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Abstract:
Industrial control networks have traditionally
been implemented on wired connections due
to latency and reliability constraints. Next-
generation cellular networks include services
with improvements in these areas, but the im-
provements are not sufficient for all targeted
use cases. Wireless Isochronous Real Time com-
munication (WIRT) is a newly proposed system
that targets networked control systems with
periodic transmissions and extreme latency and
reliability requirements.
This work highlights considerations when im-
plementing the WIRT physical layer. The
system architecture is based on Orthogonal
Frequency Division Multiplexing (OFDM) for
Ultra-WideBand (UWB) spectrum. A proto-
type implementation is made. The implemen-
tation integrates UWB testing equipment, to
serve as a testbed for further WIRT develop-
ment. The implementation is used to estimate
which parts of the transceiver introduce the
highest latency. The minimum possible latency
is determined and the computational complex-
ity of each component is evaluated. Based
on this evaluation, architectures for a latency-
accurate implementation are discussed.
The decoding of Error Correction Codes
(ECCs) is found to be the largest single con-
tributor to latency. Algorithmic alterations
are made to reduce the minimum decoding la-
tency to an acceptable level, along with other
considerations required for implementation on
a reconfigurable logic platform. In the end
considerations and further work to prove the
feasibility of the system are discussed.
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1 I N T R O D U C T I O N

Industry 4.0 is a term for the next generation of the industrial revolution. One of the major
enablers in this is the increased availability of wireless communication and increasing
computational power in embedded platforms. The use cases are both extensions to
current practices and entirely new options in industrial manufacturing and production
[2].
Control systems that connect sensors to actuators through various control algorithms

are widely used for industrial purposes. When multiple control loops are connected
over a network connection it is known as a networked control systems [3]. As networked
control systems are generic, they can be used to describe many different systems,
from temperature control of supermarket cold storage using mobile networks, through
communication internally in automated vehicles, to remote surgery [4, 5]. For temperature
control low latency and high reliability in the network is not critical, as the actuators and
sensors are slow to respond. In case of remote surgery or intra-vehicle communication
however, both low end-to-end latency and very high reliability is critical and potentially
even vital [5].
Having both low latency and high reliability is widely recognized as a problem for

traditional wireless technologies, where latency and reliability are considered trade-offs
[2, 6]. In current Long Term Evolution (LTE) systems the physical layer latency can not
be lower than the 1ms subframe [5, 7]. When including other network delays [8] finds that
LTE latencies can barely reach ~30ms. Additionally, when operating with low latency
the reliability is affected, making the networks unsuited for some industrial control
networks. To handle different use-cases the next generation cellular network standard 5G
introduces three services, Enhanced Mobile BroadBand (eMBB), Massive Machine-Type
Communications (mMTC) and Ultra Reliable Low Latency Communication (URLLC)
[9]. eMBB aims to improve the broadband experience and mMTC targets communication
between a large number of connected devices that are not time sensitive. The third
service, URLLC, aims to fulfill the latency and reliability requirements for industrial
and other time and reliability sensitive networks [10].
In URLLC the target end-to-end latency is 1ms. A URLLC system in 5G also requires

high reliability, with a packet loss probability of at most pURLLC = 10−5 [9, 10]. One
of the limits of the URLLC incorporated in 5G is that it is based on the same general
purpose networks. Even though the three services are different, the core technology is
the same, and thus not made specially for low latency purposes. The low latency devices
considered in URLLC can also include both high and low power devices, devices spread
over a large area and both consumer/media and industrial uses [6].

1.1 WIRT

For certain control systems used in industrial networks, the 5G URLLC targets are not
stringent enough however. For machine tool operation [5, 8] find that latencies as low as
250 µs are required in addition to packet loss probabilities on the order of 10−9.
[11] introduces a wireless communication system focused on industrial use named

Wireless Isochronous Real Time communication (WIRT). In this system the more general
purpose nature of 5G is discarded for even tougher latency and reliability requirements.
The system aims to provide communication between devices that are close in proximity.
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2 1. Introduction

Figure 1.1: WIRTs place in a larger industrial environment. Reproduced from [11].

This is illustrated in Figure 1.1. In the figure WIRT is used to connect local sensors and
actuators, while a gateway is connected to a the larger industrial environment using a
cellular 5G connection.
To fulfill the role of a networked control system for the next generation industrial

networks, WIRT targets packet loss probabilities down to 10−9 and end-to-end latency
of down to 100 µs. The lower latency and higher reliability are not the only differences
between WIRT and URLLC however. Control-loops used for automation are character-
ized by periodic transmissions. To support this type of traffic WIRT aims to provide
connections specifically targeted traffic with deterministic cycles [11], as opposed to the
sporadic traffic targeted in URLLC [9].
Another difference is in the spectrum use. 5G networks operate mainly in licensed

bands that require centralized gateways with varying coverage. Additionally, spectrum
regulation varies between regions, requiring roaming for use-cases where the system
may be relocated. To avoid this problem WIRT is based on unlicensed Ultra-WideBand
(UWB) communication. UWB communication can use very large bandwidths compared
to the more common narrowband system, but is strictly regulated in power spectral
density. With low power spectral density, the narrowband systems are not harmed by
the UWB communication. Since the UWB communication uses a large bandwidth a
narrowband interferer will only disturb a fraction of the used spectrum. The two systems
can thus co-exist without mutual harm. This move enables use as a stand-alone radio
and provides a large amount of usable spectrum [11]. With a targeted range on the
order of 10m, the low power spectral density is surmountable.
An overview of the key requirements presented in [11] is shown in Table 1.1.
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Table 1.1: Key requirements or WIRT. Reproduced from [11].
Parameter Requirement/Description
Application domain Manufacturing, embedded systems, in-vehicle/aircraft control,

etc.
Reliability 10−9

Minimum Latency 0.1ms
Data payload 32 bytes
Traffic type Periodic
Spectrum access Unlicensed
Network topology Star / Meshed
Nodes per cell 20 - 200
MIMO capability Limited at the devices, multiple antennas at the gateway
Form factor/power Small size/low power
Range In the order of 10m
Mobility No
Interference management Possibly coordinated within cells in the same network, implicit

across different networks

1.2 PROJECT OBJECTIVES

Ongoing research on WIRT attempts to map out interference scenarios and further
refine the wireless aspects of the system. This work aims to supplement the research by
providing the signal processing insight required to realize a prototype WIRT network.
As the latency requirement is very harsh, it is necessary to consider all the delays in
the system components, both computationally and structurally. As such the goal is
to provide an analysis of which architectures and combination of components provides
the best latency/reliability trade-off for a WIRT transceiver, backed up by a prototype
system that can demonstrate the principles in action. To provide a testbed for future
WIRT systems, the prototype system is built to interact with a UWB tester borrowed
from LitePoint. This goal can be stated as a research question:
What are the requirements for realization of a WIRT system, from a signal processing

point of view?
In order to answer this question a number of related questions must also be answered:

� What components should be part of a WIRT transceiver?
� What is the delay introduced by each component, and which components dominate
the total latency?

� How can the system be designed to ensure that the latency and reliability targets
are met?

� Which types of software and hardware architectures are appropriate?

Since the project is focused on the signal processing aspects, considerations on the
Radio Frequency (RF) hardware required to build a WIRT system are not part of the
project. This includes important high-level aspects such as link budgets and interference
modeling, but also more specific challenges such as antenna design or Analog-to-Digital
Converter (ADC) selection. Furthermore, design of the physical layer frame structures
and higher network abstraction layers are also outside the scope of this project.





2 S Y S T E M A R C H I T E C T U R E

To understand the WIRT system, first a more generic wireless communication system is
described. WIRT is based on multiband Orthogonal Frequency Division Multiplexing
(OFDM) with a comparatively large bandwidth compared to LTE and WiFi. Section 2.1
starts with some basic definitions for a wireless communication system. Section 2.2
then describes OFDM and multiband OFDM that the WIRT transiever is based on.
The individual components and the parameters that change between implementations
are described in Section 2.3. Finally, Section 2.4 describes the configuration of these
parameters chosen for WIRT.
The text in this chapter gives an overview of an OFDM system without specific details.

In Chapter 3 the implementation is detailed, based on the descriptions in this chapter.

2.1 COMMUNICATION SYSTEMS

The overarching idea of a communication system is to transmit information from one
point in space to another. In this project wireless communication systems is used to refer
to systems that modulate the eletric field in the radio frequencies between two devices
that are not physically connected. A basic discrete wireless communication system is
seen in Figure 2.1.

m

m̂

Message
source

Channel

Transmitter
s[n]

y[n]

y[n] = h[n] ∗ s[n] + w[n]

ReceiverMessage
sink

Figure 2.1: Basic communication system in the notation used in this report.
In the figure m is the message to be sent and m̂ the receivers estimate of the message

respectively. s[n] is the transmitted time domain signal and y[n] is the received signal.
h is the channel gain and w[n] is the noise. n represents the discrete time domain index.
Convolution is represented with ∗.
The system shown in Figure 2.1 starts with a message m. This message is a sequence

of bits that assumed to be binary and have equal probability of 0 and 1. The transmitter
block transforms the message bits into an appropriate time domain signal s[n] that can
be transmitted over the channel. The signal, now affected by the channel, is received as
y[n]. The receiver reverses the transformation done by the transmitter and creates an
estimate m̂ of the original message. The communication is deemed successful if m̂ = m.
If no noise is present, and it is possible to counteract the effects of the channel, the

decoded message should be identical to the transmitted and perfect communication is
achieved. This assumption is very strong however and communication is not always

5



6 2. System architecture

perfect. As seen in the figure, the received signal can be modeled as:

y[n] = h[n] ∗ s[n] + w[n]. (2.1)

The effect of the channel on the transmitted signal can then be modeled by two parameters,
the noise w[n] and the complex channel gain h[n]. h[n] is also known as the channel
impulse response with corresponding frequency response H[k].
A commonly used channel is the Additive White Gaussian Noise (AWGN) channel

where:

h[n] =

1 for n = 0
0 else,

(2.2)

and the noise is distributed as w[n] ∼ N (0, σ2
N ). Here σ2

N is the variance or noise power.
This is a basic model which does not account for multipath fading. In more realistic
channel scenarios multipath fading will contribute to h[n] having more than one non-zero
value.

2.2 MULTICARRIER MODULATION AND OFDM

In single carrier modulation the message is modulated directly onto a single carrier. In
order to increase the data rate of such a system the symbol frequency is increased. The
basic idea of multicarrier modulation is to map multiple symbols to multiple subcarriers
thereby achieving higher throughput through parallel transmission. The data rate of each
individual subcarrier can then be much lower without affecting the system throughput.
Orthogonal Frequency Division Multiplexing (OFDM) refers to a type of multicarrier

modulation where the subcarriers are chosen to be orthogonal in frequency. OFDM is
widely used in many communication systems, including LTE and WiFi [7]. In multiband
OFDM the available spectrum is further split into a number of channels that each
contain a subsection of the full spectrum. The channels can be used by different systems
at the same time, or by a single system to improve reliability. By splitting the full
spectrum into channels, the transmitter and receiver complexity is reduced compared to
supporting the full bandwidth at once. It is chosen to base the WIRT transceiver on
multiband OFDM.

2.3 SYSTEM COMPONENTS

The system shown in Figure 4.1 is a basic communication system. In this section the
transmitter and receiver blocks are opened up, and the individual components discussed.
The transceiver architecture for an OFDM system is shown in Figure 2.2. The figures

give an overview of respectively the transmitter (Figure 2.2a) and receiver (Figure 2.2b).

The transmission starts with the message m. The message bits are first encoded with
an Error Correction Code (ECC) in order to improve the reliability of the transmission.
The ECC codewords are mapped to complex symbols to prepare for modulation. The
symbols are gathered in a serial to parallel converter and mapped to subcarriers. The
Inverse Fast Fourier Transform (IFFT) is performed on the mapped symbols and a
known pilot signal. The resulting signal is serialized to a discrete, complex time series.
Finally, a cyclic prefix is appended to the series before it is sent to the RF hardware for
transmission over a wireless medium.
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Encoding

Bits

S
/
P

Sub-
carrier

mapping
IFFT

Insert pilot
Channel
hopping

RF
Symbol
mapping

P
/
S

Cycl. prefix

(a)
RF

Sync. Cycl. prefix
P
/
S

S
/
P

FFT

Channel est.

Sub-
carrier

mapping
Equalization

Decoding

Symbol
demapping

Channel
hopping

(b)
Figure 2.2: The (a) transmitter and (b) receiver chains that form the transceiver architecture for WIRT. P/S and S/Pare short for parallel to serial and serial to parallel respectively. Sync. is short for synchronization and channel est. isshort for channel estimation. Cycl. is short for cyclic. The dashed boxes are outside the scope of this project.

Reception performs the inverse operations in addition to a few others. First syn-
chronization algorithms are performed to establish correct phase, frequency and time
alignment between the transmitter and receiver. The cyclic prefix is then removed and
the serial data is parallelized before an Fast Fourier Transform (FFT) is performed to
reverse the effect of the IFFT. The pilot carriers are recovered and used in channel
estimation while the data carriers are passed through a reverse subcarrier mapping and
serialization. The estimated channel is used to equalize the data symbols, which are
passed on to the symbol demapper. Finally, the resulting ECC codewords are decoded
to produce the most likely transmitted message bits.
The role of each of the components and how they work is described in the remainder

of this section.

2.3.1 error correction coding

The first and last part of the transceiver chain, encoding and decoding, represent the use
of an Error Correction Code (ECC). An ECC is a code used to enhance the robustness
of communication systems and improve the communication reliability. This is done by
changing the representation of the message in order to spread the information content
into more bits than in the original message representation. These extra bits contain
redundant information, but can be used to reconstruct the original message completely
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if parts of the transmission fail.
In general ECCs are modeled as a transformation of a K-dimension vector to a N -

dimension vector where N > K. The ratio R = K
N is termed the rate of the ECC. One

particularly simple type of ECC is repetition codes, where the message is simply repeated
R times. Since the same message is sent multiple times, all of them have to fail in order
for the communications to be unsuccessful.
Repeating packages turns out to be neither the most effective or flexible scheme for

introducing redundancy. The field took off with Shannons seminal paper on information
theory [12], but ECC research is still ongoing. One of the reasons is that decoding is
a computationally complex process and only recently have computers reached a level
of performance where wide-spread use of complex ECC is possible. Improving the
performance of modern codes such as Low-Density Parity-Check (LDPC), turbo codes
and polar codes is still subject of research, both in terms of their ability to correct errors
and their computational complexity [13]. Chapter 5 describes ECC in more depth.
The parameters for error correction code are the size of the codeword sent on the

channel N , the number of information bits per codeword K and the type of code.
Different codes also come with parameters specific to the code.

