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been employed. Based on the findings, an itera-
tive moment matching variational message pass-
ing algorithm has been derived. It has proven
advantageous to restrict the messages to the ex-
ponential family of probability distributions and
employing moment matching for deriving sim-
ple message approximations. The performance
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distance information from RSS measurements the
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Danish abstract

Nutidens teknologiudvikling går i retning af, at antallet af enheder, der kan tilgå
internettet eller andre former for trådløs kommunikation, er stigende. Derfor er
antallet af områder, hvor der kan være behov for lokaliseringsmetoder, blevet mere
udbredt, specielt i områder hvor satellitforbindelse ikke er tilgængelig, hvilket re-
sulterer i, at teknologier såsom GPS forringes betydeligt. På baggrund af dette har
RTX A/S efterspurgt en løsning i sådanne miljøer.

Denne specialeafhandling dokumenterer en analyse om, hvorvidt statistiske
metoder kan benyttes til at udlede en algoritme til indendørs lokalisering af en-
heder, der kommunikerer trådløst ved hjælp af DECT radioteknologien. Algorit-
men skal på baggrund af modtaget signal styrke fra et antal basestationer, med
kendte positioner, estimerer den pågældende enheds position. For at opnå en så-
dan lokaliseringsmetode vil kendte algoritmer blive studeret og forsøgt omdannet
til den pågældende problemstilling.

Rapporten indledes med en gennemgående systemspecifikation af det pågældende
DECT netværk for at vurdere, hvilke observerbare størrelser der er til rådighed og
kan bruges til positionering. De relevante variable er derefter blevet sammensat
til det generelle lokaliseringsproblem i form af et inferensproblem. I de følgende
kapitler undersøges det hvorledes sådanne inferensproblemer kan blive løst på en
struktureret og effektiv måde ved hjælp af message passing algoritmer, specielt
variational message passing.

Den sidste del af rapporten beskæftiger sig med at anvende den gennemgåede
teori om inferensmetoder til at skabe en ny algoritme passende til det relevante
lokaliseringsproblem. Den endelige algoritme er en kombination af variational
message passing og moment matching, der ved at restringere de pågældende
beskeder til den eksponentielle familie af fordelingsfunktioner opnår simple beskedap-
proksimationer. Approksimationerne bliver efterfølgende vurderet og viser stor
sammenlignelighed med de sande beskeder.

For at teste algoritmens anvendelighed er denne blevet implementeret i Python.
Resultater fra både simuleret og indsamlet data viser, at den udledte algoritme
giver gode resultater, hvis de pågældende basestationer antages at være sektoran-
tenner. Algoritmen opnår afstands middelfejl på omkring 5 meter i simulerede

ix
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miljøer og under 5 meter i det rigtige miljø. Dog er der åbne aspekter af algorit-
men, der kan vise sig fordelagtige at undersøge i videre arbejde med emnet men
denne specialeafhandling viser som et proof-of-concept, at statistiske metoder kan
benyttes til indendørs lokalisering.



1 | Introduction

1.1 The localization problem

In this technological age, the amount of devices that can access the world wide
web or otherwise establish wireless communication with surrounding equipment
is increasing. Thus, areas in which localization methods can be applied are becom-
ing more widespread, especially in urban environments. A widely used estimation
standard for localization of wireless devices is the Global Positioning System (GPS).
However, the accuracy of GPS in urban environments, such as indoor locations,
is limited due to Non-Line-of-Sight (NLOS) propagation paths [1][2]. Meanwhile,
both public and private indoor environments have established networks, which
can provide wireless connectivity and does not rely on satellite connections. These
networks are usually connected in a backbone structure which enables intercom-
munication between base stations. Thus the network can receive information from
a device at different fixed base stations yielding relevant information about the
position of the specific device as depicted in Figure 1.1.

Indoor environments, in which a localization method might be needed, include
e.g. restaurants or hospitals in which locating tables or equipment may save crucial
time. Further examples include estimating the position of employees, especially in

BS

BS

BS

Backbone structure

Figure 1.1: A central device or cloud system receives relevant information of a device from fixed
base stations (BS) through a backbone structure.
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τ2
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Figure 1.2: Trilateration can be used to find an unambiguous position estimate if precise distance
observations from at least three base stations are available.

man-down situations where an employee has fainted in hazardous environments.
Common for all such localization problems is the ability to describe the relative po-
sition between base stations and non-static devices which is usually done through
a measure of relative distance. This can be obtained by using distance depen-
dent link parameters in the radio channel. Some frequently used link parameters
for localization are Received Signal Strength (RSS) and Time of Arrival (TOA) [3][4].
For unambiguous estimation, at least three or four different distance estimates are
needed for two- and three-dimensional localization respectively. Two-dimensional
localization is employed by intersecting circles with a center in the base station
positions and radii given from the distance measurements also known as trilater-
ation. The intersections then correspond to possible locations of the device and
given perfect distance measurements only one intersection exists, see Figure 1.2.

Model based distance measurements can be obtained through both RSS and
TOA. If the base stations are able to measure the round-trip-time of the signal, a
distance estimate can be found by using the relation [5]

dest =
τTOA · c

2
,

where τTOA is the round-trip-time of the signal and c is the speed of light. Although
TOA yields precise distance estimates, the precision deteriorates in environments
where Line of Sight (LOS) components are obscured, e.g. in an office environment
as depicted in Figure 1.3. If the obtained distance estimates are corrupted, the
method of trilateration cannot be used to obtain unambiguous position estimates
as the drawn circles might not intersect in the true position.

As TOA is affected in such environments, the RSS link parameter is often used
instead, since it is less affected by NLOS paths. However, using RSS entails several
problems. Radio communication is generally affected by the broadcasting environ-
ment in which the effects usually describe the decay in signal strength. The general
term for the effects is pathloss and is commonly categorized as free space pathloss,
shadowing and small scale fading [5]. Free space pathloss represents the decay in sig-
nal strength due to LOS propagation. Therefore, the free space pathloss depends
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Figure 1.3: Propagation effects are present in the form of free space pathloss and both shadowing
and small scale fading due to walls and other scatterers.

on the distance between the transmitter and receiver. The log-distance model [5] is
commonly used to describe free space pathloss and is formulated as

PLdB(d) = PL(d0) + 10 · η · log
d
d0

where d is the distance between transmitter and receiver, η is an environment spe-
cific pathloss constant and PL(d0) is the pathloss at a reference distance d0 from the
transmitter. Shadowing occurs when the LOS propagation path between a trans-
mitter and receiver is blocked as depicted by the movement of Rx1 in Figure 1.3.
The blocked LOS path changes the general propagation path and, therefore, also
received power. Considering the stationary receiver, Rx5 , all propagation paths
are blocked and, therefore, shadowing occurs in all communication links. Further-
more, broadcasting into an environment such as the one depicted in Figure 1.3 will
introduce multipath components. In cluttered environments, a receiver will not only
receive the direct signal component of the transmitted signal, but a multitude of
multipath components. These components are remnants of the transmitted signal
which have traveled along propagation paths different from the direct LOS path,
such as the scenario depicted between transmitter Tx6 and receiver Rx6. This might
entail several problems. If two signal components arrive at the receiver they may
be completely out of phase. If their amplitude is the same, then the two impinging
signals will cancel each other due to destructive interference and no signal will be
received. Similarly, if the signals arrive completely in-phase, the amplitude of the
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received signal will be double the signal strength of a single component due to
constructive interference. Small scale fading will, therefore, alongside shadowing,
distort relevant distance information in the signal strength.

1.2 Existing work

In the field of positioning, a vast number of techniques exist and can be divided
into three categories [6], geometric, mapping and statistical techniques. Mapping
techniques are employed by dividing the propagation environment into a grid in
which radio signal characteristics are collected for each grid point. These character-
istics are then labeled according to the grid point which creates a radio map. Thus,
received signal characteristics from a device can be used to estimate the position
of the transmitting device according to the acquired radio map [7]. This technique
may, however, be problematic due to changing environments and obtaining the ra-
dio map is highly time-consuming. The geometric based techniques are employed
by solving a number of equations, such as least squares, to estimate the position
of a device, e.g. through trilateration as explained above, but may be susceptible
to outliers. Lastly, the statistical techniques seek to model errors in the observa-
tions and include possible a priori knowledge of the devices in order to estimate
their positions. The statistical techniques may become rather complex and require
a vast amount of computational capabilities but they tend to describe the problem
better as more information can be included in the model.

For some wireless networks, it is possible to utilize the network protocol for
localization purposes. Different radio communication technologies offer distinct
access protocols and, therefore, different communication schemes exist. For access
schemes where sensors in a wireless network are able to communicate, cooperative
sensor self-localization algorithms have been developed [8][9]. In such scenarios,
the sensors share information with neighboring devices in order to estimate their
own position while using observations from fixed base stations with known posi-
tions. Examples of sensor self-localization algorithms employ approximate infer-
ence algorithms on graphical models [10][11] which has proven accurate and has
a low communication overhead. However, if the radio communication technology
does not allow for inter-communication between non-fixed devices, there may be
less and insufficient information, relevant for localization purposes, available.

In order to mitigate problems arising from NLOS propagation paths in indoor
environments, and, therefore, inaccurate TOA estimation, it is relevant to utilize
the RSS link parameter. However, this parameter does also suffer in precision
due to pathloss effects, which have to be accounted for in order to obtain reliable
distance estimates. Furthermore, in order to seek a general positioning technique,
in which prior knowledge can be inferred, a statistical method is favorable. If the
localization problem can be formulated graphically, it might prove advantageous
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to apply similar methods as employed in [10] and [11] as they have shown to yield
trustworthy estimates.

This thesis will explore novel methods for indoor radio localization based on
RSS measurements. These are readily available in almost all radio equipment ren-
dering the algorithm applicable in most environments. As inference algorithms
on graphical models have proven successful, we will seek to formulate a statistical
model that employs this method. This includes deriving a model for RSS while
considering the pathloss effects so precise distance estimates can be obtained and
used to find the position of a device. When the localization algorithm has been
derived, we will discuss the applicability of the model through both simulations
and real measurements.

1.3 Problem statement

Utilizing wireless technology for indoor radio localization is inherit challenging, as
the propagation environment is rather complex. Therefore, it is relevant to investi-
gate statistical methods in which an inference problem can be derived and solved
based on received signal strength which suffers less from NLOS propagation paths.
This will be explored by answering the following problem statements

• How can RSS be modeled so that pathloss effects are accounted for?

• What level of precision can be achieved in indoor radio localization through
a statistical model based on RSS?

• To what extent can the accuracy of the model be improved?

• To which degree will improvements affect the applicability of the model?

RTX A/S

RTX A/S is one of the leading companies in the field of wireless communica-
tion with nearly 300 employees worldwide. The headquarters is located in Nørre-
sundby, Denmark but offices are also located in Hong Kong and USA. The fields in
which RTX provides solutions include eSport, professional communication equip-
ment and healthcare.

The role of RTX in this master’s thesis is to provide the equipment and envi-
ronment needed to employ performance testing. Furthermore, RTX has offered a
seat at their headquarters for the duration of the project period which has enabled
the possibility of experiencing the daily life of an engineering company and fast
access to expert knowledge on wireless communication.
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Problem definition

Although relevant devices are usually mobile, we will restrict the objects to be
stationary while the localization is in progress. Furthermore, we will assume that
all calculations needed to obtain position estimates will be done on a central device
as we restrict ourselves from considering implementation in embedded devices.
Additionally, we will not consider real-time implementation. These restrictions
have been made in favor of obtaining a proof-of-concept that a statistical model
based on RSS can be used for localization purposes. As the physical topology of
realistic propagation environments may have different structures we will assume
that our simulation environment is a square room.

We will formulate the model for a wireless network utilizing DECT as this is
the type of radio technology available for testing. Thus real-world testing of the
derived localization algorithm will be performed using data obtained from base
stations and portable devices communicating through the DECT technology. Fur-
thermore, environment specific model parameters will be chosen based on empir-
ical studies, as these are time-consuming to estimate and out of the scope of this
work.

1.4 Thesis outline

In Chapter 2 we will specify the used radio technology alongside the information
which is available in the network and from these considerations derive the infer-
ence problem. Next, we explore methods in Chapter 3 with which the inference
problem can be solved such that we in Chapter 4 can model and derive the indoor
localization algorithm. The implementation and model choices will be discussed
in Chapter 5 such that we in Chapter 6 and Chapter 7 can issue performance tests
of the algorithm through simulations and real measurements respectively. Lastly,
we will present our conclusions and thoughts on future research.



2 | The communication system

In this chapter we will introduce the relevant radio communication technology.
This will enable an discussion of the devices in the system and the available infor-
mation which can be used for positioning.

2.1 The DECT radio technology

In order to introduce the devices in the system, we need to specify the employed
radio communication technology. Enabling the possibility of several users sharing
the same available resource, often bandwidth, the communication technology must
follow a multiple access (MA) scheme. A widely used MA scheme is FDMA/TDMA
which allocates a set of carrier frequencies to the communication cell. Each user
is then assigned one or several time slots at a given carrier for transmission, see
Appendix A for more information on FDMA and TDMA. One technology which
utilizes the FDMA/TDMA scheme is Digital Enhanced Cordless Telecommunications
(DECT) which is a high capacity radio access technology [12]. The European DECT
standard is allocated the 1880− 1900 MHz frequency band with 10 carriers sepa-
rated by 1728 kHz and a bandwidth of 1 MHz. The TDMA frame in DECT is
organized in 24 time slots with an overall duration of 10ms. In the DECT technol-
ogy the users and base stations are often denoted as portable parts (PP) and fixed
parts (FP) respectively.

DECT can be effectively implemented in applications counting both simple
cordless phones and larger intercom systems. Furthermore, in addition to FP to
PP communication, DECT can also provide direct PP to PP and FP to FP commu-
nication. The benefits of DECT become clear when comparing the technology to
other mobile radio systems like the Global System for Mobile communications (GSM).
In GSM the mobile units are only allowed to connect to the unique network which
is part of the mobile radio system [12]. DECT, however, provides a substantial set
of network protocols which enables the possibility of interworking between dif-
ferent applications and networks. In principle, DECT covers only the air interface
between an FP and PP, see Figure 2.1.
This means, that the connection between the local or public network (the Inter-

7
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Figure 2.1: DECT common interface [12].

Working Unit) and the DECT system is network specific and, therefore, not part of
the DECT Common Interface (CI) specification. The End System (ES) in the DECT
PP is similarly excluded. DECT is, therefore, transparent to the services that may
be provided by the network [12]. Thus DECT can be viewed as a toolbox with
different protocols from which a selection can be made to access a given network.

The DECT TDMA frame structure is depicted in Figure 2.2.

1 frame = 10 ms

12 down slots 12 up slots

Slot Guard

Sync D field

A field B field X field

Figure 2.2: DECT TDMA frame structure.

The 24 time slots of a DECT frame is structured such that 12 slots are used
for downlink transmission (from FP to PP) and the remaining 12 for uplink (PP to
FP). Each slot is equipped with guard bits in order to mitigate phase misalignment
problems as discussed in Appendix A. Furthermore, each slot consists of a syn-
chronization field and D-field where the former is used for packet synchronization
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in the transmission link. The D-field consists of three fields, the A, B and X field.
In the A field, an error control code is used to detect possible changes in the data.
The B field contains the specific data needed to be transmitted and the X field is
used in order to avert collisions with other incoming signals which may lead to
destructive interference.

2.2 Information sources and available information

The environment, in which we seek to solve the localization problem, is utilizing
the DECT radio technology as described in Section 2.1. We, therefore, know that
the relevant devices in the system are the FPs and PPs. The FPs will, at a given
time rate, broadcast signal beacons into the environment which the PPs are able to
detect. Each PP is always connected to a single FP through a direct link. Through
this active link, data is transmitted in an update cycle TA. However, the PP will
also store data from other FPs in the environment, if an FP broadcast is detected
by the PP. When the PP is not transmitting through the direct link it will listen for
FP broadcasts with an update cycle TI > TA of e.g. 10 s (idle state). However, the
PP might miss the broadcasts from these due to its update cycle and, therefore,
fail to obtain relevant information from them. Therefore, these update cycles can
be chosen to be more often or more infrequent if necessary. It should, however, be
noted, that the PPs are battery powered and, therefore, altering the update cycle
may not be realizable.

As the localization problem is formulated in favor of locating a user (PP) we
need to incorporate this device in the inference problem. Similarly, as the FPs have
known positions we also desire to include them. We will, therefore, explore the
information which can be exchanged between these devices and assess the value
of the given information with respect to positioning.

