugsudvidelse, naturressourceudvinding og skovrydning. Således har Virunga 

National Parken oplevet betydelige ændringer i arealanvendelse og udnyttelse af naturressourcer, som fortsat 

underminerer, ikke kun nationalparkens integritet, men levegrundlaget for de millioner af mennesker som er 

afhængige af dets økosystemtjenester. 

Dette studie forsøger at kvantificere omfanget af fremtidige ændringer i arealanvendelse i landskabet omkring 

Virunga ved at konstruere en model som kan simulere et fremtidigt landskab for år 2030. Eftersom 2030 også 

udgør målet for implementeringen af SDG’erne forsøger studiet samtidig at understøtte databaserede 

beslutningsprocesser i overensstemmelse med SDG'ernes målsætning. Studiet følger seks sekventielle 

komponenter: (1) Skabelse af tre landdækkekort fra 2010, 2015 og 2019 afledt af satellitbilleder; (2) 

Landændringsanalyse ved tværgående tabulering af landdækkekort; (3) Identificering og oprettelse af 

undermodeller og forklarende variabler og oprettelse af datasæt for hver variabel; (4) Identificering af de 

drivende transitioner i arealanvendelse indenfor studieområdet ved brug af maskinindlæringsalgoritmer; (5) 

Kvantificering og forudsigelse ved brug af Markov Chain analyse; (6) Simulering af landdækket i 2030. 

Modellen opnåede med succes at simulere fremtidige ændringer i arealanvendelse og konkluderer at 

landbrugsudvidelse og byudvikling forventes at reducere Virungas skovområder og åbne/græsarealer 

betydeligt i de næste 11 år. Tilgængelighed med hensyn til landskabstopografi og nærhed til eksisterende 

menneskelige aktiviteter konkluderes at være de primære drivkræfter bag ændringer i skovdækket. På 
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baggrund af disse konklusioner giver diskussionen anbefalinger og overvejelser om hvordan de simulerede 

fremtidige ændringer i arealanvendelse kan bruges til at understøtte udviklingen af de politiske rammer for at 

opnå SDG'erne og 2030-dagsordenen for bæredygtig udvikling. 

Nølgeord: Landdækkemodellering, Jordobservationer, Maskinlæring, Verdensmålene, Virunga National 

Parken. 
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1 Introduction  

Established in 1925 as the first National Park (NP) in Africa, the Virunga NP is located in the Albertine Rift 

Valley in the eastern part of the Democratic Republic of the Congo (Andersen, 2018). Along with the 

Mgahinga Gorilla NP in Uganda and the Parc Nationale Des Volcans in Rwanda, Virunga is part of a triangle 

of NP’s in central Africa, principally designated in order to enhance conservation efforts to protect the critically 

endangered mountain gorilla (Gorilla Beringei Beringei) (Kayijamahe, 2008). The park covers an area of 

790,000 ha (UNESCO, 2019), and besides hosting majority fragments of the last remaining habitat suitable 

for the mountain gorilla, the multitude of variety in nature and climate variables, with large lakes, open land 

savannah, vast forest areas, snow-covered mountain tops and erupting volcanoes also provide critical habitats 

for a great variety of the other large species of mammals we associate with Africa (Andersen, 2018). For this 

reason, the park was inscribed as a United Nations (UN) Educational, Scientific and Cultural 

Organization (UNESCO) World Heritage site in 1979. However, the NP is located in one of the most densely 

populated regions in Sub-Saharan Africa, which has been the scene of prolonged political turmoil and social 

conflict (Rainer et al., 2001), causing severe pressure on the ecological integrity of the landscape and its 

biodiversity. Moreover, the rich volcanic soil and high rainfall within the Virunga NP catchment makes it 

highly suitable for agriculture, and thus an attractive opportunity to underpin subsistence and commercial 

farming operations (Kayijamahe, 2008). 

The rapidly increasing population has significantly increased the demand for natural resources (land, water 

energy, food, etc.), causing rapid land clearing for agriculture and grazing, removal of plants for different 

purposes, including artisanal mining operations, and house building (Rainer et al., 2001). Besides the efforts 

of authorities to protect the integrity of the NP, and avoid land intrusion and habitat degradation within the 

park, it continues to be threatened by civil unrest, illegal activities, land conversion and encroachment, 

livestock farming / grazing of domesticated animals, widespread depletion of forests in the lowlands and a 

massive influx of 1 million refugees occupying adjacent areas of the park (UNESCO, 2018). Militia leaders 

and prospectors are threatening the borders of the park in search for the vast deposits of diamonds, gold, 

uranium and other coveted minerals, while the vast influx of destitute refugees resorts to poaching and charcoal 

production, resulting in further fragmentation and degradation of the forest landscape (Andersen, 2018). In 

fact, the majority of the total population of nearly 6 million people in the surrounding province of North Kivu 

rely entirely on charcoal for their cooking needs, and an estimated three-quarter of this charcoal is sourced 

from the Virunga catchment, most of it illicitly from within the NP (Yee, 2017).  

Thus, the region is highly important, both ecologically and economically, and the conflicting demands for 

socio-economic development while maintaining the ecological integrity of the NP has underpinned the need 

to ensure continued conservation efforts and sustainable natural resource management in order to safeguard 
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critical biodiversity and habitat, while preserving the foundation of the livelihoods for millions of people. This 

agenda is fortified through the UN 2030 Agenda for Sustainable Development and the 17 Sustainable 

Development Goals (SDG)’s which were adopted at the UN general assembly in 2015. The SDG’s calls on 

concerted action to pursue economic development while ensuring social inclusion and environmental 

sustainability, on the basis of good governance. The SDG framework provides a comprehensive agenda 

through which to mainstream policies and derive targeted actions for addressing core sustainability challenges. 

However, the ability to target policies and actions to address conservation issues, while pursuing economic 

development and prosperity, leaving no one behind, is hampered by lacking scientific evidence and data to 

direct and support informed decision making.  

In order to derive targeted policies and actions to support effective land use planning, management and 

ecological restoration conforming to the requirements of the SDG’s, it is imperative to understand the 

underlying processes of change (Liping et al., 2018). Up to date information on current land cover and land 

use provides critical information which can be used to underpin decision-making processes, while modelled 

predictions about plausible future land use/land cover (LULC) scenarios provide indications of potential 

trajectories and thus a platform for identifying interventions.  Changes in land use and land cover can be 

described and projected through the use of land change models, which can be used to explain and assess the 

dynamics of land cover- and broader system change (National Research Council, 2014). Spatial land change 

models thus provide platforms for exploring potential future scenarios, which can be used to guide land use 

decision making and planning (National Research Council, 2014).  

The purpose of the study is to assess and quantify past and plausible future land use and land cover changes 

and dynamics within the Virunga case study area. The primary analysis will be guided by a change analysis of 

classified satellite imagery to quantify past changes, and the development of a land change model, applying a 

coupled machine learning - Markov Chain approach, to derive a future land cover prediction for the year 2030. 

The aim is to assess the plausible future evolution of the landscape within the Virunga case study area and 

address an existing data gap in order to provide evidence to support data-based decision-making processes 

conforming to the requirements of the SDG’s.  

1.1 Problem statement and research questions 

While several authors have already successfully applied predictive land change modelling to support land use 

management and decision-making processes (i.e. Gibson et al., 2018; Guerrero et al., n.d.; Shade & Kremer, 

2019), a thorough literature review indicates that such an approach has been applied in just a few case studies  

and hence it is necessary to explore further cases in order to assure its applicability across different landscapes. 

Therefore, a remote area in Africa within the Virunga NP is targeted. This study aims to apply remotely sensed 

data, geospatial and modelling tools to detect, quantify, analyse, and predict future land change in the Virunga 

NP and its immediate vicinity.  
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Main hypothesis and research questions: 

The study is framed around the hypothesis that there have been significant land cover changes within the study 

area, primarily caused by deforestation due to encroaching activities and cropland expansion.  The study will 

test two main assumptions: 

1. It is possible to remotely monitor and model a case study in Africa using a combination of remotely 

sensed data, Geographic Information System (GIS) tools and modelling techniques for studying the 

dynamics of the land cover within the study area. 

2. There has been, and if unchecked and unregulated, will likely continue to be significant land use/land 

cover changes within the study area. 

To assist the implementation of the main research framework and to guide the analysis, the following research 

questions were posed:   

• Have there been major land cover changes within the study area in the last 10 years? And if so, what 

kind of land cover changes?   

• What has the spatial extent of the land cover change been and which areas have experienced the highest 

rate of changes? 

• What are the major driving forces behind these changes? 

• What will the extent of land change be by 2030?  

• How can the future land cover prediction for the Virunga study area be used to support and underpin 

policy frameworks towards achieving the SDG’s?   

1.2 Study area 

The Virunga NP is located in Central Africa, in the Eastern part of the Democratic Republic of the Congo, on 

the border with Uganda and Rwanda. It is located in the equatorial zone, within the Albertine Rift, of the Great 

African Rift Valley (UNESCO, 2019). In this study, The Virunga NP and its immediate vicinity was included 

in order to fully assess of the NP the landscape dynamics of the entire Virunga catchment. This was considered 

critical in order to explore socio-economic changes, primarily in the form of urban development and cropland 

expansion, outside of the NP, and assess how these land cover dynamics could potentially impede conservation 

efforts and sustainable land management planning.  

The study area as can be seen from Figure 1 below, covers a total of 14810 km2 of which 7779 km2 is within 

the Virunga NP.  
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Figure 1 Study area around the Virunga NP in the Democratic Republic of the Congo (The data on the boundary lines of the Virunga 

NP has been downloaded from (UNEP-WCMC & IUCN, 2019)) 

As briefly outlined in the introduction, the area is characterized by an astonishing diversity of landscapes and 

biotopes and the varying topography lends itself to host more unique habitats than any other NP in Africa, 

ranging from swamps and steppes to the snowfields of Mount Stanley at an altitude of 5,109 m, and from the 

lava plains to savannah and the steppes of the low land plains at the feet of the many volcanoes (UNESCO, 

2019).  

The Northern part of the Virunga NP is characterized by high mountains, containing the third, fourth and fifth 

highest peaks on the continent of Africa (Crawford & Bernstein, 2008). The mountain massif is mainly covered 

by montane forests, however, cropland intrusion, particularly in the Western flank is also dominant as 

agriculture is the mainstay of the livelihoods in the region (Crawford et al., 2008). The central part of the park 

is dominated by Lake Edward which borders Uganda to the East. Smaller cities and villages are scattered along 

the coast of the lake, while open land and cropland characterize the hinterland.  Until recently the lake was 

considered Africa’s most productive for fisheries and hosted the largest concentration of hippo in the world, 

however, widespread poaching and overfishing has changed this, threatening the ecological balance of the 

ecosystem and the livelihoods of the people depending on it (Crawford et al., 2008). The Southern part of the 
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park is characterised by a series of active and extinct volcanoes, including Nyamulagira and Nyiragongo in the 

southwest, which are two of the most active volcanoes in the world (Crawford et al., 2008). In 2002, 

Nyiragongo erupted, resulting in the displacement of thousands of people living in the nearby city of Goma 

(Crawford et al., 2008). The volcanic landscape in the southern sector consists mainly of dense, humid montane 

forest within which the mountain gorilla reside (Crawford et al., 2008). However, the majority of the people 

in the region, including the main city of Goma, rely exclusively on charcoal for their energy, and this has 

translated into intense pressure on the nearby forests. According to Crawford et al. (2008), 24,000 hectares of 

forest is needed to satisfy this demand, and much of it comes from the park, as the old growth trees in the 

montane forests produce charcoal that burns longer and hotter. According to the World Resources Institute 

(2019), the total forest cover within the NP has been reduced by approximately 374 km2 in the period from 

2001 to 2018. 

1.3 Background 

Understanding the drivers and dynamics of LULC change is imperative in order to develop sustainable 

management strategies and policies and make informed planning decisions. Changes in LULC affect a wide 

range of environmental parameters, including soil erosion and accretion, hydrological balance, biodiversity, 

climate, all of which are factors that ultimately impact and drive societal wellbeing and influence the 

sustainability of local livelihoods (Zadbagher & Becek, 2018). The land cover changes are driven by an 

assembly of difference anthropogenic and natural processes operating at different spatiotemporal scales, each 

of which are driven by one or more variables (Zadbagher et al., 2018). The variables also referred to as 

explanatory variables, are drivers of the observed changes and typically consist of a range of biophysical and 

socioeconomic criteria. 

The ability to determine the extent to which the drivers contribute to future LULC changes is fundamental in 

order to make accurate predictions about future LULC scenarios, which is vital in order to underpin and inform 

management decisions and interventions. LULC change models aim to predict or simulate the future behaviour 

of environmental and social systems in order to support the analysis of the causes and consequences of land 

use dynamics (Mishra et al., 2014). While LULC models are a simplified representation of complex, dynamic 

and nonlinear socioeconomic and natural structures, they are useful for determining plausible ways of how the 

future could potentially unfold (Noszczyk, 2018). 

LULC change models consist of various methods aiming to aid the understanding of the spatial relationship 

between the historical change of land cover and their drivers (Meiyappan et al., 2014). The selection of the 

right method is a reflection upon the goals and aims of the research questions and is a critical component of 

the model construction process (Noszczyk, 2018).  No model is able to comprehensively model all aspects of 

reality (Noszczyk, 2018), and thus the selection of an appropriate method is subject to compromise, capability 

and resources available. 



