
Robot Learning From a Human Expert
Using Inverse Reinforcement Learning

A Deep Reinforcement Learning Approach for Industrial Applications

Rasmus Eckholdt Andersen, Emil Blixt Hansen, Steffen Madsen

Manufacturing Technology

Master’s Thesis

S
T

U

D
E

N
T R E P O R T

Copyright c© Aalborg University 2019

Department of Materials and Production
Aalborg University

http://www.aau.dk

Title:
Robot Learning From a Human Expert
Using Inverse Reinforcement Learning

Theme:
Master’s Thesis

Project Period:
Spring Semester 2019

Project Group:
vt4groupc-f19

Participants:
Rasmus Eckholdt Andersen
Emil Blixt Hansen
Steffen Madsen

Supervisor:
Simon Bøgh

Page Numbers: 97

Date of Completion:
June 3, 2019

Abstract:
The need for adaptable models, e.g. re-
inforcement learning (RL), have in re-
cent years been more present within
the industry. However, the number of
commercial solutions using RL is lim-
ited, one reason being the complexity
related to the design of RL. Therefore,
a method to identify complexities of
RL for industrial applications is pre-
sented in this thesis. It was used on
15 applications inspired from four in-
dustrial companies. Complexity was
especially identified in relation to the
reward functions. Thus two Linear In-
verse RL (IRL) algorithms in which the
reward function is represented as a lin-
ear combination of features, was tested
using expert data. Some of the tests
indicated a visual better result than
tests carried out using RL. The pro-
cess of designing features shared simi-
larities with the process of designing
a reward function. The added com-
plexity of implementing Linear IRL
and constructing expert data is thus
not always a simpler approach. The
IRL method GAIL, which requires no
feature construction, was furthermore
tested showing potential.

http://www.aau.dk

Contents

Resumé vii

Preface ix

1 Introduction 1
1.1 Manufacturing Automation . 1
1.2 Adaptable Models & Machine Learning 2
1.3 Existing Applications . 4
1.4 Initial Project Hypothesis . 5

2 Background 7
2.1 Markov Decision Process . 7
2.2 Tabular Methods . 9

3 State of the Art 13
3.1 Value-Based Methods . 14
3.2 Policy Gradient Methods . 17
3.3 Actor-Critic Network . 22
3.4 Expert Learning & Inverse Reinforcement Learning 25
3.5 Summary . 30

4 Reinforcement Learning Complexity 33
4.1 Technology-Push Manufacturing Technology Definition 33
4.2 Reinforcement Learning Complexity Method Definition 34
4.3 Inropa Use Cases . 35
4.4 Life Science Robotics Use Cases . 38
4.5 RobNor Use Cases . 40
4.6 Danish Meat Research Institute Use Cases 41
4.7 Summary of RLC Use Cases . 43

5 Problem Formulation 45
5.1 Research Work Plan . 46
5.2 Delimitation . 47

6 The Experimental Setup & Expert Data 49
6.1 Direct Task Space Learning . 49
6.2 Human Expert & Robot Correspondence 51
6.3 Human Expert Data Collection . 54

7 Software & Simulation Environment 57

v

Contents

7.1 Software Architecture . 57
7.2 Physics Simulation . 59
7.3 TCP Simulation Environment . 63
7.4 Training the Agent for the Real Robot 65

8 Trajectory Learning 67
8.1 Linear Inverse Reinforcement Learning 67
8.2 Robot Trajectory Learning with Linear Inverse Reinforcement Learning 72
8.3 Robot Trajectory Learning with Deep Imitation Learning 79

9 Discussion 81

10 Conclusion 83

11 Future Work 85

Bibliography 87

A UML Diagram 95

B Linear Inverse Reinforcement Learning Weights 97

vi

Resumé

Indenfor industriområdet er der begyndt at være et fokus på en samling af teknolo-
gier der kan forstærke produktion, både indenfor omkostninger, kvalitet og tilpas-
ning af produkterne. En af de disse teknologier er autonome robotter der bruger
modeller der kan tilpasse sig selv til omgivelserne, f.eks. reinforcement learning.
Dette speciale undersøger hvordan moderne reinforcement learning metoder kan
bruges i industrielle use cases inspireret fra danske virksomheder.

Dette speciale undersøger først Markov Desicion Process (MDP), som er den fun-
damentale baggrund for reinforcment learning metoder. Dernæst er de første rein-
forcement learning metoder (såsom Monte Carlo, Q-learning og Deep Q-Networks)
undersøgt som kan løse simple diskrete problemer. Ydermere er en række mod-
erne metoder også undersøgt som bruger neurale netværks. Det er inklusiv meto-
derne Deep Deterministic Policy Gradient, Trust Region Policy Optimisation, Soft
Actor-Critic og Guided Cost Learning. Alle disse reinforcment learning metoder
er afhængige af at designeren kan lave en reward function der afspejler opgaven.
Hvis dette ikke er gjort, kan metoderne ikke løse det givne problem. Derfor er
metoder indenfor inverse reinforcment learning undersøgt, da disse bruger data
fra en ekspert til at lære den omtalte reward function.

Da reinforcement learning ikke er brugt meget i industrien, er en ny metode kaldet
Reinforcement Learning Complexity (RLC) introduceret. Denne bruges til at vur-
dere de komplekse områder af en MDP, samt fungere som et fundament for en
diskussion om et reinforcement learning projekt. RLC-metoden er testet på de
inspireret use case fra de industrielle partnere.

På baggrund af analysen er en inspireret use case fra DMRI brugt til at teste prob-
lemformuleringen. Problemformuleringen består af tre forskningsspørgsmål, hvor
det første omhandler hvordan ekspertdataene kan blive samlet og brugt for DMRI
use casen. Det andet spørgsmål omhandler hvordan en software arkitektur og
simuleringsmiljø skal strukturers. Det sidste spørgsmål omhandler hvordan in-
verse reinforcement learning kan bruges, og hvad dens performance er i forhold
til traditionel reinforcement learning.

Ekspertdataene er opsamlet med brugen af et HTC VIVE VR-system, hvor en hand-
eye kalibrering er lavet for at relatere koordinatsystemet fra VR og robotten. Deru-
dover, er det analyseret at der findes forskellige metoder til at opsamle det såkaldte
ekspertdata. De forskellige metoder har hver deres fordele og ulemper. Derfor er
konceptet om Direct Task Space Learning introduceret som prøver at få robottens
og ekspertens arbejdsrum til at være det samme som opgaven. Derved er det
nemt at flytte ekspertdataene til robot uden at gå på kompromis med helheden af
dataene.

vii

Resumé

Softwaren er bygget op omkring ROS og skrevet i Python 2.7. Strukturen er bygget
op omkring det standardiseret miljø fra OpenAI Gym. Pakken Keras-rl blev brugt
til at standardisere de implementerede inverse- og reinforcement learning metoder.
Simuleringsmiljøet Gazebo er brugt og det blev bemærket, at der er nogle stabilitet-
sproblemer. Derfor er et alternativt miljø ved navn TCP Simulation introduceret.
TCP Simulation miljøet bliver brugt til at træne de kinetiske bevægelserne af robot
end-effectoren før dynamikken bliver trænet i Gazebo. Hvorefter den trænede pol-
icy kan blive brugt på robotten. Dette gør, at den samlet simuleringstid bliver
reduceret samt, at de fysiske aspekter stadig bliver trænet.

Forskellige reinforcement learning algoritmer blev først testet på standarde Ope-
nAI Gym miljøer såsom CliffWalking, MountainCar og Pendulum. Ydermere, blev
disse miljøer også testet med lineær inverse reinforcement learning metoder ved
brug af de trænede reinforcement learning policies til at generere ekspertdata.
Dette er gjort for at sammenligne de to metoder og validere om inverse reinforce-
ment learning kan bruges. Derefter blev de optagede ekspertdata brugt til at træne
en inverse reinforcement learning agent. Metoden der er brugt, er viapunkter lagt
ind i mellem start og målet. Derudover blev der også testet en kvadratisk program-
merings metode. Resultaterne viste sig ikke at afspejle eksperten som kan betyde,
at metoden med viapunkter ikke virker optimalt.

viii

Preface

This master’s thesis is based on the work of the 4th and final semester of the MSc.
in Engineering in Manufacturing Technology, during the spring semester of 2019.
The project was a part of the Danish research and knowledge sharing robotic com-
munity RoboCluster.

The authors would to give a special thanks to Simon Bøgh, the project supervi-
sor, whom throughout both this and previous projects, encouraged the authors to
do their best and to write this thesis. Moreover, thanks will go out to members
of Simon Bøgh’s research group, Nestor Arana Arexolaleiba and Nerea Urrestilla
Anguiozar, for always Helpful discussions and knowledge sharing for this the-
sis.

Reader’s Guide

To get the best understanding of this thesis, it is recommended to follow the guide
below.

Content

• It is recommended to read the full thesis, following the order kept by the
authors.

• This thesis is a research thesis and therefore, much emphasis is spent on the
analysis, and thus, a thorough analysis is expected.

• Words or abbreviations written in italic, e.g. ML, are keywords of a certain
section.

Figures and Tables

• All figures and tables have captions below.

• Figures and tables not made by the authors contains a source in the caption.

Bibliography

• The bibliography is placed after the final chapter of the report before the
appendix.

• Entries in the bibliography are ordered alphabetically.

• Each entry contains the following information: authors, year, and title.

ix

Preface

• Amount of information depends on type of entry and availability of informa-
tion.

• Entries in bibliography are referenced using author last name and year.

• Entries directly referenced to in text is without parentheses.

• If the reference is placed before the dot, it is referring only to the specific
sentence.

• If the reference is placed after the dot, it is referring to the whole prior para-
graph.

Appendix

• Appendices are placed after the bibliography in the end of the report.

• Appendices have assigned capital letters starting from A.

• Appendices are referred in text using the assigned letters.

All the source code, extra material and report can be found in the project repository
by scanning the QR-code in Figure 1 or by link: http://bit.ly/irlVt4Repository

Figure 1: Project repository: http://bit.ly/irlVt4Repository.

x

http://bit.ly/irlVt4Repository
http://bit.ly/irlVt4Repository

Preface

Glossary

ACN Actor-Critic Networks

AI Artificial Intelligence

ANN Artificial Neural Network

DDPG Deep Deterministic Policy Gradient

DQN Deep Q-Network

GAIL Generative Adversarial Imitation Learning

GUI Graphical User Interface

IRL Inverse Reinforcement Learning

MDP Markov Decision Process

ML Machine Learning

NN Neural Network

NPC Non-Player-Character

PPO Proximal Policy Optimisation

RL Reinforcement Learning

SAC Soft Actor Critic

SARSA State-Action-Reward-State-Action

SVM Support Vector Machine

TCP Tool Center Point

TD Temporal Difference

TPMT Technology-Push Manufacturing Technology

TRL Technology Readiness Level

TRPO Trust Region Policy Optimisation

xi

Preface

Aalborg University, June 3, 2019

Rasmus Eckholdt Andersen
<rean14@student.aau.dk>

Emil Blixt Hansen
<ebha14@student.aau.dk>

Steffen Madsen
<smad14@student.aau.dk>

xii

Chapter 1

Introduction

This master’s thesis is created as a part of the Danish robotic network RoboClus-
ter, whose primary goal is to share robotic and manufacturing knowledge between
company members and educational institutions (RoboCluster Webpage 2019). One
of the focuses in RoboCluster is to introduce learning in robotics using adaptable
models such as neural networks. This thesis does especially investigate how to
transfer human expert knowledge to a robot using Inverse Reinforcement Learn-
ing. The motivation for this is to have robots learn from humans to investigate
automation possibilities of complex tasks where traditional manufacturing tech-
nologies are not sufficient. The following sections introduce concepts within the
future of manufacturing technologies, and a brief literature study of existing ap-
plications of robot learning.

1.1 Manufacturing Automation

In the era of the 4th industrial revaluation, new demands are, according to Mad-
sen et al. 2014, given to the manufacturing industry which among other is caused
by the following factors: globalisation, product regulations, low product life cy-
cles, rapid technological development and customisation. The globalisation is in-
creasing the number of potential competitors within different manufacturing fields.
Therefore, manufacturing companies should have increasingly rapid product de-
velopment and explore new innovative manufacturing technologies to stay com-
petitive. Additionally, the globalisation brings new markets where product regu-
lations are varying among countries. Product life cycles are shortened due to cus-
tomer demands and rapid technological product development, and customers are
at the same time increasingly demanding customised products. The rapid develop-
ment has moved the limits of the production, which has brought opportunities for
new innovative products, services, manufacturing processes and automation tech-
nologies. All the above-mentioned factors create a need to continuously develop,
test, and implement new products, services, or processes. This is contributing to
a dynamic and unpredictable production environment. Thus modern production
systems often need to be flexible, reconfigurable, adaptable and at the same time
efficient. (Rüßmann et al. 2015)

The potentials in using automation equipment are recognised throughout many
different manufacturing fields. Some industries contain processes which are too
complicated to be automated with existing automation equipment. Many such

1

Chapter 1. Introduction

processes are found in the meat industry, since the structure of meat vary signif-
icantly and thereby causing a high product variation. The often repetitive and
physically demanding processes are therefore easier solved by employing manual
labour, than using existing manufacturing equipment. Humans have sophisticated
sensory, reasoning, adaptability, and manipulation abilities. Whereas traditional
automation equipment has a limited ability to adapt, interpret, and manipulate
variations, or changes in a production environment. These challenges are not lim-
ited to the meat industry but are also present in other industries such as industrial
laundry and robot painting. (Purnell 2013)

Step 1: Models
are used by
persons

Step 2: Robots
use models at
run-time, e.g. to
monitor and
explain what
they are doing

Step 3: Robots
adapts models
and improve
them

Figure 1.1: An abstract model showing the changes in robotic software development. (SPARC 2016)

The European robotic partnership SPARC has a multi-annual roadmap (SPARC
2016) for robotics in different industries. In this roadmap SPARC specifies different
relevant robotic abilities in a manufacturing context which should be a target for
research. Three of these abilities have direct relevance to this thesis; Adaptability,
Decisional Autonomy, and Cognitive Abilities. Adaptability refers to the ability to
adapt to a new environment. Decisional Autonomy is the ability to act autonomously
in a complex and potential unknown environment. Cognitive Abilities is when the
system can interpret different environments and tasks such that it can execute
accordingly. These abilities are used to discoverer the necessary technologies in
order to reach the performance needed for a specific robot solution. Figure 1.1
illustrates the three levels of robot development, going from models used manually
to adaptable models used by robots. The following section present the concept of
adaptable models.

1.2 Adaptable Models & Machine Learning

Throughout the development of new technologies, both in the form of manufac-
turing, information and communication, the need for adaptable models has be-
come more present to automate, increase revenue, and customer’s demands (Ge-
niar 2016) (Yip 2018). An example of an early adaptable model was presented by
Åström 1980, where an adaptable PID-controller was used to control ship-tankers
through wind and waves. Another example on adaptive models are Potential Fields,
which are commonly used for motion planning for mobile robots (Choset et al.
2005). Potential Fields has, e.g. been used to enable a mobile robot equipped

2

1.2. Adaptable Models & Machine Learning

with SONAR sensors to navigate an unknown environment successfully (Cosío
and Castañeda 2004).

In recent time, where computation power and the availability of data have in-
creased exponentially, Artificial Neural Networks (ANN or NN) have become a pop-
ular Machine Learning (ML) techniques. Companies like OpenAI and DeepMind
has shown significant progress in the field of Artificial Intelligence (AI) over the
last decade, with new methods and publications emerging with a high frequency.
DeepMind has demonstrated how Deep Q-Networks (DQN) can achieve human
level performance in Atari games with just pixels and score as input (Mnih et
al. 2015). Silver et al. 2016 from the DeepMind team beat the world champion
in the Chinese board-game GO. A year later Silver et al. 2017 presented a new
model that learned by playing against itself and successfully beat the model from
2016. Furthermore, the real-time strategy game StarCraft II has a similar story
of an adaptable model beating the best players (Vinyals et al. 2019). OpenAI has
developed an adaptable Natural Language model (named GPT-2) which can write
multiline samples of any topic the user gives as input (Radford et al. 2019). The
fully trained model of GPT-2 was not released to the public out of fear for mali-
cious use, and consequentially Irving and Askell 2019 described the need for social
scientists in AI development.

The different progresses within AI often uses a combination of different ML tech-
niques: Supervised, Unsupervised and Reinforcement Learning. In Supervised Learning,
a model is trained with context-specific training data, and each element has a label
corresponding to a class. Supervised learning algorithms thus adapt its variables to
the given training data according to the labels given. Supervised learning is, there-
fore, an adaptable model; However, it is only adaptable at compile time. Unsuper-
vised Learning can be used when there are no distinct labels available for the data.
Clustering is a method in unsupervised learning which clusters the data and poten-
tially discover hidden patterns. The last technique of ML is Reinforcement Learning
(RL), where an agent traverses an environment guided by a reward function as il-
lustrated in Figure 1.2. In RL, the agent is not given examples of optimal actions
but instead must discover them through trial and error. The agent/environment
model is built up of the Markov Decision Processes which is described in Section 2.1.
(Bishop 2006)

The reward function in RL is generally engineered to a specific task. For many
problems, the reward function is not simple to engineer, and thus the general RL
problems are hard to solve. In such situations Inverse Reinforcement Learning (IRL)
can be used. IRL flips the problem by trying to find a reward function that a given
policy is trying to optimise instead of the policy optimising the reward function. In
many cases, the optimal policy could be an expert doing the task (Russell 1998). An
example of this is Apprenticeship Learning presented by Abbeel and Ng 2004 where
they used it to drive a car simulation by recording expert data from a human
driver.

3

Chapter 1. Introduction

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 1.2: The agent/environment model of RL. Here the agent selects an action at which interacts
with the environment. The environment then outputs a state st+1 and a reward rt+1. Each state can
consist of multiple observations, e.g. robot joint values. The reward is a value corresponding to how
good the state is, and is often engineered to every RL use case. (Sutton and Barto 2018)

1.3 Existing Applications

In research of RL techniques, games (including video-, board- and card-games) are
the go-to platform to test and develop algorithms. Due to the nature of games
having a well-defined set of rules and scoring system and thereby making it pos-
sible to compare results directly between algorithms. As mentioned, examples of
implementation of ML in games are Atari (Mnih et al. 2015), Go (Silver et al. 2017),
and StarCraft II (Vinyals et al. 2019). The last two games indicate the most compli-
cated board-game and video-game (regarding strategy) and are a good indication
of how far RL has come. Nonetheless, available commercial games where an RL
algorithm (controlling, e.g. a Non-Player-Character (NPC)) is lacking. An example
of a commercial available video-game that implemented RL is Creatures by Grand
et al. 1997, seen in Figure 1.3.

Figure 1.3: In game footage of Creatures. (Julia 2013)

Since Creatures, significant advancement has happened to the RL field. Despite
this, no real commercial game using RL has been released since then. The reason
for this can be many, but most likely, it is the cost of developing RL for games.
Game producers might not see the benefits of creating an RL NPC where the game

4

1.4. Initial Project Hypothesis

is not directly focused around that subject, as the case was with Creatures. In
the field of industrial applications RL has shown potential within e.g. mainte-
nance (Xanthopoulos et al. 2018) (Compare et al. 2018), motion planning (Chen
et al. 2017) (Peng et al. 2017), routing (Khodayari and Yazdanpanah 2005) (Lin et
al. 2016), scheduling (Gabel and Riedmiller 2007) (Kim et al. 2016), and technical
processes control (Hafner and Riedmiller 2011). Since this thesis is focused on
RL from a robotics point-of-view, a small sub-area of industrial applications with
existing RL publications are shown in the following list:

Path Planning
Examples of implementing RL in path planning are presented by Park et al.
2007 and Meyes et al. 2017. RL has proven to be successful in solving path
planning in both 2D and 3D environments.

Welding
Robot manipulators are used to a high extent in automated welding processes
with examples such as shown by Casler Jr 1986, Lipnevicius 2005, and Lee
et al. 2011. Because of the widespread use of robotic welding, this area has
also been explored with RL techniques as presented by Takadama et al. 1998,
Günther et al. 2016, and Jin et al. 2019.

Pick-and-Place
Pick and place is a fairly used application for robot manipulators and has
also received attention from RL approaches with examples presented by Gu
et al. 2017, Andrychowicz et al. 2017, and Nair et al. 2017.

Rehabilitation
There exist a considerable amount of research in the field of rehabilitation,
with examples presented by Pehlivan et al. 2015 and Vallés et al. 2017. Fur-
thermore, companies such as Life Science Robotics with their product ROBERT
has used a collaborative robot manipulator to aid rehabilitation (Life Science
Robotics 2019). Examples of applications utilising RL are (Huang et al. 2015)
and (Hu and Si 2018).

As of this thesis, there exist no known commercially available solutions that include
RL in any of the above-mentioned areas, despite the scientific interest.

1.4 Initial Project Hypothesis

This thesis investigates the usage of RL in a robotic context where expert data is
used. The expert data is captured from a specific task performed by an expert
and is then used to solve an RL problem. Moreover, this thesis is part of the Dan-
ish robotic network RoboCluster, which is a collection of companies and research
institutions with the primary goal of sharing robotics knowledge and aid the re-
search within the field. Use cases inspired from different RoboCluster companies
are analysed, and one is selected as the use case for this thesis. As presented in
Section 1.2 and Section 1.3, the number of commercially available solutions incor-
porating RL is limited, e.g. due to the complexity of designing reward functions.

5

Chapter 1. Introduction

Some methods have addressed this challenge by using expert data from humans,
as was shown with Apprenticeship Learning. From this, the initial hypothesis is
formulated as:
The complexity of Reinforcement Learning in use cases from RoboCluster companies can be
aided by the use of a human expert.

6

Chapter 2

Background

This chapter introduces the fundamental theory behind RL problems, i.e. Markov
Decision Process (MDP). Additionally, tabular methods for solving RL problems are
introduced followed by an introduction to value-based, policy gradient and actor-
critic RL methods in Chapter 3. The content of this chapter is based on Sutton and
Barto 2018.

2.1 Markov Decision Process

The following section gives an introduction to the mentioned Markov Decision Pro-
cesses (MDP), which is the backbone of the RL problem. In general RL, an agent
traverses an environment by taking actions, and observing states and numerical
rewards. Thus MDPs are a formalisation of the traditional sequential decision
making where actions influence the observed states as shown in Figure 2.1. De-
pending on the environment, there may be a probability that the action execution
fails - in Figure 2.1 this is shown as returning to the initial state, however, it could
be an entirely new state. A traditional MDP contains the following tuple:

• S: a set of observable states

• A: a set of actions

• Psa(·): the transition probability when taking action a in state s (i.e. a model
of the dynamics in the environment - this is only required for model based
reinforcement learning)

• R : (S, A)→ R: a map from states and actions to a single numerical value

The sequential aspect comes when observing an episode of state, action, and re-
wards: {(s0, a0, r0), . . . , (sT, aT, rT)}. The problem RL is trying to solve is to max-
imise the cumulative reward G, of which the simplest case is shown in Equa-
tion 2.2.

G = R0 + · · ·+ Rt + · · ·+ RT−1 (2.1)

=
T

∑
t=0

Rt (2.2)

7

Chapter 2. Background

s0

s1

s2

a0

a1

a0

a1

a0

a1

R
R

R
R R

R

RR

R

R R

R

Figure 2.1: The relation between states, actions, and rewards in a Markov Decision Process.

If the MDP is finite, the sets of states, actions and rewards contain only a finite
number of T elements. Such a finite MDP is called an episode or trajectory. If
there is no guarantee the episode will ever end, or the episode may be significantly
large, it can be infeasible to give rewards far into the future the same weight to the
current situation as the more immediate rewards. Therefore a discount factor can
be added to G to discount rewards which may not affect the immediate steps.

G = γ0R0 + · · ·+ γtRt + . . . (2.3)

=
∞

∑
t=0

γtRt (2.4)

= R0 +
∞

∑
t=1

γtRt (2.5)

Where γ ∈ [0; 1] is the discount factor. Thereby G becomes bounded as long as
R ∈ [Rmin, Rmax].

Assuming the agent traversing the MDP is optimal (i.e. it will always take the
action that maximises Equation 2.5) Equation 2.5 can be used as a value of how
good the current state is to be in. Due to the repeating aspect of Equation 2.5, the
value of following a policy π can be expressed as shown in Equation 2.6.

Vπ(st) = Rt + γVπ(st+1) (2.6)

Here a policy refers to the selection of an action. This selection could, for instance,
be based on some probability ε of selecting a random action. Similarly, a value
for taking an action in state s and thereafter following policy π can be defined as
Equation 2.7.

