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Abstract:

Introduction: Intraoperative quality assessment of car-
diac surgery is an essential tool to ensure the quality
of the performed surgery and prevent potential revision.
Coronary artery bypass graft (CABG) surgery has been
shown to be related to a series of operative technical
complications but remains one of the only major vas-
cular surgeries that are not routinely intraoperatively as-
sessed. Additionally, methods widely used for evaluating
the anastomoses quality of the CABG-surgery are im-
practical to use or provide false insight into the quality
of the anastomosis, to which epicardial ultrasonography
(EUS) has been shown as a promising alternative as it
can visualize structural information of the anastomosis.
However, evaluation of anastomoses remains subjective
to the physician, leading to cases of lacking or unneces-
sary revision to which the purpose of this project was to
develop an objective quality assessment method.
Methods: 367 longitudinal EUS-frames recordings of
anastomoses were available for this project to which 96
frames were used to develop the proposed methods. The
methods comprised of a vessel detection algorithm, vessel
lumen segmentation, and patency estimation. Two differ-
ent segmentations were tested and compared: local-phase
based snake and Chan-Vese to investigate which method
produced the best anastomosis estimate.
Results: The methods were tested on the remaining 271
EUS-frames to which it was able to detect full or partial
vessel structures from 89.67 % of the test frames, achiev-
ing an average Dice coefficient from sufficient detections
of 0.8134 and 0.8187 for the local-phase based snake and
Chan-Vese, respectively. This lead to a patency esti-
mation of a maximum of 135 EUS-frames. Validation,
when applying the patency estimation to corresponding
manual annotations, resulted in the highest agreement of
88.15 % when compared with the Chan-Vese segmenta-
tion.
Conclusion: This project showed that the proposed
method was able to detect and estimate the patency
of anastomosis vessels from EUS-recordings, however,
challenges persist when estimating the edges defined by
manual expert annotations due to artifacts in the EUS-
frames.

The content of this report is freely available, but publication (with source reference) may only take place in agreement with the authors.



Resumé

Koronararteriesygdom er på verdensplan en hyppig dødsårsag, hvor op mod hver syvende dødsfald
estimeres at være relateret til sygdommen. Koronararteriesygdom kan behandles medicinsk og oper-
ationelt, hvortil koronararterie bypass graft (KABG) er en af de mest anvendte operationer i svære
tilfælde, hvor flere stenoser forekommer. Under en KABG-operation bypasses en stenose eller okklu-
sion med en arterie eller vene taget fra patientens brystkasse eller ben, hvilket er refereret til som
graften. Graften syes på den forsnævrede koronararterie og aorta, hvorved blodforsyningen til my-
ocardium genetableres. En række komplikationer er forbundet med operationen, hvilket kan medføre
en forhøjet morbiditet og mortalitet. En årsag til, at post-operativ morbiditet og mortalitet kan opstå
er, at anastomosen, som er forbindelsen mellem graft og koronararterie, kan indeholde en stenose som
resultat af syningsfejl. I 9 % af KABG-operationer forefindes stenoser i anastomosen umiddelbart
efter indgrebet. Anastomoserne kan kvalitetssikres intraoperativt for at nedsætte risikoen for post-
operative stenoser, dog er der ikke på nuværende tidspunkt en kvalitetssikringsteknik, der anvendes
på rutine basis under KABG-operationer. De typisk anvendte kvalitetssikringsteknikker fremstår
desuden som værende upraktiske eller har tendens til at give et falsk indblik af anastomosekvaliteten.
Hertil er epicardiel ultralyd en teknik, der har vist potentiale til at give strukturel information om
kvaliteten af de udførte KABG-operationer. På nuværende tidspunkt vurderes kvaliteten manuelt,
hvortil vurderingen kan forekomme subjektiv og dermed øge risikoen for at fejlvurdere stenosegraden
af anastomosen.

Formålet med dette projekt har dertil været at udvikle en automatisk model, der på baggrund
af epicardielle ultralydsbilleder, kan anvendes til objektiv vurdering af anastomosekvaliteten under
KABG-operationer. Den automatiske model, udviklet i dette projekt, var inddelt i tre delelementer
bestående af; karlumen detektering, karlumen segmentering samt en metode til estimering af karrenes
åbenhed. I projektet var 367 epicardielle ultralydsbilleder inkluderet, hvor 96 af disse var anvendt til
udvikling af modellen og de resterende 271 billeder var anvendt til validering af den udviklede model.

Til detektering af karlumen i epicardielle ultralydsbilleder blev der anvendt korrelationsberegninger
mellem billederne og prædefinerede korrelationsmasker, som var designet ud fra udseende af karstruk-
turer. Hertil var det muligt at identificere en række mulige kar-kandidater, hvorudfra ét af disse
blev valgt som det sande anastomose-kar. Udvælgelse af det sande anastomose-kar var baseret på
sandsynlighed, hvor Mahalanobis afstande, baseret på specifikke features gældende for end-to-side
anastomoser i længdesnit, blev anvendt. Denne detekteringsmetode resulterede i sufficient detek-
tering af 91,15 % anastomoser, hvor en sufficient detektering blev defineret som en detektering, der
havde en Dice koefficient over 0,5 sammenlignet med manuelle annoteringer af anastomose-karrene.
Sufficiente detekterede karlumener blev anvendt som initiel kontur til segmenteringen, hvor to seg-
menteringsmetoder var designet for at opnå den bedst mulige estimering af karlumen. Disse bestod
henholdsvis af en parametrisk og en geometrisk deformerbar model; local-phase based snake og Chan-
Vese algoritme. Local-phase based snake opnåede en gennemsnitlig Dice koefficient på 0,8134 sam-
menlignet med manuelle annoteringer af anastomoserne, hvortil Chan-Vese algoritmen havde en gen-
nemsnitlig Dice koefficient på 0,8187. Derudover viste resultaterne fra disse segmenteringsmetoder
overensstemmelse i omridset af anastomosekarrene sammenlignet med de manuelle annoteringer.
Til estimering af åbenheden af karlumen blev diameteren af koronararterien og graften beregnet i
135 segmenteringer, hvorudfra stenoser kunne identificeres. Stenoser i anastomose-åbningen kunne
estimeres med en nøjagtighed på 83,90 % og 88,15 % på segmenteringer udført af henholdsvis local-
phase based snake og Chan-Vese algoritmen, sammenlignet med stenoser fundet i manuelle anas-
tomose annoteringer. Den gennemsnitlige nøjagtighed af estimerede stenoser fundet i anastomose-
åbning, hæl og tå var 76,02 % og 76,05 % udført på segmenteringer fra henholdsvis local-phase based
snake og Chan-Vese algoritmen.

Den automatiske model udviklet i dette projekt, viste potentiale til at kunne anvendes som et
beslutningsstøttesystem til kvalitetssikring af anastomoser under KABG-operationer. Dette vil være
et system som vil kunne indikere mulige stenoser, for således at afhjælpe kirurgere under KABG-
operationer. Dog bør modellen optimeres i forhold til at kunne identificere stenoser i flere typer
anastomoser, derudover bør flere billeder inddrages af varierende anastomoser for således at gøre
modellen mere robust over for mulige forskelligheder.
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Reading guide
This master is divided into six chapters. The first chapter presents an introduction to the project as
an entirety. The second chapter contains the necessary background information for understanding
the main purpose of the project. Chapter three describes the implemented methods to solve the
problem derived from the previous chapter. Chapter four presents the results of the implemented
methods. Chapter five contains the subjects for discussion of the implemented methods and the
respective results, to which the sixth chapter states the conclusion of the project.
Citations are made in concordance to the Vancouver method: [citation number], e.g. [1]. If a citation
refers to an entire section it is placed after a full stop, and if it refers to single sentence the citation
is placed before full stop. If the following text relates to a specific source, the author of the source
is stated followed by the citation.
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1. Introduction

Coronary artery disease (CAD) is a major cause of death globally, to which it was considered the
leading cause of death worldwide in 2015. CAD develops when the coronary arteries are partially or
completely blocked, resulting in insufficient blood flow to the myocardium, and consequently, may
lead to heart failure or heart attack due to coronary ischemia. A typical cause of CAD is atheroscle-
rosis that is a build up plaque in the blood vessels, which hardens and narrows the vessels. [1, 2, 3]
The treatment of CAD is dependent on the degree of atherosclerosis, to which pharmacotherapy,
percutaneous coronary intervention (PCI), and coronary artery bypass graft (CABG) surgery are
possible treatments. CABG is one of the most performed surgeries and is often used for the more
severe and complex cases of CAD, as it ensures more complete revascularization. [1, 4, 5] During
a CABG-surgery the occluded coronary is bypassed with the use of a graft, which is a harvested
artery or vein often taken from the patient’s chest or leg. The graft is sutured to the aorta and the
coronary artery, reestablishing the blood flow to the myocardium. [1, 6] Even though CABG is a
commonly performed procedure, it is related to a series of complications, such as stroke and myocar-
dial infarction, increasing the risk of morbidity and mortality. Studies have shown that 2 − 8% of
patients undergoing CABG experienced myocardial infarction, and 1−4% had a stroke at a five year
follow-up [5]. The long-term clinical outcome of CABG is dependent on early graft failure, which
may be caused by sub-optimal patency in the graft or the bypassed coronary artery, as a result of
suture errors during the surgery. [6, 7, 8, 9]

Despite the importance of early patency, no imaging tools are used on a routine basis to quality
assess the patency intraoperatively during CABG-surgery [5]. However, several quality assessment
methods are available, including angiography, transit time flow measurement (TTFM), and epicardial
ultrasonography (EUS), to which different limitations and advantages are associated with each of
these methods. Angiography, which is an imaging technique, is the golden standard. However,
the technique is time consuming and usually not available in regular operating rooms, making it
impractical to use for intraoperative quality assessment of anastomoses [5, 10]. TTFM is a technique
used to measure blood flow using ultrasound. This method is associated with a high uncertainty
when measuring the blood flow in vessels with minor sub-optimal patency, and it is not possible
to locate stenoses in vessels [5, 11, 12, 13]. Lastly, EUS, which is also an imaging technique, is
susceptible to subjective interpretation of the images to which the quality assessment may vary
between operators. A strength of EUS is the ability to provide information about the internal
anatomy of the myocardium and the location of the stenoses in the vessels, making it possible to
evaluate possible suture errors [11, 14, 15]. EUS may be improved as a quality assessment technique
by making the evaluation of the vessel patency more objective in order to avoid variations between
operators.
Thus, in this project, it is aimed to design an objective quality assessment system in order to support
the surgeons in the evaluation of the anastomoses in EUS-images during CABG-surgery.
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2. Background

This chapter presents the necessary background knowledge for understanding coronary artery disease
and the associated symptoms and treatment. In addition, coronary artery bypass graft surgery is
described with the focus on quality assessment of the sutures, followed by a description of the current
quality assessment techniques. This background presents information which leads up to the problem
and the aim of this project.