2.2.1 Mails

In the DECT technology variant employed by RTX, the information, which is avail-
able in the system, is stored and shared in mails. The information received at the
PP when it is communicating through its direct link (active state) is listed in a mail
named PP_ACTUAL_RSSI_IND which is received every TA as described above.
Furthermore, the information received in the PP when it is in idle state is collected
in a mail PP_BEARER_FOUND_IND. This mail may, however, not be updated ev-
ery TI as the PP may not detect any FP besides the one in the direct link. This
mail is, therefore, highly asynchronous. The last relevant mail to describe is the
PP_DEBUG_RFPI_LIST_STATUS mail which is also received in the PP. This mail
stores information including RSS of previously detected FPs. This list, therefore,
describes possible FPs in the vicinity of the PP. The RSS information stored in this
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list is downgraded for each update period by a value εs such that the PP pro-
gressively forgets the FP, if it does not detect it again. The information which is
available in these mails are summarized in Table 2.1 and are further explained in
the following.

Observable Position Update period

Idle RSS, RI see Section 2.2.2 TI

Avg. RSS, RA see Section 2.2.3 TA
Background RSS, RB see Section 2.2.4 TA

fc No immediate connection TA/TI

# Good syncs see Section 2.2.6 TA
A-field check sum No immediate connection TA
X-field check sum No immediate connection TA

Blind slot info see Section 2.2.8 TA
Slot No immediate connection TA/TI

FP ID see Section 2.2.10 TI

Phase, φ see Section 2.2.11 TI

Table 2.1: The first column denotes the specific information contained in the different mails and the
second column explains whether or not the information is relevant for position estimation. Lastly,
the third column denotes the relevant update cycle.

2.2.2 Idle RSS

When a PP is idle, and, therefore, not transmitting through the direct link, a scan
for FP broadcasts is issued every TI . In this scan the PP might detect one or several
FPs different from the direct link FP. If this is the case, the RSS value of the detected
signals will be received and stored in the PP.

2.2.3 Average RSS

In the direct link, the PP will receive an average RSS value of 16 DECT frames
every TA. It is possible to get each individual RSS value for each frame if desired
but such a data stream should not be stored in the PP due to power and memory
constraints.

Both idle and average RSS information are indications of propagated distance
as the signal strength decays over distance. We can use the log-distance pathloss
model [5] to relate RSS to distance

RSS(d) = PL0 + 10 · η log10
d
d0

+ XG [dB]. (2.1)
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This model is similar to the one explained above but in (2.1) shadowing effects
are modelled through the XG term. Thus, if we know the signal strength near the
transmitter, we can relate the received signal strength to the propagated distance
through the pathloss. It will, therefore, be highly relevant to incorporate both
active and idle RSS information in the model as these are indicators of the distance
between each pair of PP and FP.

2.2.4 Background RSS

There may be non-relevant devices in the environment which also broadcast sig-
nals. These signals are not relevant for describing the distance between the FPs
and PPs. However, the FP stores information of the "background" RSS levels. This
value could potentially be used for quantization or calibration of the system. Thus,
this piece of information cannot directly be used to locate a PP, as the distance
information in this RSS measurement do not relate the FP to the specific PP.

2.2.5 Carrier frequency

The DECT protocol allows for 10 different carrier frequencies f0, . . . , f9 in Europe.
The allocated carrier is received in the PP in both active and idle state. The rele-
vance of the carrier frequency for localization purposes emerges when we examine
Friis’ free-space pathloss equation

FSPL =

(
4π · d
c/ f

)2

. (2.2)

From (2.2) we see that changing the frequency will change the free-space pathloss.
However, as DECT occupies the frequency band 1880− 1900 MHz with a carrier-
carrier spacing of 1728 kHz the difference in pathloss from different carriers is
limited. If a signal propagates a distance of 20 m and the carrier is either 1880 MHz
or 1900 MHz the difference in FSPL for the two different signals are

||FSPL1880 − FSPL1900||
FSPL1900

· 100 = 2.09%.

Therefore, incorporating the carrier information in the model may not yield signifi-
cant changes to the result and we have, therefore, chosen not to model it. However,
it does contain information which is relevant for the FSPL and, therefore, also RSS.

2.2.6 Number of successful synchronization words

Each DECT frame is composed of 24 time slots as described in Section 2.1. Each
of these slots contains a synchronization word which is used for packet synchro-
nization. In the direct link between a PP and FP, this information is received at the
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PP thus indicating the quality of the link. Although being an inferior information
source of the PP position, this information is dependent on the location of both PP
and FP and the distance between them. The number of successful synchronization
words should e.g. be zero if the PP and FP are located on different sides of the
Earth (as an exaggerated example of course).

2.2.7 A and X field check sum

The A field in a DECT frame time slot handles control and manages signals. It uti-
lizes a cyclic redundancy check (CRC) 16 bit error control code which detects changes
in the data [13]. The X field occupies 4 bits in a slot and is added in order to en-
sure, that a signal does not collide with another bearer. The check sum of both A
and X field, therefore, describes the quality of the signal. There is no immediate
connection between distance and the check sum of the A and X field other than the
argument described in the discussion of the number of successful synchronization
words.

2.2.8 Blind slot info

In the direct link, the FP registers which slots are in use in each frame. This
information is sent to the PP. The blind slot info gives an indication of the number
of PPs in some neighbourhood of the FP. There is no immediate connection to
position estimation apart from using this information for cooperative localization
but as the system do not offer PP to PP communication this information may not
be relevant.

2.2.9 DECT frame slot

The PP will in both active and idle state receive information of which time slot
it is using (active) or would have used (idle) if it were to connect to the specific
FP. This information is updated each TA and TI respectively but has no immediate
connection to position.

2.2.10 FP ID

Alongside both active and idle RSS information, the PP will also receive an identi-
fication of the broadcasting FP. This information is important for localization pur-
poses, as the positions of the FPs are assumed known a priori and thus the latent
distance information in the RSS can be inferred with the fixed base station position.
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2.2.11 Phase

It is possible to obtain crude TOA information in the system. When an FP emits a
signal at time t = 0, it will register the delay of the returning signal from the PP.
Unfortunately, the delay is registered in bit times. The bit time used in the system
is 868.056 ns. Therefore, using the speed of light, the precision in this TOA infor-
mation is c ·868.056·10−9s

2 ≈ 130 m which is imprecise for practical systems. However,
it is possible to record this TOA information in ninths of bit times which renders
the distance information to be of approximately 15 m. This is, unfortunately, only
possible in the direct link and, therefore, TOA information from other FPs is not
relevant. Additionally, the phase information obtained from other FPs is relative
to the direct link TOA and they may, therefore, be asynchronous. As the phase
information also holds latent distance information it is relevant to incorporate it in
the model.

2.3 Probabilistic model for static localization

We seek an expression of the posterior probability of the PP position conditioned
on the relevant information described above. For simplicity, let the data available
and the position of a PP be denoted by D and xp respectively. Let us express the
posterior probability

p(xp|D) =
p(D|xp)p(xp)

p(D)
∝ p(D|xp)p(xp). (2.3)

We will shortly identify the components in (2.3).

Posterior PDF, p(xp|D): The posterior PDF combines the observed data with the
prior information of the PP position.

Likelihood function, p(D|xp): The likelihood expresses the probability that the
data, D, was generated given xp.

Prior PDF, p(xp): Represents the information about the PP position before data
has been observed.

Evidence PDF, p(D): The evidence is independent of the PP position and reflects
the probability of observing a particular realization of D. This is often in-
feasible to compute and its primary objective is to ensure that the posterior
probability integrates to one. Therefore it is often neglected as done in (2.3).
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In order to compute (2.3), we need an expression of the joint probability, p(xp,D).
However, the joint density might be rather complex and most likely intractable to
marginalize for large networks.

From Section 2.2, we have deemed the location of the PPs and FPs, RSS, phase
and the ID of the respective FPs important for localization. As information from
distinct base stations are independent, we can without loss of generality assume
that a given PP only observes a single FP from which it can obtain the aforemen-
tioned information. This will relieve the derivation of the inference problem and
adding additional observed base stations will scale according to the theory of in-
dependent random variables. Furthermore, we assume that the position of the FP
is known a priori and thus obtaining the ID information is equivalent to observing
the position, xa, of that FP. If the PP only observes a single FP, it will establish a
direct link and, therefore, the phase information will be available. We will later
allow the PP to obtain information from other FPs from which the phase is not
available and make alterations to the inference problem. In order to describe pos-
sible fading effects, we will add a latent variable, θ, to the inference problem. We
will, however, introduce additional variables to the inference problem. The new
variables will represent a radial component and an angle between the PP and a
specific base station which we will denote by r and v respectively. The argument
for introducing the variables is that in an ideal scenario, if the true distance and
angle between a PP and a base station are known, the location of the PP is fully
determined. If the distance and angle are known, the PP position can be found
through the polar representation

xp = r ·
[

cos v
sin v

]
+ xa (2.4)

where we have added the known position of the FP, xa. If we do not add the
FP position, the PP position will be represented in respect to the local coordinate
system with origin in the FP position, see Figure 2.3.
Therefore, adding the position will correctly represent xp in the global system.
Although this representation seems attractive, we do, unfortunately, not receive
any angle information and, therefore, it might seem insignificant to add the angle
variable. However, mapping the one dimensional distance information latent in
the RSS or phase into a two dimensional value describing the PP position seems
unlikely to produce reliable results. Therefore, adding the angle variable might
prove useful if we can update this information conditioned on the other variables.

Thus, the joint probability density of the inference problem for a system con-
sisting of a single PP with observations from a single FP can be expressed as

p(xp, xa, r, v, φ, θ, rss) (2.5)
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Figure 2.3: Adding the base station position ensures that the PP position is in respect to the global
system.

where rss and φ are the RSS and phase information respectively. However, in order
to obtain the marginal posterior PDF of the PP position, xp, we need to perform
the integration

p(xp|xa, r, v, φ, θ, rss) ∝
∫

p(xa, r, v, φ, θ, rss|xp)p(xp)dxp. (2.6)

The integral in (2.6) can become rather unwieldy based on the model choices
and adding additional observed FPs will only make it more complex.

The considerations and discussions in this chapter have served to specify the
working system and present the inference problem needed to be solved for indoor
localization. We have seen, that the DECT technology offers relevant informa-
tion which can be used to obtain a position estimate of a PP. However, in order
to compute the posterior probability of the PP position, we need to model the
individual variables in (2.6). Additionally, we have made the observation, that
this marginalization may become unwieldy, especially if more than one FP is ob-
served. Therefore, we wish to explore inference algorithms which may relieve the
marginalization.





3 | Probabilistic modeling of in-
door localization and inference
methods

In this chapter we will explore inference algorithms which can procure marginal
posterior probabilities in an efficient and structured manner.

3.1 Graphical models

As already mentioned, certain inference algorithms have shown to produce reliable
results while maintaining a low computational overhead. We will, therefore, inves-
tigate such algorithms, especially message passing algorithms. However, as message
passing algorithms are applied to a specific class of inference problems, that can
be represented graphically, we need to investigate graphical models.

If a statistical model, in the form of a joint PDF, can be factorized into several
factors, e.g. by the use of the product rule

p(a, b) = p(b|a)p(a), (3.1)

the inference problem can be visualized through a directed acyclic graph (DAG),
see [14] for more on graphs. Using the graph object, we can represent the inference
variables through nodes and the statistical dependencies by edges which creates
a structured graphical representation of the problem. Specifically, if a joint PDF
can be factorized by the use of the product rule (3.1), the inference problem can
be visualized with a factor graph [15]. In a factor graph, each component of the
factorized joint PDF is represented by square factor nodes and each stochastic
variable is represented by a circular node. The nodes are then connected with
respect to their statistical dependencies. In Figure 3.1, a factor graph has been
visualized for a joint PDF which factorizes as

17
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Figure 3.1: A factor graph representing the joint distribution given by p(B, F, G) =
p(G|B, F)︸ ︷︷ ︸

fa

p(B)︸︷︷︸
fb

p(F)︸︷︷︸
fb

.

p(B, F, G) = p(G|B, F)︸ ︷︷ ︸
fa

p(B)︸︷︷︸
fb

p(F)︸︷︷︸
fb

.

For the present inference problem in (2.5) we can derive a similar factor graph
by applying the product rule (3.1) to the joint distribution

p(xp, xa, r, v, φ, θ, rss) = p(xp, xa, r, φ, θ, rss|v)p(v)

= p(xp, xa, r, θ, rss|v, φ)p(v)

= p(xp, xa, r, rss|v, φ, θ)p(v)p(θ)

= p(xp, xa, rss|v, φ, θ, r)p(v)p(θ)p(r)

= p(xp, xa|v, r)p(rss|r, θ)p(r|φ)p(v)p(θ)p(r)

= p(xp|v, r, xa)︸ ︷︷ ︸
a

p(rss|r, θ)︸ ︷︷ ︸
c

(r|φ)︸ ︷︷ ︸
b

p(v)p(θ)p(r)

(3.2)

where we do not multiply with p(xa) and p(φ) as these variables are observed.
Thus a factor graph of the obtained factorized joint PDF can be derived, see Fig-
ure 3.2.

We will later need a model of the relationship between RSS and distance.
Therefore, we propose the following RSS model based on the log-distance pathloss
model in (2.1)
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Figure 3.2: The factor graph representing (3.2). Each of the unobserved variables are connected to a
factor node containing prior knowledge, p̄(·), of the variable.

RSS(r) = RSS0 − PL(r)

= RSS0 − PL0 − 10 · η log10
r

d0
− XG. (3.3)

In (3.3), r is the radial component, RSS0 is the signal strength at a short range
from the transmitter and XG ∼ N (0, θ−1) is a random variable modeling fading
effects where θ is the precision of the normal distribution. Although small scale
fading can be well modeled through a Rayleigh distribution [16], the purpose of
our model is to represent variations in the RSS observations and not the causality
of these variations. Therefore, letting XG be modeled by a normal distribution
might be sufficient.

3.2 Approximate inference

For those models where the joint PDF can be visualized by a factor graph, the
inference problem can be solved either exactly or approximately by the use of mes-
sage passing algorithms. For inference problems which can be represented by a
factor graph containing no cycles, i.e. one and only one path exists between each
set of nodes, exact inference can be employed through the sum-product algorithm
if the joint distribution is tractable. This algorithm computes the exact marginal
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distribution for each unobserved variable. However, as the fading descriptor, θ, in
our inference problem will be shared among all communication links, i.e. observed
FPs, the factor graph will contain cycles and the sum-product algorithm is, there-
fore, not guaranteed to produce exact inference. As we have already argued that
marginalization may become rather complex in the present inference problem, we
will, therefore, seek an alternative inference algorithm but for more information on
exact inference and the sum-product algorithm see [15].

If we accept that exact inference may not be required to obtain a sufficient
marginal posterior of the PP location, we can explore approximate inference algo-
rithms. Say that we have a probabilistic model which is parametrized by a set of
parameters Θ and that the model includes both observed and unobserved vari-
ables, denoted by x and z respectively. For simplicity, assuming only one FP is
observed, these variables are x = {xa, φ, rss} and z = {xp, θ, r, v} in our model.
For such inference problems, we may be interested in finding the maximum a pos-
teriori (MAP) estimate, Θ̂MAP, given x as we might have prior knowledge of e.g.
the PP position. In the given inference problem, Θ̂MAP is the estimate of the PP
position, fading descriptor θ, radial component r and angle v. Initially, we observe
that the log-posterior PDF of Θ can be expressed as

ln p(Θ|x) = ln p(x|Θ) + ln p(Θ)− ln p(x). (3.4)

For the first term on the right hand side in (3.4) we can make the following decom-
position

ln p(x|Θ) =
∫

q(z) ln
(

p(x, z|Θ)

q(z)

)
dz︸ ︷︷ ︸

L(q,Θ)

−
∫

q(z) ln
(

p(z|x, Θ)

q(z)

)
dz︸ ︷︷ ︸

−KL(q||p)

(3.5)

where q(z) is an auxiliary density over the unobserved variables z. We identify the
last term in (3.5) as the negative Kullback-Leibler divergence between the auxiliary
PDF q(z) and p(z|x, Θ).

Definition 3.1 (Kullback-Leibler divergence [17])
For distributions p and q of a continuous random variable, x, the negative
Kullback-Leibler divergence is defined as

−KL(p||q) =
∫ ∞

−∞
p(x) ln

q(x)
p(x)

dx. (3.6)
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The Kullback-Leibler divergence is a measure of how one probability distribu-
tion diverges from another. In Bayesian inference the Kullback-Leibler divergence,
KL(p||q), is the amount of information which is lost by approximating p by q where
p represents the true distribution of the data and q is an auxiliary PDF [18].

Returning to (3.5) we know that KL(q||p) ≥ 0 which ensures that L(q, Θ) is a
lower bound of the log-likelihood, ln p(x|Θ), i.e.