8

2.2. Tabular Methods

Qπ(st, at) = Rt + γQπ(st+1, at+1) (2.7)

For such an action value functions, a policy could, for instance, be ε = 0.1, i.e.
there is a 10% probability of selecting a random action. This means there is 90%
probability of selecting the action with the highest action value. In RL, Equation 2.6
and 2.7 are typically estimated from experience, e.g. by keeping an average of the
achieved reward successive to a given state. This way of estimating the value-
functions is called Monte Carlo methods and is just one of the multiple possible
approaches of estimating the value-functions from experience as described in the
following section.

2.2 Tabular Methods

As mentioned in Section 2.1, there are multiple approaches to solving a standard
MDP. This section describes some of the popular approaches to estimating the
value of an action in a given state. Since these methods only estimate a value of an
action, and not the action itself, they are referred to as value-based methods in a
tabular representation. For these methods to be applicable, the MDP can only have
a finite number of selectable actions, such as in video-games (move up, down, left,
or right) or the colour of traffic lights in an intersection. Similarly, the states can
only contain discrete observations when using tabular methods; however, a value-
based method for using continuous observation is presented in Chapter 3. The
section starts with the most straightforward method known as Monte Carlo and
advances into modern approaches that allow for temporal-difference and off-policy
learning.

2.2.1 Monte Carlo Method

The simplest form of estimating the value of an action is to average the reward
received when being in a state and selecting an action. After each episode, the
estimate can be updated in order to converge to the optimal values. Algorithm 1
shows an implementation of a Monte Carlo method where it can be seen how the
average of the reward is calculated. Gt can be calculated using Equation 2.2.

This type of Monte Carlo is called first visit Monte Carlo prediction. It is also pos-
sible to count every time a state is encountered by omitting line 6 in Algorithm 1
(thereby becoming every visit Monte Carlo). Every visit Monte Carlo extends itself
more naturally to general function approximation. As it can be seen in Algorithm 1,
the Monte Carlo method requires the possibility to count the number of times a
state and action has been encountered. This means this method is only applicable
when the environment can be discretised to a grid-space.

9

Chapter 2. Background

Algorithm 1 First-Visit MC Prediction (for action values).
Input: Policy π, positive integer num_episodes
Output: Value function Q (≈ qπ if num_episodes is large enough)

1: Initialise N(s, a) = 0 for all s ∈ S , a ∈ A(s)
2: Initialise return_sum(s, a) = 0 for all s ∈ S , a ∈ A(s)
3: for i← 1 to num_episodes do
4: Generate an episode S0, A0, R1, . . . , ST using π

5: for t← 0 to T − 1 do
6: if (St, At) is a first visit (with return Gt) then
7: N(St, At)← N(St, At) + 1
8: return_sum(St, At)← return_sum(St, At) + Gt

9: end if
10: end for
11: end for
12: Q(s, a)← return_sum(s, a)/N(s, a) for all s ∈ S , a ∈ A
13: return Q

2.2.2 Sarsa Method

One of the limitations of Monte Carlo methods is the fact that the agent can
only learn after each episode. This can be circumvented by applying temporal-
difference (TD) learning as done in Sarsa methods. Thus Sarsa and Monte Carlo
methods are similar but with the difference that Sarsa will update the action value
estimation after each timestep instead of after each episode.

Temporal-difference is a way of optimising the value estimation by minimising
the temporal-difference error. This error comes from the recursive function in
Equation 2.7 where the action value of the current state st should be equal to
the next reward plus the discounted action value estimated by the same function.
If this is not the case, the action value can be updated by minimising this error as
shown in Equation 2.8.

δ = Rt + γQπ(st+1, at+1)−Qπ(st, at) (2.8)

The current estimate Q(st, at) can then be updated by adding this error as in Equa-
tion 2.9.

Qπ(st, at) = Qπ(st, at) + α

TD error δ from Equation 2.8︷ ︸︸ ︷
(Rt + γQπ(st+1, at+1)−Qπ(st, at)) (2.9)

Where α is a scaling factor in order to avoid oscillation. Much like with Monte
Carlo methods, the Sarsa methods requires a finite number of actions to choose
from since it will estimate a value for each action. The policy π will then select
which action to choose based on the estimated action value.

10

2.2. Tabular Methods

2.2.3 Q-learning

Q-learning is similar to Sarsa in the sense that it also uses temporal-difference
learning, but instead of using the value determined by the policy π when per-
forming the temporal update in Equation 2.8 it uses the action that maximises the
accumulated reward, i.e. it follows a greedy policy for Qπ(st+1, at+1) as shown in
Equation 2.11.

δ = Rt + γmax
at+1

Qπ(st+1, at+1)−Qπ(st, at) (2.10)

Qπ(st, at) = Qπ(st, at) + α

TD error δ from Equation 2.10︷ ︸︸ ︷(
Rt + γmax

at+1
Qπ(st+1, at+1)−Qπ(st, at)

)
(2.11)

Thus Sarsa and Q-learning are very similar with only a small difference in their up-
date procedure. They also share the same limitations of requiring a finite number
of actions and a finite number of states.

11

Chapter 3

State of the Art

In this chapter, the variety of presented methods are extended to include those
which can solve problems in domains with arbitrary large state or action spaces,
unlike the tabular methods described throughout Section 2.2. Instead of discretis-
ing a continuous RL problem, an alternative solution is to obtain a continuous
function approximation of the value function. In this thesis, this process will be
referred to as function approximation. In an RL problem with an infinite state-
space, it is necessary to generalise states, such that decisions can be made based on
previously visited states which are similar to the current. This is necessary while
most possible states in such problem are never encountered more than once if at
all. The aim is to generalise based on examples obtained from previously visited
states to estimate e.g. a value function. The problem of generalising and estimating
functions is one of the critical problems, related to arbitrary large state and action
spaces. This chapter describes methods which use general function approximators
to solve an MDP. (Sutton and Barto 2018)

Value-based

Policy Gradient

Actor-Critic

Monte Carlo,
Sarsa,
Q-Learning,
DQN,
...

VPG,
TRPO,
PPO,
...

DDPG,
SAC,
...

Figure 3.1: The three main categories of reinforcement learning. Note Monte Carlo, Sarsa, and
Q-Learning are described in Section 2.2, but are included here for completeness.

Figure 3.1 gives an overview of the three main categories of RL described in this
chapter. The first category is the already mentioned value-based method from
Chapter 2. The following sections present additional value-based methods that
overcome some of the limitations mentioned in Section 2.2. The next category is
policy gradient methods, which operates by learning probability distributions of
the optimal actions. These methods do, therefore, not necessarily rely directly on

13

Chapter 3. State of the Art

a value function. The last category, actor-critic methods, are a combination of both
value-based methods and policy gradient methods where a value function is used
to update a policy. One of the advantages of these methods is that they allow for
estimating continuous actions directly.

Additionally, Section 3.4 introduces Inverse Reinforcement Learning (IRL), and
finally, a summary of the presented methods can be found in Section 3.5.

3.1 Value-Based Methods

As mentioned, the disadvantage with the tabular methods from Section 2.2 is the
sensitivity to the number of dimensions in the state-space and action-space. This
section introduces a generalisation of the Q-learning algorithm using a general
function approximator.

Input 1

Input 2

Input 3

Input I

..
.

...

...

...

...

..
. ..
.

...

..
.

...

..
.

Output 1

Output 2

Output 3

Output O

Hidden
layer

Hidden
layer

Input
layer

Output
layer

An
y n

um
be
r

of
ne
ur
on
s

an
d
lay

ers

−5 0 5
−1
0

1

input

ou
tp
u
t

sigmoid

0
−1
0

1

input

relu

−5 0 5
−1
0

1

input

tanh

Figure 3.2: A general setup of a neural network. The function variables are represented by arrows
to each node. The nodes can optionally contain an activation function that introduces non-linearity.
The number of hidden layers and nodes in each hidden layer is a design choice.

14

3.1. Value-Based Methods

Deep Q-Learning

The only value-based method using a general function approximator considered
in this thesis is an extension of Q-learning called Deep Q-learning or Deep Q-
network (DQN). Here a generic function approximator in the form of an NN is
used to estimate the action-value. A general NN can be seen in Figure 3.2, where
the inputs are observations from the current state and the outputs are the action-
value of each possible action.

Though this method uses a general function approximator instead of a tabular,
the methods are equivalent except for the update step. Using a general function
instead of a tabular method means that the TD update from Equation 2.9 and 2.11 is
not possible. Instead, the TD update becomes a minimisation problem to minimise
the TD error in Equation 2.8 as shown in Equation 3.1 with respect to the network
parameters θ.

minimise
θ

Rt + γmax
at+1

Qπ(st+1, at+1|θ)−Qπ(st, at|θ) (3.1)

The advantage of using a function approximator is that it is easily scalable with
the size of the state, i.e. the inputs can both be continuous and discrete and more
inputs can be added without changes to the underlying optimisation.

Even though NN has the potential to approximate complex underlying functions,
making them converge to optimal solutions can be difficult. Therefore several
improvements have been developed to stabilise the convergence. The following is
a short list of some of the popular improvements.

Target Networks (TN): The optimisation step in Equation 3.1 may make the neural
network unstable as the weights are changed due to the recursive property of
the action-value function in Equation 2.7. To limit this, a separate target network
with parameters θ′ is used to compute the action-value for state st+1 as shown in
Equation 3.2.

Qπ(st, at|θ) = Rt + γmax
at+1

Qπ(st+1, at+1|θ′) (3.2)

The parameters of the target network can then be updated by setting θ′ ← θ after
a given number of timesteps, or it can be set gradually after every timestep as
θ′ ← αθ′ + (1− α)θ. (Mnih et al. 2015)

15

Chapter 3. State of the Art

Dueling Networks: Instead of estimating the action-value function, the neural
network consists of two streams - one for estimating the state-value and one for
estimating an action advantage. A visual representation can be seen in Figure 3.3.
(Wang et al. 2015)

Figure 3.3: (top) A traditional Q-network. (bottom) A dueling network with the advantage and
state-value estimation. (Wang et al. 2015)

Double Networks: Q-networks are known to overestimate the value function as
shown by Hasselt et al. 2015. In the same paper, they propose to use a separate
network to compute the TD target shown in Equation 3.2. They do this by first
rewriting it as shown in Equation 3.3 and then selecting the action with respect to
the online network instead of the target network, as shown in Equation 3.4.

(DQN + TN) Qπ(st, at|θ) = Rt + γQπ

(
st+1, arg max

at+1

Qπ
(
st+1, at+1|θ′

) ∣∣∣θ′
)

(3.3)

↓

(Double DQN) Qπ(st, at|θ) = Rt + γQπ

(
st+1, arg max

at+1

Qπ (st+1, at+1|θ)
∣∣∣θ′
)

(3.4)

This means that the action is selected with respect to the online network, but
the value of that action is computed using the target network. (Hasselt et al.
2015)

Multi-Step Reinforcement Learning: So far all the shown algorithms have as-
sumed a single TD update. Asis et al. 2017 proposes an algorithm to compute the
TD error by looking n-steps ahead. This gives a TD error based on multiple steps
instead of a single step. In practice, Equation 3.1 is updated to Equation 3.5.

minimise
θ

n−1

∑
k=0

(
γkRt+k

)
+ γnmax

at+n
Qπ(st+n, at+n|θ)−Qπ(st, at|θ) (3.5)

16

3.2. Policy Gradient Methods

This allows the agent to use its experience data more efficiently.

Prioritized Experience Replay: Updating a Q-network can be a slow process that
requires multiple passes with the same data before any significant improvements.
Additionally, the ability to replay state transitions that generated a high accumu-
lated reward can increase performance, as shown by Mnih et al. 2015. Initially, the
experience is sampled uniformly from the replay buffer, whereas newer methods
prioritise the experience to replay according to the TD error. Since the TD error
indicates the current accuracy of the value estimation, there is more to learn from
transitions with high TD errors. By replaying transitions with a high TD error
more frequently, the accuracy of the value estimation is improved. (Schaul et al.
2016)

Noisy Nets: Having a constant epsilon-greedy exploration introduces a non-learn-
able parameter, which means that the agent’s sentiment to explore is uniform for
the entire state-space. To avoid this, Fortunato et al. 2017 introduces noise directly
on the NN layers, which is updated with gradient descent. This allows the agent to
learn how to ignore the noisy stream. Since the noisy parameters are updated us-
ing gradient descent over time, the noise decays at different rates in the state-space
while allowing for a form of annealing exploration. The noisy net exploration is
added to the traditional parameters in a layer of a network, as shown in Equa-
tion 3.6.

y = b + Wx︸ ︷︷ ︸
Traditional layer

+ bnoisy � εb +
(

Wnoisy � εW
)

x
︸ ︷︷ ︸

Noisy Net

(3.6)

Where x is the input to the layer, W and b are the weights and bias of the layer,
Wnoisy and bnoisy are learnable parameters for the noise (i.e. a scaling of the noise
εW and εb). Note that � denotes element-wise multiplication. Lastly, y is the
preactivation values of the given layer.

Each of these improvements has been combined in a single Deep Q Network agent
set to learn Atari2600 games. The algorithm has the name Rainbow and currently
outperforms all existing implementations of DQNs on the Atari2600 game bench-
mark. (Hessel et al. 2017)

3.2 Policy Gradient Methods

Instead of estimating the actions based on a value, a probability distribution can be
used to determine which action to select in a given state. This approach is referred
to as policy gradient methods and works for both discrete and continuous action
spaces. Policy gradient methods aim to learn some policy parameters θ by using
the gradient of a performance measure J(θ) concerning the policy parameters.
From these policy parameters, a stochastic policy πθ is generated with a probability
distribution over action probabilities given observations. Following a policy is
thus equal to sampling an action from this probability distribution. This stochastic

17

Chapter 3. State of the Art

policy results in smooth changes in the probability distribution when the policy is
updated, unlike value-based methods where small changes can result in a dramatic
change. (Sutton and Barto 2018)

The goal in policy gradient methods is to find a policy which maximises the ex-
pected sum of rewards over all state-action sequences, i.e. J(θ) in Equation 3.8.

J(θ) = E

[
∑
τ

Rτ

∣∣∣πθ

]
(3.7)

= ∑
τ

P(τ|θ)Rτ (3.8)

Where τ denotes a state-action sequence {(s0, a0), ..., (sT, aT)} as defined in Sec-
tion 2.1, Rτ is equal to the sum of rewards in a state-action sequence (in this case
γ = 1, Rτ = ∑T

t=0 Rt), πθ is the current policy and P(τ|θ) is the probability of τ

when having the policy parameter θ.

The gradient of the performance measure J(θ) is equal to the expected value of
the log probability of the state-action sequences τ multiplied by Rτ as seen in
Equation 3.10. This gradient is called the likelihood ratio policy gradient.

∇θ J(θ) = ∑
τ

P(τ|θ)∇θ log P(τ|θ)Rτ (3.9)

= E[log P(τ|θ)Rτ] (3.10)

Here ∇θ log P(τ|θ) is equal to ∇θ log ∑T
t=0 πθ(st, at), i.e. the transition probabilities

do not depend on θ and thus disappears in the gradient. While, the gradient of
J(θ) can be expressed as an expected value it can be estimated using sample paths
under a specific policy as seen in Equation 3.11.

∇θ J(θ) ≈ ĝ =
1
m

m

∑
i=1
∇ log P(τ|θ)R(τ(i)) (3.11)

In that way, a gradient is estimated, as a function of θ which points in the direction
which increases P(τ|θ) for state-action sequences with a positive reward and de-
creases sequences with a negative reward. This estimate does, however, in general
produces a significant variance and thereby a low convergence time. The following
sections contain examples on algorithms which strives to improve the above policy
gradient principles by, e.g. lowering the produced variance in the gradient.

3.2.1 Reduction of Gradient Variance & Vanilla Policy Gradient

Baselines and temporal structures are two methods which can be applied for low-
ering the variance and noise in the likelihood ratio policy gradient estimate, pre-
sented in Equation 3.11.

18

3.2. Policy Gradient Methods

When estimating the gradient, a baseline value can be subtracted from R(τ(i)), as
seen in Equation 3.12.

∇θ J(θ) ≈ ĝ =
1
m

m

∑
i=1
∇ log P(τ|θ)(R(τ(i))− b) (3.12)

Where b is the baseline value e.g. the average of the sum of rewards, 1
m ∑m

i=1 R(τ(i)).
The baseline is used to centre the estimate around a baseline, such that the prob-
ability of a state-action sequence is increased if the representative reward is above
the baseline and decreased if it is below the baseline. The baseline can e.g. be
a constant value, time-dependent or dependent on the current state. The aim of
a state-dependent baseline is to estimate the expected return of being in a state
when following a policy, i.e. a state-dependent baseline can be seen as a state
value function, Vπ(st) which is updated using sample trajectories.

The variance in the gradient estimate can be further lowered by looking at the tem-
poral structure of the estimate. By decomposing Equation 3.12 into Equation 3.13
it can be seen that the sum of rewards over a whole trajectory is multiplied with
∇ log πθ(st, at) at each timestep t i.e. the sum of rewards thus contributes to the
estimation at each timestep. Removing the terms, in Equation 3.13, which is in-
dependent from the current action at the variance in the gradient estimate can be
lowered.

ĝ =
1
m

m

∑
i=1

T

∑
t=0
∇ log πθ(st, at)

((
t−1

∑
k=0

R(sk, ak)

)
+

(
T

∑
k=t

R(sk, ak)

)
− b

)
(3.13)

While, the probability of taking actions at state T is independent from the reward
obtained at e.g. t2 the term ∑t−1

k=0 R(sk, ak) can be removed from Equation 3.13, and
Equation 3.14 is thus obtained.

ĝ =
1
m

m

∑
i=1

T

∑
t=0
∇ log πθ(st, at)

(
T

∑
k=t

R(sk, ak)− b

)
(3.14)

The two above principles are both incorporated in the policy gradient method
called Vanilla Policy Gradient (VPG). Which can be found in Algorithm 2. VPG is
simple but has limitations when it comes to data efficiency, robustness and finding
a gradient stepsize α. (Schulman et al. 2017)

19

Chapter 3. State of the Art

Algorithm 2 Vanilla Policy Gradient. (Sutton and Barto 2018) (Schulman et al.
2017)

1: for k = 0, 1, 2, ... do
2: Collect m state action-sequences using the current policy πθ .
3: Compute the discounted reward at each timestep and for each sequence:

Rt =
T

∑
t′=t

γt
′−trt′

4: Compute the advantage estimates Â at each timestep for each sequence:

Â = Rt − bφ(st)

5: Estimate the policy gradient:

ĝk =
1
m

m

∑
i=1

T

∑
t=0
∇ log πθ(s

(i)
t , a(i)t)Ât

(i)

6: Update the policy parameters using the gradient e.g. by gradient ascent:

θk+1 = θk + αĝk

7: Update the baseline value, bφ(st), e.g. using mean square error.

φk+1 = arg min
1
m

m

∑
i=1

T

∑
t=0

(
bφ(s

(i)
t)−

(
T

∑
k=t

R(s(i)k , a(i)k)

))2

8: end for

3.2.2 Trust Region Policy Optimisation

This section presents a policy gradient method presented by Schulman et al. 2015
called Trust Region Policy Optimisation (TRPO). TRPO uses the principles of trust
region optimisation to control the stepsize used when updating a policy using a
gradient. The presented method was demonstrated to have a robust performance
in a wide range of tasks, e.g. simulated robotic swimming and hopping.

The gradient used in the vanilla algorithm presented in the previous section is
updated by taking a step with a gradient which can be written according to Equa-
tion 3.15.

ĝ = E
[
∇ log πθ(st, at)Â

]
(3.15)

Where Â is an advantage estimate, e.g. Â = Rt − bφ(st) as in Algorithm 2. This
gradient is in TRPO formulated as a cost function as seen in Equation 3.16.

20

3.2. Policy Gradient Methods

LPG = E
[
log πθ(st, at)Â

]
(3.16)

Optimising a policy using this objective function, e.g. as in the vanilla, do however
according to Schulman et al. 2017 often results in large and destructively policy
updates, and it is therefore not well justified to do.

The presented method does, therefore, use another formulation of the objective
function. The function uses the theory of importance sampling, and a KL diverges
constraint on the size of a given policy update, as see in Equation 3.18.

maximise
θ

E

[
πθ(st, at)

πθold(st, at)
Â
]

(3.17)

s.t. E [KL[πθold(st, at), πθ(st, at)]] ≤ δ (3.18)

Where πθold is the old policy, πθ is the current, and KL is a measure of difference
between the two policies. In this way, the optimisation can only happen in a re-
gion where the constraint is fulfilled, i.e. large and destructive policy updates are
restricted.

3.2.3 Proximal Policy Optimization

One of the difficulties with TRPO is the KL diverge constraint which adds a large
overhead on the optimisation. In order to avoid this computationally heavy con-
straint (Schulman et al. 2017) presented a method called Proximal Policy Optimiza-
tion (PPO) that modifies the objective function such that the KL-divergence con-
straint is no longer necessary, as seen in Equation 3.19.

LPG = E

min

πθ(at|st)

πθOld(at|st)
Â

︸ ︷︷ ︸
Undo bad gradients

, clip
(

πθ(at|st)

πθOld(at|st)
, 1− ε, 1 + ε

)
Â

︸ ︷︷ ︸
Clip gradient step size

(3.19)

This new objective function is similar to the objective function of TRPO in Equa-
tion 3.17, but consists of three parts; namely the min operator, the same objective
function as in Equation 3.17, and a clipping of the objective function. The clipping
function ensures not to take too large gradient steps, i.e. it is not possible to im-
prove more than a proportion of ε over the old policy. The min operator selects
the term that has the lowest value between the gradient and the clipped gradient.
In practice, this happens when the current policy has a higher probability of an
action than the old policy, while at the same time producing a negative advantage
value

(
Â
)
. This means that the policy now wants to select actions that produce

a smaller accumulated reward which is not desired. Therefore the min operator

21

Chapter 3. State of the Art

ensures that the policy does not take too large gradient steps. While at the same
time allows the policy to recover from policies that increase the probability of an
action that produces a negative advantage. Since the advantage will be negative
and thus move the gradient in the opposite direction (i.e. undoing the original
failed gradient update).

3.3 Actor-Critic Network

This section covers two versions of an actor-critic network (ACN), which like the
policy gradient methods overcomes the limitation of value-based algorithms by
operating in a continuous action-space. An ACN consists of two networks, an
actor which learns the policies and a critic which evaluates the actions chosen by
the actor. The critic is learning the action-value function for the actor’s current
policy, through a TD algorithm, this allows the critic to criticise the actor. The basic
principles of an ACN can be seen in Figure 3.4. (Sutton and Barto 2018)

Actor Environment

Critic

Action

Reward State

TD Error

Figure 3.4: Basic principles of an actor-critic network setup.

One of the significant advantages of an actor-critic setup over a strictly value-based
method or a strictly policy gradient method is the ability to estimate continuous
actions while not suffering from the instability of the simple policy methods.

There do exist numerous actor-critic setups, such as Policy Gradient with Function
Approximations (Sutton et al. 1999), Sample Efficient Actor-Critic with Experience
Replay (Wang et al. 2016), and Asynchronous Actor-Critic (Mnih et al. 2016). The
two actor-critics investigated in this section are a Deep Deterministic Policy Gradient
method and a Soft Actor-Critic method. Though they do share many similarities,
some key differences make their performance vary.

3.3.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an algorithm, presented by Lillicrap
et al. 2015 which combines policy gradient methods with the recent success of the
DQN. Specifically, the critic is a standard DQN with the only difference being that
instead of estimating the action value for each action based on observations. It
estimates an action value for an action given as input - i.e. the output is a single

22

3.3. Actor-Critic Network

value. The action inputs to the DQN are policy values. A small example of a
DDPG network is shown in Figure 3.5.

Actor

Critic

Input 1

Input 2

Input 3

Input 1

Input 2

Input 3

Q-value

Q-value
Action
Hidden neuron

Figure 3.5: An ACN showing the relationship between the actor and the critic.

From Figure 3.5 it can be seen how the critic is a function of the actor. Using this
property, Lillicrap et al. 2015 proved that the gradient of the network with respect
to the parameters of the actor can be approximated using the chain-rule and a
batch of N states as shown in Equation 3.20.

OJ ≈ 1
N

N

∑
i=1

OQ(si, µ(si)|θQ)Oµ(si|θµ) (3.20)

In other words; this gradient will move the actor in the direction that maximises
the critic, which in turn is guided by the minimisation of the TD error as shown in
Equation 2.8 and 2.9.