2.1 Coronary artery disease

Coronary artery disease (CAD), also known as ischemic heart disease, is related to partial or complete
blockage of the coronary arteries which supply the myocardium with blood. [1, 2] CAD is globally
a major cause of death. In the United States approximately one of every seven deaths in 2014 were
related to CAD, and in 2015 it was considered the leading cause of death in the world, where 8.92
million deaths were estimated to have been due to CAD. [2, 3] Furthermore, it is expected that
14.2 % of all deaths in 2030 will be caused by CAD [16]. In 2017 the prevalence of CAD in the
United States was estimated to be 16.5 million among Americans aged above 20 years, which was
approximately 6.3 % of the adult population. These estimates were based on data from the National
Health and Nutrition Examination Survey 2011 to 2014. Risk factors associated with CAD include
age, sex, smoking, hypertension, hypercholesterolemia, diabetes mellitus, obesity, family history, and
lifestyle. [1, 2]
Partial or complete blockages in the coronary arteries reduce coronary circulation, which may lead
to heart failure or heart attack, as a result of coronary ischemia. The partial blockage is a build
up of plaque consisting of lipids and necrotic tissue in the coronary artery resulting in a gradually
local narrowing, known as a stenosis. The stenosis of the artery prevents a dynamic dilation of the
vessels when the myocardium has an increased need for oxygen, e.g. during physical or emotional
stress. When the diameter of the vessel lumen has decreased with 50 %, the myocardium may start
to require more oxygen than what can be supplied resulting in myocardium ischemia. Complete
blockage, known as occlusion, may suddenly occur in the case of a thrombosis at the stenosis, ceasing
blood flow to parts of the myocardium. Thrombosis is a result of plaque rupture, which typically
occurs for non-calcified plaques, where deposit in the plaque is released and coagulate, increasing
the risk of sudden occlusion in the coronary arteries. If no immediate treatment is performed, the
complete blockage of the coronary artery may ultimately lead to death. [4, 17, 18]

2.1.1 Symptoms
CAD can be divided into chronic coronary heart disease, also known as stabile angina pectoris, and
acute coronary syndrome, including unstable angina pectoris, myocardial infarction, and sudden
cardiac death. [1, 17]
Insufficient blood flow and oxygen supply to the myocardium may lead to different symptoms such
as angina, dyspnea, syncope and pulmonary edema. Depending on the type of CAD the symptoms
may vary or be non-existing. In patients with chronic coronary heart disease, angina during physical
or emotional stress is usually one of the first experienced symptoms as temporary ischemia develops
when the blood supply to the myocardium is insufficient. Stabile angina pectoris may progress
towards acute angina pectoris where more protracted, intense attacks of pain occur while in rest.
[1, 18, 19]
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2.1.2 Atherosclerosis
A healthy coronary artery contains none to a small amount of plaque that does not restrict the blood
flow to the myocardium. Such an artery is illustrated in Figure 2.1(a). A frequent cause of stenosis
in an artery is coronary atherosclerosis, which is a protracted formation of atherosclerotic plaques.
The early formations of plaque have a tendency to be located where there is a disruption in laminar
blood flow and places with oscillating shear stress, e.g near branch points and inner curvatures or
injured vessel walls. These vulnerable locations are characterized by an adaptive thickening of the
innermost layer of the arteries, tunica intima. This thickening starts developing after birth, and
through the years it will spread to the surrounding intima, to which plaque may cover most of the
coronary arteries in elderly people. With large formations of plaques follows a great risk of stenoses
and occlusions of the coronary arteries, either due to large regions of plaques blocking the blood
flow or due to formations of thrombus. [1, 4, 17, 20, 21, 22]
Plaques are composed of mixtures of fibrous tissue, cells and lipids and are characterized as regions of
thickened tunica intima, resulting in hardened and narrowed arteries. [1, 4, 17, 21] Plaque is formed
when low-density lipoprotein (LDL)-cholesterol gathers in the intima resulting in accumulations of
cholesterol engorged macrophages and later accumulations of smooth muscle cells and lipid rich
necrotic debris. [1, 21] In Figure 2.1(b) an artery with plaque formations resulting in a stenosis of
the vessel lumen, is illustrated.

(a) Healthy artery (b) Narrowed artery

Figure 2.1: Illustration of a healthy artery and a narrowed artery containing plaques on the inner
most layer, tunica intima. Edited from [18].

2.1.3 Diagnosis of coronary artery disease
Diagnosis of chronic CAD is based on several examinations, where the initial examination is an eval-
uation of symptoms, risk factors, and tests with resting electrocardiography (ECG). Abnormalities
in the ST segment and T waves in the ECG-signal might suggest angina and an abnormal Q wave
might suggest myocardial infarction, both indicating the presence of CAD. However, not all people
with CAD, especially stable angina, show signs of CAD in an ECG-test, making stress test ECG
relevant for people who are able to exercise. During a stress test the individual is instructed to
perform exercises while their ECG is being measured to investigate if any indications of CAD ap-
pear. Approximately 50 % of patients with a normal resting ECG-signal, show irregularities during
stress test ECG when having an episode of angina pectoris. However, the diagnostic value of ECG
is limited, thus diagnostic imaging techniques are recommended. [1, 23, 24]
Magnetic resonance imaging (MRI), and computed tomography (CT) with an intravenous contrast
agent, and coronary angiography may be used to visualize the coronary arteries. The golden standard
imaging tool for diagnosis of CAD is angiography, however invasive coronary angiography should
not be performed as an initial test. [1, 19, 25] Invasive coronary angiography is used to visualize
the coronary arteries directly to examine the degree of stenoses and occlusions, and is performed by
inserting a catheter into a blood vessel in the arm, groin, or upper thigh. Afterwards, the catheter
is moved towards the coronary arteries, usually guided by X-ray images. A contrast agent is then
injected directly into the coronary arteries to highlight the vessels on X-ray images, where potential
stenoses and occlusions may be visible as narrowed or blocked vessel lumens. [1] If patients have a
low risk of having severe CAD based on symptoms and initial tests, CT- or MRI-angiography are
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preferable, since they are non-invasive imaging alternatives to the traditional coronary angiography.
CT-angiography is the more popular choice, because of faster acquisition time and spatial resolution,
however, MRI-angiography is more suitable for people with poor renal function, since no contrast
agent is necessary. [26]

2.2 Treatment of CAD

The treatment of CAD depends on the degree of atherosclerosis, thus the goal is to decrease the
frequency and severity of angina symptoms experienced with CAD. Furthermore, it is attempted
to reduce the incidence of acute coronary syndromes, prolong life, and enhance the quality of life.
These goals can be accomplished by decreasing myocardial oxygen consumption and/or increasing
myocardial oxygen supply, whereas three options for treatments are at disposal; pharmacotherapy,
percutaneous coronary intervention (PCI), and coronary artery bypass grafting (CABG). The treat-
ment depends on the severity of the CAD, number and positions of the atherosclerotic lesions and
is decided by a multidisciplinary heart team. To determine the treatment, different risks factors are
evaluated, including age, gender, and medical history. [1, 4, 5, 16, 19]
Pharmacotherapy typically comprises medication which purpose is to decrease blood pressure, heart
rate, and cholesterol, so the risk for angina pectoris and myocardial infarction decreases [4]. In cases
of multivessel CAD, pharmacotherapy may be insufficient and instead myocardial revascularization
procedures, PCI and CABG, are performed [4, 5, 27].
PCI is a minor invasive operation where a balloon enclosed by a stent is directed up to the coronary
artery stenosis using a catheter and a guidewire through an incision e.g. in the groin. The balloon
with the stent is dilated and the stent is implanted in the vessel to scaffold the vessel. The stent is
often covered in antimitotic drugs which are slowly released in the vessel wall with the purpose to
inhibit cell proliferation and thereby prevent restenosis. The procedure is guided using angiography.
[1, 28, 29] A step by step illustration of PCI is shown in Figure 2.2.

Figure 2.2: Illustration of a heart with a stenosis in a coronary artery which is treated by PCI.
Step 1 illustrates the balloon enclosed by a stent in the coronary artery stenosis. Step 2 illustrates
that the balloon is dilated, and step 3 illustrates that the balloon is removed and the stent is implanted
to scaffold the vessel. Edited from [1].