2.3.2 symbol mapping

Symbol mapping is the process of changing the information bits into symbols that can
be transmitted over a waveform. In single carrier systems this process is also known
as modulation, but since the term modulation is also used for multicarrier modulation
performed for OFDM, so to reduce confusion the operation of mapping bits to symbols
is denoted Symbol Mapping (SM).
Many different methods exist that transform bits into different kinds of waveforms, but

for wireless communication the most often used types manipulate the phase, frequency
and amplitude of a sine and a cosine wave. At the receiver the reverse mapping is
then perform to recover the information bits. The SM used with OFDM in LTE
are Quadrature Phase Shift Keying (QPSK) and variations of Quadrature Amplitude
Modulation (QAM) which encode the information bits onto either just the phase or both
the phase and amplitude respectively [14].
The type of SM used in a communication system has a great influence on both the bit

error rate and the number of bits represented by each symbol. Modulation types with a
large number of bits per symbol can enable high data rates or lower spectral usage but
often come with higher probability of bit errors [14].
An example of this is comparing the LTE symbol mappings 16-QAM and QPSK.

Because 16-QAM has a lower distance between symbols, each symbol has higher likelihood
of failure in the presence of noise. Additionally, since 16-QAM uses both phase and
amplitude in the modulation good synchronization must be achieved for both, while
QPSK only requires good phase synchronization. The disadvantage of low distance
between symbols is countered by the fact that each symbol in an 16-QAM constellation
contains log2(16) = 4 bit while each QPSK symbol contains log2(4) = 2 bit. 16-QAM
modulated signals are therefore able to attain a higher data rate within the same
bandwidth, given that the Signal to Noise Ratio (SNR) is sufficient to distinguish the
symbols and accurate synchronization is performed.
Having multiple different modulation types available enables a communication system

to make a trade-off between data rates and lower failure probabilities. For example, in
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−2∆f −∆f Fc +∆f
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2∆f

3∆f

4∆f

Figure 2.3: Example of howmultiple subcarriers in the time domain combine in the frequency domain. Each subcarrieron the left is modulated with data to produce the spectrum on the right. The difference in frequency betweenindividual subcarriers depends on the total bandwidth and the number of subcarriers.

the highly flexible LTE system the user can use a high order QAM when close to a base
station and achieve high data rates. If the user moves further from the base station,
the handset can transition to QPSK to still maintain connection at a lower data rate.
In a real wireless channel small scale fading effects make the situation more complex,
but more options for modulation schemes will still make the system more dynamic and
robust. Together with a dynamic choice of ECC configuration, this is known as link
adaptation or adaptive coding and modulation [7, Ch. 12].

2.3.3 subcarrier mapping and dft
After mapping the coded bits to symbols, the symbols must now be modulated onto
subcarriers. Each of the complex symbols is mapped to one of Nsubcarriers subcarriers.
Each subcarrier has a unique frequency, with a spacing of ∆f between carriers. The
symbol is held on the corresponding carrier for a duration of TS = 1/∆f . The subcarriers
are then combined into a single with the same length. Since the carriers are chosen
orthogonally, the symbols do not interference. Multiple symbols are transmitted at the
same time and the symbol frequency can be lowered without lowering the data rate. The
process of mapping each symbol onto a subcarrier is known as SubCarrier Modulation
(SCM). A visual rendition of this process is shown in Figure 2.3. Input symbols are
modulated on each of the subcarriers on the left and each subcarrier is further modulated
to the RF carrier frequency Fc. The corresponding spectrum is shown on the right.
Creating each of these subcarriers and mixing them to RF frequency separately

requires a bank of as many oscillators as subcarriers, all operating at closely spaced
frequencies. The discovery that makes OFDM simple to use in practice is that the
subcarriers can be created by an Inverse Discrete Fourier Transform (IDFT) operation
on the symbols and then simply mixing the serialized output of the transform to RF [15,
Sec. 12.2]. At the decoder this operation can be reversed by computing the Discrete
Fourier Transform (DFT). In practice the IDFT and DFT are computing using the IFFT
and FFT operations respectively.
The main parameter of the subcarrier mapping is the number of subcarriers Nsubcarriers,

equal to the number of FFT bins NFFT. Another parameter is the subcarrier spacing
∆f , but given the overall bandwidth of the system and NFFT this parameter is given:

∆f = BW
NFFT

. (2.3)
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2.3.4 cyclic prefix

The final step in preparing the message bits for transmission is adding a prefix.
The prefix serves two purposes. The first is to serve as a barrier against multipath

fading. If the signal travels in multiple different paths and arrive with different delays,
the symbols can start to interfere with each other. By adding unused symbols in front of
the data carrying symbols, the data symbols are less affected by multipath fading. The
severity of the expected fading is the determining factor for the duration of the prefix.
For canceling multipath fading the prefix can be any symbol, as it is simply removed in
the receiver.
The second purpose is to change the effect of the channel from a linear to a circular

convolution in the time domain. As described above the IDFT is used to map the symbols
on to separate subcarriers. When the resulting time sequence is sent over the channel,
the channel gain h corresponds to a convolution in the time domain. Fortunately, for
periodic sequences, convolution in the time domain corresponds to multiplication in the
frequency domain [16, sec. 8.6]. Unfortunately, the channel is in general not periodic
and neither are the symbols to be sent. By choosing the prefix samples to be equal to
the final samples of the message, the new message is now periodic with a period equal
to the length of the original message. Since the cyclic prefix is chosen to be longer than
the channels impulse response, the convolution of the message with the channel is now a
circular one [15, ch. 12]. After the prefix is removed at the receiver, the sampled channel
frequency response can be seen as a multiplication with the subcarrier symbols because
of the circular convolution. This type of prefix is known as a cyclic prefix.
Since the cyclic prefix samples are given by the message, the only free parameter is

the duration. The prefix should be long enough to encompass most of the power from
a multipath environment, but as it does not carry any data increasing the size also
increases the overhead in the communication.

2.3.5 channel hopping

With the message encoded, mapped and modulated onto subcarriers it is now ready
for transmission. Channel hopping is the process of choosing a frequency band to
send it. Different frequency bands can be affected differently by multipath fading and
interference, so changing the center frequency can help potentially increase the reliability
of the communication.
Channel hopping can be implemented in two ways; either the IFFT is zero padded

in a manner which leaves the intended signal in the correct frequency band, or the RF
hardware has the option to change the center frequency to different bands. Performing
channel hopping by zero-padding the IFFT would increase the computational complexity
of this component by orders of magnitude. Additionally, the RF hardware used to
prototype in this project has the capability of changing center frequency to a wide span
as described in Section 3.2. Based on these considerations it is chosen to implement
the channel hopping by changing the center frequency in the RF hardware. The logic
for choosing a frequency band and synchronizing the choice between transmitter and
receiver is not considered in this report.
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2.3.6 synchronization
In addition to blocks that reverse the operations above, the receiver contains three blocks
extra: Synchronization, channel estimation and equalization.
To reinterpret the bits from received QPSK symbols, the phase of the signal is critical.

A problem therefore occurs at the receiver, as the oscillator used in the reception is
unlikely to be at the exactly same phase as the oscillator used in the transmitter.
Additionally, imperfections in the oscillator hardware can lead to minor differences in
frequency between the transmitter and receiver [17, 15]. Static phase errors and small
offsets can be cancelled in the equalization, see Section 2.3.7, but if the frequency offset
becomes too large, synchronization must be performed in order to successfully receive
the information.
Frequency is not the only synchronization that might be required however. The

transmitter and receiver do not have a time reference in common and the receiver is
unable to know when the transmitter begins a message. The receiver therefore needs a
method for detecting a transmission and locating the correct samples for the FFT and
further demodulation.
Methods for synchronizing both time and frequency offsets exist, for instance the

methods described in [17] and [18]. This tester used in this project uses the same
oscillator for both the transmitter and receiver and so has very little to no frequency
offset. This is described further in Section 3.2. Since the frequency synchronization is
unnecessary it is chosen to use only time synchronization. This is described in more
detail in Section 3.3.2.

2.3.7 channel estimation and equalization
In order to perform demodulation most wireless systems require an estimate of the
channel h[n] and OFDM is no different. In OFDM this estimate is used to perform
equalization to cancel out as much of the frequency selectivity of the channel as possible
and align the phase of the symbols. In other words, the aim of the equalization is to
make the channel frequency response as flat as possible [19, ch. 16].
Based on the representation of an OFDM system as a number of parallel carriers, the

channel estimate can also be described as a number of parallel fading channels [19, ch.
19]. By introducing pilot symbols, static symbols known at both the transmitter and
receiver, the channel response on the k-th subcarrier can be estimated as:

H[k] = x[k]
c[k] , (2.4)

where k is the subcarrier index, H[k] is the channel frequency response at the subcarrier
frequency, x[k] is the received symbol on subcarrier k and c[k] is the expected pilot
symbol.
In order to get the best possible estimate of the channel all the subcarriers in the

OFDM symbol should be pilot carriers, however then data transmission is not possible.
Fortunately, channels closely spaced in time and frequency are likely to have non-zero
correlation, making it possible to dedicate only a subset of the carriers to pilot tones
and still get a reasonable estimate of the channel. The more subcarriers are allocated as
pilot carriers, the better the channel estimate and therefore the equalization, but at the
cost of overhead. The amount of spacing possible between the pilot carriers depends
the correlation between subcarriers, typically characterized by coherence bandwidth. As
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Figure 2.4: Illustration of the effect of channel equlization in a frequency selective channel. The plots shows theabsolute value of the channel gain |H| over normalized frequency. The blue line shows the true channel response.The orange stems show the pilot tones and the green line shows the channel estimate when linearly interpolated.The red line shows the equalized response.

long as the coherence bandwidth is larger than the distance in frequency between the
subcarriers, they can be considered correlated [15, Sec. 3.3].
Since the channels are correlated in both time and frequency, it is possible to spread

out the pilot carriers in either. In practice spreading out in time means that an OFDM
symbol is sent with only pilot carriers. The channel estimate is then used for the next
couple of symbols that are full of data carriers, thus giving a good resolution in frequency
but not in time. The other option is to send a mix of pilot and data carriers in all
OFDM symbols. This provides good resolution in time, but worse in frequency.
An illustration of the effect of equalization is shown in Figure 2.4. In this example the

second option for channel estimation is used.

2.4 WIRT SPECIFICATIONS

This chapter describes an OFDM system and its components at a high level. Each of
the components in the system is described in terms of a series of parameters, enabling
description of WIRT using these. Table 2.1 shows the system described in terms of
these parameters and three generic ones. Note that the specifications in Table 2.1 are
tentative and a number of parameters are not specified.
The specifications leave room for interpretation when implementing. For this work it

is chosen to use 400 bit packages. For channel hopping, the rest of the report will assume
that enough free channels are available that the system is not limited. The channel
estimation requirement specifies a spacing between pilots of 5MHz. It is chosen to use
124 pilot subcarriers, spread out evenly in frequency, thus leaving 400 subcarriers for
data transmission per OFDM symbol. In order to ensure high reliability a low rate ECC
should be used, but appropriate codes have not been been researched prior to this work.
The choice of an appropriate ECC is handled in Chapter 5.
At the time of writing, several parameters of WIRT system are still under develop-

ment. Since work is ongoing on charactarizing both wireless channels and interference,
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Table 2.1: Specifications for a WIRT transceiver.
Component Parameter Requirement
General K (information size) 160 - 400 bits ([20, table 5.3.2.1-1])
General Transmission duration Min. 20 µs
General Bandwidth Min. 500MHz
Symbol mapping Type QPSK
Subcarrier mapping Subcarrier spacing 960 kHz
Subcarrier mapping Total subcarriers Min. 524
Cyclic prefix Duration 69 µs
Channel hopping Number of frequency hops Depends on the available channels
Channel estimation Spacing between pilots Approximately 5MHz

synchronization is not locked down yet. Only the synchronization required for basic
operation is implemented, as described in Section 3.3.2. Likewise, requirements for
channel estimation are not defined yet. It is therefore again chosen to implement a
simple method, described in Section 3.3.3 and delimit the work from more indepth
equalization considerations.
Based on the specifications, a WIRT transceiver is implemented.





3 S O F T W A R E B A S E D W I R T
I M P L E M E N TAT I O N

The system architecture described in Chapter 2 describes the overall architecture of the
WIRT transceiver. The next step is creating a prototype of this system. The goal of
the prototype is to estimate the computational complexity of the system and establish
potential bottlenecks in the operations. A secondary objective of the prototype is to
serve as a testbench for future WIRT projects.
An overview of the prototype is given in Section 3.1. The hardware used to perform

the RF operations is described in Section 3.2. The more specific considerations and
choices made during development are described in Section 3.3. Finally, testing and
verification of the software implementation is described in Section 3.4.

3.1 OVERVIEW

The software prototype is split into a number of modules as seen in Figure 3.1. The main
blocks contain most of the system functionality. These are split into five submodules that
concern WIRT functionality, functionality to interface with the LitePoint instrument
and more specific modules for socket utilities, OFDM modulation and polar codes. The
misc blocks contain smaller bits of functionality that is used in the WIRT, OFDM and
ECC submodules. The testing modules are used to test the functionality of each block
individually and, in the case of the WIRT test, the overall system. This chapter describes
most of the blocks, except the polar codes which are described in Chapter 5. The module
for instrument interfacing is described in Section 3.2. The specific implementation details
and choices made for the prototype are detailed in Section 3.3 and testing is described
in Section 3.4.
The prototype is developed in Python and depends heavily on the numerical computing

library numpy. This choice of platform enables fast development and iteration time and
access to the large amount of available utilities made for Python development. In an
actual implementation it is recommended to move away from Python language to better

OFDM

WIRTLP
instrument

Polar codes

WIRT test

ECC testOFDM test

Socket utils

Misc testInstrument
test

ECC utilsModulation

Zadoff-ChuResamp/
filtering

MiscMain blocks

Tests

Figure 3.1: An overview of the modules developed for this system. Solid blocks are modules that contain functionality.The relation between blocks is illustrated through arrow connections, e.g. the LP instrument module uses the socketutilities for communication. Dashed blocks and arrows are testing modules and the blocks that they test.
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ensure the hard real time deadlines, but for the prototyping scenario it has significant
merit.