 

Page | 6 

 

According to literature, the following LULC change model types are identified (Noszczyk, 2018)  

• Agent-based models  

• Economics-based models 

• Cellular automata  

• Artificial neural networks (ANN) 

• Markov chains  

• Models based on statistical analysis 

In this study, a Multi-Layer Perceptron (MLP) neural network is trained to analyse the empirical relationship 

between historical change and the explanatory variables, or drivers of change, in order to determine the 

transition potential of each pixel to change into another land cover class (Mas et al., 2014). A Markov Chain 

is used to derive future scenario predictions, based on the amount of historic change and a projection of the 

transition potential into a future state. 

1.3.1 MLP neural network 

A neural network is a type of computational framework for a collection of interconnected units or nodes (also 

called neurons or perceptrons) which aims to mimic the human brain (Yang, 2010). An MLP neural network 

consists of multiple layers of nodes, interconnected to the next node to form a feed-forward neural network 

(Beysolow II, 2017). The stronghold of neural networks is their ability to relate the representation of a training 

dataset to that of an output variable in order to make a prediction (Brownlee, 2016). As an MLP is a feed-

forward neural network, data flows in one direction, from a set of input layers, through one or more hidden 

layers which are sets of computational nodes, to a set of computation/output layers (Gibson et al., 2018). The 

nodes are linked by a web of connections which are applied as weights, and a back-propagation algorithm is 

used to train the network iteratively by spreading errors from the output layer to the input layer by adjusting 

the value of the weights in order to minimise the error between the observed and predicted outcomes (Gibson 

et al., 2018). The back-propagation algorithm which is used to train the model is the key distinguishing feature 

of an MLP, compared to a single layer perceptron (SLP) model (Beysolow II, 2017). This algorithm is enabled 

by introducing hidden neurons and it allows the learning algorithm to alter the composition of the network 

based on a trial and error framework, by separating error by each node in the network (Yang, 2010).   

The standard multilayer perceptron (MLP) is a cascade of single-layer perceptrons. There is a layer of input 

nodes, a layer of output nodes, and one or more intermediate layers. The interior layers are sometimes 

called "hidden layers" because they are not directly observable from the system inputs and outputs (Reed, 

Reed, and Marks 2014, page 31). 

An MLP’s capability to learn depends on the network architecture (number of hidden layers and nodes) and 

on the parameterisation of the model (i.e. learning rate, momentum factor, sigmoid value and number of 
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iterations). The performance of an MLP model is assessed by a precision value expressed in per cent, and 

networks that are too small tend to be unable to identify the internal structure of the data, resulting in lower 

accuracies, while networks that are too large tend to overfit the data (Gibson et al., 2018). Overfitting can occur 

when the algorithm produces a mathematical relationship between the observed changes and a set of 

explanatory variables, which fits the details of the calibration dataset but fails to represent the more general 

principles of changes that extend to other times and places (National Research Council, 2014).   

Figure 2 below, shows an example of an MLP trained with a back-propagation algorithm where hidden neurons 

are introduced between the input layer (x1, x2 and x3) and the output layer (o1, o2, and o3).  

 

 

Figure 2 Structure of an MLP neural network (from (Beysolow II, 2017)) 

MLP’s are suitable for classification prediction problems (Brownlee, 2016) and by using hidden neurons which 

affect the output of the model, they can be used for modelling complex nonlinear relationships allowing them 

to better handle Boolean XOR problems (Beysolow II, 2017).  

1.3.2 Markov Chains 

Named after Andrey Markov a Markovian process is “a stochastic process in which the conditional probability 

distribution of future states of the process, given the present state and all past states, depends only upon the 

present state” (Sammut & Webb, 2010). One of the most well-known Markovian processes is called Markov 

Chains, which are discrete time-series of different states with transition probabilities (Sammut et al., 2010). In 

a Markovian analysis of land class changes, a matrix is derived in order to represent changes between land 

cover categories (Noszczyk, 2018). Assuming that the pace of changes in time and the change itself is 

stationary, meaning that the rates of change observed during calibration (T1 to T2) will remain the same during 

simulation (T2 to T3), the matrix represents the likelihood of a land class to transform into another category, 

i.e. meaning that five land classes result in 25 possible changes (Noszczyk, 2018). This procedure determines 

the amount of land which is expected to transition from the later date to the prediction date, based on a 
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projection of the transition potentials into the future (Mishra et al., 2014). An example of a Markov Chain 

transition probability matrix is illustrated in Table 1 below.  

Table 1 Transition potential matrix example (Mishra et al., 2014) 

 

1.4 Land cover classification 

The ability to provide a synoptic view over large areas and map land cover and land cover changes are one of 

the strongholds of satellite-based remote sensing (Rodriguez-Galiano et al., 2012).  

Scientists and practitioners have made great advancements in improving existing and developing new 

advanced methods for multispectral image classification in order to improve accuracy and processing speed 

(Kulkarni & Lowe, 2016). There are many methods for land classification, spanning the range from 

unsupervised clustering algorithms to non-parametric machine learning algorithms. Prior knowledge about the 

area of interest is not needed when conducting an unsupervised classification, as these algorithms form clusters 

of pixels based on the statistical properties of each pixel. Supervised classifications, however, are dependent 

upon training data (ground-truth) which can be collected from existing maps, fieldwork observations or high-

resolution satellite imagery (Al-Ahmadi & Hames, 2009). Supervised classifications determine the relationship 

between each pixel and the spectral signature defined in the training data set. In order to attain the best 

classification results, training data selection and segmentation need to be carefully considered (Phiri & 

Morgenroth, 2017). The selection of appropriate land cover classes (e.g. forest, cropland, urban areas) and 

careful consideration of stratification needs (i.e. subdividing urban into residential, industrial, fringe, etc.), 

reflecting the objective of the classification end use, mirrors the training data needs for the supervised 

classifier. Thus, the size and quality of the training data sample are key issues when planning for a supervised 

classification (Maxwell et al., 2018). For machine learning, the rule of thumb is that the minimum number of 

training samples should be 10 times the number of variables land classes (Maxwell et al., 2018). In order to 

assess the performance of the classifier, one option is to withhold a certain proportion of the training data, i.e. 

30 %, and use this subset to test the classification accuracy (Maxwell et al., 2018). An alternative approach is 

to use the entire training dataset for training and derive a separate dataset to assess the performance of the 

classifier.  
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Machine learning has received much attention in recent years, largely due to its ability to improve efficiency 

and accuracy and handle data of high dimensionality and map classes with highly complex characteristics 

(Maxwell et al., 2018). Several machine learning methods are still relatively immature and experimental (e.g. 

extreme learning machines and deep convolution neural networks), however a range of methods have long 

been well-established and adopted by the scientific community as mature methods, including Support Vector 

Machines (SVM), single Decision Trees (DT), boosted DT’s, Artificial Neural Networks (ANN), k-nearest 

neighbour (k-NN) and Random Forests (Maxwell et al., 2018). 

Random Forests have received considerable attention in recent years, due to its robustness, high classification 

accuracy and easy parameterization, and it is well-established as one of the most efficient classification 

methods of satellite imagery (Gislason et al., 2006; Kulkarni et al., 2016; Maxwell et al., 2018; Ming et al., 

2016; Pelletier et al., 2016).  

1.4.1 Random Forest 

Random Forests by Breiman (2001) is a supervised learning technique based on trees classifiers. It is an 

ensemble classifier, which means that it builds a “forest” of decision trees, each of which makes their own 

classification by using a random bootstrap sample selection (Ming et al., 2016).  The idea behind combining 

multiple decision trees to produce ensembles is that a group of weak learners together form groups of strong 

learners, to increase predictive performance.  

Bootstrapping is a randomization technique which helps to generate several subset datasets from a single set 

of data, by randomly choosing the same number of observations as the original data set, but with replacement 

(Suthaharan, 2016). This way, each subset dataset will have the same number of total observations as the 

original dataset, however, some of the observations are repeated due to multiple selections in the subsets.  

Each tree in the ensemble is formed by the bootstrapped subset datasets, where approximately 2/3 of the data 

is used as training (in-the-bag), used for classification and the remaining 1/3 is used for validation (out-the-

bag) (Kulkarni et al., 2016). The out-the-bag validation data is used to get a classification error score while 

trees are added to the ensemble. The training data is used to create multiple decision trees which ultimately 

makes independent classification votes. During the decision phase, each individual tree classifies the input 

data, and the final Random Forest output class label is based on the majority of votes within the ensemble 

(Suthaharan, 2016). 
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Figure 3 Random Forest flowchart (adapted from Harris and Grunsky (2015)) 

 

1.5 Toolbox and technology 

A variety of different tools, software components and programming languages was utilized in order to frame 

the overall analysis and methodology. This section will provide a brief description of the software components, 

cloud platforms and programming languages used in the study. 

1.5.1 Terrset 

Developed in 2015, Terrset is an integrated sucessor of the IDRISI 

GIS and Image Processing software, first conceptualized by Clarks 

Labs in 1987 (https://clarklabs.org/about/). It constitutes a feature-

rich software system which incorporates IDRISI GIS and Image 

Processing tools and offers a wide constellation of tools focused on 

monitoring and modelling of the Earth system for sustainable 

development (Eastman, 2016a).  

 

 

 

 

https://clarklabs.org/about/
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The full constellation of the programme includes modules and processing tools for: 

• GIS analysis 

• Image processing 

• Land Change modelling 

• Habitat and biodiversity modelling 

• Reducing Emissions from Deforestation and forest Degradation (REDD) planning 

• Ecosystem services modelling 

• Time series analysis  

• Climate change adaptation modelling 

Terrset supports both raster and vector-based analysis and processing, however, the mainstay of the modules 

focuses on raster-based analysis. This is largely due to Terrsets main analytical focus on remotely sensed data, 

which native structure is raster based.  

Version 18.31 of the Terrset software package was utilised in this study. 

1.5.1.1 Land Change Modeler 

The primary tool applied in this study to analyze land-cover change and dynamics is the Land Change Modeler 

(LCM) module within the Terrset toolbox. By cross-tabulating change between two separate land cover maps, 

representing different time steps, LCM can model the empirical relationship between the land cover changes 

and a set of explanatory variables, to make a prediction of future land cover scenarios.  

 

Figure 4 Land Change Modeler working environment 



 

Page | 12 

 

1.5.2 ArcGIS 

The main software used in this project for data pre-processing and visualization is ArcGIS for Desktop, version 

10.6.1. ArcGIS is a GIS system developed by the Environmental Systems Research Institute (Esri) and includes 

ArcMap which provides several powerful tools for displaying, analyzing, and creating GIS data (ESRI, 2019).  

Furthermore, ArcGIS includes ArcCatalog which is particularly useful for browsing GIS data, viewing and 

managing metadata, creating and managing geodatabases, etc.  

 

1.5.3 Google Earth Engine 

Google Earth Engine, established in 2010, is a web-based cloud processing platform and satellite data 

repository that provides global-time series satellite imagery and vector data and access to software and 

algorithm for data processing (Kumar & Mutanga, 2018). The multi-petabyte analysis-ready data catalogue, 

including satellite imagery stored in the public data archive, includes historical earth images dating back more 

than forty years (Gorelick et al., 2017). Besides the collection of raw unprocessed satellite imagery, Google 

Earth Engine also provides access to various satellite-based products, including indices, composites, elevation 

models, land cover data, etc.  

Data from the Earth Engine servers can be accessed using the JavaScript-based Google Earth Engine Internet-

accessible application programming interface (API). The Earth Engine (EE) Code Editor, available 

from code.earthengine.google.com, is a web-based interactive development environment (IDE) for the Earth 

Engine JavaScript API, which allows users to create and run custom algorithms to retrieve and process data 

rapidly in the cloud.  

As illustrated in Figure 5 below, the IDE includes the following components (GOOGLE, 2019);  

• JavaScript code editor; 

• Map display for visualizing geospatial datasets;  

• API reference documentation (Docs tab); 

• Git-based script manager (Scripts tab); 

• Console output (Console tab); 

• Task manager (Tasks tab) to handle long-running queries; 

• Interactive map query (Inspector tab); 

• Search of the data archive or saved scripts; 

• Geometry drawing tools 

 

 

https://code.earthengine.google.com/
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Figure 5 Components of the Earth Engine Code Editor (Source:(GOOGLE, 2019)) 

 

1.5.4 JavaScript 

JavaScript is a lightweight, interpreted, object-oriented programming language, best known as one of three 

main pillars in web development along with HyperText Markup Language (HTML) and Cascading Style 

Sheets (CSS) (MDN, 2019). It is a text-based and client-side programming language which is primarily used 

to make a webpage more interactive and responsive to the occurrence of a particular event (MDN, 2019).   