CABG is often used for more complex and severe CAD, including left main coronary artery stenoses
or multivessel CAD, often with stenoses in more than three coronary branches, ensuring more com-
plete and safe revascularization. [1, 4, 7, 16, 19, 30, 31] It is one of the most commonly performed
operations with an average at a rate of 44 per 100,000 individuals stated by the Organisation for
Economic Cooperation and Development [5].
The CABG-procedure is a comprehensive operation where the heart is exposed from the chest. The
purpose of the operation is to bypass the coronary artery stenosis and/or occlusion to re-establish
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the blood flow in the coronary circulation using the patient’s own artery or vein as a graft. The
graft is a vessel harvested from the patient during the procedure and is sutured on onto the aorta
and to the native coronary artery beyond the stenosis or occlusion to establish the bypass. The
CABG-procedure is illustrated in Figure 2.3(a).
The graft vessel used in CABG can be both an artery and a vein, where the artery is usually the left
internal mammary artery (LIMA) that is taken from the chest, and the vein is often taken from the
leg and is known as a saphenous vein. [1, 6] The venous bypass graft is the most commonly used
graft in the procedure because it is less technical demanding than harvesting of the LIMA. However,
the artery graft provides better results according to the long-term patency and outcome. [6]

The suture establishment between the graft and coronary artery is known as an anastomosis and
is often performed as a side-to-side suture or an end-to-side procedure, where the side of the graft
is connected to the coronary artery, or the end of the graft is sutured to the side of the coronary
artery, respectively. The bypassed section of the coronary artery before the anastomosis is referred
to as the heel and the area after the anastomosis following the blood flow is known as the toe. [6, 7]
In Figure 2.3(b) the anastomosis types are illustrated with heel and toe outlined.

(a) CABG-procedure (b) Anastomosis suture

Figure 2.3: An illustration of CABG, where the bypass is established with grafts from the aorta
to the coronary arteries after the stenosis or occlusion. Edited from [1]. And an illustration of the
suture types; end-to-side and side-to-side with heel and toe marked. Edited from [32].

The CABG-procedure is performed through a median sternotomy to expose the heart. The procedure
can be performed on a beating heart, also known as off-pump coronary artery bypass grafting
(OPCABG), or the heart can be stopped using a cardiopulmonary bypass machine, which is known
as the conventional procedure. The cardiopulmonary bypass machine maintains the blood circulation
where a pump substitutes for the heart and an oxygenator oxygenates the blood [1].
If the operation is performed on a beating heart, the region of interest is stabilized to avoid movement,
while the rest of the heart still beats. OPCABG is a more technically demanding procedure but
may be beneficial in terms of complications of cardiopulmonary bypass, for instance, increased blood-
brain barrier permeability, stroke, respiratory failure, or systemic inflammatory reaction syndrome.
[1, 5, 16, 19] Furthermore, a minimally invasive direct coronary artery bypass grafting (MIDCABG)
procedure can be performed to avoid a comprehensive operation where a sternotomy is performed.
Instead, the bypass operation is performed through a thoracotomy, and the heart is not stopped
under the procedure. Thus, MIDCABG possesses the same advantage as OPCABG by avoiding
cardiopulmonary bypass. Moreover, the operation is beneficial since it is a minor invasive procedure
compared to the conventional bypass techniques, regarding the recovery period and reduced risk
of infections. However, concerns regarding anastomoses quality have been expressed because the
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procedure is performed on a beating heart through a small incision in the chest, which may be
challenging. [14, 33, 34]

2.2.1 Importance of early patency
Even though CABG is used to treat CAD, it is still related to a series of complications and risks in
mortality and morbidity. The complications include e.g. stroke, renal failure, myocardial infarction,
and death. Follow-up trials of CABG show an all-cause mortality of 5 to 15 % as well as myocardial
infarction in 2 to 8 % and stroke in 1 to 4 % at a five year follow-up. [5]
A study by Haaverstad et al. [35] has shown that in OPCABG up to 9.9 % of distal anastomoses
require revision, based on Transit time flowmetry (TTFM) quality assessment [35]. Similarly, by
using angiographic quality assessment in both MIDCABG and conventional CABG up to 9 % of
patients show significant stenosis immediately or during short term follow-up [34, 36].

The long-term clinical outcome is dependent on the early patency of the graft and anastomosis after
CABG-surgery [6, 7, 8, 9]. A study by Goldman et al. [8] has shown that if a LIMA graft was
patent within the first week of surgery, there is an 88 % chance that it will remain patent 10 year
post-surgery [8]. The patency of the graft and anastomosis can be evaluated by the FitzGibbon
grading system, which divides the patency into three grades; A, B, and O [34, 37]. The definitions
for the three grades can be seen in Table 2.1.

Grade Definitions

A Excellent graft with unimpaired runoff

B
Stenosis reducing caliber of proximal or distal anastomoses
or trunk to <50 % of the grafted coronary artery.

O Occlusion

Table 2.1: FitzGibbon grading system for patency of the vessels of the anastomosis. [34, 37]

Early graft failure may be caused by sub-optimal patency of the graft and anastomosis, that in turn
may be as a result of surgical technical complications. [5] These complications may occur due to the
challenges of performing CABG, such as identifying the ideal anastomosis site as fat and myocardium
may cover parts of the coronary arteries, as well as the presence of plaque and calcification within
the coronary arteries that may complicate suturing of the graft and coronary artery [38].

2.2.2 Anastomosis errors
During CABG-procedure sub-optimal patency may occur due to different surgical errors. These
errors are typically suture related, and can result in surgical stenoses of the coronary artery, graft,
and/or in the anastomosis orifice. The use of epicardial ultrasonography (EUS) may display the
location of such errors along with its type of error. Known suture errors are; pursestring effect,
cross-over, oversutured heel or toe, and deep toe stitch as shown in Figure 2.4.
Pursestring happens when sutures are tightened too hard before being fashioned, resulting in a
narrowing of the orifice in the anastomosis [11, 14]. An example of a pursestring suture is shown
in Figure 2.4(a), where the anastomosis appears obstructed in the EUS-image. Cross-over sutures
occur in cases where a stitch catches the opposite side of the anastomosis, to which the sides may be
pulled towards each other causing sub-optimal patency [11, 14]. In a longitudinal EUS-image this
may be displayed as a fixed obstruction inside the vessel lumen, as shown in Figure 2.4(b). Similarly,
the oversutured heel and toe are cases where sutures near the heel and toe catch adjacent tissue of
the anastomosis which causes either the heel or toe to be more enclosed, to which an oversutured
toe is illustrated in Figure 2.4(c) [14]. Another similar suture is the deep toe stitch which is an error
near the toe of the anastomosis. Instead of a stitch catching the opposite side of the anastomosis
it catches the coronary artery and thereby causes a narrowing in the coronary artery, as shown in
Figure 2.4(d) [11].
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(a) Pursestring suture, shown in EUS-image with associated cast, causing
narrowing of the anastomosis. Edited from [11].

(b) Cross-over suture, shown in EUS-image with associated cast, causing a
narrowing in the middle of the anastomosis. Edited from [14].

(c) Oversutured toe, shown in EUS-image with associated cast, causing nar-
rowing of the anastomosis at toe site. Edited from [14].

(d) Deep toe suture, shown in EUS-image with associated angioscopic image
with entry from ITA, causing obstruction of the coronary artery at toe site.
Edited from [11].

Figure 2.4: Visualization of different types of suture errors in anastomoses in longitudinal EUS-
images with a corresponding anastomotic cast or angioscopic image. LAD: Left Anterior Descending
Artery, IMA: Internal Mammary Artery (Graft), ITA: Internal Thoracic Artery (Graft).
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2.3 Quality assessment of anastomoses

Despite the importance of early patency, CABG is stated by Head et al. [5] to be the only major
vascular surgical procedure that is not intraoperatively assessed using imaging tools on a routine
basis. As shown in Figure 2.4 EUS may be used for quality assessment of the anastomosis allowing
the surgeon to immediately perform revision of the anastomosis to ensure optimal patency in the
vessels before closing the chest [11, 14]. However, EUS is one of several imaging tools available for
intraoperative quality assessment of anastomoses, where tools such as angiography and TTFM are
more commonly used in clinical practice. [10, 39]

2.3.1 Angiography
It is possible to assess the patency along the graft and coronary arteries through imaging techniques
such as angiography that is considered to be the clinical gold standard allowing for an evaluation of
the internal structure and lumen of the graft and anastomosis can be performed. [10] Angiography
quality assessment of the bypass graft is normally performed post-surgery [6], but can also be used
intraoperatively [5]. Examples of angiograms are illustrated in Figure 2.5. In Figure 2.5(a) a stenosis
is visualized, shown as the narrowing of the coronary artery. In Figure 2.5(b) the lumen of the artery
is dilated after PCI re-vascularization. [4]

(a) Before PCI re-vascularization (b) After PCI re-vascularization

Figure 2.5: Angiograms showing the coronary arteries before and after a PCI re-vascularization.
Edited from [4].