3.2 UWB TESTER

Compared to traditional narrowband communication, RF development systems for UWB
are less common and often expensive. For the purpose of this project an IQgig-UWB
tester is borrowed from LitePoint.
The main criterion for the RF hardware to successfully implement the prototype

WIRT system, is an instantaneous bandwidth of at least 500MHz. The Vector Signal
Generator (VSG) and Vector Signal Analyzer (VSA), which are used for RF signal
generation and sampling respectively, both support 1900MHz instantaneous bandwidth,
more than sufficient [21]. In other specification the tester has an analog-to-digital
converter resolution of 12 bit, a noise figure at or below 20 dB and the power is within ±
1.4 dB across the entire frequency range. Additionally, the VSG and VSA share a single
oscillator, ensuring they are synchronized in phase and frequency.
The tester is interfaced over a TCP/IP connection. The tester opens three TCP ports,

24000, 24001 and 24002. The first port is the main communication, with the two other
ports used for supporting service interrupts and clear commands. Since these are not
required for this use case, the project only uses the main communication port.
All commands and responses are transmitted to and from the tester in ASCII. In order

to speed up the transfer of large amounts of data samples, a binary data transfer mode
is enabled by sending a FORM:READ:DATA PACK command. After the command is
received, data is sent in the format

#<lenlen><len><data>

where <data> is the information to be transmitted, packed as binary values, <len> is the
length in bytes of the data and <lenlen> is the number of ASCII characters in the lenght
field. The first character # represents the start of the header. This format is known as
an Arbitrary block.
The tester has the ability to play arbitrary I/Q samples from the VSG. To upload I/Q

samples for playback they must be packed in a waveform format called IQVSG. This
format consists of a header and packaged binary data. The header contains a filename,
sample rate and total number of samples. The data is formatted as interleaved 4-byte
floating point values. The waveforms are sent using the arbitrary block format above.
During testing it is found that the time between the trigger being pulled high, and the

samples being ready for download is the largest delay in this system. If a large number
of tests using the prototype system are to be performed, it is therefore recommended
to pack multiple WIRT packages into a single transfer to the tester. Since the tester
has memory for multiple waveforms and can receive data while triggering, the prototype
system could be extended to use the wait time to upload new waveforms.
The procedure to setup the tester, upload a single waveform and triggering it is

described in Table 3.1.
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Table 3.1: The steps performed for initialization of the tester, upload of awaveform and download of the correspondingsamples.
Step Description
tester_default_setup Reset the tester and setup routing and power levels.
tester_set_capturetime Set the length of a single capture.
upload_waveform Pack and upload IQ data as a waveform file.
tester_setup_repeat Setup waveform playlist for triggered playback of the

waveform.
tester_setup_ext_triggers Setup the VSA and VSG to trigger on the external

trigger which can be controlled by commands.
tester_arm Arm the instruments to ready them for triggering.
tester_ext_trigger Pull the external trigger high to start the transmission.
download_waveform Download the new samples from the tester.

3.3 SPECIFICS OF THE IMPLEMENTATION

Most of the parameters of transceiver are specified in Section 2.4. Despite this, some
implementation details come up during the system implementation. This section describes
the choices made in this project for these details.

3.3.1 system sample rate

The WIRT system targets a bandwidth of 500MHz per channel. Since the VSG of
the tester outputs samples at a rate of 2.4Gsps, sample rate conversion of the signal
is required. Sample rate conversion is the act of changing a digitally sampled signal
from one sample rate to another without altering the information content. When the
number of samples must increase the operation is known as interpolation or upsampling,
while reducing the number of samples is known as decimation or downsampling. The
naïve way to perform interpolation is to repeat the previous samples. This operation is
simple, however as shown in Figure 3.2a, the spectrum of the output signal is widened
significantly. The figure shows the frequency response of OFDM signal interpolated 4
times.
A better way to increase the number of samples to insert zeros between the samples

to match the new sample rate instead of repeating samples. The signal is then low-pass
filtered to create the new interpolated signal. The result of this operation is shown in
Figure 3.2b.
For filtering during interpolation an important parameter is how much dampening

of the produced images can be achieved. In general more dampening is good, but [22]
finds that very sharp filters are not ideal as they lead to intersymbol interference. The
parameters for filting are therefore the type of filter and the length. A filter commonly
used in communication systems is the root raised cosine filter [23]. These filters are
designed specifically to reduce the intersymbol interference by having zeros in their
impulse response at multiples of the symbol time. The filter length is a trade-off between
requirements from spectrum regulations and increasing interference between symbols.
A disadvantage of filtering is that it introduces a delay in the signal, called a group

delay. The introduced group delay depends on the filter type and length. Since a root
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Figure 3.2: Frequency response an OFDM signal with 600MHz bandwidth interpolated 4 times to 2.4 Gsps. (a)interpolation by repeating samples, (b) interpolation by resampling.

raised cosine filter is a linear phase Finite Impulse Response (FIR) filter, the group delay
introduced is a constant time delay for all samples which can be cancelled by simply
selecting later samples [24, Ch. 5].
The next question that arises is how much to interpolate. Subcarrier spacing is defined

as
∆f = B

NFFT
= Fs/R

NFFT
, (3.1)

where B is the bandwidth of the signal given by the instrument tester sample rate Fs
and the resampling rate R and NFFT is the FFT size. Since the VSG has a locked
sample rate of 2.4Gsps the two variables that can be adjusted are the resampling rate
and the size NFFT.
The required subcarrier spacing is 960 kHz and 524 subcarriers must be usable, giving

the lower limit of the FFT size NFFT = 524. The FFT is most effective in terms of
number of computations when the length is a power of 2 so the smallest appropriate size
is 1024. Using this FFT size the number of samples per symbol becomes:

R = Fs
NFFT ·∆f

= 2.4 Gsps
1024 · 960 kHz = 625

256 . (3.2)

As it is not possible to reduce this fraction further, the signal must be upsampled 625
times before downsampling 256 times. This requires not only a very large amount of
memory, but very long and therefore computational complex filters. With poly-phase
filtering the complexity can be reduced by not including the components of the filter
that are zero, however a large number of filters are still required, meaning memory, and
a lot of complexity to account for switching between filters [24, Ch. 10].
Another option is to not adhere strictly to FFT sizes that are powers of two. The

reduction in complexity of the FFT comes from the decomposition of the full N -DFT
calculation into two smaller N/2-DFT. This is known as radix-2 decomposition, and is
what gives raise to the requirement that NFFT is a power of 2. By using decompositions
with other radix than two, much more flexibility is achieved while still retaining much of
the complexity benefit, especially if the factorization is done into small prime numbers.
This is known as the mixed-radix FFT [16, Sec. 9.5.1]. An example of this is the FFT
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Table 3.2: Table of the integer FFT sizes following (3.1) for different resampling rates and their prime factorizations.Only contains the FFT sizes larger than the 524, as the size must be larger than the number of subcarriers required.
R NFFT Prime factors
1 2500 22 · 54
5
4 2000 24 · 53

2 1250 2 · 54
5
2 1000 23 · 53
25
8 800 33 · 5 · 7
4 625 54

size of 1536 used in LTE [25, pp. 17]. The paper commonly credited for the FFT, [26],
also mentions this and notes that the radix-3 decomposition is the most efficient in terms
of number of operations but radix-2 has other advantages. From radix-3 and on the
efficiency decreases, so as low radix as possible is wanted. The article adds that it is
possible to select any radix below 10 without increasing computations more than at
most 50 % per decomposition.
An approximate number of operations for a size N , given repeated decomposition in

radix r, can be found with the recursion:

opsr(N) =

N(r + r − 1) + opsr(N/r) for N > R

N(N +N − 1) for N ≤ R.
(3.3)

It should be noted that number of operations is not always a good metric for comparing
the performance of algorithms. For instance, the software library FFTW does not
perform the FFT decomposition all the way to a prime number, but instead to a size
that depends on the cache size of the executing machine [27]. Benchmarks of the options
in Table 3.2 are shown in Appendix A.
In Table 3.2 all options for integer FFT sizes and their prime factorizations are listed,

for which the resampling rate is a a multiple of 1
8 . In comparison, selecting the minimum

size NFFT = 524 factorizes into 22 · 131 with a resampling rate of R = 625/131 thus
not only factorizing worse for the FFT, but also requiring more complex resampling.
The number NFFT = 625 can factorize into 54 which is a relatively small prime number.
Because of the lower memory and computational requirements, it is chosen to use this
FFT size. As the VSA also samples with a sample rate of 2.4GHz, a downsampling
operation is added in the receiver, corresponding to the upsampling. Going forward
system sample rate is used for signals that are not yet upsampled, while RF sample rate
is used for signals that are.
With NFFT = 625 more subcarriers are introduced compared to the specified 524.

Since a bandwidth of 500MHz is still targeted the unused 625− 524 = 101 subcarriers
are set to zero. With this configuration a filter length of 31 taps is found to provide
good dampening while not affecting performance substantially. Since specific spectral
limits are not specified for this project, no further refinement is done to change this size.

3.3.2 synchronization
Section 2.3.6 describes issue with synchronization that must be dealt with in order to
successfully receive a signal. As the LitePoint tester uses the same oscillator for both the
VSA and VSG very little frequency offset is observed and no synchronization is required
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to compensate. In this prototype the receiver also knows when the transmitter starts a
transmission so any time offset that occurs will be from wave propagation delay and
inaccuracies in triggering.
It was noted during testing with a wired connection that a steady offset exists, which

is to be expected. Furthermore, it was found that the offset changes randomly with 8
samples, requiring time synchronization to correctly locate symbols. It should also be
noted that over the air tests will require time synchronization in any case. The distance
between the transmit and receive antennas can vary at least between (approximately)
zero and 10m, which is a difference in delay of:

TToF = d

c
≈ 33.36 ns. (3.4)

Or correspondingly in samples at the system sample rate:

SToF = TToF · 600 Msps ≈ 20 samples, (3.5)

where d is the distance between the transmitter and receiver and c is the speed of light.
Since this distance is not known, time synchronization is required.
It is chosen to perform this synchronization using a Zadoff-Chu (ZC) sequence. A

ZC sequence is the waveform used in multiple places in LTE, for instance the primary
synchronization signal[7]. ZC sequences are defined as [28]:

xu(n) = e−j
πun(n+(NZC mod 2))

NZC 0 ≤ n ≤ NZC. (3.6)

Each sequence is parameterized by two variables, the length of the sequence NZC and
an integer u. If u is selected to be relatively prime to NZC, then the autocorrelation
of the sequence is zero at every non-zero delay [28]. It is also straightforward to see
from Equation (3.6) that the sequence has a constant amplitude. It is possible to show
that this property continues to be true for variations such as cyclic shifts or additions of
constants [28]. Thus, if a ZC sequence is shared between the transmitter and receiver,
the receiver can identify time offsets using correlation.
For the prototype a Zadoff-Chu sequence of length NZC = 17 and the relative prime

number u = 7 is chosen. This length is chosen arbitrarily to be as high as possible, but
lower than the maximum delay in Equation (3.5). Further development should reconsider
this length.

3.3.3 channel equalization
Channel estimation is performed using pilots as described in Section 2.3.7. The WIRT
specifications in Section 2.4 describe a choice of 124 subcarriers used for pilots per
OFDM symbol.
To get an estimate of the channel in the other 400 data carrying symbols, linear

interpolation is used. With an estimated channel H[k] at frequency fk, the interpolation
is performed as:

Ĥ[k] = H0 + (fk − f0)H1 −H0
f1 − f0

. (3.7)

In the equation fk is frequency corresponding to interpolated channel estimate Ĥ[k] and
H0, H1 correspond to the two estimated channel responses that are closest in frequency



3.3. Specifics of the implementation 21

to the point k with lower and higher frequency respectively. The effect of the linear
interpolated channel is shown in Figure 2.4. Using this interpolated channel estimate,
equalization is performed by:

x̂[k] = x[k]
Ĥ[k]

, (3.8)

giving the equalized symbols x̂[k] from the unequalized symbol x[k]. This type of
equalization is known as zero-forcing. It is a relatively simple method for equalization
and suffers from problems of noise enhancement, especially when the channel has large
gaps of very low channel gain at certain frequencies [29]. Other types of equalization
exists that are better able to account for the noise power at the cost of increased
computational complexity. Equalization is an important part of a real wireless system,
however also a large and complex topic in itself. For this project it is therefore chosen to
keep the zero-forcing equalizer, but further studies should consider better equalizers.

3.3.4 soft demodulation
Soft demodulation is the process of calculating probabilities to go along with the
demodulated values at the receiver. For each symbol, the log likelihood that the symbol
received xr is symbol transmitted xt is:

LLR(xr) = log

 Pr(xr = xt|r = (I,Q))∑
xi 6=xt Pr(xr = xi|r = (I,Q))

 , (3.9)

where I and Q are the real and complex part of the received sample. Assuming an
AWGN channel, the noise is Gaussian and the received signal is described by a normal
distribution with mean given by the sent symbol and variance equal to the noise variance.
For QPSK modulation the bits can be compared individually, instead of as part of a

symbol, with minimal loss. In other words, if the constellation is chosen correctly, the I
and Q components can be decoded individually without significant increase in decoding
error [14].
Thus, when considering only either the real or the imaginary part of the received

signal, the Log-Likelihood Ratio (LLR) for received value z becomes:

LLR(z) = log
(
f(z|µ = 1/

√
2, σ = σn)

f(z|µ = −1/
√

2, σ = σn)

)
= log
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 , (3.10)

where f(z|µ, σ) is the PDF of a normally distributed random variable Z ∼ N (µ, σ) with
mean µ and variance σ2. σ2

n is the variance of the noise. Equivalently the expression
becomes:

LLR(z) = − 1
2σ2

n
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√
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(3.11)
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1 def qpsk_demodulate_soft(data, ESNO):
2 """

Soft demodulate the QPSK bits based on an AWGN channel.
4 Returns the LLRs on the I and Q channels in the real and complex parts of the result

respectively.
This is NOT the symbol LLR.

6 """
inv_noisepwr = 1 / (10**(−esno / 10))

8
llrs = (np.sqrt(2) * inv_noisepwr) * data

10
return np.stack((llrs.imag, llrs.real), axis=−1)

Code snippet 3.1: Python code for calculating the LLR values for the complex received symbols in the vector data

Note that LLR in this case refers to the likelihood that the original bit is zero compared
to the probability it is one. In other words, a positive LLR represents a zero and a
negative represents a one. Corresponding Python code for calculation of the LLR values
is shown in Code snippet 3.1.
For non-AWGN channels where equalization is used this method can still be used,

albeit with higher noise level if the equalization is not perfect.
Soft demodulation requires an estimate of the SNR. An estimate of this number can

be found from the channel estimation. For the simple channel estimation used in this
project an estimate of the signal power can be found by summing up the energy in the
pilots. This can be compared to a reference noise power to find an estimate of the SNR.
The noise reference can be measured when no transmissions are present, or found based
on used bandwidth and the specifications of the receiver.