In Google Earth Engine JavaScript commands can be used in the IDE to acquire, process and analyse geospatial 

data inputs. 
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2 Methodology 

The methodological framework utilized in this study to predict the future landscape around the Virunga NP 

was developed using a variety of different tools and the theoretical framework outlined in section 1.3. The 

workflow is illustrated in Figure 6 below and the methodology follows six sequential components; 

1. Creation of three land cover maps from 2010, 2015 and 2019 derived from satellite images; 

2. Land change analysis by cross-tabulation of land cover maps; 

3. Sub-model creation and identification of explanatory variables and dataset creation for each variable; 

4. Calculation of transition potentials of major transitions within the case study area using an MLP neural 

network; 

5. Change quantification and prediction using Markov Chain analysis, and accuracy assessment of the 

model performance by cross-comparing the predicted land cover map for 2019 with the actual 2019 

land cover map; 

6. Prediction of a 2030 land cover. 

 

Figure 6 LCM workflow to predict land cover change in Virunga in 2030 
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In this section, the methodology applied in this study to derive land cover predictions for the year 2030, 

conforming to this sequential stepwise approach is described. All datasets were either created in, or reprojected 

to, a Reseau Geodesique de la RDC 2005 TM Zone 18 (EPSG:4051) projected coordinate system, suitable for 

use in the Democratic Republic of the Congo. 

2.1 Land cover classification 

Google Earth Engine provides a cloud-based platform for accessing and processing large amounts of both 

current and historical satellite imagery, including those acquired by the Landsat-7 and Landsat-8 satellites. The 

advantages of seamless integration of archived, and pre-processed satellite imagery, along with a powerful 

cloud processing platform made Google Earth Engine an ideal platform for conducting the land cover 

classification. 

The land classification in Google Earth Engine is composed of several different steps; 

• Choosing an appropriate satellite imagery dataset, fitting the objective of the study. 

• Define land cover classes and collect training data to train the supervised classification algorithm. 

• Developing a JavaScript code to acquire, process and classify the satellite imagery based on the choice 

of classification algorithm. 

2.1.1 Satellite imagery 

In this study, three land cover maps were needed, one for 2010, 2015 and 2019. As the National Aeronautics 

and Space Administration (NASA)’s Landsat satellites provides an archived and freely available dataset 

covering the entire study period with high resolution (30 m) multispectral imagery, these were selected for this 

study. Google Earth Engine provides integrated access to analysis-ready (already geometrically corrected and 

orthorectified), surface reflectance Landsat data from the Tier-1 collection.1  

 

For the 2010 land cover map, tier-1 data from the Landsat 7 Enhanced Thematic Mappers (ETM+) sensor was 

selected, while tier-1 data from the Landsat 8 Observation Land Images (OLI) was chosen for the 2015 and 

2019 land cover maps. The Landsat 7 sensor has been in operation since 1999 and as seen from Table 2 below, 

the images contain 4 visible and near-infrared bands (VNIR), 2 short-wave infrared (SWIR) bands, 1 thermal 

infrared (TIR) band and a panchromatic band. The Landsat 8 sensor has been operative since 2013 and contains 

5 VNIR bands, 2 SWIR bands, 2 TIR bands, a panchromatic band and a cirrus band.   

                                                      
1 For further information on Landsat Collection 1 products: https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1?qt-
science_support_page_related_con=1#qt-science_support_page_related_con  

https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
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Table 2 Key characteristics of Landsat 7-8 

Sensor Spectral bands Wavelength 

(μm) 

Ground 

pixel size 

(m) 

Landsat 7 - ETM+ Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR)  1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60  

Band 7 - Shortwave Infrared (SWIR) 2.09-2.35 30 

Band 8 - Panchromatic .52-.90 15 

Landsat 8 - OLI Band 1 - Ultra Blue  0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - Near Infrared (NIR) 0.851 - 0.879 30 

Band 6 - Shortwave Infrared (SWIR)  1.566 - 1.651 30 

Band 7 - Shortwave Infrared (SWIR)  2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal Infrared (TIR) 1 10.60 - 11.19 100  

Band 11 - Thermal Infrared (TIR) 2 11.50 - 12.51 100 

 

2.1.2 Collecting training/validation data 

As a first step in preparing a training dataset for the land classification, the definition of a nomenclature of land 

cover classes fitting the objective of the study needed to be defined. For this study, the primary objective was 

to predict changes to the forest cover, and thus an elaborate definition of several land cover classes was not 

needed. Accordingly, the 5 mainland cover classes in the area of interest were enough to ensure a sufficient 

representation of the spatiotemporal variety of land cover changes and identify the primary drivers contributing 

to forest change dynamics.   
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The five land cover classes were identified as; 

1. Forest – afforested and primary forest areas. 

2. Water – lakes and rivers. 

3. Urban areas – developed residential or industrial areas, roads and urban fringes. 

4. Cropland – planted or bare crop fields. 

5. Open land/grassland – areas with sparse vegetation, characterized by open grasslands, bare soil or 

volcanic ash. 

To train and validate the land-cover classifications, a reference training dataset was collected within the study 

area. As reviewed in section 1.4, the minimum samples for machine learning based algorithms to perform 

optimally should be at least 10 times the number of land cover classes. Thus, in this case, the training data 

samples should be at least 10*5=50. These reference training datasets were collected by drawing polygons and 

clicking points within the Google Earth Engine map interface, on top of individual pixels or areas identified 

as belonging to one of the 5 classes by visual inspection. The reference maps for the sampling of the training 

datasets included time series of Landsat 7 images (2012 land cover map) and time series of Landsat 8 images 

(2015 and 2019 land cover maps) as well as Google Earth high-resolution images. The Landsat images were 

added to the map layer user interface as both a true colour (RGB) and false colour composites. The true colour 

composite represents the surface as the eye would see it, while the false colour composite enhances the spectral 

difference of vegetation patterns by replacing the red band with a near infrared band which as high reflectance 

values for vegetation. From the collection of training data polygons and points, a subsample of 500 points was 

used to train the model. An additional point dataset consisting of 50 individually sampled points was collected 

and used for validation. The validation dataset (i.e. ground truth) was sampled using the high-resolution images 

in Google Earth.  

The two Landsat composites were used as the main reference for the sampling of the training data by visually 

inspecting each area, however, each sample unit was subsequently cross-referenced with the high-resolution 

dataset in order to substantiate whether the sampling unit feasibly belongs to that class. The cross-referencing 

for the 2019 training data was easily facilitated through the integration of current high-resolution satellite 

imagery from 2019, within the map interface of Google Earth Engine, allowing for seamless integration with 

the two composite images. However, as Google Earth engine does not integrate historic high-resolution 

imagery, cross-referencing for the 2010 and 2015 training datasets was resolved by comparing sample units to 

the high-resolution images archived in Google Earth Pro, for each of the two years. Table 3 provides an 

illustration of the training data collection method, as well as an extract of the final classification based on the 

training data sampling within that area. 
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Table 3 Training data collection for each of the five land classes and extracts of final classification based on training data 

 True colour image False colour image High-resolution image Classification 

1: 

Forest 

    

2: 

Water 

    

3: 

Urban 

    



 

Page | 19 

 

 True colour image False colour image High-resolution image Classification 

4: 

Cropl

and 

    

5: 

Open 

land 

    

 

2.1.3 Land cover classification within the Google Earth Engine IDE 

In order to create the three land cover maps, three individual scripts were prepared within the Google Earth 

Engine IDE, one for each of the three years. The JavaScript source code for the 2019 land cover classification 

is included in Appendix A. 

The first component of the script was to import the area of interest (AOI) as table data, which is the Earth 

Engine equivalent to a dataset in a Shapefile format.  Secondly, 5 empty containers for geometry collections 

for the training datasets were imported as variables. Subsequently, a cloud-free composite of satellite images 

was imported using the JavaScript code illustrated in Figure 7 below. The function ‘maskClouds’ generates a 

cloud and a cloud shadow mask for the imported Landsat collection. Furthermore, within this function, the 

Normalized Difference Vegetation Index (NDVI) was calculated, using the formula 𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

𝑁𝐼𝑅+𝑅𝑒𝑑
, and 

added to the band collection of the satellite image composite. The NDVI was added to the band collection to 

enhance the contribution of vegetation in the spectral response for the classification. The variable 

‘L8collection’ imports the Landsat 8 (Landsat 7 for the 2010 land cover map) satellite image collection and 

filter the collection on the basis of image date, boundaries (within AOI) and cloud cover (< 35 %) and 

ultimately applies the cloud masking function.  As the area of interest around the Virunga mountains generally 
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have a high percentage cloud cover, each of the three land cover images were filtered on the basis of satellite 

images acquired in the previous 2 years. The variable ‘testimage’ creates a cloud free composite from the 

satellite image collection, using a median reducer to derive the median values of each band in the stack, over 

time, and clips the composite to the AOI. The composited and clipped Landsat collection is ultimately added 

as map layers, as a false colour (line 21) and true colour (line 22) composite. The two composites, along with 

a high-resolution reference satellite image were subsequently used to create geometries for the training datasets 

(as detailed in section Fejl! Henvisningskilde ikke fundet.). 

 

Figure 7 JavaScript code to add geometry collections of training data and import a cloud-free Landsat image composite. 

The training datasets were subsequently subsampled with random points to ensure that all classes within the 

training data have the same sample size (Figure 8). In this script, 500 sample points for each training layer is 

generated by looping over each training dataset and creating random points within the geometries of the 

training data layers. The classes for each point feature collection is added using the class properties of the 

training data geometries (Forest = 1, Water = 2, City = 3, Cropland = 4 and OpenLand = 5). The variable 

‘training’ collects the points within each training class and samples the pixels within the Landsat composite to 

extract reflectance values for each point.  
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Figure 8 JavaScript code used to subsample and randomise the training datasets 

Following the finalisation of the subsampled training data and the acquisition of a cloud-free Landsat 

composite, the Random Forest algorithm was initiated in order to conduct the classification of the image. As 

seen from the JavaScript code extract in Figure 9, below, the individual bands used for the classification was 

first imported as a variable ‘bands’. The first 7 bands of the Landsat 8 composite + the NDVI added band, was 

used for the classification algorithm for the 2015 and 2019 land cover maps. Bands 1-5, band 7 and the added 

NDVI band was used for the 2010 land cover map, based on the Landsat 7 composite. Subsequently, the 

‘classifier’ variable initiates the Random Forest algorithm and train it on the subsampled training dataset 

created in the previous step. Lastly the ‘classified’ variable use the ‘classifier’ variable to classify the rest of 

the Landsat composite, while the ‘p’ variable adds a palette of colours to display the classified image using the 

Map.addlayer function.  

 

Figure 9 JavaScript code for the Random Forest classification of the Landsat composite using the subsampled training data 

The final step in the land cover classification is the validation of the land cover maps. Using the code JavaScript 

code shown in Figure 10, a confusion matrix is created in order to assess the performance of the classification 

algorithm. In the first part of the code, the ground truth validation point FeatureCollections are compiled into 

one FeatureCollection using the function featureCollection.merge() and stored as a new variable “testingsep”. 
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Subsequently, a reducer function is applied in order to retrieve the land class attributes to compile a complete 

validation dataset with land class properties. The variable “validation_sep” compiles the validation data points 

within the classified land cover map in order to assess the land cover class of each validation point within the 

classified map. The variable errorMatrix_sep executes the errorMatrix function, using the validation_sep 

variable, in order to derive an error matrix. Lastly, the error matrix is exported as a table to Google Drive. 

 

Figure 10 JavaScript code used to derive error matrixes, used for land cover validation 

The confusion matrix for all three land cover maps can be seen in Table 11, Table 12 and Table 13 for 2010, 

2015 and 2019, respectively, in Appendix B. The rows in the matrix correspond to instances of the actual class 

(validation data), while the columns are instances of the predicted class. The diagonal within the matrix 

indicates the correctly classified instances, while the off-diagonal instances are the number of incorrect 

classifications. The overall accuracy of the classification, as well as the users and producer’s accuracy, can be 

derived from the error matrix. The overall accuracy is calculated by adding the correctly classified diagonal 

values and dividing it with the total number of reference points (50 points*5 classes= 250). The producer’s 

accuracy is calculated by dividing the accurately classified instances in each class with the total number of 

reference sites within that class. The user’s accuracy is calculated by dividing the correct classifications for a 

particular class with the row total. 

The overall accuracy, producers- and users’ accuracy for each of the three land cover maps (2010, 2015 and 

2019) can be seen from Table 4 below. As can be seen, the overall accuracy, ranging from 92,8 to 94 % 

indicates a very high accuracy for all land cover maps. However, while the total producers and users’ 

accuracies are also high, individual classes such as cropland, open land and urban have lower accuracy scores 

in a few cases. This likely has to do with the similarity in spectral response between these three classes in the 

case study area.  
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Table 4 Accuracy scores for the 2010, 2015 and 2019 land cover maps 

 Overall accuracy Producers accuracy Users accuracy 

Land cover class 2010 2015  2019 2010 2015  2019 2010 2015  2019 

Forest    96 90,9 100 96 100 86 

Water 100 100 100 100 100 100 

Urban 95,5 97,8 97,9 84 90 92 

Cropland 91,8 100 80 90 82 88 

Open Land 82,5 84,5 85,5 94 98 94 

Total (in %) 92, 8 94 92 93,2 94,6 92,7 92,8 94 92 

 

The quantified land cover area under each land class, and for each year, can be seen from the graph presented 

in Figure 11 below. The final classified land cover maps for 2010, 2015 and 2019 can be seen from Figure 12, 

Figure 13 and Figure 14, respectively, on the next three pages. 

