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Abstract:

In this project the possibility of using
Deep Neural Networks (DNNs) and the
Information Bottleneck (IB) principle
to perform speech coding is explored.
An end-to-end strategy using DNNs in
form of autoencoders is developed and
the DNNs are trained using both syn-
thetic data and speech files from the
TIMIT database. Signals are encoded
using a b-bit scalar quantizer employed
internally in the DNNs and the bit rate
is easy controllable by parameters of the
quantizer amongst others. It was found
that the the developed speech autoen-
coders trained with the Mean Squared
Error (MSE) as a objective function
did not outperform the results obtained
by encoding signals using the Broad-
Voice32 (BV32) codec in terms of both
bit rate and Perceptual Evaluation of
Speech Quality (PESQ) scores. The
DNNs outperformed the BV32 codec
in terms of PESQ scores for bit rates of
5 bit per sample or higher. By exploring
the marginal entropies it was possible to
achieve an average PESQ score of 4.46
and standard deviation of 0.03 for the
DNN speech autoencoders and by using
a bit rate less than half the bit rate used
for standard 16-bit Pulse Code Modula-
tion encoding.
A loss function involving the MSE and
marginal entropies was proposed in-
spired by the IB principle. However
it was not possible to find adequate
weights such that the loss function was
suitable for training DNN speech au-
toencoders.
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Danish Summary

Dette kandidatspeciale omhandler brugen af såkaldte dybe neurale netværk samt
informationsflaskehalsprincippet til at udføre digital talekodning i transmissionssam-
menhænge.
Kodning af signaler anvendes overalt i hverdagen, og højere efterspørgsel af digitale
kommunikationssystemer samt hardware begrænsninger gør bl.a. talekodning til et
profileret forskningsområde.

Digitale signaler er repræsenteret med binære cifre eller såkaldte bits, og formålet
med talekodning er at komprimere digitale talesignaler således, at den komprimerede
version indeholder færre bits end den originale version. Komprimeringen udføres af en
såkaldt indkoder, og det er det indkodede signal der transmitteres. Efter endt trans-
mission rekonstrueres signalet ved brug af en dekoder. Formålet med talekodning er
således at komprimere talesignalet så meget som muligt, samtidig med at kvaliteten
ønskes bevaret. I stort set alle anvendte talekodningsalgoritmer er komprimeringen af
talesignalet til færre bits baseret på forudgående viden om signalet og specifikke an-
tagelser. Da de dybe neurale netværk primært er data-drevne, er ideen i dette projekt
at lade taledataet “tale” for sig selv. De neurale netværk findes ved løsning af optimer-
ingsproblemer baseret på en masse dataeksempler. Denne proces kaldes også træning.

I projektet præsenteres først den nødvendige teori i form af en gennemgang af den
generelle talekodningsprocess samt en forklaring af neurale netværk og typer heraf.
Herefter præsenteres udformningen af det neurale netværk udviklet til talekodning
i dette projekt. Eftersom al komprimering i en eller anden forstand indeholder
spørgsmål om, hvad der er relevant information og dermed skal bibeholdes, og
hvad der ikke skal, trækkes der i projektet også tråde til informationsteori og det
såkaldte informationsflaskehals princip. I projektet foreslås et optimeringsproblem
til træning af neurale netværk til brug i talekodning. Efterfølgende udføres en lang
række praktiske eksperimenter både på tale og syntetisk data. Der undersøges først
forskellige input strategiers indflydelse på kvaliteten af rekonstruerede syntetiske
signaler samt bit raten. Efterfølgende udføres eksperimenter på rigtige talesignaler og
den opnåede performance sammenlignes med en eksisterende talekoder. Resultaterne
viser bl.a. at der ved brug af neurale netværk ikke er muligt at opnå resultater, der



slår den eksisterende talekoder – både mht. bit rate og det perceptuelle PESQ mål
for talekvalitet. For bit rater højere en 5 bits per talesample er det dog muligt at slå
den eksisterende koder i forhold til PESQ målet. Resultaterne viser også at det ikke
er mulig at konfigurere det foreslåede optimeringsproblem, således det kan anvendes
til træning af talekodnings neurale netværk.

Disse samt andre resultater diskuteres i slutningen af rapporten, hvortil der også
diskuteres alternative fremgangsmåder og parametre der har haft muligt indflydelse
på resultaterne. Til slut drages der en række konklusioner.



Preface

This Master’s thesis (60 ECTS) is written by me, a Master student in Mathematical
Engineering at Department of Mathematical Sciences and Department of Electronic
Systems at Aalborg University.

This project was proposed by RTX A/S and I would like to thank Peter Mariager,
Ricco Jensen and Jan Østergaard (with department of Electronic Systems at Aalborg
Universtity) for their guidance, helpful insights and discussions.

The IEEE-method is used for references. The scripts in this report were developed
in Python 3.6 and using Tensorflow 1.4.1 with the Keras module and are uploaded
alongside the report. Unless otherwise stated, all figures in the report are made by me.

As for prerequisites, the reader is expected to be familiar with general digital signal
processing, time series theory, probability theory and statistics. It is also an advantage
to have knowledge of basic information theory, basic speech coding and the principles
of machine learning.

Aalborg University, 7th of June 2019

Barbara Martinovic





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objectives 2

I Part One - Theory

2 Digital Speech Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 General Structure 6
2.1.1 Source Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Analysis Filter Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Quantization 9
2.2.1 Scalar Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Performance and Quality Assessment 17
2.4 The BroadVoice32 (BV32) Codec 18

3 Deep Neural Networks (DNNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 General Concept 19
3.2 1D Convolution 22
3.3 Autoencoders 27
3.4 Activation Functions 28

3.4.1 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 Exponential Linear Unit (ELU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Training 31
3.5.1 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



3.5.2 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.4 Under- and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Our Speech Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 General Structure 37
4.2 The Quantization Layer 39

5 Information and Rate-distortion Theory . . . . . . . . . . . . . . . . . 43

5.1 Entropy 43
5.2 Mutual Information 46
5.3 Rate-distortion Theory 47

6 Information Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Information Bottleneck in DNNs 49
6.2 Loss Function for Speech Autoencoder Inspired by Information Bot-

tleneck 52
6.2.1 Estimating the Entropy using a 1-bit Quantizer . . . . . . . . . . . . . . . . 53
6.2.2 Estimating the Entropy using a b-bit Quantizer . . . . . . . . . . . . . . . . 54

II Part Two - Application

7 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Generating Synthetic Data 61
7.2 TIMIT Speech Data 62

8 Encoding and Decoding Synthetic Data using DNNs . . 63

8.1 Network Structure 63
8.1.1 Input and Output Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Results 68
8.2.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.2 Analysis of the Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.3 Dimension Versus Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3 Preliminary Discussion 79

9 Speech Coding using DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1 Frame size of 16 samples 84
9.2 Frame size of 128 samples 87
9.3 Speech Coding using the Information Bottleneck Principle 90
9.4 Variable Rates 93



III Discussion and Conclusion

10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

IV Bibliography

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

V Appendix

A Results using Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1 Balanced Network 115
A.2 Undercomplete Network 121

B Spectrograms of Reconstructed Signals . . . . . . . . . . . . . . . 127

C Information Plane Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131





1. Introduction

Digital coding is a central part of the digital age, we live in. Whether using mobile
phones, playing DVDs or streaming tv-series and music, one encounters compressed
digital signals. Digital speech coding is the process of obtaining a compressed repre-
sentation of a digital speech signal in order to efficiently store or transmit it [49]. By
using a digital speech coding algorithm the digital speech signal, which is represented
using binary digits or bits, is transformed into a compact representation requiring
fewer bits. This part is known as encoding. The compact representation is then
either transmitted or stored. After ended transmission or storage a reconstructed
version of the original signal is obtained from the compact representation by the
decoding part of the speech coding algorithm. The need for speech coding techniques
is governed by an increasing demand of digital speech communication systems [16]
and/or limitations of the transmission and storage channels [59, pp. 4-5]. Further-
more by compressing signals, more bits can be allocated for other processes such as
e.g. ensuring privacy of the transmitted speech signals [49]. Representing a speech
signal using fewer bits is in general a lossy procedure [16], i.e. the original signal is
in general not perfectly reconstructed. The overall goal in digital speech coding - or
coding in general - is thus two-sided; to obtain a compressed version of a signal in
terms of fewer bits meeting the requirements for transmission and/or storage, while
at the same time maintaining a degree of quality in the reconstructed signal needed
for its purpose [7, p. 5].

There exists a wide range of different speech coding algorithms and the nature of a
coding algorithm is highly related to the application in which it is used. Most state-
of-the-art speech coding algorithms can be distinguished into three classes [48][49];
waveform coding, parametric coding (vocoding) and hybrid coding involving both
waveform and parametric coding. Waveform coding explores as the name suggests
the waveform of speech signals, while vocoders model the speech production system
and extract its features using a parametric model [16]. A well-known waveform coder
is Pulse Code Modulation (PCM), which is a standard coder used for representing
digital speech signals [49].

Regardless of whether waveform, parametric or hybrid coding is used, all existing



2

speech coders rely to some extend on some prior knowledge about speech signals and
their nature. However recently a new approach [41] paved the way for the possibility
of using Deep Neural Networks (DNNs) for speech coding.
DNNs have obtained state-of-the art performances in various fields such as image
recognition [32] [32], natural language processing [51] and speech recognition [25]
[43]. DNNs process data inputs by a cascade of transformations. The suitable trans-
formations needed for solving a task are found iteratively through optimization like
problems using data examples and a adequate objective function [34]. Hence DNNs
can be seen as data driven processing systems. Recently the authors in [41] were
able to develop a compression algorithm for images using DNNs, which outperformed
existing image compression algorithms such as JPEG. This project is thus inspired
by their results and by the desire to develop a data driven speech coding algorithm.
To our best knowledge there are no existing speech coding algorithms based on DNNs.

Despite DNNs being able to obtain state-of-the-art performances in various fields,
there is still little knowledge as to why the networks are able obtain such perfor-
mances [60]. Due to this, DNNs are often considered as black boxes [4]. One way to
analyse DNNs is through the use of the Information Bottleneck (IB) method [53]. The
IB method is a method for compressing random variables while at the same time
maintaining relevant information w.r.t. some other variable. In [52] it was proposed
that the objectives of a DNN could be explained by the IB principle. The authors in
[47] furthermore showed via the IB principle that a network undergoes two phases
during optimization; a phase of information increase and compression phase.

Regardless of what compression algorithm is considerd, compression involves deter-
mining what is relevant and what is not. It is now clear that when considering data
driven speech coding, the fields of speech coding, DNNs and the IB principle are
somehow related. This project explores these relations by examining the possibility
of using DNNs and the IB principle for speech coding.

1.1 Objectives
The main objective of this master’s thesis is to:

Examine and develop a speech coding algorithm using DNNs and the IB principle.

In order to do so, we will present the necessary theory. This project is written in
collaboration with RTX A/S and some delimitations have been provided by the
company. We will restrict our focus to lossy speech coding for transmission. The
primary focus will be on fixed bit rate transmission and we will assume that the
transmission channel is error-free or lossless. We limit the examination to DNN and
IB principle aspects such as network architecture and objective functions, while
speech coding aspects are limited to bit rate, distortion and performance. We do not
require the developed speech coding algorithm to work in real time. Thus we do not
examine aspects such as computation complexity, memory and power consumption
and the time needed for encoding, transmitting and decoding a speech signal.
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2. Digital Speech Coding

The purpose of this chapter is to provide a brief overview of the general digital coding
process in the context of speech transmission. We emphasize that the overview is
indeed general. There exists a wide range of different speech compression techniques
ranging from simple to more complicated ones and the complexity of a coding algo-
rithm is often highly related to the application in which it is used [48]. For instance
one expect higher audio (and video) quality from DVDs than the conversations
transmitted when using mobile phones. Furthermore it is worth mentioning that
most state-of-the art speech coding algorithms consists of several processes [49], many
of which are not described here. The processing elements and examples provided
here are presented in order to give a general understanding. Some elements are
described more comprehensively due to their importance in this project.

As described in the introduction, the overall goal in digital speech coding is two-sided;
to obtain a compressed version of a speech signal in terms of fewer bits meeting the
requirements for transmission, while at the same time maintaining a degree of quality
of the speech signal needed for its purpose [7, p. 5]. The signal to be compressed
is also referred to as the source signal and the general digital coding procedure for
transmission is illustrated in Figure 2.1.

x

Source
Signal

Encoder Transmission Decoder x̂

Reconstructed
SignalCompressed

Signal
Compressed

Signal

Figure 2.1: General digital coding process.

As previously described and as seen from Figure 2.1, the general coding process con-
sists of two parts; an encoding and a decoding part [7, p. 4]. For this reason a coding
algorithm is often abbreviated as codec. In the encoding part a compressed version
of the source signal is obtained, meaning that the compressed signal is represented
using fewer bits than the bits used to represent the source signal. The compressed
version is then transmitted. In the decoder a reconstructed version of the source
signal, x̂, is obtained from the compressed and transmitted version of the source
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signal. If the signal is perfectly reconstructed, i.e. x = x̂, the codec is referred to as
lossless [59, p. 6]. On the other hand, if the codec is not able to perfectly reconstruct
the source signal, i.e. some information is lost in the coding process, the codec is
referred to as lossy. As described in the objectives, we focus on lossy codecs in this
project.

In Section 2.1 the general coding process in Figure 2.1 is expanded and its elements are
described. In Section 2.2 we describe one of the coding elements more comprehensively,
due to its essential role in the speech codec developed in this project. Section 2.3
describes a objective measure for assessing speech quality, while Section 2.4 describes
an existing speech codec.

2.1 General Structure
In Figure 2.2 the general coding process from Figure 2.1 is expanded into several
parts. The different steps will be presented in the following subsections.

x

Source
Signal

Analysis
Filter Bank

Quantization

Losssless Digital
Transmission Channel

Inverse
Quantization

Synthesis
Filter Bankx̂

Reconstructed
Signal

Figure 2.2: General digital speech coding process. Inspired from [59, p. 15].

In Figure 2.2, the processing elements of the source signal prior to the transmission
channel constitute the encoding part, while processing elements after the transmission
channel constitute the decoding part. The elements in the decoding part often involve
simply performing the inverse procedure of the encoding part [59, p. 14] and are
therefore not described in detail in the following sections.

2.1.1 Source Signal
Let x denote the speech signal to be compressed, i.e. the source signal. Speech itself
is both continuous in time and amplitude, and is thus analogous by nature. By using
a microphone speech can be transformed into a continuous electrical signal in form of
voltage changes. In order to obtain a digital signal, the electrical signal is both sam-
pled and quantized to obtain a discrete time and discrete amplitude valued (digital)
signal. This is done by an analogue-to-digital converter (ADC). Describing ADCs is
out of the scope for this project and we refer the reader to [40] for more information
about sampling theory and ADCs. However the conversion of an analogue signal
to a digital signal is itself a compression procedure, since continuous signals with
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infinite resolution are mapped to discrete signals with finite resolution. One standard
representation of digital signals is through the use of Pulse Code Modulation (PCM)
[59, p. 3].

In PCM the analogue signal is uniformly sampled with a sampling frequency fs
to obtain a discrete time signal. The discrete time signal is then quantized (see
Section 2.1.3 and Section 2.2) to obtain a discrete amplitude valued signal with b bits
per sample. The resulting signal is digital and the sampling frequency and number
of bits used per sample influence the total amounts of bits used. For an Nch channel
PCM speech signal, the total number of bits per second (bps) R, also referred to as
the bit rate, is given as [59, p. 4]:

R = b · fs ·Nch (2.1)

The term channel should not be confused with the term channel used in e.g. Fig-
ure 2.2. The term channel in (2.1) refers to the number of speech or audio tracks. For
instance speech recorded by a single microphone consists of one audio track or one
channel while CD recordings consists of two channels [59, p. 4]. Signals consisting of
one and two channels are referred to as mono and stereo channel signals, respectively.
In this project we will only consider mono channel signals, and thus for the rest of
this report and unless otherwise stated we assume Nch = 1.

The process of converting an analogue signal to a digital signal using e.g. PCM is by
nature a lossy compression process. However PCM signals are often considered as
uncompressed [49], since the conversion is merely a necessary step in order to obtain
digital signals. In this project we will use PCM signals stored in the wav-file format
and encoded with 16 bits per sample as source signals.

Consider a 16-bit mono channel PCM speech signal sampled at a sampling frequency
of fs. The objective of a speech coding algorithm is thus to reduce the bit rate in
(2.1) by compressing the signal in some manner. Since we focus on lossy compression,
a difference or distortion between the source signal and reconstructed signal is always
present. Although it is obvious that one can always achieve an arbitrary low bit rate,
throwing an arbitrary amount of bits away without care will most likely result in a
significant distortion. Thus the compression must be done in such a way that the
distortion is minimal or imperceptible while at the same time the rate is minimal.
How this can be done is explored in the following sections.

2.1.2 Analysis Filter Bank
The purpose of the analysis filter bank is to explore the structure and correlations in
the source signal, so that bits can be allocated to more relevant and descriptive parts
of the signal [59, pp. 8-11]. For instance by considering the source signal from a
perceptual point of view. By exploring the signal and allocating bits to the relevant
parts, it is the hope that the bit rate can be reduced without the distortion being
(too) perceptible. For instance consider the source signal in Figure 2.3a sampled at
a sampling frequency of 1 kHz and consisting of a superposition of two sinusoidal
waves with frequencies of 50 Hz and 300 Hz, respectively.
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(a) Source signal in the time domain.
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(b) Source signal in the frequency domain.

Figure 2.3: A (a) source signal and its (b) magnitude response.

Transmitting such signal with 16 bits per sample requires a bit rate of 16 kbps.
By transforming the signal into the frequency domain using the Discrete Fourier
Transform (DFT) (see [40]), one obtains the magnitude spectrum in Figure 2.3b.
As seen the magnitude spectrum consists of a few DFT coefficients with a large
magnitude, while the remaining coefficients are close to zero. One approach of coding
is thus to explore the frequency content of a signal and assign bits to the DFT
coefficients based on their magnitudes [59, p. 11]. I.e. the coefficients with a large
magnitude can be assigned bits, while fewer bits if any are assigned to the coefficients
with a magnitude close to zero. Thus the coefficients are transmitted rather than
the signal itself. Since the DFT has an invertible counterpart, the signal can be
reconstructed using the inverse discrete Fourier transform in the synthesis filter bank
and by the knowledge of the phase of the signal.

The term filter bank often refers to the source signal being transformed into the
frequency domain, i.e. by (a bank of) filters as with e.g. the DFT, but need not to
be. Another common approach is to use Linear Predictive Coding (LPC) (see e.g.
[59]). The basic idea in LPC is to predict a current sample of a speech signal by
using past samples and a mathematical model of the speech production system [59,
pp. 9-10]. The difference between the original signal and predicted signal produces
an error signal. Typically the magnitude of the error signal is significantly smaller
than the source signal itself, resulting in a smaller range of values or dynamic range
and hence fewer bits are needed to represent the error signal compared to the source
signal [59, p. 10]. The original signal can be restored in the synthesis filter bank
from the error signal and by the parameters used for the prediction.

2.1.3 Quantization
While the task for the analysis filter bank is to explore the structure of a signal, the
actual bit reduction is handled by a quantization process or quantizer [59, p. 18].
In a quantization procedure the values of a signal or its features with a possible
infinite range are mapped to a discrete set of values. A signal processed by a
quantizer is said to be quantized. The set of values forming a quantizer is often of
a cardinality much smaller than the set of possible values for the signal given as
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input to the quantizer. Thus by quantizing a signal, the number of bits used for
representing and describing the signal can be reduced and hence the bit-rate can
be reduced. It is the output of the quantization process that is transformed to a
bitsream and transmitted over the channel [59, p. 20]. Thus in the DFT and LPC
schemes described in the previous section, both the features and parameters such as
prediction parameters and phase are quantized and transmitted. As described in
Section 2.1.1 quantization already happens when an analogue signal is converted to a
digital signal. Thus the quantization step performed on the output from the analysis
filter bank is essentially a re-quantization. Since there is no difference between
quantization and re-quantization, the term quantization will be used ambiguously.
There exists a wide range of quantization methods, and we will describe quantization
more comprehensively in Section 2.2.

2.1.4 Channel
As explained in the previous section, it is the outputs from quantization process
that is transformed into a bitstream and transmitted over the channel. From the
transmitted encoded signal a reconstructed version of the source signal is obtained
in the decoding part. However it is worth noting than in practise bit errors on the
channel occur [7, p. 10]. Thus since we assume a lossless channel, mechanisms to
handle and correct such possible errors must be employed. Furthermore a mechanism
for obtaining bitstreams must also be employed. For this project it suffices to assume
that such mechanism are handled by external systems, and we will not describe these
any further.

Although not directly linked to the channel, it is also worth noting that a source signal
is rarely encoded in its entire length [59, p. 16]. For instance consider a telephone
conversation. A conversation puts demands on how much time the encoding and
decoding processes can take before the conservation becomes intolerable. Furthermore
encoding and decoding large signals require large hardware resources. Thus the entire
coding process is often performed on smaller “blocks” or frames of duration of time,
e.g. 20 ms. We will refer to the length or duration of a frame as the frame size. There
exists a wide range of different techniques for obtaining frames, depending on the
nature of the signal and the processes used in e.g. the analysis filter bank. However
one must be careful by how the division and reconstruction of the blocks are made,
since unwanted artefacts at the boundaries can be introduced [59, p. 11]. We will not
describe this any further since, as will be seen in Chapter 9, considerations regarding
boundary effects are not needed in the speech codec developed in this project.

2.2 Quantization
In this section the quantization process briefly presented in Section 2.1.3 is described
more comprehensively. When the quantization is performed on one sample at a
time, the quantization is referred to as scalar quantization and will be described in
Section 2.2.1. It is also possible to quantize a collection of samples at a time. This
is referred to as vector quantization and will be described in Section 2.2.2. In this
section the term signal will refer to the input to a quantization procedure and could
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for instance be the analogue electrical signal uniformly sampled in a PCM process or
the signal features obtained in the analysis filter bank.