3.3.5 matching the wirt specification
When a user in the WIRT system is allocated a time slot it will want to use as much of the
allocated transmission time as possible to improve the reliability. For the implementation
the number of OFDM symbols that can fit in a single transmission on the WIRT system
therefore has to be determined.
In the previous section, Section 3.3.1, an FFT size of NFFT = 625 is chosen. This

number is also the total number of subcarriers per OFDM symbol and the number of
samples in the time domain after the IFFT. For every OFDM symbol, a cyclic prefix of
duration TCP = 69 ns is required (specified in Section 2.4). In terms of samples in the
system sample rate this corresponds to:

SCP = TCP · Fs = 69 ns · 600 Msps = 41.4 samples, (3.12)

where Fs is the system sample rate before interpolation. Since it is only possible to have
integer samples sizes, the total number of samples to be transmitted per OFDM sample
is:

SOFDM = d41.4e+ 625 = 667 OFDM samples. (3.13)

This is again at the system sample rate before resampling. At resampling rate R = 4,
the time it takes to transmit a OFDM symbol is given as:

TOFDM = SOFDM ·
R

Fs
u 1.11 µs. (3.14)
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The WIRT specifications in Section 2.4 specify the minimum slot size as 20 µs. Since this
is the minimum duration, the number of OFDM symbols per transmission becomes:

NOFDM =
⌈

20 µs
TOFDM

⌉
= 18. (3.15)

The number of OFDM symbols per WIRT transmission is closely related to the number
of bits per transmission. Each OFDM symbol has 400 subcarriers available for data and
each subcarrier carries a QPSK symbol. The total number of bits per WIRT transmission
is therefore:

Nbits = NOFDM · 800 bit
OFDM symbol = 14 440 bit. (3.16)

3.4 TESTING, VERIFICATION AND OPTIMIZATION

With the implementation details described, the full WIRT prototype is built.
An important aspect of developing a system is testing that the code works as expected

and verifying that the expected code fulfills the requirements. Furthermore, when
developing the system even a small amount of optimization can enable faster development
iteration.
As described in Section 3.1 the code is developed in several modules, that are subse-

quently connected to produce the full results. This practice enable individual testing of
the modules during development instead of testing the full system at once. Further, when
changing a module at a later stage individual tests help minimize software regressions.
Four test modules are used in this project; instrumentation tests, OFDM tests, ECC

test and other miscellaneous tests. The instrumentation tests deal with the LitePoint
instrument. Different download formats are tested and benchmarked, in addition a
test that uploads and redownloads samples to confirm operation. The OFDM test
compare the implementation to a similar implementation in MATLAB. These tests are
supplemented with logic for creating spectrums to confirm the subcarrier mapping works
as expected. The ECC tests evaluate the performance of a number of configurations of
the polar codes described in Chapter 5. Finally, a few miscellaneous tests are used for
testing the ZC implementation and similar.
In addition to tests, a number of tools were used during development to ease the work

and improve the code quality. The first is a debugger. When working with complex chains
of logic or highly data dependent modules, a debugger enables temporarily pausing the
logic and retrieving the value of all variables. For finding edge case failures a debugger
has greatly increased the speed at which bugs are found. The next tool is a profiler.
When developing numerically complex software it can be difficult to determine which
computations are taking up time. Furthermore, it is not always immediately clear
which parts of an application is the bottleneck, as additional unintended operations
may be introduced unknowingly. A profiler times and reports the execution time of
the application, enabling the developer to get a clear picture of where the time is
spent. During development of this prototype a profiler has helped multiple times by
identifying seemingly insignificant operations that took up more time than expected.
The debugger and profiler used during this project are incorporated in the Spyder
development environment.
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While Python is a highly productive language from a perspective of programmer
time, in terms of computational efficiency it is not optimal. One of the main reason
for this is the interpreted nature of the language. This enables fast prototyping and a
large number of options for dynamically changing the environment as the program runs,
however it also makes automatically compiled optimization difficult. In order to counter
this problem Python includes features for extending with functionality written in C or
Fortran. Scientific computing packages, such as the NumPy library, make heavy use of
this feature to improve the performance.
With the prototype built and integrated with the LitePoint tester, a basic WIRT

system is realised.



4 D E L AY E S T I M AT I O N

The goal of the project is to evaluate the achievability of the latency requirements for
WIRT. In order to reason about the achievability of the very low latency, first a lower
bound for the system delay is found. After the bound is found, the proportions of the
delays is estimated to get a picture of where the computational complexity is located.
Finally, appropriate hardware architectures are discussed.

4.1 STRUCTURAL DELAYS

To provide the lowest latency possible the system should start processing samples as
early as possible. From the WIRT specifications in Section 2.4, the RF transmission
takes up 20 µs on its own, a full fifth of the total targeted system delay. In order to
provide the largest amount of processing time the processing should therefore start while
the reception is still occurring. Not all components of the system work on a single
sample at a time however. For instance, the FFT operation can not be performed before
all NFFT samples have been found and so introduce a delay in the system. The delay
incurred here is present even if the computations were performed in zero time, and so
provide the lower limit of the latency in the system. Since it is part of the structure and
so not dependent on computations, it will be denoted structural delay.

4.1.1 transmitter
The transmitter is first analyzed for structural delays. During the section all data for
transmission is assumed available, and the RF-block is assumed to take any samples
presented without delay.
The diagrams in Figure 2.2 provided a good logical picture to understand OFDM

chains in general. To better argue about the delays in the transmitter however, more
specificity is required. In Figure 4.1a a diagram of the transmitter implementation is
shown. The setup in the figure transmits one WIRT packet, from the information bits
and all the way to RF. The ECC block is the first one, and takes all the information bits
and encodes them. The bits are then split into frames that are the size of an OFDM
symbols. A total of NOFDM OFDM modulation operations are performed. Together with
the ZC sequence used for time synchronization the OFDM symbols are then collected and
serialized. Finally, resampling is applied and the sequence is sent to the RF components.
Using this diagram, an expression for the delay incurred in the transmitter can be made:

Dtransmit = DECC +Dsplit +NOFDM ·DOFDM mod +Dsync create +Dcollect +Dresamp. (4.1)

This expression is valid if all the operations are executed serially. In a similar manner, a
diagram is shown in Figure 4.1b in order to create an expression of the OFDM modulation
delay:

DOFDM mod = NSM ·DSM +DSCM +DIFFT +DCP (4.2)

The expressions cover the delay if all the processing is done in a serial fashion. This
is not the only option, as it is clear that the OFDM blocks are independent with each
other and with the generation of synchronization frame. Assuming unlimited hardware
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Figure 4.1: The implementation of the transmitter. (a) shows an overview and (b) is a diagram of the operations ofthe OFDM block itself.

an expression is made for the lowest possible delay:

Dtransmit min = DECC +Dsplit +DOFDM mod min +Dcollect +Dresamp, (4.3)

and
DOFDM mod min = DSM +DSCM +DIFFT +DCP. (4.4)

This delay is the with maximum parallelization, where all the OFDM modulations
and SM operations are happening at the same time. Equation (4.3) assumes that
DOFDM mod min > Dsync, which is seen later to be a reasonable assumption. These
expressions do not cover any further parallelization or speedup that can happen within
the operations themselves.
An estimate of the processing delay of each operation is given in the next section. For

now note that if all the information bits are available immediately when processing is
started, there are no places where delay occurs aside from processing delay.

4.1.2 receiver
In order to assess the delays in the receiver chain a similar diagram is made. Likewise
an expression for the overall delay is made:

Dreceive = Dresamp +Dsync +Dsplit +NOFDM ·DOFDM demod +Dcollect +DECC. (4.5)

This expression is very similar to the expression in the transmitter, however there
is a noteable difference in the assumptions; the received samples are not all available
immediately. Using the R = 4 downsampling with the RF sample rate Fs = 2.4 GHz of
the tester, the time it takes to transmit a single sample is:

Tsamp =
(
Fs
R

)−1

= 1.667 ns. (4.6)
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Figure 4.2: The implementation of the receiver. (a) shows an overview and (b) is a diagram of the operations of theOFDM block.

Thus, if NZC = 17 samples are required before the synchronization can even start, a
delay is incurred on the order of:

Dpre−sync = NZC · Tsamp = 28.333 ns. (4.7)

The same is clearly true for the rest of the system. For instance, demodulation of the
first OFDM symbol requires both synchronization to finish and SOFDM = 667 samples
to be available. Even if the synchronization is ready as soon as the SOFDM samples are
(Dsync = 0), demodulation can only begin after:

Dpre−OFDM = Dpre−sync + SOFDM · Tsamp = 1.140 µs (4.8)

The maximum delay occurs if all the samples are to be received before processing begins.
In this case:

Dstructural max = (NZC +NOFDM · SOFDM)Tsamp = 20.038 µs (4.9)

The ECC used in this project uses a low rate and repetitions. In good conditions
where SNR is large it is likely that the original message can be recovered before all the
repetitions are decoded. If a mechanism is introduced to discern if a packet is correctly
decoded or not, the system can stop decoding of further packets thus reducing both
decoding time and power used. Further considerations of how this is to be implemented
is delegated to furture studies and will not be made here.
Combining the expressions for delay in the receiver and the transmitter the worst case

serial latency becomes:

Dmax = Dstructural max +Dtransmitter +Dreceive. (4.10)
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This is however the worst case delay, as not only is the processing waiting for all samples
to arrive before processing, the processing in both the transmitter and the receiver
happens serially.

4.2 ESTIMATION OF OPERATIONS

With expressions for the delay established, an estimate is now made in order to determine
the feasiblity of upholding the deadline. Since different hardware configurations heavily
affect the performance of algorithms the idea is not to identify the exact timings, but
instead build an understanding of where the bottlenecks might be. An idea of what
the most significant computations are also enables a better choice of which architecture
might be most appropriate.
The transmitter delay in Equation (4.1) has six components. First the delays can be

split into the ones that occur where computations are performed and ones that occur
where data is split or moved in memory. In the transmitter the Split and Collect blocks
represent reinterpretations of bit structures; in the split block a single array is split
into NOFDM smaller arrays. Since the block simply reinterprets contents that are ready
in memory it can be represented as moving a pointer to a memory address. These
operations are therefore unlikely to be the largest contributers to latency.
The operations in the transmitter which require computation are the ECC, the OFDM

operations, creating the synchronization sequence and resampling the signal. Since a
definitive choice of ECC has not been made for WIRT at the time of writing it is hard
to estimate the complexity. It is well known however, that the codes that have state of
the art error correction performance require a significant amount of computations. It is
also common for ECC to have much higher complexity in the decoding process than the
encoding process. This is true for most codes such as convolutional codes, turbo codes,
LDPC codes and polar codes [30, 13]. In the next chapter a number of different code
options are evaluated and a hardware design is made for the selected polar code. For
the purpose of the delay estimation it is sufficient to note that the ECC has a very high
complexity in the receiver and a comparatively low in the transmitter.
The next computation is the OFDM modulation block. From Figure 4.1b and Equa-

tion (4.2) the block can be split into subblocks; the SM blocks, the SCM, the FFT
and appending of the Cyclic Prefix (CP). The operations of mapping bits to symbols is
straightforward to implement as a look-up table, in addition to being straightforward to
parallelize, thus making the resulting complexity negligible. Similarly, as the allocation
of subcarriers is constant, the operations in SM consists of placing the data samples
in the correct memory locations. Appending the cyclic prefix is also a data copy op-
eration. Compared to the three above steps, the FFT is a large undertaking. For a
625-point FFT, approximately 7020 complex Multiply ACcumulate (MAC) operations
must be performed, see Equation (3.3). This block is clearly the dominant factor in the
computational complexity of the OFDM block.
The last two computations are creating the synchronization sequence and resampling.

Since the synchronization sequence is constant over transmissions it can be precalculated
and recalled when required, thus not likely to be a limiting factor in the latency. Resam-
pling requires allocating new memory and filtering with a FIR filter. The complexity of
filtering is highly dependent on the length of the filter, but the operation is well studied
and structures such as poly-phase filters for resampling reduce the complexity. For a
resampling operation with a filter of length Lfilt and an original sample count of Msamples
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the number of multiply accumulate operations required is [24, ch. 10]:

opsresamp = Lfilt ·Msamples. (4.11)

Thus, for the M = 667 samples per OFDM symbol, if the filter has more than Lfilt = 10
then more MACs operations are to be performed here than in the FFT. However, the
resampling operation is also highly dependent to the sample rate of the specific RF
hardware used.
From the transmitter the most computationally intensive operations are the FFT and

the resampling. An qualitative summary of the computations is shown in Table 4.1.
Compared to the transmitter the receiver is more complex. The resampling, cyclic

prefix, SCM and FFT operations are similar to the transmitter and carry approximately
the same complexity, but more operations are to be performed for soft symbol demod-
ulation, synchronization and channel equalization. Soft demodulation of the symbols
requires an estimate of the SNR and a complex multiplication per sample. These are
relatively simple computations and not dominant for the delay.
As described in Section 3.3.2 only time synchronization is required for this project.