L(q, Θ) ≤ ln p(x|Θ)

with equality if and only if q(z) = p(z|x, Θ). Thus in order to approach the true
MAP estimate, Θ̂MAP, the right hand side of (3.4)

L(q, Θ) + KL(q||p) + ln p(Θ)− ln p(x)

can be iteratively maximized separately with respect to q and Θ. This method of
finding the MAP estimate is employed by the EM-algorithm which we will not
present here, but we direct the interested reader to [15] for more information on
the algorithm.

Let us, however, assume that we have a graphical representation in which all
unobserved variables are assigned a prior distribution. We once more denote all
observed variables by x and all unobserved variables by z. The model specified
by this graph can thus be represented by the joint PDF p(x, z). The parameters
Θ no longer appears in the density as the parameters are stochastic variables and,
therefore, absorbed into z. As before, we will make a decomposition of the log-
evidence (marginal likelihood) function of the model. The decomposition reads

ln p(x) =
∫

q(z) ln
(

p(x, z)
q(z)

)
dz−

∫
q(z) ln

(
p(z|x)
q(z)

)
dz

= L(q) + KL(q||p).

It is important to notice that since ln p(x) is constant and KL(q||p) ≥ 0, maximizing
L(q) with respect to q is equivalent to minimizing KL(q||p). If this is done without
any restrictions on q we obtain

arg max
q

L(q) = arg min
q

KL(q||p) = p(z|x).

The problem is, however, that working with the joint posterior distribution p(z|x)
is impractical for large system with many variables. We are usually interested in
computing only some of the marginal posteriors

p(zi|x) =
∫

p(z|x)dz\i
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where z\i is all the variables in z except zi. We have already discussed that these
marginals can be derived exactly for tractable factor graphs by applying the sum-
product algorithm. However, when exact inference of the marginal posteriors is
intractable we can alternatively choose to approximate them by maximizing the
lower bound L(q) (equivalent to minimizing KL(q||p)) with respect to a restricted
and simpler class of auxiliary PDFs q(z). This can be done by employing mean field
approximation.

Definition 3.2 (Mean field approximation [15])
Given an auxiliary PDF, q(z), suppose that z can be partitioned into disjoint
groups zi, i = 1, . . . , M. Mean field approximation assumes that q(z) factorizes
with respect to these partitions

q(z) =
M

∏
i=1

qi(zi). (3.7)

The mean-field approximation does not assume a specific distribution for q(z) nor
does it restrict the individual factors qi(zi) to have a specific distribution.

With the factorization defined in Definition 3.2 the lower bound L(q) can be
maximized with respect to each of the factors qi(zi) sequentially by keeping the
other factors fixed. This is done by inserting the factorized auxiliary function from
(3.7) in the expression of L(q)

L(q) =
∫

q(z) ln
(

p(x, z)
q(z)

)
dz

=
∫ (

∏
i=1

qi(zi)

)
ln p(x, z)dz−

M

∑
j=1

∫ (
∏
i=1

qi(zi)

)
ln qj(zj)dz︸ ︷︷ ︸∫

qj(zj) ln qj(zj)dzj

=
∫ (

∏
i=1

qi(zi)

)
ln p(x, z)dz−

M

∑
i=1

∫
qi(zi) ln qi(zi)dzi.

Then, if we want to maximize L(q) with respect to qj(zj), we can consider terms
that do not contain qj(zj) as constants, i.e

L(q) =
∫

qj(zj)

{∫ (
∏
i 6=j

qi(zi)

)
ln p(x, z)dz\j

}
dzj −

∫
qj(zj) ln qj(zj)dzj + consts.
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We can define a distribution p̃(x, zj) such that

ln p̃(x, zj) =
∫

ln p(x, z)

(
∏
i 6=j

qi(zi)dzi

)
︸ ︷︷ ︸

Eq\j
[ln p(x,z)]

+consts. (3.8)

where Eq\j [ln p(x, z)] is the expectation of ln p(x, z) with respect to q\j. With the
distribution in (3.8) we can write

L(q) =
∫

qj(zj) ln
(

p̃(x, zj)

qj(zj)

)
dzj︸ ︷︷ ︸

−KL(qj(zj)|| p̃(x,zj))

+consts.

and since KL(qj(zj)|| p̃(x, zj)) ≥ 0, the maximum of L(q) with respect to qj can be
found as the minimum of KL(qj(zj)|| p̃(x, zj)). Thus the optimal value for qj(zj),
for all other factors qi(zi), i 6= j fixed, is

q∗j (zj) ∝ exp{Eq\j [ln p(x, z)]}. (3.9)

Usually, if we have a factorization of p(x, z), many of the factors do not depend on
zj and will, therefore, not influence q∗j (zj). Therefore, the expectation in 3.9 needs
only be taken for the log-terms of ln p(x, z) that contain zj.

The update equations (3.9) for q∗j (zj) can be iteratively calculated for each of
the factors based on the probabilistic model. These updates tend to be simpler if
the involved PDFs belong to the exponential family of distributions which include
e.g. the normal and Gamma distribution. For more information on the exponential
family see [15]. As the name suggests, each density in the exponential family is
proportional to a exponential term which is why the update equations tend to be
more tractable to compute as we apply the logarithm to the density.

To employ the iterative procedure, the parameters of all the factors qi(zi), i =
1, . . . , M need to be initialized, e.g. if qi(zi) is chosen to be a normal distribution
we initialize the mean and variance of the prior distribution. The update equation
is then iteratively applied to each factor which is typically done sequentially but an
arbitrary schedule is allowed. Observing that we are maximizing the lower bound,
L(qj), at each iteration t, we have that

L(qt−1) ≤ L(qt)

which, therefore, guarantees convergence of the procedure. However, it is not
guaranteed that the procedure converges to the global maximum L(q) = ln p(z|x).
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Messages from a variable node vi to a factor node g ∈ N (vi)

mvi→N (vi)(vi) =
1
Z ∏

h∈N (vi)

mh→vi(vi) (3.10)

Messages from local factors to variable vi

m f→vi(vi) = p(vi) (3.11)

mg→vi(vi) = exp

∫
v∈N (g) 6=vi

∏
v∈N (g) 6=vi

mv→g(v) ln g dv\i

 (3.12)

Marginal update of the PDF estimate of v

q(vi) = mvi→N (vi)(vi) (3.13)

Figure 3.3: The variational message passing algorithm. In the equations, N (vi) denotes the set of
factor nodes neighbouring variable node vi andN (g) 6= vi the set of variable nodes neighbouring the
factor node g excluding the variable node vi. The Z constant is a normalization constant as defined
in (3.14).

3.3 Approximate inference on factor graphs

Assuming that we have derived a factor graph, we have in the previous sections
investigated both exact and approximate inference techniques. However, if the
joint PDF is intractable or the graph contains cycles, marginalization may lead to
impractical integrals and, therefore, approximate inference is preferred. Therefore,
the variational methods explained in the above seem attractive. In order to adopt
the factor graph message passing framework, we have to employ the variational
methods on the graph structure. From the previous section we know that the
variational method uses auxiliary functions to approximate the true probability
densities and then updates these with the update equation in (3.9). The Variational
Message Passing algorithm has been derived such that it employs exactly this update
equation. Say that we have a factor graph in which variable nodes are denoted by
v and the factor nodes by f if the factor node is the prior density of the variable
or g otherwise. Thus the update equations from above can be computed by the
VMP algorithm in Figure 3.3 which has been slightly modified according to [10]
and [19].

In the VMP algorithm the normalization constant Z is defined as

Z =
∫

vi
∏

h∈N (vi)

mh→vi(vi)dvi. (3.14)
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The VMP algorithm depicted in Figure 3.3 imposes no restrictions on the messages
which are passed between the nodes in the factor graph. For tractability, the mes-
sages can be restricted to the exponential family as we have argued that this will
produce simpler update equations. If so, the messages in (3.10) and (3.13) must
be modified according to the exponential family of distributions, E . This can be
done by minimizing the Kullback-Leibler divergence between an auxiliary PDF q
and the true message

mEvi→N (vi)
(vi) = arg min

q∈E
KL(q(vi)|| p̃(vi)) (3.15)

where

p̃(vi) =
1
Z ∏

h∈N (vi)

mh→vi(vi)

and

qE (vi) = mEvi→N (vi)
(vi).

Solving (3.15) requires that we find the parameters of the distribution q(vi) ∈ E
which minimize KL(q(vi)|| p̃(vi)). This will be explore in the next chapter when
we derive the model.

A few remarks should be attached to the algorithm and to message passing
in general. If a leaf node, i.e. a variable node with only one edge attached, is
observed, e.g. the RSS measurement, the message from the specific variable node
is simply 1. Additionally, in all factors where the variable is present, the variable
is fixed to the observed value. Furthermore, if a factor node is a leaf node, thus
representing prior knowledge, the message from this factor node to the variable is
the prior distribution of the specific variable, e.g. the prior distribution describing
the PP location.

In the next chapter we will present and discuss the model choices and derive
the needed messages for the above VMP algorithm.





4 | Moment matching variational
message passing

In this chapter we will apply the system specification from Chapter 2 and the
theory of graphical models explored in the previous chapter to derive suitable
model choices for the inference problem variables.

4.1 Statistical properties of the inference problem variables

In order to conduct inference on the devices and the available information, we need
to assign statistical properties to both the FPs and PPs. Additionally, the relevant
information and their statistical relations with the other components in the model
have to be modeled. As we seek to employ the VMP algorithm to our inference
problem, we will restrict the distributions to the exponential family.

A suitable and simple choice of the PP position prior is a bivariate normal
distribution

p(xp) ∼ N (µxp , Σxp).

This distribution is a member of the exponential family and is fully specified by
its mean and covariance matrix. We will argue, that if the covariance matrix is
small, the mean of the PDF is equivalent to the position of the PP. Thus, when we
have applied the algorithm and updated the PP location, the mean of the variable
will correspond to the position estimate. Consider a Taylor expansion of a scalar
function of a vector variable X of which we take the expectation

E[g(X)] ≈ E[g(x0) + g′(x0)(x− x0)]

= g(x0) + g′(x0)E[(X− x0)].

The function g(·) is continuously differentiable and is used to approximate the
moments of the random variable through a linear function. If we choose x0 = µX,

27
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then the expectation is E[g(X)] ≈ g(µX). Thus the mean of the distribution seems
to be a good approximation of the position if g(·) does not vary rapidly near
x0. In order to argue the precision of this approximation we can make similar
observations of the variance

Var(g(X)) = E[(g(X)− g(µX))
2]

≈ E[(g′(µX)(X− µX))
2]

= g′T(µX)E
[
(X− µX)

T(X− µX)
]

g′(µX)

= g′T(µX)ΣX g′(µX)

where ΣX is the covariance matrix of X. We can thus see, that the exactness of
approximating the position of the PP by its mean depends on the covariance matrix.
Thus, if Cov(Xi, Xi), i = 1, 2 are small, we are fairly certain that the position of the
PP is equivalent to the mean of the distribution.

Returning to our model choices, we will use a circular symmetric normal PDF
for the FPs. However, as the positions of the FPs are known, the variance is 0 and
the mean corresponds to their position

p(xa) ∼ N (µxa , 0).

Therefore, the PDF of an FP reduces to a Dirac delta function located at µxa in R2.
Additionally, as we have access to RSS measurements, we are interested in relating
these to the distance between the PP and FP, i.e. the radial component r in the
inference problem. With the model proposed in (3.3), the PDF of RSS conditioned
on r and θ can be described with the following density

p(rss|r, θ) ∼ N (µr(r), θ−1) (4.1)

where

µr(r) = RSS0 − PL0 − 10 · η log10
r

d0

is the mean signal strength which varies with r. We will, furthermore, model the
fading effects, θ, such that it can be incorporated in the inference problem. The
precision of a normal distribution is commonly modeled as a Gamma distribution.
This is due to the fact, that the conjugate prior of the variance of a normal distribu-
tion is an inverse gamma distribution. If a posterior distribution, p(Θ|x), and the
prior distribution, p(Θ), are in the same probability distribution family, e.g. the
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exponential family, the prior and posterior are said to be conjugate distributions
and the prior is called the conjugate prior. The reason for using a conjugate prior
is that it gives a closed form expression of the posterior [15]. Therefore, it seems
appropriate to use a Gamma distribution for θ

p(θ) ∼ Γ(αθ , βθ)

where αθ and βθ are the shape and inverse scale parameter of the Gamma distri-
bution respectively.

As we can utilize the phase information, we are also interested in modeling the
statistical relationship between the radial component r and the phase. Assuming
that the signal may have been reflected or the bit time representing the phase has
been rounded wrongly, the phase can be modeled as

φ =
τ

TB
+N (0, σ2

φ)

where τ is the measured delay of the signal, TB is the bit time and the normal term
is included in order to model possible reflections and rounding errors. The delay,
τ, is calculated from the propagated distance

τ = 2 · r
c
+ Tpp

where c is the speed of light and Tpp is the processing time in the system which
arises if the signal has to wait in order to get a slot in the DECT frame. We will,
however, for simplicity, assume that Tpp is zero such that the PP will always be
able to communicate with a specific FP. From this expression we can rearrange the
terms in favor of the distance r

r =
φ · Tb · c

2
−N (0, σ2

φ)

such that the statistical relationship between the distance and phase can be ex-
pressed as

p(r|φ) ∼ N (µφ(φ), σ2
φ)

where µφ(φ) =
φ·Tb·c

2 .
Finding a suitable prior model for the radial component r, we need a distribu-

tion in the exponential family which is continuous and has support on R+. The
Gamma distribution is once more a candidate and we, therefore, choose a prior
distribution on r as
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p(r) ∼ Γ(αr, βr).

In order to find a prior distribution of the angle variable v, we seek a distribution
which is defined for all inputs between 0 and 2π. The von Mises distribution fulfils
this requirement and it also belongs to the exponential family. This distribution is
defined by a mean angle, µ, and a concentration parameter κ. We therefore model
the prior as

p(v) ∼ VM(µv, κv) =
1

2π I0(κv)
exp(κv · cos(v− µv)) (4.2)

where I0(κ) is the zero order modified Bessel function [20]

I0(x) =
∞

∑
m=0

1
m!Γ(m + 1)

( x
2

)2m
.

Finally, from the factorization in (3.2) we observe that the conditional distribution
p(xp|v, r, xa) is a degenerate distribution, as the position of the PP is fully specified
if we know the position of the FP and the distance and angle to the PP. Therefore,
this conditional probability is a Dirac delta which has a few complications for the
VMP algorithm but will be fixed in the following section.

4.2 Derivation of messages

Until now we have only considered a single FP observation and, therefore, also
only a single RSS and phase measurement. However, localization using a single FP
will most likely fail to find a good estimate, due to unambiguous estimation, and,
therefore, we now assume that more than one FP is observed. The PP will then
observe several RSS measurements but still only the phase information from the
direct link FP, which we will assume, without loss of generality, is the FP which
is observed first. Including more FPs in the inference problem changes the joint
distribution which now reads

p(xp, xa1, . . . xaN , r1, . . . rN , v1, . . . vN , rss1, . . . rssN , φ, θ)

if we assume that N FPs have been observed. Therefore, the factor graph of the
altered inference problem is different from the one depicted in Figure 3.2. The new
factor graph can be seen in Figure 4.1 where we observe, that the new factor graph
is quite similar to the original as we are just adding new branches (without the
phase information) to the xp node.
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xpp(xp)

v1

a1

p(v1)

r1

b

φ

c1

θ p(θ)

rss1

xa1

vN

aN

p(vN )

rN cN

rssN

xaN

Figure 4.1: The factor graph visualization of the full inference problem. It is seen, that for each
observed FP we just add another branch to the PP node.
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As the network does not allow for communication between a pair of PPs the
marginal posterior of a single PP will not depend on other PPs. Therefore, when we
derive the messages, we will do so for a single PP. The messages will have the same
form for all PPs in the system. For each observed FP, i.e. each branch in Figure 4.1,
we draw a local factor gxp,r,v,xa (representing a1, . . . , aN) for the node connecting
xp, r and v and a factor gr,θ,rss (representing c1, . . . , cN) for the node connecting
r, θ and rss. If the FP is the direct link we also draw a factor gr,φ (representing
b) connecting the r and φ variables. These factor nodes are then connected to
the variable nodes with which they have statistical relationships. Furthermore,
factor nodes representing the prior distribution of the unobserved variables are
also drawn, denoted by p̄(·).