The complete algorithm for implementing a DDPG is shown in Algorithm 3. The
advantage of DDPG is that the policy can predict action values directly, thus they
can be continuous. This is useful for robotic tasks that often are difficult to discre-
tise without loss of information.

3.3.2 Soft Actor-Critic

A more recent algorithm for continuous action control is the Soft Actor-Critic (SAC)
algorithm (Haarnoja et al. 2018). Instead of only maximising the accumulated
reward like with traditional DQNs or even DDPG, SAC tries to additionally max-
imise the entropy of the policy producing the actions. In short, entropy is a measure
of how predictable a random variable is. An example of the entropy of a constant
variable is zero since it is easy to predict what value the constant is going to take,
whereas a random variable from an interval has a higher entropy depending on

23

Chapter 3. State of the Art

Algorithm 3 DDPG Algorithm with single timesteps. (Lillicrap et al. 2015)

1: Initialise critic Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

2: Initialise target critic Q′ and target actor µ′ with weights θQ′ ← θQ and θµ′ ← θµ

3: for e = 1, M do
4: for t = 1, T do
5: Get action at = µ(s|θQ) +N . N is some noise on the action
6: Execute action at in environment, observe rt and st+1

7: Store transition (se, ae, re, st+1) in R
8: Sample N random transitions, (si, ai, ri, si+1), from R
9: Set yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′)

10: Update the critic by minimising the loss:

L =
1
N

N

∑
i=1

(
yi −Q(si, ai|θQ)

)2

11: Update the actor policy using the sampled policy gradient:

∇J ≈ 1
N

N

∑
i=1
∇Q(si, µ(si)|θQ)∇µ(si|θµ)

12: Update the target networks:

θQ′ ← τθQ + (1− τ) θQ′

θµ′ ← τθµ + (1− τ) θµ′

13: end for
14: end for
15: return Q

the distribution its sampled from. By maximising the entropy, SAC ensures that
the policy will always explore actions that have similar Q-values and thus the risk
of ending in a local minimum is decreased.

The objective function for SAC is thus modified from the standard sum of expec-
tation of the rewards as in Equation 2.5 to be a more general objective function
containing an entropy term H as shown in Equation 3.21.

J(π) =
T

∑
t=0

E[Rt + αH(π(·|st))] (3.21)

As already mentioned, SAC uses both a critic and a policy network like DDPG,
and this is in principle all that is needed, but according to (Haarnoja et al. 2018),
keeping a separate network for the value function (see Equation 2.6) helps with
convergence. Thus the objective functions J for the value function, critic, and actor
are as shown in Equation 3.22-3.24.

24

3.4. Expert Learning & Inverse Reinforcement Learning

JV = V(st)−Q(st, at)− log(π(at|st)) State value update (3.22)

JQ = Q(st, at)− Rt + V(st+1) Action value update (3.23)

Jπ = KL
(

π(·|st),
exp (Q(st, ·))

Z(st)

)
Policy update (3.24)

The update for the value function in Equation 3.22 is similar to the equivalent up-
date of Equation 2.6, but has the added factor that the entropy of the current policy
is added to the objective function. The update for the action value in Equation 3.23
is the same as for DDPG, which is to minimise an error. In the policy update in
Equation 3.24, KL denotes the KL-divergence which, in short, is a way of measur-
ing the similarity of two probability distributions - in this case, the policies. Z(st)

is a normalisation factor that normalises the distribution, but since it does not af-
fect the gradient with respect to the new policy it can be ignored. (Haarnoja et al.
2018)

3.4 Expert Learning & Inverse Reinforcement Learning

One of the main challenges with defining a problem as an optimisation of an MDP
is the designing of a reward function that reliably describes what is to be optimised
without imposing any bias to the solver. Engineering a reward function often
requires comprehensive domain knowledge and trial-and-error testing in order to
achieve a suitable reward (Sutton and Barto 2018). To quote Ng and Russell 2000,
"the entire field of reinforcement learning is founded on the presupposition that the reward
function, rather than the policy, is the most succinct, robust, and transferable definition
of the task". Thus a reward function is an import part of a traditional MDP, and
the designing of this has a significant impact on the performance of the overall
system. The process of inferring a reward function based on some expert data is
called Inverse Reinforcement Learning. Section 3.4.1 introduces different approaches
to constructing this expert data. Section 3.4.2 presents two methods for using
expert data to model a reward function as a linear combination of features based
on observations of the MDP. A second approach to IRL described in Section 3.4.3
is to represent the reward function using a general function approximator in the
form of an NN.

3.4.1 Constructing Expert Data

The expert data related to an IRL problem should capture an ideal policy π∗. One
of the main issues when obtaining expert data is the correspondence between the
expert teacher, and the learner, e.g. the teacher might not direct state changes in the
same way as the learner. According to Argall et al. 2009 expert data collection can
be divided into two categories: demonstrations and imitations.

When constructing expert data via demonstrations, the teacher demonstrates some
behaviour to the learner, which only collect observations through its own sensors

25

Chapter 3. State of the Art

i.e. the true expert data from the teacher is not directly recorded. Demonstration
expert data can according to Argall et al. 2009 furthermore be divided into two sub-
categories: teleoperations and shadowing. In teleoperations the learner is operated
by the teacher demonstrating some behaviour. This means that there often is a
direct map between the constructed expert data and the true expert data related to
the demonstrated behaviour. Since the only observed data is from the learner and
not the expert directly, it can be difficult to capture exact low-level behaviour of the
teacher. Shadowing is where a learner is collecting observations through its own
sensors when trying to mimic the behaviour of an observed teacher. This means
there is no direct map between the teacher space and the learner space and thus
an additional algorithm is often needed for the learner to be able to observe the
teacher.

The category of using demonstration data for robot learning has been the focus
of several studies. Teleoperation in the form of kinesthetic robot teaching was
used by Finn et al. 2016 for solving dish placement and pouring task using IRL. In
another study, a block stacking problem was solved by a robot using teleoperations
in an HTC VIVE virtual reality systems (VR) (Nair et al. 2017) (HTC VIVE 2019).
Ghalamzan and Ragaglia 2017 used kinesthetic robot teaching to solve robot tasks
in environments with moving obstacles. Abbeel and Ng 2004 presented an IRL
algorithm which was demonstrated for control of a car driving simulation. The
demonstration data was recorded using teleoperations. Demonstration data has
furthermore been applied to a range of other applications, such as toy helicopter
control (Ng et al. 2006), object grasping (Sweeney and Grupen 2007), navigation
tasks and maze solving (Argall et al. 2009).

When constructing expert data via imitations, the data collection is carried out on
a platform which is not the learner itself. A mapping between the learner and the
teacher is therefore often needed to ensure a correct correspondence. Imitation data
can be obtained by, e.g. attaching sensors on the teacher during execution to obtain
the expert data or via external sensors. This expert data can provide a precise
and low-level description of the optimal policy but does often require special build
sensors and thus brings overhead and complexity compared to demonstration data.
One of the main difficulties in obtaining imitations is to ensure that the mapping
between the learner and the teacher is intact. Muelling et al. 2014 presented a table
tennis robot using IRL and imitation expert data obtained by sensors external to
the human players. Kim and Pineau 2016 collected expert data for socially adaptive
path planning via an RGB-D camera external to walking pedestrians. Calinon and
Billard 2007 used motions collected via motion sensors on arms and head of a
teacher and projected the motions to a humanoid. The same approach was used in
Koskinopoulou et al. 2016, where expert data for human-robot collaboration tasks
were collected via internal motion trackers attached to wrist, shoulder and elbow
of a human expert.

As a summary, there are several approaches to set up a teacher-learner scenario.
Demonstrations and imitations both have advantages and disadvantages. Imita-
tion expert data are often complicated to collect due to the overhead related to
sensor equipment. It can furthermore be complicated to create a correspondence

26

3.4. Expert Learning & Inverse Reinforcement Learning

between the teacher and the learner. Imitation expert data can, however, capture
a more exact behaviour of the teacher. Demonstration data can be simpler to col-
lect, but it can be more difficult to capture the exact low-level behaviour of the
teacher. The correspondence between the learner and teacher is often well defined
in demonstrations, and the expert data is obtained directly through the sensors of
the learner.

3.4.2 Linear Inverse Reinforcement Learning

In Linear Inverse Reinforcement Learning (IRL), a reward function is assumed to
be representable by some linear combination of features and weights. The first
approach to Linear IRL is by finding a reward function for which the expected
value of some observed trajectories generated by an unknown optimal policy π∗ is
higher than the expected value of some observed trajectories following a policy π

as shown in Equation 3.25. (Ng and Russell 2000)

E[Vπ∗ (s0)] ≥ E[Vπ (s0)] (3.25)

Where s0 is a fixed starting state. The value V (s0) is calculated as a linear com-
bination of some static basis feature functions φi(s) chosen at design time. When
the reward function is defined as R = φi, then the value of a basis function is
computed as shown in equation Equation 3.26.

Vπ
i (s0) =

T

∑
t=0

γtφi(st) (3.26)

The value for a state is then a weighted sum of all the basic feature functions as
shown in Equation 3.27.

Vπ (s0) =
k

∑
i=0

wiVπ
i (s0) (3.27)

Where the weights wi are the parameters to fit such that Equation 3.25 is true. This
gives the linear programming problem posed in Equation 3.28.

maximise
k

∑
i=1

(
Vπ∗ (s0)−Vπ (s0)

)
(3.28)

s.t. |wi| ≤ 1, i = {1, . . . , k}

The algorithm for approximating a linear reward function can be seen in Algo-
rithm 4.

27

Chapter 3. State of the Art

Algorithm 4 Linear IRL using value estimation. (Ng and Russell 2000)

Input: Trajectories SE generated from an expert policy
Input: k basis feature functions φ

Output: Reward function R
Output: Optimal policy π for R

1: Initialise wi from a uniform distribution [−1, 1] for i, . . . , k
2: Compute the value of the expert data using Equation 3.27
3: for j← 1 to J do
4: Let π be the policy that solves the MDP with reward function R =

∑k
i=0 wiφi (s)

5: Sample a set of trajectories S from π

6: Compute the value of S and SE as shown in Equation 3.27
7: Update wi by solving the linear programming problem in Equation 3.28
8: end for
9: return R, π

The second approach to Linear IRL, called apprenticeship learning, comes from
Abbeel and Ng 2004. The approach is overall similar to the method presented by
Ng and Russell 2000, as it also set up a linear combination of feature functions that
are weighted. While the first algorithm tries to match some value of a trajectory
as shown in Equation 3.27, the algorithm presented by Abbeel and Ng 2004 tries
to match feature expectation vectors estimated as shown in Equation 3.29 given m
trajectories.

µ =
1
m

m

∑
i=1

∞

∑
t=0

γtφ(s(i)t) (3.29)

Equation 3.29 is then used the calculate the feature expectation for both the expert
µE and a policy µπ. The idea is that by matching these feature expectations, the
policy π will produce trajectories that perform as good as the expert. Another
difference is that Abbeel and Ng 2004 puts a ‖ w ‖≤ 1 constraint on the weights
meaning the problem is a quadratic programming problem rather than a simpler
linear one as shown in Equation 3.30. The complete algorithm for apprenticeship
learning can be found in Algorithm 5.

maximise wT (µE − µπ)

s.t. ||w||2 ≤ 1 (3.30)

This approach is similar to how Support Vector Machines (SVM) optimise, by adding
a label of 1 to the expert feature expectations data and a label of -1 to all other
samples, i.e. the goal is to find a reward function where the expert does better
by a margin than the learned policy. Thus the output of the algorithm is at least
one policy that performs as good as the expert minus some margin on the learned
reward.

28

3.4. Expert Learning & Inverse Reinforcement Learning

Algorithm 5 Apprenticeship Learning. (Abbeel and Ng 2004)

Input: Trajectories SE generated from an expert policy
Input: k basis feature functions φ

Output: Reward function R
Output: optimal policy π for R

1: Compute the expert feature expectation µE using Equation 3.29
2: Randomly pick some policy π and compute feature expectation µπ

3: for j← 1 to J do
4: Update w by solving Equation 3.30
5: Solve the MDP using the reward R = wTφ(s)
6: Let π be the policy that solves the MDP with reward function:

R = wTφ (st)

7: Sample a set of trajectories S from π

8: Compute the feature expectation vector µπ of S as shown in Equation 3.29
9: end for

10: return R, π

One of the significant challenges with the linear reward representations mentioned
in this section is that there exist multiple reward functions for which Equation 3.25
is true (e.g. when R = 0 for all actions). Another challenge with these approaches
is that not only is it necessary to design the features; it is a requirement that the
optimal reward function can be represented as a linear combination of expected
feature functions. Additionally as it was shown in both Algorithm 4 and 5 it is
necessary to solve the MDP inside the loop, meaning that every time a new set
of weights is generated, a complete MDP problem has to be solved which can
be computationally heavy or even infeasible to do multiple times. The following
section is an approach to tackle the latter by representing the reward function as
an NN.

3.4.3 Deep Inverse Reinforcement Learning

As mentioned in Section 3.4.2, one of the biggest challenges with a linear represen-
tation of the reward function is the need for feature functions that often requires
domain knowledge to design. Furthermore, they lack the ability to express com-
plex non-linear reward functions often required in high-dimensional spaces such
as robotic tasks. (Doerr et al. 2015)

Some of the newer approaches that address the challenges with linear feature com-
bination methods use general non-linear function approximators in the form of
NN’s. One of these methods is introduced by Ziebart et al. 2008 where they model
sub-optimal behaviour as noise and tries to maximise the entropy in order to get
a descriptive reward function. The original paper used a discrete observation and
action-space, which heavily limits the usability in real-world robotic applications.
A deep version of the same approach has also been developed by Wulfmeier et al.

29

Chapter 3. State of the Art

2015. With the nature of an NN, it is capable of using continuous observations
but is still limited to discrete actions. Guided Cost Learning (GCL) by Finn et al.
2016 is based on the same principles as Ziebart et al. 2008, but extends it to con-
tinuous observations and actions. Furthermore, by updating the reward function
simultaneously with solving the MDP, the computationally heavy need for solving
multiple MDPs is negated. They applied the method to stack dishes in a rag, and
pour into cups, both of which they successfully solved with a robotic manipula-
tor.

Another IRL method Generative Adversarial Imitation Learning (GAIL) by Ho and
Ermon 2016 poses the IRL problem as an adversarial problem which contains two
networks as shown in Figure 3.6; a discriminator network that associates a label
with the with the expert data and tries to predict the probability that a given input
trajectory belongs to the set of expert trajectories. In other words, the discrimi-
nator tries to separate expert data from ’fake’ expert data. The second generative
network is the policy that generates these ’fake’ trajectories. The goal of this policy
is to confuse the discriminator to classify the generated trajectories as expert data.
Thus the problem is no longer to match linear feature expectations, but a classifi-
cation problem that can be trained simultaneously with updating the policy. This
method has a big potential within multiple fields such as image upscaling (Ledig
et al. 2016), music generation (Yang et al. 2017) (Mogren 2016), speech enhance-
ment (Pascual et al. 2017) (Kaneko et al. 2017), and text to image (Zhang et al.
2016).

Generator
(Policy)

Trajectories in MDP
form {(st, at)T}i

(Testing Data)

Expert

Trajectories in MDP
form {(st, at)T}i

(Training Data)
Discriminator

(classifier)

True
False

Figure 3.6: General setup of Generative Adversarial Imitation Learning.

One of the disadvantages with GAIL is that it does not construct a traditional
reward function, but rather a classifier that classifies state transitions similar to
the expert data. Thus generalising this method to dynamic environments, such as
driving a car, may prove difficult.

3.5 Summary

The following section is a summary of the RL algorithms presented in this chapter.
Some of the key aspects and differences are listed along with a short description
of what that means in practice. Afterwards, the same is done for the IRL meth-
ods.

30

3.5. Summary

The RL algorithms presented in this chapter is a small sample of the many algo-
rithms that get developed every year. However, they do present some of the core
methodologies on which most RL algorithms are based. They each address chal-
lenges such as the size of the action and observation space and how they handle
episodes and trajectories. Table 3.1 lists some of the key properties mentioned in
this chapter.

From Table 3.1, it is apparent that when selecting an RL algorithm, it is important
to consider what type of observations and actions the problem contains. If the tasks
allow observing simple features such as binary signals and the actions likewise are
discrete signals, there exist some fundamental approaches to RL algorithms, e.g.
Monte Carlo and Q-Learning. Additionally, depending on how much knowledge
already known about the environment, some of the algorithms require, e.g. tran-
sition probabilities in order to produce policies that converge to a useful result.
However, none of the algorithms described in this chapter requires this.

Likewise, with regular RL, there are some differences in how the IRL problem
gets solved. Some of the aspects are dependent on the same limitations as with
regular RL, such as requiring a model of the environment in order to represent
a reward function properly. Other limitations are assumptions such as that the
reward function can be represented as a linear combination of engineered features.
Engineering these features is also a challenging aspect to overcome complex robotic
tasks. Table 3.2 summarises some of the aspects considered in this chapter.

Along with the assumption of the properties of the function approximator (i.e.
linear or a NN), the most important aspect to consider when selecting an IRL
algorithm is whether the MDP is solved in-loop. Solving the MDP in-loop requires
efficient simulation tools since, depending on the task, the MDP has to be solved
multiple times, which can be slow and inefficient.

31

Chapter 3. State of the Art

A
ction

size

O
bservation

size

A
pproxim

ation
function

T
D

m
ethod

M
odel

free

R
eference

Monte Carlo D D Table No Yes (Sutton and Barto 2018)
Sarsa D D Table Yes Yes (Sutton and Barto 2018)
Q-learning D D Table Yes Yes (Sutton and Barto 2018)
Deep Q-learning D C NN Yes Yes (Mnih et al. 2015)
DDPG C C NN Yes Yes (Lillicrap et al. 2015)
SAC C C NN Yes Yes (Haarnoja et al. 2018)
TRPO D & C C NN No Yes (Schulman et al. 2015)
PPO D & C C NN No Yes (Schulman et al. 2017)

Table 3.1: A summary of selected properties of the RL methods presented in Section 3.1-3.3.
D=discrete, C=continuous, NN=neural network.

A
ction

size

O
bservation

size

A
pproxim

ation
function

M
D

P
in-loop

R
eference

Linear IRL D & C C Linear Yes (Ng and Russell 2000)
Apprenticeship Learning D & C C Linear Yes (Abbeel and Ng 2004)
Maximum Entropy D D Linear Yes (Ziebart et al. 2008)
Deep Maximum Entropy D C NN Yes (Wulfmeier et al. 2015)
Guided Cost Learning C C NN No (Finn et al. 2016)
Generative Adversarial
Imitation Learning

C C NN No (Ho and Ermon 2016)

Table 3.2: A summary of selected properties of the IRL methods presented in Section 3.4. D=discrete,
C=continuous, NN=neural network.

32

Chapter 4

Reinforcement Learning Complexity

Different methods and basic background for RL was described in Chapter 2 and
3. To determine the industrial applicability of these methods, different use cases
inspired from four RoboCluster companies are evaluated using an approach called
Reinforcement Learning Complexity (RLC). The approach serves as a pilot study to
identify the complex aspects in RL for industrial applications. RLC is inspired by
an existing method called Technology-Push Manufacturing Technology (TPMT),
which is used to validate if a new manufacturing technology can be pushed to the
market. TPMT will be introduced in Section 4.1, followed by Section 4.2 which
introduces RLC.

4.1 Technology-Push Manufacturing Technology Definition

Different methods have been proposed to quantify how market ready a certain
technology is. One of these is the Technology Readiness Levels (TRL) described in
the white-paper (Mankins 1995). TRL is defined in nine stages of how ready to
market the specific technology is. TRL was developed by NASA and was used
for their missions; however, the model can be used on any arbitrary technology.
The EU’s research and innovation program H2020 has, for example, adapted the
model by adding a stage 0 and using it to validate new projects within the program
(EU 2018). A problem with TLR is that an expert sets the score with no specific
guidelines.

A method called Technology-Push Manufacturing Technology (TPMT) by Bøgh et al.
2012 can be used in order to compensate for low dimensional validation of TRL.
TPMT works by multiplying a weight (e.g. α) with a general variable (e.g. X1)
describing a specific aspect related to a given technology. These weight/variable
pairs are normalised with the sum of all weights, as shown in Equation 4.1.

Suitability Score =
αX1 + βX2 + σY1 + µY2

α + β + σ + µ
(4.1)

The weights are used to empathise the importance of the variables for a given
manufacturing technology. Moreover, the variables are scored on a scale from 1-5
going from suitable to not suitable:

33

Chapter 4. Reinforcement Learning Complexity

Score 1: Very suitable

Score 2-3: Intermediate suitable

Score 4-5: Not suitable

The suitability score in Equation 4.1 is then an indication of the overall imple-
mentation horizon related to a technology. The formula is not dependent on the
number of variables and therefore, in the thesis, the formula is simplified with
weight vector w and variable vector x, shown in Equation 4.2.

S =
w · x

∑i=1 wi
(4.2)

In the TPMT paper, the four following areas were the general variables: input/output,
environment, technology, and process. The complete explanation of the variables
is shown in Table 4.1.

Variable Definition Factors

x1

Input/Output
All of the input aspects which interact with
the system e.g. the part/product

The different factors related to the
inputs, such as physical properties
of the parts, input variance

x2

Environment
The environment surrounding the system
such as the layout

Factors of the environment are areas
as safety and accessibility

x3

Technology
This includes if there are existing
technologies which can solve the task

Factors are technologies such as
plug-and-play solution and other
robotic equipment that can solve it

x4

Process
The process to be performed is validated on
the complexity of the task

The factors of the process are aspects
such as positioning, tolerances,
processing capabilities etc.

Table 4.1: The four general variables along with a description and which factors plays into the score.
Note that x3 and x4 corresponds to Y1 and Y2 in Equation 4.1.

4.2 Reinforcement Learning Complexity Method Definition

As it was shown in Section 1.3, there is a lack of commercially available solutions
that utilises RL. One possible reason for this is the complexity of traditional RL.
Due to this, it was deemed necessary to identify the complex aspects of RL itself
in industrial contexts. Thus for this thesis, a new method for analysing general RL
applications is presented called RLC (Reinforcement Learning Complexity). It is built
up the same way as TPMT, and it evaluates the complexity of an MDP (described
in Section 2.1) of a task along with the complexity of simulation. An RLC score
is defined by Equation 4.2 with a scoring from 1-5 and a corresponding colour
scheme: green, yellow, orange, red, and blue. The scoring for both the RLC score
and the general variables are as follows:

34

4.3. Inropa Use Cases

Score 1: Simple

Score 2: Simple with some complexity

Score 3: Complex but achievable

Score 4: Very complex

Score 5: Not achievable

General variables related to the scoring are described in Table 4.2. The RLC score
is then used to rank the complexity of creating and solving an MDP in the different
use cases. Any use case containing one or multiple general variables of 5 are left
out of this ranking.

Variable Definition Factors

x1

Observations
All of the observations available and needed
for the MDP state-space

For the observations factors are joint
values, TCP, trajectory and other relevant
observations (e.g. part observations)

x2

Actions
The actions which can be performed by the
robot and RL agent (MDPs action-space)

Factors of actions are torques, joint
values, external activation’s and robot
configurations

x3

Reward
The reward giving back to the RL agent
after an action has been performed

Factors are constraints of the system,
required quality and user feedback

x4

Simulation
The training environment for the RL agent
to train the solution

The factors of the simulation is software
available, online training

Table 4.2: The four general variables of RLC along with a description and what factors plays into the
score.

15 use cases have been inspired by four different RoboCluster industrial members.
The use cases cover the subjects of robot painting, rehabilitation, and pick-and-
place processes found in the meat industry. Note that the uses cases are not directly
taken from the industry, but only inspired by the companies. Each of these use
cases from Section 4.3 to 4.6 are analysed, scored with RLC and is compared in
Section 4.7. The scoring is done with an immediate assessment made by an expert
panel of six people, with knowledge within manufacturing production, robotics and
automation, computer vision, machine learning, and reinforcement learning. This scoring
is done as a pilot study, and thus no prior thorough research or experiments is done
for each of the use cases.