2.2.1 Scalar Quantization
To quantize a signal using scalar quantization, consider it being a realization of a
continuous stochastic process X with probability density function p. Furthermore
assume that the stochastic variable takes values in the range X . For now we will
assume that the range is finite and given as X = [Xmin, Xmax], i.e. the probability
density function is bounded with left bound Xmin and right bound Xmax. The range
of values that a quantizer covers is referred to as the dynamic range [59, p. 28], and
for now we will assume that the dynamic range is X .

Let x ∈ X denote a sample of the signal. In scalar quantization each sample is
quantized at a time and to quantize a sample using scalar quantization the following
is required [59, p. 21]:

• Partitioning of the range X into M decision intervals {δq}Mq=1 with lengths
{∆q}Mq=1.
The decision intervals are defined by the M + 1 decision boundaries {bq}Mq=0

such that:
δq = [bq−1, bq) , q = 1, . . . ,M (2.2)

and where:
∆q = bq − bq−1 , q = 1, . . . ,M (2.3)

• Assigning of an unique index value to each decision interval. The index values
forms an index set I = {q1, . . . , qM}.
• Deciding a unique quantized value for each decision interval. The quantized
values form the set X̂ = {x̂q1 , . . . , x̂qM}.

For simplicity we shall assume that the index values are chosen such that decision
interval δq is assigned index value q, i.e. I = {1, . . . ,M}. Hence x̂q refers to the
quantized value associated with decision interval δq. Furthermore since the dynamic
range covers the entire range X and the range is bounded, we assume that the
partition is made such that b0 = Xmin and bM = Xmax.

The goal is to map each sample x to one of the quantized values in X̂ . I.e. the goal
is to quantize each sample x such that:

x̂q = Quantize (x) (2.4)

for some x̂q ∈ X̂ . The quantization procedure in (2.4) is performed in two steps; a
forward quantization step and a backward quantization step.
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Definition 2.1 — Scalar Forward Quantization.
Let x ∈ X be a sample from a signal. The forward quantization is a mapping
Q : X → I such that:

Q (x) = q ⇔ x ∈ δq (2.5)

where I is the index set, q is an index value and δq is the corresponding decision
interval. [59, p. 21]

The forward quantization constitutes the quantization procedure of the encoding part
in Figure 2.2 and it is the index value q that is converted to a bitstream and transmit-
ted over the channel [59, p. 20]. Upon arrival at the decoder, a sample is reconstructed
using backward quantization and the quantized values.

Definition 2.2 — Scalar Backward quantization.
Let q ∈ I denote the index value of a decision interval. The backward quantization
is a mapping Q−1 : I → X̂ such that:

Q−1 (q) = x̂q , x̂q ∈ X̂ (2.6)

where I is the index set and X̂ is the set of quantized values. [59, p. 21]

Thus the backward quantization procedure constitutes the inverse quantization in
the decoding part. We previously argued that the quantization process enables
to compress a signal using fewer bits and that such process is by nature a lossy
compression process. This is evident when considering Definitions 2.1-2.2 since the
quantization procedure is a mapping from the set X with possible infinite amount of
values to the finite set X̂ of M values. For a quantizer with M quantized values and
where each index value is represented using a fixed amount of bits as considered in
this project, the bit rate R in bits per sample is given as [59, p. 28]:

R = dlog2 (M)e (2.7)

where d·e denotes the round to ceiling function.
In this project where such fixed bit rates are considered, we will refer to a quantizer
with M decision intervals chosen such that dlog2 (M)e = b as a b-bit quantizer.

By quantizing each sample using the above definitions and equations, we obtain a
reconstructed signal. Since the quantization process is lossy, a distortion in terms
of a quantization error is obtained. The quantization error can be quantified in
different ways using different distortion measures. A commonly used measure is the
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Mean Squared Quantization Error (MSQE) given as [59, p. 22]:

σ2
e =

∫ ∞
−∞

(x̂(x)− x)2 p(x)dx (2.8a)

=
M∑
q=1

∫
δq

(x̂(x)− x)2 p(x)dx (2.8b)

=
M∑
q=1

∫
δq

(x̂q − x)2 p(x)dx (2.8c)

where we write x̂ (x) for the quantized value of sample x to emphasize that the
obtained quantized value is dependent on the input sample. Equation (2.8b) follows
from the range X being partitioned into decision intervals and (2.8c) follows from
x̂(x) being constant within an interval.

From (2.8c) it can be seen that the quantization error depends on both the quantized
values and the probability density function. For a given probability density function
p, the quantization error is minimized when the term (x̂q − x)2 is minimized. This
however implies a large amount of decision intervals M and from (2.7) it can be
seen that this results in a higher bit rate. How the quantization can be implemented
and how the quantization error is affected by the choice of decision intervals, their
lengths and the corresponding quantization values is described further below.

Uniform Quantization
If the quantizer in (2.4) consists of decisions intervals with the same length, i.e.
∆1 = ∆2 = . . . = ∆M , the quantizer is referred to as a uniform quantizer [59, p. 24].
Since the decision intervals are all of the same length, they can be described by a
constant ∆ which is referred to as the quantization step size. Considering once again
the finite range X = [Xmin, Xmax], the step size for a given M number of decision
intervals is given as [59, p. 25]:

∆ =
Xmax −Xmin

M
(2.9)

The decision intervals are then given by:

δq = [Xmin + ∆ · (q − 1), Xmin + ∆ · q) , q = 1, . . . ,M (2.10)

As previously described, both the probability density function and chosen quantization
values affect the MSQE. If we assume that X follows a uniform distribution it can be
shown, that the MSQE for a uniform quantizer is minimized by letting the quantized
values correspond to the mean value of each decision interval [7, p. 23]. Thus let the
quantized values be given as:

x̂q = Xmin + ∆ · q − 0.5∆ , q = 1, . . . ,M (2.11)

Using (2.8c) it follows that the MSQE for a uniformly distributed signal quantized
with a uniform quantizer is given as:
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σ2
e =

M∑
q=1

∫ Xmin+∆·q

Xmin+∆·(q−1)

(x̂q − x)2 p(x)dx (2.12)

=
M∑
q=1

∫ Xmin+∆·q

Xmin+∆·(q−1)

(Xmin + ∆ · q − 0.5∆− x)2 p(x)dx (2.13)

=
M∑
q=1

∫ 0.5·∆

−0.5·∆
y2p (Xmin + ∆ · q − 0.5∆− y) dy (2.14)

=
M∑
q=1

∫ 0.5·∆

−0.5·∆
x2p (Xmin + ∆ · q − 0.5∆− x) dx (2.15)

=
M∑
q=1

∫ 0.5·∆

−0.5·∆
x2p (x̂q − x) dx (2.16)

where (2.12) follows from using (2.10), (2.13) follows from using (2.11), (2.14) follows
from integration by substitution with y = Xmin + ∆ · q − 0.5∆− x, (2.15) follows
from change of variable name and finally (2.16) follows from using (2.11) once again.

For a uniform distribution on the interval [Xmin, Xmax] the probability density
function is given as:

p(x) =
1

Xmax −Xmin

(2.17)

The MSQE in (2.16) can thus be reduced to:

σ2
e =

M∑
i=1

∫ 0.5·∆

−0.5·∆
x2 1

Xmax −Xmin

dx (2.18)

=
1

Xmax −Xmin

M∑
i=1

∆3

12
(2.19)

=
M

Xmax −Xmin

M∑
i=1

∆3

12
(2.20)

=
∆2

12
(2.21)

where (2.21) follows from using (2.9). Thus for a uniform quantizer, decreasing the
step size by a factor of two reduces the quantization error by a factor of four.

Two common types of the uniform quantizer, are the midrise and midtread quantizers
[59, pp. 25-27] shown in Example 2.1.
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Example 2.1 — Midrise and Midtread Uniform Quantizers.
The forward and backward quantization steps for the midtread quantizer can be
implemented using the following:

qtread =
⌊ x

∆
+ 0.5

⌋
(2.22)

x̂qtread = ∆ · qtread (2.23)

The steps for the midrise quantizer can obtained by:

qrise =
⌊ x

∆

⌋
(2.24)

x̂qrise = ∆ · (qrise + 0.5) (2.25)

where b·c denotes the rounding to floor function.

Using a dynamic range of [−2, 2] and a step size of ∆ = 0.5, the relationship
between the input value and the quantized value for the midtread and midrise
quantizers above are shown in Figure 2.4 and Figure 2.5, respectively.
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Figure 2.4: Example of midtread uniform quantizer.
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Figure 2.5: Example of midrise uniform quantizer.
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The main difference between the two quantizers in Example 2.1 is how the value of
zero is quantized. The midtread quantization scheme can be beneficial for signals
where a value of zero is necessary, e.g. for speech signals with silent parts [59, p. 25].

There exists a wide range of different quantization schemes beside the uniform
quantizer [59, Sec. 2.3.4-2.4.2]. No matter the quantization scheme used, it is worth
mentioning that if the dynamic range of the quantizer is not able to cover the entire
range X of the input signal, an additional quantization error is introduced [59, pp.
28-29]. This is for instance the case when X is unbounded. The MSQE in (2.8a)
only accounts for the errors within the dynamic range of the quantizer. This error is
in this context also referred to as the granular error. Quantization of signal samples
falling outside the dynamic range provides an error referred to as the overload error.
The total quantization error is thus a superposition of the granular error and overload
error. One could argue that a solution is to simply increase or extend the dynamic
range such that the overload error is minimized. However for a fixed M a large
dynamic range implies large decision intervals which in turn implies a large granular
error. Thus there exists a trade-off between the granular and overload error.

The optimal quantized values for a uniform quantizer and uniformly distributed
signal was stated to be the mean values of the decision intervals. For non-uniform
quantizers and non-uniformly distributed signals, the placement of the decision
intervals and the corresponding quantized values is in general not entirely obvious.
In general an iterative procedure for finding the decision intervals and quantized
values is employed [59, pp. 35-39].

Last but not least it is worth mentioning that even though the scalar quantization
and MSQE was presented for continuous random variables, the definitions and results
are still valid for discrete random variables by replacing integration with summation
and the probability density function with a probability mass function [59, p. 24].

2.2.2 Vector Quantization
In the previous section we described scalar quantization where each sample of a
signal was quantized separately. If the quantization is done jointly for a collection
of samples, i.e. if the quantization is done in higher dimensions, it is referred to as
vector quantization (VQ) [59, p. 43].
From the previous section it was seen that the MSQE depended on both the proba-
bility density function and decision boundaries. A limitation of the scalar quantizer
is that one is forced to use intervals, i.e. rectangular regions. By considering the
signal in a higher dimensional space, one is not restricted to consider only rectangular
regions. Thus the regions can be designed to match the distribution more properly,
eventually resulting in a lower bit rate. This is the idea behind vector quantization
[59, pp. 44-46].

In the following we will consider a signal as a continuous stochastic vector X with
realizations elements x ∈ X such that x ∈ X n for realizations x of the vector X.
We will refer to x as a sample vector. For instance x could be a frame of n samples
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from a speech signal, i.e. n could be the frame size.

Similarly to scalar quantization, the space X n is partitioned into M decision re-
gions Ω1, . . . ,ΩM such that [59, p. 46]:

X n =
M⋃
q=1

Ωq , Ωq ∩ Ωq′ = ∅ ,∀q 6= q′ (2.26)

An index q ∈ I and a quantized vector or representative vector xq ∈ X̂ n is assigned
to each decision region. Similar to scalar quantization, the sets I and X̂ n are referred
to as the index set and set of quantized vectors, respectively. For simplicity we
shall again assume that the index values are chosen such that index q is assigned to
decision region Ωq and representative vector xq.
Similar to the scalar quantization, a sample vector is quantized to a representative
vector in two steps; a forward vector quantization step and a backward vector
quantization step.

Definition 2.3 — Forward Vector Quantization.
Let x ∈ X n be a n-dimensional sample vector. The forward vector quantization
is a mapping Q : X n → I such that:

Q (x) = q ⇔ x ∈ Ωq (2.27)

where I is the index set, q is an index value and Ωq is the corresponding decision
region. [59, p. 47]

In relation to the coding process in Figure 2.2, the forward vector quantization
constitutes the quantization procedure in the encoding part. And similarly to the
scalar quantization, it is the index value q that is converted to a bitsream and
transmitted. Thus even though a multidimensional signal is quantized, it is still a
single index value that is transmitted. In the decoding part the representative vector
is obtained from the index value through inverse quantization obtained by the use of
backward quantization.

Definition 2.4 — Backward Vector Quantization.
Let q ∈ I be an index value of a decision interval. The backward vector quantiza-
tion is a mapping Q−1 : I → X̂ n such that:

Q−1 (q) = xq , xq ∈ X̂ n (2.28)

where I is the index set and X̂ n is the set of quantized vectors. [59, p. 47]

The major difference between Definitions 2.3-2.4 and Definitions 2.1-2.2 is that
the vector quantizer is performed on multidimensional inputs and hence the deci-
sion intervals are defined by multidimensional regions rather than intervals. Letting
n = 1 it seen that the above definitions correspond to the definitions in the scalar case.

Similar to scalar quantization, the objective when designing a vector quantizer is
to find the optimal decision regions and quantized vectors w.r.t. some distortion
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measure. The decision regions and set of quantized vectors is also referred to as
the VQ codebook and M is the codebook size [59, p. 47]. Thus the objective is to
find the optimal VQ codebook such that the average distortion for some distortion
measure is minimized. In the previous section when considering scalar quantization,
we argued that the choice of decision intervals and quantized values is not necessarily
obvious. Generalizing the quantization to higher dimensions does not make this
task more obvious. Often a generalization of the iterative procedure used for scalar
quantization is employed for finding the optimal codebook [59, pp. 48-50].

2.3 Performance and Quality Assessment
In the previous sections we stated that the overall goal for a coding process is to com-
press the signal using fewer bits while at the same time maintaining a degree of quality.
In Section 2.2 the quality of a quantizer was quantified through the quantization error
and a associated distortion measure. This section is concerned with the overall quality
of the coding process, i.e. the quality of the codec when considering the reconstructed
signals obtained at the end of a decoder. Since the coding process consists of several
steps, the overall quality of the reconstructed signal is affected by every step in the
coding process and not only the quantizer [59, p. 16]. For instance if the analysis filter
bank is not able to obtain or detect the correct and relevant features, one is not able
to reconstruct the signal properly - even if the quantization error is significantly small.

When considering speech signals it is common to asses the quality of the recon-
structed speech in terms of how it is perceived by the human ear. A commonly
used measure for perceptual quality of speech signals is the Mean Opinion Score
(MOS), where listeners are asked to rate the quality of reconstructed speech signals
from a speech codec on some scale. The mean value of their ratings is a subjective
measure of the perceptual quality of a speech codec. However such listening tests
are extensive to perform, and often a objective measure is employed. [59, pp. 251-252]

In this project we will use the International Telecommunication Union (ITU) rec-
ommended Perceptual Evaluation of Speech Quality (PESQ) algorithm [1]. The
PESQ algorithm is commonly used in various performance evaluation tasks regarding
speech such as speech codecs and speech enhancement. The algorithm is an objective
measure of speech quality, where the reconstructed speech signal obtained from a
speech codec is compared to the original speech source signal. The output of the
algorithm is a MOS-like score between −0.5 and 4.5, where a score of 4.5 indicates
that the reconstructed signal is not perceptually different from the original signal.
Thus a higher score indicates a higher speech quality.

It is worth noting that there exists different versions of the PESQ algorithm. In this
project we will use version 1.2 - 2nd of August 2002 of the ITU-T Recommendation
P.862 PESQ algorithm.
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2.4 The BroadVoice32 (BV32) Codec
Apart from assessing the speech quality we will in this project also compare the
performance of the developed speech codec to an existing codec as a baseline. The
comparison will be made in terms of bit rate and PESQ scores.

The performance of our developed speech codec will be compared to the BroadVoice32
(BV32) [9] speech codec. The BV32 codec is a ITU-T recommended (recommendation
J.361) standard and a standard codec in PacketCable 2.0 and American National
Standards Institute, Society of Cable Telecommunications Engineers (ANSI/SCTE).
The algorithm encodes speech sampled at a sampling frequency of 16 kHz using a
frame size of 5 ms and various processing steps such as vector quantization. The codec
outperforms several other ITU-T recommended speech codecs in various aspects such
as PESQ and MOS scores on a variety of languages. The codec uses a bit rate of 2
bits per sample, which is a moderate bit rate compared to other codec [9].



3. Deep Neural Networks (DNNs)

The purpose of this chapter is to introduce the concept of Deep Neural Networks
(DNNs) and describe their elements. In Section 3.1 the general concept of neural
networks and its parameters are described. In Section 3.2 the concept is extended to
so called convolutional neural networks, while Section 3.3 is concerned with a special
type of neural networks relevant for speech coding. In Section 3.4 some essential
functions used in the neural networks of this project are described. Section 3.5
describes how the parameters of a neural network are found.

3.1 General Concept
A neural network can essentially be seen as an universal approximating function
[22, p. 167], which is found by solving an optimization problem based on some data
examples. For simplicity we will first consider the case of classification in order to
describe the concept of neural networks. Later in Section 3.3, we will present neural
networks in the context of speech coding.

Consider a K-class classification problem with K ∈ N+. Let x ∈ RN be a data
example. Let further y ∈ RK be the corresponding class label with elements such
that yk = 1 and all other elements equal to zero if x belongs to class k. For
instance x could be the pixel values in a picture of either a cat or a dog. For this
binary classification problem the corresponding class label could be chosen such that
y = [1, 0]T if x represents a picture of a cat and y = [0, 1]T if x is a picture of a dog.
Assuming that there is an underlying function f such that f (x) = y, the goal of
a neural network is to obtain an approximation of - or learn - this function. Let f̂
denote the approximation. the goal is to find f̂ such that:

f̂ (x) ≈ y (3.1)

I.e. if (3.1) holds, the network is able to classify the input x correctly. Of course,
the network should not only classify a single example correctly, but rather examples
in general. For now whenever we refer to the relation in (3.1) it suffices to think of
the relation being fulfilled for a collection of examples {xi}Mi=1 and class labels {yi}

M
i=1.
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While there are different types of neural networks, we will restrict our focus on so
called feedforward neural networks.

As the name suggests, data can only be propagated forward in a feedforward neural
network. The function f is approximated by a series of functional transformations.
Let x ∈ RN0 be the input to the network. In the context of neural networks, each
element of the input vector is also referred to as a neuron or node and the input is
referred to as the input layer. Thus a layer consists of nodes. A new layer h ∈ RN1

is obtained by [6, p. 227]:

a = Wx+ b (3.2a)
h = φ (a) (3.2b)

where b ∈ RN1 and W ∈ RN1×N0 are parameters referred to as the bias vector and
weight matrix, respectively. The weight wij is the weight associated with node j in
the input layer and node i in the succeeding layer. The function φ : R→ R is (often)
a non-linear function referred to as an activation function, which acts on each node
in a layer. Thus elements a of a are referred to as activations.

Remark Depending on the literature (see e.g. [22, Ch. 6] and [6, Sec. 5.1]), the
term activation may also refer to the elements of h since the elements are
obtained or “activated” by the activation function. Nevertheless we will
refer to the elements a as activations and the elements h of h as outputs of
the layer h.

Equations (3.2a)-(3.2b) can be repeated a desired amount of times and the final
layer is referred to as the output layer. I.e. the layers are given by:

a(l) = W (l)h(l−1) + b(l) (3.3a)

h(l) = φ(l)
(
a(l)
)

(3.3b)

for layers l = 1, . . . , L. We define h(0) := x and hL := ŷ to be the input and output
of a network, respectively. We will furthermore let Nx and Ny denote the dimensions
of the input and output, respectively. I.e. x ∈ RNx and y ∈ RNy . The superscripts
in (3.3a)-(3.3b) emphasize that different weights and biases are associated with each
layer, and that the activation functions need no to be the same. Different activation
functions are discussed in Section 3.4.

A layer that is neither an input nor output layer is referred to as a hidden layer. The
value of L is referred to as the depth of the network. Hence deep neural networks and
deep learning refer to the usage of several layers [22, p. 168]. We will refer to a layer of
depth L as a L-layer network. An example of 4-layer network can be seen in Figure 3.1.
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Figure 3.1: General 4-layer feedforward neural network. Weights are indicated by arrows. Biases
are omitted for simplicity.

The network in Figure 3.1 is also referred to as a fully connected feedforward neural
network, since each node in a layer is connected to every node in the succeeding
layer.

We began this section by stating that the objective of a neural network is to
approximate some underlying function, relating the input x to a desired output y.
In a feedforward neural network, the underlying function f is approximated by:

f̂ (x) = φ(L)
(
W (L)

(
· · ·
(
φ(1)

(
W (1)x+ b(1)

)))
+ b(L)

)
(3.4)

The objective of a neural network thus reduces to finding the weights, biases - and
possibly parameters for the activation functions - such that f̂ (x) = ŷ ≈ y. The
process of finding these parameters is a iterative process referred to as training and
will be discussed more comprehensively in Section 3.5.

It is not entirely obvious that a feedforward neural network is able to approximate
an arbitrary underlying function f by (3.4). However the Universal Approximation
Theorem [13][26] states, that a feedforward neural network with at least one hidden
layer can approximate a broad class of functions satisfying some conditions. The
conditions and the theorem itself is beyond the scope of this project. From a
practical point of view it suffices to say that according to the theorem, a neural
network is capable of approximating any underlying function between our data input
x and desired output y [22, pp. 197-198]. However, the theorem does not provide
the amount of nodes, layers and choice of activation functions needed in order for
the approximation to be sufficient. A difficulty is thus to find a proper network
architecture.
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3.2 1D Convolution
In the previous section we explained neural networks in their basic form, i.e. consisting
of feedforward fully connected layers. Another widely used layer is the convolutional
layer [28][27][11][33][35].
A neural network consisting of at least one convolutional layer is referred to as a
Convolutional Neural Network (CNN) [22, p. 330]. In this project we will be using
1-dimensional convolutional layers, and we will thus describe convolutional layers in
this context.