For the sake of readability, we will list the messages which we need to derive:

mgxp ,r,v,xa→xp(xp): Message from r and v to xp

mgxp ,r,v,xa→r(r): Message from xp and v to r

mgr,φ→r(r): Message from φ to r

mgr,θ,rss→r(r): Message from θ and rss to r

mgxp ,r,v,xa→v(v): Message from xp and r to v

mv→N (v)(v): Message from v to N (v) (the neighbourhood of v)

mgr,θ,rss→θ(θ): Message from r and rss to θ

Updating xp

In this section we derive the message mgxp ,r,v,xa→xp(xp). We know from Section 3.2,
that for approximate inference we update an auxiliary PDF, q, until the Kullback-
Leibler divergence between q and the true posterior PDF, p̃, is minimized. For the
PP location, we are thus interested in minimizing

KL(q(xp)|| p̃(xp)) =
∫

xp

q(xp) ln
q(xp)

p̃(xp)
dxp.

We do, however, know from the VMP algorithm in Figure 3.3 that p̃(xp) can be
computed as

p̃(xp) = mxp→N (xp)(xp) ∝ ∏
h∈N (xp)

mh→xp(xp). (4.3)

where we neglect the normalization, Z. However, the product of these messages
will most likely not be a known density and, therefore, intractable for further use
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in the message updates. Furthermore, each time the VMP algorithm is iterated,
these messages will become increasingly complex and, therefore, we seek a simpler
method for this update.

The VMP algorithm states that the message from a prior knowledge factor
node is simply the prior probability. For the xp node this message is, therefore, a
bivariate normal density. From (4.3) we see that we have to multiply each incoming
messages to xp. It will, therefore, be convenient if the messages from each of the
local factors gxp,r,v,xa also follows a bivariate normal distribution. If so, we can
use the fact that the product of two multivariate normal densities, N1(µ1, Σ1) and
N2(µ2, Σ2), is also a multivariate normal density with parameters

µ3 = Σ2(Σ1 + Σ2)
−1µ1 + Σ1(Σ1 + Σ2)

−1µ2 (4.4)

Σ3 = Σ2(Σ1 + Σ2)
−1Σ2. (4.5)

The true messages calculated from the VMP update equations can be projected
onto a bivariate normal PDF which is achieved by minimizing the Kullback-Leibler
divergence between an auxiliary PDF, q(xp) ∈ G, and the true messages from
each of the factors where G denotes the family of bivariate normal distributions.
However, a convenient result exists for minimizing Kullback-Leibler divergence
between distributions in the exponential family. This result states that the auxiliary
PDF which minimizes the Kullback-Leibler divergence is a PDF in the exponential
family with the same moments as the true PDF [21], i.e.

q = proj[p]⇔ ∀j

∫
x

gj(x)q(x)dx =
∫

x
gj(x)p(x)dx

where gj(x) = (1, x, x2) represents the normalization term, first and second mo-
ment. For the bivariate normal density we, therefore, need to match the mean and
covariance matrix of the incoming messages in order to make the projection. We
will denote this method in the rest of the report as moment matching. With this
in mind, we can proceed by finding the messages needed for the product in (4.3).
However, as we have argued that these factors are degenerate, i.e. Dirac deltas, we
are not allowed to use the update equation in the VMP algorithm. Fortunately, in
the article by Dauwels [19], they present a solution to this problem. If the incoming
messages to a degenerate factor node are of the same variable, the message from
such a factor node can be computed as

mg→x(x) ∝ mx1→g ·mx2→g · · · ·mxN→g (4.6)

where mxi→g, i = 1, . . . , N are the messages entering the factor node g. However,
in the present situation the messages entering the factor gxp,r,v,xa are not functions
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of xp but functions of r and v respectively. Thus we cannot immediately use this
result. The argument for adding the r and v variable to the network was that if we
know the distance and angle to a base station with known position then we can
find the position of the PP through the transformation

xp = r ·
[

cos v
sin v

]
+ xa.

In order to proceed with the message derivations we can make a variable transfor-
mation according to the above such that we can compute the message mgxp ,r,v,xa→xp(xp)

using (4.6). By using the Jacobian of the transformation, we can make a variable
change while the probability density remains the same if we multiply the vari-
able changed messages by the determinant of the Jacobian. Thus, in this case, the
message to xp can be calculated as

mgxp ,r,v,xa→xp(xp) ∝ mr→gxp ,r,v,xa
(r) ·mv→gxp ,r,v,xa

(v) · detJ
∣∣∣

xp=r·
cos v

sin v

+xa.

= mr→gxp ,r,v,xa
(r) ·mv→gxp ,r,v,xa

(v) · r

= mr→gxp ,r,v,xa
(||xp − xa||) ·mv→gxp ,r,v,xa

(
arctan

xt2

xt1

)
· ||xp − xa||

where xt = xp − xa = [xt1 , xt2 ]
T is the vector obtained from subtracting xa from

xp for which we need the angle, v. Thus the message is simply the product of a
Gamma and a von Mises density.

Such a product is not a known density and finding the moments analytically
might become rather complex. However, we can make a convenient observation.
We know that the von Mises distribution defines a density on the unit circle where
the density is concentrated around the mean angle if the concentration parameter
κ is large. Additionally, the Gamma distribution describes a radial component
with a mean length and a variance. Therefore, the density represented by the
von Mises and Gamma product above might resemble the orange cloud drawn in
Figure 4.2 with the location and form determined by the mean of the radial and
angle component and the variances respectively.

With the observation in Figure 4.2, we can choose to approximate the mean
vector and covariance matrix of the von Mises-Gamma product. An approximation
of the mean vector of this product is

µ̂mgxp ,r,v,xa→xp (xp) ≈ µmr→gxp ,r,v,xa (r)
·
[

cos µmv→gxp ,r,v,xa (v)

sin µmv→gxp ,r,v,xa (v)

]
(4.7)
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µv

µr

σ2
r

σ2
v mgxp,r,v,xa→xp

(xp)

Figure 4.2: The probability density of the product of a Gamma and von Mises distribution is located
on a circle with radius defined by the Gamma and an angle defined by the von Mises.
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i.e. the mean of the product is located at a length and an angle determined by the
Gamma and von Mises term respectively. In order to derive an approximation of
the covariance matrix, imagine that the angle is zero, i.e. the probability density
shown in Figure 4.2 has been rotated such that it is aligned with the coordinate
axes. If this is the case, then an approximation of the covariance matrix is

Σ̂mgxp ,r,v,xa→xp (xp) ≈
[

σ2
r 0

0 σ2
v

]
.

In order to model those situations where the mean angle is not zero, we can choose
to multiply the covariance matrix approximation with a rotation matrix such that
the final approximation is

Σ̂mgxp ,r,v,xa→xp (xp) ≈
[

cos µmv→gxp ,r,v,xa (v)
− sin µmv→gxp ,r,v,xa (v)

sin µmv→gxp ,r,v,xa (v)
cos µmv→gxp ,r,v,xa (v)

]
·
[

σ2
r 0

0 σ2
v

]
. (4.8)

Thus we can construct a bivariate normal distribution with these parameters and
use it to update the PP location. Using this method of updating the xp location
is quite favorable as we only need to iterate the moments of a bivariate normal
density in the network and not compute the product of a number of messages in
(4.3) which do not follow the same distribution.

Updating r

In this section we derive the messages mgxp ,r,v,xa→r(r), mgr,φ→r(r) and mgr,θ,rss→r(r).
Initially, we will derive mgxp ,r,v,xa→r(r).

We will once more seek to apply moment matching in order to mitigate com-
plex message multiplications. Thus, for the r node, we want to project the incoming
messages onto Gamma distributions. From the variable transformation we know
that r = ||xp − xa|| and as the angle and radial component are independent, we
can simply find the moments of the Euclidean norm ||xp − xa|| and use them in
projecting the message. Deriving the first moment, or equivalently the mean, we
have to find Exp [||xp − xa||]. For the present properties of xp and xa, the Euclidean
norm does not follow a known density and we, therefore, have to find the first and
second moment ourselves. Using the relationship

Var(X) = E[X2]−E[X]2

we can find the mean of the Euclidean norm if we can find the variance and sec-
ond moment. The variance of the variable can be derived by using the following
observation
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Var(||X||) = E[||X−E[X]||2]

= E[
n

∑
i=1

(Xi −E[Xi])
2]

=
n

∑
i=1

E[(Xi −E[Xi])
2]

=
n

∑
i=1

Var(Xi)

=
n

∑
i=1

Σii

= tr(Σ)

where tr(·) is the trace operator. Thus the variance of the Euclidean distance is
just the trace of the covariance matrix of xp. We continue by computing the second
moment of the variable

E[||xp − xa||2] = E[(xp1 − xa1)
2 + (xp2 − xa2)

2]

= x2
a1
+ x2

a2
+E[x2

p1
] +E[x2

p2
]− 2 · xa1E[xp1 ]− 2 · xa2E[xp2 ]

= x2
a1
+ x2

a2
+ Σxp11

+ µ2
xp1

+ Σxp22
+ µ2

xp2
− 2 · xa1 µxp1

− 2 · xa2 µxp2
.

We can thus find the first moment

E[||xp − xa||] =
√
E[||xp − xa||2]−Var(||xp − xa||)

=
√

x2
a1
+ x2

a2
+ Σxp11

+ µ2
xp1

+ Σxp22
+ µ2

xp2
− 2 · xa1 µxp1

− 2 · xa2 µxp2
− tr(Σxp).

Thus we have found the required moments of the message from gxp,r,v,xa which we
can convert into Gamma parameters, i.e. α and β, such that we can update the r
node. The expected value and variance of a Gamma distribution are given by α

β

and α
β2 respectively. In order to find the parameters we can treat these equations as

a system of linear equations with two unknown parameters. We can thus find the
parameters through the equations

βxp =
E[||xp − xa||]

Var(||xp − xa||)

=

√
x2

a1
+ x2

a2
+ Σxp11

+ µ2
xp1

+ Σxp22
+ µ2

xp2
− 2 · xa1 µxp1

− 2 · xa2 µxp2
− tr(Σxp)

tr(Σxp)

(4.9)
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and

αxp = E[||xp − xa||] · βxp . (4.10)

In order to update the r node we make the following observation. Say we have two
Gamma distributions over the same variable, f1(x) ∼ Γ(α1, β1), f2(x) ∼ Γ(α2, β2).
The product of the densities is

f1(x) · f2(x) =
βα1

1
Γ(α1)

xα1−1 · e−β1x · βα2
2

Γ(α2)
xα2−1 · e−β2x

=
βα1

1 βα2
1

Γ(α1)Γ(α2)
x(α1+α2−1)−1e−(β1+β2)x ≈ Γ(α1 + α2 − 1, β1 + β2) (4.11)

where we see that the product is proportional to another Gamma distribution,
Γ(α1 + α2 − 1, β1 + β2). Therefore, updating the r node will not change the original
form of the density, only the parameters. In order to fully update the r node, we
are also interested in projecting messages from the gφ,r and gθ,r,rss factor nodes onto
Gamma densities. We can compute the message from the gφ,r factor by using the
VMP message equation

mgφ,r(r) = exp
[∫

φ
mφ→gφ,r · lnN

(
φ · Tb · c

2
, σ2

φ

)
dφ

]
.

However, as the phase is observed, this message is simply a normal distribution
with known mean

mgφ,r→r(r) = N
(

φobs · Tb · c
2

, σ2
φ

)
.

Thus we simply have to convert these parameters to a Gamma density such that
we can use the result of products of Gamma distributions to update r. These
parameters can be computed by matching the mean of a Gamma distribution to
the mean of the normal distribution

βφ =
φ·Tb·c

2

σ2
φ

=
φ · Tb · c

2σ2
φ

(4.12)

αφ =
φ · Tb · c

2
· φ · Tb · c

2σ2
φ

=
(φ · Tb · c)2

4σ2
φ

. (4.13)

The message from the gθ,r,rss factor node is, however, more complicated. We can
derive the message by using the VMP algorithm
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mgθ,r,rss→r(r) = exp
[∫

θ

∫
rss

mθ→gθ,r,rss ·mrss→gθ,r,rss · lnN
(

µr(r), θ−1
)

drss dθ

]
= exp

[
Eθ

[
lnN

(
µr(r), θ−1

)]]
= exp

[
Eθ

[
ln

1√
2π

+ ln θ − θ2

2
(rssobs − µr(r))2

]]
= exp

[
ln

1√
2π

+ ψ(αθ)− ln βθ −
1
2
(rssobs − µr(r))2

(
αθ

β2
θ

+
α2

θ

β2
θ

)]
where we have used that the mean of a log-Gamma variable, X, is given by [22]

E[X] = ψ(α)− ln β.

in which ψ(·) is the digamma function. The derived message is clearly not a known
density and we, therefore, need to find the first and second moments analytically
which requires solving the integrals

µ(1) =
∫ ∞

0
r ·mgθ,r,rss→r(r)dr (4.14)

µ(2) =
∫ ∞

0
r2 ·mgθ,r,rss→r(r)dr. (4.15)

However, as mgθ,r,rss→r(r) is rather complex, solving the integrals may show cum-
bersome and we may need to employ numerical methods. In order to employ
numerical methods we need to truncate the integration interval as we cannot inte-
grate numerically from 0 to ∞. If the true density can be shown to be concentrated
in a finite interval, we can employ numerical integration to find the moments. Us-
ing a numerical method for finding the parameters will be explored in the next
chapter. Thus we have derived all the messages arriving at the r node and we can
then update the Gamma parameters of the node through the observation in (4.11).

Updating v

In this section we derive the message mgxp ,r,v,xa→v(v) and mv→N (v)(v). As we have
assumed a von Mises prior on the angle, we wish to project the message from
gxp,r,v,xa to v onto a von Mises distribution which requires finding the mean angle
and concentration parameter. An approximation of the mean angle can be found
by assuming that we stand in the base station position and wish to find the angle
between this position and the PP. If so, an approximation of the mean is simply
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Exp [v] ≈ arctan

(
µxp2
− µxa2

µxp1
− µxa1

)
. (4.16)

In order to find the concentration parameter, κ, we will explore estimation tech-
niques. A simple approximation of this parameter is [23]

κ̂ =
R(p− R2)

1− R2 , (4.17)

where p is the dimension (here p = 2) and R = ∑N
i xi
N with xi, i = 1, . . . , N being

samples drawn from the von Mises distribution. As we do not have the distribu-
tion, we can approximate angle samples by sampling from xp, i.e. draw samples
from the bivariate normal distribution, and then convert these into angles by using
the FP position. Thus the required parameters have been found in order to project
the message mgxp ,r,v,xa→v(v) onto a von Mises distribution. For the xp and r nodes,
we have utilized that products of Gaussian and Gamma distributions are propor-
tional to a Gaussian and Gamma distribution respectively. However, such results
do not exist for the product of two von Mises distributions. We, therefore, need to
rely on different methods for updating the v node

mv→N (v)(v) ∝ p̄(v) ·mgxp ,r,v,xa→v(v).

The derivations needed in order to update the xp node were initiated by employing
minimization of the Kullback-Leibler divergence. We will do the same here. Thus
we want to solve

arg min
q∈VM

KL(q(v)|| p̃(v))

where q is an auxiliary density in the family of von Mises distributions and p̃(v) =
p̄(v) · mgxp ,r,v,xa

(v). In order to find the auxiliary density which minimizes the di-
vergence we will use a result from [24]. The result is stated here.
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Theorem 4.1 (von Mises Kullback-Leibler Divergence [24])
Consider a von Mises distribution, p(x; µ, κ), with parameters µ and κ and an
arbitrary density, q(x), on the unit circle which is nowhere zero. Then

[µ, κ] = arg min
[µ,κ]

KL(q(x)||p(x))

yields the same result as matching the first trigonometric moment m1 of p(x)

m1 =
∫ 2π

0
p(x) · exp(ix)dx.

The authors of [24] also provide a result of how to map the trigonometric moment
to von Mises parameters through

µ = arctan(Im(m1), Re(m1)), (4.18)

κ = A−1(|m1|) (4.19)

where A(κ) = I1(κ)
I0(κ)

with Ii the modified Bessel function of order i. Thus to update
the v node, we can simply find the first trigonometric moment of p̃(v) and express
a new von Mises density with these parameters. We might encounter issues with
this approximation. The Theorem states that a von Mises distribution can be ap-
proximated by an arbitrary density on the unit circle. However, we use the theorem
somewhat backward, i.e. we want to match a single von Mises distribution to a
product of two von Mises densities. We will still apply the result and investigate
the applicability in the next chapter. As p̃(v) is a product of two von Mises den-
sities, the trigonometric moment is intractable to integrate analytically. Therefore,
we once more resort to numerical methods which in this case is straightforward
as the integration interval is finite. When we have solved the integral, we can use
(4.18) and (4.19) to find the updated von Mises distribution of the v node.