 

Figure 11 Land cover area per class in 2010, 2015 and 2019 

Forest Water Urban Cropland Open land

2010 5113 1773 18 4538 3035

2015 3646 1780 76 6878 2098

2019 3358 1767 69 7105 2154
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Figure 12 Land cover map - 2010 



 

Page | 25 

 

 

Figure 13 Land cover map - 2015 
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Figure 14 Land cover map - 2019 
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2.2 LULC modelling and prediction 

The LCM module within TERRSET was used to conduct the sequential steps conforming to the requirements 

of LULC modelling using an MLP-Markov Chain approach. In this section, each step of the LULC modelling 

process is described. 

2.2.1 Land change analysis 

In order to assess the spatiotemporal changes between 2010 and 2015, the earlier and latter land cover maps 

were cross-tabulated using the CrossTab tool in Terrset. Cross-tabulation is a means to determine the amounts 

of changes between two different land cover maps and determine conversions between land classes (Alphan 

et al., 2008).  The cross-tabulation table shown in Table 5 below, shows the frequencies with which the land 

classes remained the same (Diagonal) or changed into other categories (off-diagonal frequencies). The table 

represents quantities of conversion from the earlier to the later land cover data, and it clearly depicts significant 

changes, primarily between forest and cropland. 

The following information was obtained about the changes in each class from the table: 

1. Between 2010 and 2015 the forest cover was reduced by 28,7 % from 5113,4 km2 in 2010 to 3646,4 

km2 in 2015. Even though there was a forest gain of 318,9 km2 largely caused by afforestation from 

cropland and open land, the net loss of 1467 km2 is almost exclusively attributed to forest conversion 

into cropland.  

2. The water bodies have remained largely unchanged, which is to be expected as there have been no 

waterworks (e.g. dam construction) in the study period. Thus, the water bodies, largely consisting from 

the two major lakes in the study area, lake Édouard and lake Kivu, has remained relatively consistent. 

The rivers and waterways in the area study area are relatively small, and mainly runs through dense 

forest areas, and thus the main differences and interchanges in water bodies are likely due to 

classification anomalies in separating river bodies from other classes, mainly forest and open land. 

3. Accounting for the least prevalent land class in the case study area, urban areas have experienced a 

large increase between 2010 and 2015, from 17,8 km2 to 75,6 km2, resulting in a 57,9 km2 net gain. 

This is largely attributed with rapid urbanisation processes in the Democratic Republic of Congo in 

general, which has an estimated average annual urban population growth rate of 4.3% (United Nations, 

2013). The population of the capital city in the North Kivu province, Goma, located in the south-

eastern corner of the case study area, increased from 150,000 people in 1990 to more than one million 

in 2017 (Yee, 2017). Thus, the majority of the urban class increase is caused by the expansion of 

Goma. 

4. Cropland is the most dynamic land class in the case study area and represents the most dominant land 

cover type. The total area under cultivation increased by 51,5 %, from 4538,4 km2 in 2010 to 6877,6 

km2 in 2015. As mentioned previously, cropland is the main driver of deforestation and thus the 
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majority of the agricultural expansion is caused by forest conversion. However, another 47 % of 

cropland expansion is attributed with the cultivation of previously open land/grassland areas. 

5. The open land cover class was reduced by 30,8 %, from 3035,0 km2 in 2010 to 2098,3 km2 in 2015. 

Even though the open land class received a total net loss, 236,2 km2 was gained, caused by agricultural 

abandonment. Another 66 km2 gain of open land is attributed to deforestation. The majority of the net 

loss of the open land class (1109,2 km2) is associated with agricultural expansion, while another 59,5 

km2 is attributed to urbanisation processes. A net loss of 69,8 km2 is associated with afforestation 

processes.  

Table 5 LULC change matrix for the period from 2010 to 2015 (km2) Class 

  LC_2010 

 Land class Forest Water Urban Cropland Open land Total (km2) 

LC_2015 

Forest 3327,5 1,6 0,0 247,5 69,8 3646,4 

Water 3,8 1770,2 0,0 0,3 5,2 1779,5 

Urban 0,6 0,0 13,0 2,5 59,5 75,6 

Cropland 1715,4 0,3 0,9 4051,8 1109,2 6877,6 

Open land 66,1 0,9 3,8 236,2 1791,2 2098,3 

Total (km2) 5113,4 1773,0 17,8 4538,4 3035,0 14477,5 

 

While the change matrix provides a quantitative means of assessing the land cover changes between 2010 and 

2015, the map in Figure 15 below illustrates the spatial trends of change. The map includes all major land 

cover changes which occurred over areas larger than 1 km2 in total, between 2010 and 2015. It clearly illustrates 

that the major transitions are associated with agricultural expansion, primarily at the expense of forest areas. 

Spatially, the majority of the conversion of forest to cropland is concentrated in the north-northwest and 

southern parts of the case study area.  
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Figure 15 Class transitions between 2010 and 2015 

2.2.2 Modelling Transition Potentials – sub-models 

The second step in the LULC change prediction process is to model the transition potentials, which are in 

essence, maps of suitability/likelihood of one land cover changing into another (Eastman, 2016a). Following 

Pérez-Vega, Mas, and Ligmann-Zielinska (2012)  the land cover transitions can be grouped together into 

empirically evaluated transition sub-models when the common underlying drivers are assumed to be the same. 

The sub-models can consist from a single land cover transition (e.g. from open land to cropland) or from 

multiple transitions, grouped together based on the assumption that transitions are caused by the same 

underlying drivers of change. The explanatory variables are used to model the historical change process based 

on the empirical relationship between the measured change and the explanatory variable.  
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Based on the major land class transitions illustrated in Figure 15, the 12 predominant transitions were grouped 

together based on transition type, to form 6 individual sub-models. The composition of transition groups and 

a description of the types of changes under each sub-model can be seen from Table 6 below. Although 

persistence, i.e. areas that did not change, can be considered a trajectory, it cannot be considered as a transition 

class, and thus areas of persistence are ignored in LCM (Gibson et al., 2018). 

Table 6 Transition sub-models and descriptions 

Transition sub-model Description Land cover transitions 

Abandonment/reclamation Urban and agricultural areas 

converted to grassland and open 

land 

• Urban to open land 

• Cropland to open land 

Afforestation Land cover classes converted to 

tree plantation  

• Cropland to forest 

• Open land to forest 

Agricultural intensification Agricultural areas substituting 

grasslands and open land areas 

• Open land to cropland 

Deforestation Forested areas converted into 

other land class types 

• Forest to cropland 

• Forest to open land 

Natural dynamics Areas where natural changes 

cause land conversion 

• Forest to water 

• Water to forest 

• Open land to water 

Urban intensification Urban areas substitute other land 

classes 

• Cropland to urban 

• Open land to urban 

 

2.2.2.1 Explanatory variables 

As reviewed in section 1.3, LULC change processes are dynamic and result from the interaction between a 

range of different, primarily biophysical and socioeconomic criteria. In LULC change modelling, these criteria 

are also referred to as ‘explanatory’ variables, as these explain the components of the causal relationships 

determining the land cover dynamics and they form a critical prerequisite for developing a realistic land change 

model. The explanatory variables sum up the ‘knowledge’ that the model will use to simulate future land cover 

scenarios (Allan et al., 2008). The driving forces, influencing change in the case study area is based on spatial 

analysis and a literature review of similar case studies. Each driver variable was tested for its potential 

explanatory value using Cramer’s V scores. Cramer’s V is a coarse statistic measure of the strength of 

association or dependency between two variables and it ranges from 0,0 to 1,0 in values. Generally, variables 
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with a total Cramer’s V score higher than 0,15 are considered useful and those with a score over 0,4 are 

considered good (Eastman, 2016a). 

In choosing explanatory variables, the processes contributing to land cover change needs to be visualised in 

the form of a spatial dataset representing the underlying changes, at a spatial resolution consistent with the 

land cover maps. GIS data sets were identified to describe the transitions in the case study area and geo-

processing was performed to derive spatial datasets to, either directly or as a proxy, explain the underlying 

changes for each transition. According to Eastman (2016b) variables cannot be categorical and thus needs to 

be continuous and quantitative.  

The drivers that were used in this study include; 

1. Elevation (Digital Elevation Model (DEM)) 

2. Aspect (Asp) 

3. Slope  

4. Evidence Likelihood (EL) 

5. Distance from artisanal mines (D_am) 

6. Distance from disturbance (D_disturb) 

7. Distance from cities (D_cities) 

8. Distance from forests (D_forest) 

9. Distance from mining concessions (D_mining) 

10. Distance from roads (D_roads) 

11. Distance from waterways (D_water) 

Basic metadata and the explanatory potential for each driver measured in Cramer’s V scores, in total, and for 

each land class, can be seen from Table 7 below. The temporal resolution of the datasets can also be seen from 

the table. The temporal resolution is important as it is critical to identify spatial datasets that reflect the 

conditions at the time of the earlier land cover map (2010), and as seen from the table, the majority of the 

explanatory drivers used in this study derives from the immediate period before or after 2010.  

Elevation, aspect and slope are considered geophysical limitations and these are commonly used in LULC 

modelling literature (Allan et al., 2008; Gibson et al., 2018; Mishra et al., 2014; Paegelow et al., 2007; Teresa 

et al., 2015). These types of drivers act as physical limitations or incentives for certain transitions to occur. For 

example, water bodies will not expand into areas with high slopes (Gibson et al., 2018) and gentle slopes are 

generally considered more appropriate for agriculture and urban areas (Wondie et al., 2011). The aspect (i.e. 

the direction of the slope) influence the relative amount and intensity of sunlight and thus influence the 

suitability for certain types of vegetation and agriculture (Wondie et al., 2011). Elevation determines the 
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distribution of vegetation (Wondie et al., 2011) and generally tend to influence urban growth (Shade et al., 

2019). 

Evidence likelihood is a way to transform a categorical variable into a continuous surface, based on the relative 

frequency of pixels belonging to the different categories within the areas of change (MIRICI, 2018). In this 

study, evidence likelihood is a quantitative measure of the frequency of change between urban areas and 

cropland (also called disturbance) and all other land classes from 2010-2015. Thus, it represents the relative 

frequency of which the different land cover classes occurred in the areas that transitioned to urban or cropland. 

Essentially it answers the question of each category of the variable, “How likely is it that you would have a 

value like this if you were an area that would experience change? (Eastman, 2016a)”, meaning that it 

established the suitability of each pixel to transform into urban areas or cropland. This variable aims to explain 

the geospatial processes that determine urban expansion and agricultural intensification. 

The distance drivers represent the proximity of pixels to forces that either constraints or incentivise land cover 

changes. As reviewed in the introduction in section 1, mining activities is one of the primary driver of 

deforestation within the Virunga area “Artisanal mining operations are unregulated and often occur in 

riparian zones, removing forest and vegetation cover to process the mineral soil (Institute for Environmental 

Security, 2008)”. Accordingly, there is a documented relationship between deforestation and mining 

operations, thus, distance from artisanal mines and distance from mining concessions are included as proxy 

drivers of forest conversion, the rationale being that the closer in proximity a forested area is to known mining 

operations, the more likely it is to be deforested. Likewise, these drivers will likely positively correlate with 

an increase of open land, urban areas and cropland nearer to the mining concessions. Distance to disturbance 

is a spatial driver made from extracting Euclidian distances from areas which were urban or cropland in 2010. 

The hypothesis is that future anthropogenic disturbance is believed to be closer to areas of existing disturbance, 

and thus distances to existing disturbance are believed to be closely correlated with urbanisation processes and 

agricultural expansion. This relationship was tested by extracting the areas that transitioned to cropland or 

urban areas between 2010 and 2015 and correlating the frequency of changes with the distance to disturbance 

layer for 2010 (Figure 16). As can be seen from the figure, there is a very sharp decline in the frequency of 

change when moving further away from disturbed areas in 2010, until the point where nearly no change occurs 

when moving further than 2 km away from the disturbed areas. This means that anthropogenic disturbance is 

positively correlated with distance from disturbed areas.  
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Figure 16 Histogram depicting the correlation between the distance (in meters) from disturbed areas in 2010 and the actual 

disturbance between 2010 and 2015 

The closer a pixel is to urban areas, the more likely it is to be transformed, due to urbanisation processes, and 

thus distance from cities explains the relationship between urban expansion and LULC changes. Furthermore, 

as reviewed in Institute for Environmental Security (2008), deforestation patterns in Virunga NP are correlated 

with urban areas as a result of firewood collection and agricultural expansion. Distance from forests is a 

measure of the Euclidian distances to forest areas in 2010 and is among a number of transitions, believed to be 

a causal driver of deforestation processes as deforestation is likely to be closer to the edge of the existing forest 

areas, than in the middle of the deep forest. Distance to roads and distance to waterways represents drivers of 

accessibility and as reviewed in Allan et al. (2008), forest conversion to agriculture and plantations occur when 

roads and rivers provide easy access and water for irrigation. 