Consider again the input x ∈ RNx to a neural network. Instead of performing the
matrix multiplication in (3.2a), the activation nodes in a convolutional layer are
obtained by:

ai = CK (x,w)i , i = 1, . . . , N1 (3.5)

where CK (·, ·) is the convolutional operator defined by [6, p. 333]:

CK (x,w)i :=
K∑
k=1

xi+k−1wk (3.6)

for input x and wherew ∈ RK is a weight vector, which in the context of convolutional
layers is referred to as a kernel.

Remark From a mathematical point of view,(3.6) is not a convolution but a cross-
correlation [22, p. 333]. For (3.6) to be a convolution, the input should
be reversed, i.e. the term xt+k−1 should be replaced by xt−k+1 (see [40]).
Nevertheless we will use the term convolution.

A kernel of smaller dimension than the input is used, and typically K � Nx [22,
p. 350]. The dimension N1 of the activation a is dependent on the nature of
the convolution in (3.6). If the convolution in (3.6) is only performed where the
indexation is valid in the summation, then:

N1 = Nx −K + 1 (3.7)

for an input of dimension Nx and a kernel of size K. Unless K = 1, dimensionality
reduction is inevitable. Additionally one can use different zero-padding schemes to
obtain different output dimensions of the convolution, e.g. one can zero-pad the
input such that N1 = Nx.

Another way to control the dimension of the output from the convolution is by the
use of strides. In (3.6) the convolution can be seen as moving filter or kernel, that
moves one step on the input to obtain each element in a. Instead one can move the
kernel s-steps. A 1-dimensional convolution with stride s ∈ N+ is given by [22, p.
348]:

CK (x,w, s)i =
K∑
k=1

xs(i−1)+kwk (3.8)
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By using strides of size s and without using zero-padding, the output dimension is
given by:

N1 =
Nx −K + s

s
(3.9)

An example of the convolution in (3.8) with strides of 1 and 2 can be seen Figure 3.2
and Figure 3.3, respectively.
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(a) The elements x1 and x2
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nel w = [w1, w2]

T to obtain
node a1.
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(b) The elements x2 and x3

are convolved with the ker-
nel w = [w1, w2]

T to obtain
node a2.
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(c) The elements x3 and x4

are convolved with the ker-
nel w = [w1, w2]

T to obtain
node a3.

Figure 3.2: An example of the convolution in (3.8) without zero-padding and with stride s = 1

and K = 2 for an input x = [x1, x2, x3, x4]
T and kernel w = [w1, w2]

T . In each figure, the kernel
is moved 1 step to obtain an activation. Since there is no zero-padding, a layer of size N1 = 3 is
obtained.
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T to obtain
node a1.
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(b) The elements x3 and x4

are convolved with the ker-
nel w = [w1, w2]

T to obtain
node a2.

Figure 3.3: An example of the convolution in (3.8) without zero-padding and with stride s = 2

and K = 2 for an input x = [x1, x2, x3, x4]
T and kernel w = [w1, w2]

T . In each figure, the kernel is
moved 2 steps to obtain an activation. Since there is no zero-padding, a layer of size N1 = 2 is
obtained.

The convolution can be seen as some sort of feature extraction [22, pp. 337-340],
where a feature vector a is extracted from x by the use of the kernel w. Thus one
feature vector is obtained by one kernel. One can extract several different feature
vectors from the input by using different kernels and obtain a feature map [22, Fp.
332].
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Let W ∈ RK×KN1 be a kernel matrix consisting of KN1 kernels each of size K. Let
w

(j)
k denote the element in row k and column j of W , i.e. the kth element of kernel

j. Element (i, j) of the feature map in a convolutional layer with stride s is obtained
by:

ai,j = CK (x,W , s)i,j , i = 1, . . . , N1, j = 1, . . . , KN1 (3.10)

where:

CK (x,W , s)i,j =
K∑
k=1

xs(i−1)+kw
(j)
k (3.11)

As with the feedforward fully connected layers in (3.2a)-(3.2b), an activation function
is applied to each element in the feature map:

hi,j = φ (ai,j) (3.12)

Let H(1) ∈ RN1×KN1 denote the output from a convolutional layer with elements h(1)
i,j .

A new convolutional layer H(2) ∈ RN2×KN2 can be obtained by:

a
(2)
i,j = CK(2)

(
H(1),W (2), s(2)

)
i,j

(3.13a)

h
(2)
i,j = φ(2)

(
a

(2)
i,j

)
(3.13b)

for i = 1, . . . , N2, j = 1, . . . , KN2 and where [22, p. 348]:

CK(2)

(
H(1),W (2), s(2)

)
i,j

=
∑

k=1,...,KN2
m=1,...,N1

h
(1)

s(2)(i−1)+k,m
w

(2,j)
k,m (3.14)

for kernel matrix W (2) ∈ RK(2)×KN1
×KN2 . The kernel matrix consists of KN2 kernels

each of size K(2) ×KN1 such that w(2,j)
k,m is element (k,m) of kernel j. Even though

the kernel in this case is 2-dimensional, we will still refer to K(2) as the kernel size,
since the second dimension is implicitly give by the previous layer. Similar to the
fully connected layers, we use the superscripts to indicate that the kernel matrix is
different for each layer and that the kernel size, stride and activation functions need
not to be the same.

Even though H(1) is 2-dimensional, (3.14) is still referred to as a 1-dimensional
convolution since the kernel spans the entire second dimension and is only moved
across the first dimension. An example of the convolution in (3.14) with a stride of
2 can be seen in Figure 3.4.



25

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

a1,1

H(1)

w(2,1)
×w1,1

×w2,1

×w1,2

×w2,2

(a)

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

a1,1

a2,1

H(1)

w(2,1)
×w1,1

×w2,1

×w1,2

×w2,2

(b)

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

a1,1 a1,2

a2,1

H(1)

w(2,2)
×w1,1

×w2,1

×w1,2

×w2,2

(c)

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

h4,1 h4,2

a1,1 a1,2

a2,1 a2,2

H(1)

w(2,2)
×w1,1

×w2,1

×w1,2

×w2,2

(d)

Figure 3.4: An example of the convolution in (3.14) without zero-padding and with stride s = 2

and K(2) = 2. In (a)-(b) H(1) is first convolved with kernel w(2,1) to obtain a1,1 and a2,1. In (c)-(d)
H(1) is then convolved with kernel w(2,2) to obtain a1,2 and a2,2.

As with the fully connected layers, one can use (3.13a)-(3.13b) a desired amount of
times to obtain L layers. I.e. layer l is given by:

a
(l)
i,j = CK(l)

(
H(l−1),W (l), s(l)

)
i,j

(3.15a)

h
(l)
i,j = φ(l)

(
a

(l)
i,j

)
(3.15b)

with:
CK(l)

(
H(l−1),W (l), s(l)

)
i,j

=
∑
k,m

h
(l−1)

s(l)(i−1)+k,m
w

(l,j)
k,m (3.16)

The objective of a DNN does not change when using convolutional layers. For a CNN
the objective is to find the kernels rather than the weights. Furthermore a CNN can
be regarded as a special case of a feedforward DNN. To see this, the convolution
shown in Figure 3.2 is shown as a special case feedforward DNN in Figure 3.5.

x1 x2 x3 x4

a1 a2 a3

w1 w1 w1w2 w2 w2

Figure 3.5: The convolution from Figure 3.2 as a special case of feedforward neural networks.
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From Figure 3.5 it can be seen that the weights are shared across the nodes, and that
the connectivity is sparse in the sense that not all nodes from the input layer are
connected to all nodes in succeeding layer. The weight sharing and sparse connectiv-
ity properties are some advantages and motivations behind CNNs [22, p. 335-338].
This also reduces the storage and computation complexity of a network, since the
amount of weights needed to be stored is dependent on the kernel sizes and amount
of kernels used and not the dimension of the layers. This further enables CNNs to be
able to process inputs of variable size, e.g. images of different resolutions [22, Sec. 9.7].

The parameter sharing means that the networks learn one type of feature extraction
for every kernel, rather than learning one type of feature extraction per output node.
Thus in a convolutional layer a kernel is not tied to a specific node as the weights
are in a fully connected layer. This means that shifting an input to a fully connected
layer by m samples produces an entirely different activation that has not relation
to the activation obtained by the non-shifted input. However for a convolutional
layer there is a relation between the activation obtained by a shifted input and the
activation for the corresponding non-shifted input.

Let Tm denote the function that translates an input by m samples. For a convolution
it follows that:

CK (Tm (x) ,w)i =
∑
k

Tm
(
xs(i−1)+k

)
wk (3.17a)

=
∑
k

xs(i+m−1)+kwk (3.17b)

= CK (x,w)i+m (3.17c)
= Tm (CK (x,w)i) (3.17d)

for a kernel w ∈ RK and stride s. Thus shifting the input by m samples results in
an output also shifted by m samples. This property is known as equivariance to
transition [22, p. 338-339]. This property is desirable for various tasks. For instance
if we consider classifications tasks, then a network should be able to classify a picture
of a cat or dog regardless if they are translated by some samples. Likewise if we
consider a time series as input to the network, as will be done in this project, then
a feature present at some samples will still be detected by a convolutional network
even though the time series is shifted.

In this project we will use both fully connected and convolutional layers. The idea
of using convolutional layers is further inspired by its use in the WaveNet [56] CNN
used for synthesizing and generating raw audio signals. Since reconstructing speech
by a compressed version can be seen as a sort of synthesis, e.g. by the use of synthesis
filter banks, it is the hope that a neural network will benefit from using convolutional
layers as done in [55] in its attempt to perform speech coding.
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3.3 Autoencoders
In Section 3.1 we presented DNNs in the context of classification, where the goal
of a neural network was to obtain an approximating function f̂ such that f̂(x) ≈ y
for input example x and corresponding class label y. In this section we will present
neural networks in the context of speech coding.

As explained in Chapter 2 a speech coder consists of two parts; an encoding part
and a decoding part. Furthermore it was explained that the objective of speech
coding is to obtain a compressed representation of the speech signal x (encoding
part) while maintaining a degree of quality in the reconstructed signal x̂ obtained
by the decoding part, such that x ≈ x̂.
Let x ∈ RNx denote the input signal to the autoencoder and let x̂ ∈ RNx denote
the output of the autoencoder, i.e. the reconstructed signal. Similar to the general
speech coding process described in Section 2.1, an autoencoder f̂ can be seen as
consisting of two DNNs, an encoding DNN f̂e and a decoding DNN f̂d such that:

f̂ (x) = f̂d

(
f̂e (x)

)
= f̂d (xq) = x̂ ≈ x (3.18)

where f̂e (x) = xq ∈ RNq is the encoded input. Notice that the dimensions Nx

and Nq need not to be the same. An autoencoder with Nq < Nx is referred to as
undercomplete while an autoencoder with Nq > Nx is referred to as overcomplete [22,
pp. 505-506].

It may seem comprehensive to utilize neural networks to simply approximate the
identity mapping in (3.18). However often and in the context of speech coding,
one seeks to obtain features in xq present in the input x. The features should be
relevant such that x can be reconstructed from xq in the decoding part, which is
why one requires x̂ ≈ x. Different strategies involving the measurement of similarity
between the input and output, guiding the network into obtaining relevant features
and prevent the network from simply memorizing the input give rise to different
autoencoder structures and types. Often the layer consisting of xq is restricted in
some sense [22, p. 504]. For a more detailed overview of different autoencoders we
refer the reader to [22, Chapter 14] and [54].

In this project we will guide the network to achieve meaningful representations
by restricting the layer consisting of xq by use of quantizers and undercomplete
autoencoders. The reader may notice that the use of autoencoders as is done in this
project requires inclusion of the transmission channel from Section 2.1.4 in some
manner. All these aspects will be described more comprehensively in Chapter 4.
We will furthermore guide the network to achieve meaningful representations by
using the information bottleneck principle in form of guided training. This will be
described in Chapter 6.
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3.4 Activation Functions
The role of the activation function φ : R → R introduced in Sections 3.1-3.2 is
to introduce non-linearity in the network, as a network consisting of only linear
functions such as the matrix multiplication in (3.3a) will be a linear function itself
[22, p. 171]. In such cases it can further be shown that no hidden layers are needed
[6, p. 229]. In this section we will present the activation functions used in this
project. For notational convenience, we will drop the superscripts of the activation
function and activations.

3.4.1 Identity
Even though a neural network consisting of only linear activation functions is
depreciated, linear activation functions can still be used in some layers. For instance
one can view the input layer of a neural network as being processed by an identity
function. In this project we will use the identity functions as an activation function
in the output layer, too. The identity function of an activation a ∈ R is defined as:

φID (a) := a (3.19)

The choice of this function is solely based on our desire to obtain a reconstructed
version, x̂, of the input x. Hence using the identity function as an activation func-
tion in the output layer impose no restrictions on the values the output layer can take.

For reasons that will become clear in Section 3.5, the derivative of the activation
function is needed in order to train neural networks. The derivative of the identity
function w.r.t. the activation a is given as:

∂φID (a)

∂a
=
∂a

∂a
= 1 (3.20)

3.4.2 Tanh
As mentioned the use of the identity function in the output layer impose no restrictions
regarding the range of the output. In this project we will in some cases perform
preprocessing of the inputs to a network by normalizing the input to be in the range
[−1, 1]. In such cases it can be beneficial to also restrict the range of the output
of the network to the same range as the input. For this reason we will use the
hyperbolic tangent or tanh function as an activation function in the output layer for
networks with normalized inputs. The tanh function is defined as [6, p. 245]:

φtanh (a) :=
ea − e−a

ea + e−a
(3.21)

for activation a ∈ R. The tanh function is shown in Figure 3.6.
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Figure 3.6: The tanh activation function.

The derivative of the tanh activation function w.r.t. to the activation a is given as:

∂φtanh (a)

∂a
=

(ea − (−1) e−a) (ea + e−a)− (ea − e−a) (ea − e−a)
(ea + e−a)2 (3.22a)

=
(ea + e−a)

2 − (ea − e−a)2

(ea + e−a)2 (3.22b)

= 1− φtanh (a)2 (3.22c)

where (3.22a) follows from using the quotient rule for derivatives and (3.22c) follows
from (3.21).

3.4.3 Exponential Linear Unit (ELU)
For the hidden layers, we will in this project use the Exponential Linear Unit (ELU)
as an activation function. Before we present this function, we will first present some
similar activation functions.

The most widely used activation function is the Rectified Linear Unit (ReLU) [34]. The
ReLU function is defined as [22, p. 192]:

φReLU (a) := max (0, a) (3.23)

for activation a ∈ R. The ReLU activation function is similar to the identity function
in (3.19) but with outputs equal to zero for inputs a ≤ 0. Since both the outputs
and derivatives are zero for inputs a ≤ 0, the usage of ReLU can lead to dead nodes .
As we shall soon see, the derivatives are essential for finding the weights, biases and
kernels for a neural network. The term dead nodes refer to nodes that output zero
and are never changed due to associated weights never being changed because of the
zero-valued gradient [22, p. 192].
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To circumvent the problem of dead nodes several generalizations of the ReLU
activation function exist. In the Leaky Rectified Linear Unit (LReLU) activation
function the problem is circumvented by introducing a small value β > 0. The
LReLU is defined as [22, p. 192]:

φLReLU (a) := max (βa, a) (3.24)

The (L)ReLU activation function can be seen as consisting of two piecewise linear
functions. In the ELU activation function the problems regarding the gradient of
the ReLU function are circumvented by using a non-linear function for inputs a ≤ 0.
The ELU activation function is defined as [14]:

φELU (a) :=

{
a , a > 0

β (exp (a)− 1) , a ≤ 0
(3.25)

for activation a ∈ R and with β > 0.

It has been shown that networks with the ELU activation function obtains both faster
training and better performances on a broad class of tasks including autoencoding,
compared to networks with ReLU or LReLU activation functions [14]. This coincides
with our own initial experiments. We will thus be using the ELU activation function
in the hidden layers of our autoencoder. The ReLU, LReLU and ELU activation
functions are shown in Figure 3.7.

4 2 0 2 4
a

1

0

1

2

3

4

5

The ReLU, LReLU and ELU Activation Functions
ReLU(a)
LReLU(a)
ELU(a)

Figure 3.7: The activation functions ReLU, LReLU with β = 0.2 and ELU with β = 1.

For a > 0 the ELU activation is equal to the identity function. Thus for such
activations, the derivative of the ELU activation function is equal to the derivative
in (3.20) of the identity function in. For a ≤ 0 the derivative is given as:

∂φELU (a)

∂a
= β exp (a) (3.26)
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3.5 Training
In the previous sections we explained neural networks as an universal approximating
function f̂ of an underlying function f . The approximation is found through M
implicit examples of f [22, p. 151]. The set of examples:

T = {(xi,yi) , . . . , (xM ,yM)} , f (xi) = yi ,∀i (3.27)

is referred to as training set. In (3.27) xi ∈ RNx is the i’th data example, i.e. the
i’th example input to the network, and yi ∈ RNy is the corresponding desired output
such as a class label in case of classification or the input itself in case of autoencoding.
Thus the objective of a neural network is to configure or learn the weights, biases
and kernels such that:

f̂ (xi) ≈ yi , i = 1, . . . ,M (3.28)

That is to find the weights, biases and kernels such that the output of the network
matches the desired output for all M training examples. As previously explained the
process of obtaining the weights, biases and kernels is referred to as training and
we will in this section describe this process. Since the presented training procedure
applies to general problems where one seeks to obtain a desired output for an input,
we will use y to denote a desired output even though y = x in an autoencoding
setup. In aspects related directly to autoencoders and this project, we may use x to
denote the desired output, too. This will be clear from context.

In neural network training, the objective of finding the weights, biases and kernels
such that (3.28) is fulfilled is considered as an optimization problem [6, Sec. 5.2].
Let L denote the function that quantifies the error between the desired output and
obtained output. For notational convenience we will for the remainder of this section
include the biases and kernels in the weight vector w ∈ RK such that K is the total
amount of weight, biases and kernel values. The objective of a neural network can
be restated as:

w∗ = arg min
w

L (T ;w) (3.29)

where we write L as a function of w to emphasize that the error or loss is dependent
on the value of the weights, biases and kernels. The function L is referred to as the
loss function and the value obtained by evaluating it on the training set is often
referred to as the training loss. For notational convenience we will drop the set T
in the argument of L as it should be clear from context that the loss function is
evaluated on the training set.

In Section 3.5.1 we will describe the loss function used in this project, while we
in Sections 3.5.2-3.5.3 describe the ideas behind the iterative procedures used for
solving the optimization problem in (3.29). In Section 3.5.4 we briefly explain some
considerations regarding the training of neural networks and how it differs from
standard optimization problems.



32

3.5.1 Loss Functions
The loss function in (3.29) is typically evaluated as an average across the M training
examples [22, p. 275]:

L (w) =
1

M

M∑
i=1

Li (w) (3.30)

where Li is the per examples loss, i.e. the loss between the output from the network
for the i’th input example and the corresponding desired i’th output example. In
this project we will use the Mean Squared Error (MSE) as a loss function.
In Tensorflow the MSE is evaluated node-wise, i.e. the mean is first taken across the
number of samples in each example and then averaged across all examples.

Let xi ∈ RNx denote the i’th input example to a DNN autoencoder and let x̂i denote
the corresponding output. The MSE of the i’th example is given as [22, p. 108]:

Li (w) =
1

Nx

‖xi − x̂i‖2
2 (3.31)

where ‖·‖2 is the `2-norm.
Thus the MSE loss function as it is used in Tensorflow is given as:

LMSE (w) =
1

M

M∑
i=1

Li (w) (3.32a)

=
1

NxM

M∑
i=1

‖xi − x̂i‖2
2 (3.32b)

From (3.32b) it is clear that the loss function is minimized when x̂i = xi , ∀i. This
coincides with our desire to obtain a reconstruction x̂ of an input x such that x̂ ≈ x.
in our autoencoder.

The MSE is in general used as a loss function for various DNN regression tasks [6,
p. 236]. For DNNs involving speech, the MSE is often used in speech separation
[37][17][30] and speech enhancement [58][10].

3.5.2 Learning Algorithms
The complex structure of neural networks makes it difficult to solve the optimization
problem in (3.29) analytically [22, p. 176]. Instead the optimal set of weights w∗
is found iteratively using an optimization algorithm which in the context of neural
networks is referred to as a learning algorithm. We will not describe the learning
algorithms used in this project in detail. However since most learning algorithms
are machine learning variants of the gradient descent algorithm used for standard
optimization problems [22, pp. 176-177], we will briefly present the idea behind
gradient descent.

Let J denote an arbitrary and differentiable objective function and let θ ∈ RK

denote its K parameters. Assume we wish to find the parameters θ∗ such that the
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objective function is minimized. I.e. we wish to find θ∗ such that:

θ∗ = arg min
θ
J (θ) (3.33)

Let ∇J (θ) denote the gradient of the objective function w.r.t. its parameters. The
gradient points in the direction of greatest increase of the objective function J and
recall that our goal is to minimize the objective function. The idea in gradient
descent is thus to iteratively obtain an optimal value of θ by taking a small step of
size α > 0 in the opposite direction of the gradient. [8, Ch. 9]

Let θ(n) denote the value of the parameters at time n. In gradient descent a new
value θ(n+1) of the parameters at time n+ 1 is obtained by [8, p. 466]:

θ(n+1) = θ(n) − α∇J
(
θ(n)

)
(3.34)

Equation (3.34) is repeated until a stopping criterion is met. Under some conditions
such as convexity of the objective function, the algorithm converges to a global
minimum (see e.g. [8, Chapter 9]). Letting θ = w and J = L it is seen that
(3.33) coincides with (3.29). However the use of non-linear activation functions in
neural networks generally results in non-convex loss functions [22, p. 176]. Never-
theless the idea behind gradient descent is used in machine learning algorithms to
iteratively obtain the weights by minimization of the loss function. The stepsize
α in (3.34) is referred to as the learning rate in the context of neural network training.