Updating θ

We now only need to derive the message from the gθ,r,rss factor to the θ node. Using
the VMP algorithm, we can derive the message

mgθ,r,rss→θ(θ) = exp
[

ln
1√
2π

+ ln θ − θ2

2

{
rss2

obs + B2 +

(
10η

ln 10

)2 (
ψ(1)(αr) + (ψ(αr)− ln βr)

2
)

− 2B
10η

ln 10
(ψ(αr)− ln βr)− 2rssobsB + 2rssobs

10η

ln 10
(ψ(αr)− ln βr)

}]
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where B = RSS0 − PL0 + 10 · η · log10(d0). The full derivation can be found in
Appendix B. As we have assumed that the prior of the θ node is a Gamma distri-
bution it is convenient to project mgθ,r,rss→θ(θ) onto a Gamma density and then once
more use the result in (4.11). However, the message above is clearly not a Gamma
density. Once again, the integrals needed in order to find the moments

µ(1) =
∫ ∞

0
θ ·mgθ,r,rss→θ(θ)dθ (4.20)

µ(2) =
∫ ∞

0
θ2 ·mgθ,r,rss→θ(θ)dθ. (4.21)

seem intractable to solve analytically and we will, therefore, once more utilize
numerical methods.

4.3 The MMVMP algorithm

With the derived messages above we have found all the needed components to
apply the VMP algorithm. As we have modified the original VMP algorithm in
favor of moment matching, we will in Algorithm 1 present our version which we
will name the moment matching VMP (MMVMP) algorithm.

In the initialization loop in Line 3 we assign prior knowledge to all unobserved
variables, i.e. xp, r, v and θ. This includes choosing a prior mean and covariance
matrix for xp, shape and inverse scale parameter of r and θ and lastly a mean angle
and concentration parameter of v. When the prior knowledge has been initialized,
the update messages derived above can be subsequently applied to each variable
node in the estimation loop in Line 11.

We will shortly discuss how the algorithm is scaled with the number of PPs,
available base stations and message passing iterations. As each loop in Line 12,13
and 14 are all linear in time complexity, the total time complexity of the MMVMP
algorithm is O(I · P · F) where I, P, F are the total number of message passing
iterations, PPs and FPs respectively. Therefore, doubling each of these parameters
will double the runtime of the algorithm.

In order to test the performance of Algorithm 1, we require a simulation envi-
ronment in which the relevant devices and information can be generated. Further-
more, we observed that resorting to numerical methods, in order to compute some
of the moments, may be needed. We will, therefore, in the next chapter present our
implementation choices and discuss the validity of the message approximations.
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Algorithm 1 MMVMP

1: Input: Factor graph with xp, xa, r, v, φ, rss and θ nodes
2: Output: Updated posterior probabilities of xp, r, v and θ

3: Initialization
4: for each xp node do:
5: Initialize p̄(xp), p̄(θ)
6: for each observed xai do:
7: Initialize p̄(ri), p̄(vi)

8: end for
9: end for

10:

11: Estimation
12: for number of message passings do
13: for each xp node do:
14: for each observed xai do:
15: Compute moment matched mgri ,vi ,xp→vi(vi) using (4.16) and (4.17)
16: Compute moment matched mvi→N (vi)(vi) using (4.18) and (4.19)
17: Compute moment matched mgri ,vi ,xp→ri(ri) using (4.9) and (4.10)
18: Compute moment matched mgri ,θ,rssi→ri(ri) using (4.14) and (4.15)
19: if xai is first observation then:
20: Compute moment matched mgr1,φ→r1(r1) using (4.12) and (4.13)
21: end if
22: Compute mri→N (ri)(ri) using (4.6) and (4.11)
23: Compute mgri ,vi ,xp→xp(xp) using (4.7) and (4.8)
24: Compute mxp→N (xp)(xp) using (4.4), (4.5) and (4.6),
25: end for
26: Compute moment matched mgri ,θ,rssi→θ(θ) using (4.20) and (4.21)
27: Compute mθ→N (θ)(θ) using (4.6) and (4.11)
28: end for
29: end for





5 | Implementation of the MMVMP
algorithm

In this chapter we will present and discuss the implementation choices which are
relevant for the MMVMP algorithm. This includes the assumptions of the devices
and the information which is available in the network. Furthermore, we will also
describe how we instantiate the simulation environment and how we establish
communication between the devices. We will additionally discuss how to initialize
the algorithm and the message approximations.

5.1 Simulation platform

In order to employ numerical and non-real-time scientific computing, different
simulation environments exist. The choice usually depends on previous experience
and possible licensing. Among popular choices are Python and Matlab. The im-
plementation of the MMVMP algorithm and the simulations have been performed
in Python. This programming language is an open source, high-level language
which offers a broad range of optimized and pre-compiled libraries. Python also
offers object oriented and functional programming which have been utilized in the
implementation. Although Python is considered to be less efficient for simulations,
access to free libraries and a large community combined with previous experience
have been the motives for choosing this platform as this reduces the development
time.

5.2 Practical considerations

In this thesis, we will conduct both simulations and real-world testing of the local-
ization algorithm and we will briefly mention our assumptions here. As we have
assumed that all calculations are done on a centralized unit we will assume that
the mails described in Section 2.2.1 can be collected in this unit. Furthermore, we
consider the PPs in the environment to be stationary during the measurements in
order to mimic man down scenarios or equipment localization. Additionally, we
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will assume that the connectivity of a PP is given by a fixed radius which is a crude
assumption on radio communication but induces great reduction in implementa-
tion complexity.

5.2.1 Communication and observations

We consider a communication system utilizing the DECT radio technology as de-
scribed in Section 2.1. Although communication is necessary for the localization
algorithm, it is not relevant how the units communicate and, therefore, other radio
technology standards might be used, as long as the relevant information discussed
in Section 2.2 can be obtained. In the inference problem, we have included a vari-
able, θ, which seeks to describe fading effects but we have not done so for the phase
information. The phase information, however, will also be distorted e.g. by mul-
tipath propagation. The phase observation noise is difficult to estimate and will
most certainly change rapidly for different environments. We will, therefore, as-
sume a fixed variance. Lastly, different radio frequency equipment may be used for
the units in the environment which may change how communication is performed.
This is, however, not important for the localization algorithm.

5.2.2 Message scheduling

The localization algorithm relies on being able to receive information from more
than one FP. Therefore, there might be complications, if the PP misses the broad-
cast from other FPs than the direct link. Furthermore, if a PP has detected an FP at
t = t1 but does not hear it again, it will downgrade the RSS information. However,
it should be considered to exclude the specific FP from the localization algorithm
e.g. after some time tgone. Considering the message update scheme in the localiza-
tion algorithm there may exist message update schedules that are optimal in some
scenarios and unsuitable in others. If some of the equipment has more frequent
update cycles, the messages containing information from these should be priori-
tized. As the VMP algorithm allows for an arbitrary update schedule, bottle neck
problems might be mitigated, if a certain update scheme is chosen. We will, how-
ever, refrain from exploring which update scheme is optimal and simply update
the PP position for each updated FP information, i.e. each time we have updated a
pair of r and v nodes.

5.3 Overview of the implementation

The implementation can be considered as three independent, but consecutive,
blocks which are shown in Figure 5.1.

We will in the following sections discuss the blocks in Figure 5.1. The Generator
and Estimator blocks have several aspects and have some differences when used for
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Generator Estimator Results
Data x̂p

Figure 5.1: Overview of the implementation illustrated as a block diagram. The data includes the
observations in the system and x̂p are the estimates of the PP positions.

Physical
Topology

Observations
X D

Figure 5.2: The generator module consists of two blocks. The first block initializes the network
and the second block generates (or relate in real world testing) RSS and phase observations if a PP
observes a base station.

simulations in contrast to real world testing. However, the Results block is identical
for both scenarios, as this module will present the relevant results.

5.3.1 Generator

The Generator block is different when using it for simulations and real world testing
respectively. For both scenarios, we can, however, expand the generator block, as
seen in Figure 5.2.

Physical Topology

In order to model both PPs and FPs, we have employed the graphical represen-
tation induced by a graph. In effect, the physical topology is instantiated as a
number of nodes representing either PPs, FPs, angle, distance or a fading descrip-
tor. The position of the FPs can either be chosen to be systematic or random. We
will, however, argue, that the results obtained for systematic FPs are a relevant sce-
nario, as installation of base stations is assumed to be done intelligently. Choosing
the positions in the pure simulations can be done without any constraints on the
environment. However, for real-world testing, instantiating the nodes will be con-
strained by the possible placements of base stations and PPs in the environment
but the physical topology is generally initialized similarly for the two scenarios.

Observations

For simulation purposes we need to be able to simulate the observations of RSS
and phase which are used in the localization algorithm. In order to complete the
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graphical representation of the environment, we need to represent the edges in the
graph. If an xp node has incoming edges, FPs are present within the communica-
tion radius. We have already mentioned, that the connectivity of a node is given
by a fixed radius. Therefore, when we have instantiated the PPs and FPs in the
network, we only generate observations between those pairs of PPs and FPs which
fulfil ||PPi − FPj|| ≤ rc where rc is a chosen communication radius. As the PPs
in the real world network do not have the possibility of communicating with each
other, we only generate observations between PPs and FPs. There might be more
elaborate ways of limiting the connectivity but the scheme chosen in this work
simplifies how and when to establish communication links. If a connection is es-
tablished between a PP and FP, we need to generate observations of both RSS and
phase. Generating an observation of RSS is done by using the RSS model in (3.3).
Thus in the simulation environment, the true distance between the PP and each
of the FPs within the communication radius is calculated and used in the model
to obtain an RSS value. The RSS0 and PL0 value have been measured by using
a real base station and mobile device. For the pathloss exponent, η, we will not
estimate it but use empirical data which show that for an office environment this
exponent can be chosen to be 3 [25] for a frequency of 1.9 GHz which is close to
the frequency used in DECT. As we are aiming to simulate an environment which
is probably cluttered like an office, we will assume that the pathloss exponent is
3. Similarly, we will not estimate the variance of the XG term. We will again rely
on empirical data from [25] where the standard deviation arising from shadowing
can be assumed to be σ = 10 dB. Therefore, we will generate RSS values with
XG ∼ N (0, 10).

It is relevant to discuss to which degree the fading term affects the relation
between signal strength and distance in the proposed model. If the fading term
does not introduce a significant change to this relationship, the message passing
framework (and statistical modeling in general) seems somewhat excessive in order
to solve the localization algorithm. If we can achieve relatively precise distance
estimates through the RSS model (3.3), we might as well employ trilateration to find
the position. To see the fading effects, we have plotted four different realizations of
the RSS model for a range of distances and with a standard deviation of σ = 10 dB
in Figure 5.3.

From Figure 5.3 we can see that if we were to neglect the influence of the
fading term and use the RSS model to relate observed RSS values to the propagated
distance, we will get different results. We can e.g. observe that realization 1 relates
an RSS value of approximately −50 dB to a distance of 10 m where realization
3 and 4 relate an RSS value of approximately −30 dB and −25 dB respectively.
Finally, realization 2 relates a value of approximately 15 dB.

In order to simulate the phase information we use the model described in Sec-
tion 4.1
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The phase is only generated for the first observed FP, which we assume to be the
direct link, in order to simulate real conditions. We use the true distance between
the PP and FP and the bit time available in the system to convert the distance into
ninths of bit time. As the phase information is observed in discrete bit times where
1, 2, 3, ... bits represent approximately 15, 30, 45, ... meters we add noise to the
true distance through a normal distribution in order to model the rounding errors
in the bit times. As the bits represent distances with a resolution of ≈ 15 m we
choose a standard deviation of σ = 15 m of the noise.

5.3.2 Estimator

With an instantiated network, we can use the MMVMP algorithm to estimate the
position of a PP given the generated information. In Chapter 4, we have derived
the needed messages for the localization algorithm. Some of the messages can be
directly computed, e.g. converting the phase information into a Gamma density.
However, for some of the messages, computing the needed moments analytically
is intractable. Instead, we integrate numerically using the trapezoidal rule, see
Appendix C, which is both simple and already implemented in Python. We will
later discuss the validity of the message approximations using this rule.

In order to infer information from the network, we instantiate a measurement
list for each PP. For each observed FP, we add a list of information to the PP
measurement list. The first index of the information list is the FP position and the
second index is the generated RSS value. For each observed FP we also generate
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each of the variables, r and v. These are similarly represented by nodes with αr

and βr parameters for the r node and µv and κv for the v node. We add these nodes
when an FP is observed in order to associate the right distance and angle to the
right pair of PP and FP. As the θ node is general for all established communication
links, we will only add a single node with the statistical properties of the fading
descriptor to the network. Finally, the generated phase information is also added
to the measurement list of the specific PP.

As each of the unobserved variable nodes in the factor graph are connected
to a node describing prior knowledge, we need to discuss prior initialization of
these. For the prior knowledge of the PP position, xp, we need to initialize a mean
and covariance matrix of the bivariate normal distribution. A simple choice of
the mean position is a random position in the simulation environment, i.e. the
prior mean can be drawn uniformly on the simulation environment or simply
chosen to be the center of the room. For the prior covariance matrix, we need the
standard deviations in both planar directions to be large enough to cover the entire
environment. This assures that we do not infer significant knowledge of the PP
position through its prior. Therefore, choosing the variance of each direction to be
e.g. σ2

x = σ2
y = 106 m2, the bivariate density should be wide enough to cover the

simulation environment and, therefore, all coordinates are equally likely to be the
true PP position. As for the fading descriptor, θ, we need to initialize the αθ and βθ

parameter. We can choose to set the parameters such that they match the variance
of XG in (3.3), i.e. choosing αθ , βθ such that Ep̄(θ)[θ]

−1 = σXG . In order to initialize
the prior distribution of an r node, we can specify the Gamma parameters of the
node such that the mean distance is e.g. 100 m and with a high variance. Lastly,
for the v node, we have to initialize a mean angle and concentration parameter κ.
Assuming that knowing the positions of the base stations also include knowing
the environment around them, we can use the environment constraints to set prior
mean angles for the v nodes. Thus if a base station is mounted on an outer wall,
and we are only interested in locating employees or equipment inside the building,
the prior mean angles can be initialized with this constraint in mind. Say that an
FP is mounted in a corner in a square room and relevant signals may only arrive
from inside the room. Then the mean angle can be set to 45◦ if the base station is
located in the south west corner. Similar considerations can be made for different
placements of the base stations. As for the concentration parameters these have
to be chosen such that all angles in line of sight are equally likely, i.e. the prior
distribution of the angle node v for a corner base station should have its density
concentrated around 45◦ but with a concentration parameter incorporating angles
from 0◦ to 90◦. However, if the information of the environment is not available,
the prior mean angles can be drawn uniformly from 0 to 2π and the concentration
parameters can be set to 0. Setting the concentration parameter to 0 reduces the
von Mises distribution to a uniform distribution [26].
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Figure 5.4: True (yellow) and approximated (blue) von Mises messages from a v node to its neigh-
bours. The true message is normalized such that the area is one.

5.4 Discussion of implementation choices

As already mentioned, the practical considerations have been made in order to
simplify the implementation in favor of proof-of-concept. There might exist ways
to represent the environment and the factor graph e.g. through matrices which
yields a lower memory demand of the algorithm. Furthermore, we have already
discussed, that establishing a fixed communication radius is not realistic, especially
not in the form of a circle. We will, however, focus on the validity of the message
approximations, as these impact the inference algorithm.

5.4.1 Message approximations

We will in the following explore the precision of approximating the true messages
p̃ by the moment matched auxiliary densities q.

Angle approximation

Initially, we will investigate the approximation of the message p̃(v), which we saw
from Section 4.2 is a product of two von Mises distributions. In Figure 5.4a we
have plotted the true and moment matched density for a product of two von Mises
distributions, p1(v) ∼ VM(π, 0) and p2(v) ∼ VM(π

2 , 10). The approximation has
been made according to Theorem 4.1 where we have used the trapezoidal rule
to approximate the first trigonometric moment. We choose to normalize the true
message such that the area under the graph is one.
In Figure 5.4a we observe that the approximation and true density are agreeing.
However, as the concentration parameter of p1(v) is 0 we only get a contribution
from the second von Mises distribution. This is expected, due to the formulation
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Figure 5.5: True (yellow) and approximated (blue) von Mises messages from a v node to its neigh-
bours. The true message is normalized such that the area is one.

of the von Mises distribution in (4.2). Thus, for κ = 0, the distribution is not
defined and reduces to the uniform distribution. Investigating the behaviour in
Figure 5.4b we validate the suspicion from the last chapter where we argued that
using Theorem 4.1 backwards might yield insufficient approximations. We do,
however, see that the mean of the true density is represented in the approximation
but we have to estimate the concentration parameter through alternative methods.
As we seek an auxiliary density in the family of von Mises distributions which is
closest to the product of two von Mises densities we wish to compute

arg min
q∈VM

KL(q|| p̃) = arg min
∫

v
q · ln q

p̃
dv. (5.1)

As we saw from Figure 5.4 that the mean is approximated well with the first
trigonometric moment, (5.1) reduces to a finite integral of one unknown variable, κ.
We can, therefore, numerically integrate the KL-divergence for a range of κ values
and choose the concentration parameter which yields the lowest integral. This has
been done for the remaining figures of this subsection.