A description of how the GIS data for each explanatory driver was derived and pre-processed is provided in 

the next section 2.2.2.1.1. 
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Table 7 Description of potential explanatory variables and associated Cramer’s V scores 

Variable DEM Asp Slope EL D_am D_disturb D_cities D_forests D_mining D_roads D_water 

Data origin 
SRTM 90m Digital 

Elevation Database v42 

Land cover 

2010 + 2015 

International Peace 

Information Service 

(IPIS)3 

Land cover 

2010 

World 

Resources 

Institute4 

Land cover 

2010 
World Resources Institute5 

Data format Raster (GeoTiff) 
Raster 

(GeoTiff) 

Shapefile 

(points) 

Raster 

(GeoTiff) 

Shapefile 

(points) 

Raster 

(GeoTiff 

Shapefile 

(polygons) 

Shapefile 

(lines) 

Shapefile 

(lines) 

Coordinate system WGS 84 EPSG:4051 WGS 84 EPSG:4051 WGS 84 EPSG:4051 WGS 84 

Spatial resolution 

(m) 

90 m cell resolution 

resampled to a 30 m 

resolution 

30 m 

1: 50 000 vector 

scale converted to 

30 m cell resolution 

30 m 

1: 50 000 vector 

scale converted 

to 30 m cell 

resolution 

30 m 
1: 50 000 vector scale converted to 30 m cell 

resolution 

Temporal 

resolution 
2008 2010-2015 2009-2016 2010 2009 2010 2013 2009 2009 

Geoprocessing 

 

Reproj

ect 

Reproject; 

computed 

from DEM 

 

Computed 

from land 

cover maps 

Reproject; clip to 

AOI; Euclidian 

distance from all 

artisanal mines 

(rasterize) 

Reclassify 

boolean 

(urban/cropland

); Euclidian 

distance from 

disturbed areas 

Reproject; clip 

to AOI; 

Euclidian 

distance from 

all cities 

(rasterize) 

Reclassify 

boolean 

(forest); 

Euclidian 

distance 

from forest 

areas 

Reproject; clip 

to AOI; 

Euclidian 

distance from 

all mining 

concessions 

(rasterize) 

Reproject; 

clip to AOI; 

Euclidian 

distance 

from all 

roads 

(rasterize) 

Reproject; clip 

to AOI; 

Euclidian 

distance from 

all waterways 

(rasterize) 

C
ra

m
er

’s
 V

 

Forest 0,52 0,21 0,26 0,68 0,17 0,40 0,17 0,43 0,14 0,26 0,27 

Water 0,61 0,83 0,57 0,42 0,32 0,68 0,54 0,82 0,27 0,57 0,30 

Urban 0,14 0,07 0,06 0,10 0,08 0,04 0,06 0,04 0,09 0,09 0,07 

Cropland 0,42 0,32 0,34 0,29 0,31 0,52 0,20 0,32 0,31 0,34 0,29 

Open land 0,23 0,17 0,24 0,65 0,20 0,15 0,18 0,30 0,24 0,11 0,08 

Overall 0,42 0,42 0,33 0,48 0,22 0,42 0,28 0,46 0,22 0,32 0,20 

  

                                                      
2 http://srtm.csi.cgiar.org/ 
3 http://geo.ipisresearch.be/geoserver/web/ 
4 http://www.wri.org - downloaded from GeoData at Tufts (https://geodata.tufts.edu/)  
5 http://www.wri.org - downloaded from GeoData at Tufts (https://geodata.tufts.edu/) 

http://srtm.csi.cgiar.org/
http://geo.ipisresearch.be/geoserver/web/
http://www.wri.org/
https://geodata.tufts.edu/
http://www.wri.org/
https://geodata.tufts.edu/
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2.2.2.1.1 Pre-processing of explanatory drivers 

This section will provide a brief description of the geospatial data acquisition and processing steps used to 

derive the spatial datasets for each of the 11 explanatory variables. Maps of the final processed datasets can be 

seen from Figure 20. 

 DEM 

The DEM data retrieved consists from Version 4 of the ‘SRTM digital elevation dataset’ and was exported 

from Google Earth Engine using the JavaScript code presented in Figure 17 below. To execute this code, first, 

a shapefile of the AOI was uploaded to the Google Earth Engine ‘assets’ repository and imported as a variable 

‘framed’. Subsequently, the code imports the data variable (CGIAR/SRTM90_V4 is the Image ID for the 

SRTM V.4 dataset in Google Earth Engine) and clips this to the framed object (AOI). Lastly, the data is 

exported using the function ‘Export.image.toDrive’, setting the parameters for scale to 30 and CRS to 

EPSG:4051. Setting these parameters will ensure that the dataset is resampled from its native 90 m resolution 

to 30 m and reprojected into an EPSG:4051 coordinate system.  

 

Figure 17 JavaScript code to acquire DEM data from Google Earth Engine 

 Slope and aspect 

Google Earth Engine was used to process the SRTM digital elevation dataset to retrieve Slopes in degrees. 

These were retrieved and exported using the JavaScript code presented in Figure 18 below. Similarly, to the 

DEM, this code frames the data retrieval to the extent of the AOI and imports the DEM as a variable. Next, 

the variables slope and aspect are created, using the inherent Google Earth Engine algorithm 

‘ee.Algorithms.Terrain’ with the DEM variable as input data. This algorithm derives three separate bands; 

slope, aspect and hill shade from a DEM dataset. The ‘Export.image.toDrive’ function is applied, using each 

of the variables and setting the parameters for scale to 30 and CRS to EPSG:4051. The ‘Slope’ output band is 

selected as the export image for slope and the ‘aspect’ output band for aspect.  
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Figure 18 JavaScript code to process DEM data to acquire datasets for slopes and aspect 

 Evidence likelihood 

The evidence likelihood variable was created by using the integrated variable transformation utility within 

TERRSET’s LCM. ‘Evidence Likelihood’ is chosen in the transformation type and the ‘Ant_disturb_10_15’ 

raster file is chosen as the ‘transition layer’. The ‘Ant_disturb_10_15’ layer is made by mapping all changes 

to cropland or urban land between 2010 and 2015, using the output classification from the change analysis of 

transition types (Figure 15), and reclassifying these changes into a Boolean map of: no change (0) or change 

(1). The ‘input variable’ is the earlier land cover map for 2010 and the output variable name is set to ‘Evidence 

likelihood’. Ticking the categorical box, the resulting layer is a quantitative variable made from a categorical 

Boolean variable of change/no change, describing the relative frequency with which different land cover 

classes occurred in the areas that transitioned to cropland or urban areas.  

 

Figure 19 User interface of the Variable Transformation Utility in TERRSET LCM 
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 Distance artisanal mining  

The point dataset on the location of artisanal mining operations in the Democratic Republic of Congo derives 

from the International Peace Information Service and was acquired from their Geoserver6. The file was 

downloaded in a Shapefile format, complete with attribute tables covering individual subclasses, such as the 

name of the site, visit date and mineral mined. Following retrieval, the dataset was reprojected into EPSG:4051 

and clipped to the extent of the AOI using ArcMaps ‘Clip’ tool along with a vector file covering the extent of 

the AOI. Subsequently, Euclidean distances were derived from the point dataset, using ArcMaps ‘Euclidean 

distance’ tool. The output cell size of the raster file was set to 30 m and the AOI raster was applied as a mask 

in the environment settings. 

 Distance from disturbance 

The distance from disturbance describes the distance from cropland or urban areas in 2010. It was created 

using two tools within TERRSET’s GIS analysis package, namely ‘Reclass’ and ‘Distance’. The ‘reclass’ tool 

was used to reclassify the earlier land cover map for 2010 into a Boolean, urban/cropland (1) and non-

urban/cropland (0), categorical raster layer. Consequently, the ‘distance’ tool was used to derive Euclidian 

distance to the areas classified as urban or cropland in 2010. 

 Distance from cities  

The point dataset on the location of all major and minor cities in the Democratic Republic of Congo derives 

from the World Resources Institute and was acquired through Tuft University’s geoportal (GeoData at Tufts)7. 

The file was downloaded in a Shapefile format, complete with attribute tables covering individual subclasses, 

such as the name of city, province and district. Following retrieval, the dataset was reprojected into EPSG:4051 

and clipped to the extent of the AOI using ArcMaps ‘Clip’ tool along with a vector file covering the extent of 

the AOI. Subsequently, Euclidean distances were derived from the point dataset, using ArcMaps ‘Euclidean 

distance’ tool. The output cell size of the raster file was set to 30 m and the AOI raster was applied as a mask 

in the environment settings. 

 Distance from forests 

The distance from forests describes the distance from existing forest areas in 2010. It was created using two 

tools within TERRSET’s GIS analysis package, namely ‘Reclass’ and ‘Distance’. The ‘reclass’ tool was used 

to reclassify the earlier land cover map for 2010 into a Boolean, forest (1) and non-forest (0), categorical raster 

layer. Consequently, the ‘distance’ tool was used to derive Euclidian distance to the areas classified as forest 

in 2010. 

                                                      
6 http://geo.ipisresearch.be/geoserver/web/ 
7 https://geodata.tufts.edu/ 

http://geo.ipisresearch.be/geoserver/web/
https://geodata.tufts.edu/
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 Distance from mining concessions 

The mining concessions data, containing the location of all registered mining concessions in the Democratic 

Republic of Congo, derives from the World Resources Institute and was acquired through Tuft University’s 

geoportal (GeoData at Tufts). The file was downloaded in a Shapefile format, complete with attribute tables 

covering individual subclasses, such as licence holder of the concession, resource type and area size. Following 

retrieval, the dataset was reprojected into EPSG:4051 and clipped to the extent of the AOI using ArcMaps 

‘Clip’ tool along with a vector file covering the extent of the AOI. Subsequently, the clipped dataset was 

rasterized using Arcmap’s tool ‘Polygon to Raster’. Lastly, Euclidean distances were derived using the 

‘Euclidean distance’ tool. The output cell size of the raster file was set to 30 m and the AOI raster was applied 

as a mask in the environment settings. 

 Distance roads  

The line dataset on roads in the Democratic Republic of Congo derives from the World Resources Institute 

and was acquired through Tuft University’s geoportal (GeoData at Tufts). The file was downloaded in a 

Shapefile format, complete with attribute tables covering individual subclasses, such as road classes (Locale, 

Provinciale and Nationale). Following retrieval, the dataset was reprojected into EPSG:4051 and clipped to 

the extent of the AOI using ArcMaps ‘Clip’ tool along with a vector file covering the extent of the AOI. 

Subsequently, Euclidean distances were derived from the line dataset, using ArcMaps ‘Euclidean distance’ 

tool. The output cell size of the raster file was set to 30 m and the AOI raster was applied as a mask in the 

environment settings. 

 Distance to waterways 

The line dataset on waterways in the Democratic Republic of Congo derives from the World Resources 

Institute and was acquired through Tuft University’s geoportal (GeoData at Tufts). The file was downloaded 

in a Shapefile format, complete with attribute tables covering individual subclasses, such as waterway class 

and length. Following retrieval, the dataset was reprojected into EPSG:4051 and clipped to the extent of the 

AOI using ArcMaps ‘Clip’ tool along with a vector file covering the extent of the AOI. Subsequently, 

Euclidean distances were derived from the line dataset, using ArcMaps ‘Euclidean distance’ tool. The output 

cell size of the raster file was set to 30 m and the AOI raster was applied as a mask in the environment settings.  
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Figure 20 Processed explanatory variable datasets used as input for the MLP modelling 
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2.2.3 Modelling Transition Potential – MLP calibration 

The LCM module allows three different approaches to creating transition potential maps based on the 

individual sub-models and associated explanatory variables: MLP neural network, logistic regression, or a 

similarity-weighted instance-based machine learning tool (SimWeight) (Eastman, 2016a). According to 

Eastman (2016), MLP performs stronger than the two alternatives when modelling non-linear relationships 

between land cover change and explanatory variables. In contrast to both SimwWeight and logistic regression, 

MLP can also run multiple transitions per sub-model, making it more flexible and dynamic when multiple 

transition types are modelled. Furthermore, as MLP has fewer parameter settings and functions through an 

automatic and dynamic learning process, it is also more user-friendly, and consequently, MLP was chosen for 

this study. Operationally, within LCM, MLP creates a random sample of cells that transitioned and a sample 

of cells that persisted and use half of the samples to train the model and develop multivariate functions 

(adjusting the weights) to predict the potential for change based on the value of the conditions at each location  

(Allan et al., 2008). The other half of the subset sample of cells that transitioned and persisted is used to test 

the performance of the model (validation). When launched in the LCM, the MLP starts to train on the training 

samples and starts to operate in automatic mode, whereby it iteratively adjust parameters to increase the 

performance of the model (Eastman, 2016a). The automatic mode monitors and modifies the start and end 

learning rates for a dynamic and continuously adjusted learning process (Eastman, 2016a). While the automatic 

mode was used to modify and adapt the start and end learning rates and select the number of hidden layer 

nodes, the other parameters of the MLP were set as follows as suggested by Eastman, (2016a): Momentum 

factor (0,5); Sigmoid constant (1,0); sample size per class (10000 or the minimum cells which transitioned 

within the sub-model, if less than 10000).  

As reviewed in section 2.2.2, the 12 major transitions which occurred in the period between 2010 and 2015 

were grouped together in 6 different sub-models, namely; Abandonment/reclamation, Afforestation, 

Agricultural intensification, Deforestation, Natural dynamics and Urban intensification. The next step in 

modelling the transition potential was to assign the explanatory variables to each sub-model. Variables can be 

added to the model either as static, meaning that they don’t change over time, such as slope, or dynamic, 

meaning that they do change over time, such as proximity to roads (assuming dynamic road development). 