Equation (3.34) requires evaluation of the gradient of the objective function. In the
context of neural networks where the loss function L is written as an average of per
example loss as in (3.30), the gradient is given as:

∇L (w) =
1

M

M∑
i=1

∇Li (w) (3.35)

for M training examples. However as the number of training examples grow, the
computation of the gradient cam become computationally heavy. Thus in neural
network training one in practise estimates the gradient using a subset B ⊂ T of
examples:

B = {(xi,yi)}
M ′

i=1 , (xi,yi) ∈ T (3.36)

The set B is referred to as a batch and M ′ is the referred to as the batch size . [22, p.
151]

In this project we will use two learning algorithms; the Stochastic Gradient Descent
(SGD) algorithm [22, Sec. 8.3.1] and the Adam algorithm [29]. Both algorithms
utilize the gradient descent update rule in (3.34) by estimating the gradient using
a batch of examples, and similar to gradient descent both algorithms stop when a
stopping criterion is met. The SGD algorithm is more or less a direct implementation
of (3.34). The “stochastic” term in the name simply refer to the use of batches
and should not be confused with e.g. stochastic random variables. In the Adam
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algorithm both the gradient of the loss function and some second order moments of
the gradient are used for updating the weights [29]. Alongside these algorithms we
will also in some cases utilize a so called momentum, which is an extension of the
algorithms. When using momentum, an additional term involving moving averages
with an exponential decay of the past gradients is used in the gradient descent update
rule. Using such term has been shown to speed up the training process [22, p. 296],
in the sense that fewer epochs are needed to achieve a desired value of the loss
function. For more information about momentum, we refer the reader to [22, Sec.
8.3.2].

It is worth noting that in practise one partitions the entire training set into disjoint
batches each of size M ′ and cycles through these batches. One cycle through the
entire set of batches, i.e. the entire training set, is referred to as an epoch and a
stopping criterion could be to stop the training when a desired amount of epochs is
reached.

3.5.3 Backpropagation
As seen in the previous section, training neural networks involves computing the
gradient of the loss function w.r.t. the weights. The structure of neural networks
enables one to evalute the gradient using the chain rule of calculus [22, Sec. 6.5].

Consider x ∈ Rn,y ∈ Rm and z ∈ R such that y = f (x) and z = g (y) for
differentiable functions f : Rn → Rm and g : Rm → R. By the chain rule of calculus
[18, p.953][22, p. 206]:

∂z

∂xi
=

m∑
j=1

∂z

∂yj

∂yj
∂xi

(3.37)

where xi and yj are element i and j of x and y, respectively. The chain rule of
calculus enables one to evaluate the gradient of a composite function. Since a
neural network can be seen as a composition of several functions, e.g. each layer
can be seen as function of the preceding layer(s), it follows that the chain rule
of calculus can be used to evaluate the derivative of the loss function w.r.t. any
weight and thus to evaluate the gradient in (3.34) of the gradient descent update rule.

However since a neural network often consists of several composite functions and
thousands or millions of parameters, evaluating the gradient using the chain rule
can become computational heavy. In general a node in a layer of a neural network
directly or indirectly affects all nodes in all succeeding layers and thus the value of
the loss function. When calculating the gradient of the loss function w.r.t weights
connected to the same node using the chain rule of calculus, one could imagine that
some terms or gradients are shared. This is the idea behind the backpropagation
algorithm, which is used in neural network training to compute the gradient in
an efficient manner using the chain rule [6, pp. 241-244]. We will not derive nor
describe the backpropagation algorithm any further as it is out of the scope for
this project. However we emphasize that for a neural network to be trainable, all
computations handled in a neural network must be differentiable or at least have
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a custom gradient defined. For instance the derivative of the (L)ReLU activation
function (see Section 3.4.3) at 0 is not well-defined. Nevertheless the (L)ReLU
activation function is still used in neural networks by defining the gradient using e.g.
subgradients.

For further details on the backpropagation algorithm, we refer the reader to [22,
Section 6.5] and [6, Section 5.3].

3.5.4 Under- and Overfitting
Even though neural network training can be seen as an optimization problem, it is
important to emphasize that it differs from standard optimization problems. A key
difference is that in neural network training one seeks a network that also performs
well on unseen data, i.e. one seeks a network that generalizes well [22, p. 110]. For
instance if the task of a neural network is to classify between pictures of dogs and
cats, a proper trained network should be able to not only classify the pictures in
the training set T correctly, but also any picture of a dog or cat. Likewise, the
speech autoencoder developed in this project should be able to encode and decode
unseen speech examples. The expected value of the loss function on unseen data is
referred to as the generalization loss and is typically estimated using another set
of examples T ′ referred to as the test set [22, p. 110]. Hence the generalization
loss if often referred to as the test loss. When training a neural network using e.g.
SGD to minimize the training loss, one hopes that the test loss will be minimized
too [22, p. 275]. Typically the training and testing sets are obtained by dividing
a single dataset into two disjoint sets. It is important to emphasize that only the
training set is used for adjusting the weights, kernels and biases while the testing set is
used for getting an general idea of how the neural network will perform on unseen data.

Even though a neural network is trained to minimize a training loss iteratively, one
can not train a network for an infinite amount of epochs since this will affect the
test loss [22, p. 111]. If the training loss is small while the test loss is significantly
larger, the network has most likely learned features which are not present in the
test set. This is referred to as overfitting. On the other hand if the network is not
able to obtain a small training loss, the network is not able to learn the features and
parameters needed for its task. Hence the network will also underperform on unseen
data. This is referred to as underfitting . Thus the training of a neural network is a
balance between obtaining a small training loss while maintaining a small test loss.
The concept of under- and overfitting is illustrated in Figure 3.8 where polynomials
of different degrees are fitted to a set of datapoints.
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Figure 3.8: Underfitting, appropriate fitting and overfitting illustrated with curve fitting. In each
plot a polynomial is fitted to the 10 blue data points representing the training data. The 2nd degree
polynomial (middle) best fits both the train and test datapoints, while the 1st (left) and 10th (right)
degree polynomials under- and overfit, respectively.

As mentioned previously, a stopping criterion for the learning algorithm could be
to stop the training when a specified amount of epochs is reached. In this project
we will use this as a stopping criterion for the training, where the specified amount
of epochs will be found through initial experiments. However in order to prevent
overfitting, the training will be stopped earlier if the test loss has not improved for a
another specified amount of epochs. The weights, biases and kernels obtained at the
epoch with the best test loss will be restored. The process of stopping the training
early is referred to as early stopping [22, p. 246-247].



4. Our Speech Autoencoder

As described in Section 3.3 we utilize DNN autoencoders to perform speech coding in
this project. The purpose of this chapter is to present the general coding process and
structure of the autoencoder employed in this project alongside some of its elements.

4.1 General Structure
The overall speech coding process utilized in this project is illustrated in Figure 4.1.

x

Source
Signal

Encoding
DNN

Digital Lossless
Transmission Channel

Decoding
DNN x̂

Reconstructed
Signal

Figure 4.1: The overall speech coding process utilized in this project.

In this project we consider frame sizes of Nx as input to the DNNs. Thus let x ∈ RNx

be a frame of size Nx of a source signal. From Figure 4.1 it is seen that the frame
is encoded using a DNN. The output of the encoding DNN is then transmitted
losslessly over a digital transmission channel. The encoded and transmitted version
of the frame is then reconstructed by a decoding DNN. Our assumption of a lossless
digital transmission channel enables us to train the encoding DNN and decoding
DNN as a single DNN, i.e. an autoencoder. Comparing Figure 4.1 with Figure 2.2
on page 6 it is seen that the speech coding approach considered in this project is
an end-to-end approach, meaning that we will employ DNNs to perform the entire
coding process except from external processes related to the channel such as e.g.
bitstream conversion.

The general structure of the autoencoder employed in this project is shown in
Figure 4.2.
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Figure 4.2: The general structure of the autoencoder utilized in this project.

From the Figure 4.2 it can be seen that the autoencoder consists of an input layer of
dimension Nx, encoding hidden layers, a quantization layer of dimension Nq, decoding
hidden layers and a output layer of dimension Nx. In this project we restrict the
input, quantization layer and output layer to be fully connected layers. The type of
layers used in the encoding and decoding hidden layers will be specified in Chapter 8
and Chapter 9. However we restrict our focus to feed forward neural networks. In
the quantization layer a b-bit quantizer is employed and the quantizer acts as an
activation function (see Section 3.3) for this layer.
Even though we here consider the input x ∈ RNx as a frame of size Nx of the source
signal, the input to the autoencoder does not necessarily (only) have to be a frame of
the source signal itself. The coding process in Figure 4.1 implies great flexibility in
the sense that one can employ an arbitrary amount of encoding DNN pre-processing
and decoding DNN post-processing steps. In Chapter 8 we will consider different
input/output strategies. Furthermore we will in this project consider quantization
dimensions of Nq = Nx alongside undercomplete autoencoders, i.e. Nq < Nx. The
idea of using uncerdomplete autoencoders arises from dimensionality reduction. For
instance if correlations are present in a high dimensional input it might be possible
to (help the network) to describe the input using fewer dimensions. By employing
the quantization as an internal part of the autoencoder great controllability of the
bit rate is also obtained, as we shall see soon.

The remainder of this chapter is concerned with presenting and describing the
quantization layer and the associated quantizer.
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4.2 The Quantization Layer
As previously described the quantization layer consists of a b-bit quantizer acting as
the activation function for the layer.

Let Ne denote the dimension of the layer prior to the quantization layer, i.e. the last
encoding hidden layer of the autoencoder. Let further h ∈ RNe be the output of
this layer. i.e. the output of the activation function associated with this layer. The
output, xq, of the quantization layer is implemented in the following way:

aq = W qh+ bq (4.1a)

xq = Quantizeb (aq) , b ∈ N \ {0} (4.1b)

where W q and bq are the weights and biases (see Section 3.1) associated with the
quantization layer and Quantizeb is a b-bit quantizer (see Section 2.2).

The quantizer acts element wise on aq and is thus a scalar quantizer (see Section 2.2.1).
Let aq ∈ R be an element of aq. The quantizer Quantizeb is implemented as:

ad = max (α,min (β, aq)) (4.2a)

Quantizeb(ad) := round
(ad

∆

)
∆ (4.2b)

where α, β ∈ R and β > α.

The quantizer is implemented with 2b quantization levels using a step size ∆ of:

∆ =
β − α
2b − 1

(4.3)

Thus an input to the quantizer, aq, is first mapped to a value ad ∈ [α, β] using (4.2a).
The value ad is then quantized with b-bits using the quantizer in (4.2b), i.e. the
output of the quantizer zq ∈ [α, β] where the number of distinct elements in [α, β]
is 2b. As seen from (4.2b) and (4.3), the quantizer is a uniform midtread quantizer
with midpoint reconstruction, i.e. the quantization values are chosen such that
they correspond to the midpoint of the decision intervals. The values of α and β
are fixed and is not changed during training. In this project we chose α = 0 and β = 1.

The need to restrict aq to the range [α, β] prior to the quantizer is due our restriction
to fixed-rate quantization. Thus it is needed to decide upon the number and size of
intervals. It should be noted that whether the range is [0, 1] or e.g. [1, 5] should not
make a difference, due to the network being capable of adjusting the weights. For
the same reason, a range including negative values is not needed even though the
input to the network may have negative values.
The quantizer in (4.2b) with the range [0, 1] has already been implemented in suc-
cessful networks such as DoReFa-Net [61], where weights and the outputs from the
activation functions are quantized to speed up training and where comparable results
with well known non-quantized networks are achieved.
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An example of the quantizer in (4.2b) for inputs aq ∈ [−1, 2] and with α = 0, β = 1
and b = 3 is seen in Figure 4.3.
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Figure 4.3: Inputs and their quantized values using the quantizer in (4.2b) with b = 3 and inputs
aq ∈ [−1, 2].

In Section 2.2 we presented quantization as a procedure involving forward and back-
ward quantization. However looking at (4.2b), we see that the implemented quantizer
employs both the forward and backward quantization in one step. It is important to
emphasize that the quantization can easily be split up into a forward and backward
procedure. Thus the autoencoder can be split into two DNNs as in Figure 4.1 and
where the encoding DNN consists of the input layer, the encoding hidden layers and
a layer containing the forward quantization. The decoding DNN will then consist of
a layer containing the backward quantization, the decoding hidden layers and the
output layer. The reason for not employing the forward and backward quantization
procedures as separate layers during training is due to practical aspects in Tensorflow
regarding the gradient of the quantizer.

From (4.2b), it is seen that the quantizer is a mapping from R to a discrete set of 2b

values. Thus the quantization function is not differentiable. To comprehend this we
notice that for a large b the stepsize ∆ in (4.3) is small and thus:

Quantizeb (ad) ≈ ad = max (α,min (β, aq)) (4.4)

I.e. the quantizer approximates the identity function for inputs ad. The approxima-
tion is shown in Figure 4.4 for aq ∈ [−1, 2], α = 0 and β = 1.

Using this approximation the quantizer can be seen as a mixture of three piecewise
linear functions. We define the derivative of the quantizer w.r.t. the input aq as:

∂Quantizeb
∂aq

:=
∂ad
∂aq

=


0 aq ≤ α

1 α < aq < β

0 aq ≥ β

(4.5)
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Figure 4.4: Approximation of the quantizer from Figure 4.3 for inputs aq ∈ [−1, 2] , α = 0 and
β = 1.

The approach of approximating the quantizer with linear functions to obtain a
gradient is also used in DoRaFe-Net [61] and furthermore in Tensorflow built-in
quantization functions used for quantizing already trained models.

It is important to emphasize that the approximation in (4.4) is only used to obtain
the gradient. Thus the activations in the quantization layer are still quantized using
equations (4.2a)-(4.2b). Furthermore it is worth noting that even though a layer is
quantized node wise with the same uniform scalar quantizer, the network sees the
whole quantization layer as a vector. Thus the quantization layer can be seen as a
vector quantizer (see Section 2.2.2). For a quantization dimension of Nq and a b-bit
quantizer the codebook size is 2b·Nx .

We previously stated that employing quantization as an interval part of the autoen-
coder provides great controllability of the bit rate. To see this, let Nq denote the
dimension of the quantization layer and b denote the number of bits in (4.2b). For a
source signal with a frame size Nx of samples, the bit-rate R in bits per sample is
given as:

R =
Nq · b
Nx

(4.6)

Thus for a fixed frame size, one can adjust the bit-rate by adjusting either Nq and/or
b. From (4.6) it follows that if Nq < Nx one can obtain bit rates R < 1. Since the
bit-rate is a function of the frame size and not the dimension of the input layer, the
bit-rate is not affected even though we provide additional data at the input layer as
will be done in Chapter 8.





5. Information and Rate-distortion
Theory

The purpose of this chapter is to introduce some definitions and quantities regarding
the measure of information, All the presented quantities belong to the field of in-
formation theory, and are essential elements to the speech codec developed in this
project. Using these quantities one can describe the objectives of speech coding
(see Chapter 2) from an information theoretic perspective known as rate-distortion
theory. This will be described at the end of this chapter in Section 5.3.

In information theory, information is quantified using probability distributions and
for reasons that will become clear in Chapter 6, we will unless otherwise stated
restrict our focus to discrete random variables.

5.1 Entropy
One way to think of and quantify information is in terms of uncertainty [46, pp.
10-11]. To see this consider a coin tossing experiment and assume one wants to
predict the outcome of the coin toss. If the coin is fair, knowledge of the probabilities
will not provide information useful for predicting the outcome. On the other hand if
the probability of e.g. tails is 0.99, the knowledge of this probability results in less
uncertainty about the outcome. The use of uncertainty as a measure of information
leads to the concept of entropy.

Definition 5.1 — Entropy.
Let X be a discrete random variable with probability mass function p(x). The
entropy of X is defined as:

H(X) := −
∑
x∈SX

p (x) log (p (x)) (5.1)

where SX is the sample space. [12, p. 14]
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Remark We will use the convention p(x) log p(x) = 0 for p(x) = 0 since limx→0 x log (x) =
0 [12, p. 14]. Furthermore the logarithm in Definition 5.1 is not restricted
to a specific base. In this project and unless otherwise stated, we will use
the logarithm to the base of 2. In such cases the entropy is expressed in
bits.

Since the definition of entropy relies on the probability mass function rather than
the outcomes of the random variable, it follows that H(X) ≥ 0 [12, p. 15]. From
the Definition it can further be seen that the entropy of a random variable is zero if
and only if p(x) = 1 for some event x ∈ SX . If we consider the entropy as a measure
of uncertainty about a random variable, this intuitively makes sense. If p(x) = 1
for some event x ∈ SX there is no uncertainty involved since the outcome is purely
deterministic.

The entropy and thus the uncertainty as a function of the probability mass function
for a Bernoulli random variable is shown in Example 5.1.

Example 5.1 — Entropy of Bernoulli Random Variable.
Let X ∼ Bernoulli(p), i.e.:

P (X = x) =

{
p , x = 1

1− p , x = 0
(5.2)

For instance X could represent the coin tossing experiment at the beginning of
this section. Using Definition 5.1, the entropy of X is given as:

H(X) = −p log (p)− (1− p) log (1− p) (5.3)

The entropy as a function of p can be seen in Figure 5.1.
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Figure 5.1: The entropy of a Bernoulli random variable as a function of p.

From Figure 5.1 in Example 5.1 it can be seen that the entropy is maximized when
p = 0.5. In general it can be shown that for a discrete random variable X with
cardinality |SX | = n of the sample space SX , the entropy is maximised with value
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log(n) when X is uniformly distributed [46, p. 11]. This intuitively makes sense since
one is most uncertain about an outcome if the events are equal probable. E.g. one
is most uncertain about the outcome of a coin tossing experiment when the coin is fair.

Instead of viewing the entropy as a measure of uncertainty of a random variable X,
one can also view the entropy as a measure of the average amount of information
required to describe X [12, p. 19]. Thus when using the logarithm to the base of 2,
the entropy is a measure of the average amount of bits required to describe a random
variable. Indeed if there is no uncertainty regarding a random variable, i.e. p(x) = 1
for some x, no bits are needed to describe it. Returning to Example 5.1 it can seen
that when p = 0.5 an average amount of 1 bit is required to describe the Bernoulli
random variable - which we in fact already did 1.

The entropy can be extended to several random variables by e.g. considering the
random variable pair (X, Y ) as a random vector variable [12, p. 16]. This is referred
to as the joint entropy. The joint entropy for two random variables is defined below.

Definition 5.2 — Joint Entropy.
Let X and Y be two discrete random variables with joint probability mass function
p(x, y). The joint entropy is defined as:

H(X, Y ) := −
∑
x∈SX

∑
y∈SY

p (x, y) log (p (x, y)) (5.4)

where SX and SY are the sample spaces of X and Y , respectively. [12, p. 16]

When considering the entropy as a measure of uncertainty it seems reasonable that
the entropy of one random variable is somehow affected by the knowledge of another
variable. This leads to the definition of conditional entropy.

Definition 5.3 — Conditional Entropy.
Let X and Y be discrete random variables with joint probability mass function
p(x, y). The conditional entropy of Y given X is defined as:

H (Y |X) := −
∑
x∈SX

∑
y∈SY

p (x, y) log (p (y|x)) (5.5)

where p(y|x) is the conditional probability mass function and SX and SY are the
samples spaces of X and Y , respectively. [12, p. 17]

An important property used in this project, which we will state without proof, is
that H (Y |X) = 0 if and only if Y is a function of X [12, p. 37].

1bad joke intended :)
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5.2 Mutual Information
In the previous section we defined the entropy as the average amount of information
required to describe one or more random variables. Another relevant measure of
information is the amount of information one random variable contains about another.
This is referred to as the mutual information [12, p. 13].

Definition 5.4 — Mutual Information.
Let X and Y be discrete random variables with joint probability mass function
p(x, y) and marginal probability mass functions p(x) and p(y), respectively.
The mutual information between X and Y is defined as:

I(X;Y ) :=
∑
x∈SX

∑
y∈SY

p (x, y) log

(
p (x, y)

p (x) p (y)

)
(5.6)

where SX and SY are the sample spaces of X and Y , respectively. [12, p. 20]

From Definition 5.4 it can be seen that I (X;Y ) = I (Y ;X). Furthermore an impor-
tant property which we will not derive is that I(X;Y ) ≥ 0 with equality if and only
if X and Y are independent [12, p. 19]. If we think of mutual information as the
amount of information one random variable contains about another, it intuitively
makes sense that the mutual information is non-negative. Similarly if two random
variables are independent, they can not contain information about one another.
Hence the mutual information is zero in such cases. For further details we refer the
reader to [12, Section 2.3].

Using the entropy definitions, the mutual information can be expressed as [12, pp.
20-21]:

I(X;Y ) =
∑
x∈SX

∑
y∈SY

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(5.7a)

=
∑
x∈SX

∑
y∈SY

p(x, y) log

(
p(x|y)

p(x)

)
(5.7b)

= −
∑
x∈SX

∑
y∈SY

p(x, y) log(p(x)) +
∑
x∈SX

∑
y∈SY

p(x, y) log(p(x|y))) (5.7c)

= −
∑
x∈SX

p(x) log(p(x))−

(
−
∑
x∈SX

∑
y∈SY

p(x, y) log(p(x|y))

)
(5.7d)

= H(X)−H(X|Y ) (5.7e)

where (5.7b) follows from the definition of conditional probability distribution, (5.7d)
follows from calculating the marginal distribution and (5.7e) follows from using
Definitions 5.1 and 5.3. From (5.7e) it can be seen that the mutual information
can also be interpreted as the reduction in uncertainty of the random variable X
by having knowledge of Y [12, p. 19]. Since I (X;Y ) = I (Y ;X) this reduction in
uncertainty is equal to the reduction in uncertainty of the random variable Y by
having knowledge of X.
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The different presented quantities and their relations are illustrated in the Venn
diagrams of Figure 5.2.

H(X) H(Y )

H(X, Y )
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H(X|Y )

(b)
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Figure 5.2: Venn diagram of the presented quantities. The circles represent the entropies H(X)
and H(Y ). The coloured area shows (a) the joint entropy H(X,Y ) , (b) the conditional entropy
H(X|Y ) and (c) the mutual information I(X;Y ).