We observe in Figure 5.5a, that if the concentration parameter of one of the
distributions is zero, we obtain the same result as before. In Figure 5.5b, we have
changed the concentration parameters of each of the distributions. We observe,
that the mean of both the true and approximated message is now shifted from the
mean of p2 towards the mean of p1, however, only slightly, as the concentration
parameter of p1 is still low compared to p2. This is a nice feature, as we are in-
terested in estimating the mean of the approximation closest to the distribution
with the highest concentration parameter. As the true and approximated density
are perfectly agreeing, it seems appropriate to use moment matching for the mean
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Figure 5.6: True (yellow) and approximated (blue) von Mises messages from a v node to its neigh-
bours. The true message is normalized such that the area is one.

angle and minimizing the KL-divergence for the concentration parameter. Finally,
we will investigate the density of the von Mises product, if the concentration pa-
rameters are equal, see Figure 5.6.

In Figure 5.6a, we observe that the densities once more agree and that the peak
is located at the average of the means, i.e. π+π/2

2 ≈ 2.36. For even higher con-
centration parameters we see the same behavior in Figure 5.6b where the densities
are more concentrated as expected. Therefore, on the basis of the above, we ar-
gue that using the first trigonometric moment to approximate the mean of the
true angle message and minimizing the KL-divergence to find the concentration
parameter are valid. However, there may arise complications with this method.
The modified Bessel function mentioned above only exist as a numerical imple-
mentation in Python. This implementation will return nan values if the input is
larger than 709. We will, therefore, investigate the difference in the true densities
if we manually set the value of the concentration parameter if it becomes larger
than 709. In Figure 5.7 we have plotted the true densities, p1(v) ∼ VM(π, κ1) and
p2(v) ∼ VM(π

2 , κ2) where κ1, κ2 are chosen to be either 709 and 200.
We can see from the figure, that the densities almost agree if we neglect the

magnitude of both densities. Thus we will argue, that manually changing the
concentration parameter, if it exceeds 709, will not affect the statistical properties
of the true density apart from a smaller magnitude.

Phase approximation

We can conduct similar validations of the phase message approximation. However,
we expect that the approximation is relatively valid as we are simply converting a
normal density into a Gamma distribution. Furthermore, as the phase information
is positive, there should be no problem in using the Gamma distribution. In Fig-
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ure 5.8, we have plotted the true and approximated message for several observed
phases.

It is relevant to observe, that the approximation in Figure 5.8a is not quite
consistent with the normal density. The reason for this is that we are trying to
represent a density with support on R with a density supported on R+. Therefore,
the Gamma density is more concentrated and its mean is shifted. However, for
the approximations in Figures 5.8b, 5.8c and 5.8d, we see that the approximations
follow the true densities. Furthermore, as the standard deviation has been set
to a large value in order to model true distances, the messages are also able to
represent phase information ±1 bit time away from the true value. Thus, from the
above observations, we will argue that a moment matched Gamma approximation
of the phase message will carry the same information about the distance as the
normal distribution.

RSS to distance approximation

We also need to verify the validity of approximating the message from the rss and
θ node to the distance variable, r. We choose to set αθ = 2 and βθ = 20. Doing
so, we assume that the fading descriptor have a mean of αθ

βθ
= 0.1. As the θ node

is representing the precision in (4.1) these model parameters represent a standard
deviation of σ = 10 dB which is the value we use to generate RSS measurements.
Initially, we will investigate the moment matching approximation for an RSS value
of −40 dBm, see Figure 5.9.

We can see in Figure 5.9 that matching the mean of the true message with a



5.4. Discussion of implementation choices 55

0 10 20 30 40 50 60 70 80
r [m]

0.00

0.01

0.02

0.03

0.04

0.05

p(
r)

True and moment matched  message
Gamma
p

(a) With φobs = 1.

0 10 20 30 40 50 60 70 80
r [m]

0.00

0.01

0.02

0.03

0.04

p(
r)

True and moment matched  message
Gamma
p

(b) With φobs = 2.

0 10 20 30 40 50 60 70 80
r [m]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

p(
r)

True and moment matched  message
Gamma
p

(c) With φobs = 3.

0 10 20 30 40 50 60 70 80
r [m]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
p(

r)

True and moment matched  message
Gamma
p

(d) With φobs = 4.

Figure 5.8: Normal (yellow) and Gamma (blue) messages for several phase observations with σφ =
10.
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Figure 5.10: True (yellow) and moment matched Gamma (blue) messages for several RSS observa-
tions and αθ = 2, βθ = 20.

Gamma mean is not a valid approximation. We will instead make sure that the
mode of the true message and Gamma distribution is matched. We will assume
that the β parameter is well approximated and then find the α parameter through
the relationship [22]

mode =
α− 1

β
⇔ α = β ·mode + 1. (5.2)

Thus we can find the r value which yields the mode of the true message and use
it in (5.2). The newly found parameters will be used to argue the validity of the
message approximations for the rest of this subsection.

We choose to show the true and approximated densities for several RSS values
in Figure 5.10 where both densities have been normalized as before.

We see that the approximated messages all capture the same mean of the true
density. They do, however, not fully capture the variance. Like the Bessel function
mentioned above, the digamma function is also only available as a numerical im-
plementation in Python and we might, therefore, expect some error from this. We
will, however, argue, that using this approximation is not unreasonable as it does
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Figure 5.11: The Gamma distribution for α = 5 · t, β = 1 · t for t = 1, 2, 4, 8, 16, 32, 35. For α =
175, β = 35 the distribution degenerates.

capture the mean of the true density. Additionally, using this message alongside
the phase information might provide the needed variability in the distance infor-
mation and thus these messages will provide sufficient information of the true
distance between a PP and FP. As before, using numerical integration is once more
allowed, as the true density is concentrated in a finite interval. A final remark shall
be given to the Gamma parameters. In the algorithm, we seek to pass information
from an r node to the xp node which hopefully describes the true distance. This
information is contained in the update r node parameters. However, as we do not
constrain the α and β parameters, the Gamma distribution representing r might
degenerate, as seen in Figure 5.11.

From the observation in Figure 5.11 we observe that we might need to manually
correct the Gamma parameters if they increase a certain threshold. This can be
done by scaling the parameters with the same factor, e.g. with a factor 10. Doing
so, the mean will remain the same but the variance of the Gamma distribution will
increase.

Distance to θ approximation

For the message approximation from an r and rss node to the fading descriptor,
θ, we will also show the validity of the approximation. We will assume that the
r node represents a distance of 10 m, which can be achieved if the Gamma pa-
rameters of the node are αr = 10 and βr = 1. In Figure 5.12, we have plotted
the densities for the same RSS observations as in the previous subsection. Argued
by the observation in Figure 5.9 we will also find the Gamma parameters for this
approximation through the relationship in (5.2).

In Figure 5.12 we once more see that the approximation captures the mean
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Figure 5.12: True (yellow) and moment matched Gamma (blue) messages for several RSS observa-
tions and αr = 10, βr = 1.
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Figure 5.13: True (left) and approximated (right) message from an r and v node to the xp node.
The message we try to approximate is bimodal and varies more than the approximation which is
unimodal.

but not the variance. We will, however, assume that the approximation will cap-
ture enough of the information in order to update the fading descriptor. The true
density is concentrated in a finite interval so numerical integration is still allowed.

Angle and distance to xp

In Chapter 4 we made approximations of the mean and covariance matrix from
an r and v node to the PP position, xp. In Figure 5.13 we have plotted the true
and approximated density for different Gamma parameters of an r node and a v
node parametrized with µv = π

4 , κ = 100. The base station is positioned in the
coordinate [20, 20]T and we, therefore, suspect the true density to be located in a
cloud at an angle of 45◦ and distance given by the mean of the Gamma distribution.
In Figure 5.13 we observe two problems of our approximation. We see that the
true density is bimodal which is not represented in the approximation. In [27] the
author argues, that faulty distance measurements from a base station may result in
bimodal densities and the mode representing the true position may be discarded.
Therefore, the author models the device position with a mixture of Gaussian den-
sities and employs the message passing scheme. A variant of this procedure might
have corrected the issue in the approximation but the bimodal behaviour has been
observed too late in the project period and has, therefore, not been implemented.
However, as the two modes in Figure 5.13 seem to be reflections of each other and
mirrored in the base station position the problem may be mitigated by setting the
prior of the PP to be zero outside the simulation environment. In the next chapter
we will test the performance of the algorithm with this observation in mind. How-
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Figure 5.14: True and approximated message from r and v to xp for several distances and concentra-
tion parameters.

ever, we also observe that the approximation in Figure 5.13 does not capture the
angular variance. We observe, that the angular variance of the true message varies
with distance which is not present in the approximation. Therefore, we need to
make alterations to the covariance matrix from the previous chapter. A choice of

modification is to scale σ2
v with the mean distance,

(
αr
βr

)2
, such that the variance

becomes more pronounced for longer distances. Therefore, the new covariance
matrix approximation reads

Σ̂mgxp ,r,v,xa→xp (xp) ≈
[

cos µmv→gxp ,r,v,xa (v)
− sin µmv→gxp ,r,v,xa (v)

sin µmv→gxp ,r,v,xa (v)
cos µmv→gxp ,r,v,xa (v)

]
·
[

σ2
r 0

0 σ2
v ·
(

αr
βr

)2

]
.

For the remainder of this section, we will use the new covariance matrix to validate
the message approximation.

In Figure 5.14 we have plotted the true and approximated message for different
settings of distances and an angle of 45◦ where the observed FP is located in the
coordinate [20, 20]T.
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From Figure 5.14, we see that with the new covariance matrix the angular vari-
ance of the approximation seems more similar to that of the true density. It does,
however, still not model the variance completely. We also observe that the approx-
imation correctly uses the mean angle and distance to represent a single mode of
a bivariate normal distribution which agrees with the corresponding mode in the
true message. Furthermore, we see that increasing the concentration parameter
will concentrate the density around the chosen angle. This is a nice feature, as we
want to project the density along the correct angle. On the basis of these observa-
tions, we will argue that the approximations mentioned in Chapter 4 with the new
covariance matrix are valid for this message.

In this Chapter, we have presented and discussed our implementation choices,
with focus on the message approximations. For most of the moment matched ap-
proximations we see that they have the desired properties and resemble the true
densities. We will, therefore, argue that using the approximations for performance
testing is a valid choice instead of using the true densities which are more com-
plex to use in the VMP algorithm. In the next chapter, we will investigate several
simulation scenarios in order to validate the applicability and performance of the
derived algorithm.
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We will in the following chapter test the performance of the MMVMP algorithm
with the implementation choices described in the previous chapter.

6.1 Simulation scenarios

The simulations will aim at representing realistic environments such that we can
discuss the applicability of the algorithm. We consider two scenarios:

Scenario 1 (S1) In this scenario we will represent a square room with four base
stations mounted in each of the corners, see Figure 6.1a. The true position of
the PP is drawn uniformly in the environment. In order to simulate RSS and
phase information we choose a standard deviation in the RSS model and in
the phase model to be σXG = 10 dBm and σφ = 15 m respectively. In Table 6.1
we have listed the specifications of scenario 1 which for the remainder of this
chapter will be denoted S1.

Scenario 2 (S2) This scenario will be formulated such that it resembles the en-
vironment in which we will conduct a measurement campaign. The base
stations are installed as illustrated in Figure 6.1b. We will more thoroughly
present the measurement campaign in Chapter 7 but for simulation purposes
we only need the positions. We use the same standard deviation of the fading
term and phase information as in S1. The simulation environment specifica-
tions are listed in Table 6.1. Due to the positions of the base station, the
dimension of the simulation environment is difficult to specify as a square.
We will, however, let the environment be the square with a dimension of
15× 15 m2. This scenario will for the rest of the chapter be denoted S2. For
both S1 and S2 we will randomize which base station is observed first in
order to simulate that the direct FP may not be the closest base station.

63
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Dim [m2] FP1 FP2 FP3 FP4

Scenario 1 20× 20 [0, 0]T [0, 20]T [20, 20]T [20, 0]T

Scenario 2 15× 15 [0.8, 1.20]T [0.8, 10.52]T [15.31, 13.31]T[14.28, 6.57]T

Table 6.1: Specifications of S1 and S2 including environment dimensions and FP positions. The
standard deviation of the fading and phase noise is σXG = 10 dBm and σφ = 15 m respectively.

20 m

20
m

FP2

FP1

FP3

FP4

(a) S1 environment.

FP2

FP1

FP3

FP4

15 m

15
m

(b) S2 environment.

Figure 6.1: Illustrations of the simulation environments, S1 and S2.
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MC runs # FPs. Mess. Itt.
Runtime

[s]

1 4 1 0.46
1 4 5 2.25
2 4 1 0.85
2 4 5 4.43
1 8 1 0.88
1 8 5 4.36
2 8 1 1.81
2 8 5 8.82

Table 6.2: Runtimes for several setups. The simulations have been run on a laptop with the fol-
lowing specs: Intel Core i7-7820HQ CPu @ 2.90 GHz with 16 GB RAM 64-bit running Windows 10
Enterprise.

6.1.1 Run time

As we have derived the message approximations using moment matching, we do
not need to rely on optimizing the Kullback-Leibler divergence through an opti-
mization algorithm. Therefore, we suspect that the runtime of a single Monte Carlo
simulation with one message iteration will not change significantly for each run.
We will compute the runtime of a few setups in order to verify the time complexity
in Chapter 4. Furthermore, computing the runtime in a few scenarios enables the
possibility of predicting runtimes of more complex simulations. The runtimes are
presented in Table 6.2.

From Table 6.2 we see that the time complexity indeed behaves linearly, as the
runtime doubles when we e.g. double the amount of PPs (running 2 Monte Carlo
simulations is equivalent to locating two PPs).

6.2 Simulations, S1

As the MMVMP algorithm is iterative, we rely on messages being passed between
the nodes in the factor graph such that the marginal posterior probabilities of the
unobserved variables can be updated. We will, therefore, investigate how many
iterations are needed in order to obtain convergence in the error distance. Thus we
seek to estimate the sample mean of the distance error

E
[
||x̂p − xp||

]
.

We will do so on the basis of 100 Monte Carlo simulations and use the average
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distance error as the empirical mean error distance. Initially, we consider a maxi-
mum of 9 message iterations as we from Table 6.2 see that the predicted runtime
of 100 Monte Carlo simulations for just 5 iterations will be 225 s. We, therefore,
hope that the mean error converges before reaching 9 message iterations. In this
case, we chose a prior of the PP position as a bivariate normal distribution with
a mean drawn uniformly on a scaled version of the simulation environment and
with a large covariance matrix, i.e.

µ̄xp ∼ U ([−5 · dim, 5 · dim]× [−5 · dim, 5 · dim])

Σ̄xp =

[
106 0
0 106

]
.

Thus we do not provide the algorithm with any significant prior knowledge of
the PP position. The angles between the PP and observed base stations are drawn
uniformly between 0 and 2π. The mean error distance results for S1 can be seen in
Figure 6.2.

In Figure 6.2a we see that the mean error distance converges after only a few
iterations. We also see that the mean distance error is highly imprecise with a
mean of Ê[||x̂p − xp||] ≈ 15 m which is insufficient for localization purposes. This
behaviour becomes clear in Figure 6.2b where we have used four message iterations
to obtain the position estimates. Each blue dot is a new estimate from a different
PP prior and the black squares represent observed base stations. The red circles
with center in the base stations represent the true distance between each FP and
the PP where the circle around the PP is a distance of 5 m. As the algorithm does
not receive any significant prior knowledge of the angle between the base stations
and the PP, the angle is solely updated on the basis of the prior position of the
PP. The prior position may be drawn in a completely different direction than the
true position which is why we see the behaviour in Figure 6.2b. In order to better
visualize the probability of observing errors smaller than some value ξ, we also
present the Empirical Cumulative Distribution Function (ECDF) of the estimates.
In Figure 6.2c we have visualized the ECDF of S1 where we see that it is improbable
to observe small error distances. We will, therefore, investigate to which degree the
precision of the algorithm is improved if we apply some knowledge of the angles.

If we imagine that the room represents e.g. a restaurant and that we are only
interested in locating objects within the same room, we can provide the algorithm
with prior knowledge of the angles by simulating the base stations as sector an-
tennas. This can be done by assuming that the prior knowledge of a v node in the
factor graph can be initialized based on the position of the respective base station
as discussed in Section 5.3.2. For the positions of the base stations in S1, the mean
angles are chosen to be 45◦,−45◦, 225◦ and 135◦ for base station FP1, FP2, FP3 and
FP4 respectively. However, we wish to represent all possible angles from within
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Figure 6.2: Performance of the algorithm for S1 without any prior knowledge. Due to no angle
information the algorithm provides imprecise estimates.
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Figure 6.3: Probability distribution of the von Mises density with µv = π
4 and κ = 2.