To find the offset the cross-correlation is found between the known sequence and the
received samples. The cross-correlation is defined as:

C[k] =
∞∑

n=−∞
S[k + n] · ZC∗[n], (4.12)

where S[n] are the received samples, ZC[n] is the ZC sequence and x∗ represents the
conjugate of a complex variable x ∈ C. Since the signals are finite in length, for each
k only Nmin samples overlap where Nmin = min(NS , NZC) is the length of the shorter
sequence. The range of k is chosen within where the sequence is expected to be.
In Section 3.3.2 the maximum offset is determined to be NS = 20 samples at the

system sample rate of 600Msps. To ensure the system continues working in the presence
of slightly longer distance or other small delays, an additional 25% extra samples are
included in the correlation. The ZC sequence has a length of NZC = 17 and is thus the
smaller of the two. Only the points where the sequences fully overlap are included. The
number of MAC operations required for such a cross-correlation is:

opssync = NZC · (1.25NS −NZC + 1) = 153. (4.13)

This is a significantly lower number of computations compared to the FFT, and the
synchronization is only performed once at the beginning of reception. The synchronization
is therefore not a large part of the delay.
Only time synchronization is required for this project. Other, more extensive, syn-

chronization methods that are required in a real system will likely take more processing
to complete. Exactly how much is outside the scope of this report. Given that OFDM
systems are well researched and see wide use, this is not considered deal-breaking.
Finally, the channel estimation and equalization are also unique to the receiver. In

this project the channel is estimated using a single complex division per pilot subcarrier,
followed by interpolation to match the number of data subcarriers. The interpolation can
be done in a number of ways, including evaluating Equation (3.7) directly or using the
same method as when resampling. Equalization is then performed with a single division
per data subcarrier. Each OFDM symbol therefore requires 524 complex divisions and
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Table 4.1: A qualitative overview of the approximate computational complexity of the operations in the transmitter.
Symbol Description Computation
DECC Error Correction Code Medium
DSM Symbol Mapping Low
DSCM SubCarrier Modulation Low
Dsync create Creation of the ZC sequence Precalculated
DIFFT Inverse Fast Fourier Transform High
DCP Cyclic Prefix Low
Dresamp Resampling Medium to high

Table 4.2: A qualitative overview of the approximate computational complexity of the operations in the receiver.
Symbol Description Computation
Dresamp Resampling Medium to high
Dsync Synchronization Medium
DCP Cyclic Prefix Low
DFFT Fast Fourier Transform High
DSCM SubCarrier Modulation Low
DCh. Est. Channel estimation Medium
DEQ Equalization Medium
DSM Symbol Mapping Low
DECC Error Correction Code Very high

400 complex interpolation operations in total. Neither resampling or complex division
are trivial operations to perform, but they are not dominant either. Since the focus
of this report is not on channel estimation and equalization, they are not considered
further. A qualitative overview of the receiver delays is presented in Table 4.2.

4.3 FEASIBILITY

Based on the above analysis and the benchmarking in Table 6.1 it is clear that the
operations that introduce the highest latency are the ECC decoder, resampling and the
FFT.
The ECC encompasses such a large part of the overall latency that further study is

warranted. In Chapter 5 options for suitable ECC are surveyed, one is selected and
implemented in the software prototype, and a basic hardware design is made for decoding.
While resampling is a large part of the delay, it is chosen to delimit the project from
further study of this topic. More information on algorithmic structures for effective
resampling can be found in [16, 24, 31, 32]. Finally, the FFT is considered in more
depth.

4.3.1 fast fourier transform
To get a preliminary estimate of the computational time for the FFT, benchmarks are
performed on a development x86 machine. The results of these are shown in Table 4.3
for three different configurations; NumPys built-in FFT based on FFTPACK [33], and
the FFTW library called from Python and C respectively [27]. To call the FFTW library
from Python the wrapper library pyfftw is used.
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Table 4.3: Timing results of calculating the FFT withNFFT = 625. The Python results are timed using ipython built-inmagic command "%timeit" and given as mean ± std. dev. of 20 runs, 100000 loops each. The C FFTW result ismeasured with the POSIX clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock as the mean of 10000000iterations.
FFT library Time
np.fft.fft 16.2 µs ± 348 ns
pyfftw fft 39.6 µs ± 2.61 µs
C FFTW 3.11 µs

In total 2NOFDM = 36 FFT operations are run in order to encode and decode. Even
with the remarkably fast C code the total computing delay of the FFT alone would be:

TFFT total = 2NOFDM · TFFT = 111.96 µs. (4.14)

This is higher than the total allowable delay, ruling out the possibility that the full chain
can be implemented without careful delay considerations.

4.3.2 discussion of possible architectures
The next step in improving the performance is therefore to reevaluate the computer
architecture used for the project. One option is moving to a Graphics Processing Unit
(GPU) based architecture. The system has a large number of data operations, but
relatively few control operations. This is suitable for the SIMD based, deeply pipelined
GPU architectures. The architectures are suited for high throughput, processing large
amounts of data in parallel.
A disadvantage of this move is the relatively low flexibility of GPUs. These processors

are made to be used in addition to a general purpose processor, with data transfered
back and forth between the processors as required. Additionally, the time it takes to
start up a GPU pipeline can be large, resulting in high latencies [34]. GPU computing
is inherently designed for high throughput, more than low latency [35].
The next option is to move to a Digital Signal Processor (DSP) based architecture.

DSPs are a type of microcontroller specialized for signal processing applications through
hardware for accelerating common operations and memory suitable for data streaming.
They can provide a large increase in performance compared to ordinary microcontrollers
and can be useful for many signal processing applications. They also come with much
of the same flexibility of all software programming. However, similarly to ordinary
microprocessors they are limited to fast operations using the hardware they carry.
While the processors are well-suited for FFT operations, decoders for polar codes are
less common. Like a ordinary processor the decoder could be implemented, but the
performance might suffer.
An alternative is to move to a hardware reconfigurable architecture, such as an Field

Programmable Gate Array (FPGA). FPGAs are highly parallel devices that enable very
high throughput of custom operations by direct design of appropriate digital circuits.
Since the hardware can be designed to a specific application very low latencies can be
achieved at the cost of developer time.
The FFT is a simple comparison of how much can be gained by parallelizing the

calculation. FFT operations are highly parallel operations, enabling straightforward
trade-off between area and latency. For their lineup of FPGAs Intel has released an FFT
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generator supporting powers of two sizes FFT. The generated circuit can perform the
transform in the same number of cycles as there are complex samples. In other words
an FFT of size NFFT = 1024 has a latency of 1024 cycles. If the FPGA is clocked at
300MHz the latency becomes 3.41 µs, almost most exactly the same as the measured
results from the x86 processor at a much lower frequency. Compared to that processor
however, in the FPGA it is also possible to create more than one FFT computation unit,
thus resulting in lower latency by letting them work in parallel.
The FFT cores generated by the Intel IP generator are limited to power of two sizes.

More flexible designs exist however, such as [36], which also achieves higher throughput
and lower latency compared to the Intel core (in the paper denoted Altera).
In this chapter the delays of the WIRT transceiver were estimated to evaluate which

parts introduce most latency. It is found in Section 4.1 that if processing is not started
while reception is still ongoing more than 20 µs of delay are unavoidable structural delays.
If processing of the first OFDM frames is started as soon as adequte samples have arrived,
this delay is reduced to 1.44 µs. After the delays Section 4.2 finds that a very large part
of the latency comes from decoding of the ECC. In order to hit the latency targets for
WIRT, Section 4.3 considers multiple options for computing architectures. It is found
that FPGAs are the most suitable target, in order to hit the latency requirements.



5 A N A LY S I S O F E R R O R
C O R R E C T I O N C O D E

As discussed in the previous chapters, the ECC used has a major impact on the
performance of the communication system. Contrary to many of the other parameters
of the WIRT system the ECC is not chosen yet. In this chapter a number of codes
are evaluated and a suitable option is chosen. Section 5.1 reviews appropriate codes.
An implementation of polar codes is described in Section 5.2. Finally, in Section 5.3,
the latency of a polar decoder is evaluated and alterations to make the decoder more
suitable for reconfigurable architectures are presented.

5.1 SELECTION OF AN APPROPRIATE CODE

A good starting point for modern ECC are the codes considered for 5G, especially the
ones used for control channels and URLLC. The codes selected for eMBB are LDPC
and Polar codes for data and control information respectively [37, tab. 5.3-1, 5.3-2]. In
this context control information is information used for transmission scheduling, link
adaptation and similar important, non-data information. Additionally, turbo codes are
added to the comparison because of their use in LTE.
Turbo codes are a class of ECC that combine two or more convolutional codes to

produce a result that is better than the sum of its parts. Along with convolutional
codes themselves, this is one of the two types of ECC used in LTE [7]. The encoding is
performed by passing the input through a series of concatenated convolutional codes.
The decoder is also based on multiple decoders for the same convolutional codes, however
with a twist. Instead of decoding the received signals separately, the two decoders share
the information of their individual decodings repeatedly. This gives rise to an iterative
decoding process, which is also the origin of the name [13, ch. 7]. Enhanced Turbo codes
are in the same family of codes as the turbo codes used in LTE, however with significant
improvements especially at coding rates below 1/3 and for high SNR scenarios [38].
LDPC codes are another commonly used type of ECC, but with fame from WiFi

instead of LTE [39]. These codes are based on parity checks, where the parity of a bit
sequence is sent together with the data. Which information bits each parity bit covers,
also known as variable and check nodes respectively, is part of the code specification.
Compared to other linear codes the number of information bits that are covered by
each parity bit is relatively low, hence the name [13, ch. 5]. Most common LDPC
decoders work by finding a solution to each of the sparse parity codes independently
and afterwards collecting the results. The process is then repeated with the new parity
estimates to give an iterative decoding process [13, ch. 5].
Finally, polar codes are a newer class of ECC originally proposed in [40]. Instead of

building on concatenated convolutional codes as the two previous codes, polar codes are
based on the concept of virtual channels. The encoding procedure maps the information
to be sent to a set of virtual channels that are then converted to actual channel uses
through recursive application of a short block code. It can be shown that when the
mapping is reversed the virtual channels polarize, going to either perfect reliability or
complete randomness. Further the fraction of reliable channels is equal to the capacity
of the channel [40]. Polar codes are the first ECC to asymptotically achieve the channel

33
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capacity [9, Ch. 11].
For URLLC the debate of coding solutions for URLLC continued until late into the

standardization process [9]. It has been chosen for 5G NR to settle on one of the two
codes used in eMBB in order to be able to reuse hardware [37]. Substantial evaluation
has been performed on both codes for the URLLC scenario [41, 42, 43, 44]. While the
sources disagree on which code is best, in the end one of the final documents before
standardization of 5G NR [42] observe that polar codes have advantages over LDPC in
terms of reliability and latency for small blocks, specifically when the payload is less
than 400 ~ 500 bits. Since this is the case in WIRT, this recommendation is useful.
Before the two codes were settled on others codes were also evaluated. One of the more

prominent ones is enhanced turbo codes. These codes are well known from LTE, however
improvements have been made since the standardization, including lowering of the
mother code rate, improvements to the used convolutional codes, better rate adaptation
and improved interleaver [9, Ch. 11]. One of the major advantages of enhanced turbo
codes is that the complexity is flat across all rates [38, 45]. For the high rate codes used
in eMBB the complexity is higher than corresponding LDPC codes, but when the rate
is lowered this picture is reversed, and the LDPC decoders become more complex. This
flat complexity can therefore be an advantage for the low rate scenario surveyed in this
report.
[46] compares the performance of Tail Biting Convolutional Codes (TBCC) and polar

codes at low rates. The findings are that it is possible to create a low complexity polar
code encoder and decoder. Furthermore, the polar codes significantly outperforms the
TBCC at low coding rates.
Outside of the 5G certification committee code selection for New Radio (NR) has

also been discussed. In [47] polar decoders are reviewed in comparison with LTE turbo
codes and LDPC codes used in WiFi, WiGig and Ethernet. The review concludes that
while polar codes can match the error correction performance of LDPC and Turbo codes,
the current hardware implementations do not have the throughput to match. Keeping
this in mind, research continues in architectures for polar codes. In [48] many of the
same authors of [47] create an implementation of what they call a Fast-SSC-List decoder
which has a throughput of 12 Gbps and a latency of 0.54 µs. This is clearly low enough
latency for the proposed system.
Comparing the different solutions no single code is the best at every scenario. Most

of the codes described above can also be altered, improving their performance in the
scenarios specific to WIRT. In this project it is chosen to focus on polar codes due to
their novelty and them being the choice for high reliability codes in 5G. Future research
should extend the comparison between codes in the WIRT scenarios based on the results
of this project.

5.2 POLAR CODES

As described in the previous section, polar codes are a new class of ECC only recently
introduced in [40]. The codes are the first to provably reach capacity asymptotically,
but for shorter lengths the original decoder performance was not on par with LDPC and
Turbo codes. Since then a number of improvements were found, bringing the performance
on par and even above other modern codes [9].
In this section polar codes are described in sufficient detail for implementation in this

project. Throughout the section, a single instance of encoding and decoding is described
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Figure 5.1: An illustration of the construction of polar codes. The round nodes represent XOR operations. (a) illustratesthe basic operation, and (b) illustrates how the basic operations are combined for largerNpolar.

where Npolar is the number of channel usages available for transmission and K is the
number of information bits to be sent.
The overall idea is to create a set of virtual channels based on the real channel uses. The

real channels are modeled as failing with probability pfail, but which bits fail is unknown
and thus all the bits sent have equal likelihood of failing. The virtual channels on the
other hand are constructed so the bits do not have equal probability. By encoding the
bits together, the virtual channels polarize where the channels either become completely
reliable with very low pfail or completely unreliable where no information can be passed
through. Note that the average amount of bits that can be transfered through Npolar
transmissions does not change, only the distribution of the failures.
Since the bits can be deterministically ordered by reliability, the K information bits

can be sent on the most reliable of the Npolar transmissions. The bits that are too
unreliable to use are termed the frozen bits. While it is not required, they are customarily
set to zero. The set of non-frozen (information) bit are denoted as A. Polar encoding
transforms a vector of Npolar bits, denoted u = {u0, u1, . . . , uN}, to another vector of
the same size, denoted x = {x0, x1, . . . , xN}. The subset of u that contains information
is denoted uA ∈ {0, 1}K , while the frozen bits are uAc ∈ {0, 1}Npolar−K .
As the main goal of this project is to evaluate polar codes for the use in WIRT, the

theoretical proof for the effectiveness of channel polarization is not covered. The reader
is instead referred to [40] for the original description, and to the significant amount of
research on improving the codes later, e.g. [47, 49, 50].

5.2.1 encoding

Polar codes are made up of a recursive application of a basic transformation [40]. In
Figure 5.1a the basic transformation is seen, where two bits u0 and u1 are mapped to
two channels x0 and x1. Larger codes are created from repeating this transformation, as
seen in Figure 5.1b. Here a Npolar = 4 code is created from two basic codes. Since all
polar codes are created from this recursive application the sizes are limited to powers
of two Npolar = 2Lpolar . Each increase in size adds another layer l, for a total of
Lpolar = log2(Npolar) layers. Between each layer a shuffling is performed. In Figure 5.1b
this is marked with dashed lines.
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1 def polar_transform(u):
2 if len(u) == 1:

x = u
4 else:

u1u2 = np.mod(u[::2] + u[1::2], 2)
6 u2 = u[1::2]

8 x = np.concatenate((polar_transform(u1u2), polar_transform(u2)))
return x

Code snippet 5.1: Recursive Polar encoder.