Static variables are unchanging over time and express aspects of basic suitability for transitions under 

consideration, while dynamic variables are time-dependent, such as proximity to existing forest areas or road 

networks, and are recalculated during the course of a future land cover simulation (Eastman, 2016a). In this 

study DEM, slope, aspect, EL, D_am, D_mining and D_water was used as static variables, while D_disturb, 

D_cities. D_forests and D_roads were designated as dynamic variables. 

An iterative approach was used to establish the most appropriate, and accurate, combination of driver variables 

for each sub-model, while avoiding overfitting. Each sub-model was fitted with all 11 explanatory drivers to 
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being with, and an iterative approach was used to remove the driver with the least explanatory potential, while 

assessing the accuracy score and skill level of the model after each iteration. The accuracy score provides a 

value in percentage which indicates how well the model is able to predict the changes that happened between 

2010 and 2015, accounting for both change and persistence. The skill measure compares the number of correct 

predictions, minus those attributable to random guessing, to that of a hypothetical perfect prediction (Gibson 

et al., 2018). Thus, the skill measure provides an indication of how the explanatory drivers will explain past 

changes. The skill is measured on a scale from -1 to 1, where values less than 0 indicates that the model 

performs worse than what would be expected by random guessing, 0 indicates that the model performs as well 

as random guessing while values between 0 and 1 indicates that the performance of the model exceeds what is 

expected by pure chance.  

After each iteration of calibrating individual sub-models using MLP, a report about the nature of the model 

performance is created (see example in Appendix C). This provides critical information on the overall accuracy 

and skill of the model, the skill measure broken down by component (transition & persistence type) and the 

explanatory power of each variable. Section 3 of the report entitled ‘Sensitivity of Model to Forcing 

Independent Variables to be Constant’ provides information on the sensitivity of the explanatory variables. As 

seen in Figure 21 below, sub-section 3) in this section entitled ‘Backwards Stepwise Constant Forcing’ 

provides information on the accuracy and skill measure of the model when holding one or more variables 

constant. In step 1, the variable with the lowest negative effect on the skill is held constant, and this provides 

information on the explanatory potential of this variable. If the accuracy and skill of the model don’t decrease 

by much, when holding the variable constant, this suggests that the variable has little value and can be removed 

(Eastman, 2016a).  On each iteration of the calibration of each sub-model, the variable with the least 

explanatory potential was removed until a combination of 5-6 of the variables with the strongest explanatory 

potential was left under each sub-model.  
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Figure 21 Extract from the calibration report indicating accuracy scores and skill measure of the model when holding variables 

constant. 

Consequently, the final selected variables were loaded into the sub-model structure to execute the final iteration 

of the MLP training. The final skill measure and accuracy rate of each model calculated through MLP is 

summarized in Figure 22 below and the explanatory drivers used under each sub-model and selected 

performance scores is provided in Table 8.  

 

Figure 22 Sub-model accuracy and skill measure from MLP 

As can be seen from the figure, the accuracy and skill measure reveal some disparity between the level of 

confidence of the transition modelling under each sub-model, however overall the values are fairly consistent, 
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ranging from 75 % to 93 %. Abandonment/reclamation has the lowest accuracy score (75,12 %), followed by 

deforestation (77,61 %), afforestation (77,79 %) and agricultural intensification (78,23 %). Agricultural 

intensification, however, has the lowest skill measure of all the sub-models (0,56). Natural dynamics and urban 

intensification performed best, with accuracies of 93,90 % and 83,41 % respectively. The skill measure of 

these two sub-models was also the highest among all six, with 0,93 for natural dynamics and 0,78 for urban 

intensification.  

The outcome of the transition potential modelling is a series of transition potential maps, describing the 

suitability for each of the 12 major transitions included in the sub-models.  These maps can be seen in Figure 

23 below. 
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Table 8 Sub-models included in MLP with associated explanatory variables and selected performance indicators 

Sub-model Explanatory 

variables 

Transition/Persistence 

class 

Class skill 

measure (ratio) 

Sub-model 

accuracy 

Sub-model 

skill 

RMS 

Training Testing 

Abondonment/reclamation DEM; Slope; D_am; 

D_cities; D_mining; 

D_water 

Urban to Openland 0.8134 75.12 % 0.6682 0.2980 0.3071 

Cropland to Openland 0.5741 

Persistence: Urban 0.7401 

Persistence: Cropland 0.5398 

Afforestation DEM; Slope; EL; 

D_disturb; D_forests; 

D_water  

Cropland to Forest 0.5181 77.79 % 0.7038 0.2751 0.2737 

Openland to Forest 0.8918 

Persistence: Cropland 0.6536 

Persistence: Openland 0.7515 

Agricultural 

intensification 

DEM; D_am; 

D_disturb; D_mining; 

D_roads; D_water 

Openland to Cropland 0.5961 78.23 % 0.5646 0.3899 0.3906 

Persistence: Openland 0.5329 

Deforestation DEM; D_am; 

D_disturb; D_mining; 

D_roads; D_water 

Forest to Cropland 0.6103 77.61 % 0.6642 0.3358 0.3369 

Forest to Openland 0.8300 

Persistence: Forest 0.5516 

Natural dynamics DEM; Slope; EL; 

D_forests; D_water 

Forest to Water 0.9848 93.90 % 0.9269 0.1207 0.1281 

Water to Forest 0.9096 

Openland to Water 0.8707 

Persistence: Forest 0.8677 

Persistence: Water 0.9849 

Persistence: Openland 0.9441 

Urban intensification Slope; EL; D_am; 

D_cities; D_mining; 

D_roads 

Cropland to Urban 0.8664 83.41 % 0.7788 0.2536 0.2489 

Openland to Urban 0.6564 

Persistence: Cropland 0.8294 

Persistence: Openland 0.7630 
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Figure 23 Transition potentials 
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2.2.4 Change prediction and model validation 

Following the transition sub-model development, the 12 transition potential maps were used as input in a 

Markov Chain model to simulate future LULC changes. The Markov Chain determines the amount of change 

using the earlier and later land cover map along with a pre-specified future year (Eastman, 2016a). The Markov 

module produces a transition probability matrix, seen in Figure 24 below, which is a matrix which records the 

probability of each landcover class to change into every other land class category. It also creates a transition 

areas matrix which is a record of the number of pixels that are expected to change from each land cover class 

over the specified time frame (Eastman, 2016a). Finally, the Markov Chain creates a set of conditional 

probability images which reports the probability of a land cover type to be found at each pixel after the 

specified prediction date (Eastman, 2016a). However, as the matrices only determine the quantity of change, 

the transition potential (suitability) maps are utilized within the Markov analysis to spatially allocate changes 

in order to make a land cover prediction for a future year (Eastman, 2016a).  

 

Figure 24 Markov Chain transition probability matrix 

Consequently, Markov Chain analysis was used to make a LULC prediction for 2019 and subsequently 

validated by using the actual 2019 land cover map for comparison. Yearly recalculation stages were assigned 

in the model to specify the frequency of which the dynamic variables are recalculated in the model. This means 

that the D_disturb, D_cities. D_forests and D_roads explanatory variables are updated in the model every year 

until the prediction year.  

Figure 25 below shows the actual and the predicted land cover map for 2019. A visual inspection indicates that 

the predicted land cover map, overall, looks fairly similar to the actual land cover map, however there are 

localised discrepancies where the model failed to predict changes/persistence, for example in the mid-west 

where the simulation predicted cropland to replace large open land areas, when in actuality it didn’t. 
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Figure 25 Actual land cover map for 2019 versus the predicted 2019 land cover map 

However, a visual inspection will not allow for a comprehensive assessment of the subtle differences and 

overall accuracy of the prediction, and thus statistical analysis was used to compare the actual and simulated 

land cover maps for 2019, using Kappa Index of Agreement (KIA) scores. The validate module in TERRSET 

provides a comprehensive means to measure the agreement between two categorical images by calculating 

various KIA and related statistics (the full report of the analysis is included as Appendix D). The KIA scores 

can be used to test the agreement between a ‘comparison’ map and a ‘reference map’, both in terms of the 

quantity of cells in each land cover category and the agreement in terms of location of these cells (Eastman, 

2016a). The Kappa Standard (Kstandard) is equivalent to kappa and indicates the proportion of correctly assigned 

pixels versus the proportion that is correct by chance. The Kappa for no information (Kno) indicates the overall 

agreement between the simulated and reference map (Eastman, 2016a). The Kappa for location (Klocation) is a 

measure of the spatial accuracy in the overall landscape, due to the correct assignment of values in each 

category between the simulated and reference map (Eastman, 2016a). The Kappa for stratum-level location 

(KlocationStrata) is a measure of the spatial accuracy within preidentified strata, and it indicates how well the grid 
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cells are located within the strata (Eastman, 2016a). The combination of Kstandard, Kno, Klocation and KlocationStrata 

scores allows for a comprehensive assessment of the overall accuracy both in terms of location and quantity. 

All KIA scores range from 0 to 1 (or 0 % to 100%), where 0 indicates that agreement is equal to agreement 

due to chance and 1 (or 100 %) indicates perfect agreement.  

The K scores of the simulated 2019 land cover map ‘comparison’ compared with the actual 2019 land cover 

map ‘reference’ is provided in Table 9 below.  

 

Table 9 K scores for 2019 

K INDICATORS 2019 

KSTANDARD 0,8828 

KNO 0,9224 

KLOCATION 0,9001 

KLOCATIONSTRATA 0,9001 

 

The statistics from the k scores shows that Kno is 0,9224, Klocation is 0,9001, KlocationStrata is 0,9001 and the overall 

Kstandard is 0,8828. According to Zadbagher et al. (2018) a model is valid if the overall Kappa (Kstandard ) score 

exceeds 70 % (or 0,7). The Kstandard score, close to 90 %, is a very strong indicator of the overall accuracy and 

performance of the model, and the remaining k scores, all exceeding 85 %, indicate that there are almost no, 

or very small quantification and location errors between the predicted and the actual land cover map for 2019. 

Thus, the simulation has a strong ability to predict both the quantity and the locations of change.   
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3 Results  

The validated model described in the previous section 2 was used to make a land cover prediction for each 

year, starting with the year 2020 up until and including the year 2030, which coincides with the critical 

landmark year for the achievement of the UN SDG’s.  The compilation of land cover predictions from 2020 

through to 2030 can be seen from Figure 26, while the predicted land cover for 2030 is presented in Figure 27. 
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Figure 26 Predicted land cover maps from 2020 to 2030 
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Figure 27 Predicted 2030 land cover in Virunga 
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The series of land cover predictions covering the whole period from 2020 to 2030, and the final land cover 

map for 2030 presented in Figure 27 clearly illustrates that the model predicts continuous cropland expansion, 

primarily at the expense of forest areas and existing open lands. The model also predicts continuous urban 

development, particularly around existing settlements. The collective change per class in total, and per cent 

change per year, is illustrated in Figure 28 below. As depicted in the graph, the forest cover will continue to 

decrease throughout the 10-year period, with an average annual loss of 4,21 % and a total area loss of 1085 

km2, from 3104 km2 in 2020 to 2019 km2 in 2030. Water coverage will, as expected remain largely the same, 

gaining a negligible average of 0,04 % per year. Urban expansion and development of new settlements will 

continue, gaining an average annual of 3,44 %. The total urban area is predicted to increase by 38 km2, from 

95 km2 in 2020 to 133 km2 in 2030, and looking at the predicted land cover map, most of this is expected to 

be as a result of urban sprawl around the main city of Goma in south-eastern Virunga. As also visually apparent, 

cropland expansion will continue throughout the 10-year period, gaining an average annual area of 1,83 %, 

and a total area gain of 1522 km2, from 7636 km2 to 9161 km2 class coverage. Along with forest areas, open 

land/grassland zones are expected to decrease the most, by 2,96 % per year, losing a total of 482 km2 in the 

10-year period, from 1857 km2 in 2020 to 1375 km2 in 2030. 

 

Figure 28 Predicted land cover change between 2020 and 2030, in % yearly (gain/loss) and total annual area coverage in km2 per 

class
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4 Discussion and conclusion 

Understanding LULC changes, transitions, landscape risks and dynamics is paramount in order to inform 

policies, planning interventions and actions aiming to ensure sustainable development in all dimensions 

(economic, social and environmental) conforming to the objective of the UN SDG’s and the 2030 agenda for 

sustainable development. In this study, a combined MLP-Markov Chain approach has been used to simulate 

future land cover changes in the period from 2020 to 2030, in a case study area covering the Virunga NP in 

the Democratic Republic of the Congo, and its immediate vicinity. Two simulations were carried out. The first 

(2019) was used for model validation and accuracy assessment, and the second (2030) was used to predict 

landscape change in the Virunga NP catchment. The assessment of the spatial patterns of LULC change derived 

through a change analysis of historical trends combined with the development of a plausible future land cover 

scenario for the Virunga catchment will help to improve the understanding of the land system and establish 

cause-effect relationships between driver variables and land cover dynamics. Thus, the LULC change model 

aims to contribute to informing policy responses aiming to support sustainable land management and landscape 

planning decisions within the Virunga NP.  