FP1 FP2 FP3 FP4

µv
π
4 −π

4 − 3π
4

3π
4

κ 2 2 2 2

Table 6.3: Prior angle knowledge of the base stations in S1.

the room which can be achieved by choosing the concentration parameter of the
von Mises prior densities accordingly. In Figure 6.3 we have visualized a histogram
showing a von Mises distribution, p(v) ∼ VM(π

4 , 2).
Choosing the concentration parameter κ = 2 will incorporate the desired vari-

ance in the distribution, i.e. include all angles from within the respective quadrant.
The prior angle knowledge has been summarized in Table 6.3.

In Figure 6.4a we have provided the FPs with their respective prior knowledge
of the possible impinging signals and computed the mean error distance.

We observe in Figure 6.4a that the mean error distance still converges after a
few iterations but the mean value has been almost halved. In Figure 6.4b we have
once more simulated 25 estimates for the same true position as in Figure 6.2b.
We use the same position in order to see the improvement in the precision. The
amount of message passings has once more been set to four. We see that provid-
ing the algorithm with sector antennas enables the algorithm to estimate inside
the simulation environment. We do, however, see, that some of the positions are
estimated towards other base stations than the closest FP which we will investigate
later. The ECDF in Figure 6.4c also shows improvement as we are now more likely
to observe errors below 10 m. There is, however, still room for improvement, if
we seek to estimate the true position of e.g. a table in a restaurant. In Figure 6.5
we show the approximations for each iteration in the algorithm for a single Monte
Carlo simulation and a single branch in the factor graph.
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Figure 6.4: Performance of the algorithm for S1 assuming base stations to be sector antennas. Using
prior knowledge of the angles has a high impact on the precision.
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Figure 6.5: Message approximations in S1 for each iteration when prior knowledge of the angle is
included. In the right most plots, the red and yellow dots represent base stations and the true PP
position respectively.
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Figure 6.6: Approximated (top) and true (bottom) messages from each branch in the factor graph to
the xp node after a single message iteration. We see that the true mode of the bimodal message is
chosen when applying sector antennas. The green dot and red cross represent the true and estimated
position respectively while the red dots represent the base stations.

We see that the approximations agree with the true messages. In the fifth and
sixth column we represent the true message from an r and v node to the xp node
and the PP position update respectively. Even though the true message is bimodal
we see that the mean of the PP position is shifted towards the true position while
the covariance matrix is reduced. In Figure 6.6 we have visualized the true and
approximated message to the xp node from all observed base stations after a single
message iteration.

From Figure 6.6 we see that the approximation chooses the right mode when
the base stations are assumed sector antennas. However, from the above we have
seen that the covariance of the PP position is reduced quickly and, therefore, also
converges fast to the final estimate which may be wrong. In Figure 6.6 we see that
a wrong estimate may be computed if inferior RSS and angle information is used.
In the present case, in Figure 6.6, it might have proven advantageous to update
the PP position with the information from FP4 first, as the mode of this message is
located at the right position.
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FP1 FP2 FP3 FP4

µv
π
4 0 − 3π

4 π

κ 2 1 2 1

Table 6.4: Prior angle knowledge of the base stations in S2.

6.3 Simulations, S2

As already mentioned, the simulation environment in S2 has a disadvantage com-
pared to S1. In S1 we considered a square room in which the base stations are
mounted in the corners such that any true position drawn in the environment will
be located inside the square created by the base stations. This is, however, not
the case for S2 and we might, therefore, expect true positions to be drawn outside
the square created by the FPs which in turn might yield erroneous estimates. For
the simulations, we will draw true positions uniformly on the dimension specified
in Table 6.1. Initially, we will investigate if the absence of angle information also
provide a large mean error distance in this scenario, see Figure 6.7.

For this scenario we observe a similar behaviour as in S1. The error distance
quickly converges but the mean is still high as seen in Figure 6.7a. This is once
more caused by the angle being updated based on the PP prior which may be
chosen completely wrong. Visualizing the estimates returned by the algorithm
in Figure 6.7b, we once more see that providing no angle information to the al-
gorithm fails to produce reliable estimates. This is also apparent from the ECDF
in Figure 6.7c where any useful errors are highly improbable. Therefore, we will
once more assume prior knowledge of the angle information by treating the base
stations as sector antennas. Similar considerations about the mean angles and con-
centration parameters from S1 have been done and are listed in Table 6.4. The
mean angles are, however, somewhat difficult to initialize in this scenario as the
base stations are not installed in the corners.

The results where the angle prior knowledge has been incorporated are shown
in Figure 6.8.

We once more observe a fast convergence in the mean error distance. Using
sector antennas has a much higher impact on the mean error distance for this
scenario. Providing the algorithm with prior knowledge of the angles more than
halves the mean error. The environment investigated here is of course relatively
smaller than S1 and, therefore, we should expect smaller errors. From the ECDF
in Figure 6.8c we can see that for this specific position, observing errors less than
5 m is highly probable compared to S1 which might be induced by the fact that
the base stations in S2 are located closer to each other. We will later explore the
effects of adding additional base stations to the simulation environment which
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Figure 6.7: Performance of the algorithm for S2 without any prior knowledge. Due to no angle
information the algorithm provides imprecise estimates.
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Figure 6.8: Performance of the algorithm for S2 assuming base stations to be sector antennas. Using
prior knowledge of the base stations has a high impact on the precision.
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may improve the precision. In Figure 6.9 we show the message approximations
for the number of message passing iterations in this scenario. We still observe
that the message approximations fit the true densities. The position of the PP is
also updated towards the true position and the covariance is reduced. Similarly
to S1 we will investigate the initial updates of the messages from the factor graph
branches to the xp node, see Figure 6.10.

We once more see that the bimodal problem is mitigated by assuming prior
knowledge of the angles. However, for this scenario, it had seemed advantageous
to update the PP position with respect to FP3 first as the mode of the approximation
is located in the true position.

We have now made initial performance tests of the algorithm and from the
above it clearly shows that providing the algorithm with some directional infor-
mation improves the precision. Furthermore, the bimodal problem observed in
Chapter 5 is also mitigated by applying angle prior knowledge. However, it seems
that the algorithm favors the information from the first observed base station and
as the algorithm quickly converges other base stations providing more reliable in-
formation may be disregarded. The improvement observed in S2 might also be an
indication that receiving information from base stations closer to the PP will pro-
vide an increased precision. It might, therefore, increase the performance if more
FPs are added to the environment. Both of these suspicions will be explored and
tested in the following.

6.4 Modifications

Although using sector antennas increases the algorithm’s performance, there is
still room for improvement. Here we investigate how sorting the observations and
adding base stations can improve the algorithm.

6.4.1 Sorting the observations

Although we have restricted ourselves from deriving an ideal update scheme for
the MMVMP algorithm, we will make a small exception. As we are updating the
PP position for each updated FP branch, i.e. for each time we have updated a v
and r node in the factor graph, we might suspect that using RSS information from
an inferior base station may yield imperfect estimates. In this context, we classify
a base station as inferior if it provides a relatively attenuated RSS measurement.
Highly attenuated RSS measurements might be an indication that the base station
is either relatively far away from the PP or behind an object creating shadowing
effects. Thus, due to the update scheme of the PP, we may be interested in updating
the position based on the FPs which provide the least attenuated measurements.
If we do so, the PP position is updated sequentially according to the base station
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Figure 6.9: Message approximations for each iteration when prior knowledge of the angle is in-
cluded. We see that the approximations agree with the true densities.
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Figure 6.10: Approximated (top) and true (bottom) messages from each branch in the factor graph
to the xp node after a single message iteration. We see that the true mode of the bimodal message is
chosen when applying sector antennas. The green dot and red cross represent the true and estimated
position respectively while the red dots represent the base stations.
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Figure 6.11: Iterationplots for both investigated scenarios where the base stations have been sorted
according to their RSS measurement. We see that sorting the RSS information yields an improvement.

which is, ideally, closest. In Figure 6.11 we have employed this consideration and
made similar investigations of the needed iterations for error distance convergence
as in the previous sections.

We see in Figure 6.11 that sorting the RSS information has different impact on
the precision in the two scenarios. In Figure 6.11a we see a clear improvement in
the precision. However, for S2 the precision is only improved slightly. As the base
stations are all relatively close in this scenario, sorting the RSS information may
not provide significant changes in the PP update. Although the improvement for
S2 may not be significant, the improvement for S1 suggests that sorting the RSS is
relevant for the algorithm. In order to visualize the improvement we once more
simulate 25 Monte Carlo simulations of the same true positions investigated in the
above. The results can be seen in Figure 6.12 along with their respective ECDF.

We see in Figure 6.12a that, compared to the estimation in Figure 6.4b, the algo-
rithm now provides estimates which are much closer to the true position. However,
we still obtain estimates which are not consistent with the PP. Those estimates,
which do not fall into the cluster around the true position are in fact those where
the first RSS measurement used in the algorithm do not belong to the closest base
station, i.e. the one in the north east corner. Therefore, the algorithm updates
the mean of the bivariate normal distribution towards false positions which, in the
eyes of the algorithm, fits better with the RSS measurements. Meanwhile, we still
see a clear improvement which is validated by the ECDF in Figure 6.12b. Turn-
ing our attention to S2 we see that the estimates are now more clustered around
the true position. The ECDF also shows promising results when sorting the RSS
measurements, as observing errors larger than 5 m is now highly unlikely where
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(b) ECDF of the estimates in S1
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(c) 25 estimates (blue) in S2 of the same
true position (green cross).
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(d) ECDF of the estimates in S2

Figure 6.12: Estimates and their respective ECDF for the same true positions investigated
above where the RSS measurements have been sorted.
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Figure 6.13: Iterationplots for both investigated scenarios where we add additional base stations. We
see that the precision seems almost unaffected.

there were some probability of observing larger errors if we do not sort the RSS as
seen in Figure 6.8c. Therefore, we will argue, that sorting the measurements with
respect to attenuation will improve the precision of the algorithm.

Based on the above it seems that the algorithm favors estimates closer to the
base station which yields the least attenuated RSS measurement and as the covari-
ance matrix of the xp node is quickly reduced, information from other base stations
do not contribute.

6.4.2 Additional base stations

We will in this section explore the effects of adding additional base stations to the
environment while still sorting the RSS measurements as this has proven effective
for the algorithm. Once more, we have simulated the mean error convergence, see
Figure 6.13.

In both scenarios we see that adding additional base stations to the environment
does not improve the precision. This is, however, not unexpected as the estimate of
the PP position still converges fast and, therefore, the extra information provided
by the additional FPs do not contribute. We once more show the estimates and
ECDF of each scenario when we add more base stations, see Figure 6.14.

In Figure 6.14a we see that the estimates are not agreeing with the true posi-
tion of the PP. The reason for this might once more be caused by the algorithm
favouring updates from base stations with less attenuated RSS. Therefore, in this
environment, we have increased this source of error by adding more stations which
might provide better measurements than the close FP in the north eastern corner.
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(b) ECDF of the estimates in S1
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(c) 25 estimates (blue) in S2 of the same
true position (green cross).
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(d) ECDF of the estimates in S2

Figure 6.14: Estimates and their respective ECDF for the same true positions investigated
above when adding additional base stations.
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This is also evident in the ECDF. However, in S2, the estimates and ECDF show a
small improvement. The difference between S1 and S2 is that in the latter environ-
ment the base stations are closer and more encircling of the true position.

With the above performance tests we have explored the precision of the algo-
rithm. We have seen that providing information about the angles has a high impact
on the results and the bimodal problem from Chapter 5 is mitigated. Furthermore,
as the algorithm quickly converges it may be needed to sort the base stations ac-
cording to their respective signal strength such that the PP position is updated first
according to the least attenuated base station. It may, however, also be the fact
that the fading effects are not correctly incorporated and described in the inference
problem. Furthermore, it might have proven advantageous to use more observa-
tions from each base station, i.e. use RSS information at different time steps. Thus,
fluctuations in the signal strength due to fading may have been diminished. This
has, however, not been investigated in the present work.

In the next chapter we will present and discuss the measurement campaign
which has been conducted in order to test the performance of the algorithm on
real data.



7 | Measurement campaign and
testing

In order to test the performance of the algorithm when applied to real data, we
have conducted a measurement campaign. This campaign sought to acquire RSS
and phase measurements between a real PP and FPs which can be used in the
MMVMP algorithm. In this chapter we will discuss the measurement setup and
data acquisition and use the data for testing. We will discuss the performance
through the same tests as in the previous chapter such that we can better relate the
contrast between pure simulations and field testing.

7.1 Data acquisition

In this section we will describe the setup and how the data was acquired. The envi-
ronment in which the measurement campaign was done is a warehouse/production
facility at the RTX A/S headquarters. A picture of the room can be seen in Fig-
ure 7.1.

This environment offers a smaller storage room, marked with yellow in Fig-
ure 7.1, which is partitioned from the larger room by a thin plaster wall. Mounting
a base station in this room will enable the possibility of receiving NLOS compo-
nents if the PP is positioned outside the storage room.

For the measurement campaign we have four base stations at our disposal
which we are to position in the environment. With the FPs installed, we will
then position the PP at different locations and collect RSS and phase information
according to the mails discussed in Section 2.2.1. In Figure 7.2 we have depicted
the measurement environment with the positions of the FPs and the grid lines on
which we position the PP. As we will view the environment as a local coordinate
system, we have added coordinate axes which align with the walls.

Base stations FP1, FP2 and FP3 are all installed as depicted in Figure 7.3a just
above the ceiling panels. The ceiling panels are made of plaster and, therefore,
some attenuation might be expected. The last base station, FP4, has been mounted
inside the small storage room. It has, however, been mounted on a storage shelve

83
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Figure 7.1: The measurement campaign environment. The smaller storage room is marked with
yellow and the grid lines used for the PP positions have been depicted by blue lines.

22.5 m

13
.8
1
m

FP2

FP1

FP3

FP4

(0, 0)

Figure 7.2: Illustration of the measurement setup. FP1, FP2 and FP3 are all located 2.74 m above the
ground. The last base station, FP4, is located at a height of 2.32 m.
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(a) FP located in the ceiling. (b) FP mounted in the storage room.

(c) Splitter. (d) Central unit.

Figure 7.3: Different positions of the FPs and the central unit allowing communication between the
units.

as seen in Figure 7.3b. All base stations are connected with Ethernet cables through
a splitter to a central device which allows communication between the FPs and the
PP, see Figure 7.3c and 7.3d.

In Table 7.1 we have listed the positions of the base stations. Although the
localization algorithm has been developed for planar positioning, we have also
listed the height of each base stations in order to include it as a source of error.

In total, we have acquired measurements from 30 different PP positions in the
environment with 18 positions on the horizontal grid line in Figure 7.2 and 6 po-
sitions on each of the vertical lines thus representing a broad range of LOS and
NLOS components to each of the base stations. All positions are separated by one
meter. For each position, the PP was mounted on a tripod, see Figure 7.4, with a
height of 1.05 m in order to represent a portable device worn by an employee. This
also reduces the height difference between the PP and FPs.
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FP Position [m]
Height

[m]

FP1 [0.8, 1.20]T 2.74
FP2 [0.8, 10.52]T 2.74
FP3 [15, 13.31]T 2.74
FP4 [14.28, 6.57]T 2.32

Table 7.1: Positions and heights of the four base stations.

Figure 7.4: The PP is mounted on a tripod which is then positioned at each of the grid line positions.
The height of the PP is 1.05 m.
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(b) ECDF of the residuals.

Figure 7.5: Residuals of the derived model alongside the ECDF.

7.2 Comparing the RSS model to real data

In this section we will compare the relationship between RSS and distance obtained
from the measurements to the derived RSS model in (3.3). The constants in the
derived model have been chosen based on empirical studies. The RSS0 and PL0

term have been estimated in another scenario by measuring the RSS close to the FP
and 5 meters away (d0). Doing so, we obtain the empirical values, RSS0 = −26 dBm
and PL0 = −5 dBm. The pathloss constant, η, and the standard deviation of the
fading term, XG, have been discussed in Chapter 5 and chosen to be 3 and 10 dBm
respectively. We choose to focus on FP2 and, therefore, use the RSS and distances
between this base station and each of the 30 PP positions. In Table 7.2 we have
listed the information between the specific PP position and FP2.

The RSS values in Table 7.2 are averages of several mails. In order to compare
our model, we have generated mean RSS values for the same distances. Thus, to
see if we capture the mean signal decay, we have plotted the residuals of the model
and true data alongside the ECDF in Figure 7.5.