1 def polar_transform_pipelined(u):
2 N = len(u)

N_half = N//2
4 n = np.log2(N).astype(int)

6 working_bits = u.copy()
for n_i in range(n):

8 u2 = working_bits[1::2].copy()

10 working_bits[:N_half] = working_bits[::2] ^ u2
working_bits[N_half:] = u2

12
return working_bits

Code snippet 5.2: Non-recursive memory reduced Polar encoder.

The Npolar = 4 case shown in Figure 5.1 can also be expressed as a set of equations:

x0 = u0 ⊕ u1 ⊕ u2 ⊕ u3,

x1 = u2 ⊕ u3,

x2 = u1 ⊕ u3,

x3 = u3,

(5.1)

where ⊕ represents modulo 2 addition. Looking at this equation it is straightforward to
see that the encoding process can be created as a matrix multiplication. This is also how
[40] originally describes the procedure. However, performing a matrix multiplication is
not the most efficient manner of performing this encoding operation. The complexity is
O(N2) and for large values of N it becomes infeasible. Another, much simpler, method is
simply performing the operations recursively as shown in Code snippet 5.1. This method
is much less computationally intensive as this time no multiplications are required. A
disadvantage is that whenever a function is called in Python (and indeed most languages
with recursion), some overhead is required. A better way is therefore to pre-allocate all
the required memory and operate on in an in-place manner. Python code to perform
this permutation is shown in Code snippet 5.2.
One of the difficulties of polar encoding is choosing the set A, that decides which

bits are frozen and which are used for information. [40] proposes a Monte Carlo based
sampling method, although the author notes that this method has several disadvantages.
One of the disadvantages is the method is highly dependent on the channel. For a
specific channel, a code can be constructed at a specific SNR and if the code is used far
from this point the performance decreases.
During standardization of polar codes for 5G, another method was found. This so-
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called Polarization Weight method sorts the virtual channels by their reliabilities and
selects the K most reliable bits as the set A [50]. The major discovery was that the
reliability of bits was corresponding to the bits set in the index. For an index i ∈ Z with
bits Bn−1, Bn−2, . . . , B0, the polarization weight is:

Wi =
n−1∑
j=0

Bj ·
(
βj + 1

4β
(1/4)j

)
, (5.2)

where β is an adjustable parameter. In [50] this is known as the Higher Order Polarization
Weight method. The authors recommend a base of β = 21/4, a recommendation which
is followed in this project. The set of indices A is created from the K values of i with
the largest weight Wi. This method has the major advantage that it is independent of
the channel and the channel parameters, in addition to the simplicity.

5.2.2 decoding
If no noise is present on the channel the decoding can be performed by repeating the
encoding process in Equation (5.1) with x and u switched. However, the goal of an ECC
is to improve the error correcting performance in the noisy case. Even a single flipped
bit would disable the above method, and other decoding algorithms must be used.
In [40] a low complexity Successive Cancellation (SC) decoder is presented. This

decoder uses the bit likelihoods from soft demodulation, as described in Chapter 3, and
transforms them in a similar manner to the encoder. The effect can be described as
running the encoder in Figure 5.1 in reverse, but instead of performing the operation on
bits, it is performed on probabilities. Transforming from likelihoods to bits is then a
simple case of evaluating which bit ûi is most likely.
[40] describes the decoder in terms of probabilities; the probability that a bit is zero

versus it is one. To improve numerical stability the same operations can be performed
using log likelihoods [51]. As the soft demodulation is already performed in log likelihood
domain in Section 3.3.4, this fits well with the rest of the system. When moving in
reverse through Figure 5.1, the additions are replaced with an F operation and the
branching is replaced by the G operation. In the log likelihood domain these are [51]:

FLLR(LLRa,LLRb) = 2 tanh−1 (tanh(LLRa/2) tanh(LLRb/2)
)
, (5.3)

and

GLLR(LLRa,LLRb, u) =

LLRb − LLRa if u = 1
LLRb + LLRa else.

(5.4)

Using the F and G functions, a polar code can be visualized in another way. [52]
presents a tree structure for polar codes. An example of this structure is shown in
Figure 5.2 for a polar code of size Npolar = 8. The tree consists of nodes and branches
and branch represents either an F or a G operation. Each node vnl has a single parent
and two children, and can be identified with a layer l and an index n. The root of the
tree, the top node, contains the input LLR values from the channel and is classified as
layer 3.
Each node in the tree except the root node gets a list of LLRs from its parent node,

performs computations on them and returns a list of bit estimates back to the parent. In
Figure 5.3 a single node v is shown. α represents LLRs and β represents bits. The order
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Figure 5.2: A tree structure used to represent the decoding process of polar codes based on message passing. Anode unl is the n-th node in layer l. The decoding process moves from the top-most layer and down, left to right.When moving down the LLRs are passed. When moving up the decoded bits are passed.
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vrvl
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Figure 5.3: A single node in Figure 5.2. Information is passed from the parent node pv to node v, which passes it onto children vl and vr . The bit estimates are passed from the children back up to v, where it is again passed on to pv .
α represents LLRs values and β represents bit estimates.

is as follows: pv passes αv to the node v. v performs the F operations to produce αvl
which is passed to the left child vl. When vl is done processing, it passes the bit estimate
βvl back up to v, that uses this estimate to perform the G operation and thereby creates
αvr. αvr is passed to the node vr, which again returns a bit estimate βvr. With the bits
collected from vl and vr, v computes and returns the final bit estimate βv back to the
parent node.
This process repeats itself at every node to produce the bit estimates. At the root

node, α is a vector the size of the polar code. Each time it is passed to the child nodes
the vector is reduced to half the size, until it reaches the leafs of the tree. At the leaves
the bits are evaluated, immediately returning a bit estimate.
The central recursive function implementing this is shown in Code snippet 5.3. In

the first call to the function av is the vector of channel LLRs, all_bits is a reference to
an empty list and A_set is a set of indicies describing the positions of the non-frozen
information bits. During operation the function fills the output bits into the all_bits
list, that serves as the output. It is straightforward to show that each layer requres N/2
F and G operations, for a total of 1

2N · log2(N) operations of each.
Many alterations to the original decoder described in [40] exist. This decoder does

not achieve ECC performance comparable to LDPC and Turbo codes until code lengths
become significantly longer than is common in systems today. To overcome this problem
[53, 49] describes a method of improving the ECC performance by extending the SC
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1 def f_op(LLR0, LLR1):
2 """

Perform the F operation in a vectorized manner.
4 """

6 return 2 * np.arctanh(np.tanh(LLR0/2) * np.tanh(LLR1/2))

8 def g_op(LLR0, LLR1, u):
"""

10 Perform the G operation in a vectorized manner.
"""

12
mask = (u == 1)

14 LLR0_signed = LLR0
LLR0_signed[mask] = −LLR0_signed[mask]

16
return LLR1 + LLR0

18

20 def polar_recurse(av, all_bits, A_set):
"""

22 Perform the recursion central to the SC decoding of polar codes.

24 av are the log likelihoods from the parent (caller).
all_bits is list for the final bits.

26 A_set is a set of the non−frozen bit locations.
"""

28 if len(av) == 1:
# This is a leaf node

30 bit_i = len(all_bits)
if bit_i in A_set:

32 cur_bit = np.array(av < 0, np.int8)
else:

34 cur_bit = np.array([0], np.int8)

36 all_bits.extend(cur_bit)
return cur_bit

38
# Not a leaf node

40 av_len_half = len(av) // 2
x = av[:av_len_half]

42 y = av[av_len_half:]

44 # Left child
avl = f_op(x, y)

46 bvl = polar_recurse(avl, all_bits, A_set)

48 # Right child
avr = g_op(x, y, bvl)

50 bvr = polar_recurse(avr, all_bits, A_set)

52 # Combine and return
bv0 = bvl ^ bvr

54 bv1 = bvr
result = np.concatenate((bv0, bv1))

56
return result

Code snippet 5.3: Python implementation of the F andG operations, and the recursive function that calls them.
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Figure 5.4: Comparison of Rate R = 1/2, N = 213 BER performance between no ECC, repetition codes andpolar codes. Analytical results for uncoded QPSK are taken from [14]. The repetition codes shows the difference inperformance between ECC on hard and soft demodulation outputs.

decoder to calculate multiple paths through the decoding. This algorithm, known as
Successive Cancellation List (SCL) is the basis for 5G implementation. Since the SCL is
an extension of an SC decoder, it is chosen to focus on the basic decoding algorithm.

5.2.3 verifying the decoder
A software implementation of the encoder and decoder above is made to serve as a basis
for algorithmic tuning and hardware design. Because of the many augmentations that
are possible on polar decoders, the performance is instead evaluated and compared with
implementations from literature. The first thing to do however, is to show that the
decoder performs better than if no coding, or repetition coding is used. In Figure 5.4 the
polar code Bit Error Rate (BER) performance of the polar code is compared to no ECC
and repetition codes. The BER is the ratio of bits that are unsuccessfully decoded to the
total number of transmitted bits. The repetition code is shown twice, once for combining
after hard decisions and once for combining the soft decision LLRs. Additionally, the
plot shows the analytically expected BER of uncoded QPSK modulation. It is clear that
the polar code corrects significantly more errors than the repetition code is capable off,
and is much better than no ECC.
For the WIRT project fairly low ECC rates are required. Figure 5.5 show a comparison

between the polar code implementation at different rates. Here the results are given in
BLock Error Rate (BLER) instead of BER as a transmission is considered a failure if
even a single bits is wrong. It is clear that the lower the rate, the more noise can be
tolerated, just as expected.
Finally, the performance is compared to two other polar code results. The results

named MATLAB are from the MATLAB polar code toolbox at [54]. The results denoted
Tal Vardy are from the SC decoder used for comparison in [49]. The graph shows that the
decoder implementation is within the expected range of performance. The encoder from
the MATLAB toolbox is created for 0 dB SNR to compare against the single creation
used in this project. Additionally, it is found later that some of the alterations described
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Figure 5.5: A comparison between polar codes showing the increasing ECC performance as the rate decreases. Theimplementation is shown to scale well with rate.

in the next section can improve the performance of the decoder slightly. On the other
hand the results from Tal Vardy show that there are still options to improve the error
correcting performance, even before moving to more advanced decoding methods such
as SCL.
Figures 5.4 to 5.6 all give credence to the correctness of the implementation. In the

interest of time this is deemed sufficient, but any future work based on this prototype
should aim to improve the validation using comparsions with more code, analytical
bounds and other channel models that more realistically represent real world conditions.

5.3 HARDWARE CONSIDERATIONS

Section 2.4 describes a latency requirement of 100 µs. This requirement is for the full
end-to-end latency, including the application device using the communication system.
To leave as much time as possible for the application, it is chosen to aim for a transceiver
latency of 50 µs. In Chapter 4 decoding of the polar codes is seen to be the largest
latency contributer with a large margin, however, it is not the only one. To give a
sufficient amount of time for performing the other operations in the chain, it is further
chosen to target a maximum latency of 10 µs for the decoder.
FPGA design is typically a trade-off between latency, throughput, area and power

[55, 56]. Since the latency target dominates here the focus of this chapter is going to
be meeting that goal. An implementation of this design should further consider this
trade-off more carefully. Keeping that in mind the polar codes are reconsidered for
hardware implementation.
Since FPGAs are typically not locked to a static frequency, it is not useful to express

the latency in terms of time. Instead it is chosen to focus on cycles, where one cycle
corresponds to one period of the clock. The cycles are therefore decoupled from the
frequency of the clock itself. When measuring designs in terms of cycles it is important
to keep in mind that the maximum frequency of an FPGA depends on the routing
requirements of the design. The frequency depends, in part, on the propagation delay of
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the longest chain of combinatorial logic, known as the critical path. For this project the
operations are implemented in a single cycle and thus the more complex parts will have
a longer combinatorial chain. It is assumed however, that the blocks can be implemented
in a manner that they are not in the critical path.
With the specification already created in the form of the software implementation,

the next step is to transfer the design to a Data Flow Graph (DFG). The aim of
this representation is to visualize the data dependencies in an algorithm, in order to
determine which operations are interdependent. The graph is shown in Figure 5.7 for
a polar decoder of size Npolar = 4. It is pretty clear from already this small graph
that the operations are heavily interdependent. This sequential dependency limits how
much a circuit implementing the operations can be parallelized, and thereby bring down
the latency. The only direct parallelization applicable to this specific graph without
alterations is performing the two F operations in F2 at once and the two G operations
in the G2 block. An illustration of an initial schedule is shown in Figure 5.8. The
schedule is created using a As Soon As Possible method that finds the minimum latency
given unlimited hardware. This parallelization brings the minimum latency to 6 cycles.
According to [40, 51] any polar code can be decoded in 2 · Npolar − 2 cycles, given
unlimited parallel hardware, and this result corresponds to that.
The DFG and initial schedule do not represent a full design, however they provide

more direct information on the achievability of the latency requirement that is seen in
Figure 5.2. The initial schedule also illustrates how the trade-off between power, area
and latency is made on several different stages in the design. A general idea of the area
can be had based on how many operations are executing concurrently. Each operation
occurring concurrently requires more hardware. If the initial schedule is restricted to
have only a single operator two more cycles are required for the calculation, but less
hardware is required, trading off higher latency for lower area. Other techniques such as
pipelining enable higher throughput at the cost of area while generally not affecting the
latency.
With this representation a general idea of the latency of the final design is formed.