However, drawbacks of using intraoperative angiography is expressed, as it is costly and may be time
consuming to perform. Additionally, angiography is often not available in regular operating rooms,
making it impractical to use intraoperatively on a routine basis. Alternatively, surgeries would
have to be performed in a hybrid operating room. [5, 10] Furthermore, quality assessment using
angiography can be challenging and exposes patients to large contrast volumes, and in rare cases
the catheter may injure the graft or artery [6]. Given the impractical use of angiography, alternative
methods for quality assessment of the bypass graft is available from which the most widely used is
TTFM. [5]
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2.3.2 Transit time flow measurement
Transit time flow measurement (TTFM) is a widely used intraoperative quality assessment method
during CABG-surgery, where blood flow through the graft and anastomosis is measured. The transit
time flow is measured with the use of a probe containing two transducers placed on opposite sides
or the same side of a vessel with a small displacement in relation to each other along the flow
direction. Ultrasound (US)-signals are transmitted through the blood in both directions between
the two transducers, as illustrated in Figure 2.6. The transit time is then measured to calculate the
flow, which is possible since the velocity of the sound waves varies depending on the flow direction.
[39, 40, 41]

Figure 2.6: Illustration of the TTFM-procedure. Edited from [42].

Additionally, a pulsatility index can be obtained from the TTFM-signal, which estimates the resis-
tance of the blood flow. The pulsatility index is calculated by utilizing the maximum, minimum,
and mean flow, which can be found in a TTFM-signal, as illustrated in Figure 2.7.

Figure 2.7: An example of a TTFM-signal where mean, maximum, and minimum flow as well as
backward flow are indicated. Edited from [43].

Stenoses and occlusions will affect the pulsatility index. However, other elements, such as blood
pressure, competitive flow, and peripheral resistance might also have an influence on the flow, making
it unclear what the cause of a possible high pulsatility index might be. [41] The performance of
TTFM is sufficient when assessing truly good or severely stenosed anastomoses, where the stenoses
are greater than 75 %, while the performance is limited when assessing grafts with minor anomalies
giving false negative results and evaluations of the pulsatility index. Furthermore, the TTFM does
not give precise information about where a stenosis might be located. [5, 11, 12, 13].
TTFM interpretation is also a subject of debate as there are no universally accepted threshold
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criteria for when a graft is considered failed or not [39]. Interpretation of intermediate stenosis from
TTFM may vary between surgeons, making the decision for anastomosis revision subjective [13].
A study by Di Giammarco et al. [12] shows an example of the limitations associated with TTFM
for quality assessment by combining it with EUS. The example showed a TTFM mean flow and
pulsatility index outside cut-off values indicating a failed anastomosis, but EUS-images showed clear
patency through the anastomosis [12]. By combining the two modalities the study was able to avoid
37 unnecessary revisions of anastomoses than if evaluated on TTFM alone, and increased the positive
predictive value from 10 to near 100 %. This indicates the importance of the morphological insight
of anastomoses for quality assessment since TTFM may result in unnecessary revision or only detect
severe stenosis > 75 %. [12]

2.3.3 Epicardial ultrasonography
The idea of using epicardial ultrasonography (EUS) for coronary anastomosis quality assessment
was tested back in 1987 [44], but technical limitations of the transducer’s size made it impractical,
and prevented it from widespread use. Smaller transducers, used in recent studies have shown to be
more practical, since it is easier to access and assess the anastomosis sites. [11, 14, 15]
EUS possesses several uses during CABG in terms of estimating optimal placement of the anasto-
mosis, as well as it may display the internal anatomy and dimensions of the anastomosis using US.
This makes it possible to detect complications resulting in sub-optimal patency, such as errors in the
anastomosis, or detection of stenosis in the native coronary artery, as shown in Figure 2.4. [14, 15]
Stenosis would be observed as a small to prominent narrowing of the vessel lumen, and patency
can simply be measured as the diameter of the lumen at different marked areas of the anastomosis
[14]. The anatomical structure of the anastomosis can be visualized in both cross sectional and
longitudinal scans, where an example of a longitudinal EUS-scan is shown in Figure 2.8.

Figure 2.8: Longitudinal EUS-image of the coronary artery, graft, and anastomosis orifice.

EUS may also differentiate between stenosis caused by calcifications or surgical errors, based on
reflective information and shadowing in the image. This was shown to be a strength of the EUS
compared to angiography in a study by Budde et al. [11], where this differentiation was not visible
in the angiogram. [11] However, EUS is susceptible to subjective interpretation to which the quality
assessment of an anastomosis may vary between operators [11] and interpretation of the scan may
not always be immediate, to which the evaluation of the anastomoses is prolonged. Thus, the use
of EUS to quality assess CABG-procedures requires some degree of training to accomplish a mutual
interpretation of the visualization. [15]
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2.4 Related works for vessel segmentation

The available intraoperative techniques for quality assessment of CABG are not used on a routine
basis. Furthermore, several limitations are present such as the impractical use of angiography and
the low performance and inadequate information of location using TTFM. Consequently, EUS shows
advantages over these modalities, thus EUS remains the focus through the remaining project. Quality
assessment of anastomoses is still subjectively evaluated, which may result in either unnecessary or
lack of revision. To support surgeons during CABG, an objective intraoperative quality assessment
framework may be beneficial to determine optimal anastomosis patency.
Studies utilizing EUS-images for quality assessment were investigated. However, a limited amount
of studies addressing objective intraoperative quality assessment of anastomoses was found. Thus,
the literature search was expanded to include the quantification of other vessels through the use of
US-images.

A study by Jørgensen et al. [45] performed segmentation of vessel lumen in order to determine the
stenotic rate of the anastomosis performed on healthy porcine vessels. This was performed on cross
sectional EUS-images using active shape models, where the quality of the anastomosis was investi-
gated at heel and toe site, and compared to a reference area of the native artery. This study used an
automatic approach, to which watershed was implemented to detect the vessels without user interac-
tion and initiate the active shape model segmentation. Using this method an average Dice similarity
of 0.879 ± 0.073 was archived between model and ground truth segmentation. A limitation, pointed
out in the study, is that the use of active shape models is data dependent, to which the lack of data
may have caused the model to produce a larger error in smaller vessels, which may have affected
accurate determination of stenotic rates. Furthermore, an absence of plaque may be considered, as
the US-images were from healthy porcine vessels, and that plaque can cause shadowing which could
affect the amount of tissue included in the segmentation. However, it is assumed that this may be
accommodated if the method is trained on EUS-images containing plaque. [45]

Other studies addresses similar segmentation challenges of US-images, where a study by Santos
et al. [46] automatically segmented the vessel lumen and boundaries of carotid artery in longitudi-
nal US-images. These US-images were recorded using cervical US, and were thereby not recorded
intraoperatively. Furthermore, the carotid arteries did not contain severe atherosclerosis. The seg-
mentation of the vessels was performed using Chan-Vese level-set method, which Santos et al. [46]
state to be a method robust to speckle noise and can adjust well to lumen boundaries in US-images.
To avoid user interaction the Chan-Vese level-set method was initialized by contours found using
sobel gradient operators. This study achieved a mean overlap of 96.73 % between manual and Chan-
Vese segmentation. [46]

A semi-automatic approach for vessel segmentation is proposed by Ma et al. [47] which performed
segmentation of vessels recorded in cross sectional plane by using local-phase based snakes. This
study segmented the pelvic artery from swine and carotid artery as well as jugular vein from hu-
mans in US-images. The study provides no information about the presence of atherosclerosis and
the amount of plaque. Local-phase based snakes is described as a method that recently has received
increased attention as it is intensity-invariant compared to gradient-based segmentations. A Dice
similarity of 0.919 ± 0.021 to 0.944 ± 0.013 was obtained between the automated and manual seg-
mentation. This method was also compared to other snake based methods, and showed that the
local-phase based snake was superior compared to gradient-based snakes when detecting the true
edge of a vessel. The gradient based snakes were susceptible to detect false edges or overstep weak
edges, as they were based on gradient information which may not always give accurate and robust
segmentation as it was affected by poor image quality of US-images. [47]

Another semi-automatic approach for vessel segmentation is proposed by Hassan et al. [48] that
used modified fuzzy c-means clustering to segment the carotid artery in US-images. The images
were recorded on individuals with or without atherosclerosis with the purpose of plaque detection.
Segmentation was performed on longitudinal US-images of the carotid artery, from which image
features of the segmentation were used as input for a probabilistic neural network to classify the
vessel as either normal or abnormal. This combination allowed for an accuracy of 98.4 %. [48]
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2.5 Project aim

The focus of this project is quality assessment of anastomoses performed in CABG-operations,
which is revascularization of coronary arteries that are partially or completely blocked as a result of
atherosclerosis [1, 4, 18]. CABG is related to a series of operative technical complications in relation
to the suture [5]. Studies have shown, by the use of angiography, that up to 9 % of patients have
significant stenoses after CABG-operation during short term follow-up [34, 36]. Furthermore, the
long-term clinical outcome depends on the early patency of the grafts and anastomoses [6, 7, 8, 9].
However, CABG is currently the only major vascular surgery that is not assessed using imaging
tools intraoperatively on a routine basis [5].
Despite, the lack of use of intraoperatively quality assessment techniques during CABG on routine
basis, some assessment methods are available but with different limitations. One of the available
techniques is angiography, which is often used post-surgery due to its unavailability in the oper-
ating room, making it impractical to use intraoperatively. Additionally, it is a time consuming
and costly procedure to perform. [5, 6, 10] Another quality assessment technique is TTFM, that
utilizes flow information in the vessels to assess anastomoses. However, this technique also have
limitations, including a low performance when assessing stenoses smaller than 75 %, which may
lead to unnecessary revision of the anastomoses or false negative evaluations. Furthermore, TTFM
provides no location information of the stenoses. [5, 11, 12, 13] Alternatively, EUS can be used as an
intraoperatively quality assessment imaging tool. One of the strengths of EUS is that it is able to
differentiate between surgical errors and calcifications in the coronary artery. Additionally, EUS can
provide information about the internal anatomy and location of stenoses. [11, 14, 15] Commonly,
the previously mentioned assessment techniques have no available automatic analysis tools, thus the
techniques are susceptible to subjective interpretation to which the quality assessment may vary
between operators. Due to the impractical use of angiography and the low performance and inade-
quate information of location using TTFM, EUS is the focus of this project. EUS may be improved
by making the technique more objective to avoid the variations between operators. Thus, the aim
of this project is to develop an automatic and objective quality assessment model using EUS-images
with the intention of supporting surgeons in identifying sub-optimal patency in the anastomosis
vessels.