We can see that the overall tendency in the residuals seems fine. However, some
of the residuals differ from 0 and for some of the last measurements, the RSS is
highly attenuated which is not captured by the derived model. These fluctuations
are also apparent in the ECDF of the residuals. The standard deviation of the
residuals is σ = 6.23 dBm. It should, however, be stated that only 30 measurements
have been used to acquire Figure 7.5. The conclusions based on these figures will
be more statistical sound if more data points had been acquired and included.

Assuming that the RSS model captures the RSS and distance relationship, we
will in the following test the performance of the algorithm for a small range of the
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PPi RSS [dBm]
Distance

[m]

PP1 −26.02 1.87
PP2 −24.81 2.81
PP3 −31.28 3.78
PP4 −30.03 4.77
PP5 −31.57 5.75
PP6 −35.77 6.75
PP7 −37.11 7.74
PP8 −35.79 8.74
PP9 −37.53 9.73
PP10 −43.87 10.73
PP11 −47.28 11.73
PP12 −47.59 12.72
PP13 −41.45 13.72
PP14 −53.83 14.72
PP15 −50.04 15.72
PP16 −49.09 16.72
PP17 −47.10 17.72
PP18 −53.38 18.72
PP19 −32.80 9.73
PP20 −34.94 9.86
PP21 −38.09 10.09
PP22 −41.93 10.41
PP23 −41.23 10.82
PP24 −42.14 11.30
PP25 −53.71 11.84
PP26 −48.56 18.79
PP27 −63.81 18.91
PP28 −66.45 19.08
PP29 −63.77 19.30
PP30 −63.83 19.58

Table 7.2: RSS and distance from the 30 different PP positions to the FP2 base station.
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Figure 7.6: Mean error distance for position 5 (blue), position 9 (yellow) and position 21 (green). As
no angle information is provide the precision of the algorithm is insufficient.

measured positions.

7.3 Performance with real data

We will issue similar tests as done in Chapter 6. Initially, we will test the algo-
rithm while providing no prior knowledge. In Figure 7.6 we derive the mean error
distance. This has been done for the true positions PP5, PP9 and PP21. For these
positions, the PP is located "inside" the square suspended by the base stations.

The results in Figure 7.6 show the same behaviour as in the simulations. We
see that the mean error distance quickly converges but to a high mean for the
considered positions. This is, however, expected, as the angle between the PP and
each FP is updated based on the prior position of the PP. The prior knowledge
of the PP has once more been initialized as a bivariate normal distribution with
parameters

µ̄xp ∼ U ([−5 · dim, 5 · dim]× [−5 · dim, 5 · dim])

Σ̄xp =

[
106 0
0 106

]
and, therefore, the angle variables may be updated in a completely wrong direc-
tion. We have visualized the precision by providing 25 estimates, each obtained
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FP1 FP2 FP3 FP4

µv
π
4 0 − 3π

4 π

κ 2 1 2 1

Table 7.3: Prior angle knowledge of the base stations in the measurement setup.

on the basis of a different prior of the PP position. The ECDF of the respective
estimates for the positions has also been computed and presented. The results can
be seen in Figure 7.7.

Not surprisingly, we receive estimates at random angles from 0 to 2π due to
the prior of the PP. From the ECDFs we see that observing a somewhat useful
error distance is highly improbable. However, if we imagine that we rotate the
estimates towards the true angle, the distance estimates seem to have been inferred
correctly from the RSS and phase information just at a wrong angle. Therefore,
providing some angle information may provide an improved precision. We will,
therefore, use the same alterations from Chapter 6 by applying prior knowledge of
the angles. The prior information of the angles has been summarized in Table 7.3
which is identical to the information provided in scenario S2 in Chapter 6.

If the environment had allowed for a different base station installation, FP3

and FP4 would have been mounted in their respective corner, i.e. the north and
south eastern corners to provide a symmetric square room. Doing so, the prior
angle knowledge could have been chosen similarly to scenario S1 in Chapter 6.
To determine the mean error distance when providing angle information, we have
once more computed the iteration plots, see Figure 7.8.

In Figure 7.8 we see a great improvement in the mean error distance for position
5 and 9, both of which have more than halved due to the prior angle knowledge.
The algorithm also quickly converges. However, for position 21, the precision
worsens after a single iteration but then stabilizes at a high mean error. A reason
for this may be that both position 5 and 9 are located such that the base stations
encircle the true positions which is less true for position 21 which is somewhat
closer to the boundary created by the FPs. In order to visualize the effects of the
prior angle knowledge we once more show 25 estimates of the positions with their
respective ECDFs in Figure 7.9.

We see that for position 5 and 9 the estimates provided by the algorithm group
together in close vicinity to the true position. For position 5 the estimates are es-
pecially good and from the ECDF we can see that observing an error less than
2.5 m is highly probable. This is, however, not the case for position 9 but the errors
are all within 5 m. The precision of the estimates of position 21 is validated here.
We see that the estimates fall into a cluster which is close to the intersection point
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(a) Estimates of position 5.
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(b) ECDF of position 5.
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(c) Estimates of position 9.
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(d) ECDF of position 9.
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(e) Estimates of position 21.
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(f) ECDF of position 21.

Figure 7.7: Estimates and ECDFs of the chosen positions in the real setup. We observe the
same behaviour in the estimates as in the simulations.
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Figure 7.8: Mean error distance when we apply prior knowledge of the base stations.

of the circles originating in FP2 and FP3. This might be caused by inferior RSS
measurements which favors a different intersection point than the true position as
discussed in [27]. Before we issue modifications to the algorithm, as done in Chap-
ter 6, we will show the message approximations when using real data. However,
we only show it for position 21, see Figure 7.10.

We see that the message approximations do follow the true densities, even for
real data. However, we see that the PP position is updated towards a position out-
side the environment which may be caused by inferior base station measurements.
In Figure 7.11 we have presented the approximated and true message from the r
and v node to the xp node after a single message iteration.

We see that even though the measurement from FP2 has a mode right next to
the true position, the measurement from FP4 pushes the estimate outside the room.
Therefore, using the measurement from FP3 as the second update instead of FP4

might prove advantageous.
For the above performance tests we have updated the PP position with the

direct link FP first and then the other bases subsequently. As the base station
providing the least attenuated RSS measurement may not be used first we will
issue the same test from Chapter 6, where we sort the observations with respect to
their signal strength. Doing so, we wish to explore the impact on the mean error
distance which has been presented in Figure 7.12 alongside the results obtained
with sector antennas.

From Figure 7.12 we do not see any improvement in the precision of position
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(a) Estimates of position 5.
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(b) ECDF of position 5.
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(c) Estimates of position 9.
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(d) ECDF of position 9.
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(e) Estimates of position 21.
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(f) ECDF of position 21.

Figure 7.9: Estimates and ECDFs of the positions in the real setup. We see that using sector
antennas has a high impact on the precision.
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Figure 7.10: Message approximations for position 21 for each iteration when prior knowledge of the
angles is included. We see that the approximations agree with the true densities.
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Figure 7.11: Approximated (top) and true (bottom) messages from each branch in the factor graph
to the xp node after a single message iteration. The green dot and red cross represent the true and
estimated position respectively while the red dots represent the base stations.
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Figure 7.12: Mean error distance when we apply prior knowledge of the base stations and sort the
RSS information. The dotted lines represent the mean errors when the FPs are sorted.

5 and for position 9 we see that the mean error distance has increased. This may
be caused by the PP position being updated with a base station providing wrong
RSS measurements and that the fading descriptor in the algorithm does not infer
fading correctly to the distance. This may also be combined by the fact that, due to
the base stations positions, the angle information is somewhat difficult to initialize
and this problem may have been reduced if the base stations were mounted in the
true corners. Meanwhile, the mean error distance for position 21 has improved
by almost a factor three. This might imply that one of the base stations provided
inferior RSS measurements combined with a poor angle prior to the PP at this
position. In order to visualize the effects of sorting the FPs we show 25 estimates
of the positions with their respective ECDFs in Figure 7.13.

We see that sorting the RSS measurements has a positive effect on the estimates
of position 21. These are now closer to the true position but some of the estimates
do seem to cluster around another mode. This behaviour is also apparent in the es-
timate of position 9 which seem to be drawn towards the intersection of the circles
originating in FP2 and FP3. For position 5 the estimates seem somewhat unaffected
but the respective ECDF shows some degradation in the precision. However, due
to Figure 7.13, we might suspect that the difference in the ECDF may be based on
the used priors.

As we only had four FPs available we are not able to add additional base station
to this scenario. However, we saw in Chapter 6 that receiving information from
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Figure 7.13: Estimates and ECDFs of the positions in the real setup. We see that using sorted
measurements has a positive effect on position 21 but not on position 9.
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more bases in this setup did not provide a significant increase in precision.
For the sake of completeness, we will for a last performance test, show the

results of the algorithm if the true angles are provided and the prior mean of the
PP is chosen uniformly on the room with a low variance, i.e. we provide almost all
available information except distance, see Figure 7.14.

We now see that the algorithm provides almost perfect estimates of position
5 where the ECDF depicts that observing an error less than 1 m is now highly
probable. However, for positions 9 and 21 the algorithm does not capture the true
distance between the PP and FPs through the RSS. The estimates are, however, still
within a radius of 5 m. This might, therefore, be an indication that the fading
effects have not been modelled correctly and the latent distance information in the
RSS is, therefore, distorted.

Based on the above performance tests we argue that the MMVMP algorithm
returns similar results to those obtained in Chapter 6. However, we do also experi-
ence some problems with the algorithm. We have noted that due to the base station
placements, the angle priors are somewhat difficult to initialize and, therefore, a
more symmetric installation might be favorable. Furthermore, we do also observe
erroneous estimates if inferior base stations are used first in the update scheme.
We did, however, see that sorting the RSS measurements improved the precision.
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Figure 7.14: Estimates and ECDFs of the positions in the real setup. We see that providing
the true angle and initializing the PP position within the room returns almost precise
estimates.





Conclusion and Outlook

This thesis presents the derivation of a Received Signal Strength (RSS) based local-
ization algorithm for indoor positioning. Statistical methods have been explored
and an extensive system specification was employed. Based on the findings of
this initial exploration, a message passing algorithm has been derived. The al-
gorithm combines variational message passing and moment matching in which
the messages are restricted to the exponential family of probability distributions.
Adopting moment matching proved to be advantageous, as numerical optimiza-
tion of the Kullback-Leibler divergence can be avoided. Thereby it is also possible
to avoid time consuming derivations of the optimization problem. Some of the
approximated messages do, however, express deficient variability compared to the
true messages and, therefore, further work should be invested in this area.

Furthermore, an RSS model has been derived based on the log-distance pathloss
model in which fading effects are addressed through a Gaussian random variable.
The model has shown promising results for describing mean signal strength com-
pared to true data. However, only a small amount of data points were available
and, therefore, future research should investigate the model through a larger data
set.

To facilitate performance assessment of the algorithm, a simulation environ-
ment has been implemented for both simulated and real data. If the algorithm
is not provided any angle information, non-reliable estimates are obtained but
assuming base stations to be sector antennas highly increases the performance.
Therefore, the algorithm can be applied in scenarios where prior knowledge as-
sumes the object to be located inside the environment. However, performance
tests depict that the algorithm converges quickly based on the first observed base
stations and may, therefore, favor false position estimates. Sorting the RSS infor-
mation with respect to the least attenuated signal reduces this problem.

Future research should include investigations in the convergence of the PP po-
sition and the statistical relationship between RSS and distance. Thus more reli-
able distance estimates may be obtained. However, when prior angle knowledge
is applied and the measurements are sorted the algorithm shows reliable results.
In the investigated scenarios mean error distances of approximately 5 meters in
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simulated environments and below 5 meters for the inspected true positions in
the measurement campaign are obtained. Therefore, we argue that the moment
matching variational message passing algorithm is applicable in scenarios includ-
ing restaurants or large warehouses where prior knowledge of the angles can be
assumed.

The results of this project can impact the future direction of indoor localization
methods based on RSS. Due to the obtained mean error distances the methods ex-
plored here are able to infer latent distance information in the signal strength from
local base stations and based on these yield relatively reliable position estimates.
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A | FDMA/TDMA Multiple Ac-
cess

In order to efficiently utilize the communication resource, bandwidth, a multiple
access (MA) scheme needs to be used. This will ensure the possibility of allowing a
number of users in the environment to share the bandwidth and, therefore, access
the same base station. One of these MA schemes is the frequency division multiple
access or FDMA where each transmitter is allocated a different carrier frequency.
Therefore, each user can transmit with no limitations in time but only using a
portion of the bandwidth, see Figure A.1.

Figure A.1: Illustration of FDMA transmission planning [28]. The different colors represent a differ-
ent carrier frequency which is allocated to a user.

If time is shared instead of frequency, time division multiple access or TDMA is
used. In TDMA the users share a common carrier frequency in order to commu-
nicate with the base station. In order to distinguish the different users, each user
is allocated a single or multiple time slots in which they are allowed to transmit
information. Thus, when a user transmits data, they occupy the entire frequency
bandwidth and separation among users is determined in the time domain, see
Figure A.2.
The mentioned time slots are organized in a frame, see Figure A.3.

Before a frame is transmitted, a reference burst is emitted, which forces a mea-
sure of synchronization of all the users. They are then allowed to fill their respec-
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Figure A.2: Illustration of TDMA transmission planning [28]. The different colors identifies a single
user occupying a time slot. In each time slot the user is allowed to transmit data in the entire
frequency band. Each time slot is seperated in time.

tive time slot(s). However, as there may be significant delays between users, due to
propagation effects, each of the users will receive the reference burst with a differ-
ent phase, see Figure A.4. In order to compensate for the misalignment, each time
slot can be equipped with a guard time. In practice, this means that each time slot
is longer than the time needed for each user to transmit data. Thus, overlap in data
transmission can be avoided [28]. Furthermore, to overcome uncertainty in phase
relative to the reference burst, the user will send a preamble prior to the relevant
information. This preamble acts as an identification between base station and user.

The advantages of the TDMA method is that common radio modem equipment
can be used at a given frequency while being shared among N users. Furthermore,
the bit rates to and from the user terminals are readily changed by allocating more
or fewer time slots to the specific user and thus altering the time in which the user
can transmit data.

TDMA does, however, have some disadvantages. If the system consists of N
user terminals with equal bit rates the receiver of each individual terminal oper-
ates with a cycle of 1

N . This entails that the receiver terminals have a periodically
pulsating power envelope. Also, as high bit rates can be obtained with TDMA it
may be required to perform equalization against multipath propagation.

Usually, a communication channel can be allocated by combining both FDMA
and TDMA. In the FDMA/TDMA scheme a channel is a combination of a carrier
frequency and a TDMA frame, see Figure A.5

The channels derived through this model are called orthogonal channels as each
user have a unique combination of frequency and time slot.
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Figure A.3: Illustration of TDMA frames [28]. Prior to each frame a reference burst (blue box) is
transmitted. Next, the users occupy their designated time slot(s).

Figure A.4: Illustration of phase misalignment due to delays [28]. Delays among the users introduce
phase misalignment in the reference bursts. Transmission overlap is circumvented by adding guard
times in each time slot thus compensating for phase differences.
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Figure A.5: Illustration of the FDMA/TDMA scheme [28]. A channel is a combination of a carrier
frequency and associated TDMA frame.



B | Message derivation

We derive the message mgθ,r,rss→θ(θ).

mgθ,r,rss→θ(θ) = exp
[∫

r

∫
rss

mr→gθ,r,rss(r) ·mrss→gθ,r,rss(rss) · lnN (µr(r), θ−1)drss dr
]

= exp
[ ∫

r
q(r) lnN (µr(r), θ−1)dr

]
= exp
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.

In the deriviation we have used that the mean and variance of a log-Gamma ran-
dom variable [22], X, are given by

E[X] = ψ(α)− ln β

Var(X) = ψ(1)(α)

where ψ is the digamma function and ψ(1) is the polygamma function.
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C | Trapezoidal rule

Computing the moments of some of the derived messages in Chapter 4 requires
the need of numerical integration. In this appendix we present the trapezoidal
rule [29]. This rule seeks to approximate a finite integral as follows

∫ b

a
f (x)dx ≈ b− a

2
· [ f (a) + f (b)].

Several numerical integration methods exist such as Monte Carlo integration. Monte
Carlo integration samples a large amounts of points uniformly on the interval and
approximates the specific integral as

∫ b

a
f (x)dx ≈ V · 1

N

N

∑
i=1

f (x̄i)

where x̄i, i = 1, . . . , N are the samples on the interval and V is the volume of
the interval. From the law of large numbers this approximation returns the true
integral for N → ∞. We are, however, not interested in drawing a large number of
samples in order to compute the integral and, therefore, use the trapezoidal rule.
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