As an empirical-statistical model, the LULC model developed in this study predicts a future land cover state, 

based on a business as usual scenario. Past land cover changes within the Virunga catchment has been largely 

linked with charcoal production and cropland expansion, which have impeded conservation efforts and put 

critical pressure on the ecological integrity of the landscape and its biodiversity. By cross-tabulating two land 

cover maps for 2010 and 2015, this study aimed to quantify past land cover changes and identify spatial trends 

of change. It concludes that forest conversion into cropland is the most common and frequent type of landcover 

change, contributing to the majority of the total net forest loss of 28,7 % between 2010 and 2015. The most 

significant forest loss occurred around the perimeter of the forest areas in the northern sector of the case study 

area, however, the forest areas just north of the North Kivu provincial capital of Goma, also experienced 

substantial losses. While a 318,9 km2 forest cover gain was also identified in the change assessment, these 

gains cannot be qualified in existing literature, and as these gains are largely located within, or close by, 

existing cropland areas, they may likely be the result of misclassified pixels, possibly classifying plantation 

development as forest. While the urban cover is the least predominant land class type within the case study 

area, the cross-tabulation indicated that the urban land cover quadrupled between 2010 and 2015. The majority 

of the urban gain, however, is associated with significant urban development around Goma, located in the 

south-eastern corner of the case study area. Another major land cover change results from the conversion of 

open land/grassland areas into cropland. In total, open land areas were reduced by 30,8 % in the period from 

2010 to 2015 and the majority of these transitions was located just north of Lake Edward.  
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If unchecked and unregulated, the LULC change model developed in this study indicates that the landscape 

within and outside the NP will continue to change dramatically in the next 10 years. While Figure 28 in the 

previous section quantified the collective amount of changes, per land class per year, from 2020 to 2030, Table 

10 below quantifies the projected land changes from 2019 to 2030, between land classes. As can be seen from 

the cross tabulation, forests are attributed with the most significant land class loss in the period from 2019-

2030, and almost all forest loss (1579,5 km2 of a total of 1651,1 km2) is associated with cropland expansion. 

Open land is also projected to experience significant land class loss (1162,8 km2) the majority of which (1081,8 

km2) is also attributed to cropland expansion. While urban areas are projected to continue to be the minority 

land class in the Virunga NP catchment, the total urban area cover is projected to almost double, from 68,5 

km2 to 132,7 km2 in the 11-year period. Most of this is attributed to the conversion of cropland and open land 

areas. Thus, the majority of all transitions, gains and losses, are for the most part attributed with the expansion 

of agricultural lands, and largely at the expense of forest areas. 

Table 10 Cross tabulation between actual 2019 land cover and the simulated land cover for 2030 

  LC_2019 

 Land class Forest Water Urban Cropland Open land Total (km2) 

Simulated 
LC_2030 

Forest 1707,2 0,2 0,5 289,7 15,8 2019,1 

Water 4,8 1766,3 0,3 3,6 13,9 1789,6 

Urban 0,9 0,0 45,7 34,0 51,3 132,7 

Cropland 1579,6 0,5 15,7 6469,5 1081,8 9161,3 

Open land 65,8 0,2 6,3 308,3 991,3 1374,9 

Total (km2) 3358,3 1767,2 68,5 7105,1 2154,0 39605,0 

 

Addressing forest loss is a primary component of conservation efforts and land management planning within 

the Virunga NP catchment. Therefore, it is critical to determine not just the amount of forest cover loss, but 

also the spatial extent and location of forest dynamics. Figure 29 below illustrates the spatial location of the 

dynamics of forest land, and as seen from the figure, forest loss is largely concentrated in the northern part of 

the case study area, and particularly the north-eastern margin of the NP. This change is consistent with past 

deforestation patterns, which has historically been more predominant in the north where larger and more 

remote forest areas are located, and literature (i.e. (Jones, 2018)) indicate that illegal slashing of old growth 

forest to produce carbonized wood has been particularly predominant in the northern sector. This is largely 

caused by rebel groups operating near the city of Beni, supplying local villages and larger cities in the outskirts 

of the national park with charcoal (Jones, 2018). Besides charcoal, army groups have also been known to 

transport illegal timber along the Kamango Route, linking the Democratic Republic of the Congo with Uganda, 

causing further forest loss and fragmentation (Jones, 2018). Conversion of cleared forest areas and slashing of 

trees to plant subsistence crops, such as cassava and maize, is another primary driver of forest loss, particularly 

in the south (Jones, 2018). While forest loss is also expected to continue in the southern part of the NP, 
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particularly just north of Goma, the high montane forests to the north-east of Goma is predicted to remain 

largely intact, likely protected by its high altitude and steep terrain, making the area less accessible and thus 

less likely to be logged.  

 

Figure 29 Spatial location of forest loss/gain from 2019 to 2030 

4.1 Policy response options, planning interventions and SDG implementation 

“The Democratic Republic of Congo is at a major crossroads: after a decade of little progress, the country 

must rise to the challenge of the SDG targets in a context of state fragility, high poverty, demographic 

growth, and urbanization (World Bank, 2017)” 

As the LULC change model developed in the context of this study is an empirical-statistical projection of past 

changes into the future, the outcome represents likely LULC changes as a reflection of a business as usual 

scenario. Thus, the results help to understand the intrinsic drivers of change while providing valuable 

information on possible future LULC configurations in the Virunga catchment and thus an indication of the 
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causes and consequences of land-use change. In the absence of reformed regulatory policies, legal frameworks 

and planning interventions, Virunga NP will continue to be threatened by encroachment and deforestation, 

primarily caused by cropland expansion and persistent conflict. The high population density and a continuous 

population growth believed to be around 3 % in the Virunga region (Kayijamahe, 2008), will inevitably result 

in fewer resources outside the Virunga NP, which will ultimately put more pressure within the park, resulting 

in further damaging human impact. The large-scale deforestation and conversion to agriculture caused by 

human activities will severely alter the integrity of the landscape and cause strong negative impacts on 

biodiversity and soil degradation, while undermining the natural resource foundation on which the local 

livelihoods depend. The formulation of adequate spatial policies in the Virunga catchment must balance the 

competing needs for land to feed the accelerating population and provide energy and resources, while reducing 

the loss of ecosystems and biodiversity. The SDGs provide the blueprint for such policy planning and 

interventions, aiming to balance prosperity for both people and the planet.  

The direct exploitation of resources and expansion of cropland activities is intimately linked with the economic 

situation of the people (Kayijamahe, 2008), and thus in order to protect the biodiversity and integrity of the 

Virunga NP, policies should aim to improve and strengthen the economic security and livelihoods of the people 

living in its vicinity. The Virunga NP exists between the extremes of economic poverty and natural wealth, 

which has made it a target for all of those who aim to profit from its resources. A 2013 report by the World 

Wildlife Fund (WWF) entitled ‘The economic value of Virunga national park’ concluded that the “direct use 

of Virunga’s ecosystem could generate US$348 million per year and help diversify DRC’s economy (WWF, 

2013)”. The main direct contributors to this value are tourism (US$235 million), fisheries (US$90 million) and 

hydropower (US$10 million), while another US$63.8 million, primarily attributed to carbon sequestration and 

erosion control, can be generated through the provision of ecosystem services (WWF, 2013). If sustainably 

managed, the outstanding natural value of the Virunga NP could contribute significantly to the local economy, 

while providing livelihoods for 45.000 people through the provision of job opportunities (WWF, 2013). Thus, 

policies should aim to strengthen conservation action by creating an alternative economy which incorporates 

and enables the surrounding communities from a thriving and well managed national park, while embracing 

the framework of the SDGs.   

Incentivising alternatives to charcoal: 

As mentioned previously, the vast deforestation in the northern and southern sectors of the park, visualized in 

the simulated 2030 LULC map, is largely believed to be a reflection of illegal charcoal production and land 

clearing for agricultural expansion. The major demand for charcoal is located within the major villages, refugee 

camps and the capital city of Goma in particular. As the majority of the population in Goma rely on charcoal 

for their entire energy consumption, the prediction of a total clearing of the forest just north of Goma is highly 

probable and inherently linked with charcoal production and cropland expansion. Electricity is recognized to 
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have substantial benefits for poverty reduction, health and education, and thus access to electricity should be 

incentivised and subsidized. Realising the US$10 million potential of hydropower in Virunga NP alone, would 

not only contribute to providing job opportunities and tax revenue, but more importantly, release pressure on 

forests to obtain charcoal. Furthermore, the affordability and availability of modern cooking fuels and practices 

could be subsidised through regulatory reforms, i.e. reducing costs on kerosene stoves and cylinders (Crawford 

et al., 2008), or through the establishment of micro-credit systems. As evident from the LULC change model 

cropland expansion cause the majority of the land transformation and will continue to grow. Thus, adopting 

measures to support the development of sustainable biomass production initiatives, i.e. by improving linkages 

to agriculture, animal husbandry, agroforestry, etc. could be another approach to reduce the dependency on 

charcoal. Such policy initiatives would not only contribute to promote conservation action, and thus contribute 

to realizing SDG 15 (Life on land), but also contribute to the realisation of multiple SDG’s, including SDG 1 

(No poverty), SDG 3 (Good health and well-being), SDG 8 (Decent work and economic growth), SDG 13 

(Climate action) and SDG 7 which aims to ensure access to affordable, reliable, sustainable and modern energy 

for all8.  

Community development: 

Land grabbing for subsistence agriculture has been another primary driver of change, historically, and 

unregulated and illegal encroachment has threatened the fringes of the Virunga NP. The LULC change model 

predicts that vast expanses of the NP will be subject to cropland expansion, at the expense of forests, savannahs 

and grassland, in 2030. To counteract the infringement, enforcement of existing legislation needs to be 

strengthened while at the same time community development efforts should aim to build capacity to pave the 

way for an alternative, and more sustainable, livelihood options for the increasing population. Community-

based planning and management is undoubtedly a cornerstone of conservation action and SDG 

implementation, as local communities are effectively custodians of their environment. Consequently, the local 

communities should be involved in the wider planning framework in order to maximise the development 

potential and environmental benefits. Thus, in order to contribute to the conservation of the NP and reduce 

land grabbing, economic development in the region, communal development projects and community 

involvement should be promoted, e.g. expanding the fragmented and desolate road infrastructure in order to 

improve market access, and thus increase revenue potential from agricultural and artisanal productions. Other 

communal development projects could support the promotion of alternative income generating activities, such 

as ecotourism development or educational programmes which could facilitate access to the tourism industry, 

such as free public park ranger or guide training programmes. Depending on the nature of community 

development programmes, successful implementation of initiatives such as those outlined above could 

potentially contribute to the realisation of SDG 1 (No poverty), SDG 3 (Good health and well-being), SDG 4 

                                                      
8 https://sustainabledevelopment.un.org/sdg7 

https://sustainabledevelopment.un.org/sdg7
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(Quality education), SDG 8 (Decent work and economic growth), SDG 9 (Industry, Innovation and 

Infrastructure), SDG 11 (Sustainable cities and communities) and SDG 15 (Life on land). 

Utilising the LULC change model to gain intergovernmental support and mobilise resources: 

While underpinning the need for reformative action to counteract the impact of deforestation and land 

degradation in Virunga, it is vital to realize that the majority of the policies and actions suggested will require 

significant investments. Accordingly, the Democratic Republic of the Congo will, to some extent, be relying 

on support and engagement from donor countries in order to forge strong bilateral relationships through which 

investments can be sourced and policies framed. Furthermore, collective international support can be forged 

using the framework of existing Multilateral Environmental Agreements (MEA)’s in order to better integrate 

conflict-concerns into the implementation and priorities and attain earmarked funding for targeted capacity 

building and conservation activities. For this purpose, the LULC change model and the simulated land cover 

for 2030 is not only an effective policy support tool to inform spatial planning and policy-making, but also a 

vital instrument which can be used for lobbying activities in order to gather support for conservation and 

poverty reduction activities and strategies at the intergovernmental level. Insight into a probable future LULC 

scenario within one of the most biodiverse world heritage sites in the world, which indicates that most of the 

forest resources within the NP will be gone by 2030, may provide further traction to support collective action 

and mobilisation of resources to preserve the integrity of the park and the biodiversity within it. The 

fortification of these bilateral and multilateral relationships will be vital in order to mainstream and finance 

conservation actions across sectoral policies, contributing to sustainable energy production, poverty reduction, 

education, health etc., thus underpinning a coordinated strategy providing political and economic governance 

while increasing human capacity and wellbeing. While potentially contributing to realise the majority of the 

SDG’s, development and revitalisation of global partnerships to strengthen the implementation of the SDG’s 

is the overall objective of SDG 17 (Partnerships for the Goals). 

4.2 Reproducibility of the study 

Detailed accounts of the software packages (including version numbers), scripts, datasets, workflows and step 

by step methodological guidelines should allow anyone with the same system setup and dependencies to run 

the analysis again, re-creating the results or use it as a guiding framework for replicating it in future research 

aiming to quantify and qualify future land cover change. While the script for the land cover classification 

generically apply to any case study area, upon collection of locally applicable training datasets, replication of 

the model in other settings and contexts is possible upon collection of relevant datasets for explanatory 

variables. Thus, the approach can be replicated in other regions to compare differences and similarities in 

future LULC patterns and predictions.  