4.3 Inropa Use Cases

The field of robotic spray-painting has been gaining traction throughout the years.
As stated by Chen et al. 2008, the process is complicated, and the success of the
automated procedures depends on the part structure. Therefore, companies spe-
cialised in robotic painting has emerged where Inropa is an example. Inropa uses
their own software for detecting parts (from a point cloud to a segmentation), paint
planning, scheduling, and compute the needed robot configurations, which is il-
lustrated in Figure 4.1. Inropa has stated that the last three processes are where
they have the most difficulties since there are many parameters to tune, which is

35

Chapter 4. Reinforcement Learning Complexity

currently solved with brute-force. For this pilot study, the processes Paint Plan-
ner and Motion Planner have been chosen as two processes, where the parts to be
painted is a beam, a window frame, and a random part. These three are illustrated
in Figure 4.2. (Inropa 2016)

Point Cloud
Segmenta-

tion
Paint

Planner
Scheduling Motion

Planner

1 2

3

Figure 4.1: The five processes every component goes through at Inropa’s solution. The two processes
marked with green has been chosen.

(a) (b) (c)

Figure 4.2: The three different parts used for the Inropa use cases. (a) First part - a metal beam. (b)
Second part - a window frame (Indiamart Webpage 2019). (c) Third part - random part.

RLC for Paint Planner

The paint planning process is executed on every new part entering the painting cell.
The input is a segmentation of a part, and here different parameters such as paint
stroke size, stroke lengths, stroke angles, stroke speed, etc. need to be computed
for each segment of the part. Hereafter this info is sent to the scheduling process
which computes the order of the execution. Three uses cases are defined and
scored below, with a complete overview of the concrete scoring in Table 4.3:

Use case 1:
A known (CAD files are also available) metal beam in a fixed, known posi-
tion, with a segmented polyhedron available. The beam should be completely
covered in paint, but paint overlap, thickness and smoothness are not impor-
tant. From the scoring in Table 4.3, it can be seen that the actions are scored
to be the simplest to implement. Contrary, designing the reward function
was scored to be difficult by the expert panel. The RLC score is 2.8.

Use case 2:
The window frame is non-convex part compared to use case 1. Otherwise,
all the other mentioned aspect of use case 1 also apply for use case 2 (known,
fixed, paint requirements, etc.). The RLC score is 2.9, where only a weight in

36

4.3. Inropa Use Cases

the simulation is increased due to the increased importance of a representa-
tive simulation when the parts are non-convex.

Use case 3:
The only information available for the third use case is a segmented polyhe-
dron and the position of an otherwise unknown part. The paint requirements
are the same as use case 1 and 2. The RLC score is 3.8 due to the increased
risk of only being able to partially observe the part.

The expert panel discussed an MDP where the actions could consist of stroke width
and size, speed of stroke, angle of the stroke. Likewise, the states discussed were
stroke width and size, material properties, paint thickness, and paint vendor. As
shown in Table 4.3, the reward is deemed difficult to model but, according to the
expert panel, could consist of uniform painting and paint consumption.

Inropa - Paint Planner
RLC

Observations Actions Reward Simulation
General variable 3 1 3 3
Weight 0.8 0.2 0.8 0.8

1s
t

us
e

ca
se

RLC score 2.846
General variable 3 1 3 3
Weight 0.8 0.2 0.8 0.9

2n
d

us
e

ca
se

RLC score 2.852
General variable 4 3 4 4
Weight 0.8 0.8 0.8 1.0

3r
d

us
e

ca
se

RLC score 3.765

Table 4.3: The scoring of Inropa’s use cases with paint planner. The RLC score’s colour is rounded
to the nearest integer.

RLC for Motion Planner

The second process is the motion planner, which outputs robot configurations for
the segments to paint. There is no memory of prior planned configurations. Thus
the motion planner needs to plan from scratch for every part, which is a time
consuming task. Initial robot configurations are essential since it is not allowed
to break a paint stroke. The three use cases presented in the previous section, are
for the motion planner defined and scored below, with a complete overview in
Table 4.4:

Use case 1:
The input to the motion planner is a sequence of trajectories related to the
metal beam, which is to be executed. Since all the trajectory planning and
scheduling are done at prior, the expert panel rated the actions as simple.
The observations were rated a grade higher since the environment may only
be a partially observable (e.g. cables and wires might limit robot movement).

37

Chapter 4. Reinforcement Learning Complexity

Simulation has the highest weight due to the ability to model some of the
hidden observations. The RLC score is 1.61.

Use case 2:
For use case 2, trajectories related to a window frame in a fixed position is
the input. The scoring for the window is close to identical to the prior use
case, with the exception of the simulation weight. This weight was scored
higher since the input requires more trajectories and is non-convex. The RLC
score is 1.63.

Use case 3:
The input for use case 3 is a sequence of trajectories. It is not scored much
higher than use case 1 and 2. The expert panel evaluated that there might
be problems related to observations not being fully represented if a segmen-
tation failed. However, the object is still not a complex task and thus has an
RLC score of 1.64.

The expert panel discussed an MDP where the actions could consist of joint values,
TCP positions, the position of wires on the robot. Likewise, the states discussed
were joint values, part dimension, paint planning schedule. The reward could,
according to the expert panel, consist of execution speed, number of joint rota-
tions.

Inropa - Motion Planner
RLC

Observations Actions Reward Simulation
General variable 2 1 1 2
Weight 0.5 0.3 0.6 0.9

1s
t

us
e

ca
se

RLC score 1.609
General variable 2 1 1 2
Weight 0.5 0.3 0.6 1.0

2n
d

us
e

ca
se

RLC score 1.625
General variable 2 1 1 2
Weight 0.6 0.3 0.6 1.0

3r
d

us
e

ca
se

RLC score 1.640

Table 4.4: The scoring of Inropa’s use cases with motion planner. The RLC score’s colour is rounded
to the nearest integer.

4.4 Life Science Robotics Use Cases

Rehabilitation and mobilisation of bedridden patients are hard on the physiothera-
pist due to the heavy lifting the job involves. The product ROBERT, by Life Science
Robotics, aims to alleviate some of the heavy liftings in the rehabilitation of legs
by using a KUKA manipulator. (Life Science Robotics 2019)

To investigate the use of RL in devices as ROBERT, different use cases are set
up. All of them concerns the movement of a patients leg, as illustrated in Fig-

38

4.4. Life Science Robotics Use Cases

Figure 4.3: The path in which ROBERT will move the leg. (Life Science Robotics 2019)

ure 4.3.

RLC for ROBERT

For ROBERT, three use cases have been defined. They are described and scored
below, with a complete overview in Table 4.5:

Use case 1:
The patient is unconscious and unable to move the leg. ROBERT will only
follow already predefined trajectories and not create new ones by itself. The
movement is done to prevent bedsore and activate the leg. There will be a
physiotherapist in the room at all time. Due to the individuality of human
legs, the simulation got a score of 3 even though this use case only concerns
predefined movements. The RLC score is 1.8.

Use case 2:
The patient is now conscious, and ROBERT is replaying trajectories demon-
strated by the physiotherapist. The patient still has a paralysed leg. The
expert panel evaluated the observations and actions to be simple, but the
reward and simulation have risen in complexity and thus, the RLC score of
2.5.

Use case 3:
The third use case is active training, where a conscious patient tries to move
a leg together with ROBERT. The trajectories are not strictly predefined since
the patient should be able to move the leg. Both the simulation and reward
was scored 5 from the expert panel. This was due to the difficulty of defining
a reward function that distinguishes robot movements from patient move-
ments. A simulation would have to simulate a conscious patient interacting
with ROBORT, which itself is a difficult task. This use case got an RLC score
of 3.8, and contains two general variables with a score of 5, i.e. the task is
deemed not achievable.

The expert panel discussed an MDP where the actions could consist of joint torques,
TCP forces. Likewise, the states discussed were joint torques, joint values, TCP

39

Chapter 4. Reinforcement Learning Complexity

forces, patient feedback. As shown in Table 4.5, the reward is deemed difficult
to model but, according to the expert panel, could consist of forces, patient feed-
back.

Life Science Robotics
RLC

Observations Actions Reward Simulation
General variable 1 1 2 3
Weight 0.9 0.9 0.9 0.9

1s
t

us
e

ca
se

RLC score 1.750
General variable 1 1 4 4
Weight 0.9 0.9 0.9 0.9

2n
d

us
e

ca
se

RLC score 2.500
General variable 4 1 5 5
Weight 1.0 0.9 1.0 1.0

3r
d

us
e

ca
se

RLC score 3.821

Table 4.5: The scoring of Life Science Robotics’ use cases. The RLC score’s colour is rounded to the
nearest integer.

4.5 RobNor Use Cases

RobNor, like Inropa, is a company specialised in robot painting. They offer a wide
variety of product/services for their customers concerning the topic of automated
painting (RobNor 2019a). The use cases from RobNor has been selected to be
powder painting. RobNor specifies that they solve powder painting applications
with varying complexity depending on the client’s requirements. The part to be
painted in these use cases is the window frame in Figure 4.2b. Note that these
use cases are end-to-end, meaning the input is a window frame and the output
is a painted window frame with everything in between being a black box of RL.
(RobNor 2019b)

RLC for Powder Painting

Three use cases have been defined and scored below, with a complete overview in
Table 4.6:

Use case 1:
This use case is a complete robotic painting system, which means it both
control the robot and the painting. The window frame is in a known position,
and the painting smoothness is not considered. The expert panel evaluated
the reward and simulation as the hardest aspects to solve in the case. The
RLC score is 3.53.

Use case 2:
The same window frame from use case 1 is used, along with the requirements
of the painting. Here linear spray units are also painting the part and the

40

4.6. Danish Meat Research Institute Use Cases

robot should thus function together with those. The expert panel evaluated
that the linear units resulted in increased complexity in both the design of a
reward function and the observation space. The RLC score is 3.78.

Use case 3:
The third use case is identical to the first use case with an added camera
for vision feedback. The simulation weight has increased since it is hard to
simulate vision feedback, which is needed to train the RL agent. The RLC
score is 3.79.

The expert panel discussed an MDP where the actions could consist of coating
amount, speed of stroke, TCP position. Likewise, the states discussed were stroke
width and size, material properties, vision feedback, TCP position. As shown in Ta-
ble 4.6, the reward is deemed difficult to model but, according to the expert panel,
could consist of powder waste, process time, equally distributed powder.

RobNor
RLC

Observations Actions Reward Simulation
General variable 3 3 4 4
Weight 0.8 0.8 0.9 0.9

1s
t

us
e

ca
se

RLC score 3.529
General variable 4 3 4 4
Weight 1.0 0.8 1.0 0.9

2n
d

us
e

ca
se

RLC score 3.784
General variable 4 3 4 4
Weight 1.0 0.8 1.0 1.0

3r
d

us
e

ca
se

RLC score 3.789

Table 4.6: The scoring of RobNor’s use cases. The RLC score’s colour is rounded to the nearest
integer.

4.6 Danish Meat Research Institute Use Cases

The Danish Technological Institute has a subdivision called Danish Meat Research
Institute (DMRI) who specialises in production equipment for the meat industry.
The use cases from DMRI are picking and placing large pieces of meat from pigs.
The meat is picked up from a conveyor and is hanged on a hook (referred to as
the Christmas Tree). This task is currently done manually, but since the meat is
heavy, the operators are not allowed to do this for extended periods of time. In
Figure 4.4, a trajectory related to hooking meat on the Christmas tree is shown.
(DMRI 2019)

41

Chapter 4. Reinforcement Learning Complexity

(a) (b)

Figure 4.4: (a) The setup of the DMRI use cases. (b) The Christmas tree where the middle pieces of
meat is hanged.

RLC for Pick-and-Place of Meat

The three use cases are defined and scored below, with a complete overview in
Table 4.7:

Use case 1:
In the first use case, the robot picks up a piece of meat from a known position
and places it on a static hook. The agent’s only task is to learn a trajectory
and place the meat. The expert panel evaluated the simulation high since it
was deemed complex to simulate the properties of meat. The RLC score is
2.6.

Use case 2:
Instead of one specific hook, multiple hooks are available. The initial position
of the meat is the same as in use case 1, and the positions of the multiple
hooks are static and known. The agent’s task is to learn a trajectory for
hooking the meat as well as which hook to hang it on. The expert panel
evaluated the reward as being difficult to model due to the increasing amount
of parameters to consider. The RLC score is 2.7.

Use case 3:
A single Christmas tree hangs from the ceiling and is not fixed. The meat is
placed on a table but is at a random initial position. The observation has been
increased since information concerning the Christmas tree and the position
of the meat are deemed relevant. The RLC score is 3.1.

The expert panel discussed an MDP where the actions could consist of TCP posi-
tion, joint values, torque control. Likewise, the states discussed were TCP position,

42

4.7. Summary of RLC Use Cases

joint values, torque control. As shown in Table 4.7, the reward is deemed difficult
to model but, according to the expert panel, could consist of distance to hook, TCP
position, joint forces.

DMRI
RLC

Observations Actions Reward Simulation
General variable 1 1 3 4
Weight 0.5 0.5 0.8 1.0

1s
t

us
e

ca
se

RLC score 2.642
General variable 1 1 4 4
Weight 0.6 0.7 0.8 1.0

2n
d

us
e

ca
se

RLC score 2.742
General variable 3 1 4 4
Weight 0.8 0.7 0.9 1.0

3r
d

us
e

ca
se

RLC score 3.147

Table 4.7: The scoring of DMRI’s use cases. The RLC score’s colour is rounded to the nearest integer.

4.7 Summary of RLC Use Cases

RLC aims to identify the complexity of RL for industrial use cases. The method
evaluates each of the aspects of an MDP and tries to indicate which aspects may
prove to complicate an RL project. It is recommended that the method is applied
in the initial phases of an RL project as it also functions as a discussion of RL in
the context of the task.

General Variable Distribution
Observation Action

Score 1 2 3 4 5 1 2 3 4 5
Amount 4 3 4 4 0 11 0 4 0 0

Reward Simulation
Score 1 2 3 4 5 1 2 3 4 5
Amount 3 1 3 7 1 0 3 3 8 1

Table 4.8: The distribution of scores for each of the general variables. The amount refers to the
number of times the given score was given.

Table 4.8 shows the overall distribution of scores given in this chapter. The amount
refers to the number of times the specific score was given, e.g. an amount of 4 at
score 1 means a score of 1 was given four times in that category. A comparison
of the scoring of observations, actions, reward, and simulation shows that the low-
est scoring general variable is actions. The low score indicates it is not a complex
aspect of an MDP for these industrial application. This could be due to most of
the presented use cases already being automatised today, meaning the actions for
solving the tasks already exists. The observations variable is almost uniformly dis-
tributed between score 1 and 4, both inclusive. This gives an image of it being use

43

Chapter 4. Reinforcement Learning Complexity

case dependent. The two highest scoring general variable are reward and simula-
tion. Simulation is scored high, which indicates that it can be difficult to obtain
efficient and representative simulations of industrial tasks for RL. The reward is
also generally scored high, which indicates that designing a reward function is a
complex aspect of an industrial RL solution. One of the potential difficulties is
quantifying the progress and quality of the process while maintaining a simple
reward structure, e.g. a convex function with a single maximum.

Using the RLC score obtained in this chapter, the use cases can be ranked on their
complexity, as shown in Table 4.9. The use cases with the lowest RLC score are the
tasks which have the least complexity and thereby the best chance at incorporating
RL, according to the expert panel.

The three lowest scored industrial applications are all motion planning tasks. The
reason for this can be found in the problem lending itself naturally to an MDP
setup. For instance, each timestep in a terministic episode for these tasks would
only consist of a sparse negative reward, encouraging the agent to remember pro-
cess parameters and robot configurations that require as few replans as possible.
It should be noted that RLC is just an attempt of identifying the complexity of RL,
and thus there can exist legal or ethical reasons that prohibit any use of RL within
specific industrial fields. One example being healthcare where strict legislation
dictate when and how machinery can interact with patients.

RLC Score Index
Index Use case RLC score Index Use case RLC score

1 I-MP 1 1.609 9 I-PP 2 2.852
2 I-MP 2 1.625 10 DMRI 3 3.147
3 I-MP 3 1.640 11 RN 1 3.529
4 LSR 1 1.750 12 I-PP 3 3.765
5 LSR 2 2.500 13 RN 2 3.784
6 DMRI 1 2.642 14 RN 3 3.789
7 DMRI 2 2.742 15 LSR 3 3.821
8 I-PP 1 2.846

Table 4.9: The RLC score index for all 15 use cases in ascending order. The abbreviations are: I-PP =
Inropa - Paint Planner, I-MP = Inropa - Motion Planner, LSR = Life Science Robotics, RN = RobNor,
DMRI = Danish Meat Research Institution. The number following the abbreviation referrers to the
use case from that company.

44

Chapter 5

Problem Formulation

As it was introduced in Chapter 1, there is an increasing demand for flexibility
and adaptability in modern production. This is due to increasing customer de-
mands, customisation, global market competition, etc. These demands increase
the need for adaptable models in production that can quickly and efficiently adapt
to customers and market fluctuations. One area of adaptable models is machine
learning, which has received great attention from the research community in the
last few decades.

Chapter 2 and 3 described the general background and terminology of MDP and
RL and what a state transition consists of. Different RL methods were presented
to solve MDPs in order to give an overview of the different methods available. The
RL methods were separated into three classes; value-based, policy gradient, and actor-
critic. As part of the value-based methods, tabular methods are a powerful tool
for small and discrete state-spaces. However, when the state-space is increased,
and the actions are not discrete, the tabular methods become infeasible. To this
end, a deep function approximator alleviates some of these limitations. Another
approach is the policy gradient methods, which uses a probabilistic approach to
select actions given the current state. The last class is actor-critic, which combines
both policy gradient and value-based methods by using a value function to guide
a policy. Moreover, as described in Chapter 3, one of the fundamental parts of
RL is the reward function, which is often specifically engineering in a trial and
error process. Therefore the topic of Inverse Reinforcement Learning was presented
in Section 3.4. IRL aims to solve the problem of designing a reward function by
using expert data to model a reward function. Finally, Section 3.5 discusses some
of the pros and cons of different RL methods. This includes the size of the state and
action-space along with properties such as whether they are a TD method or are
model free. Similarly, some properties of different IRL methods were presented,
including if they solve the MDP in-loop, which sets higher demand for efficient RL
algorithms and simulations.

In Chapter 4 a method named Reinforcement Learning Complexity (RLC) was used
to validate the RL complexity of 15 different use cases, inspired from four Robo-
Cluster companies. The method investigated the complexity of observations, actions,
reward, and simulation. It was concluded that the most complex aspects of RL in
the use cases were the reward and simulation.

It is not possible to confirm the initial hypothesis which stated that the complexity of
reinforcement learning in RoboCluster use cases can be aided by the use of a human expert.
However, there does exist a comprehensive amount of literature on the topic of

45

Chapter 5. Problem Formulation

RL. One of the main complexities of RL is the design of a reward function which
IRL tries to alleviate. The first use case from DMRI has been chosen for a further
investigation of IRL for industrial applications. Thus the initial project hypothesis
can be refined to the following problem formulation:

How can an IRL algorithm with a robot manipulator be set up and used to solve a pick-
and-place task at DMRI with the use of recorded expert data?

This problem formulation is made up of three research questions:

1. How can expert data be collected and utilised for the task at DMRI?

2. How should a training and simulation environment be structured for the task
at DMRI?

3. How can an IRL algorithm be used for a pick-and-place task as the use case
and does the performance differ from an RL approach?

5.1 Research Work Plan

Based on the problem formulation and the research questions, a research work plan
has been created with five entries. These entries serve as guidelines to accomplish
the problem formulation and answer the research questions.

1. Develop a simulation environment to accelerate training
Since simulation plays an intrinsic role in RL, a virtual environment has to
be created for the DMRI use case. To secure generality and transferability,
the developed simulations should all comply with the unofficial standard for
environment creation defined by OpenAI (Brockman et al. 2016). This also al-
lows for faster development since existing implementations of RL algorithms
support this standard such as (Plappert 2016), (Hill et al. 2018), and (Zhang
and Tai 2017).

2. Implement an RL method to use in a simulation environment
As it was presented in Section 3.4.2, some of the IRL methods requires solv-
ing of the MDP multiple times. It is, therefore, important that at least one
RL method is implemented and ready to use. This includes RL methods
that support continuous states or actions. Since the simulation environment
should follow the OpenAI standard, there exist multiple implementations of
different RL algorithms ranging from value-based methods such as DQNs to
policy gradient methods such as TRPO and PPO to actor-critic such as DDPG
and SAC.

3. Make an experimental setup to capture expert data
As shown in Section 3.4.2, the expert data has to be captured before any
IRL can take place. This requires a setup that can facilitate the recording of
relevant observations and actions. Since the observations are dependent on
the method of IRL used and the available equipment, there is no requirement
to the form of the recording (i.e. it can be both virtual or physical).

46

5.2. Delimitation

4. Implement IRL using expert data
The fourth step of the work plan is to implement one or multiple versions of
the IRL methods described in Section 3.4. Since the goal of this thesis is to
model a reward signal based on expert data, this step is an intrinsic part of
this thesis.

5. Transfer the learning from a simulation to a real-world experimental setup
Finally, the last step is to transfer a learned policy from any simulation en-
vironment to a real robot in order to execute a trajectory. The generated
trajectory should solve the same task as the task from which the expert data
was recorded. In this thesis, this amounts to picking and placing a piece of
meat from a table to a hook.

5.2 Delimitation

The selected use case from DMRI includes simulation of a piece of meat. It was
shown that the simulation of meat is a complex task, and since the simulation is
not the main objective of the thesis. the task has been simplified by discarding sim-
ulation of meat. Therefore the picking and placing of meat has also been omitted
and reserved for future work.

The development part of the thesis is split into three chapters. Each of these chap-
ters will focus on the three research questions and the work plan:

Chapter 6: The Experimental Setup & Human Expert Data
The first research question is investigated, where the chapter also gives a
complete overview of the experimental test setup. In this chapter the third
work plan is carried out.

Chapter 7: Software & Simulation Environment
The software architecture is presented in this chapter, which also investigates
research question number 2. Furthermore, the simulation environment is pre-
sented and described, along with tests regarding its stability. This includes
work plan steps 1 and 5.

Chapter 8: Trajectory Learning
The final development chapter presents the problem of IRL and how it was
solved in this thesis, and thus investigates research question number 3. This
includes both OpenAI environments and the use case from DMRI, whereas
the chapter includes work plan 2 and 4.

The following three chapters contains relevant tests and results within the chapters
themselves.

47

Chapter 6

The Experimental Setup & Expert Data

This chapter contains a description of the experimental setup and how human
expert data are acquired according to research question 1, from Chapter 5.

As presented in Section 3.4.1, there are two approaches for constructing expert
data. The first approach is using teleoperations, i.e. constructing expert data using
the learner directly. The second approach is using imitation data, where sensors are
attached to the teacher or placed externally. Imitation data have the advantage of
accurately representing the teacher, while teleoperations have a simpler map from
teacher to learner as shown in Figure 6.1. In the context of robots learning from
humans, the teacher is a human and the learner is a robot. The concept of Direct
Task Space Learning, presented in the following section, aims at finding a subspace
of a Task space which both the human expert and the robot can observe.

Expert

Robot
Task
space

(a)

Expert

Robot
Task
space

(b)

Figure 6.1: (a) The relation between the robot, a human expert and the task space for expert data via
teleoperations. (b) The relation between the robot and the tasks, and a human expert and the task
space for expert data via imitations.

6.1 Direct Task Space Learning

A Task space represents the physical space in which a task is located. It thus in-
cludes the observations required to solve a given task. The task specific knowledge
of the human expert is based on interactions and experience with this space. In
direct task space learning, the human and the robot will share a common observa-
tion space. Thus there is no need for the human to teleoperate the robot, since they
already share a subspace of the Task space. Furthermore, the overhead of map-
ping the expert data often present in imitation data collection is omitted. A way

49

Chapter 6. The Experimental Setup & Expert Data

to achieve the shared subspace, could be to use sensors that are directly relateable
by both the robot and human expert. One of the potential shortcomings of using
a subspace of the full Tasks space, is that this subspace may simply not contain
enough task specific information to solve the task. A practical example of this is
a pilot operating a plane by observing both altitude and air plane velocity. If the
pilot is teaching a student how to fly, but only showing how to read the current
velocity, the student will never be able to fly.

The aim of this thesis is to find a policy for a robot agent, which uses a set of expert
trajectories to solve the selected use case in an experimental setup. These expert
trajectories will be represented as a 3D point cloud of positions directly recorded
from the Task space, as seen in Figure 6.2. These points representing the trajectories
will function as a common subspace between the human expert and the robot, as
they are observable for both with little to no additional mapping.

Figure 6.2: An example of a simulated expert trajectory for the DMRI use case.