5.3 Rate-distortion Theory
In Chapter 2 it was described that lossy digital coding involves minimization of both
the bit rate R and some distortion D between the source signal and reconstructed
signal. This is illustrated in Figure 5.3.
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Figure 5.3: General digital coding process from Chapter 2 with bit rate R and distortion D.

The coding problem can be viewed in two ways [12, p. 301]; Given a maximum rate
R, minimize the distortion D or given a distortion D, minimize the rate R. If we
assume that a maximum distortion of D∗ is given, the question remains on how well
one can do. I.e. what is the minimal possible rate such that the distortion does not
exceed D∗?. This leads to the definition of the rate-distortion function.

In the following we will consider a source signal as a random variable X and let
X̂ denote the corresponding reconstructed signal. The rate-distortion function is
defined below
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Definition 5.5 — Rate-distortion Function.
Let X and X̂ be a source signal and the corresponding reconstructed signal. The
rate-distortion function for distortion measure d is defined as:

R (D∗) = min
D=E[d(X,X̂)]≤D∗

I
(
X; X̂

)
(5.8)

where E [·] denotes the expectation operator. [12, p. 307]

The rate-distortion function gives the minimal possible rate R for distortion D∗ [12,
pp. 306-307]. We will not go into further details about this, the assumptions about
X, X̂ and D nor whether such function is achievable. We refer the reader to [12,
Chapter 10] for further details.

An important rate-distortion function which is used in Chapter 8 is stated below
without proof.

Theorem 5.1 — Rate-distortion function for Gaussian Source with Memory.
Let {Xt} be a stationary stochastic process given as:

Xt+1 = αXt + εt , t = 1, . . . (5.9)

where εt
i.i.d.∼ N (0, σ2

ε ) and X0∼N (0, σ2
X) with σtX = σ2

ε/ (1− α2).
The rate-distortion function is given as:

R(D) =
1

2
log

(
α2 +

σ2
ε

D

)
(5.10)

for per sample MSE distortion D. [15]



6. Information Bottleneck

The Information Bottleneck method [53] was originally proposed in 1999 as a pure
information theoretic method for compressing a random variable as much as possible
while maintaining the relevant information w.r.t some other variable. In 2015 Tishby
and Zaslavsky [52] proposed that the training and objectives of a DNN could be
explained by the IB principle. The purpose of this chapter is to introduce both the
IB principle and its relation to DNNs as it was proposed in [52] and the results
empirically shown in [47]. This will be done in Section 6.1. In Section 6.2 we
relate the IB principle to the DNN speech autoencoder developed in this project, by
proposing a loss function inspired by the IB principle.

6.1 Information Bottleneck in DNNs
The IB principle in [52] applies the knowledge of rate-distortion theory (see Sec-
tion 5.3) to DNNs (see Chapter 3) for classification. However in order to explain the
intuition behind the IB principle, we will first present the IB problem from a general
point of view.

Let X be a random variable that is to be compressed in a lossy way such that some
information is lost. Assume that the compression is to be made such that most of
the relevant information w.r.t. some other variable is preserved. Let Y be a random
variable representing the relevant information such that the mutual information (see
Section 5.2) I (X;Y ) quantifies the relevant information X contains about Y . Let T
denote the compressed version of X, and consider the Markov chain (see e.g. [39]):

Y → X → T (6.1)

We will not go into further details about Markov chains. For this project it suffices
to say that the random variables A, B and C form a Markov chain A→ B → C if
and only if A and C are conditionally independent given B [12, p. 34]. Thus the
Markov chain in (6.1) should be seen as the compressed version T being a function
of X and that the information about Y in T is only achievable through X. In [52]
the authors state that an compression algorithm should aim to compress X in such
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a manner that only the relevant information w.r.t. Y is preserved. This is stated
formally below.

Definition 6.1 — Information Bottleneck (IB) Problem.
Let Y , X and T be random variables such that:

Y → X → T (6.2)

The Information Bottleneck (IB) problem is defined as:

min
p(t|x)

I (X;T )− βI (T ;Y ) (6.3)

for β > 0 and where I (·, ·) and p (t|x) denotes the mutual information and
encoding distribution, respectively. [52]

In Definition 6.1 it is assumed that the compressed representation T of X is given
as a (possibly stochastic) mapping of X characterized by the distribution p (t|x)
[47]. Hence the distribution is referred to as the encoding distribution and the
minimization is taken across all possible mappings.

From Section 5.3 it is seen that the term I (X;T ) in Definition 6.1 is the rate
of compression. The term I (T ;Y ) is the mutual information between T and Y ,
and since the information that Y contains is of interest, the mutual information
quantifies the amount of preserved (relevant) information. Thus the IB problem
describes a trade-off between minimizing the rate of compression and maximising
the amount of preserved information. The trade-off is controlled by β. When β = 0
only compression is relevant, while a large value of β implies that the preservation of
information is more important.
Due to the markov chain assumption and the Data Processing Inequality (DPI) (see
[12]) given as:

I (X;T ) ≥ I (T ;Y ) (6.4)

it follows that the optimization problem in Definition 6.1 forms a bottleneck [52].

In order to relate the IB problem in Definition 6.1 to neural networks as done in
[52], consider a feedforward classification DNN where each layer is considered as a
random variable. Let X, Ti, Ŷ and Y denote the random variables representing the
input layer, the i’th hidden layer, the output layer and corresponding desired output
(class label), respectively. Since each layer is obtained by processing of the preceding
layer, a layer Ti+1 is conditionally independent of Ti−1 given Ti. Thus due to the
feedforward structure, a DNN consisting of N hidden layers forms the markov chain
[47]:

Y → X → T1 → T2 → · · · → TN → Ŷ (6.5)

Using the Markov chain in (6.5) it is seen that the IB problem in Definition 6.1
applies to each layer and with Y → X → Ŷ also to the network as a whole.

Previously in Chapter 3 we presented neural networks as a function from the input
layer to the output layer, and that the objective was to obtain an approximating
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function f̂ such that f̂ (x) = ŷ ≈ y for input and desired output examples x and y,
respectively. However as seen in (6.5) the Markov chain starts from Y . Similarly to
the Markov chain in (6.2) this should be seen as the information regarding Y , i.e.
the labels, being only implicitly accessible through X. This is indeed the case in a
neural network setup.

The interpretation of the IB problem in context of classification DNNs is as follows
[52]: Since the input X is often of higher dimension than the label Y , then in general
most of the information in X is not informative about Y . For instance consider
classification of pictures of cats and dogs. A picture of is often high dimensional,
i.e. it consists of many pixels, while the label on the other hand is low dimensional.
Following the example given in Section 3.1 the label could be y = [1, 0]T for a cat
and y = [0, 1]T for a dog. When using DNNs one implies that there is a relation
between the input and class label. Thus one can view X as arisen through some
processing of the label Y . Since most of the information in X is not informative
about Y , the goal is to compress X in such a way that only the relevant information
is preserved. I.e. such that the relevant information in order to predict Y is preserved.

In [52] it was claimed that the pair (I (X;T ) , I (T ;X)) forms a point on the so called
information plane. This and the trade-off in Definition 6.1 was empirically verified in
[47] for classification DNNs. The authors showed that a classification DNN trained
with SGD (see Section 3.5.2) implicitly achieves a compression of the input X while
maximising the amount of preserved information between the label Y and a layer.
They showed that this is done in two stages. This is illustrated in Figure 6.1.

Figure 6.1: Information plane. From [47]

In Figure 6.1 the pair ((X;T ) , I (T ;X)) for different layers T is illustrated as a
function of epochs. The color intensity is determined by the epoch number. Points
connected with a line correspond to mutual information values for layers of the same
network in the same epoch. It is seen that the points form similar paths, each path
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corresponding to a specific layer. The leftmost path correspond to the hidden layer
closest to the output layer, while the rightmost path correspond to the hidden layer
closest to the input layer. For each path it can be seen that during training both
mutual informations generally increase and that the mutual informations are higher
for layers closest to the input layer. However at some point a phase change (green
points) is seen. At this phase change the mutual information I (X;T ) decreases while
the mutual information I (T ;Y ) increases. This is referred to as the compression
phase [47].

The claims proposed in [52] and empricially showed in [47] have been widely discussed
[44][5][38]. For instance in [38] it is shown, that the compression phase is not achieved
for all activation functions. The authors argue that the compression phase seen in
[47] is due to the saturating activation functions used. In [5] it is also argued that
the IB problem in Defintion 6.1 is only suitable if the layers of a network is quantized
in some manner. Several proposals have been made inspired by the information
bottleneck [31][19][2]. For a detailed overview of the IB principle in the context of
DNNs, we refer the reader to [24].

The IB principle in [52] was stated in the context of classification DNNs only. However
in this project where autoencoders are considered, i.e. X = Y , (6.3) is not suitable.
Nevertheless the intuition behind the IB problem is still relevant in the context of
speech coding, as we aim to compress the input X at some rate while maintaining
some relevant information in the compressed variable T . Another immediate problem
when considering the IB in relation to neural network training, is that the mutual
informations rely on knowledge of the probability distributions which are often
unknown. Thus estimates are needed. However as explained in Section 3.5 the
gradients of each computation related to network training is needed. Thus the
estimators must either be differentiable or at least have a custom gradient defined.
In the following section we propose a loss function circumventing these problems.

6.2 Loss Function for Speech Autoencoder Inspired by Information
Bottleneck
In section we propose a loss function inspired by IB.
Consider each layer of a DNN autoencoder as a random variable. Thus let X denote
the input to a DNN autoencoder and let X̂ denote the output of the DNN. As
stated in Section 3.3, a DNN autoencoder can be seen as consisting of two DNNs; an
encoding DNN fe and a decoding DNN fd such that:

fd (fe (X)) = fd (Xq) = X̂ (6.6)

where Xq denotes the random variable representing the encoded input, i.e. the
compressed version of X. From Chapter 4 it follows that Xq is the random variable
representing the quantization layer of our speech autoencoder.

The goal of our autoencoder is to encode the input X at a minimal rate while
maintaining the relevant information of the input useful for decoding the signal. We
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argue that the mutual information quantities in Definition 6.1 can not stand alone,
if the IB problem is wished to be used as a training function in this context. The
mutual informations must be seen in relation to some context. To see this consider
X̂ being a permutation of X. Then I

(
X; X̂

)
is maximized but the output does

not resemble the input - at least not sample-wise. Instead we will use the MSE loss
function from Section 3.5.1 as an implicit measure of relevance, since a low MSE will
most likely imply that relevant information is preserved. Regarding the rate term in
Definition 6.1, recall from (5.7e) in Section 5.2 that I (X;Y ) = H (X)−H (X|Y ).
Thus:

I (X;Xq) = H (Xq)−H (Xq|X) = H (Xq) (6.7)

where the last equation follows from Xq being a deterministic function of X for fixed
weights. In this project we will consider the marginal entropies H (Xqi) , . . . , H(XqNq

)
of the quantization nodes Xqi , . . . , XqNq

for quantization layer with dimension Nx.

In this project we propose the loss function:

minLMSE (w) + β

Nq∑
i=1

H (Xq) (6.8)

where LMSE (w) is the MSE from Section 3.5.1 and H (·) is the entropy (see Sec-
tion 5.1).

In (6.8) the second term is only dependent on the encoding part of the autoencoder.
We minimize the entropy in the hope that this will force the network to extract
only relevant parameters. For instance if we consider a quantization layer of size
Nq, then even if the quantization layer is smaller than the dimension of the input,
the total number of possible quantized vectors is 2Nq ·b for a b-bit quantizer. Thus
even for quantizers with a small value of b, the total number of possible vectors is
large. By minimizing the entropy of the quantization layer it is the hope, that the
network is forced to perform a many-to-one mapping which in turn could help the
network to discover relevant features of the input. The first term on the other hand
is dependent on the network as a whole. A poor encoding, i.e. an encoding that
does not contain relevant features about the input, will likely effect the decoding
and thus the output X̂. Thus minimizing the mean squared error implicitly implies
not only maximization of the amount of preserved information in the encoding part
but also maximization of the resemblance between the input and output.

By considering the entropy we do not avoid the problems of estimators and non-
differentiability. However the nature of our autoencoder provides means to estimate
the entropy and where the operations are directly linked to the nature of the quantizer
employed in the quantization layer. Thus no further definitions of gradients are
needed.

6.2.1 Estimating the Entropy using a 1-bit Quantizer
We will first estimate the entropies in (6.8) for a 1-bit quantizer. The estimation of
the entropies is based on J examples, i.e. realizations, of Xq.
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Let xq ∈ RNq denote an output example of the quantization layer with elements xqi .
Since we consider a 1-bit quantizer it follows from Section 4.2 that xqi ∈ {0, 1} ∀i.
Let further x(j)

qi denote node i in the quantization layer of data example j. We define:

pi :=
1

J

J∑
j=1

x(j)
qi

(6.9)

to be the mean value of node i in the quantization layer across J examples. Since
xqi ∈ {0, 1} it follows that pi ∈ [0, 1]∀i. Furthermore if we consider node i as a
random variable Xqi , then due to the 1-bit quantizer we can regard pi as a probability:

pi = P (Xqi = 1) (6.10)

Thus the pair (pi, 1− pi) forms an estimate of the pmf of the discrete random variable
Xqi . An estimate Ĥ of the entropy of node i can then be obtained by:

Ĥ (Xqi) = −pi log (pi)− (1− pi) log (1− pi) (6.11)

If pi = 0, then all examples of node i in the quantization layer are 0. Thus the
entropy should be zero. By looking at (6.11) we see that this is indeed the case. This
is also true for pi = 1 where all examples of node i have a value of 1. If pi = 0.5
an equal amount of examples of node i has obtained the values 0 and 1. The pmf
then forms a uniform distribution and it follows from Section 5.1 that the entropy in
(6.11) is maximized.

By using a 1-bit quantizer one can thus replace (6.8) with:

minLMSE (w) + β

Nq∑
i=1

Ĥ (xqi) (6.12)

where Ĥ is given by equations (6.9) and (6.11).

6.2.2 Estimating the Entropy using a b-bit Quantizer
We now generalize the loss function in (6.12) to a b-bit quantizer with 2b quantization
levels.

Let again xq ∈ RNq denote the output from the quantization layer with elements
xqi . Let further q̃1 < . . . < q̃2b denote the quantized values for a b-bit quantizer, i.e.
xqi ∈ {q̃1, . . . , q̃2b} ∀i. Again we consider node i as a random varaible Xqi and we
wish to compute the probabilities:

pi,l = P (Xqi = ql) , i = 1, . . . , Nq, l = 1, . . . , 2b (6.13)

in order to obtain an estimate of the pmf of each node and hence obtain an estimate
of the entropy. However when using a b-bit quantizer with b 6= 1 one can not rely on
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the node values alone to compute these probabilities as in (6.9). To comprehend this
we first define:

Υl

(
x(j)
qi

)
:=
∏
m6=l

∣∣q̃m − x(j)
qi

∣∣ (6.14)

where x(j)
qi is node i in the quantization layer of data example j. If x(j)

qi = q̃l, the
product in (6.14) equals the product of relative distances between the quantization
value ql and all other quantization values. If on the other hand x(j)

qi 6= ql, equation
(6.14) equals zero. We now define a normalization parameter:

εl := Υl (q̃l) =
∏
m 6=l

|q̃m − q̃l| (6.15)

Using equations (6.14)-(6.15) we can estimate the pmf of each node by the probabili-
ties:

pi,l =
1

J

J∑
j=1

Υl

(
x

(j)
qi

)
εl

(6.16)

for J examples. Each term in the summation equals 1 if x(j)
qi = q̃l and zero otherwise.

Thus similar to a histogram used for e.g. estimating probability mass functions, each
term in the summation can be seen as a indicator function I : {q̃1, . . . , q̃2b} → {0, 1}:

Υl

(
x

(j)
qi

)
εl

= Il
(
x(j)
qi

)
=

{
1 , x

(j)
qi = q̃l

0 , x
(j)
qi 6= q̃l

(6.17)

The entropy of node i can then be estimated by:

Ĥ (Xqi) = −
2b∑
l=1

pi,l log (pi,l) (6.18)

As described in Section 4.2 the quantizer in the quantization layer is an uniform
quantizer with stepsize ∆. In this setup, the normalization parameter can easily be
calculated as a function of the stepsize.

To see this, consider first a b-bit quantizer with b = 3 and thus 2b = 8 quantization
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levels. It follows that:

ε1 =
8∏
i=2

|q̃i − q̃1| =
7∏
i=1

|q̃i+1 − q̃1| =
7∏
i=1

∆ · i = 7!∆7 (6.19)

ε2 = |q̃1 − q̃2|
8∏
i=3

|q̃i − q̃2| = ∆
6∏
i=1

|q̃i+2 − q̃2| = ∆
6∏
i=1

∆ · i = ∆6!∆6 (6.20)

...

ε4 =
3∏
i=1

|q̃i − q̃4|
4∏
i=1

|q̃i+4 − q̃4| =
3∏
i=1

∆ · i
4∏
i=1

∆ · i = 3!∆34!∆4 (6.21)

ε5 =
4∏
i=1

|q̃i − q̃5|
3∏
i=1

|q̃i+5 − q̃5| =
4∏
i=1

∆ · i
3∏
i=1

∆ · i = 4!∆43!∆3 (6.22)

...

ε8 =
7∏
i=1

|q̃i − q̃1| =
7∏
i=1

∆ · i = 7!∆7 (6.23)

This can be generalized such that the normalization parameter for quantization level
l in a b-bit quantizer is given as:

εl = (l − 1)!∆l−1
(
2b − l

)
!∆2b−l (6.24)

As seen from the above equations the normalization parameters are not unique since
εl = ε2b−l+1. However the uniqueness is not needed since the key in equation (6.16)
is that each term only equals 1 if x(j)

qi = q̃l and zero otherwise. Nevertheless the
normalization parameter in (6.24) will be used.

The pmf estimates given by (6.16) coincides with the pmf estimates given by (6.9)
for a 1-bit quantizer. To see this let q̃1 = 0 and q̃2 = 1 denote the quantization values
for the 1-bit quantizer. It follows:

ε1 = |q̃2 − q̃1| = |1− 0| = 1 (6.25)
ε2 = |q̃1 − q̃2| = |0− 1| = 1 (6.26)

and further:

pi,2 =
1

J

J∑
j=1

Υ2

(
x

(j)
qi

)
ε2

(6.27a)

=
1

J

J∑
j=1

∣∣q̃1 − x(j)
qi

∣∣ (6.27b)

=
1

J

J∑
j=1

x(j)
qi

(6.27c)
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pi,1 =
1

J

J∑
j=1

Υ1

(
x

(j)
qi

)
ε1

(6.28a)

=
1

J

J∑
j=1

∣∣q̃2 − x(j)
qi

∣∣ (6.28b)

=
1

J

J∑
j=1

∣∣1− x(j)
qi

∣∣ (6.28c)

=
1

J

J∑
j=1

1− 1

J

J∑
j=1

x(j)
qi

(6.28d)

= 1− pi,2 (6.28e)

Thus the pmf estimates given by (6.16) can be used to estimate the entropy of all
nodes and for all b-bit quantizers. Hence the loss function in (6.8) can be replaced
by:

minLb−bit = LMSE

(
X, X̂

)
+ β

Nq∑
i=1

Ĥ (xqi) (6.29)

where Ĥ is given by equations (6.18).

In Figure 6.2 the estimated entropy of a node Xq quantized with different bits b and
using our relative distance estimator is compared to the corresponding estimated
entropy using histograms. From the figure it can be seen that for b = 1, . . . , 5 the
entropy estimate in (6.18) corresponds to the estimate obtained by using a histogram.
For b > 5 the estimator experiences numerical issues due to the factorial and hence
an approximation is needed in such cases.
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Figure 6.2: The estimated entropy of node Xq using our estimator (orange) and a histogram
estimator (blue) for different b-bit quantizers.
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7. The Data

The purpose of this chapter is to present the data used as input for the autoencoders
in Chapter 8 and Chapter 9.

7.1 Generating Synthetic Data
In Chapter 8 we will use synthetic data as input to DNN autoencoders. The synthetic
data consist of realizations of a stochastic process {Xt}∞t=1 where:

Xt = ρXt−1 +Wt , t = 1, . . . (7.1)

and where Wt
i.i.d.∼ N (0, σ2

w) is a white noise process, X1 ∼ N (0, σ2
x) and |ρ| < 1. For

|ρ| < 1 it follows that the process {Xt}∞t=1 is a stationary autoregressive (AR) process
of order 1 and that the variance is given as σ2

x = σ2
w/ (1− ρ2) (see e.g. [36]). We

will refer to this process as an AR(1) process. The variance σ2
w is chosen such that

σ2
x = 1, i.e. σ2

w = 1− ρ2.

In Chapter 8 we will consider different input/output strategies. Thus the following
datasets are created:

• A dataset XAR ∈ RN×T containing N realizations of the AR(1) process with
t = 1, . . . , T .
• A dataset W ∈ RN×T containing N realizations of the white noise process
with t = 1, . . . , T .
• A dataset XRes ∈ RN×T containing the residual version of XAR obtained by

predicting the AR(1) process. The residuals were obtained by subtracting the
prediction X̂t = ρXt−1 from elements in XAR.
• A dataset XMixed ∈ RN×2T containing both XAR and XRes. I.e. rows of XRes

concatenated with corresponding rows of XAR, such that each row contains
realizations of the AR(1) process for t = 1, . . . , T and the corresponding
residual.

An AR parameter of ρ = 0.95 was chosen and with N = 100, 000 and T = 10, 000,
respectively. To exclude the transient part, only the last Nx columns of XAR and
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W are used and for creating XRes and XMixed. Thus the resulting dimensions of
the datasets are as given above but with T = Nx. In relation to previous chapters
and definitions we will refer to Nx as the frame size. The value of Nx is presented in
Section 8.2.

The datasets contains all the data used for both training and testing, where 70% of
the examples are used for training and the remaining 30% are used for testing.

An example of the AR(1) process in (7.1) with ρ = 0.95 and σx = 1, its prediction
and residual can be seen in Figure 7.1.
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Original
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0 20 40 60 80 100

Residual
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Figure 7.1: An example of the AR(1) process with ρ = 0.95 and σx = 1, its prediction and the
corresponding residual.