2.5.1 Objectives
In this project it is chosen to investigate longitudinal EUS-images, given that previous studies
have already identified vessels in cross-sectional US-images semi- or fully automatically [45, 47].
Furthermore, the project only includes images of end-to-side anastomoses, where both the graft and
coronary artery are clearly visualized.
The aim is decomposed into the following objectives:

• Detection of the lumen of the anastomosis vessels

• Segmentation of coronary artery and graft

• Measure internal diameters of the coronary artery and graft

• Calculate, detect, and highlight areas of sub-optimal patency in the vessels

• Validate the performance of the detection-, segmentation-, and patency estimation algorithm
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3. Methodology

This chapter presents a description and analysis of the available EUS-images. Afterward, the pro-
posed methods for fulfilling the aim is described, followed by the method used for validation of
detection, segmentation, and patency estimation.

3.1 Data description

EUS-sequences available in this project were obtained from patients who have undergone an on-
pump CABG-procedure on Aalborg University Hospital. The images were recorded intraoperatively
using the Medistim MiraQ Cardiac System with a 15 MHz L15 linear array probe. MiraQ is designed
for cardiac surgery and combines US-imaging and TTFM for immediate assessment of the quality of
CABG-procedure. The L15 imaging probe is a high-frequency US-probe and allows for direct contact
with cardiac tissue. [49] The use of high frequencies results in a higher spatial resolution at the
expense of attenuation of the US-waves, making high frequency transducers preferable when scanning
superficial tissue, such as the exposed coronary arteries, as opposed to low frequency transducers
which are more beneficial when scanning deeper tissues [50]. However, higher frequencies may result
in increased speckle noise [51], which is shown as a granular pattern resulting in a decreased contrast
resolution in the image and blurred edges between different tissue structures [52]. Speckle is caused
by the scattering of the US-waves due to irregularities in tissue. [53]
During EUS-recording the probe was mounted on an EchoClip, as shown in Figure 3.1, to improve
the image quality. The device stabilizes the imaging area with the use of two skin supports, where
a cavity between the two supports prevents deformation of the vessel. The device is designed to
keep the US contact gel in place, which increases the acoustic contact between the probe and the
tissue. [54] With the EchoClip, the anastomosis vessels can both be recorded in the longitudinal
and cross sectional plane, where an example of how the longitudinal scans are recorded, and the
resulting output image of the scan can be seen in Figure 3.1.

Figure 3.1: A three-dimensional illustration of an EchoClip device, where 1 is a fixing element that
ensures that the US-probe is properly secured in the EchoClip, 2 and 3 refer to the skin supports,
and 4 is the cavity where the vessel is placed to avoid deformation. The second image is an US-
probe mounted on an EchoClip device recording longitudinal sequences of a vessel, and the resulting
EUS-image. Edited from [54].
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In this project, only frames containing longitudinal end-to-side anastomoses were selected from the
available EUS-sequences. Furthermore, the data set was limited to only include EUS-frames where
the anastomosis orifice, heel and toe were clearly visualized. The EUS-frames were sorted on the
basis of the expert manual annotations of the anastomosis vessels, to which longitudinal EUS-frames
from 31 patients undergoing on-pump CABG-operation were available for this project. Some of these
patients had more than one anastomosis, to which EUS-sequences from one patient could contain
multiple anastomoses. A total of 367 EUS-frames were included, showing significant variations of
the anastomoses.
The available data was separated into two sets; a development- and test set with associated manual
annotations. EUS-sequences were randomly divided according to patients, thus all EUS-frames from
a given patient were used for either development or test. The development set consisted of 96 EUS-
frames from seven patients, and the test set consisted of 271 EUS-frames from 24 patients. The
spatial resolution of the EUS-frames were 574× 632 pixels.

3.1.1 Manual expert annotations
The manual expert annotations of the anatomical structures were performed on all included 367
EUS-frames by a researcher at Aalborg University. Different structures in the EUS-frames were
annotated individually and labeled accordingly as either graft, coronary artery, plaque, suture error,
side branch, or additional vessel structures in the frames, as shown in Figure 3.2(a). All the different
manual annotation labels were sorted to suit the aim of this project, meaning that the individual
labels needed to be directly influencing the patency of the anastomoses in both the graft and the
coronary artery. This excluded labels such as side branches and additional vessel structures in the
frames, as these were assumed irrelevant for the patency estimation of the anastomosis vessels.
A combined manual expert annotation was constructed, where the following labels were included;
graft, coronary artery, plaque, and suture errors. These were included even if sections of the coro-
nary artery or graft were separated into multiple segments in the EUS-frame. The combined manual
expert annotation was constructed as a binary image, where pixels constituting the graft and coro-
nary artery were labeled 1. Pixels constituting suture errors, plaque, and surrounding tissue to the
vessel lumen were labeled 0. An example of manual expert annotations and the combined manual
annotation are shown in Figure 3.2, where the individual labeled annotations in Figure 3.2(a) are
sorted and combined in a binary segmentation in Figure 3.2(b).

(a) Manual expert annotations (b) Sorted and combined manual expert annotation

Figure 3.2: An example of a manual expert annotations of individual elements present in the EUS-
image, and the corresponding combined manual expert annotation, where only relevant structures are
included.
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3.2 EUS-image appearance and analysis

The EUS-frames from the development set were analyzed to obtain descriptive characteristics and
variability of the anastomosis vessels, plaque, and the surrounding myocardium. This information
was used to support the design and development of the automatic quality assessment algorithm.
The appearance of the vessels in the EUS-images was characterized as a dark longitudinal region,
corresponding to the vessel lumen, surrounded by brighter intensities representing the vessel wall
and surrounding myocardial tissue, as seen in Figure 3.3 [55].

(a) EUS-image with missing acoustic contact (b) EUS-image with shadowing as a result of plaque

Figure 3.3: Longitudinal EUS-images with dark intensities in the graft (upper vessel) and coronary
artery (lower vessel). The surrounding myocardial tissue consists of brighter intensities. Speckle is
shown as a granular pattern visible in the tissue and vessel lumen. In (a) missing acoustic contact
resulting in no structural information is pointed out, and in (b) shadowing as a result of plaque is
pointed out.

Common to all EUS-frames was that the graft was located above the bypassed coronary artery,
and the anastomosis vessels appeared as a "y"-shape, as a result of the end-to-side suture. Given
the placement of the US-probe, the anastomoses were typically orientated horizontally in the EUS-
image. Furthermore, the location of the anastomoses were often centered in the image, but could
vary between subjects. Additionally, the size and shape of the anastomoses appeared differently
between subjects and frames.
Dependent on the recording, the EUS-frames expressed different artifacts, including speckle and
missing acoustic contact, which can be seen in Figure 3.3(a). A lacking acoustic contact resulted
in US-waves not being reflected in the tissue, thus no structural information of the tissue could be
provided.
The presence of plaque in the EUS-frames could cause shadowing artifacts, depending on the type of
plaque. The calcified plaque was shown as bright intensities which prevented structural information
deeper in the tissue to be provided, as this plaque was hyperechoic. Likewise, the soft plaque was
represented by high intensities, however, this type of plaque allowed underlying structured to be
provided. A EUS-frame where a reduction in structural information is visible as a result of the
presence of calcified plaque is shown in Figure 3.3(b).
To investigate the descriptive features of the anastomosis vessels in the EUS-frames, an analysis
based on the manual expert annotations of the structures in the frames was performed. The manual
annotations were used to isolate the vessels in the frames, allowing extraction of the descriptive
properties of the vessels. This was done for all frames in the development data set. The properties
that were seen as the most descriptive are listed in Table 3.1.
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Mean ± SD Minimum Maximum

Area 52,055.729 19,126.948 19,600.000 87,394.000
Mean intensity 56.349 15.444 33.321 102.277
MajorAxisLength 557.465 158.797 238.764 766.860
EquivDiameter 252.771 49.108 157.973 333.577
Extent 0.473 0.100 0.272 0.697
Orientation -10.535 11.561 -34.250 8.496
Deformity 0.031 0.005 0.024 0.043
Ratio 2.310 0.661 1.141 3.543
WeightedCenterY 203.442 72.959 103.400 402.352
WeightedCenterX 285.915 91.989 130.702 523.762

Table 3.1: Descriptive vessel lumen properties based on manual anastomosis annotations in the
EUS-frames from the development data set. The values shown are the mean, standard deviation
(SD), minimum, and maximum values for every property.

In Table 3.1 the mean is an average calculated between all frames, where a corresponding standard
deviation is shown along with the lowest and highest value for the given property. A property that
described the number of pixels that make up the vessel lumen was the area, along with the vessel’s
mean intensity. In addition, the length in pixels when fitted within an ellipse, called MajorAx-
isLength, and diameter of a circle created with the same amount of pixels as the vessel lumen, called
EquivDiameter, were investigated. Furthermore, the number of pixels of the vessel lumen that covers
its bounding box, also known as extent, the orientation in a range of -90 to 90 degrees, the amount
of deformity, which were calculated by dividing the boundary of the vessel with its area, the ratio
of the bounding box, and lastly the weighted centroids of the vessel, weighted according to location
and intensity of the vessel lumen were analyzed.