In Section 3.4.1 it was found that some studies captured expert data directly from a
human expert using attached motion sensors (Koskinopoulou et al. 2016), (Calinon
and Billard 2007). With inspiration from these studies, a similar approach will be
used in this thesis. A sensor will be attached on the object which the human expert
is operating, e.g. the meat, from where the expert trajectories are captured. Since
the expert trajectories are represented as a 3D point cloud, it is sufficient that a used
sensor technology captures the points which the human expert enters. The HTC
VIVE virtual reality system is a simple and off the shelf technology, which can pro-
vide this information, see Figure 6.3. A VR-tracker is thus deemed as a sufficient
sensor technology for the collection of expert trajectories, see Figure 6.3b.

(a) (b)

Figure 6.3: (a) A HTC VIVE virtual reality system. (b) A VR-tracker. (HTC VIVE 2019)

The robot agent used for the experimental setup is a UR5 robot manipulator. This
agent, together with a Christmas tree, the HTC VIVE system and an aluminium

50

6.2. Human Expert & Robot Correspondence

table constitute the experimental setup, from where the human expert trajectories
are collected, see Figure 6.4. The raw output from the VR-tracker is its position
relative to a world frame within the HTC VIVE system, this output is thus not
related to the robot agent. To create this relation, the expert trajectories should
be collected in relation to the robot base to secure the correspondence between the
human expert and the robot. The following section consists of a description of how
this correspondence is secured.

VR-satellite
VR-tracker

UR5

Aluminium table

Christmas
tree

Figure 6.4: The experimental setup containing the VR-satellites, VR-tracker, UR5, aluminium table,
and the Christmas tree where the meat is hanged.

6.2 Human Expert & Robot Correspondence

The initial outputs from the VR-tracker are sets of m points constituting a trajectory
relative to a world frame within the VR-system world

pointk
T, k = {1, . . . , m}. To secure a

correspondence between the robot agent and the human expert, this initial output
is transformed such that the m points in the expert trajectories can be captured
relative to the base of the robot agent base

pointk
T. If the static transformation from the

VR world frame to the robot base frame world
base T is known expert trajectories can

be obtained relative to the robot agent by standard matrix multiplication as seen
in Equation 6.1.

base
pointk

T =
(

world
base T

)−1 world
pointk

T, k = {1, . . . , m} (6.1)

world
base T is however unknown and needed in order to relate the robot base to the
points in the expert trajectories.

51

Chapter 6. The Experimental Setup & Expert Data

Hand-Eye Calibration

A hand-eye calibration aims to obtain extrinsic camera parameters, i.e. the static
transformation from a robot tool to a camera placed on the tool tool

camT. The same
approach as in a hand-eye calibration will in this section be used to find world

base T and
thereby base

pointk
T, k = {1, . . . , m}. When doing the hand-eye calibration, a VR-tracker

will be attached to the tool of an UR5 as seen in Figure 6.5 and the transformation
from the robot tool to the tracker is obtained according to Figure 6.6. The robot will
then be moved to n different TCP positions. For these positions, transformations
from the robot base to the robot tool base

toolj
T and transformations from the world to

the VR-tracker world
trackerj

T are obtained for j = {1, . . . , n}.

Figure 6.5: The VR tracker attached to the UR5.

world
base T

world
trackerT

base
tool T

tool
trackerT

Figure 6.6: The hand eye calibration of the robot manipulator and the VR-system. The green lines
indicates the known transformations and the red the unknown.

52

6.2. Human Expert & Robot Correspondence

From the positions the transformations trackeri
trackerj

T and tooli
toolj

T are found for all possible
combinations, as seen in Equation 6.2 and 6.3.

Ai,j =
tooli
base T base

toolj
T ∀ possible combinations of i, j = {1, . . . , n} ∧ i 6= j (6.2)

Bi,j =
trackeri
base T base

trackerj
T ∀ possible combinations of i, j = {1, . . . , n} ∧ i 6= j (6.3)

Using Equation 6.2 and 6.3, tool
trackerT can then be obtained by solving the equality

seen in Equation 6.4.

Ai,jX = XBi,j (6.4)

Where X is equal to the static transformation tool
trackerT. When tool

trackerT is known, world
base T

can be estimated using the n calibration points, as seen in Equation 6.5.

world
base T =

1
n

n

∑
i=1

world
trackeri

T
(

tool
trackerT

)−1 tooli
base T (6.5)

An approach for doing a hand-eye calibrations was presented by Tsai and Lenz
1988. This approach aimed at being simple, efficient, and accurate. Due to the
simplicity in the implementation, it was deemed suitable for collecting the expert
trajectories for this thesis.

The approach presented by Tsai and Lenz 1988 finds the transformation, tool
trackerT

by first obtaining the rotation tool
trackerR and then the related translation. Using all

the calibration points, an over-determined system of linear equations can be cre-
ated using the last three coefficients from the quaternions of the following rotation
matrices: tooli

toolj
R and trackeri

trackerj
R, as seen in Equation 6.6.

(
tooli
toolj

P +trackeri
trackerj

P
)
×tool

tracker P̂ =trackeri
trackerj

P−tooli
toolj

P (6.6)

Where P is found by multiplying the quaternions of the related rotation matrix
by 2. This system of linear equations can be solved using least square, where a
unique solution for tool

tracker P̂ is found. After finding tool
tracker P̂ it can be used to find

tool
trackerP according to Equation 6.7, as proven by Tsai and Lenz 1988.

tool
trackerP =

2 tool
tracker P̂√

1 + |tool
tracker P̂|2

(6.7)

When tool
trackerP is found from Equation 6.7, the rotation matrix tool

trackerR can be found
analytically. Having tool

trackerR the translation tool
trackert can be found using Equation 6.8,

where a unique solution can be found using least square optimisation.

53

Chapter 6. The Experimental Setup & Expert Data

(
tooli
toolj

R− I
)

tool
trackert = tool

trackerR trackeri
trackerj

t− tooli
toolj

t (6.8)

Thus following the method presented in this section, it is possible to relate any
given point in the VR-system to the base of the robot agent.

6.3 Human Expert Data Collection

The VR-system can be interfaced with ROS using an existing ROS-driver called
vive_ros, which, e.g. can return the position of a VR-tracker relative to a VR world
frame (RoboSavvy 2019). Using the calibration theory presented in the previous
section, it is possible to obtain expert trajectories from the VR-tracker relative to
the base of the robot agent. The expert trajectories which will be used throughout
this thesis can be seen in Figure 6.7. These trajectories are generated by one of the
authors by moving the VR-tracker according to Figure 6.2.

−0.5

0
0

0.2
0.4

0.6
0.8

0.2

0.4

x y

z

Figure 6.7: 10 expert trajectories from the experimental setup.

The precision of the hand-eye calibration returned by the implementation was eval-
uated through a test. In this test the precision of two calibrations each containing
4, 6, 8, 10 and 12 calibration points, were evaluated, i.e. ten calibrations. Two trans-
formations, world

base T and tool
trackerT, were found using the implemented hand-eye cali-

bration, for all ten sets of calibrations. Using these transformations, translational
and rotational errors were obtained using Equation 6.9 and the world

trackerT returned
by the ROS-driver. This was done with 50 reference points and the result were
averaged over the five different calibration groups.

world
trackerT = world

base T base
tool T tool

trackerT (6.9)

54

6.3. Human Expert Data Collection

4 6 8 10 12
−2

−1

0

1

2
·10−2

M
ea

n
er

ro
r

fo
r

50
po

in
ts

[m
]

Xtranslation

4 6 8 10 12
−2

−1

0

1

2
·10−2Ytranslation

4 6 8 10 12
−2

−1

0

1

2
·10−2Ztranslation

4 6 8 10 12
−2

−1

0

1

2
·10−2

M
ea

n
er

ro
r

fo
r

50
po

in
ts

[r
ad

]

Xrotation

4 6 8 10 12
−2

−1

0

1

2
·10−2

Number of configuration points

Yrotation

4 6 8 10 12
−2

−1

0

1

2
·10−2 Zrotation

Figure 6.8: The mean errors for in translation and rotation over 50 test points and two different
calibrations for 4, 6, 8, 10, and 12 points. The dashed lines indicates the standard deviation.

Figure 6.8 displays the error between the calculated world
trackerT and the one returned

by the ros_vive driver. From the test, it can be seen that 4 calibration points pro-
duce a larger error than any of the other calibrations, which is also clearly shown
in Figure 6.9. The precision of a calibration will, according to Tsai and Lenz 1988
improve when the amount of calibration points increases. A reason for this not
being the case in this test could be that no common strategy was used when ob-
taining the calibration points. Some of the calibrations do, therefore capture all six
degrees of freedom better than others.

There was a tendency that the VR-system returned noisy measurements when the
tracker was not visible or only partly visible, which could influence the calibration
result. This made it difficult to calibrate the whole work-space of the robot since
some positions created noise and could, therefore not be visited during the calibra-
tion. As it can be seen in the norm error for the translation, see Figure 6.9, there
is no significant change in the performance for 6, 8, 10 and 12 calibration points.
Having 6 calibration points produces a better result when looking at the norm ro-
tation error. This difference is, however, not significant, and no clear conclusion
about an optimal amount of calibration points can be made. Despite inaccuracies
in the hand-eye calibration, the implementation was still deemed sufficient for the
expert data collection for this thesis.

55

Chapter 6. The Experimental Setup & Expert Data

4 6 8 10 12
0

0.5

1

1.5

2

·10−2

Number of configuration points

M
ea

n
er

ro
r

fo
r

30
po

in
ts

[m
]

Norm Error Translation

(a)

4 6 8 10 12
0

0.25

0.5

0.75

1

·10−2

Number of configuration points

[r
ad

]
Norm Error Rotation

(b)

Figure 6.9: The norm error related to the rotation and the translation obtained through the experi-
ment.

56

Chapter 7

Software & Simulation Environment

As it was shown in Chapter 4, an essential aspect of RL is the accessibility of an effi-
cient simulation environment. This chapter presents the simulation environments
developed and used for the DMRI use case and will thereby answer the second
research question from Chapter 5. The chapter furthermore includes the different
ML frameworks, along with stability tests of the simulation and a newly proposed
TCP Simulation environment.

7.1 Software Architecture

In order to achieve the research objectives, a structured software architecture was
deemed necessary. Moreover, an infrastructure with RL in mind is a requirement.
The RL environment called Gym by OpenAI is a standardised platform with dif-
ferent built-in environments to test and train RL algorithms on. Gym is written in
Python and is open source, and therefore, users can implement their own environ-
ments (Brockman et al. 2016). Due to the standardisation OpenAI Gym provides,
it was chosen as the base of all simulation frameworks related to this thesis.

Besides the standardised environment, an additional package called Keras-rl by
Plappert 2016 is used. Some of the state of the art RL algorithms are implemented
in the Keras-rl framework, which uses the deep ML framework Keras. Keras-rl
supports the Gym standard out of the box and also supports adding custom algo-
rithms not already implemented. With the frameworks for developing and testing
RL algorithms in place, a framework for controlling the robot agent is required.
Here the open source middleware ROS is used to control the robot and works
as the underlying foundations for the whole software architecture. ROS limits the
software in this thesis to Python 2.7. In Figure 7.1, an overview of how the software
architecture is set up. Moreover, in Appendix A, an UML diagram of the created
UR environment can be found. The created environment is further explained in
Section 7.1.2.

For any ML method, training is essential for a successful result. When training with
real hardware such as a robot manipulator, both safety and time is a concern. Safety
is a concern since an RL agent learns by exploring the environment, which is haz-
ardous for itself and its surroundings. The second concern of time is relevant since
general training an RL agent requires a significant amount of timesteps and thus
it would be infeasible to do on a real robot. Therefore, a physics simulation was

57

Chapter 7. Software & Simulation Environment

Ubuntu	16.04

Steam

Python	2.7

VR-system

Keras-rl

Preprocessing IRL

OpenAI	Gym

TCP	Simulation

Gazebo

Real	Robot

Learned
Policy

Points
Points	&
Features

State	&
Reward Action

Figure 7.1: An overview of the software architecture. The VR-system and preprocessing are where
the acquisition of data is done. Both Keras-rl and OpenAI Gym implements IRL algorithms and
environments built by the authors. The three environments are not executed at the same time but
can be executed in an arbitrary order. The output is a learned policy which can be executed on a
desired environment or on a robot manipulator.

required to pre-train the robot in. This is further examined in Section 7.2. The fol-
lowing section introduces the interface standard defined by OpenAI’s Gym.

7.1.1 OpenAI Gym Interface

The mentioned environment called Gym has some standardised function calls and
a standard way to describe different part of the program. The standard function
calls are shown in Table 7.1.

Gym Function Calls

make(id)
Initialises the environment specified by the ID. It is the first function to call
and is only called once.

step(action) The step function makes the agent take the action specified in the call.

render(void)
To get visual feedback, the render function should be called. This requires
no additional parameters.

reset(void)

When an episode is terminated (either the goal is met, or the maximum numbers
of timesteps are reached) the reset function is called. This resets the environment
to some initial state. Resetting requires no additional parameters
from the agent.

close(void)
The close function is called to tell Gym that the program is finished with the
environment. Thus this function is not used by the RL agent directly.

Table 7.1: The fundamental function calls for Gym interaction.

The functions step and reset returns different information regarding the environ-
ment and performance, which can be seen in Table 7.2.

58

7.2. Physics Simulation

Gym Return Parameters

Next state
A set of observations relevant to the environment after an action has been
taken.

Reward The reward received after applying an action.

Done
If this is returned as true, the action either completed the environment or the
maximum allowed timesteps has been reached.

Info Additional info regarding the environment could be used for debugging.

Table 7.2: The returned parameters from the functions step and reset.

Every environment also contains spaces, which specifies the different actions and
observations available which is explained in Table 7.3.

Gym Spaces

Action space
Specifies the type and size of actions the agent can take in the environment,
e.g. continuous or discrete actions.

Observation space: Specifies the type and size of the observation space the agent can observe.

Table 7.3: The two spaces type of Gym.

All the mentioned functions and variables need to be implemented in any new
custom environment for it to function with the other software aspects such as
Keras-rl.

7.1.2 UR Environment

For this thesis, a custom simulation environment was created of a UR5 robot ma-
nipulator available in the research facilities at Aalborg University. Thus, the UREnv
environment was created. Appendix A contains a full UML diagram of the UREnv
along with its child environments. A simplified overview of the environments can
be seen in Figure 7.2. The UREnv is not meant to be used directly but serves
as an abstract class which all future UR environments inherit from. Therefore,
the UREnv contains all the required functionalities, e.g. how to handle a reset
call.

A child class of UREnv was created called URReach. URReach overwrites some of
the functions from UREnv and specifies them to the reach objective. The URReach
environment defaults to discrete actions; therefore, a child class for the URReach
class has been made, called ContinuousURReach, which only overwrite the action
function.

7.2 Physics Simulation

There exist different physic simulations where many can integrate a robot manipu-
lator. Examples of such are ARGoS (Pinciroli et al. 2012), V-Rep (E. Rohmer 2013),
and Gazebo (Koenig and Howard 2004) which are all free to use. Moreover, paid
alternatives exist with RoboDK (RoboDK 2019) and Mujoco (Todorov et al. 2012)

59

Chapter 7. Software & Simulation Environment

Env

UREnv

URReach

ContinuousURReach

IRLContinuousURReach

IRLURReach

Figure 7.2: An overview of the structure of the different environment classes. The arrow symbolises
class inheritance. A full UML diagram can be found in Appendix A

as examples. Some of the paid versions include the correct controllers for the dif-
ferent robot manufactures, whereas the free alternative relies on other solutions
to plan, e.g. TCP movements. A survey by Ivaldi et al. 2014 on different robotic
simulators showed Gazebo was one of the most known and used tools. Likewise,
Gazebo was chosen for this thesis.

7.2.1 Gazebo

To simulate a robot in Gazebo, a description file of the robot is needed. This
description file, called urdf, describes the joints and links along with the physicals
properties for computing the dynamics of the robot. For this thesis, a UR5 urdf
file was already provided. The Gazebo environment with the UR5 can be seen in
Figure 7.3.

An additional aspect of Gazebo is the sim time which specifies how much time
has passed in the simulation. Meaning with a real time factor of 1.0 the sim time
and real time is the same. Since this thesis focuses on RL and a reason for using
simulation is to speed up the training time, the real time factor is desirably set
as high as possible. Different factors are at play to increase the real time factor.
These are computer hardware and the complexity of the environment. Thus the
following measures were done to increase the real time factor:

Delete sunlight
Since the goal is to learn an RL agent, light has no other purpose than aes-
thetics in this use case, and thus deleting it removes the need to compute,
e.g. shadows.

Delete ground plane
When an RL agent explores its environment, it takes random actions which
potentially collides with the ground floor. Even when the robot is not col-
liding with the ground floor, the physics simulations still has to check for

60

7.2. Physics Simulation

Figure 7.3: The UR5 in the Gazebo simulation.

collision. Since a ground floor can be added virtually in the UR environ-
ment, the need for a ground floor in Gazebo is redundant.

Headless mode
The Gazebo environment has a GUI, which is used for debugging and visual
feedback. But when training an RL agent, the GUI is not needed for extended
training periods, and since it requires computation power to show a GUI, a
headless mode is preferred.

Reset robot
When resetting the environment, the robot should be reset to a specific initial
configuration. However, in Gazebo, when specifying this initial position, the
simulation still needs to plan a path for the robot to reach this position. This
includes computing physics and waiting for it to reach the initial pose. When
resetting the environment, the physics are unimportant since the only goal is
to reach the initial position as fast as possible. Some of the steps to increase
the resetting speed were disabling gravity and specifying that the number of
timesteps to reach the initial pose must be one, hence it jumps to the position.

With these alterations done, the execution speed is at its maximum allowed by the
hardware in use.

Besides the simulation, a path planning tool for the robot is required. The op-
timal solution would be to use the planner built into the UR5. However, this
capability is not available in Gazebo, and therefore, the general purpose planner
called MoveIt is used as a substitute. Since MoveIt is a general purpose planner,
its planning capabilities are not optimised for robot manipulators which caused
some issues. Moreover, MoveIt has problems with the maximum rotation of UR5’s
joints. Therefore a joint limited UR5 is used, which has joint movements restricted
to ±π rad. (Moveit Webpage 2019)

61

Chapter 7. Software & Simulation Environment

When training the UR5 in the simulation, it was discovered that either MoveIt or
Gazebo does not handle collision correctly. When the robot collides with itself, the
model breaks and the UR5 becomes uncontrollable. To recover from this, the only
known solution is to delete the model in Gazebo and re-spawn. This takes sec-
onds to do and is therefore not desirable. Additionally, it was discovered that this
caused instability in execution time, which is investigated further in the following
section.

7.2.2 Stability & Performance

In this section, the stability and performance of the Gazebo environment are tested.
The performance measured is the average time per timestep per episode. For this
test, the UR5 had a start and goal position as (also illustrated in Figure 7.4):

Start: [0.03134514, 0.78650704, 0.08298199]

Goal: [−0.6829526, 0.01094951, 0.33524344]

Figure 7.4: (orange) The starting position and (gray) goal position for all stability tests.

Both positions are close to the boundaries of the robot’s reach, and the Euclidean
distance between them is 1.08 m. A DQN agent was set to solve the discrete
URReach environment within 100, 000 timesteps with a maximum of 100 timesteps
per episode, and a relative TCP step size of 0.02 m. In Figure 7.5 the mean time
per timestep is shown along with a linear trend line and below is the accumulated
crash episodes. It can be seen that around episode 1000, where the robot has
crashed 400 times the instability is noticeable. Some episodes have a mean time per
timestep of over 10 seconds. Moreover, the increase in execution time also happens
in the first 1000 timesteps, where initially the mean time was around 0.1 seconds
and around 0.7 seconds after 1000 episodes. The complete executing time of the

62

7.3. TCP Simulation Environment

100, 000 timesteps was 91, 020 seconds, which is ≈ 25 hours and 17 minutes, and
the environment was not solved.

To validate that the stability problems are related to the deleting and re-spawning
of the robot, a second test was carried out. The second test had the same start/goal
position, along with all the other parameters. The difference is that the robot was
hard-coded to override the agent’s action and only moved around in a square,
thus avoiding crashes. In Figure 7.6, the result for the second test is shown. It
can be seen that the mean execution time is around 0.11 seconds and is close to
being constant throughout the test. The total execution time was 10, 592 seconds ≈
2 hours and 56 minutes. Hence it can be concluded that the operation of deleting
and re-spawning the robot is the cause of the instability and increased execution
time. This also confirms what some participants of the survey by Ivaldi et al. 2014
stated about the stability of robot collision. Since it is in the essence of an RL
agent to explore the environment, random movement causing it to crash cannot be
avoided. Nonetheless, an attempt to avoid crash situations and accelerate training
time is made in the following section.

0 200 400 600 800 1,000 1,200 1,400 1,600
0

10

20

M
ea

n
se

co
nd

s
pe

r
st

ep
[s

ec
]

Gazebo Stability

Mean time
Linear trend

0 200 400 600 800 1,000 1,200 1,400 1,600
0

200

400

600

800

Episodes

C
um

ul
at

iv
e

Ep
is

od
es

Crashes

Figure 7.5: (top) The mean timestep time per episode in seconds, along with a linear trend line.
(bottom) The accumulated crash throughout all the episodes.

7.3 TCP Simulation Environment

This thesis is only concerned with relative TCP movements, and since the physics
simulation suffers from instability in performance, a different approach was inves-
tigated. This approach is referred to as a TCP Simulation environment and focuses
only on TCP simulation. Thus all kinematics, dynamics and other physical prop-

63

Chapter 7. Software & Simulation Environment

0 100 200 300 400 500 600 700 800 900 1,000
0.00

0.05

0.10

0.15

Episodes

M
ea

n
se

co
nd

pe
r

st
ep

[s
ec

]

Gazebo Stability

Mean time
Linear trend

Figure 7.6: The mean timestep time per episode in seconds, where the UR5’s movements were
restricted.

erties are left out. The environment is built in ROS and only uses transformation
matrices to describe the goal and current TCP position. It is not built with a GUI
in mind, but it is possible to visualise the environment in the program called RViz,
as seen in Figure 7.7. Different TCPEnv Gym environments are built to train and
test different algorithms. Examples of these are ContinuousTCPEnv which makes
the environment continuous and IRLContinuouesTCP3DVR is built for IRL with
different viapoints from the expert data.

Figure 7.7: The TCP Simulation environment visualised in RViz. The nodes are the TCP, base and
goal, where the number trailing the names are unique identifiers for each environment if multiple
agents are running.

64

7.4. Training the Agent for the Real Robot

7.3.1 Stability & Performance

To investigate the stability and performance of the TCP Simulation environment,
the stability test performed on Gazebo was repeated. Moreover, the TCP Simula-
tion was also benchmarked using the continuous RL method DDPG. In Figure 7.8
the results are shown. It can be seen that the DQN version has a mean time at
around 0.003 seconds per timestep, and it is stable throughout the episodes. The
total executing time is 278 seconds ≈ 4.6 minutes. The DDPG also had 100, 000
timesteps with a maximum of 100 timesteps per episode. It had a mean time
around 0.005 seconds throughout the test, with a total time of 501 seconds ≈
8.35 minutes. The reason that the DDPG takes almost double the time compared
to DQN is that the DDPG is an actor-critic method and thus has two NN to back-
propagate compared to the DQN, which only has a single NN.

0 100 200 300 400 500 600 700 800 900 1,000
0.000

0.005

0.010

0.015

M
ea

n
se

co
nd

pe
r

st
ep

[s
ec

]

DQN TCP Simulation Stability

Mean time
Linear trend

0 100 200 300 400 500 600 700 800 900 1,000
0.000

0.005

0.010

0.015

Episodes

M
ea

n
se

co
nd

pe
r

st
ep

[s
ec

]

DDPG TCP Simulation Stability

Mean time
Linear trend

Figure 7.8: The first graph is a DQN network, and the last is the DDPG network. The mean timestep
time per episode in seconds is plotted on both graphs along with a linear trend.

Compared with the execution time of physics simulation, the TCP Simulation en-
vironments enables the agent to train at a significantly increased speed. However,
the agent is not exposed to all the information that a physics engine and simulation
provides, and some vital information might be lost.