7.2 TIMIT Speech Data
In this project we use frames of speech audio files from the TIMIT database [20] as
inputs for our DNN speech autoencoder in Chapter 9.

The speech data in the TIMIT database was designed for acoustic-phonetic studies
and for the development of automatic speech recognition [20]. The database was
developed by the Defense Advanced Research Projects Agency - Information Sci-
ence and Technology Office (DARPA-ISTO), Massachusetts Institute of Technology
(MIT), Stanford Research Institute (SRI), Texas Instruments (TI) and the National
Institute of Standards and Technology (NIST). TIMIT has been used in several DNNs
involving speech such as speech recognition [23] [3] [45] [25] and speech enhancement
[58] alongside development of new neural network schemes [50]. It is considered as a
benchmark speech dataset [22, p. 461].

The database contains in total 6300 speech files of read sentences in American
English from 630 different speakers. The speech files are sampled with a sampling
frequency of 16 kHz, stored in the wav-file format and encoded using 16-bit PCM
(see Section 2.1.1). Approximately 27% of the speech files are used for testing, while
the remaining 73% are used for training.



8. Encoding and Decoding Synthetic
Data using DNNs

The purpose of this chapter is to perform coding of the synthetic data described in
Section 7.1 using DNN autoencoders. This is done in order to investigate how a
neural network perform in a encoding and decoding setup. It is reasonable to assume
that if DNNs do not work at all in an encoding and decoding setup for synthetic
data, DNNs will not work for more complicated data such as speech. This chapter
and its results should thus be seen as a proof of concept.

In Section 8.1 the structures of the DNN autoencoders examined in this chapter
are described alongside different input/output strategies. Using the synthetic data
from Section 7.1 enables one to compare the results with the rate-distortion function
from Theorem 5.1 (see Section 5.3). This alongside other results are presented in
Section 8.2.

8.1 Network Structure
The encoding and decoding hidden layers of the autoencoder in Figure 4.2 from
Section 4.1 can be designed in several ways. In this chapter we utilize two different
autoencoder structures; one with the frame size equal to the quantization dimension,
i.e. Nx = Nq, and one where Nx > Nq, i.e. an undercomplete structure. Both
network structures are fully connected feed forward DNNs (see Section 3.1) and are
illustrated in Figure 8.1 and Figure 8.2.

As seen from the figures, there are 7 hidden layers in each of the two networks; 3
hidden layers in the encoding part, 1 hidden layer constituting the quantization layer
and 3 hidden layers in the decoding part. The choice of hidden layers was based
on initial experiments. As described in Section 4.2 a b-bit quantizer acting as an
activation function is employed in the quantization layer. We will refer to networks
with the structures in Figure 8.1 and Figure 8.2 as balanced and undercomplete
networks, respectively. In the undercomplete network an increasing and decreasing
amount of nodes is employed in the encoding and decoding hidden layers, respectively.
This is done in order to help guide the network and to avoid an abrupt dimensionality
reduction.
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Figure 8.1: Network with a balanced structure, i.e. Nx = Nq. For simplicity the biases are here
omittied.
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Figure 8.2: Network with uncercomplete structure, i.e. Nx > Nq. For simplicity the biases are
here omittied.

In both figures, the amount of nodes in the input and output layers are illustrated
to be the same. However this depends on the input and output types and will be
described in the section below.
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8.1.1 Input and Output Types
For the three datasets XAR,XRes and XMixed described in Section 7.1 and the two
network structures from Figures 8.1-8.2, five different input/output strategies are
examined. In this section the different input/output strategies are described and
illustrated with the balanced network structure. In the figures below, the number
of nodes in each layer does not reflect the actual dimension of the layers. The
figures serve to illustrate the concept of the different input/output strategies and the
dimension of the layers should be seen relative to each other.

AR Process as both Input and Output
The simplest input/output strategy is shown in Figure 8.3. The input to this network
is a frame of size Nx of the AR(1) process from Section 7.1, i.e. a row of XAR.
The output of the network is a reconstructed version of the input. The task of the
network is thus to encode and decode the AR(1) process.

AR Process Encoding Hidden Layers Quantization
Layer Decoding Hidden Layers Reconstructed

AR Process

Figure 8.3: Neural network with the AR(1) process as input and output. For simplicity the biases
are here omittied.

Residual as both Input and Output
Instead of giving a frame of size Nx of the AR(1) process as input to the network, the
idea is to give the corresponding residual as input in the strategy of Figure 8.4. I.e.
the input to the network is a row of XRes. The task of the network is thus to encode
and decode the residual. The AR(1) process is then reconstructed from the residual
separately. This idea is inspired by LPC coding briefly described in Section 2.1.2.
However compared to the network in Figure 8.3, one have to keep in mind that in
order to reconstruct the AR(1) process, the AR parameter, ρ, is needed. Using this
input/output strategy, we assume that the AR parameter is encoded, transmitted
and perfectly reconstructed using an external processes. Thus the bit rate for this
strategy is higher than the bit rate for the strategy in Figure 8.3.

Residual Encoding Hidden Layers Quantization
Layer Decoding Hidden Layers Reconstructed

Residual

Figure 8.4: Neural network with the residual as input and output. For simplicity the biases are
here omittied.
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Residual as Input and Reconstructed AR Process as Output
Instead of considering only the AR(1) process or its residual as both input and output,
the strategy shown in Figure 8.5 is a combination of the strategies in Figure 8.3 and
8.4. The idea is to give the residual process as input and let the network reconstruct
the AR(1) process. The task is therefore different from the previous strategies,
however the overall goal is still to reconstruct the AR(1) process. Compared to the
strategy in Figure 8.4 the AR parameter is not needed to be transmitted separately.

Residual Encoding Hidden Layers Quantization
Layer Decoding Hidden Layers Reconstructed

AR Process

Figure 8.5: Neural network with the residul as input and the reconstructed AR(1) process as
output. For simplicity the biases are here omittied.

Residual as Input, Reconstructed AR Process as Output, AR Parameter Given Ad-
ditionally
Instead of letting the network reconstruct the AR(1) process from only a quantized
version of the residual, the strategy in Figure 8.6 involves giving the AR parameter
as additional input to the decoding part of the network. This still means that the
AR parameter is assumed to be encoded and transmitted separately and thus the bit
rate is higher as with the strategy in Figure 8.4. The hope is that by giving the AR
parameter to the network, the network can easier discover the relation between the
input and the output.

Residual Encoding Hidden Layers Quantization
Layer Decoding Hidden Layers Reconstructed

AR Process

AR Pa-
rameter

Figure 8.6: Neural network with the residul as input and the reconstructed AR(1) process as
output. The AR parameter is encoded seperately using external processes and is given to the
network in the decoding part for reconstruction of the AR(1) process. For simplicity the biases are
here omittied.
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Residual and AR Process as Input with the AR Process as Output
The previous strategies involve giving the network either the AR(1) process or resid-
ual as input and possibly additionally the AR parameter. Figure 8.7 illustrates a
strategy where the network gets all the data and information known about the signal.
By giving both the AR(1) process and residual as input to the network, the hope is
that the network is more guided in terms of discovering relations between the input
and output relevant for reconstructing the AR(1) process. Since the autoencoders are
data-driven, it indeed seems reasonable to provide all possible data to the network.
If we disregard the AR parameter an advantage of this strategy is that the bit rate
is not effected even though more data is provided as input.
Since the input dimension is twice as large as the number of nodes in the output
layer, a decreasing amount of nodes in the encoding part is employed. Thus using
this strategy, the network can not be regarded as a balanced network entirely. The
decreasing amount of nodes is employed in order to guide the network, so that the
additional information given at the input is not lost in the first hidden layer due to
an abrupt dimensionality reduction.

AR Process
+ Residual

Encoding Hidden Layers

Quantization
Layer Decoding Hidden Layers Reconstructed

AR Process

AR Pa-
rameter

Figure 8.7: Neural network with both the residual and AR process as input and with the AR
process as output. The AR parameter is encoded seperately using standard techniques but is given
to the network in the decoding part for reconstruction of the AR process. For simplicity the biases
are here omittied.

The above input/output strategies are also examined with the undercomplete struc-
ture. The exact amount of nodes in each layer is described in Section 8.2.
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8.2 Results
The results of the experiments with the two network structures and five input/output
strategies are presented in this section.

The number of nodes in the balanced network structure are kept the same for each
layer and thus the dimension of each layer is solely dependent on the frame size Nx of
the signal. In this chapter we consider only frame sizes of 8, 16 and 32 samples. If we
consider the AR(1) process in Section 7.1 to be a signal “sampled” with a sampling
frequency of 16 kHz as the TIMIT database (see Section 7.2), this corresponds to
frame sizes of 0.5 ms, 1 ms and 2 ms.

The choice of the number of nodes in the undercomplete structure is not immediately
obvious. In the undercomplete strategy the number of nodes must be decreased and
increased in such a manner, that the networks are comparable for different frame
sizes. The dimensions of the hidden layers including the quantization layer are shown
in Table 8.1 for the frame sizes Nx = 8, 16, 32.

Frame Size, Nx 8 16 32
Dimension of Encoding Hidden Layers, [Ne1, Ne2, Ne3] [6,4,2] [12,8,4] [24,16,8]
Dimension of Quantization Layer, Nq 1 2 4
Dimension of Decoding Hidden Layers, [Nd1, Nd2, Nd3] [2,4,6] [4,8,12] [8,16,24]

Table 8.1: The dimension of the layers in the undercomplete structure for different frame sizes.

In Table 8.1 [Ne1, Ne2, Ne3] and [Nd1, Nd2, Nd3] refer to the dimensions of the encoding
and decoding hidden layers, respectively. Thus Ne1 and Nd1 refer to the dimension of
the first hidden layer in the encoding and decoding part, respectively. From Table 8.1
it can be seen that the dimension of the quantization layer is 1, 2 and 4 for frame sizes
of 8, 16 and 32, respectively. The dimension of the quantization layer is chosen such
that the ratio between the frame size and the dimension of the quantization layer is
the same for all frame sizes. This ensures that for a fixed b in the b-bit quantizer,
the same bit rates are achieved for the different frame sizes. The dimensions of the
encoding and decoding hidden layers are chosen such that the relative decrease and
increase from one layer to another is the same. By choosing the layer dimensions
in this way, the networks are comparable even though the frame sizes are different
since they are “scaled” in the same manner.
Regarding the input strategy where both the AR(1) process and residual are given as
input, the case is a bit more complicated. For a frame size of 8 one can not directly
adapt the layer dimensions used for Nx = 16 in Table 8.1, since this will affect the
bit rate. For this reason we chose to use the same layer dimensions as for the other
input types when considering the undercomplete structure. For the balanced network
and the input strategy where both the AR process and residual are given as input,
the dimensions of the encoding layers Ne1 and Ne2 are the same as given in Table 8.1
to avoid an abrupt dimensionality reduction.

To keep the amount of tunable parameters to a minimum and to focus the exam-
ination on how well the network performs for different bit rates, all the networks
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were trained with the same training setup, i.e. the networks were trained using the
same training parameters, training algorithm, amount of epochs, batch size and
initial weights. The value of the parameters are based on initial experiments. The
networks were all trained using the Adam algorithm (see Section 3.5.2) with default
parameters and with the MSE (see Section 3.5.1) as a loss function. initial experi-
ments showed that the networks obtained significantly better results in terms of lower
training and test losses with the Adam algorithm compared to using SGD (see Sec-
tion 3.5.2). The networks were all trained for 300 epochs and with a batch size of 100.

Initial experiments showed that the networks obtained better results with the weights
matrices initialized as identity matrices. Thus a weight matrix W associated with
two layers of same dimension N is initialized as:

W = IN (8.1)

where IN is the N × N identity matrix. Weight matrices associated with layers
of different dimensions are initialized in a similar manner. A weight matrix W ∈
RNl+1×Nl associated with layer l of dimension Nl and the succeeding layer l + 1 with
dimension Nl+1 is initialized as:

W =



[
INl+1

0Nl+1 ,N1−Nl+1

]
Nl+1 < Nl

[
INl

0Nl+1−Nl ,Nl

]
Nl+1 > Nl

(8.2)

where 0Nl+1 ,N1−Nl+1
is a zero matrix of dimension Nl+1×N1−Nl+1. The initialization

in (8.2) means that some nodes are not connected at all to a layer, but initial exper-
iments showed that this did not have a negative impact on the final performance.
The biases are initialized with zeros as is standard in Tensorflow.

The ELU activation function was used for all encoding and decoding hidden layers.
The identity function was used as an activation function for the input and output
layer.

8.2.1 General Performance
Recall from Section 4.2 that the bit rate in bits per sample for the autoencoder
networks is given as:

R =
b ·Nq

Nx

(8.3)

for a b-bit quantizer, a quantization dimension of Nq and a frame size of Nx. Using
this bit rate and MSE loss function from Section 3.5.1 we can obtain an operational
rate-distortion curve for a network and compare it to the rate-distortion function
from Theorem 5.1:

R(D) =
1

2
log

(
α2 +

σ2
ε

D

)
(8.4)
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where α = ρ = 0.95 and σ2
ε = σ2

w = 1− ρ2in our case.

In the following we examine the obtained operational rate-distortion curves for the
two different network structures and five different input/output strategies presented
in Section 8.1. We emphasize that the bit rates shown in the rate-distortion curves be-
low are the bit rates from (8.3), i.e. the bit rate does not include additional encoding
such as the encoding of the AR parameter. From a information theoretic perspective
the obtained rate-distortion curves are comparable across all input/output strategies,
since the AR parameter is the same for all inputs. The results obtained from both
the training and test datasets are similar and we only show the results from the test
dataset since this better explains how the networks would work in practise on unseen
data.

In the following we examine networks with b-bit quantizers where b = {1, . . . , 8}.

Balanced Network
From (8.3) it follows that R = b for the balanced networks. The theoretical rate-
distortion in (8.4) and the obtained operational rate-distortion curves for the different
input/output strategies with a frame size of 8 can be seen in Figure 8.8.
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Figure 8.8: Operational rate-distortion curves for the balanced network with different input/output
strategies and a frame size of 8.

As seen in Figure 8.8 and as expected the distortion decreases as the bit rate increase.
Using the residual both as input and output seems to perform worse for the lower bit
rates than other input/output strategies. In general there seem to be no difference
in the performance among the remaining input/output strategies. Similar results
are obtained using frame sizes of 16 and 32 and the corresponding rate-distortion
curves can be seen in Figure A.1 and A.2 in Appendix A.1. However the larger frame
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sizes experience some variations in the distortions for some input/output strategies.
Furthermore the rate-distortion curves for the networks are in general closer to the
theoretical bound for larger frame sizes. One can not necessarily deduce that it is
better to use larger frame sizes. The networks are more prone to overfitting for larger
frame sizes due to the quantization layer being a vector quantizer and a decreasing
amount of training examples per dimension for an increasing frame size.
To get an understanding of how the networks improve as the bit rate increases, we
examine the signal-to-reconstruction error ratio (SRR) . We define the SRR in dB as:

SRRdB := 10 log10

(
σ2
x

D

)
(8.5)

for distortion D and variance of the AR process σ2
x.

In Figure 8.9 the SRR as a function of bit rate can be seen for the different in-
put/output strategies and a frame size of 8.
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Figure 8.9: SNR and bit rates for the balanced network with different input/output strategies
and a frame size of 8.

Even though the different input/output strategies seem to perform similarly for
higher bit rates in Figure 8.8, Figure 8.9 shows that this is indeed not the case. For
the input/output strategies involving only the residual as input and AR process as
output, i.e. the red and green curves in the figure, the SRR does not improve for
higher bit rates. For instance the SRR is approximately the same for bit rates of 5
and 8. The SRR for the remaining input/output strategies increases as the bit rate
increases. However the distance to the theoretical SRR curve also increases slightly
for higher bit rates. Thus in general it seems that the improvement on the distortion
by using higher bit rates stagnates across all input/output strategies.
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Similar results as above can be seen for frame sizes of 16 and 32 in Figure A.3 and A.4
in Appendix A.1, respectively. The variation in the distortion for some input/outputs
strategies seen from Figures A.1 and A.2 is also present in Figure A.3 and A.4.

The fact that the improvement on the distortion stagnates for higher bit rates is also
visible when examining the difference in bits. Let R be the bit rate used for a neural
network, e.g. the bit rates obtained in Figure 8.8, and let D be the corresponding
MSE-distortion obtained by using this bit rate. Let further R (D) be the theoretical
rate for the AR(1) process and distortion D. The difference in bits is obtained by:

R−R (D) (8.6)

Thus the difference in bits is an indicator of how many more bits per sample the
network uses compared to the theoretical bound for the same distortion. The
difference in bits and the bit rates obtained by the balanced network for different
input/output strategies and a frame size of 8 is shown in Figure 8.10.
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Figure 8.10: Difference in bits and the bit rate for the balanced network with different input/output
strategies and a frame size of 8.

From Figure 8.10 it can be seen that the difference in bits increases as the bit rate
increases. For a bit rate of 1, the difference in bits is below 1 bit per sample for all
input/output strategies. For the higher bit rates the difference in bits is between
2.5 and 5.5 bits per sample. Figure 8.10 and Figure 8.9 indicates that there is a
difference among the input/output strategies and the networks ability to improve the
distortion for higher bit rates and furthermore that the effect of this improvement
decreases for higher bit rates. Similar results can be seen for frame sizes of 16 and
32 in Figure A.5 and A.6 in Appendix A.1.
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Undercomplete Network
From Table 8.1 and (8.3) bit rates R < 1 can be obtained using the undercomplete
network. The theoretical rate-distortion curve for the AR(1) process and the opera-
tional rate-distortion curve for different input/output strategies with a frame size of
8 and bit rates R = b

8
, b = 1, 2, . . . , 8 can be seen in Figure 8.11.
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Figure 8.11: Operational rate-distortion curves for the undercomplete network with different
input/output strategies and a frame size of 8.

From Figure 8.11 it can be seen that the different input/output strategies perform
similarly for a bit rate of 0.125. However as the bit rate increases, there is a clear
difference between the performance of the input/output strategy involving only the
residual and the remaining strategies. The strategy involving only the residual as
input and output performs significantly worse than the remaining strategies. However
this does not seem surprising. Remember that the undercomplete network structure
implies Nq < Nx for dimension of the quantization layer Nq and frame size Nx, i.e.
the networks perform a dimensionality reduction. Since the residual is white noise,
i.e. the samples are independent and identically distributed, it is not possible to
reduce the dimension without losing the information of some samples completely.
Similar results can be seen for frame sizes of 16 and 32 in Figure A.9 and A.10
in Appendix A.2. However for the frame sizes of 16 and 32 the networks perform
better than the theoretical limit for some bit rates, which could imply overfitting.
On the other hand the input strategy involving only the residual as input and output
performs even worse for higher frame sizes. This is probably due to the dimensionality
reduction being more abrupt for a frame size of 32 and a quantization dimension of
4 than for a frame size of 16 and a quantization dimension of 2.
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Figure 8.11 suggest that there is no improvement on the distortion for higher bit
rates. This can also be seen on the SRR in Figure 8.12. From the figure it can be
seen that the SRR is approximately the same for bit rates higher than 0.4. The
corresponding SRR plots for a frame sizes of 16 and 32 can be seen in Figure A.11
and A.12 in Appendix A.2, respectively. The stagnation of the SRR is also present in
these figures, however there are some variations among some input/output strategies.
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Figure 8.12: SRR and bit rates for the undercomplete network with different input/output
strategies and a frame size of 8.

Examining the difference in bits in Figure 8.13 it is also visible that the networks are
not able to improve the distortion for higher bit rates. It is seen that the difference
grows linearly. The corresponding figures for frame sizes of 16 and 32 can be seen in
Figure A.13 and A.14 in Appendix A.2, respectively.
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Figure 8.13: Difference in bits and the bit rate for the undercomplete network structure and a
frame size of 8.

All the above obtained results for both the balanced and undercomplete networks
suggest that the networks are not able to utilize the extra bits per sample given by a
higher bit rate to obtain a significantly smaller distortion.
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8.2.2 Analysis of the Reconstruction
In this section we examine the obtained reconstructed versions of the AR(1) process.
The results are shown here for a single reconstructed signal. The corresponding
figures for other signals can be seen in Appendix A.1 and Appendix A.2 for the
balanced and undercomplete networks, respectively.

Figure 8.14 shows a reconstructed signal for the balanced network and a frame size of
32 for different bit rates and different input/output strategies alongside the original
signal. The MSE values indicate the mean squared error between the shown original
and reconstructed signal.
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(a) Bit rate of 1 bits/sample.

0 5 10 15 20 25 30

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25
Test

Original
AR, MSE: 0.02426
Residual Only, MSE: 0.13830
Residual as Input, AR as Output, MSE: 0.05236
Residual as Input, AR as Output + , MSE: 0.03511
AR + Residual + , MSE: 0.01818

(b) Bit rate of 2 bits/sample.
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(c) Bit rate of 4 bits/sample.
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(d) Bit rate of 8 bits/sample.

Figure 8.14: Reconstructed signals and the original signal for different input/output strategies
and bit rates in the balanced network. The MSE values are calculated for the shown original and
reconstructed signals.

As seen from the figure, the reconstruction becomes better for higher bit rates, as
expected. However considering that the reconstructions in Figure 8.14d is obtained
by using twice the number of bits per sample as in Figure 8.14c, the improvement
is, although present, not significant. This can also be seen on the MSE values. As
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expected from the rate-distortion curve in Figure A.2, the input/output involving
the residual input and output obtains poor reconstructions for the low bit rates.
However as discussed before this strategy is able to compete with the remaining
strategies for the higher bit rates. Reconstruction-wise there seem to be no significant
difference between the remaining strategies, e.g. there seem to be no significant
difference between using only the AR(1) process as input and giving the network
all possible information available. This is especially the case when using a bit rate of 8.

Figure 8.15 shows the reconstruction of the same signal as above, but for the
undercomplete network and its different bit rates.
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(b) Bit rate of 0.25 bits/sample.
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(c) Bit rate of 0.5 bits/sample.
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(d) Bit rate of 1 bits/sample.