 

Page | 59 

 

However, even so, and while careful elaboration of the experiment artefacts – datasets, pre-processing steps, 

parameters, software components, source code, etc. should allow for independent validation and 

reproducibility of the specific results of this study, most operations of machine learning algorithms involve 

some degree of randomisation, making them particularly elusive in terms of replicability. The script for the 

land classification makes use of random forests to classify the input image. and while random forests are 

considered highly accurate (Rodriguez-Galiano et al., 2012; Suthaharan, 2016), the process of building the 

trees in the ensemble is random. Furthermore, the process of splitting the training data geometries into 500 

sample points, is random, and thus an exact reproducibility of the classification results relies on a perfectly 

harmonies training dataset, which for this study was impossible to obtain as in situ data sampling was 

impossible. The element of some degree of “randomness” in the land cover classification is critical in terms of 

reproducibility, as the land cover maps are the foundation of the LULC change model, and thus different results 

in the classification will likely result in a different prediction of a future scenario.  

4.3 Sensitivity analysis 

While reproducibility of the results of this study is inherently imperative, replicability and improvement of the 

design are equally important. This is largely facilitated through the identification and realisation of limitations 

and sensitivities in the project design.  

All models are simplifications of the real world, and as such, they are inherently subject to potential errors as 

they depend on the data and assumptions applied. The results of the LULC change model developed in this 

context is affected by several factors, such as the accuracy of the image classification for developing the land 

cover maps, selection of land cover classes, filtering processes, data aggregation and data availability, selection 

of explanatory variables, etc. While due diligence to existing literature and a careful selection of the 

methodological framework can alleviate the impact of some of these errors, no research method is perfect, and 

all come with certain trade-offs.  

4.3.1 Human factors and temporal variations 

The land cover classification was conducted using two-year temporal composites of Landsat images (2008-

2010 for 2010, 2013-2015 for 2015 and 2017-2019 for 2019), in order to reduce NoData values caused by 

clouds. While these years were selected in order to use the most recent reflection of land change dynamics in 

the Virunga catchment for the calibration of the model, land change rates are volatile, varying inter-annually 

and at short time periods (UN-DESA, 2012). However, as detailed yearly historic accounts of land change 

dynamics and unpredictable non-linear shifts in the Virunga catchment are limited in literature, an inherent 

risk lies in having projected land change extremes, rather than norms, due to the relatively short interval 

between the two calibration datasets. For example, model calibration cannot account for non-linear shifts such 

as those caused by, sudden conflict, climatic events, economic fluctuations, political shifts and natural 

disasters, and thus if, e.g. the period between 2008 and 2010 represented an atypical period of extreme 
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agricultural development rates, this pattern will have been projected into the future. Thus, the past may not 

always provide the best indicator of the future.  

Similarly, the model is also limited by its inability to include human behaviour, climate extremes and specific 

policies, all of which are major drivers of LULC change (UN-DESA, 2012). Accordingly, unexpected events 

and impacts caused by sudden inflows of refugees from neighbouring countries, natural disasters, shifting 

perceptions of political opportunity and risk, changing governments, land use reforms, etc. will all considerably 

alter the dynamics of LULC change, thus shifting the trajectory of development.  

4.3.2 The Modifiable Area Unit Problem (MAUP) 

Geographical space is continuous and thus there is not perfect discontinuity on the surface of the earth (Wong, 

2008). In geographic modelling a raster surface is usually used to mimic the continuity of the earth’s surface, 

howeve, in the context of this study, a boundary is used to demarcate a case study area. This represents an 

analytical issue coined the Modifiable Area Unit Problem (MAUP) and it refers to the fact that these boundaries 

represent an artificial construct, and thus a spatial aggregation at a smaller or larger scale will inevitably alter 

the results of the analysis (Wong, 2008). As in all other spatially disaggregated geographical models, the LULC 

change model developed in this study is subject to the MAUP problem. This means that the same data used in 

the context of this study would likely yield different results if aggregated in a different way. The boundaries 

of the case study area for this study was purposefully demarcated to include a small landmass outside of the 

Virunga NP, in order to reflect processes operating outside the borders of the park, but ultimately affects LULC 

changes within it. However, the demarcation of the case study area is still an arbitrary construct, and thus if 

the data had been aggregated in another way, the results may have been vastly different, i.e. if larger 

infrastructure (i.e. highways, road networks, airports, etc.) and large cities (i.e. the capital of Kinshasa) lying 

outside of the case study area would have been included. This would have affected the training of the model 

and the calculation of the LULC changes. Thus, the spatial changes occurring within the case study area is 

shaped and formed by various external human, environmental and socio-economic processes which cannot be 

demarcated by artificial boundaries.  
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4.4 Conclusion 

The Virunga catchment in the eastern part of the Democratic Republic of the Congo is subject to dramatic 

deforestation rates and land grabbing, causing significant changes to the land cover dynamics in one of the 

most biodiverse regions of Africa. In order to inform conservation actions and management practices to protect 

the diversity and integrity of the Virunga NP, while developing sustainable land managing policies and socio-

economic reforms it is vital to understand the drivers and dynamics of LULC changes.  

This study was successfully able to use a combination of cloud processing platforms (Google Earth Engine), 

GIS software (ArcGIS) and LULC modelling tools (LCM in TerrSet) to simulate future deforestation and land 

change patterns in the Virunga catchment. It provides a good understanding of the predicted LULC changes, 

under a status quo scenario, over the next ten years, and thus presents an effective policy support tool for 

decision makers and administrative bodies aiming to strengthen SDG implementation while preserving park 

resources.  

The LULC model predicted that the largest shift between classes is attributed with the conversion of forest 

areas into cropland and the overall general trend is a significant increase in cropland with a net gain of more 

than 2000 km2. The increase in cropland is primarily located in the north of the Virunga catchment where a 

substantial proportion of the remaining forest areas is predicted to be replaced by cropland. The primary drivers 

of deforestation were identified as elevation, distance to artisanal mines and mining concessions and distance 

to cropland and cities, distance to roads and distance to water. These drivers all reflect the inherent relationship 

between accessibility to forested areas and proximity to human activities, which is consistent with literature 

and consistent with the hypothesis that charcoal production and land clearing for mining, urban expansion and 

subsistence agriculture are the primary contributors to deforestation within the Virunga NP.  
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6 Appendices 

 Source code for the 2019 land cover classification in Google Earth 

Engine 

Map.centerObject(AOI, 9); 

Map.addLayer(AOI, {}, 'aoi'); 

//For Landsat surface reflectance product cloud masking 

function maskclouds(image) { 

  var cloudShadowBitMask = 1 << 3;  // cloud shadow 

  var cloudsBitMask = 1 << 5;       // cloud 

  var qa = image.select('pixel_qa'); 

  var date = image.get('system:time_start'); 

  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) 

      .and(qa.bitwiseAnd(cloudsBitMask).eq(0)); 

  var ndvi = 

image.normalizedDifference(['B5','B4']).multiply(10000).rename('NDVI'); 

  return 

image.addBands(ndvi).updateMask(mask).divide(10000).set('system:time_start',date

); 

} 

//Landsat 8 image collection  

var L8collection =  ee.ImageCollection('LANDSAT/LC08/C01/T1_SR')   

                   .filterDate('2017-01-01', '2019-03-23') 

                   .filterBounds(AOI) 

                   .filter(ee.Filter.lt('CLOUD_COVER', 35)) 

                   .map(maskclouds); 

print (L8collection); 

var testimage = L8collection.median().clip(AOI); 

 

Map.addLayer(testimage.select(['B5', 'B4', 'B3']), {min:0, max:0.4}, 'false 

color'); 

Map.addLayer(testimage.select(['B4', 'B3', 'B2']), {min:0, max:0.4}, 'true color 

color'); 

// Subsample training polygons with random points 

// this ensures all classes have same sample size 

// also EE can't handle too many cells at once 

var trainingLayers = [forest, water, city, cropland, openland2]; 

var n = 500; 

// loop over training layers 

for (var i = 0; i < trainingLayers.length; i++) {  

  // sample points within training polygons 

  var pts = ee.FeatureCollection 

    .randomPoints(trainingLayers[i].geometry(), n); 

  // add class 

  var thisClass = trainingLayers[i].get('class'); 

  pts = pts.map(function(f) { 

    return f.set({class: thisClass}); 

  }); 

  // extract raster cell values 

  var training = testimage.sampleRegions(pts, ['class'], 30); 

  // combine trainging regions together 

  if (i === 0) { 

    var trainingData = training; 

  } else { 

    trainingData = trainingData.merge(training); 
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  } 

} 

print (trainingData); 

 

//// classify with random forests 

// use bands 1-7+NDVI 

var bands = ['B1', 'B2', 'B3', 'B4', 'B5','B6', 'B7', 'NDVI']; 

// fit a random forests model 

var classifier = ee.Classifier.randomForest(500) 

  .train(trainingData, 'class', bands); 

// produce the land cover map 

var classified = testimage.classify(classifier); 

var p = ['00ff00', 'ff0000', '000000', '0000ff', 'orange',]; 

// display 

Map.addLayer(classified, {palette: p, min: 1, max: 5}, 'classification'); 

 

//Accuracy assessment 

//Test the classifiers' accuracy. (data, y, X) 

var trainingClassifier = classifier.train(training, 'class', bands); 

//Separate validation 

var testingsep = 

forestvali.merge(watervali).merge(cityvali).merge(croplandvali).merge(openlandva

li); 

// Add reducer output to the Features in the collection. 

testingsep = testimage.sampleRegions(testingsep, ['class'], 30); 

//print (testingsep) 

var validation_sep = testingsep.classify(trainingClassifier); 

//print (validation_sep) 

var errorMatrix_sep = validation_sep.errorMatrix('class', 'classification'); 

//print('Error Matrix:', errorMatrix_sep); 

var ft = ee.FeatureCollection([ee.Feature(null, {'Accuracy': 

errorMatrix_sep.accuracy(), 'Producer 

Accuracy':errorMatrix_sep.producersAccuracy(), 'User 

Accuracy':errorMatrix_sep.consumersAccuracy(), 'Kappa': errorMatrix_sep.kappa(), 

'Error Matrix':errorMatrix_sep.array()})]); 

 

// Define customization options. 

var options = { 

  title: 'Landsat 8', 

  hAxis: {title: 'Wavelength (micrometers)'}, 

  vAxis: {title: 'Reflectance'}, 

  lineWidth: 1, 

  pointSize: 4, 

  series: { 

    0: {color: '00FF00'}, // forest 

    1: {color: '0000FF'}, // water 

    2: {color: 'FF0000'}, // city 

    3: {color: 'orange'}, // openland1 

    4: {color: 'grey'}, // cropland 

    5: {color: 'yellow'}, // openland2 

}}; 

 

// Define a list of Landsat 8 wavelengths for X-axis labels. 

var wavelengths = [0.44, 0.48, 0.56, 0.65, 0.86, 1.61, 2.2, 2.5]; 

// Create the chart and set options. 

var spectraChart = ui.Chart.image.regions( 

    testimage.select(bands), trainingLayers, ee.Reducer.mean(), 30, 'class', 

wavelengths) 

        .setChartType('ScatterChart') 
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        .setOptions(options); 

 

// Display the chart. 

print(spectraChart); 

 

Export.table.toDrive({collection: ft,  description: 'accu_2018',  

  fileNamePrefix: 'accu_2018', folder: 'Master thesis', selectors: ['User 

Accuracy', 'Producer Accuracy', 'Accuracy','Kappa', 'Error Matrix']}); 

// Export the image, specifying scale and region. 

Export.image.toDrive({ 

  image: classified, 

  description: 'VirungaLC_2018', 

  scale: 30, 

  folder: 'Master thesis', 

  region: AOI.geometry().bounds(), 

  maxPixels: 2091108075, 

  crs:'EPSG:4051' 

}); 
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 Land cover maps confusion matrixes 

 

Table 11 Confusion matrix and accuracy - 2010 land cover map 

 Error matrix for 2010 land cover classification 

  Ground truth reference 

Forest Water City Cropland open land Total 

C
la

s
/p

o
s
te

rs
if

ie
d

 

im
a
g

e
 

Forest 48 0 0 2 0 50 

Water 0 50 0 0 0 50 

City 0 0 42 0 8 50 

Cropland 2 0 1 45 2 50 

open land 0 0 1 2 47 50 

Total 50 50 44 49 57 250 

 

Table 12 Confusion matrix and accuracy - 2015 land cover map 

 Error matrix for 2015 land cover classification 

  Ground truth reference 

Forest Water City Cropland open land Total 

C
la

s
s

if
ie

d
 i
m

a
g

e
 Forest 50 0 0 0 0 50 

Water 0 50 0 0 0 50 

City 0 0 45 0 5 50 

Cropland 5 0 0 41 4 50 

open land 0 0 1 0 49 50 

Total 55 50 46 41 58 250 
 

Table 13 Confusion matrix and accuracy - 2019 land cover map 

 Error matrix for 2019 land cover classification 

  Ground truth reference 

Forest Water City Cropland open land Total 

C
la

s
s

if
ie

d
 i
m

a
g

e
 Forest 43 0 0 7 0 50 

Water 0 50 0 0 0 50 

City 0 0 46 2 2 50 

Cropland 0 0 0 44 6 50 
open land 0 0 1 2 47 50 

Total 43 50 47 55 55 250 
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 Performance report example for deforestation sub-model 
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 Validation module results 

 

 