7.4 Training the Agent for the Real Robot

Instead of taking the learned agent directly from the TCP Simulation environment
to the real robot and potentially cause a hazardous situation, a different approach

65

Chapter 7. Software & Simulation Environment

is recommended. This approach involves pre-training the agent in the TCP Sim-
ulation environment. After this initial training, the trained weights are loaded in
the Gazebo simulation, and the training continues. Here it is crucial to set the
right hyper-parameters in the agent, such that it does not explicitly take random
actions. When the training in the simulation is done, the trained agent can then
be used at the physical robot. This sequence is also illustrated in Figure 7.9. The
gazebo code architecture has been set up such that the switch between the sim-
ulation environment and the real UR5 robot works seamlessly. When using the
Gazebo simulation, a ROS launch file called Robot_Demostration.launch launches all
the necessary tools and programs (i.e. Gazebo and MoveIt). After all tools and pro-
grams are running the agent program can be executed. If it is desired to use the
agent on the real UR5 then Robot_Demostration.launch is not launched. Instead, the
ur_modern_driver (which is the ROS driver that can control the UR robots (Andersen
2015)) is launched along with a MoveIt control. The UREnv automatically detects
that it is the real robot, and all the specific Gazebo commands are ignored.

time0% 20% 40% 60% 80% 100%

TCP Simulation Gazebo UR5

Figure 7.9: Proposed time distribution when training an agent.

A problem with the TCP Simulation environment is that it only works for TCP po-
sition. However, since transformation matrices can describe the robot kinematics, it
is possible to create a TCP Simulation environment which handles joint movements
by manually creating a kinematic model of the robot.

66

Chapter 8

Trajectory Learning

The following chapter is a description of the RL tests done in this thesis. The last
research question from Chapter 5 surrounds the topic of IRL. With the ability to
capture expert data and efficiently simulate relevant RL environments, the last step
is to implement IRL and test it on the DMRI use case. The tests include several
smaller examples of both RL, Linear IRL and an imitation approach to RL. Sec-
tion 8.1 presents the results of two implementations of the Linear IRL algorithms
introduced in Section 3.4.2 on three simple environments that serve as a bench-
mark of how the methods handle discrete and continuous action and state spaces.
These environments are delivered by OpenAI (Brockman et al. 2016) and include
CliffWalking, MountainCar, and Inverted Pendulum. Afterwards, in Section 8.2,
the same methods are applied to the use case described in Chapter 4. Finally, a
discretised version of the use case is presented in Section 8.3 where an imitation
approach is made using the Generative Adversarial Imitation Learning approach
described in Section 3.4.3.

8.1 Linear Inverse Reinforcement Learning

The following section shows the result of multiple implementations of RL and IRL
algorithms. Simulation environments have been selected from existing OpenAI
(Brockman et al. 2016) implementations which already have defined the observa-
tions and given an ability to capture them. A regular RL method has been used
on each of the environments, which then serves as an expert for the IRL giving
the ability to record expert observations at will. The results of the expert and the
recovered policy are then compared. The IRL method used in this chapter is lim-
ited to the two linear versions described in Section 3.4.2. In order to determine
the suitability of these methods, four environments are tested all with different
properties, as shown in Table 8.1. The same IRL algorithm is applied to all of the
environments with the only difference being what features they use (φ(s) from
Equation 3.26).

8.1.1 CliffWalking

The CliffWalking environment is a simple form of a grid world where the agent tra-
verses a discrete grid. Since both observations and actions are discrete, according

67

Chapter 8. Trajectory Learning

Environment Action space Observation space
Min Max Domain Min Max Domain

CliffWalking 1 4 ∈N 1 48 ∈N

MountainCar 1 2 ∈N
-1.2 0.6 ∈ R

-0.07 0.07 ∈ R

Inverted Pendulum -2 2 ∈ R
-1 1 ∈ R2

-8 8 ∈ R

Table 8.1: The size and shape of the action- and observation space of the tested environments.

to Table 3.1, Monte Carlo, Sarsa, and DQN are suitable for this type of environ-
ment, from which a DQN has been used for the following tests. The DQN contains
three hidden layers, each with 16 nodes and relu activation functions. The agent
uses a constant ε-greedy exploration policy with ε = 0.1 along with a discount
factor of γ = 0.99. In the original environment, the agent receives a reward of −1
for every timestep, except if it walks off a cliff for which it will receive a reward of
−100. An outline of the original environment can be seen in Figure 8.1.

-1

-1

-1

Start

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

-100

-1

-1

-1

Goal

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

x-position

y-
po

si
ti

on

CliffWalking Reward

Figure 8.1: Original CliffWalking environment. Selectable actions are moving in the four directions
(up, down, left, right).

Since this environment is discrete, the features are simply chosen to be the weight
of each state (i.e. φ(s) = 1), by representing the position of the agent as a 1 and
all other positions in the grid as 0. Thus the state is a vector with 48 elements, and
the weights have the same size. The goal is then to learn how much each state (or
agent position) should be weighted. Running the implementation of Algorithm 5
gives the results shown in Figure 8.2 where it can be seen how the goal has been
captured. Note the arrow representing the path the agent found optimal is equal
the optimal path for the original reward function in Figure 8.1.

Training a new agent with this recovered reward function gives a convergence
rate faster than using the original reward, as shown in Figure 8.3. One reason for
this can be the recovered reward being more descriptive than the original reward
since all states do not have the same reward and thereby, it is easier to tell them
apart.

68

8.1. Linear Inverse Reinforcement Learning

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

x-position

y-
po

si
ti

on
Recovered CliffWalking Reward

Min

Max

Figure 8.2: Recovered reward function from CliffWalking.

0 3,000 6,000 9,000 12,000

50
100
150

200

Episodes

Ep
is

od
e

le
ng

th
(i

n
ti

m
es

te
ps

)

CliffWalking with Original Reward

Actual reward
Smoothened reward

0 300 600 900 1,200 1,500 1,800 2,100

50
100
150

200

Episodes

Ep
is

od
e

le
ng

th
(i

n
ti

m
es

te
ps

)

CliffWalking with Recovered Reward

Figure 8.3: The episode length when training using the original reward function (top) and the policy
trained from the recovered reward in Figure 8.2 (bottom). Note that the values have been smoothed
with 0.6 and the scale of the two x-axes.

8.1.2 MountainCar

The MountainCar environment has a continuous observation space in the form of
the position and velocity of the car and discrete actions. Therefore, according to
Table 3.1, a DQN agent is suitable for this type of environment. The DQN has three
layers, each with 16 nodes and relu activation functions. The agent uses a linearly
annealed ε-greedy policy starting with ε = 1 and ending with ε = 0 after 100, 000
timesteps. Similar to the CliffWalking environment, the MountainCar environment
gives a reward of −1 for each timestep and an episode is terminated either if more
than 200 timesteps have passed, or the car reaches a position ≥ 0.5. A layout of the

69

Chapter 8. Trajectory Learning

environment can be seen in Figure 8.4.

-1 -0.5 0 0.5
Position

MountainCar Environment

Figure 8.4: Original MountainCar environ-
ment.

−1 −0.5 0 0.5

−1

−0.5

Position

R
ew

ar
d

Recovered Reward

Figure 8.5: Recovered reward for the MountainCar
game.

Since this environment contains continuous observations, the feature maps from
Algorithm 4 should map a continuous value into the reals φi : s → R. Similar
to the original paper, (Ng and Russell 2000), the feature maps are here chosen to
be N normal distributions spread evenly across the position interval of [−1.2, 0.6]
and a standard deviation of 0.5. Equation 8.1 shows the definition of each feature
function for i = {0, . . . , N + 1}.

φi(s) = N
(

s | µ =
0.6− (−1.2)

N
i− 1.2, σ2 = 0.5

)
(8.1)

Where µ is a mean, σ2 is a standard deviation as mentioned earlier and N is the
corresponding normal distribution. Thus the weights computed in Algorithm 4
becomes a weight of which of these normal distributions are important and which
are not. The results of running Algorithm 4 when N = 50 gives the reward function
shown in Figure 8.5. As it can be seen, the reward contains a higher reward on both
sides of the hill, encouraging the car to gain momentum.

Training an agent using the recovered reward function gives a similar performance
as when training on the original reward. A learning curve to show this is shown
in Figure 8.6 where it can be seen how the recovered policy converges to at least
the same performance as the expert policy or better.

8.1.3 Pendulum

The third environment benchmark is the standard pendulum environment which
contains both a continuous state-space as well as a continuous action-space. Here
the goal is to balance a pendulum to an upright position by applying a torque
to the centre of the rod. Since this environment contains both continuous obser-
vations and actions, according to Table 3.1, either a DDPG, a SAC, or one of the
policy gradient agents is necessary, from which a DDPG agent has been selected.

70

8.1. Linear Inverse Reinforcement Learning

0 300 600 900 1,200

100

150

200

Episodes

Ep
is

od
e

le
ng

th
(i

n
ti

m
es

te
ps

)
MountainCar with Original Reward

Actual reward
Smoothened reward

0 300 600 900 1,200

100

150

200

Episodes

Ep
is

od
e

le
ng

th
(i

n
ti

m
es

te
ps

)

MountainCar with Recovered Reward

Figure 8.6: The episode length when training using the original reward function (top) and the policy
trained from the recovered reward in Figure 8.5 (bottom). Note that the values have been smoothed
with 0.6.

Both the actor and the critic of the agent contains three hidden layers. The actor
has 16 nodes and the critic 32 nodes in each layer. The agent exploration was
defined by an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930) with
default parameters. The challenge in this environment is that the torque alone is
not enough to force the pendulum to be upright. Instead, the agent has to utilise
the momentum of the pendulum. The state-space of the environment is defined to
be [cos θ, sin θ, θ̇]T where θ is the angle of the pendulum from the upright position.
The standard environment uses the reward shown in Equation 8.2.

Rt(st) = −
(
θ2 + 0.1θ̇2 + 0.001µ2) (8.2)

Where µ is the torque set by the agent. A contour map of Equation 8.2 is also
shown on the left in Figure 8.7. The reason why this environment is included is
due to the structure of the reward function in Equation 8.2 since it already consists
of three linearly weighted features. By selecting features φ(s) = [θ2, θ̇2, µ2]T, the
goal is then to create a reward function with a similar outline as the true reward in
Figure 8.7. The recovered reward can be seen in the same figure on the right, and
shows how a very similar structure to the true reward is achieved.

The angle over an entire trajectory should, according to Equation 8.2, converge
to zero. Figure 8.8 shows the results of running an expert policy trained using
Equation 8.2 and a policy returned from Algorithm 4. The results is averaged over
1000 trajectories and show how the policy learned from the recovered reward is

71

Chapter 8. Trajectory Learning

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Angle (θ) [rad]

A
ng

le
ve

lo
ci

ty
(θ̇)

[r
ad

/
s]

True Reward

−1 −0.5 0 0.5 1

Angle (θ) [rad]

Recovered Reward

Min

Max

Figure 8.7: Contour map of the true reward (left) and the recovered reward (right) for the pendulum
environment when the actions A = 0.

0 50 100 150 200

−2

0

2

Timesteps

A
ng

le
[r

ad
]

Expert Trajectories

0 50 100 150 200

−2

0

2

Timesteps

IRL Trajectories

Figure 8.8: The average trajectory of 1000 runs in the pendulum environment including a 1 standard
deviation confidence bound. Note that the starting position of the pendulum is random, thus it is
expected to have large fluctuations in the first timesteps.

close to having the same performance of the expert policy. It should be noted that
the starting position of the pendulum is always random, and thus, it is expected
to have large fluctuations in the first timesteps before the policies have time to
stabilise the pendulum.

8.2 Robot Trajectory Learning with Linear Inverse Reinforce-
ment Learning

The following section is a description of the result obtained from implementing
both RL and IRL on the use case described in Section 4.6. A part of the observations
that will be used for the agents was obtained from Chapter 6 that gave a way
of recording observations for both an expert and a robot manipulator. Since the

72

8.2. Robot Trajectory Learning with Linear Inverse Reinforcement Learning

observations recorded with the VR-system is limited to points in 3D space (i.e.
x, y, z), the actions, observations, and features φ used by any agent has to be a
function of 3D points. The observations and actions used for all tests are listed in
Table 8.2. Note that the unit of all observations and actions are meters.

Parameter Description Definition

Observations
Current TCP Position Pt ∈ R3

Minimum observed
distance to each viapoint

dv (Pt) = min ‖ Pt − vi ‖2 ∈ RN
>0,

i = {1, . . . , N}
Distance to goal dg (Pt) =‖ Pt − G ‖2∈ R>0

Actions Relative TCP position a ∈ [−0.02, 0.02]3

Table 8.2: Observations and actions for the environment used to solve the use case from Section 4.6.

This naturally lends itself to an Euclidean minimisation problem, i.e. there is a
final position to reach, and along the way there are N viapoints to pass through (or
at least near). Figure 8.9 illustrates how the minimum distances develop through a
trajectory with two viapoints. This representation simplifies the tasks to; move in
the direction of a goal and to pass through the vicinity of a set of viapoints on the
way, where each viapoint has some weight of importance associated with it. Thus
the reward function becomes a linear combination of dg and dv from table Table 8.2
as shown in Equation 8.3, where w are the weights of the distances to the goal and
each of the viapoints.

φ(Pt) = wT
[

dg (Pt)
dv (Pt)

]
(8.3)

0 2 4 6

−1

0

1

2

v1

v2

start

goal
min. distance

min. distance

x [m]

y
[m

]

Executed Trajectory

Trajectory
Viapoints

0 2 4 6
0

2

4

6

Timestep

D
is

ta
nc

e
[m

]

Minimum Distances

Min dist to v1
Min dist to v2
Distance to goal

Figure 8.9: (left) A trajectory with two viapoints weighted with the minimum observed distance to
the trajectory. (right) The minimum observed distance of the viapoints and the goal at each timestep.

The viapoints can be selected arbitrarily - they are ideally only used to guide the
trajectory. Therefore three sets of viapoints are used for the tests containing a
different amount of viapoints (N):

73

Chapter 8. Trajectory Learning

• Two viapoints (N = 2): The edge of the aluminium table and the top hook
of the Christmas tree, from Figure 6.2.

• Four viapoints (N = 4): The edge of the aluminium table, top of the Christ-
mas Tree hook, floating between table and Christmas tree, and a distraction
point raised above the table.

• 100 viapoints (N = 10x10): 10 viapoints are sample uniformly from 10 expert
trajectories.

Since both the observation space- and the action-space is in the continuous domain,
a DDPG agent is used as an agent for all tests (as defined in Table 3.1). In order to
be able to compare the performance, the same hyper-parameters are used for each
agent. Two NNs are used for the ACN with three layers. Each layer of the actor
contains 16 nodes, each layer of the critic contains 32, and all nodes have a relu
activation function as seen in Figure 3.2. The output layer of the critic has a single
node with a linear activation (i.e. no activation: x = y). The output of the actor is
three nodes - one for each dimension (x, y, z), and with a tanh activation that binds
the actions to [−1, 1] which can easily be scaled to a step size of 0.02 m.

The DDPG agents are first run on the TCP Simulation environment from Chap-
ter 7 in order to speed up the training. This gives a pre-trained agent that is biased
towards a solution once the Gazebo simulation is run and thus the agent will not
crash the simulation more than necessary which has significant performance conse-
quences as was shown in Chapter 7. Algorithm 6 summarises the steps taken when
implementing a DDPG agent. All tests in this chapter with RL uses 1000 episodes
to learn. This value is hardcoded, so the output policy may have overfitted, or it
may not have converged yet.

Algorithm 6 Summary of steps to take for solving an MDP using RL.

1: for e = 0→ E do . Number of episodes to run
2: s0 = env.reset() . Observe initial state
3: for t = 0→ T do . Number of timesteps in the episode
4: at = π (st) . Select action following policy π

5: st+1, rt = env.step(at) . execute action, observe next state & reward
6: Update policy using st, at, st+1, rr . See DDPG in Section 3.3.1
7: end for
8: end for

The first IRL approach selected to test is Linear IRL set up as a linear programming
problem. Algorithm 7 summarises the necessary steps taken to run a Linear IRL
algorithm and corresponds to the steps taken in this section.

Algorithm 7 Summary of steps to take for solving an MDP using IRL.

1: for I = 0→ I do . Number of iterations to run
2: Compute reward function . e.g. by using Algorithm 4
3: Solve MDP with computed reward function using Algorithm 6
4: end for

74

8.2. Robot Trajectory Learning with Linear Inverse Reinforcement Learning

It should be noted that the trajectories produced by both the generated policy and
the expert are clipped to a length of 75 timesteps to ensure the expected trajectory is
produced over the same interval. Additionally, the discount factor used to compute
the expected trajectory is γ = 0.99. Since line 3 in Algorithm 7 includes solving
a complete MDP problem, which has to be done multiple times, the number of
episodes to run for all IRL tests are reduced from the initial 1000 to 750. Otherwise,
the same settings are applied, i.e. the number of episodes is constant, and thus the
agent may not have converged yet.

The results of running regular RL on the first test consisting of two viapoints are
shown in Figure 8.10. On the left is the learned trajectory which clearly shows
how the trajectory goes through the first viapoint, but only passes near the second
viapoint and the goal. The learning curve on the right indicates that the agent has
converged. Similarly, the IRL results shows how the agent no longer goes directly
to the first viapoint, and still do not visit the second viapoint directly. However, it
does achieve reaching the goal position. Comparing the two trajectories with the
expert data also shown, it is clear that while none of them successfully replicate
the expert trajectory, the regular RL achieves a simpler and closer fit. While the
learning curve for RL has converged to a stable signal, the learning curve for the
IRL is more fluctuating. The IRL curve also indicates that 750 episodes were not
enough since it looks like the curve is upwards going.

−0.5

0

00.20.40.60.8

0.2

0.4

v1

v2

start
goal

x
y

z

Learned Trajectory

Expert
RL
IRL

0 500 1,000
−300

−200

−100

Episodes

R
ew

ar
d

Learning Curve

RL
IRL

Figure 8.10: A learned trajectory with two viapoints. Note that the reward function has been
smoothened with a value of 0.6.

The second test indicates that the agent is not able to differentiate between relevant
viapoints and noise when using regular RL. As it can be seen in the figure to the
right in Figure 8.11, the reward does not converge as indicated by the dip in the
end. The produced trajectory in the same figure is also far from the goal, meaning
the task is not solved. An explanation for this behaviour can be found in that since
all the viapoints are weighted equally, the distraction point is pulling the agent out
of course, and thus the optimum is to stay in between the goal and the distraction
point. Differently is it for the IRL test, where a rough structure of the expert data

75

Chapter 8. Trajectory Learning

can still be identified. Though the trajectory deviates from the expert trajectory
from the beginning, it partly recovers the structure of the arc in the last half of the
trajectory. This also means that the learned trajectory reaches the goal. The dip
at the end of the learning curve for the RL test indicates that the agent stopped
at a suboptimal configuration. If the agent had been stopped earlier or had more
episodes to train, it may have solved the task, however, this was not investigated
further.

−0.5

0

00.20.40.60.8

0.5

1

v1 v2

v3

v4

start
goal

x
y

z

Learned Trajectory

Expert
RL
IRL

0 500 1,000

−200

−100

Episodes

R
ew

ar
d

Learning Curve

RL
IRL

Figure 8.11: A learned trajectory with four viapoints. Note that the reward function has been
smoothened with a value of 0.6.

The third test is done to investigate the behaviour of the agent when the trajec-
tory is well defined with many viapoints. The optimal trajectory is to follow the
viapoints since the distance only has to be minimised once, and this is also what
the agent learns from the first half of the trajectory as shown in Figure 8.12. After
the first half, the produced trajectory starts deviating from the path of viapoints.
This deviation coincides with when the upwards motion is starting, and a pos-
sible reason for this behaviour can be that the many viapoints create a complex
reward function that is difficult for the agent to optimise. Since all the viapoints
only contribute with a minimum distance to the total reward function, the goal
gets overshadowed. When the agent starts moving away from the goal, all the vi-
apoints stay constant, and the only encouragement the agent has is the goal. As
shown in the reward plot, the scale of the reward is significantly higher than the
encouragement of the goal, and thus the gradient of the reward function is close
to zero when moving away from the goal. A near constant reward function gives
no information to the agent, and the agent will not be able to learn from it. A sim-
ple analogy is 100 people humming noise that gives no information about what
direction to go, and a single person giving general directions - the humming will
simply drown the single person.

One possible solution to this problem could be to increase the exploration of the
agent such that it may "stumble" more on optimal directions. By exploring, the ac-
tions predicted by the agent becomes less relevant, and thus, even though the agent

76

8.2. Robot Trajectory Learning with Linear Inverse Reinforcement Learning

may have no clue of where to go, there is a probability it will get back on track.
This, coupled with more training time, may improve performance. Additionally
using fewer viapoints will make each viapoint have a more significant influence on
the reward function and thereby, the agent may have a better chance of learning.
The learning curve for the RL test also has large fluctuations in the end, which
indicate that the agent may have become unstable, and thus not capable of solving
the environment.

−0.5

0

00.20.40.60.8

0.5

1

start
goal

x
y

z

Learned Trajectory

Expert
RL
IRL
Viapoints

0 500 1,000

−1,000

−500

Episodes

R
ew

ar
d

Learning Curve

RL
IRL

Figure 8.12: A learned trajectory with 100 viapoints. Note that the reward function has been
smoothened with a value of 0.6.

The IRL results in Figure 8.12, on the other hand, shows how the agent is capable
of approaching the goal. While the agent do not follow the expert data, it does
produce a similar structure in that it rises slowly from the table into an arc before
descending to the goal again. The learning curve of the IRL test has clearly con-
verged and even has a slightly upward direction, which means the final curve may
improve if given more training episodes.

One of the potential problems with the results obtained in this chapter thus far is
due to the optimisation in Equation 3.28 (repeated in Equation 8.4) which sums an
error between expert data and the generated trajectories.

maximise
k

∑
i=1

(
Vπ∗ (s0)−Vπ (s0)

)
(8.4)

s.t. |wi| ≤ 1, i = {1, . . . , k}

The generated policy will generally have a higher reward than the expert policy
on the same reward function because it was fitted to the specific reward function.
Combined with the observations used that are strictly positive (since they are Eu-
clidean distances), the error will be decreasing resulting in scenarios where the
weights from Equation 8.4 will be optimised to have the same values. One such
example is the results of running Algorithm 4 with two viapoints which find the

77

Chapter 8. Trajectory Learning

optimal weights to be [−0.577,−0.577,−0.577]. Even though the weights converge
to the same value, the plots produced still vary as shown in Figure 8.13 where the
first 10 iterations of the algorithm have been plotted for two viapoints. However,
this behaviour was only observed in the test with two viapoints. For both four
and 100 viapoints, the weights all had different values. The learned weights for all
three sets of viapoints can be found in Appendix B.

Another source of errors is the random starting position of the expert trajectories,
i.e. the state at timestep t can for one trajectory be at viapoint two, whereas an-
other trajectory is only halfway to viapoint two. This becomes relevant when the
expected trajectory is computed, as shown in Figure 8.14. Even though each sin-
gle expert trajectory solves the task, the expected expert trajectory when averaged
over timesteps do not. This behaviour may also explain why all the trajectories
generated by IRL in this chapter does not reach the second viapoint (v2 in Fig-
ure 8.14).

−1
−0.5

0

0
0.5

0

0.2

0.4

v1

v2

start

goal

x y

z

Learned Trajectory

1 2 3 4 5 6 7 8 9 10
Iterations

Figure 8.13: 10 iterations of Algorithm 4.

−0.5

0

0
0.5

0.2

0.4

v1

v2

start
goal

x y

z

Average Expert Trajectory

Expert
Average expert

Figure 8.14: The average trajectory used for IRL
does not follow the trajectory of the individual
expert trajectories due to the random starting
position.

Apprenticeship Learning

Since Algorithm 5 sets up the optimisation problem as a quadratic problem, the
weights are dependent on each other by a norm constraint unlike with Algorithm 4.
This means that there is a lower probability that the optimal combination of fea-
tures has to be weighted equally. To test this, Algorithm 5 was used in Algorithm 7.
The same tests with 2, 4, and 100 viapoints are then run which produced the tra-
jectories in Figure 8.15. From this figure, it can be seen that this IRL approach does
not produce better fitting trajectories compared to the previous approach. The only
trajectory that partly produces a similar trajectory is with two viapoints, though
this trajectory fluctuates in the beginning and completely omits the lifting motion
in the end and instead goes directly to the goal.

78

8.3. Robot Trajectory Learning with Deep Imitation Learning

A pitfall of quadratic programming in combination with the used distance features
in this thesis is a significant sensitivity toward positive weights. If a positive weight
is assigned to dg, the optimal policy related to the constructed reward function will
move as far away from the goal as possible. Thus the feature expectation of the
returned policy and the expert will be significantly different, breaking the inten-
tion of apprenticeship learning. A possible solution to this might be to construct
features which are not as sensitive to positive weights as Euclidean distances.