The next step is to determine if the requirements of 10 µs latency can be achieved in
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Figure 5.8: A schedule for the execution of the blocks in Figure 5.7.

realistic hardware. Again, this illustrates the iterative procedure of digital design, by
revisiting the specifications from earlier. To perform the evaluation the area constraints
are first ignored, in order to determine the minimum latency.
In Section 5.1 the total available bits for data transfer is determined to be 14400 bits

with 400 bits of information. In order to get the best reliability possible, as many of the
14400 should be used as possible, however the polar codes described here are limited to
powers of two Npolar = 2n for integer n. The approach used to deal with this problem in
5G is called shortening. When shortening a number of bits are not sent in order to match
the available data rate, at the cost of some error correcting performance [37]. In order
to perform shortening the next larger size Npolar is selected, before removing excess bits.
With 14400 bits available, the next power of two is Npolar = 214 = 16384. Considering
only the time for decoding this length code has a delay of 2 · 214 − 2 = 32766 ops.
Sequentially decoding this code within 10 µs would require a operating frequency of:

215 − 2
10 µs = 3276.6 MHz. (5.5)

This frequency is much larger than is commonly achievable with commercial of the
shelf FPGAs before considering any of the other components in WIRT or other system
elements such as memory transfers.
Shortening is therefore not immediately applicable to this situation and an alternative

must be found. Latency requirements are not always as tough as in the case of WIRT.
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Table 5.1: The number of used and unused bits for different combinations ofNpolar and repetitions. The repetitionscan be used on different channels.
Npolar Repetitions Used bits Unused bits
512 28 14336 64
1024 14 14336 64
2048 7 14336 64
4096 3 12288 2112
8192 1 8192 6208

Examples of designs that perform the same basic algorithm, but instead optimize for
area or throughput can for example be found in [51, 57, 58].
For the WIRT use case the latency requirement requires a different solution to be

found. One option is instead of creating a single very low rate code, a higher rate code
is created and repeated. In addition to lower latency shorter, repeated packages also
have other advantages. Having separate, repeated codewords makes the decoding of each
codeword independent. Because it is independent it is now possible to start decoding
at the moment the first codeword is available instead of waiting for all the data to
arrive. Since they are independent the codewords can also be decoded in parallel. The
channel is unlikely to change much in the short time of a single package, which is why
seperate channels are used. The different channels will have different fading realisations
and differing interference. Separate codewords can be split across different channels
using channel hopping thus, in the general case, increasing the probability that a good
realisation is used.
To select a combination of Npolar and repetition rates the powers-of-two between 512

and 8192 are tested. The combinations are shown in Table 5.1. The table shows the
amount of bits that are actually used in this combination and how many are not. The
first three options waste almost no bits, while in the last two a significant portion is
not in use. In Figure 5.9 the performance is compared. It is interesting to see that
the performance of Npolar = 4096 is approximately as good as Npolar = 1024 despite
over 2000 bits being unused. The option with the best performance in this scenario is
the Npolar = 2048 code, repeated 7 times. This option is therefore chosen, as it also
represents amble opportunity to perform channel hopping.
The repeated codewords in Figure 5.9 are combined by summation of the received LLRs.

Since the test is performed with Gaussian noise, this should be the optimal combination
method for combining prior to decoding. To test if the performance improves when the
samples are combined after decoding, the implementation is changed to save the LLRs
used for bit decision throughout the decoding procedure, providing a soft output of the
decoder.
Figure 5.10 shows the performance difference between combining the LLRs prior

to decoding (pre-combining) and decoding each received codeword individually and
combining their outputs (post-combining). No significant performance difference is seen
in this case. In this test all the codewords have equal noise levels. In a more realistic
channel, it is likely that the different channels are going to have different realizations
and therefore different SNR and interference. If this is the case the two methods of
combining are unlikely to be identical in performance.
Based on this information it is chosen to use polar codes of size Npolar = 2048, repeated

7 times on different channels. Since the seven repetitions are independent, they can be
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Figure 5.9: Comparison of BLER performance of combinations of polar codes sizesNpolar and repetitions that fitin 14400 bits. The Npolar = 2048 is the best with Npolar = 4096 and Npolar = 1024 trailing slightly behind.TheNpolar = 512 does not perform well, likely because of the high rate. Npolar = 8192 also has disappointingperformance, because of the large number of unused bits, see Table 5.1.

decoded in parallel. For codes of size Npolar = 2048 the required frequency for 10 µs
latency is thus 409.4MHz, an improvement, but still high.

5.3.1 simplified successive cancellation decoder

While the number of clock cycles required for decoding of the shorter codes is more
feasible, this is achieved without considering other overhead or area constraints. In order
to get further improvements, the algorithm is reconsidered.
Consider again the tree representation in Figure 5.2. As described earlier, the leafs at

the bottom of the tree represent each bit. When encoding only K of the N available bits
are used for information, with the remaining bits being frozen and always set to zero.
The tree representation can be extended to illustrate this extra information. The frozen
bits are denoted as rate 0 (R0) and the information bits as rate 1 (R1). The branches
connected to each leaf gets a rate that is the mean of the leaf nodes 0 ≥ Rn ≥ 1. The
tree is repeated in Figure 5.11, except now with rate information.
A few things can be learnt from this new representation. First of all, consider the

operations that are performed on nodes that are known to be frozen and therefore zero.
Since the bit is known to be zero, whatever LLR value is calculated at the leaf node is
irrelevant and can be skipped. As a branch connected to multiple R0-nodes also becomes
zero, calculating the LLR for it is just as irrelevant. Using this knowledge, the tree can
be pruned by only keeping the top of an R0 chain, thereby reducing the operations.
Another, similar structure can be seen a branch only has information bits. In this case
the bits can be directly evaluated from the LLR, skipping the F and G operations that
are normally required for the subbranches [52].
Both of these reductions work on multiple levels, not only at the leaf nodes. Since they

represent small error correction codes on their own, they will be denoted as subcodes.
The left-most nodes Figure 5.11 represent such as R0-subcode. The size of a subcode
will be denoted as the number of leaf-nodes that are included, giving the R0-subcode a
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Figure 5.10: Comparison of BLER performance of polar codes when the LLRs are combined at the channel or afterdecoding.
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Figure 5.11: The tree structure from Figure 5.2 with rate information incorporated for a N = 8,K = 4 code.Information (Rate 1) nodes are colored in black and frozen (Rate 0) nodes in white. The shade of gray in the othernodes illustrate the rate of the node.

size of 2, denoted as a R02-subcode. The node which forms the top level of a subcode is
named after the code, making v0

1 a R02-node and so forth.
Especially R0-nodes save a lot of computation because the LLR that goes into them

does not have to be calculated. The R1-nodes also saves operations, but fewer as the
LLR values are required to make a hard decision on a bit. Additionally, the same
transformation as used in the encoding must also be applied to the bits from an R1-
node. A decoder implementing R0 and R1 subcodes is called the Simplified Successive
Cancellation (SSC) decoder [52].
In Figure 5.12 the same tree as in Figure 5.11 is shown with trimmed R0 and R1

nodes. The edges in the graph now illustrate the F and G operations that remain. Note
that the R0-node v0

1 does not require LLRs and the F operations are therefore skipped.
The original decoder for N = 8 required:

opspolar 8 full = 8 · log2(8) = 24 operations, (5.6)
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which, if executed in parallel, can be completed in:

C8 full = 2 · 8− 2 = 14 cycles. (5.7)

The code rate does not alter this number, making low rate codes inefficient. The trimmed
tree of the SSC decoder on the other hand, only requires 6 F operations, 10 G and 2 R1
operations for a total of:

opspolar 8 ssc = 6 + 10 + 2 = 18 operations, (5.8)

for K = 4. If full parallelization is again used, the operations can be completed in

C8 ssc = 8 cycles. (5.9)

This almost half the latency of the full decoder.
The effect is even more pronounced with lower rate codes. For an Npolar = 16,K = 3

code, a fully parallel decoder without reduction requires 30 cycles while the reduced
decoder can perform the computation in just 6. For the Npolar = 2048,K = 400 codes
that are actually used in this project the full decoder takes at least 4094 cycles, while
the reduced decoder can get away with just 472, a more than 8 fold reduction.
This is not the end of the road however. In [59] additional subcodes are introduced

in order to reduce the number of total operations even further. In this work only two
additional subcodes are included: repetition and Single Parity Check (SPC). Repetition
codes are branches that only include a single information node, in the right-most place.
An example is shown in Figure 5.13a for a repetition code of size Nsubcode = 4. The code
is named as such because the encoded result will either be all zeros, if the information
node is zero, or all ones, if the node is one. The optimal decoding of this code consist of
adding the LLRs and making a hard decision based on the sum.
The other subcode, SPC, is shown in Figure 5.13b. This subcode has all the included

leafs be information nodes, except the left-most one. This subcode is named after the
single bit that calculates parity for all the nodes. Indeed all the possible code words
from this subcode have an even number of bits that are one, also known as even parity.
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Figure 5.13: Types of subcode nodes sizeNsubcode = 4 introduced from [59]. (a) repetition node and (b) Single ParityCheck node.

Decoding this code is slightly more complex than the repetition codes. First a hard
decision is made for all the bits, and the parity is calculated. If the resulting parity is
odd, the least significant bit is flipped.
These specific subcodes are chosen because they are fairly common in both high [59]

and low rate polar codes [60]. For instance, the Npolar = 8,K = 4 shown in Figure 5.11
reduces to simply one REP and one SPC node. The resulting number of cycles required
when using a decoding that implements the full set of subcodes is:

C2048 ssc = 354 cycles. (5.10)

In order to hit the 10 µs target, the required frequency is now just 35.4MHz. It is likely
that further reduction is possible if more subcodes are introduced, but this is sufficient
for the purposes of this project.

5.3.2 other changes for hardware
The reductions described so far have been useful for reducing the total number of
computations. For a hardware design however, two more considerations are made;
the F operation in the LLR domain is complex and the currently used floating point
representation requires significant area compared to integer representations.
In Section 5.2.2 it is described how the algorithm is transformed into calculations

in the LLR regime in order to improve numerical stability. While the operations are
numerically stable, this move also introduced complex hyperbolic calculations in the F
operation, repeated here:

FLLR(LLRa,LLRb) = 2 tanh−1 (tanh(LLRa/2) tanh(LLRb/2)
)
. (5.11)

Performing this calculation requires relatively complex hardware, taking up area and
clock cycles. Fortunately a well-known approximation exists. The approximation is
known as min-sum and is commonly used in LDPC decoders without considerable error
correcting performance loss [51]:

FLLR(LLRa,LLRb) u sign(LLRa) sign(LLRa) min(|LLRa|, |LLRb|). (5.12)

This approximation is less complex to perform in hardware and [51] find that no significant
loss of error correcting performance is experienced.
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Table 5.2: Run time comparison of the effect of the complexity reductions in the polar decoder. The configurationused isNpolar = 2048,K = 400. The results are given as the mean run times over 10000 runs.
Alteration Run time
None 29.58ms
F approximation 23.28ms
SSC + F approximation 3.71ms
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Figure 5.14: Comparison of BLER performance of polar codes with and without the SSC and F approximations.

With the F operation changed, the number representation can be considered. In the
software implementation the LLR values passed around are represented as floating point
numbers. This representation provides both good accuracy and large dynamic range and
modern processors often contain complementary hardware to accelerate performance of
floating point calculations. For FPGAs the scenario is different however. Not only are
common floating point representations large in terms of bits, with 32 and 64 bit numbers
being common, performing even simple mathematical operations such as addition is
significantly more complex than with integer presentations. Fortunately in many cases
when the system is known, the improved dynamic range and precision of floating point is
unnecessary. Instead fixed point representation can be used. As opposed to floating point
numbers, fixed point have a constant number of bits assigned to the two parts, integer
and fractional. This representation has the same precision regardless of the currently
held value. In the case of polar codes, [59] find that for high-rate codes quantization to 4
bits for the channel LLR and 6 bits for internal LLR representations with no fractional
bits show performance within 0.1 dB of floating point within their operating range.
Adding a single bit for fractions improved the performance to be almost identical with
floating point. Through simulations [60] find the same to be the case for low-rate codes.
This representation is therefore chosen. Finally, since the absolute value is used in many
of the operations, it is chosen to represent the numbers using signed magnitude.

5.3.3 performance of the altered decoder

The alterations are implemented in the software decoder to test the performance.
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The error correcting performance of the decoder is compared with and without the SSC
reduction and approximation of the F function. The results are shown in Figure 5.14.
The performance is seen to improve with the F approximation and not be affected by
the SSC reduction.
The run time of the software decoders are shown in Table 5.2. The large reduction

in operations from the SSC is clear, with an almost 8 times speed-up compared to the
non-altered decoder.
To confirm the number of cycles found in Equation (5.10) a decoder should be

implemented and tested on an FPGA. This project is focused on evaluating the full
WIRT system, so making a full hardware design was not possible due to time constaints.
A smaller Npolar = 16,K = 3 decoder is designed and presented in Appendix B to
illustrate the design procedure.
This chapter has discussed Error Correction Codes. It is found that selection is

not clear-cut, and all the surveyed codes have advantages in some respects. Polar
codes are chosen as a focus for this project. The codes are described and a software
implementation is made. As expected, it is found that a ECC decoder comes with a
significant computational cost. A number of alterations are made to the basic decoder,
reducing the complexity and enabling better hardware parallelization. It is found that
the decoder can be adequetely reduced in latency to be useful in WIRT.



6 D I S C U S S I O N

This chapter evaluates various decisions made throughout the project. Problems and
research for future work are also presented.
The delay in Chapter 4 is estimated based on the number of computations. This is

done in part to not confine the runtime to a single ECC implementation and in part
because the runtimes on a x86 processor are not always indicative of the runtime on
other computing architectures. However, to provide some confidence that the estimates
are correct the system implementation is benchmarked. 1000 frames are encoded and
decoded using the WIRT prototype in approximately 8.5 s. This number varies more
than a second in consecutive trails, illustrating why benchmarking does not provide
an appropriate estimate for complexity. Table 6.1 shows the largest contributors to
processing time, given as a percentage of the overall execution time. The results align
well with the estimates in Tables 4.1 and 4.2. The table is generated from profiling the
code snippet shown in Code snippet 6.1.
The BLER performance of the ECC gives an idea of the overall reliability of the system,

however it does not provide the full picture. As described in Chapter 2, if synchronization
or channel estimation fails the performance is degraded. For this project especially the
equalization proves to be a bottleneck. In Figure 6.1 the BLER performance of the full
WIRT prototype is shown in an AWGN channel. When the equalization is enabled the
noise is amplified so much that the system performs significantly worse.
Equalization can not just be permanently disabled however. In more realistic channel

scenarios an estimate of at least the phase is required, as even a simple effect such as
a constant phase offset disables the symbol mapping. It is clear that the equalization
method used here is not appropriate for low SNR channels, and more advanced methods
should be used.
In Chapter 5 it is noted that the original SC polar decoder does not achieve state-

of-the-art performance. Alternative implementations achieve this however, with the
most common one being SCL. In contrast to SC, SCL does not find the most likely
bit separately, but instead the most likely paths. To keep the complexity down only
the L most likely paths are kept at every stage. In the end the correct codeword is

Table 6.1: The parts of the software implementation that correspond to over 1% of the total runtime when encodingand decoding a package. 1000 WIRT packages are encoded and decoded for a total runtime of approximately 8.5 s.Notice the IFFT is included in OFDMmodulation and the FFT and channel estimation are contained in the OFDMdemodulation. Python package loading is not included in the table, but constitute approximately 10 % of the fullruntime.
Function Description % of runtime
Polar decode Polar code decoding 61.2 %
Upsampling Upsampling of the encoded samples 8.89 %
Downsampling Downsampling from the RF sample rate 5.68 %
OFDM demodulation Full OFDM demodulation 5.15 %
OFDM modulation Full OFDM modulation 2.94 %
Channel estimation Channel estimation, primarily interpolation 1.25 %
IFFT (total) IFFT operations 1.23 %
FFT (total) FFT operations 1.18 %
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1 from WIRT import wirt
2

num_runs = 1000
4 encoder = wirt()

6 data = np.random.binomial(1, 0.5, (num_runs, wirt.DATA_SIZE)).astype(np.uint8)
for i in range(num_runs):

8 encoded = encoder.encode(data[i])
decoded = encoder.decode(encoded, 20)

Code snippet 6.1: Code used to measure the time it takes for the prototype to encode and decode 1000 WIRTpackage on a modern x86 machine.