3.3 Proposed method

In order to fulfill the aim and objectives stated in section 2.5, the proposed method was separated in
three constituent parts; vessel lumen detection, vessel lumen segmentation, and patency estimation,
which were designed and implemented on the basis of the development set. The parts along with
their flow are shown in Figure 3.4.

Figure 3.4: Flow of the proposed method. A EUS-frame was loaded into the algorithm. An initial
contour of the vessel lumen was estimated using a detection algorithm and was used to initialize the
segmentation of the anastomosis vessel lumen, which further was used to estimate the patency in the
vessels. Lastly, the locations with sub-optimal patency were highlighted.

EUS-frames were loaded into the algorithm and individually processed: 1) the vessel lumen detection
algorithm that identified the vessel lumen of the coronary artery and graft and estimated an initial
coarse contour of the anastomosis vessels. 2) The vessel lumen segmentation produced a fine contour
estimation of the vessel lumen. 3) A patency estimation was performed based on the segmentation
to objectively evaluate the patency of the vessels. Patency of the segmented vessel lumen was
calculated to which areas of sub-optimal patency were identified and highlighted on the EUS-frames.
Sub-optimal patency was determined using the same criteria as the FitzGibbon grading.
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3.4 Vessel lumen detection

The vessel lumen detection was used to estimate the location, shape, and size of the anastomosis
vessels, which further constituted an initial contour used for the vessel lumen segmentation. The
detection was an essential part to automatically identify the vessels and assess the patency, and was
divided into the following sections.

• Identification and exclusion of missing acoustic contact

• Search for vessel candidates based on structure and appearance

• Merging of vessel candidates

• Probability based selection of anastomosis vessels

Methods used as a part of the detection utilized both structural and intensity information in the
EUS-frame to identify different structures, e.g. vessels, shadowing, and missing acoustic contact. A
probability was assigned based on the characteristics of anastomosis vessels observed in EUS-images
in section 3.2, where specific features were selected to identify the true vessels among several vessel
candidates. It was desired to detect and outline a rough contour of the anastomosis vessels as one
coherent object, including the graft and coronary artery, to obtain the best initial contour used to
initialize in the segmentation, as in concordance with the appearance of the anastomosis vessels in
the included EUS-frames.

Identification and exclusion of missing acoustic contact
Missing acoustic contact was observed to appear in several EUS-frames and was considered prob-
lematic as it could remove edge information of the anastomosis vessels or appear similarly to side
branches to the vessels. This could complicate the segmentation process of the true anastomosis
vessels, thus it became relevant to identify and exclude these regions from the EUS-frames.
The regions showing missing acoustic contact were observed as larger areas of uniform intensities
with a high reflection of US-waves at the top of the frame. The intensities of missing acoustic
contact appeared often similar to the intensities of the vessel lumen, however, contained near to no
speckle. Additionally, the regions were observed to be orientated vertically in the EUS-frame, where
no structural information of the underlying tissue structure was provided. Examples of EUS-images
with non-acoustic contact can be seen in Figure 3.3(a).
To identify these regions, a statistical texture analysis on the EUS-frames was performed. The
analysis was based on intensity histogram features, where local entropy of the frames was calculated
through equation 3.1. [56]

e = −
L−1∑
i=0

p(zi) · log2(p(zi)) (3.1)

The output of the entropy filtering, e, was a map containing scalar values representing the statistical
measure of randomness in the EUS-frames. High scalar values indicated high randomness, and lower
values indicated low randomness. In the equation p(zi) was the corresponding histogram of the gray
levels, z, in the respective frame, and L represented the number of distinct gray levels. The entropy
filtering was performed locally using a neighborhood kernel, which had a size of 25× 25 pixels. This
kernel size was chosen based on initial testing including several kernel sizes. The test showed that a
smaller kernel size responded to smaller objects, resulting in many potential areas of missing acoustic
contact, and a larger kernel size resulted in objects being merged in the frame. Thus, a kernel size
of 25 × 25 was suitable for the detection of larger objects, such as areas of non-acoustic contact.
The entropy filtering resulted in a reduction of the spatial dimensions, and to avoid this reduction,
a symmetrical mirror padding was implemented.
It was intended that the entropy response would differentiate between tissue information and missing
acoustic contact, given a uniformity of intensity in areas of missing acoustic contact, as seen in Figure
3.5(a). Thereby, these regions of missing acoustic contact would result in low randomness compared
to the remaining frame containing a higher amount of speckle noise and texture information. In
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Figure 3.5(b) an example of an entropy map produced from the EUS-frame shown in Figure 3.5(a)
is shown.

(a) EUS-frame (b) Entropy map of the EUS-frame (a)

(c) EUS-frame after identifying regions of low
randomness

(d) EUS-frame after converting the pixels inten-
sities of non-acoustic contact to 255

Figure 3.5: Example illustrating the processes of identifying missing acoustic contact in an EUS-
frame.

As shown in Figure 3.5(b) the presence of speckle produces high entropy values, shown as bright
intensities, and the lack of speckle, as seen in regions with shadowing or missing acoustic contact,
provided low entropy values, shown as dark intensities. To separate the entropy map into regions of
low and high randomness, the entropy map was binarized using a simple otsu threshold. In Figure
3.5(c) regions with low randomness are outlined. To avoid excluding objects located inside the vessel
lumen as shown in the example, a criterion stating that the object had to be orientated in the range
of 90 ± 5 degrees before being considered as missing acoustic contact. This range was specified
based on an analysis of 25 EUS-frames from the development set showing missing acoustic contact,
which were manually annotated. Based on the exclusion criteria, the two smaller objects in Figure
3.5(c) were not considered non-acoustic contact, and the major area to the right was considered as
non-acoustic contact.
To further identify regions of missing acoustic contact, specifically the high reflective information
above the uniform intensity areas, as seen in Figure 3.5(a), an additional criterion was defined.
On a column by column basis, the amount of identified missing acoustic contact was compared to
the length of the EUS-frame column. If the identified missing acoustic contact constituted 80 %
or more of the column, the entire column was considered as missing acoustic contact. The 80 %
threshold was based on the conviction, that the missing acoustic contact needed to be considerable
before excluding more of the EUS-frame. The pixels in the identified objects which constituted the
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missing acoustic contact, were changed to have a pixel intensity of 255 in the original EUS-frame, as
shown in Figure 3.5(d). This was to clearly differentiate between areas of interest, which appeared
dark, and the identified non-acoustic contact with the intention of simplifying forward operations
of the detection. Given the previous mentioned criterion it was possible to identify some areas of
shadowing, as these areas were orientated vertically in the frame and consisted of a low entropy.

Search for vessel candidates based on structure and appearance
The anastomosis vessels needed to be identified in the EUS-frame in order to provide an initial
contour for the segmentation. Identified vessel structures in the frame are referred to as vessel
candidates and were found based on the structural characteristics and appearance of the anastomosis
vessels.
Given that the appearance of the vessels was characterized by darker intensities in the vessel lumen
surrounded by white pixels, templates with similar appearance were created, where an illustration
of the template can be seen in Figure 3.6. Thus, information about the intensities, shape, and
orientation of the vessels was used to detect vessel candidates by calculating the correlation be-
tween structures within an EUS-frame and the intensity appearance in the predefined templates.
A normalized correlation between the EUS-frame and predefined templates was used as similarity
measure, given that the vessels in the frames appeared recognizable and similar.
The templates were designed to roughly imitate the appearance of the vessels, by arranging pixels
as a black tube, resembling the vessel lumen with white sections on either side of it, resembling the
surrounding tissue. The tube consisted of pixels with intensities of 0, and the surrounding tissue
consisted of pixel intensities of 255. To accommodate for the different orientations of the vessels,
the templates were orientated accordingly; 0, 45, 90, and 135 degrees, as shown in Figure 3.6.

(a) 0 degree (b) 45 degree (c) 90 degree (d) 135 degree

Figure 3.6: Illustration of the four predefined templates with different orientations.

The templates were further designed in three different sizes to accommodate for the varying vessel
diameters in the EUS-frames. The sizes of the predefined templates were determined based on an
analysis of the diameter of the anastomosis vessels in the 96 EUS-frames from the development
set, to which the minimum and maximum diameters of the anastomosis vessels were found to be
approximately 12 and 179 pixels, respectively. A template with a tube diameter of 12 pixels would
not be beneficial due to the presence of speckle in the EUS-frames as these would correlate with the
templates as well as the small vessels. Thus, it was chosen to create a template with a minimum
tube diameter of 50 pixels. Furthermore, it was chosen to create a template with a maximum tube
diameter of 200 pixels, due to a possibility of a larger vessel lumen diameter appearing in the test
set. Additionally, a template with a tube diameter of 100 pixels was designed to accommodate for
the large variation between the two templates. The dimensions of the templates varied depending
on the orientation and the diameter. The templates orientated 0 and 90 degrees were designed
with a length of 5, 10, and 20 pixels for each diameter, which was chosen to avoid elongation of
the vessels. The templates with an orientation of 45 and 135 degrees had a length of 25, 50, and
100 pixels, for each diameter, which was necessary in order to properly represent an angle of a vessel.

In order to use the templates to locate the vessels, a normalized correlation calculation was performed
between each template and EUS-frame. The normalized correlation was calculated using equation
3.2.