Even though some of the tests showed a visual better result for IRL than traditional
RL, the set of features used were designed through a process with similarities to
constructing a traditional reward function. This was similar for the two imple-
mented Linear IRL methods.

−1

−0.5

0

00.20.40.60.8

0.2

0.4

start

goal

x
y

z

Learned Trajectory

Expert
2 Viapoints
4 Viapoints
100 Viapoints

Figure 8.15: An expert trajectory along with learned trajectories for 2, 4, 100 viapoints using quadratic
programming IRL from Algorithm 5.

8.3 Robot Trajectory Learning with Deep Imitation Learn-
ing

As mentioned in Section 3.5, a different approach to shaping a reward function
is to imitate the expert data. One example of doing this was using Generative
Adversarial Imitation Learning. In this section, a discrete version of PPO is used
to generate policies that a discriminator will learn to classify trajectories from.
Since the expert data also has to be discretised, the trajectory will look different
than the actual trajectory due to downsampling and rounding errors. Since this
is an imitation problem, there is no need for defining external features such as
the viapoints used in the previous implementations. The final trajectory can be
seen in Figure 8.16 where a single expert trajectory is shown along with ten policy
generated trajectories.

Discretising the trajectory heavily influences the shape of the expert trajectories,

79

Chapter 8. Trajectory Learning

−0.5

0

0.10.20.30.40.50.60.7

0.1

0.2

0.3

x
y

z

Generated trajectories
Expert trajectory

Figure 8.16: An imitated trajectory based on discretised expert data.

and in reality, this trajectory would not be able to solve the task. A solution to this
could be using a continuous version of GAIL. Such version is available in Stable
Baseline; however, this implementation collides with the software architecture de-
scribed in Chapter 7. Nonetheless, this test indicates that an imitation approach
may be better at fitting to a static trajectory.

80

Chapter 9

Discussion

Chapter 4 presented a method called Reinforcement Learning Complexity (RLC)
for evaluating the complexity of introducing RL in 15 use cases. It appeared while
the expert panel evaluated a use case, subjects such as safety, reward shaping, and
partially observable physical aspects were discussed. While scoring the use cases, it
was noticed that the expert panel did not fully have the know-how of the use cases.
Therefore, this method should be used together with experts with process specific
knowledge within the use case to get a complete outcome. It is not possible for an
RL expert panel to give a clear, trustworthy score of a topic such as healthcare and
safety as the use case with Life Science Robotics. For these reasons the RLC score
might not give the full picture.

The scoring of the weights can be an issue when giving a high weight (rating it
important) to a small scored variable, resulting in the RLC score being reduced
unless the other general variables are weighted high.

When the expert panel scored the use cases, it was noticed that although the final
RLC score does not show the whole picture, it still functioned as a discussion on
both how to solve the task at hand but also notice the use case shortcomings. This
gives the ability to plan the RL task, and thus potentially avoid future issues.

As described in Chapter 6-8, the process of using IRL contains multiple steps all
of which have a significant impact on the performance of the final results. These
steps are summarised in Procedure 1 and serves as a general guide to how IRL was
implemented in this thesis.

Procedure 1 Steps necessary for IRL.

1: Identify a task where RL is to be used.
2: Identify observations and actions for the task (e.g. positions, forces, etc.).
3: Apply sensory equipment to record desired observations and actions.
4: Record observations and actions from expert performing the task.
5: Select an RL approach from Table 3.1 to be used with IRL.
6: Select an IRL approach from Table 3.2.
7: Run IRL until desired outcome has been achieved.

This procedure is an attempt at generalising the steps needed to perform IRL and
does therefore not convey the difficulty of each step. The first steps of the pro-
cedure are in some cases simple to prepare and perform, while the later steps
requires significant machine learning know-how.

81

Chapter 9. Discussion

Chapter 6 presented different approaches to collecting expert data of which the
direct expert learning was chosen in the form of a VR-system. This leaves a lim-
ited amount of observable features in the form of Cartesian positions. Since this
sparse information gives no information about dynamics of the system, the results
presented in Section 8.1 may have suffered from an incomplete set of informa-
tion. None of the simulations incorporate this kind of dynamics. While Gazebo
does have a physics simulator, the timesteps are defined to be relative Cartesian
movements and does not inform any learning agent of the dynamics other than
collisions. This means the agent will take large steps from the very first timestep
making the feature matching more inaccurate. In all test performed in this thesis,
the timestep was run deterministically meaning the step was not over until the
robot had finished moving (e.g. the velocity will always be zero at each timestep).
Running each timestep of the environment at a fixed frequency would possibly
alleviate the problem of lacking dynamics since the simulation can affect the ob-
servations.

A more rich information space could be obtained for the robot manipulator as pre-
sented in Section 3.4.1 by doing kinesthetic teaching. By doing so, the convergence
of the RL algorithms (for both regular RL and IRL) may have been faster, which
ultimately could have resulted in trajectories that are more similar to the expert
data. Testing this is left as future work due to time constraints, but the results of
comparing the approach in this thesis with the results of an equivalent setup with
kinesthetic teaching could show which of the approaches presented in Section 3.4.1
is more suited for the task solved in this thesis. Using the same line of thought,
the actions done by the agent could be either relative or absolute joint angles of the
robotic manipulator. Thus there are no risks associated with the planner (in this
case MoveIt) encountering singularities since it can be circumvented completely.
An additional benefit of this is that it would no longer be necessary to plan a
Cartesian trajectory which would speed up the simulation. If the Gazebo simula-
tion could be sped up sufficiently, the TCP Simulation environment would also be
redundant making the training process simpler and more realistic.

The solutions in Section 8.1 only covered linear approaches with the exception of
a discrete version of GAIL. Since there were no physical test to compare the expert
trajectory and the generated trajectory other than a visual comparison, it is difficult
to say if the generated trajectories would be able to solve the task. However, in
some of the cases there are a clear discrepancy between the expert trajectories and
the generated trajectories. This could indicate that the approach in this chapter is
not well suited for the kind of use case selected in this thesis. Other work, such
as Guided Cost Learning (Finn et al. 2016) and Generative Adversarial Imitation
Learning (Ho and Ermon 2016), has shown successful implementations of different
similar tasks.

82

Chapter 10

Conclusion

As presented in Chapter 1, production systems are required to adapt to a high va-
riety of customer demand, customisation, and globalisation. This requires models
that are adaptable to these factors and can self-adjust depending on the current
state of the manufacturing company. One approach to adaptability is using ma-
chine learning in the form of reinforcement learning. However, few industrial
applications utilise this kind of adaptable models. Chapter 4 proposed a method
called Reinforcement Learning Complexity (RLC) for evaluating the complexity of
using reinforcement learning in different industrial cases. RLC served as a sim-
ple scoring to identify tasks which contains the least complexity if reinforcement
learning was to be applied. However, The scoring of the 15 different use cases
might serve best as a platform for discussion between industry experts, with the
tasks specific knowledge, and experts within machine learning.

One of the aspects of reinforcement learning that often requires significant engi-
neering is the shaping of a reward function that accurately describes the true goal
of a task. One approach to this is using expert data to model the reward by inverse
reinforcement learning. To investigate inverse reinforcement learning for a pick-
and-place task at DMRI, the following problem formulation was defined: How can
an IRL algorithm with a robot manipulator be set up and used to solve a pick-and-place
task at DMRI with the use of recorded expert data?. This was then refined into three
research questions.

The first research question of this thesis was; How can expert data be collected and
utilised for the task at DMRI?. This was answered in Chapter 6 by using an imitation
data collection approach. This approach was then further limited such that the
teacher and the learner (i.e. human and robot) would share the same observation
space meaning that the only mapping between human and robot is a static trans-
formation. The shared observation space was captured using an HTC VIVE virtual
reality system. The static transformation between human and robot was found
using a world to base calibration. The accuracy of this calibration depended on
the number of calibration points used where 4, 6, 8, 10, and 12 were tested. While
6 calibration points produced the best norm error, any of the tested numbers of
calibration points would have been sufficient for this thesis.

An integral part of reinforcement learning is the time-consuming training. The
second research question of this thesis was therefore; How should a training and sim-
ulation environment be structured for the task at DMRI?. The standard for defining
simulation environments already defined by OpenAI Gym was used to structure
the developed environments in this thesis. By following this standard, a rich se-

83

Chapter 10. Conclusion

lection of freely available tools becomes accessible. The simulation engine called
Gazebo was used to simulate a robotic manipulator at an increased speed. How-
ever, this simulation suffered from instability caused by the robot crashing during
the exploration of the environment. To address this, a simpler TCP Simulation
environment was used to bias the agent towards a partly optimal solution. By
doing so, the reinforcement learning agent would not have to explore the entire
state-space in the Gazebo environment.

The third and last research question; How can an IRL algorithm be used for a pick-
and-place task as the use case and does the performance differ from an RL approach?, was
then answered based on the observation data and the simulation environments
presented in Chapter 6 and 7. Two linear inverse reinforcement learning algo-
rithms were implemented, each producing different trajectories. Additionally, the
trajectories were compared to a naive reinforcement learning implementation, that
in some cases produced visually closer trajectories to the expert trajectories. A dis-
crete implementation of GAIL was furthermore briefly tested, which indicated the
potential for inverse reinforcement learning.

The answer to the problem formulation How can an IRL algorithm with a robot manip-
ulator be set up and used to solve a pick-and-place task at DMRI with the use of recorded
expert data? is thus that expert data for inverse reinforcement learning has to cap-
ture rich observations of the task. In linear inverse reinforcement learning the
complexity of designing a reward function for traditional reinforcement learning
is not entirely omitted, but only decomposed to engineering a set of features di-
rectly impacting the complete reward function. All of the implemented solutions
were only evaluated visually, and thus, it is not known if any of the solutions
actually solve a real industrial task.

84

Chapter 11

Future Work

In Section 3.4.1 different strategies for collecting expert data were discussed. The
strategy chosen for collecting expert data used a principle referred to as direct
task space learning. This strategy caused some problems when the expert data
was applied on the implemented IRL algorithms. For future work it should be
investigated how the expert data can be mapped, such that the feature expectation
from the generated policy and the expert data will match better. This could e.g.
be achieved by using kinesthetic teaching or securing that the already collected
trajectories fits the trajectories generated by the polices in length and density.

Instead of collecting expert data in the experimental setup presented in Chapter 6
it should be done in the real environment at a slaughterhouse by an experienced
employee. The task of moving a piece of meat from a start position to a hook,
furthermore consists of more steps than following a trajectory, which has been the
focus in this thesis. An investigation of how to solve the other steps in the process
should therefore be investigated as future work, e.g. pick up the meat and place
the meat on the hook.

Other IRL and behaviour cloning algorithms should for future work be investi-
gated on the existing expert data. These algorithms could include Guided Cost
Learning (GCL) and continuous Generative Adversarial Imitation Learning (GAIL).
A continuous version of GAIL is especially interesting, since the freely available RL
framework Stable Baseline (Hill et al. 2018) have an implementation. This library,
however, requires Python 3, which is different from the python version currently
supported by the simulation environment presented in Chapter 7. The simulation
environment should thus be converted or replaced by an environment which can
run Python 3, e.g. ROS 2.

85

Bibliography

Abbeel, Pieter and Andrew Y. Ng (2004). “Apprenticeship Learning via Inverse
Reinforcement Learning”. In: Proceedings of the Twenty-first International Confer-
ence on Machine Learning. ICML ’04. New York, NY, USA: ACM, pp. 1–. isbn:
1-58113-838-5. doi: 10.1145/1015330.1015430. url: http://doi.acm.org/10.
1145/1015330.1015430.

Andersen, Thomas Timm (2015). Optimizing the Universal Robots ROS driver. Tech.
rep. Technical University of Denmark, Department of Electrical Engineering.
url: http://orbit.dtu.dk/en/publications/optimizing-the-universal-
robots-ros-driver(20dde139-7e87-4552-8658-dbf2cdaab24b).html.

Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-
ter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba
(2017). “Hindsight Experience Replay”. In: CoRR abs/1707.01495. arXiv: 1707.
01495. url: http://arxiv.org/abs/1707.01495.

Argall, Brenna D., Sonia Chernova, Manuela Veloso, and Brett Browning (2009).
“A Survey of Robot Learning from Demonstration”. In: Robot. Auton. Syst. 57.5,
pp. 469–483. issn: 0921-8890. doi: 10.1016/j.robot.2008.10.024. url: http:
//dx.doi.org/10.1016/j.robot.2008.10.024.

Asis, Kristopher De, J. Fernando Hernandez-Garcia, G. Zacharias Holland, and
Richard S. Sutton (2017). “Multi-step Reinforcement Learning: A Unifying Al-
gorithm”. In: CoRR abs/1703.01327. arXiv: 1703.01327. url: http://arxiv.
org/abs/1703.01327.

Bishop, Christopher M (2006). Pattern recognition and machine learning. springer.
Bøgh, Simon, Mads Hvilshøj, Morten Kristiansen, and Ole Madsen (2012). “Identi-

fying and evaluating suitable tasks for autonomous industrial mobile manipu-
lators (AIMM)”. In: The International Journal of Advanced Manufacturing Technol-
ogy 61.5, pp. 713–726. issn: 1433-3015. doi: 10.1007/s00170-011-3718-3. url:
https://doi.org/10.1007/s00170-011-3718-3.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba (2016). OpenAI Gym. eprint: arXiv:1606.
01540.

Calinon, Sylvain and Aude Billard (2007). “Incremental Learning of Gestures by
Imitation in a Humanoid Robot”. In: Proceedings of the ACM/IEEE International
Conference on Human-robot Interaction. HRI ’07. Arlington, Virginia, USA: ACM,
pp. 255–262. isbn: 978-1-59593-617-2. doi: 10 . 1145 / 1228716 . 1228751. url:
http://doi.acm.org/10.1145/1228716.1228751.

Casler Jr, Richard J (1986). Method and apparatus for manipulator welding apparatus
with improved weld path definition. US Patent 4,568,816.

Chen, H., T. Fuhlbrigge, and X. Li (2008). “Automated industrial robot path plan-
ning for spray painting process: A review”. In: 2008 IEEE International Conference

87

http://dx.doi.org/10.1145/1015330.1015430
http://doi.acm.org/10.1145/1015330.1015430
http://doi.acm.org/10.1145/1015330.1015430
http://orbit.dtu.dk/en/publications/optimizing-the-universal-robots-ros-driver(20dde139-7e87-4552-8658-dbf2cdaab24b).html
http://orbit.dtu.dk/en/publications/optimizing-the-universal-robots-ros-driver(20dde139-7e87-4552-8658-dbf2cdaab24b).html
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://arxiv.org/abs/1703.01327
http://arxiv.org/abs/1703.01327
http://arxiv.org/abs/1703.01327
http://dx.doi.org/10.1007/s00170-011-3718-3
https://doi.org/10.1007/s00170-011-3718-3
arXiv:1606.01540
arXiv:1606.01540
http://dx.doi.org/10.1145/1228716.1228751
http://doi.acm.org/10.1145/1228716.1228751

Bibliography

on Automation Science and Engineering, pp. 522–527. doi: 10.1109/COASE.2008.
4626515.

Chen, Y. F., M. Everett, M. Liu, and J. P. How (2017). “Socially aware motion plan-
ning with deep reinforcement learning”. In: 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 1343–1350. doi: 10.1109/IROS.
2017.8202312.

Choset, Howie M, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Bur-
gard, Lydia E Kavraki, and Sebastian Thrun (2005). “Principles of Robot Mo-
tion: Theory, Algorithms, and Implementation”. In: MIT Press. Chap. 4 Poten-
tial Functions.

Compare, Michele, Luca Bellani, Enrico Cobelli, and Enrico Zio (2018). “Reinforce-
ment learning-based flow management of gas turbine parts under stochastic
failures”. In: The International Journal of Advanced Manufacturing Technology 99.9,
pp. 2981–2992. issn: 1433-3015. doi: 10.1007/s00170-018-2690-6. url: https:
//doi.org/10.1007/s00170-018-2690-6.

Cosío, F. Arambula and M.A. Padilla Castañeda (2004). “Autonomous robot navi-
gation using adaptive potential fields”. In: Mathematical and Computer Modelling
40.9, pp. 1141 –1156. issn: 0895-7177. doi: https://doi.org/10.1016/j.mcm.
2004.05.001. url: http://www.sciencedirect.com/science/article/pii/
S0895717704003097.

DMRI (2019). DMRI Homepage. url: https://www.dti.dk/dmri.
Doerr, Andreas, Nathan D Ratliff, Jeannette Bohg, Marc Toussaint, and Stefan

Schaal (2015). “Direct Loss Minimization Inverse Optimal Control.” In: Robotics:
Science and Systems.

E. Rohmer S. P. N. Singh, M. Freese (2013). “V-REP: a Versatile and Scalable Robot
Simulation Framework”. In: Proc. of The International Conference on Intelligent
Robots and Systems (IROS).

EU (2018). A brief refresher on Technology Readiness Levels (TRL). url: http://www.
cloudwatchhub.eu/exploitation/brief-refresher-technology-readiness-
levels-trl.

Finn, Chelsea, Sergey Levine, and Pieter Abbeel (2016). “Guided Cost Learning:
Deep Inverse Optimal Control via Policy Optimization”. In: CoRR abs/1603.00448.
arXiv: 1603.00448. url: http://arxiv.org/abs/1603.00448.

Fortunato, Meire et al. (2017). “Noisy Networks for Exploration”. In: CoRR abs/1706.10295.
arXiv: 1706.10295. url: http://arxiv.org/abs/1706.10295.

Gabel, T. and M. Riedmiller (2007). “Scaling Adaptive Agent-Based Reactive Job-
Shop Scheduling to Large-Scale Problems”. In: 2007 IEEE Symposium on Compu-
tational Intelligence in Scheduling, pp. 259–266. doi: 10.1109/SCIS.2007.367699.

Geniar, Mattias (2016). Why do we automate? url: https://ma.ttias.be/why-do-
we-automate/.

Ghalamzan, Amir and Matteo Ragaglia (2017). “Robot learning from demonstra-
tions: Emulation learning in environments with moving obstacles”. In: Robotics
and Autonomous Systems 101. doi: 10.1016/j.robot.2017.12.001.

Grand, Stephen, Dave Cliff, and Anil Malhotra (1997). “Creatures: Artificial Life
Autonomous Software Agents for Home Entertainment”. In: pp. 22–29. doi:
10.1145/267658.267663.

88

http://dx.doi.org/10.1109/COASE.2008.4626515
http://dx.doi.org/10.1109/COASE.2008.4626515
http://dx.doi.org/10.1109/IROS.2017.8202312
http://dx.doi.org/10.1109/IROS.2017.8202312
http://dx.doi.org/10.1007/s00170-018-2690-6
https://doi.org/10.1007/s00170-018-2690-6
https://doi.org/10.1007/s00170-018-2690-6
http://dx.doi.org/https://doi.org/10.1016/j.mcm.2004.05.001
http://dx.doi.org/https://doi.org/10.1016/j.mcm.2004.05.001
http://www.sciencedirect.com/science/article/pii/S0895717704003097
http://www.sciencedirect.com/science/article/pii/S0895717704003097
https://www.dti.dk/dmri
http://www.cloudwatchhub.eu/exploitation/brief-refresher-technology-readiness-levels-trl
http://www.cloudwatchhub.eu/exploitation/brief-refresher-technology-readiness-levels-trl
http://www.cloudwatchhub.eu/exploitation/brief-refresher-technology-readiness-levels-trl
http://arxiv.org/abs/1603.00448
http://arxiv.org/abs/1603.00448
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
http://dx.doi.org/10.1109/SCIS.2007.367699
https://ma.ttias.be/why-do-we-automate/
https://ma.ttias.be/why-do-we-automate/
http://dx.doi.org/10.1016/j.robot.2017.12.001
http://dx.doi.org/10.1145/267658.267663

Bibliography

Gu, S., E. Holly, T. Lillicrap, and S. Levine (2017). “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates”. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3389–3396. doi:
10.1109/ICRA.2017.7989385.

Günther, Johannes, Patrick M. Pilarski, Gerhard Helfrich, Hao Shen, and Klaus
Diepold (2016). “Intelligent laser welding through representation, prediction,
and control learning: An architecture with deep neural networks and rein-
forcement learning”. In: Mechatronics 34. System-Integrated Intelligence: New
Challenges for Product and Production Engineering, pp. 1 –11. issn: 0957-4158.
doi: https://doi.org/10.1016/j.mechatronics.2015.09.004. url: http:
//www.sciencedirect.com/science/article/pii/S0957415815001555.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine (2018). “Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor”. In: CoRR abs/1801.01290. arXiv: 1801.01290. url: http:
//arxiv.org/abs/1801.01290.

Hafner, Roland and Martin Riedmiller (2011). “Reinforcement learning in feedback
control”. English. In: 84, pp. 137–169. issn: 0885-6125. doi: 10.1007/s10994-
011-5235-x.

Hasselt, Hado van, Arthur Guez, and David Silver (2015). “Deep Reinforcement
Learning with Double Q-learning”. In: CoRR abs/1509.06461. arXiv: 1509 .
06461. url: http://arxiv.org/abs/1509.06461.

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar,
and David Silver (2017). “Rainbow: Combining Improvements in Deep Rein-
forcement Learning”. In: CoRR abs/1710.02298. arXiv: 1710.02298. url: http:
//arxiv.org/abs/1710.02298.

Hill, Ashley et al. (2018). Stable Baselines. https://github.com/hill-a/stable-
baselines.

Ho, Jonathan and Stefano Ermon (2016). “Generative Adversarial Imitation Learn-
ing”. In: CoRR abs/1606.03476. arXiv: 1606.03476. url: http://arxiv.org/
abs/1606.03476.

HTC VIVE (2019). HTC VIVE. url: https://www.vive.com/us/.
Hu, Yazhou and Bailu Si (2018). “A reinforcement learning neural network for

robotic manipulator control”. In: Neural computation 30.7, pp. 1983–2004.
Huang, X., F. Naghdy, H. Du, G. Naghdy, and C. Todd (2015). “Reinforcement

learning neural network (RLNN) based adaptive control of fine hand motion
rehabilitation robot”. In: 2015 IEEE Conference on Control Applications (CCA),
pp. 941–946. doi: 10.1109/CCA.2015.7320733.

Indiamart Webpage (2019). Upvc Window Frame. url: https://www.indiamart.
com/proddetail/upvc-window-frame-15124921612.html.

Inropa (2016). Inropa Homepage. url: https://www.inropa.com/da/.
Irving, Geoffrey and Amanda Askell (2019). “AI Safety Needs Social Scientists”. In:

Distill. https://distill.pub/2019/safety-needs-social-scientists. doi: 10.23915/
distill.00014.

Ivaldi, Serena, Vincent Padois, and Francesco Nori (2014). “Tools for dynamics
simulation of robots: a survey based on user feedback”. In: CoRR abs/1402.7050.
arXiv: 1402.7050. url: http://arxiv.org/abs/1402.7050.

89

http://dx.doi.org/10.1109/ICRA.2017.7989385
http://dx.doi.org/https://doi.org/10.1016/j.mechatronics.2015.09.004
http://www.sciencedirect.com/science/article/pii/S0957415815001555
http://www.sciencedirect.com/science/article/pii/S0957415815001555
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://dx.doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.1007/s10994-011-5235-x
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
https://www.vive.com/us/
http://dx.doi.org/10.1109/CCA.2015.7320733
https://www.indiamart.com/proddetail/upvc-window-frame-15124921612.html
https://www.indiamart.com/proddetail/upvc-window-frame-15124921612.html
https://www.inropa.com/da/
http://dx.doi.org/10.23915/distill.00014
http://dx.doi.org/10.23915/distill.00014
http://arxiv.org/abs/1402.7050
http://arxiv.org/abs/1402.7050

Bibliography

Jin, Zeshi, Haichao Li, and Hongming Gao (2019). “An intelligent weld control
strategy based on reinforcement learning approach”. In: The International Journal
of Advanced Manufacturing Technology 100.9, pp. 2163–2175. issn: 1433-3015. doi:
10.1007/s00170-018-2864-2. url: https://doi.org/10.1007/s00170-018-
2864-2.

Julia (2013). Creatures Deluxe. url: https://fangirled.wordpress.com/2013/07/
16/fangirl-flashback-creatures-deluxe/.