Figure 8.15: Reconstructed signals and the original signal for different input/output strategies
and bit rates in the undercomplete network.

As seen from the figure, the reconstructed signals do not resemble the original signal.
Furthermore there seem to be only a small improvement for the higher bit rates.
The input/output strategy involving using only the residual as input and output
performs worst. It is seen that the dimensionality reduction of the independent
and identically distributed white noise samples affects the reconstruction in such
a manner that for e.g. a bit rate of 0.25 none of the reconstructed signal samples
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are near the original signal samples. In general using the MSE as a loss function
together with the undercomplete network obtains “averaged” reconstructed signals in
the sense that the reconstructed signals does not even capture the movement of the
original signal. Additional experiments showed that undercomplete structure itself is
inadequate since poor reconstructions were also obtained by using the undercomplete
structure but without the quantizer.

8.2.3 Dimension Versus Bits
Comparing Figure 8.14a with Figure 8.15d it is seen that different results are obtained
for the balanced and undercomplete networks even though the bit rate is the same.
This suggests that there is a relation between the distortion and values b and Nq

defining the quantization layer. To investigate this, the balanced network was tested
with different configurations of the quantization layer. Recall once again that the bit
rate R in bits/sample is given as:

R =
Nq · b
Nx

(8.7)

for a b-bit quantizer, a quantization dimension of Nq and a frame size of Nx.
For a given bit rate and a frame size of Nx = 8 the network was trained with different
conflagrations of Nq and b such that the rate was achieved. E.g for a bit rate and
frame size of 8, then Nq = 1 and b = 8 and further Nq = 8 and b = 1 are two possible
configurations. The ratio between the bits per node in the quantization layer and the
number of nodes in the quantization layer in relation to the frame size Nx is given as:

b

Nq ·Nx

(8.8)

For Nq ·Nx > b the term above is in the range [0, 1]. A value close to zero in (8.8)
indicates a large quantization layer with few bits used per node, while a value of 1
indicates a quantization layer with few nodes but a large amount of bits per node.
Thus the ratio can be seen as a way of describing the relationship between encoding
a lot of information, i.e. using more nodes in the quantization layer, and the quality
of the encoding, i.e. the amount of bits used per node.

For bit rates R = {1, 2, 4, 6, 8} and a frame size of 8, the balanced network was
trained with the AR(1) process as input and with the different configurations of b
and Nq achieving these rates, where b ∈ {1, . . . , 8}. The relationship between the
obtained distortion and the ratio in (8.8) can be seen in Figure 8.16 for the different
bit rates. The points indicated by a black-edged square are the points where the
ratio corresponds to the configurations of b and Nq used to obtain the rates of the
balanced network in Section 8.2.1.
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Figure 8.16: The relationship between the ratio in (8.8) and the obtained distortion for different
rates. Black-edged square point are the points where the ratio corresponds to the configurations of
b and Nq used to obtain the rates of the balanced network in Section 8.2.1

As seen in the figure, the distortion decreases as the ratio increases, i.e. a lower
distortion is achieved when more bits are used in the quantization layer relative
to the dimension of the layer. However at some point the distortion increases for
all bit rates except R = 8. Thus there is a trade-off between the way we chose to
encode a signal in the quantization layer and the achieved distortion. The decrease
of distortion suggests that it is better to use fewer nodes but improve the quality
of the encoding in these nodes by using more bits. On the other hand it is also
naive to assume that we can encode an entire signal of frame size Nx successfully
by only using e.g. a single node and b bits. From the figure it is furthermore seen
that highest distortion is achieved by using the highest amount of nodes possible in
the quantization layer and lowest amount of bits without violating the rate. Thus
even though it is naive to assume that we can encode an entire signal of size Nx

by only using one node, the achieved distortion is still smaller than the distortion
achieved by using lots of nodes. It is also worth noticing that for some rates, lower
distortions are achieved by using a ratio between b and Nq different from the ratio
used to achieve the rate-distortion curves in Figure 8.8. Thus it is possible to achieve
better rate-distortion curves than the ones shown in Section 8.2.1.

8.3 Preliminary Discussion
The above obtained results for the balanced network and the undercomplete network
all suggest that the networks are not able to utilize the extra bits per sample given
by a higher bit rate to obtain a significantly smaller distortion. In the context of
digital coding this does not necessarily have to be a problem since we aim to achieve
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the lowest possible bit rate. However since this problem is prevalent among all
input/output strategies and network structures it suggest an inadequacy of e.g. the
network structures. This is especially true for the undercomplete network structure.
Thus if a bit rate R < 1 is desired, a different network architecture is needed.
Comparing the reconstructed signals with the original also revealed that it is in
general difficult to obtain reconstructions similar to the original signal when using
low bit rates and the MSE as a loss function.
From all the above experiments it was seen that there seemed to be no significant
difference between using only the AR(1) process as both input and the remaining in-
put/output strategies. In fact the small variations among the input/output structures
from the figures shown in this chapter and in Appendix A reveal that using only the
AR process as input obtains the most stable or persistent results across all bit rates
and network structures. The fact that providing additional information such as the
AR parameter does not seem to influence the performance, can possibly be explained
by the fact that the AR parameter is always the same. We previously argued that
since the AR parameter is the same for all inputs, then from a information theoretic
view the obtained rate-distortion curves were comparable. From the networks per-
spective this means that the node containing the AR parameter is the same no matter
the input, and the node is thus not useful since it outputs the same value no matter
the input. Nevertheless from the above results and in the context of speech coding,
using the input/output strategy involving only the AR(1) process is most bit effective.



9. Speech Coding using DNNs

In this chapter we employ the autoencoder described in Section 4 to perform speech
coding on the TIMIT speech data described in Section 7.2. However different from
the fully connected layers used in the DNNs employed for encoding and decoding the
synthetic data in Chapter 8, a mixture of fully connected and convolutional layers
is employed in this chapter. Initial experiments showed that better performance in
terms of lower test and training losses was obtained when using onvolutional layers
compared to using solely fully connected layers. The training loss also stagnated
much faster for a network consisting of only fully connected layers, thus preventing
the networks from fully exploiting all the epochs to decrease the training loss. For
these reasons the network structure illustrated in Figure 9.1 is utilized.

Different structures were tested, and the structure in Figure 9.1 was chosen due to its
overall performance and simplicity. When using 1D convolutional layers care must
be taken regarding the kernel sizes and amount of kernels used, since these affect the
dimensions of each layer. For these reasons a chosen value regarding the kernel size
and amount of kernels is not necessarily scalable to networks with different frame
sizes. However dimensions of the layers in Figure 9.1 are all defined by the frame size
Nx, thus circumventing the need for a specific network design for every new frame
size used. A filter size of 5 and stride of 1 was chosen based on initial experiments.
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Layer and Dimension: Type and Acti-
vation Function:

Input Layer
1 × Nx

Encoding Layer
1 × Nx

Fully Connected
ELU

Encoding Layer
1 × Nx · Nx

Fully Connected
ELU

Encoding Layer
Nx × Nx

1D Convolution with Nx Fil-
ters of size 5 and Stride of 1

ELU

Encoding Layer
Nx × Nx

1D Convolution with Nx Fil-
ters of size 5 and Stride of 1

ELU

Quantization Layer
1 × Nq

Fully Connected
b-bit Quantizer

Encoding Layer
1 × Nx

Fully Connected
ELU

Encoding Layer
1 × Nx · Nx

Fully Connected
ELU

Decoding Layer
Nx × Nx

1D Convolution with Nx Fil-
ters of size 5 and Stride of 1

ELU

Decoding Layer
Nx × Nx

1D Convolution with Nx Fil-
ters of size 5 and Stride of 1

ELU

Output Layer
1 × Nx

Tanh

Flatten

Flatten

Figure 9.1: Network structure for speech autoencoder.
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As previously explained we consider frames of size Nx as input to the autoencoder.
Thus the TIMIT speech data examples are partitioned into non-overlapping frames
of size Nx. However in order to aid the network training, each frame is normalized
such that x ∈ [−1, 1] for each sample x in a frame. Thus let x = [x1, x2, . . . , xNx ] be
a frame of size Nx. Each sample xi is normalized to obtain x̃i by:

x̃i =
xi
xmax

(9.1)

where xmax = max1≤i≤Nx |xi| is referred to as the gain. When referring to the input
of an autoencoder in this chapter, we thus refer to the frame x̃ of normalized samples
x̃1, x̃2, . . . , x̃Nx .
Let x̂ denote the output of the autoencoder, i.e. the reconstructed version of the
input x̃. The reconstructed signal is transformed to its original range by xmax · x̂.
This means that the gain should also be encoded (and transmitted) alongside the
output of the quantization layer. In this project we assume that this is done by an
external quantizer and that 5 bits per gain are allocated for such process. The total
bit rate in bits per sample is thus given as:

R =
b ·Nq

Nx

+
5

Nx

(9.2)

for a frame size of Nx samples, a quantization layer of dimension Nq and a b-bit
quantizer.

The presented bit rates in this chapter will refer to the total bit rate. However when
reconstructing the signal and comparing it to the original signal, we will assume that
the gain is perfectly reconstructed.

Since normalized inputs are used for the autoencoder, the tanh activation function
(see Section 3.4.2) is used as an activation function for the output layer. For the
hidden layers except the quantization layer, the ELU activation function (see Sec-
tion 3.4.3) is used. This is also illustrated in Figure 9.1.

Due to the kernels in the convolutional layers, it was not possible to initialize all
weight matrices using the identity matrix as in Chapter 8. The network was initialized
with weights drawn from a uniform distribution with the range [−a, a], where a is a
small number dependent on the number of rows and columns of the weight matrix.
I.e. the number of nodes in the preceding and succeeding layers associated with
the weight matrix. This is known as the Xavier uniform initializer [21], and is the
default weight initializer in Tensorflow. The choice of all training parameters was
based on initial experiments.

In Section 9.1 and Section 9.2 results obtained by using the MSE as a loss function
(see Section 3.5.1) are presented for frame sizes of 16 (1 ms) and 128 (8 ms) samples,
respectively. In Section 9.3 results obtained by using our loss function proposed in
Section 6.2 are shown, while Section 9.4 is concerned with results obtained by using
a variable rate.
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9.1 Frame size of 16 samples
For a frame size of 16 samples the network in Figure 9.1 was trained for 20 epochs and
with a batch size of 256, the MSE as a loss function and using the Adam algorithm
(see Section 3.5.2).

The network in Figure 9.1 was trained with the above specifications for different
b-bit quantizers with b = {1, . . . , 8} and with a quantization dimension of Nq =
Nx = 16. With these network parameters, the network consists of approximately
12000 parameters, i.e. weights, biases and kernel weights. From (9.2) it can be seen
that the total rate is given as R = b + 5

16
= b + 0.3125. The obtained operational

rate-distortion curve is shown in Figure 9.2 for both the test and training data and
with the MSE-distortion in dB.
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Figure 9.2: Operational rate-distortion curve in dB for networks with a frame size of 16 samples.

From Figure 9.2 it can be seen that there is no significant difference between the
distortion for the test and training data. Furthermore it can be seen that as expected,
the distortion decreases as the rate increases. However for b-bit quantizers with
4 ≤ b ≤ 7 it can be seen that the decrease stagnates. Furthermore the distortion
is worse for a 7-bit quantizer than for a 6-bit quantizer. The distortion for the
quantizers with 4 ≤ b ≤ 7 is approximately twice as low as the distortion obtained
using 1-bit quantizer. For the 8-bit quantizer there is a sudden decrease in the
distortion of more than 15 dB. Since all training losses converged it suggests that
the sudden decrease in distortion is due to network initialization. For the remaining
b-bit quantizers, the decrease in distortion is approximately 5 dB or less for each
subsequent increase of b.

When listening to the signals reconstructed by the network using different b-bit
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quantizers, it is worth mentioning that the reconstructed signals are intelligible at all
bit rates. However there is some noise present, which significantly decreases as the
amount of bits and thereby the bit rate increase. This is also illustrated in Figure 9.3
where spectrograms of a signal and its corresponding reconstructed versions using
different quantizers are shown. Corresponding spectrograms of other signals can be
seen in Appendix B.
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Figure 9.3: Spectrograms of a original signal (bottom right) and the corresponding reconstructed
signal using networks with different b-bit quantizers.

From the figure it can be seen that the resemblance between the spectrogram of a
reconstructed signal and the original increases as the amount of bits used increases.
Even though the 1-bit quantizer obtains a distortion higher than −15 dB, charac-
teristics of the original signal is still present. For the 1-bit quantizer most of the
low-frequency characteristics are present, while the high frequency characteristics are
hidden by noise. It can be seen that the noise decreases as the bit rate increases and
thereby more characteristics are present for higher bit rates. For the 8-bit quantizer
the reconstructed signal resembles the original signal almost identically. Even though
the network with the 8-bit quantizer obtains a significant lower distortion compared
to the other networks, there is not a significant difference between the spectrogram
of a signal reconstructed with a 6 and 8-bit quantizer. This is also valid when
listening to the corresponding reconstructed signals. It is worth noting that even
though the noise seems to only be present at high frequencies, especially for the 1-bit
quantizer, examinations revealed that the noise resembles white noise. I.e. the energy
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of the frequencies are of equal intensity. It is also evident that the non-overlapping
nature of the frames used as inputs to the networks does not affect the reconstructed
signals. No boundary artefacts are present. Furthermore the networks are able to
“detect” silence in the sense that silence is reconstructed almost identically for all
networks. The lack of boundary effects is most likely caused by inputs to the network
being in the time domain and the use of MSE as a loss function. As explained in
Section 3.5.1 the MSE-distortion is the average distortion per sample taken across
several examples. Thus it is unlikely that the network would reconstruct better or
worse at the boundaries of a frame. Since we consider inputs in the time domain
then poorly reconstructed samples at the boundaries do not affect the frequency
content in the same manner as if we had considered inputs in the frequency domain.

We argued that the reconstructed signals are intelligible even when a 1-bit quantizer
is used. This is also evident when evaluating the PESQ scores for the reconstructed
signals. Figure 9.4 shows the corresponding average PESQ scores and standard
deviations for the test data and the networks from Figure 9.2. The values obtained
by encoding the signals using the BV32 codec (see Section 2.4) is also shown for
comparison.
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Figure 9.4: Average PESQ score and standard deviation the test data and for networks with
different quantizers and a frame size of 16. The black plot correspond to the values obtained for
encoding and reconstructing the same signals using BV32 Codec.

From the figure it can be seen that the average PESQ score increases as the bit rate
increases. The average PESQ score is increased by approximately 0.5 by using a 2-bit
quantizer instead of a 1-bit quantizer. The increase is less than 0.5 by successively
increasing the bit rate, and the PESQ scores seem to stagnate for b-bit quantizers
with 5 ≤ b ≤ 7. The significant decrease in distortion obtained by using a 8-bit
quantizer is also evident in Figure 9.4, where the network with a 8-bit quantizer is
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able to obtain an average PESQ score of 4.46 and a standard deviation of 0.03. The
standard deviation slowly decreases as the bit rate increases, meaning that not only
does the distortion decrease but the network generalizes better for higher bit rates.
From the standard deviation for the 8-bit quantizer it can further be seen that some
signals obtain the maximum value of 4.5, meaning there is no objective difference
between the reconstructed and original signal. Thus by using a bit rate of 8.31 bits
per sample it is possible to reconstruct signals using a DNN autoencoder in such a
manner that there is no perceptual difference. For a bit rate of 2 bits per sample,
the BV32 codec obtains an average PESQ score of 4.11 and a standard deviation of
0.11. The networks obtained better PESQ scores than the BV32 Codec for bit rates
higher than 5 bits per sample. Thus by using more than twice the bit-rate used in
the BV32 Codec, one can obtain better PESQ scores than the BV32 codec.

9.2 Frame size of 128 samples
As discussed previously in this report, changing the dimension of the quantization
layer Nq enables one to both perform dimensionality reduction and obtain bit rates
R < b for a b-bit quantizer. As seen from Chapter 8 using a frame size 16 does
not provide much room for performing dimensionality reduction. In this section we
investigate the performance of the network in Figure 9.1 with a frame size of 128
and for different dimensions of the quantization layer.

Using the Adam algorithm for training the network with a frame size of 128 proved
to be inadequate. When using the Adam algorithm, the training and test loss quickly
decreased as was the case in the previous section. However after a few epochs the
losses suddenly increased and the training got stuck in the sense that the loss became
constant. The problem can be circumvented by stopping earlier and restoring the
model with the lowest test loss using early stopping (see Section 3.5.4). However
these situations also occurred within the first epoch, making the Adam algorithm
unusable. Experiments showed that the unstable training obtained by using Adam
decreased to fewer cases when the frame size decreased. However even with a frame
size of 32 the problem was present. Thus the networks in this section are trained
using SGD (see Section 3.5.2) with a learning rate of 0.01 and a momentum of 0.9.
The networks were trained for 200 epochs and the training was terminated earlier if
the test loss did not decrease for 10 epochs. As can be seen on the amount of epochs,
the use of SGD comes with a price of slower training time.

The networks were trained with the above specifications for different b-bit quantizers
with b = {1, . . . , 8} and with different quantization dimensions Nx = {128, 96, 64, 32}
corresponding to 100%, 75%, 50% and 25% of the frame size. With these network
parameters, the network consists of approximately 4 mio parameters. An immediate
consequence of using a higher frame size is that the bits used for encoding the
gain constitute a much smaller fraction of the total bit rate. The contribution is
5/128 = 0.0391 compared to 0.3125 for a frame size of 16. The obtained operational
rate-distortion curves for the test data and for the different b-bit quantizers and
quantization dimensions are shown in Figure 9.5 with the distortion in dB. The
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operational rate-distortion curve for a frame size of 16 samples is also shown for
comparison.
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Figure 9.5: Operational rate-distortion curve in dB for the test data and for networks with
different b-bit quantizers, quantization dimensions and with a frame size of 128 samples. For a
given b the leftmost point correspond to a quantization dimension of 128 while the rightmost point
corresponds to a quantization dimension of 32. The rate-distortion curve from Figure 9.2 is shown
for comparison.

In Figure 9.5 the leftmost point for a given b-bit quantizer corresponds to a quanti-
zation dimension of 128, while the rightmost point corresponds to a quantization
dimension of 32. From the figure it can be seen that for a fixed b the distortion
decreases as the quantization dimension and thus rate increases. For a fixed quantizer,
the distortion decreases by 2.5 dB in most cases for each subsequent increase in the
quantization dimension. Such decreases are also present in the rate-distortion curve
obtained when using a frame size of 16. However for a given quantization dimension
it can also be seen that the distortion is approximately the same across all b-bit
quantizers, with a slightly higher variance for larger quantization dimensions. Thus
for small quantization dimensions their is no difference in the distortion by using
higher bit rates.
Looking at the lower bound of the operational rate-distortion curve for networks
with a frame size of 128, it can be seen that the lowest distortion for bit rates R ≥ 2
is obtained when the dimension of the quantization layer is equal to the frame size.
For R < 2 it is the 2-bit quantizer that performs best, where only the 1-bit quantizer
is adequate for a quantization dimension of 32. However when comparing the results
to the operational rate-distortion obtained for a frame size of 16, it can be seen that
the lowest overall distortion for bit rates R ≥ 3 is obtained when using a frame size
of 16. For the lower bit rates it is more beneficial to use a frame size of 128 in terms
of bit rate and distortion.
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In Figure 9.6 the mean PESQ scores and standard deviations of the test data are
shown alongside the PESQ score and standard deviation obtained by using the BV32
Codec. The PESQ scores from Figure 9.4 are also shown for comparison.
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Figure 9.6: Average PESQ score and standard deviation for the test data and for networks with
different quantizers, quantization dimensions and a frame size of 128. For a given b the leftmost
point correspond to a quantization dimension of 32 while the rightmost point corresponds to a
quantization dimension of 128. The PESQ score and standard deviation obtained by using BV32 is
shown for comparison alongside the PESQ scores from Figure 9.4.

From the figure it can be seen the average PESQ score increases as the bit rate
increases. However the increase is not as significant compared to the PESQ scores
obtained when using a frame size of 16. For instance PESQ scores for b-bit quantizers
with b ≥ 5 are approximately the same and in general the increase in PESQ score is
around 0.25. The standard deviation does not decrease when the bit rate increases
as was the case for a frame size of 16. Furthermore the PESQ scores for a frame size
of 128 do not at any time exceed the PESQ score for the BV32 codec. Nevertheless
it is worth mentioning that the reconstructed signals are still intelligible across all
quantizers and quantization dimensions.
Even though the average PESQ score increases as the bit rate increases, there are
some differences between the distortions obtained in Figure 9.5 and the corresponding
PESQ scores in Figure 9.6. For instance a network with a 2-bit quantizer and with a
quantization dimension of 128 (leftmost orange point in Figure 9.5) achieves approxi-
mately the same distortion as a network with a 4-bit quantizer and a quantization
dimension of 96 (2nd leftmost red point in Figure 9.5). However in Figure 9.6 the
network with a 4-bit quantizer and a quantization dimension of 96 obtains a higher
PESQ score (2nd rightmost red point in Figure 9.6) compared to the 2-bit quantizer
with a quantization dimension of 128 (rightmost orange point in Figure 9.6). The
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difference is approximately 0.5. Nevertheless using a frame size of 128 obtains better
PESQ scores for rates R < 3 than using a frame size of 16. This coincides with the
results observed in Figure 9.5.

9.3 Speech Coding using the Information Bottleneck Principle
In this section we employ our loss function inspired by the IB problem (see Chapter 6).
Before we present results of networks trained with our loss function proposed, we
first present an analysis of the trained networks from the previous section using the
IB principle and our loss function.

Recall from Section 6.2 that our IB inspired loss function is given as:

minLMSE (w) + β

Nq∑
i=1

Ĥ (Xqi) (9.3)

where LMSE (w) is MSE loss function (see Section 3.5.1) used for training the net-
works in the previous sections and Ĥ (Xqi) is the estimated entropy of node i in the
quantization layer.