γ(u, v) =

∑
x,y[f(x, y)− f̄u,v][t(x− u, y − v)− t̄]

(
∑
x,y[f(x, y)− f̄u,v]2

∑
x,y[t(x− u, y − v)− t̄]2)0.5

(3.2)
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Where f was the original EUS-frame, f̄u,v was the mean of the image of f(x, y) in the region covered
by the template, and t̄ was the mean of the template intensities. [57] Perfect correlation would result
in values of one, and a perfect inverse correlation would result in values of −1.
Correlation between the EUS-frame and the predefined templates, varying in size and orientation,
resulted in 12 different correlation maps. Four correlation maps were obtained by adding the corre-
lation maps at different scales in the same orientation. Examples of these are illustrated in Figure
3.7.

(a) 0 degree (b) 45 degree

(c) 90 degree (d) 135 degree

Figure 3.7: Four correlation maps of an EUS-frame performed with the templates at four orienta-
tions, where the three scales are added beforehand.

The four correlation maps were further averaged to obtain one assembled correlation map. The
correlation information in the assembled correlation map was limited to only contain correlation
values higher than a threshold of 1

12 as this would exclude inverse correlations and low correlation
values. An example of an assembled correlation map with the threshold applied is illustrated in
Figure 3.8(b).
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(a) Original EUS-frame (b) Correlation map of an EUS-frame (c) Smoothed and binarized correla-
tion map

Figure 3.8: An EUS-frame with the assembled correlation map from correlation calculation between
the templates and the EUS-frame, and the resulting binarized image, where objects with areas smaller
than 1,000 pixels were excluded.

The assembled correlation map was further filtered with a 2D Gaussian smoothing kernel with a
standard deviation of 2, to fill in any minor holes and smooth the boundary to better mimic the
true anastomosis vessels. Afterwards, the images were binarized using otsu threshold, and objects
with an area smaller than 1,000 pixels were excluded, as shown in Figure 3.8(c). These small areas
were excluded given that it was desired to obtain a rough contour of the larger object in the frame,
and the small areas were not considered a substantial part of the anastomosis vessels. A threshold
of 1,000 pixels was determined based on the analysis of the EUS-frames in section 3.2, where it was
observed that the areas of anastomosis vessels consisted of at least 19,600 pixels, thus 1,000 pixels
was enough to exclude small areas without excluding areas belonging to anastomosis vessels.
Furthermore, objects with a mean intensity lower than 10 were excluded as this was likely to be
related to shadows or missing acoustic contact.

Merging of vessel candidates
The remaining vessel candidates were labeled and examined to determine whether multiple candi-
dates represented the same object, as shown in Figure 3.9(b), where the three objects outlined in
the upper left corner all represented the anastomosis vessels but appeared separated.

(a) Original EUS-frame (b) Binarized EUS-frame (c) Merged vessel candidates

Figure 3.9: The three vessel candidates, that are outlined with red, green, and blue, all represent
objects belonging to the anastomosis vessels despite not being connected. A distance and intensity
measure determine that they should be considered as one object, thus they are labeled identically in
order to be identified as one vessel candidate. Subsequently, the vessel candidates labeled identically
are merged to represent one vessel candidate.

To determine whether multiple vessel candidates represented the same object, the distance between
the centroid of the candidates was measured. If a distance between two candidates was less than
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200 pixels and had minimum a 95 % agreement in their mean intensities, they were labeled the
same. In Figure 3.9(b) the distance between the red marked and the blue marked vessel candidate
was 130 pixels with a mean intensity difference of 2.18 %, and the distance between the red and
green marked vessel candidate was 109 pixels with a mean intensity difference of 1.38 %. Thus, the
criteria for representing the same object were satisfied, to which the three candidates were labeled
identically and thereby considered as one object.
A limitation of this method was that the distance between vessel candidates was calculated based on
the centroid of the candidates, to which a long object could have a long distance to the neighboring
object despite their boundaries being very close. In order to accommodate this, a merging operation
was implemented, where each vessel candidate was dilated with a disk shaped structuring element
with a radius of six pixels. If a candidate overlapped with the neighboring candidate, they were
considered the same object and were labeled identically. A disk shape with a radius of six pixels
would not be big enough to merge the marked objects shown in Figure 3.9(b), to which only close
objects would be merged using this operation. Using a larger radius of the disk could result in an
undesirable merging of vessel candidates.
Given that the two above mentioned merging methods only assigned labels, and did not actually
merge the objects, an iterative morphological closing operation was performed until the objects
labeled identically were merged, as shown in Figure 3.9(c).

Probability based selection of anastomosis vessels
The labeled vessel candidates were assigned a vessel probability with the purpose of detecting the
true anastomosis vessels. The probability was calculated based on the features found in the EUS-
image analysis in section 3.2, to which the vessel candidate with the highest probability was selected
to be the anastomosis vessels.
To select the most likely vessel candidate to represent the anastomosis vessels, a probability for
each vessel candidate was calculated. The probability was based on the most influential features in
Table 3.1, which were determined through a calculation of the coefficient of variation, which was
calculated by dividing the standard deviation with the mean of the properties for the anastomosis
vessels in the development set. The normalized distributions for each coefficient of variation for the
features; Area, MeanIntensity, MajorAxisLength, EquivDiameter, Extent, Orientation, Deformity,
Ratio, WeigthedCenterY and WeigthedCenterX are shown in Figure 3.10.

Figure 3.10: The normalized distributions for each coefficient of variation of the features in Table
3.1.
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As it appears in Figure 3.10 the orientation was the feature with the lowest coefficient of variation,
meaning that the orientation of the anastomosis vessels often appeared in the same range in the
development frames. Several features were included for the selection of the vessel candidate repre-
senting the true anastomosis vessels as a single feature would not be robust to differentiate between
vessel candidates. Thus, the three features with the lowest coefficient variation; equivDiameter,
extent, and deformity, were included. These features showed a relatively low coefficient of variation
compared to the remaining features. Thereby, the four features; orientation, equivDiameter, extent,
and deformity were used as features to identify the true anastomosis vessels among the possible
vessel candidates.
The probabilities of being the true anastomosis vessels were determined using Mahalanobis dis-
tance, which is a statistical distance measure utilizing the mean and standard deviations of multiple
features. The Mahalanobis distances were calculated through equation 3.3. [58]

md =
√

(y − µ)Σ−1(y − µ)′ (3.3)

Wheremd is the distance in units of standard deviation from the mean feature vector, µ. y represents
the feature vector for the given vessel candidate, and Σ is the covariance matrix. [58]
The vessel candidate with the lowest Mahalanobis distance was the vessel candidate with the highest
probability of being the true anastomosis vessel, thus it was selected as the estimated vessel. In
Figure 3.11(b), two vessel candidates with their corresponding Mahalanobis distance are illustrated.

(a) Original EUS-frame (b) Mahalanobis distance of vessel
candidates

(c) Final smoothed detected anasto-
mosis vessel

Figure 3.11: The vessel candidates with the corresponding Mahalanobis distance, based on the four
features; orientation, equivDiameter, extent, and deformity. Lastly, the final detected anastomosis
vessels, which was smoothed with a Gaussian filter.

After identifying and extracting the vessel candidate with the lowest Mahalanobis distance, a filtering
of the object was performed with a Gaussian filter with a standard deviation of 10 to obtain a smooth
boundary of the object. The final estimated anastomosis vessel is visualized in Figure 3.11(c).
As seen in Figure 3.11(c) a hole in the detection boundary is present. This hole outlines bright inten-
sities, which could refer to a suture error or plaque. Thus, it was retained to guide the segmentation
techniques.
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3.5 Vessel lumen segmentation

The vessel lumen detection, described in section 3.4, provided an initial estimate of the location, size
and shape of the anastomosis vessels. However, the detection yielded only a coarse estimate, thus
segmentation was performed to obtain a more accurate estimate of the vessel lumen in the EUS-
frame. The segmentation was performed using deformable models, which is a widely used technique
in medical image segmentation due to its ability to accommodate for prospective variability in
anatomical structures. Deformable models are defined as curves or surfaces that deform in an image
domain, based on internal and external energies as well as user defined constraints. [59, 60, 61,
62] Furthermore, knowledge about the object of interest, such as shape and appearance, could be
considered and included, which potentially could improve the performance of deformable models [60].
By including this, it would be possible to adjust the models to the type of images and requirements
for a segmentation, making deformable models interesting when segmenting objects in EUS-frames
which contain speckle noise and indistinct or disconnected vessel boundaries.
Two types of deformable models were designed and tested to investigate which model was better
suited for accurate estimation of the vessel lumen and sub-optimal patency estimation in the EUS-
images; one parametric phase-based and one geometric intensity-based model. The parametric model
was designed and implemented as a local-phase based snake, which was guided by local energies in the
image domain, where the geometric model was designed and implemented as a Chan-Vese algorithm,
which was based on region information.

3.5.1 Parametric deformable model
In this project it was chosen to design a parametric deformable segmentation model, to which the
local-phase based snake was chosen. This segmentation technique was based on curves defined as a
discrete number of control points that were located along the contour of the object obtained in the
detection process. The control points were uniformly placed for every 10 pixel along the boundary
of the detected vessel lumen, as this was presumed to be appropriate according to the curve’s ability
to adapt to the shape of the anastomosis boundary.
Displacement of the control points was influenced by internal and external energies and user defined
constraints, which determined the deformation of the curve. As opposed to the traditional snake, the
local-phase based snake was guided by phase information as an external energy instead of gradient
information in the image domain. This possessed advantages when working with EUS-images as
these generally consist of relatively poor image quality as they contain speckle noise, low contrast,
or low signal-to noise ratio [47]. These characteristics of the image might have directly affected the
gradient information of the image and made detection of the true edge challenging during segmen-
tation. By using phase information of the image, a more robust and accurate segmentation might
be achieved, as this technique is intensity invariant, meaning that the energies on all edges would
be identical independent of their strength in intensity contrast. [47]

In order to determine a curve that estimated the boundary of anastomosis vessels, the internal and
external energies had to be minimized, thus the deformation of the curve was regarded as an energy
minimizing problem. [59, 63] The total energy that influenced the curve are described in equation
3.4, where the internal energy, Eint, is weighted by an adjustable parameter, α, and the external
energy, Eext, is likewise weighted by an adjustable parameter γ.