Kaneko, T., H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and K. Kashino (2017).
“Generative adversarial network-based postfilter for statistical parametric speech
synthesis”. In: 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4910–4914. doi: 10.1109/ICASSP.2017.7953090.

Khodayari, S. and M. J. Yazdanpanah (2005). “Network routing based on rein-
forcement learning in dynamically changing networks”. In: 17th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI’05), 5 pp.–366. doi:
10.1109/ICTAI.2005.91.

Kim, B., Y. Zhang, M. van der Schaar, and J. Lee (2016). “Dynamic Pricing and En-
ergy Consumption Scheduling With Reinforcement Learning”. In: IEEE Trans-
actions on Smart Grid 7.5, pp. 2187–2198. issn: 1949-3053. doi: 10.1109/TSG.
2015.2495145.

Kim, Beomjoon and Joelle Pineau (2016). “Socially Adaptive Path Planning in Hu-
man Environments Using Inverse Reinforcement Learning”. In: International
Journal of Social Robotics 8, pp. 51–66. doi: 10.1007/s12369-015-0310-2.

Koenig, Nathan and Andrew Howard (2004). “Design and Use Paradigms for
Gazebo, An Open-Source Multi-Robot Simulator”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. Sendai, Japan, pp. 2149–2154.

Koskinopoulou, Maria, Stylianos Piperakis, and Panos E. Trahanias (2016). “Learn-
ing from Demonstration facilitates Human-Robot Collaborative task execution”.
In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pp. 59–66.

Ledig, Christian, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew P. Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi (2016). “Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Net-
work”. In: CoRR abs/1609.04802. arXiv: 1609.04802. url: http://arxiv.org/
abs/1609.04802.

Lee, Donghun, TaeWon Seo, and Jongwon Kim (2011). “Optimal design and workspace
analysis of a mobile welding robot with a 3P3R serial manipulator”. In: Robotics
and Autonomous Systems 59.10, pp. 813 –826. issn: 0921-8890. doi: https://doi.
org/10.1016/j.robot.2011.06.004. url: http://www.sciencedirect.com/
science/article/pii/S0921889011001011.

Life Science Robotics (2019). Life Science Robotics Webpage. url: http : / / www .
lifescience-robotics.com/.

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra (2015). “Continuous control with
deep reinforcement learning”. In: CoRR abs/1509.02971. arXiv: 1509.02971.
url: http://arxiv.org/abs/1509.02971.

Lin, S., I. F. Akyildiz, P. Wang, and M. Luo (2016). “QoS-Aware Adaptive Rout-
ing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement

90

http://dx.doi.org/10.1007/s00170-018-2864-2
https://doi.org/10.1007/s00170-018-2864-2
https://doi.org/10.1007/s00170-018-2864-2
https://fangirled.wordpress.com/2013/07/16/fangirl-flashback-creatures-deluxe/
https://fangirled.wordpress.com/2013/07/16/fangirl-flashback-creatures-deluxe/
http://dx.doi.org/10.1109/ICASSP.2017.7953090
http://dx.doi.org/10.1109/ICTAI.2005.91
http://dx.doi.org/10.1109/TSG.2015.2495145
http://dx.doi.org/10.1109/TSG.2015.2495145
http://dx.doi.org/10.1007/s12369-015-0310-2
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
http://dx.doi.org/https://doi.org/10.1016/j.robot.2011.06.004
http://dx.doi.org/https://doi.org/10.1016/j.robot.2011.06.004
http://www.sciencedirect.com/science/article/pii/S0921889011001011
http://www.sciencedirect.com/science/article/pii/S0921889011001011
http://www.lifescience-robotics.com/
http://www.lifescience-robotics.com/
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

Bibliography

Learning Approach”. In: 2016 IEEE International Conference on Services Comput-
ing (SCC), pp. 25–33. doi: 10.1109/SCC.2016.12.

Lipnevicius, Geoff M (2005). Robotic cylinder welding. US Patent 6,942,139.
Madsen, Ole, Henrik Schøiler, Charles Møller, Torben Bach Pedersen, Brian Ve-

jrum Wæhrens, Arne Remmen, and Anders Vestergaard (2014). Smart Produc-
tion Et forskningprogram under AAU Production. Online. Danish. url: https :
//www.smartproduction.aau.dk/digitalAssets/221/221365_aau-smart-
production.pdf?fbclid=IwAR2xgDFLshxnIu1vuylvIk2YwMNu3kL96Q7VJSeKkURkZIM3kgjdV3lJsrc.

Mankins, John C (1995). “Technology readiness levels”. In: White Paper, April 6,
p. 1995.

Meyes, Richard, Hasan Tercan, Simon Roggendorf, Thomas Thiele, Christian Büscher,
Markus Obdenbusch, Christian Brecher, Sabina Jeschke, and Tobias Meisen
(2017). “Motion Planning for Industrial Robots using Reinforcement Learn-
ing”. In: Procedia CIRP 63. Manufacturing Systems 4.0 – Proceedings of the
50th CIRP Conference on Manufacturing Systems, pp. 107 –112. issn: 2212-
8271. doi: https://doi.org/10.1016/j.procir.2017.03.095. url: http:
//www.sciencedirect.com/science/article/pii/S221282711730241X.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. (2015). “Human-level control through deep reinforce-
ment learning”. In: Nature 518.7540, p. 529.

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu (2016).
“Asynchronous Methods for Deep Reinforcement Learning”. In: CoRR abs/1602.01783.
arXiv: 1602.01783. url: http://arxiv.org/abs/1602.01783.

Mogren, Olof (2016). “C-RNN-GAN: Continuous recurrent neural networks with
adversarial training”. In: CoRR abs/1611.09904. arXiv: 1611.09904. url: http:
//arxiv.org/abs/1611.09904.

Moveit Webpage (2019). Moving robots into the future. url: https://moveit.ros.
org/.

Muelling, Katharina, Abdeslam Boularias, Betty Mohler, Bernhard Schölkopf, and
Jan Peters (2014). “Learning Strategies in Table Tennis Using Inverse Reinforce-
ment Learning”. In: Biol. Cybern. 108.5, pp. 603–619. issn: 0340-1200. doi: 10.
1007/s00422-014-0599-1. url: http://dx.doi.org/10.1007/s00422-014-
0599-1.

Nair, Ashvin, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel (2017). “Overcoming Exploration in Reinforcement Learning with Demon-
strations”. In: CoRR abs/1709.10089. arXiv: 1709.10089. url: http://arxiv.
org/abs/1709.10089.

Ng, Andrew Y. and Stuart J. Russell (2000). “Algorithms for Inverse Reinforcement
Learning”. In: Proceedings of the Seventeenth International Conference on Machine
Learning. ICML ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., pp. 663–670. isbn: 1-55860-707-2. url: http://dl.acm.org/citation.cfm?
id=645529.657801.

“Autonomous Inverted Helicopter Flight via Reinforcement Learning” (2006). En-
glish. In: Experimental Robotics IX. Ed. by Andrew Y. Ng, Adam Coates, Mark

91

http://dx.doi.org/10.1109/SCC.2016.12
https://www.smartproduction.aau.dk/digitalAssets/221/221365_aau-smart-production.pdf?fbclid=IwAR2xgDFLshxnIu1vuylvIk2YwMNu3kL96Q7VJSeKkURkZIM3kgjdV3lJsrc
https://www.smartproduction.aau.dk/digitalAssets/221/221365_aau-smart-production.pdf?fbclid=IwAR2xgDFLshxnIu1vuylvIk2YwMNu3kL96Q7VJSeKkURkZIM3kgjdV3lJsrc
https://www.smartproduction.aau.dk/digitalAssets/221/221365_aau-smart-production.pdf?fbclid=IwAR2xgDFLshxnIu1vuylvIk2YwMNu3kL96Q7VJSeKkURkZIM3kgjdV3lJsrc
http://dx.doi.org/https://doi.org/10.1016/j.procir.2017.03.095
http://www.sciencedirect.com/science/article/pii/S221282711730241X
http://www.sciencedirect.com/science/article/pii/S221282711730241X
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1611.09904
http://arxiv.org/abs/1611.09904
http://arxiv.org/abs/1611.09904
https://moveit.ros.org/
https://moveit.ros.org/
http://dx.doi.org/10.1007/s00422-014-0599-1
http://dx.doi.org/10.1007/s00422-014-0599-1
http://dx.doi.org/10.1007/s00422-014-0599-1
http://dx.doi.org/10.1007/s00422-014-0599-1
http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
http://dl.acm.org/citation.cfm?id=645529.657801
http://dl.acm.org/citation.cfm?id=645529.657801

Bibliography

Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger, and Eric Liang.
Vol. 21, pp. 363–372. isbn: 978-3-540-28816-9. doi: 10.1007/11552246_35.

Park, Jung-Jun, Ji-Hun Kim, and Jae-Bok Song (2007). “Path planning for a robot
manipulator based on probabilistic roadmap and reinforcement learning”. In:
International Journal of Control, Automation, and Systems 5.6, pp. 674–680.

Pascual, Santiago, Antonio Bonafonte, and Joan Serrà (2017). “SEGAN: Speech En-
hancement Generative Adversarial Network”. In: CoRR abs/1703.09452. arXiv:
1703.09452. url: http://arxiv.org/abs/1703.09452.

Pehlivan, A. U., F. Sergi, and M. K. O’Malley (2015). “A Subject-Adaptive Controller
for Wrist Robotic Rehabilitation”. In: IEEE/ASME Transactions on Mechatronics
20.3, pp. 1338–1350. issn: 1083-4435. doi: 10.1109/TMECH.2014.2340697.

Peng, Xue Bin, Glen Berseth, Kangkang Yin, and Michiel Van De Panne (2017).
“DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforce-
ment Learning”. In: ACM Trans. Graph. 36.4, 41:1–41:13. issn: 0730-0301. doi:
10.1145/3072959.3073602. url: http://doi.acm.org/10.1145/3072959.
3073602.

Pinciroli, Carlo et al. (2012). “ARGoS: a Modular, Parallel, Multi-Engine Simulator
for Multi-Robot Systems”. In: Swarm Intelligence 6.4, pp. 271–295.

Plappert, Matthias (2016). keras-rl. https://github.com/keras-rl/keras-rl.
Purnell, G. (2013). “13 - Robotics and automation in meat processing”. In: Robotics

and Automation in the Food Industry. Ed. by Darwin G. Caldwell. Woodhead Pub-
lishing Series in Food Science, Technology and Nutrition. Grimsby Institute of
Further & Higher Education (Gifhe). Woodhead Publishing, pp. 304 –328. isbn:
978-1-84569-801-0. doi: https://doi.org/10.1533/9780857095763.2.304. url:
http://www.sciencedirect.com/science/article/pii/B978184569801050013X.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever (2019). Language Models are Unsupervised Multitask Learners. Tech. rep.
OpenAI, San Francisco, California, United States.

RobNor (2019a). RobNor Homepage. url: https://www.robnor.se/.
— (2019b). RobNor Projects. url: https://www.robnor.se/projekt.
RoboCluster Webpage (2019). RoboCluster. url: https://www.robocluster.dk/.
RoboDK (2019). RoboDK. Website. url: https://robodk.com/.
RoboSavvy (2019). vive_ros. Github. url: https://github.com/robosavvy/vive_

ros.
Russell, Stuart J (1998). “Learning agents for uncertain environments”. In: COLT.
Rüßmann, Michael, Markus Lorenz, Philipp Gerbert, Manuela Waldner, Jan Justus,

Pascal Engel, and Michael Harnisch (2015). “Industry 4.0: The future of pro-
ductivity and growth in manufacturing industries”. In: Boston Consulting Group
9.1, pp. 54–89. url: http://www.inovasyon.org/pdf/bcg.perspectives_
Industry.4.0_2015.pdf.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver (2016). “Prioritized
Experience Replay”. In: CoRR abs/1511.05952.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz
(2015). “Trust Region Policy Optimization”. In: Proceedings of the 32nd Inter-
national Conference on Machine Learning. Ed. by Francis Bach and David Blei.
Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, pp. 1889–
1897. url: http://proceedings.mlr.press/v37/schulman15.html.

92

http://dx.doi.org/10.1007/11552246_35
http://arxiv.org/abs/1703.09452
http://arxiv.org/abs/1703.09452
http://dx.doi.org/10.1109/TMECH.2014.2340697
http://dx.doi.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
https://github.com/keras-rl/keras-rl
http://dx.doi.org/https://doi.org/10.1533/9780857095763.2.304
http://www.sciencedirect.com/science/article/pii/B978184569801050013X
https://www.robnor.se/
https://www.robnor.se/projekt
https://www.robocluster.dk/
https://robodk.com/
https://github.com/robosavvy/vive_ros
https://github.com/robosavvy/vive_ros
http://www.inovasyon.org/pdf/bcg.perspectives_Industry.4.0_2015.pdf
http://www.inovasyon.org/pdf/bcg.perspectives_Industry.4.0_2015.pdf
http://proceedings.mlr.press/v37/schulman15.html

Bibliography

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov
(2017). “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. (2016). “Mastering the game of Go with deep
neural networks and tree search”. In: nature 529.7587, p. 484.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et
al. (2017). “Mastering the game of go without human knowledge”. In: Nature
550.7676, p. 354.

SPARC (2016). Robotics 2020 Multi-Annual Roadmap. Tech. rep. SPARC The Partner-
ship for Robotics in Europe. url: https://www.eu-robotics.net/cms/upload/
topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduc-
tion. MIT press.

Sutton, Richard S., David McAllester, Satinder Singh, and Yishay Mansour (1999).
“Policy Gradient Methods for Reinforcement Learning with Function Approx-
imation”. In: Proceedings of the 12th International Conference on Neural Information
Processing Systems. NIPS’99. Denver, CO: MIT Press, pp. 1057–1063. url: http:
//dl.acm.org/citation.cfm?id=3009657.3009806.

A model of shared grasp affordances from demonstration (2007). English, pp. 27–35. isbn:
978-1-4244-1861-9. doi: 10.1109/ICHR.2007.4813845.

Takadama, K., K. Hajiri, T. Nomura, K. Shimohara, M. Okada, and S. Nakasuka
(1998). “Learning model for adaptive behaviors as an organized group of swarm
robots”. In: Artificial Life and Robotics 2.3, pp. 123–128. issn: 1614-7456. doi:
10.1007/BF02471168. url: https://doi.org/10.1007/BF02471168.

Todorov, E., T. Erez, and Y. Tassa (2012). “MuJoCo: A physics engine for model-
based control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

Tsai, Roger Y. and Reimer K. Lenz (1988). “A New Technique for Fully Autonomous
and Efficient 3D Robotics Hand-eye Calibration”. In: Proceedings of the 4th Inter-
national Symposium on Robotics Research. Univ. of California, Santa Clara, Cali-
fornia, USA: MIT Press, pp. 287–297. isbn: 0-262-02272-9. url: http://dl.acm.
org/citation.cfm?id=57425.57456.

Uhlenbeck, G. E. and L. S. Ornstein (1930). “On the Theory of the Brownian Mo-
tion”. In: Phys. Rev. 36 (5), pp. 823–841. doi: 10.1103/PhysRev.36.823. url:
https://link.aps.org/doi/10.1103/PhysRev.36.823.

Vallés, Marina, José Cazalilla, Ángel Valera, Vicente Mata, Álvaro Page, and Miguel
Díaz-Rodríguez (2017). “A 3-PRS parallel manipulator for ankle rehabilitation:
towards a low-cost robotic rehabilitation”. In: Robotica 35.10, 1939–1957. doi:
10.1017/S0263574715000120.

Vinyals, Oriol et al. (2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-
game-starcraft-ii/.

Wang, Ziyu, Nando de Freitas, and Marc Lanctot (2015). “Dueling Network Ar-
chitectures for Deep Reinforcement Learning”. In: CoRR abs/1511.06581. arXiv:
1511.06581. url: http://arxiv.org/abs/1511.06581.

93

https://www.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
https://www.eu-robotics.net/cms/upload/topic_groups/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B.pdf
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dx.doi.org/10.1109/ICHR.2007.4813845
http://dx.doi.org/10.1007/BF02471168
https://doi.org/10.1007/BF02471168
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dl.acm.org/citation.cfm?id=57425.57456
http://dl.acm.org/citation.cfm?id=57425.57456
http://dx.doi.org/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
http://dx.doi.org/10.1017/S0263574715000120
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

Bibliography

Wang, Ziyu, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray
Kavukcuoglu, and Nando de Freitas (2016). “Sample Efficient Actor-Critic with
Experience Replay”. In: CoRR abs/1611.01224. arXiv: 1611.01224. url: http:
//arxiv.org/abs/1611.01224.

Wulfmeier, Markus, Peter Ondruska, and Ingmar Posner (2015). “Deep Inverse
Reinforcement Learning”. In: CoRR abs/1507.04888. arXiv: 1507.04888. url:
http://arxiv.org/abs/1507.04888.

Xanthopoulos, A. S., A. Kiatipis, D. E. Koulouriotis, and S. Stieger (2018). “Re-
inforcement Learning-Based and Parametric Production-Maintenance Control
Policies for a Deteriorating Manufacturing System”. In: IEEE Access 6, pp. 576–
588. issn: 2169-3536. doi: 10.1109/ACCESS.2017.2771827.

Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang (2017). “MidiNet: A Convolu-
tional Generative Adversarial Network for Symbolic-domain Music Generation
using 1D and 2D Conditions”. In: CoRR abs/1703.10847. arXiv: 1703.10847.
url: http://arxiv.org/abs/1703.10847.

Yip, Geeman (2018). What, why, and when do we automate? url: https : / / www .
infoworld.com/article/3251068/what-why-and-when-do-we-automate.
html.

Zhang, Han, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang
Wang, and Dimitris N. Metaxas (2016). “StackGAN: Text to Photo-realistic Im-
age Synthesis with Stacked Generative Adversarial Networks”. In: CoRR abs/1612.03242.
arXiv: 1612.03242. url: http://arxiv.org/abs/1612.03242.

Zhang, Jingwei and Lei Tai (2017). jingweiz/pytorch-rl. url: https://github.com/
jingweiz/pytorch-rl.

Ziebart, Brian D., Andrew Maas, J. Andrew Bagnell, and Anind K. Dey (2008).
“Maximum Entropy Inverse Reinforcement Learning”. In: Proc. AAAI, pp. 1433–
1438.

Åström, Karl Johan (1980). “Why Use Adaptive Techniques for Steering Large
Tankers?” eng. In: International Journal Of Control 32, pp. 689–708. issn: 0020-
7179.

94

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1507.04888
http://arxiv.org/abs/1507.04888
http://dx.doi.org/10.1109/ACCESS.2017.2771827
http://arxiv.org/abs/1703.10847
http://arxiv.org/abs/1703.10847
https://www.infoworld.com/article/3251068/what-why-and-when-do-we-automate.html
https://www.infoworld.com/article/3251068/what-why-and-when-do-we-automate.html
https://www.infoworld.com/article/3251068/what-why-and-when-do-we-automate.html
http://arxiv.org/abs/1612.03242
http://arxiv.org/abs/1612.03242
https://github.com/jingweiz/pytorch-rl
https://github.com/jingweiz/pytorch-rl

Appendix A

UML Diagram

A class UML diagram of the whole Python software can be found in the repository.
Figure A.1 shows a simplified version of the reach environment.

95

Appendix A. UML Diagram

Env
step(self, action)
reset(self)
render(self, mode="human")
close(self)
seed(self, seed=None)

UREnv
__init__(self, group, scene, robot, max_update_rate,
start_joint_pos)
step(self, action)
reset(self)
render(self, mode="human")
close(self)
is_done(self, goal, cur_pos)
compute_reward(self, goal, cur_pos)
get_obs(self)
sample_goal(self)
apply_action(self, action)

URReach
__init__(self)
is_done(self, goal, cur_pos)
compute_reward(self, goal, cur_pos)
get_obs(self)
sample_goal(self)
apply_action(self, action)
render(self, mode="human")

ContinuousURReach
__init__(self)
apply_action(self, action)

IRLContinuousURReach
__init__(self)
compute_reward(self, obser-
vation, action)

IRLURReach
__init__(self)
compute_reward(self, obser-
vation, action)

Figure A.1: A simplified class UML diagram of the custom built UR environment. Class attributes
has been omitted in this diagram.

96

Appendix B

Linear Inverse Reinforcement Learning

Weights

Viapoints
Goal 1 2

Weights -0.577 -0.577 -0.577

Table B.1: The weights for the minimum distance to 2 viapoints.

Viapoints
Goal 1 2 3 4

Weight -0.955 -0.160 -0.156 -0.140 -0.138

Table B.2: The weights for the minimum distance to 4 viapoints.

Goal weight -0.9921
Viapoints 1 2 3 4 5 6 7 8 9 10
Weights -0.0119 -0.0119 -0.0117 -0.0118 -0.0132 -0.0127 -0.0118 -0.0130 -0.0123 -0.0129
Viapoints 11 12 13 14 15 16 17 18 19 20
Weights -0.0133 -0.0126 -0.0122 -0.0118 -0.0118 -0.0117 -0.0119 -0.0126 -0.0128 -0.0127
Viapoints 21 22 23 24 25 26 27 28 29 30
Weights -0.0117 -0.0129 -0.0124 -0.0131 -0.0121 -0.0119 -0.0117 -0.0131 -0.0133 -0.0132
Viapoints 31 32 33 34 35 36 37 38 39 40
Weights -0.0135 -0.0127 -0.0117 -0.0125 -0.0127 -0.0119 -0.0117 -0.0129 -0.0129 -0.0131
Viapoints 41 42 43 44 45 46 47 48 49 50
Weights -0.0119 -0.0127 -0.0122 -0.0117 -0.0117 -0.0119 -0.0130 -0.0118 -0.0124 -0.0117
Viapoints 51 52 53 54 55 56 57 58 59 60
Weights -0.0123 -0.0117 -0.0117 -0.0132 -0.0131 -0.0128 -0.0129 -0.0130 -0.0119 -0.0131
Viapoints 61 62 63 64 65 66 67 68 69 70
Weights -0.0119 -0.0129 -0.0133 -0.0128 -0.0128 -0.0126 -0.0118 -0.0129 -0.0124 -0.0128
Viapoints 71 72 73 74 75 76 77 78 79 80
Weights -0.0129 -0.0117 -0.0135 -0.0120 -0.0127 -0.0128 -0.0135 -0.0129 -0.0122 -0.0136
Viapoints 81 82 83 84 85 86 87 88 89 90
Weights -0.0123 -0.0131 -0.0127 -0.0128 -0.0130 -0.0123 -0.0128 -0.0119 -0.0129 -0.0117
Viapoints 91 92 93 94 95 96 97 98 99 100
Weights -0.0132 -0.0130 -0.0130 -0.0136 -0.0133 -0.0136 -0.0119 -0.0117 -0.0128 -0.0117

Table B.3: The weights for the minimum distance to 100 viapoints.

97

	Front page
	English title page
	Contents
	Resumé
	Preface
	1 Introduction
	1.1 Manufacturing Automation
	1.2 Adaptable Models & Machine Learning
	1.3 Existing Applications
	1.4 Initial Project Hypothesis

	2 Background
	2.1 Markov Decision Process
	2.2 Tabular Methods

	3 State of the Art
	3.1 Value-Based Methods
	3.2 Policy Gradient Methods
	3.3 Actor-Critic Network
	3.4 Expert Learning & Inverse Reinforcement Learning
	3.5 Summary

	4 Reinforcement Learning Complexity
	4.1 Technology-Push Manufacturing Technology Definition
	4.2 Reinforcement Learning Complexity Method Definition
	4.3 Inropa Use Cases
	4.4 Life Science Robotics Use Cases
	4.5 RobNor Use Cases
	4.6 Danish Meat Research Institute Use Cases
	4.7 Summary of RLC Use Cases

	5 Problem Formulation
	5.1 Research Work Plan
	5.2 Delimitation

	6 The Experimental Setup & Expert Data
	6.1 Direct Task Space Learning
	6.2 Human Expert & Robot Correspondence
	6.3 Human Expert Data Collection

	7 Software & Simulation Environment
	7.1 Software Architecture
	7.2 Physics Simulation
	7.3 TCP Simulation Environment
	7.4 Training the Agent for the Real Robot

	8 Trajectory Learning
	8.1 Linear Inverse Reinforcement Learning
	8.2 Robot Trajectory Learning with Linear Inverse Reinforcement Learning
	8.3 Robot Trajectory Learning with Deep Imitation Learning

	9 Discussion
	10 Conclusion
	11 Future Work
	Bibliography
	A UML Diagram
	B Linear Inverse Reinforcement Learning Weights