−14 −12 −10 −8 −6 −4 −2 0
ESNO [dB]

10−4

10−3
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100
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With equalization
Without equalization
Polar codeN = 2048

Figure 6.1: Comparison of the overall system performance in an AWGN channel with and without equalizationenabled. It is clear that at low signal to noise ratios gain from the equalization procedure affects the noise, greatlydecreasing system performance.

identified using a Cyclic Redundancy Check (CRC) among the L candidates [49]. With
the repetition codes used in this project adding a CRC would also enable the decoder to
stop early in good SNR conditions. This approach is compatible with the SSC reductions
in this report and improves the performance, at the cost of higher complexity both in
terms of computations performed and implementation difficulty [61, 62]. Research is
still active in this area and on other algorithms [63, 64].
This project has largely dealt with the latency requirements while fulfilling the WIRT

specification. The performance results in Figure 6.1 show that the configuration increases
in reliability as the SNR increases. The results can therefore be used in later work to
estimate the approximate SNR required for the reliability targets.
The channel model used for evaluation during the ECC is a simple AWGN channel,

that fails to describe many of the effects of a real world wireless channel, including
multipath fading and interference. More advanced models would help give more credence
to the system, but in the end what matters are the real, over the air results. One of the
goals for this project is to create a testbed for future work on WIRT by integrating with
a LitePoint tester. This integration is performed, but the system is only tested with a
wired connection from the VSG to the VSA. Considerations on the dynamic range of
the tester and appropriate measurement equipment are outside the scope of this project,
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and so over the air tests are yet to be performed at the time of writing. This is a clear
path for future work.
The latency considerations for the reconfigurable logic have been centered around

the latency of performing the computations themselves. Another important aspect is
memory latency. To get a sense of the effect, consider the specifications of the 64 MB
SDRAM chip IS42R16320D [65] which is used on the DE10-Standard FPGA development
board [66]. This chip is a few years old, and placed in a cost-optimized segment of the
market. For this comparison assume that the SDRAM is already initialized, as that is
done at start-up, and that the data is loaded sequentially into memory, enabling a full
page burst read. The delay from when the chip is inactive until the first bits are ready
on the output bus is up to 6 cycles, at a frequency of 100MHz for the lowest speed grade
unit. When the data transmission is started however, new data is available at every
clock cycle making the overall latency for transferring 14400 LLR values:

Lmemory = (14440 · 4 bit)/(16 bit per transfer)
100 MHz = 36 µs. (6.1)

Since the clock for the SDRAM might not be synchronized with the system clock, a
clock-crossing FIFO can be synthesized, adding a few more clock cycles to the latency.
If the LLRs to be loaded are kept in external memory, the load time is more than

three times the delay in the decoding itself, and a system based on this decoder design
should account for it. Keeping the decoder fed with data is outside of the scope of this
project, but an important consideration for implementations. One potential solution to
this problem is to simply load the LLRs into the on-chip memory of the FPGA while
receiving. The FPGA used on the same DE10-Standard development board contains
5761 kbit of embedded memory for user designs, more than sufficient to hold all the
codewords of a transmission at 14400 · 4 bit = 56.25 kbit.





7 C O N C L U S I O N

Wireless communication acts as an enabler for the next generation of industrial au-
tomation. Next-generation networks introduce low latency, high reliability services, but
for the purposes of critical industrial processes the delay and reliability requirements
are even harsher. WIRT is a proposal to solve this problem, while also providing on
requested features such as periodic transmissions.
WIRT is still in the research stage, and a number of questions are still open. The

objective of this thesis presented in Section 1.2, is the answer the question: What are the
requirements for realization of a WIRT system, from a signal processing point of view?
The answer to this question is found through a number of related questions. In

Chapter 2 the basic components of a multiband OFDM system are presented. The
specifications for WIRT are presented in the form of a parameterized multiband OFDM
system. In Chapter 3 a software implementation of the WIRT transceiver is presented,
describing specific details found during implementation. This implementation is made
as a prototype for further WIRT development and integrates with an UWB tester from
LitePoint.
The next related question is on the system latency. Chapter 4 first estimates the

overall minimum latency, when computational considerations are not included. The
approximate scale of the computational complexity is estimated to find bottlenecks in the
design. It is found that resampling, FFT and ECC are the major contributors to latency.
Since the ECC decoding is a well known contributor to complexity of communication
systems, it is researched further. This chapter also considers computational architectures.
It is found that in order to provide guarantees that the latency target can be met, a
reconfigurable logic platform, such as an FPGA, is most appropriate.
Finally, Chapter 5 delves deeper into which ECCs are approximate for a low delay,

high reliability system. While no clear winner is found, polar codes are a good contender.
The delay added by the decoder is evaluated based on a software implementation, and
indeed found to have a major effect on the overall system delay. In order to justify
reaching the latency targets a number of alterations are made to the codes to reduce the
number of calculations and simplify the remaining.
This thesis considers WIRT through the lens of signal processing; is it feasible to

achieve the latency goals and how can it be done in implementation. The feasibility is
evaluated through both considerations on the used algorithms and an implementation.
The report presents the requirements found and considerations made, to provide a
recommendation for future WIRT work.
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A) B E N C H M A R K I N G O F F F T
S I Z E S

To help the choice of FFT, the options in Table 3.2 are compared. Additionally, keeping
the NFFT size with the original 524 subcarriers and the power-of-two 1024 are tested.
The code used for benchmarking is shown in Code snippet A.1.

1 import numpy as np
2 import pyfftw

pyfftw.interfaces.cache.enable()
4

for N in [524, 625, 800, 1000, 1024, 1250, 2000, 2500]:
6 print(N)

8 a = np.random.rand(N) + 1j * np.random.rand(N)
b = pyfftw.empty_aligned(N, dtype=’complex128’)

10 b[:] = a.copy()

12 %timeit −r20 −n100000 np.fft.fft(a)
%timeit −r20 −n100000 np.fft.fft(b)

14 %timeit −r20 −n100000 pyfftw.interfaces.numpy_fft.fft(a)
%timeit −r20 −n100000 pyfftw.interfaces.numpy_fft.fft(b)

Code snippet A.1: IPython snippet used to estimate execution time of the FFT using numpy and fftw respectively.

Table A.1: Timing results of calculating the FFT for the differentNFFT options given in Table 3.2. Run on my laptop,using ipython built-in magic command "%timeit". Given as mean ± std. dev. of 20 runs, 100000 loops each. Array ais allocated as a numpy array and b is allocated aligned using pyfftw.
NFFT np.fft.fft(a) np.fft.fft(b) pyfftw fft(a) pyfftw fft(b)
524 66.7 µs ± 153 ns 66.8 µs ± 432 ns 54 µs ± 103 ns 54 µs ± 107 ns
625 15.8 µs ± 26.1 ns 15.7 µs ± 37.4 ns 37.6 µs ± 63.8 ns 37.8 µs ± 58 ns
800 18.9 µs ± 52.6 ns 18.9 µs ± 18 ns 37.3 µs ± 54.7 ns 37.5 µs ± 238 ns
1000 22.7 µs ± 56.3 ns 22.9 µs ± 282 ns 39.2 µs ± 108 ns 39 µs ± 300 ns
1024 22.1 µs ± 24.3 ns 22 µs ± 29.4 ns 36.4 µs ± 56.6 ns 36.4 µs ± 55.2 ns
1250 27.7 µs ± 25.5 ns 27.8 µs ± 46.3 ns 40.3 µs ± 62.4 ns 40.3 µs ± 66.6 ns
2000 38.2 µs ± 58.9 ns 38.3 µs ± 92.5 ns 43.2 µs ± 148 ns 43.1 µs ± 144 ns
2500 47.5 µs ± 64 ns 47.5 µs ± 107 ns 45.8 µs ± 151 ns 45.7 µs ± 125 ns
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B) H A R D W A R E D E S I G N O F A
P O L A R D E C O D E R

As described in Chapter 5 the decoding procedure is tested in software to confirm the
calculations are correct. In order to achive the required latency, an implementation
should be done in hardware. To illustrate this design procedure a prototype FPGA
implementation is described. To keep the description simple, the decoder is limited in
size to Npolar = 16,K = 3. This is approximately the same rate as for a Npolar = 2048
decoder. Since the control structure of the project is static the prototype is based on a
Finite State Machine with Data path (FSMD) [55, 56]. An FSMD is a design structure
where the hardware elements of that performs computations data are split from the
control structure. These two parts known as the data path and the control path work in
tandem to perform computations and the structure acts as a scaffolding when mapping
algorithms. A diagram of a FSMD is shown in Figure B.1. The data path contains
the hardware elements that perform computations on data, e.g. adders or multipliers,
or more specialised structures for specific operations. The control path controls the
hardware blocks in the data path to produce the correct series of calculations.
The hardware design is performed in three steps; algorithmic description, data path

design and control path design. The first is algorithmic description. The implementation
and alterations above describe which computations are to be performed and in what order
to produce the desired results. Afterwards the data path is designed by specifying each of
the operations in terms of the building blocks available for the targeted hardware. When
working with FPGAs the building blocks differ between manufacturers, but common
structures are adders, multipliers, registers and look-up tables. The look-up tables
provide straightforward implementations for logic gates and small constants. Block
diagrams of hardware blocks that can perform the F , G, R1 and C2 operations are
shown in Figures C.1 to C.4. The figure also show suggestions for blocks that can
decode SPC and repetition subcodes of size Nsubcode = 4. The data path is connected to
working memory. Since the computations are well specified the exact amount of memory
is known well enought that the registers can not only be allocated up front, but also
shared. In the context of registers, sharing refers to using the same register for the the

Control in

Control out

Data in

Data out

Status

Control

Control
path

Data
path

Figure B.1: Diagram of an Finite State Machine with Data path structure. The data path consists of the hardwareelements that perform computations, e.g. registers, adders andmultipliers. The control path is a Finite StateMachinethat controls the operations in the data path. The FSMD is a structure that algorithms can be mapped onto.
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F
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Compute block

R0

Out

LLRs

Control

Figure B.2: Data path for hardware design. The design consists of computational blocks on the left and memoryregisters on the right.
Table B.1: Abstract control path of aNpolar = 16,K = 4 polar SSC decoder. The arrows indicate connections fromeither registers or the input LLRs to the computational blocks and into which register locations. TheG block u inputsare zero except state 5 where bits 12 and 13 are used. This is an abstract description shown for understanding, a fullcontrol path description would specify which wires are asserted in order to achieve these configurations.

State index Input Operation Output
1 Inputs G R0
2 R0[0:7] G R0[0:3]
3 R0[0:3] F R0[4:5]
4 R0[4:5] G R0[4]
4 R0[4] < 0 B[13]
5 R0[0:3] + B[12:13] G R0[0:1]
6 R0[0:1] R12 B[14:15]

result of different computations that are not occuring at the same time, in order to save
hardware. The data path required for this project is shonw in Figure B.2. In the figure
R0 refers to the local working memory, but not neccessarily one register. The register
marked Out holds the temporary output bits while the calculation progresses. After
decoding the output is now the full received codeword and the information bits can be
selected with a static mask.
The next step is design of the control path. A Finite State Machine (FSM) is a

collection of states and two tables, one that finds the next state of the FSM based on
the current state and the input and one that maps a state to a collection of outputs
[56]. In the case of the small prototype decoder, the next state is simply the sequentially
state after the current one. The mapping from state to output is described in Table B.1.
The mappings shown in the table are abstracted to give an overview.
Between the design of the data path and the control path various optimizations, such

as retiming, pipelining, operator sharing and unfolding can be performed to manipulate
the trade-off between latency, throughput and area [55, Ch. 7]. After the optimization is
done, the data and control paths are recreated and the process repeated. This iterative
process stops when the design fulfills the requirements.
Based on the data path and control path the design can now be implemented. If an

FPGA platform is used, the next step is simulation and verification. Verification that
the design performs the correct calculations is done through logic simulation. After the
design is logically valid, a timing simulation would show if the design is able to meet
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the frequency requirements. Finally, if the design passes the verifications, it can be
transfered to FPGA hardware.
This chapter has covered a choice of ECC for use in a WIRT system. Section 5.1

covers options for modern ECC, ending in a choice of polar codes. The basics of these
codes is covered in Section 5.2. Finally, Section 5.3 describes some alterations for the
codes that make them more suitable for implementation in hardware, and an example
of a small decoder. Using the alterations described in this chapter it is found that it is
feasible to reach the latency targets of the project using an FPGA based design.
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Figure C.1: The hardware blocks for (a) F2 and (b)G2 operations. These blocks can be extended by parallelization.
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Figure C.2: The hardware blocks for (a) C2 and (b)R12 operations. These blocks are not able to be parallelized toform larger blocks. The C operation represents an encoder for polar codes.
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Figure C.4: (a) The final part of the hardware block that decodes the SPC subcode and (b) the circuit for decoding arepetition subcode. The first two parts of (a) are seen in Figure C.3. These blocks are not able to be extended in sizeby parallelization.
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The code for the implementation is available online at [1]. The implementation is split
into seven folders:

1. Instrument control
2. Misc
3. OFDM
4. Other
5. Polar
6. Tests
7. WIRT

“OFDM”, “WIRT” and “Polar” correspond to the appropriate modules in Figure 3.1.
“Instrument control” contains the socket utilities and the code for interfacing with the
LitePoint tester. The “Misc” directory contains the submodules marked as such in
Figure 3.1 and all the tests are collected in the “Tests” directory. Finally, the “Other”
directory contains minor supplementary code snippets created during development.
In order to execute the code, the root folder must be included in the PYTHONPATH,

to enable Python to find the submodules. Python version 3.5 and above should work.
Additionally the code requires a relatively new version of the Numpy and Scipy libraries.
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