Recall furthermore from Section 6.1 that, as argued by the authors in [47], a neural
network encounters two phases during training. At first both the MI between a layer
and the input and between a layer and the desired output increases. At some point
however a compression phase is observed, where the MI between the input and a layer
decreases while the MI between a layer and the desired output increases. As argued
in Section 6.2 the use of MSE in (9.3) is related to the mutual information between
the input and output of a neural network, i.e. I(X; X̂), in such a manner that a
decrease in MSE implies an increase in the MI. Thus by measuring the MSE and
marginal entropies of the networks trained with only MSE in the previous section,
one can obtain an information plane plot.

Figure 9.7 shows information plane plots for the training data and the networks from
Section 9.2 with a frame size and quantization dimension of 128 and for different
b-bit quantizers. Notice that the entropies are shown in bits per sample. The
corresponding figures for all quantizers can be seen in Appendix C. Since a decrease
in MSE implies an increase in the mutual information, the MSE is inversed in the
figures in order to obtain a similar figure as the information plot from Figure 6.1 in
Section 6.1.
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(a) 1-bit quantizer.
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(b) 4-bit quantizer.
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(c) 5-bit quantizer.
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(d) 8-bit quantizer.

Figure 9.7: Information plane plots for the training data and for networks with a frame size and
quantization dimension of 128 and for different b-bit quantizers. The x-axis is the entropy of the
quantization layer in bits per sample, while the y-axis is the MSE−1.

From the figure it can be seen that both the entropy and MSE−1 increase as a
function of epochs for the 1- and 4-bit quantizer. Thus the entropy increases as the
MSE decreases. However for the 5- and 8-bit quantizers, it is seen that the entropy
encounters two phases. At first the entropy achieves an initial value, increases for 1
epoch until it decreases for an amount of epochs. After this, the entropy increases
again. The MSE decreases for all epochs and quantizers. In general the characteristics
of Figure 9.7a are present for all b-bit quantizers with b ≤ 4, while the characteristics
of Figure 9.7c are present for all remaining quantizers (see Appendix C).
Intuitively it makes sense that the entropy increases as the training proceeds since
a decrease in MSE implies that the networks learn more features about or in the
input. The decrease in the entropy at the beginning of the training experienced
by quantizers with b ≥ 5 can possibly be explained by the random initialization of
weights. For the first couple of epochs the entropy of the quantization layer is most
likely highly dependent on the initialized weights and gradient updates. However
as the training proceeds, the networks learn more about the input, thus resulting
in an increasing entropy. This can also explain why the seen characteristics for the
higher bit quantizers are different from the characteristics seen for the lower bit
quantizers. For a 1-bit quantizer there are only two possible values; 0 and 1. There
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is less randomness involved for a 1-bit quantizer compared to a 8-bit quantizer.
The authors in [44] argued that the compression phase is only visible when using
a saturating activation function. The use of the non-saturating ELU activation
function in this section and our findings coincide with the findings found in [44].

Regardless of the information plane characteristics it was attempted to train the
networks using the loss function in (9.3). Even though no compression phase is
observed the intuition behind using our loss function is still valid. As described
earlier in Section 6.2 the goal of using our proposed loss function is to minimize the
entropy such that the network is forced to only extract relevant parts of the input
signal. Where the relevance is measured implicitly in terms of the MSE. Thus one
might simulate or initialize a compression phase by using our loss function.
As seen from (9.3) a value of β is required. Figure 9.8 shows the MSE and entropy
in bits per sample for the training data as a function of epochs for different values of
β and for networks with a frame size and quantization dimension of 128 and a 1-bit
quantizer.
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(c) β = 0.01
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(d) β = 0.001

Figure 9.8: The impact on the entropy and MSE of the traning data for different values of β.
The entropy is normalized to bits per sample.

From the figures it can be seen that when β = 1, i.e. both terms of the loss function
are weighted equally, only the entropy is minimized. Both terms stagnate quickly
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and a low value of the entropy is attained only after a few epochs. This makes
sense since the MSE has a range between 0 and 4 for normalized inputs in the range
[−1, 1], while the upper bound of the entropy term is b ·Nq for a b-bit quantizer and
a quantization dimension of Nq. Thus the entropy term has a larger range than the
MSE. For β = 0.1 the entropy increases as a function of epochs, however the value
of the entropy is in general less than 0.00035 which is significantly lower compared
to the value of > 0.95 for the same network structure in Figure 9.7a. As seen this
comes at a price of high MSE value of 0.1413 corresponding to approximately −8.5
dB. For both β values the MSE achieves approximately the same value. Thus with
these values of β it is not possible to achieve suitable values of the entropy and MSE,
i.e. it is not possible to reduce the entropy without obtaining a significant increase
in the distortion. Further decreases of β results in an increase of the entropy and
decrease of the MSE. By continuing the training for more epochs the entropy quickly
stagnates. However the value of the MSE is still significantly higher than the MSE
obtained by solely using the MSE as a loss function. After 10, 000 epochs the MSE
is higher than 0.05 when using our loss function, which is the initial value of the
MSE when training networks using only the MSE as a loss function. Thus even for
smaller values of β were are not able to achieve suitable values of both the entropy
and MSE. The value of β determines the training time in the sense that a smaller
value of β results in more epochs before the entropy an MSE stagnates.

Similar characteristics were seen for networks with different values of b in the b-bit
quantizers. It can thus be concluded that is was not possible to find adequate values
of β making the our proposed loss function suitable for training the networks under
the IB principle.

9.4 Variable Rates
Even though no compression phase was observed and no adequate values of β were
found, the entropy still provides an insight to the characteristics and training of the
DNN speech autoencoders.

From Figure 9.7d it can be seen that the entropy is between 5.5 − 6.0 bits per
sample for a 8-bit quantizer. Thus the network with a 8-bit quantizer does not fully
explore the entropy of the quantization layer. Figure 9.9 shows the entropy of the
quantization layer in bits per sample for the networks from Figure 9.5 with a frame
size and quantization dimension of 128 and different b-bit quantizers at the final
epoch. The entropy is normalized to bits per sample.
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Final Entropy for Different b-bit Quantizers

Figure 9.9: Final entropy in bits per sample for different b-bit quantizers in a network with a
frame size and quantization dimension of 128.

Due to the quantization layer being equal to the frame size, the upper bound of the
entropy is b bits per sample for a network with a b-bit quantizer. From Figure 9.9 it
can be seen that the entropy for a network with a 1-bit quantizer is approximately 1
bit per sample. The entropy is thus close to the upper bound. It can furthermore be
seen that the difference between the entropy at a final epoch and the upper bound
increases as b increases. This means that lower bit rates can be obtained if entropy
coding (see [59] and [12]) were to be employed. Entropy coding involves variable bit
rates, where the average rate is given as the entropy of the variable. Even though we
mainly consider fixed bit rates in this project we briefly explore whether significant
results regarding the bit rate can be obtained.
For a b-bit quantizers with b ≥ 5 the difference between the entropy and upper bound
is more than 1.5 bits per sample. Ignoring the bits used for encoding the gain for
a moment, this means that the bit-rate of a DNN autoencdoer with e.g. a 6-bit
quantizer can be reduced by 25% if entropy encoding were to be employed.

By measuring the marginal entropies of the quantization layer nodes at the end of
training and on the test data, new operational rate-distortion curves can be obtained
for the networks in Figure 9.5. This is shown in Figure 9.10. Notice that the bit rate
for encoding the gain is included too for comparability with Figure 9.10.
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Figure 9.10: Rate-distortion curves with entropy-corrected bit rates for networks in Figure 9.5.

Comparing Figure 9.10 with Figure 9.5 there seem to be no significant difference.
The same characteristics are present. However in general the difference in rate
between the networks with a frame size of 16 and the networks with a frame size and
quantization dimension of 128 is larger in Figure 9.10 compared to Figure 9.5. This
implies that networks with a frame size of 16 utilize the bits in the quantizers more
in some sense. The rate for a network with a frame size of 16 and a 8-bit quantizer
is for instance close to 8 bits per sample in Figure 9.10.
Examining the lower bound of the operational rate-distortion curve reveals some
differences. In Figure 9.5 the lower bound for bit rates R > 3 was achieved by using
a frame size of 16, while the lower bound for lower rates was achieved by using a
frame size of 128 and a 2-bit quantizer except the lowest rate which was achieved
by a 1-bit quantizer and a quantization dimension of 32. However in Figure 9.10
it can be seen that the lower bound for rates 2 ≤ R ≤ 4 is achieved by using 3-
and 4-bit quantizers in a network with a frame size and quantization dimension of 128.

Figure 9.11 shows the corresponding average PESQ scores and standard deviations
for the test data and the entropy-corrected networks of Figure 9.10.
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Even though a network with a frame size and quantization dimension of 128 and
a 4-bit quantizer is slightly better in terms of distortion than using a frame size of
16 and a 3-bit quantizer, the network with a frame size of 16 and a 3-bit quantizer
obtains higher PESQ scores in Figure 9.11. In general the characteristics of Figure 9.6
are also present in Figure 9.11 and thus the even the entropy-corrected networks
are not able to outperform the BV32 Codec rate-wise. However by exploring the
entropy of the quantization layer it is possible to achieve the average PESQ score of
4.46 and standard deviation of 0.03 using half the bit rate used for standard 16-bit
PCM encoding.
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10. Discussion

In this project DNN autoencoders were developed with the aim to perform speech
coding. The autoencoders were developed using a end-to-end strategy meaning that
only transmission and pre- and post-processing steps were external factors. This
choice was based on the immediate achieved flexibility in terms of compatibility with
Tensorflow, network training, easy control of bit rates and compatibility with external
systems should the autoencoders be employed in real life. However a consequence
of such strategy is that the end-to-end DNN structure complicates the ability to
investigate, understand and control the internal characteristics and dynamics. For
instance it is unclear how the encoding and decoding parts of the developed DNN
autoencoders affects each other and the results. E.g. it is unclear whether a high
distortion is due to a poor encoder, decoder or both.
A possible different strategy could be to encode signals with an existing codec such as
BV32 and train a DNN to decode the signal. After ended training one could replace
the existing encoder with a DNN and train the DNN to encode the signal. In this
way a similar end-to-end autoencoder is obtained but the training is more controlled.
Since the results especially regarding the synthetic data were highly dependent on
the initialization of the networks, another strategy could be to pre-train all the layers
of a end-to-end DNN autoencoder as individual autoencoders. This is known as
stacked autoencoders [57]. By doing so one could imagine that it is easier in some
sense for the network to “understand” that the goal is autoencoding, because the
pre-trained layers can be seen as an initialization implying such.

The developed quantizer, which was used in the quantization layer as an activation
function, had a dynamic range between 0 and 1. As argued in this project the
dynamic range of the quantizer should not matter due to the adjustable weights.
However it is possible that the developed quantizer experience similar problems as
the ReLU activation function explained in Section 3.4.3. Negative inputs to the
quantizer are quantized to zero and have a gradient of zero. Hence it is possible that
our quantizer can lead to dead nodes, which is a problem similar to the problems
experienced when using ReLU. For networks where the Tanh activation function
was used in the output layer, it is possible that a dynamic range between −1 and 1
would have been more beneficial.
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Different input/output strategies were tested using synthetic data and it was found
that using the signal itself was most bit-effective. This lead to using solely speech
signals as inputs for the speech autoencoder DNNs. However regarding the difference
between using synthetic data with and without the AR parameter as input, it is
worth noting that the AR parameter was a constant. From a DNN perspective this
means that the node containing the AR parameter is the same no matter the input.
The node is thus not useful since it outputs the same value no matter the input. If
the same strategy were to be employed using speech data it is likely that different
results would be obtained, since inputs with e.g. autoregressive parameters would
vary for each frame. Nevertheless using the input/output strategy involving only
the signal itself also obtained the most stable results. In this sense the choice of
using only speech signals as inputs is justified. Another possible strategy which has
not been tested is to use e.g. the short time Fourier transform as (additional) input.
Furthermore a different strategy could be to consider hidden layers as inputs for
succeeding hidden layers in a structure inspired by the U-shaped neural networks in
[42]. Where in order to aid the decoding part of the autoencoders, one could also
encode hidden layers of the encoding part of the autoencoders. The encoded layers
could then be transmitted alongside the quantization layer and gain to the decoding
part. This comes at an expense of higher bit rates, however it is possible that such
structure could reduce the distortion significantly and hence justify the higher bit
rates.

The DNNs involving the speech data with frame sizes of 16 samples and the synthetic
data were all trained using the Adam algorithm, while the DNNs involving speech
data with frame sizes of 128 were trained using SGD. As described earlier the use
of SGD was caused by unstable training obtained by using Adam. It can therefore
be argued that the results are not comparable in some sense and hence whether the
conclusions regarding the optimal frame size for a specific bit rate are true. This is
especially the case for higher bit rates since networks with a frame size of 16 obtained
significantly higher PESQ scores compared to networks with a frame size of 128.
Using SGD for training requires more extensive experiments regarding learning rate,
the epochs used for both training and early stopping and the value of momentum
compared to using Adam. It is possible that different results and conclusion would
have been obtained for different parameters of the SGD algorithm. Nevertheless
all the training losses converged to a local minimum for both training algorithms.
Furthermore the networks not being able to fully utilize the higher amount of bits
for the higher bit rates is visible for all experiments. Hence the experiments are
comparable in this sense.

No compression phase was found when using the IB principle for analysing DNNs.
Since the used ELU activation function does not saturate, our results regarding
no compression phase coincides with the results found in [38]. However since the
reduction in entropy seen at the beginning of the training is in general insignificant
in our experiments, it can be discussed whether phase changes are seen at all. On
the other hand the networks in this report were only trained for a maximum of 200
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epochs, while the networks in [47] with a compression phase were trained for 104

epochs. It can therefore be discussed whether the missing of the compression phase
in this project is due to the amount of epochs. However similar experiments were
conducted where more epochs were used and no compression phase was observed.
Regarding the IB principle for DNNs in general, it is also discussable how the theory
coincides with terms such as over- and under training and early stopping. The
compression phases in [47] only occurred relatively late in the training process and
early stopping will in general prevent one from reaching a large amount of epochs.
That is at least the case in this project. Since the networks in [47] were trained using
only SGD without e.g. momentum, it is also possible that the use of Adam and SGD
with momentum has affected the results in this project.

Regarding our proposed loss function inspired by the IB principle, it is worth dis-
cussing whether our proposed loss function violates the nature of the IB principle.
As mentioned the compression phase observed in [47] occurred relatively late in the
training and prior to this phase a phase of information increase was observed. Thus
one could argue that the phase of information increase is skipped when using our
loss function. This can also explain the inability of finding adequate values of the
weight β. However experiments were also conducted where networks obtained by
using the MSE as loss function were trained further using our loss function. In
such experiments it was also not possible to reduce the entropy while maintaining
a suitable level of distortion. Experiments where β was gradually increased as a
function of epochs were also conducted with similar results. A more comprehensive
study of the trade-off between distortion and entropy was not conducted due to time
constrains.

Our proposed loss function was based on the marginal entropy of each node. It is
possible that the reason for the networks being unable to train using our loss function
is due to the joint entropy not being considered. It is possible the marginal entropies
are not suitable guidances for extracting relevant information, since the interactions
and dependencies between nodes are not considered. The distribution of quantized
values within a node and whether nodes in the quantization layer are independent of
each other were also not examined.





11. Conclusion

In this project a speech coding algorithm was developed using an end-to-end ap-
proach, where an encoding DNN and a decoding DNN was trained as a single DNN
autoencoder. Signals were encoded using a b-bit scalar quantizer acting as an ac-
tivation function for each node and forming an quantization layer. The bit rate is
easily controllable by changing the parameters of the quantizer, frame size of the
input and the dimension of quantization layer. Experiments using synthetic data
showed that most stable and bit effective results were obtained using only frames of
the signal itself. This lead to using solely frames of speech signals as input to the
DNN autoencoder.

It can be concluded that it is possible to encode and decode both synthetic data and
speech signals. It can further be concluded that training DNN speech autoencoders
using the MSE as a loss function and with frames of speech as inputs, results in no vis-
ible nor perceivable boundary effects in the reconstructed speech signals. For bit rates
higher than 3 bits per sample using a frame size of 16 obtains better results in terms
of PESQ scores, bit-rate and distortion compared to a frame size of 128. For lower bit
rates it can be concluded that a frame size of 128 obtains the best results. In general
it can be concluded that using a quantization dimension equal to the frame size
obtains better results than using a quantization dimension smaller than the frame size.

From the results obtained by training DNN autoencoders with the MSE as a loss
function, it can also be concluded that the autoencoders are not able to outperform
the existing BV32 codec in terms of both bit rate and PESQ scores. Encoding TIMIT
speech signals using the BV32 codec achieves an average PESQ score of 4.11 and
a standard deviation of 0.11 at a bit rate of 2 bits per sample. Encoding the same
signals using the same bit rate and the developed DNN autoencoder achieves an
average PESQ score of 3.25 and a standard deviation of 0.23. However it can also
be concluded that signals encoded using DNNs are intelligible across all bit-rates,
quantization dimensions and frame size, achieving a average PESQ score of 2.25
or more. For bit rates higher than 5 bits per sample it is possible to outperform
the BV32 codec in terms of PESQ scores only. By using a bit rate of 8.31 bits per
sample it is possible to achieve an imperceptible distortion, where an average PESQ
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score of 4.46 with a standard deviation of 0.03 is obtained.

It can be concluded that a compression phase is not observed when extending the
IB principle to DNN speech coders. The findings in this project coincides with
already existing papers. A loss function inspired by the IB principle was proposed
consisting of a superposition of the MSE and sum of marginal entropies of nodes
in the quantization layer. The importance of the terms in the loss function was
controlled by a weight β. Based on experiments it was found that training DNN
autoencoders using such loss function is not suitable, in the sense that it was not
possible to both decrease the entropy and maintain a suitable MSE-distortion. The
lowest MSE value obtained using this loss function was 0.05 after 10, 000 epochs
which corresponds to the initial MSE value obtained after 1 epoch using solely the
MSE as a loss function. However by exploring the marginal entropies of the nodes in
the quantization layer it is possible to achieve the average PESQ score of 4.46 and
standard deviation of 0.03 for the DNN speech autoencoders trained solely with the
MSE as a loss function and by using a bit rate less than half the bit rate used for
standard 16-bit PCM encoding.

In general it can be concluded that the DNN autoencoders are not able to fully
explore the extra bits imposed by using a higher bit rate. The distortion and PESQ
scores stagnates for higher bit rates. All the results are possibly affected by the
training algorithms used, training parameters, chosen network structures and possible
dependencies between nodes in the quantization layer.
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A. Results using Synthetic Data

This appendix consists of results obtained for networks trained with synthetic data
but not shown in Chapter 8.

A.1 Balanced Network
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Figure A.1: Operational rate-distortion curves for the balanced network with different in-
put/output strategies and a frame size of 16.
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Figure A.2: Operational rate-distortion curves for the balanced network with different in-
put/output strategies and a frame size of 32.
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Figure A.3: SRR and bit rates for the balanced network with different input/output strategies
and a frame size of 16.
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Figure A.4: SRR and bit rates for the balanced network with different input/output strategies
and a frame size of 32.
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Figure A.5: Difference in bits and the bit rate for the balanced network with different input/output
strategies and a frame size of 16.
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Figure A.6: Difference in bits and the bit rate for the balanced network with different input/output
strategies and a frame size of 32.
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(c) Bit rate of 4 bits/sample.
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(d) Bit rate of 8 bits/sample.

Figure A.7: Reconstructed signals and the original signal for different input/output strategies
and bit rates in the balanced network. The MSE values are calculated for the shown original and
reconstructed signals.
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Figure A.8: Reconstructed signals and the original signal for different input/output strategies
and bit rates in the balanced network. The MSE values are calculated for the shown original and
reconstructed signals.
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A.2 Undercomplete Network
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Figure A.9: Operational rate-distortion curves for the undercomplete network with different
input/output strategies and a frame size of 16.
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Figure A.10: Operational rate-distortion curves for the undercomplete network with different
input/output strategies and a frame size of 32.
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Figure A.11: SRR and bit rates for the undercomplete network with different input/output
strategies and a frame size of 16.
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Figure A.12: SRR and bit rates for the undercomplete network with different input/output
strategies and a frame size of 32.
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Figure A.13: Difference in bits and the bit rate for the undercomplete network structure and a
frame size of 16.
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Figure A.14: Difference in bits and the bit rate for the undercomplete network structure and a
frame size of 32.
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(a) Bit rate of 0.125 bits/sample.
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(b) Bit rate of 0.25 bits/sample.
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(c) Bit rate of 0.5 bits/sample.
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(d) Bit rate of 1 bits/sample.

Figure A.15: Reconstructed signals and the original signal for different input/output strategies
and bit rates in the undercomplete network.
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(c) Bit rate of 0.5 bits/sample.
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Figure A.16: Reconstructed signals and the original signal for different input/output strategies
and bit rates in the undercomplete network.





B. Spectrograms of Reconstructed
Signals

In this chapter spectrograms of reconstructed signals for the networks in Section 9.1
are shown.
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Figure B.1: Spectrograms of a original signal (bottom right) and the corresponding reconstructed
signal using networks with different b-bit quantizers.
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Figure B.2: Spectrograms of a original signal (bottom right) and the corresponding reconstructed
signal using networks with different b-bit quantizers.
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Figure B.3: Spectrograms of a original signal (bottom right) and the corresponding reconstructed
signal using networks with different b-bit quantizers.
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Figure B.4: Spectrograms of a original signal (bottom right) and the corresponding reconstructed
signal using networks with different b-bit quantizers.



C. Information Plane Plots

In this appendix all information plots for the networks in Section 9.3 are shown.
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Figure C.1: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 1-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.2: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 2-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.3: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 3-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.4: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 4-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.5: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 5-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.6: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 6-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.7: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 7-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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Figure C.8: Information plane plot for the training data and for networks with a frame size and
quantization dimension of 128 and a 8-bit quantizer. The x-axis is the entropy of the quantization
layer in bits per sample, while the y-axis is the MSE−1.
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