Etotal =

∫ 1

0

αEint + γEextds (3.4)

Internal energy in the local-phase based snake

The purpose of internal energy was to preserve the smoothness of the curve by globally minimizing
the summation of energies that influenced each individual control point along the curve. The internal
energy, Eint, that influenced the parameterized curve, was expressed by equation 3.5.

Eint(C) = −
∫ 1

0

eint(C(s))ds (3.5)
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In equation 3.5 the parameterized curve is represented as C(s) = {x(s), y(s)} and eint is the internal
energies that influence the individual control points locally. In this project two types of internal
energies were utilized to deform the parameterized curve, to which these can be defined as in equation
3.6.

eint(C(s)) = α

∣∣∣∣δCδs
∣∣∣∣
s

+ β

∣∣∣∣δ2C

δs2

∣∣∣∣
s

(3.6)

The first term, first order derivative between the control points, determined the distance between
the control points, and encouraged the curve to shrink, in order to avoid large distances between
the points and thereby restrict the shape of the curve. The second term, second order derivative
between the control points, controlled the rigidity of the curve, and encouraged the curve to be as
smooth as possible to fit the anastomosis vessels, which had a smooth boundary. The parameters α
and β weighted each term, and could be adjusted according to the segmentation problem. [59, 63] In
order to determine these parameters, a parameter search was performed, as described in section 3.6,
to investigate which parameters and their combination resulted in the best segmentation estimation
of the anastomosis vessels in the EUS-frame.

External energy in the local-phase based snake

The external energy was derived from the image information, which in this project was defined by
phase information of the EUS-image. To utilize the phase information of an EUS-image, a local-
phase map was calculated. The frames were initially decomposed into several scales, which was done
as vessels of different widths appeared in the frames [64]. The image scaling was achieved similarly
to a method used in a study by Ma et al. [47], where a Gaussian pyramid reduction was used to
scale frames, in order to detect the lines and edges of different sizes. Gaussian pyramid reduction
is an iterative process that decreases the density and resolution of an image to represent pattern
information at different scales [65]. The resulting image scales had dimensions that were 1

2 ,
1
4 , and

1
8 of the original image. An example of the Gaussian pyramid reduction of an EUS-frame is shown
in Figure 3.12.

Figure 3.12: Illustration of four scales of an EUS-image produced using gaussian pyramid reduc-
tion.

A local-phase map was constructed by filtering the frames with 2D gabor filters at each scale. The
purpose of using these filters was to combine a line- with an edge-searching filter in the spatial
domain [66], in order to detect both constant intensities represented by a line as well as intensity
changes over an edge.
A gabor filter consists of a complex pair of filters which is represented as a real and an imaginary
part, thus the filter response was a complex value [47, 64]. A gabor filter consisting of a real and an
imaginary part with the filter response in the complex plane is shown in Figure 3.13.
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(a) Real part (b) Imaginary part

(c) Filter response in the complex
plane

Figure 3.13: 2D gabor filter pair consisting of a real- and imaginary part and the corresponding
filter response in the complex plane. [66]

The real part is the line-searching filter, where the imaginary part is the edge-searching filter [64].
The real part of the filter, as shown in Figure 3.13(a), was designed to detect constant intensities in
a line. Contrary, the imaginary filter, as shown in Figure 3.13(c), was designed to respond on sharp
intensity changes, which correspond to an edge.
The gabor filters were designed with a wavelength and spatial frequency bandwidth which deter-
mined the appearance of the filters. These parameters were tested in a structured parameter search,
as described in section 3.6, to investigate which parameter values provided the most accurate seg-
mentation of the vessel lumen.
Given that the lines and edges appeared at different orientations in the EUS-frames, several gabor
filters at different orientations were designed. The filters were orientated with an angle of 0, 45, 90
and 135 degrees to the four different image scales. The four angles were chosen, as initial testing
showed that four equally spaced orientations were preferable, as it was possible to detect most edge
structures in EUS-image.
All of the filter responses at each image scale were subsequently summed into a single response to
combine all orientations for each scale. However, a simple summation of the orientations would cause
a cancellation effect in the filter response as a result of the different filter orientations. An example
is that the filter response that will be produced from white to black intensities in an image may be
90 degrees and if an opposite filter passes, it will be negative 90 degrees. When the two responses
are added this will result in 0 degrees, canceling the response. An illustration of this effect can be
seen in Figure 3.14.
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(a) Binary image (b) Filter response at orientation 0
(top) and 180 (bottom) degrees

(c) Added filter response

Figure 3.14: Illustration of cancellation effect where a vertical edge in a binary image is passed by
a filter with 0 degree and 180 degree orientation. Lastly, the added response of the two orientations,
where the responses are canceled out, is illustrated.

To avoid the cancellation effect, the phase of all the filter responses was flipped along the real axis
as proposed by Lathen et al. [64], and then added together at each scale. This was done by taking
the absolute value to the imaginary part of the filter response.

To generate a global phase map, the phase information at the different scales with the summed
orientations further had to be combined. Before calculating the combined filter response between
the scales, they were composed back to their original image size 574× 632 pixels. This was achieved
through equation 3.7.

p(u) =

∑N
l=1|pl(u)|γpl(u)∑N

l=1|pl(u)|γ
(3.7)

This equation was used by Lathen et al. [64] and favours high strength responses from the filter at
the different scales. In the equation p(u) was the combined filter responses for all scales, where pl(u)
represented the filter responses from each individual scale, l. N represented the number of scales,
and γ was a parameter that weighted the filter responses. [64]
The phase map further had to be normalized, in order to be used to guide the snake. A known way
to accomplish this, was to calculate the asymmetry measure of the filter response. This produced a
feature map where edges had values near 1 and homogeneous regions had values near 0. The feature
asymmetry map is given by equation 3.8.

FA =
|Im(p(u))| − |Re(p(u))| − T√
|Im(p(u))|2 + |Re(p(u))|2 + ε

(3.8)

In equation, 3.8 Im(p(u)) represented the imaginary part of the combined filter response p(u), and
Re(p(u)) represented the real part. ε was a small constant used to avoid cases of zero division, and
T was a noise threshold parameter, that was a constant value of 0.1. [47] An example of a feature
asymmetry map constructed from an EUS-frame is visualized in Figure 3.15.
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(a) Original EUS-frame (b) Phase map of the EUS-frame

Figure 3.15: An original EUS-frame with the corresponding feature asymmetry map.

Figure 3.15(b) comprised the external energy, to which the boundary of the detected vessel lumen
was guided by the information in the given phase map. When the energy was minimized or a
maximum number of iterations was reached, the deformation of the curve stopped and the final
segmentation was determined.

3.5.2 Geometric deformable model
In this project, the Chan-Vese algorithm was used as an alternative approach for segmenting the
anastomosis vessels to which the vessel lumen detection was used as an initial curve. The Chan-
Vese algorithm is a geometric deformable model, which is based on the level-set method, where an
evolving curve is represented by an implicit level-set function. The curve is evolved by utilizing
internal and external energies, where the internal energy can be derived from curve information,
and the external energies can be derived from either local edge information and/or global region
information. A limitation with only using local edge information is that the model may be more
sensitive to noise, where a region based model may be more robust, which was assumed preferable
when working with EUS-images, as these contained noise in terms of speckle, as mentioned in section
3.2. Furthermore, the initial curve, derived from the detected object, could not be guaranteed to
be close to the vessel lumen boundary. Thus, a local-edge based segmentation might not be able to
find the true edges as the curve might stop too early at a local minimum, to which the Chan-Vese
algorithm may be preferable [60, 67].
The level-set function, which represented the contour as a distance map, was zero at the curve,
known as the zero level-set, and was then either positive or negative outside and inside the curve.
The concept of curve evolution is illustrated in Figure 3.16, where the curve is represented as the
contour of a plane. The function evolved under the influence of internal and external energies.
[60, 67] As the level-set function, φ(x, t), evolved, the topology of the implicit curve may change.
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Figure 3.16: Curve evolution based on the level-set method. The contour, C, is represented by the
red dotted line, where it is illustrated that the level-set method is able to adapt to topological changes
during curve evolution. [68]

The Chan-Vese algorithm is derived from the Mumford-Shah functional, which is implemented into
a level-set framework. The Mumford-Shah functional segments an image into regions with homoge-
neous intensities. In a simplified Chan-Vese algorithm, the segmentation was based on a bimodal
case, where the EUS-frame was divided into object and background; an object inside and outside the
curve. A simplified equation of the Chan-Vese algorithm with the energies utilized in this project is
shown in equation 3.9. [69, 70]

F (c1, c2, C) =λ1

∫
inside(C)

|I0 − c1|2dxdy + λ2

∫
outside(C)

|I0 − c2|2dxdy + µLength(C) (3.9)

Where I0 was the original EUS-image in the image domain Ω, c1 and c2 represented the mean
intensities inside and outside the curve, denoted C. The first and second terms in the equation was
the data terms, which penalized the difference between the original EUS-image and the estimated
model. The third term was the regularization term, which penalized the length of the curve. By
including this regulation term it was possible to regulate the behavior of the curve evolution, and
ensured that the intensity information in the image was not the only feature determining the curve
evolution. This was relevant to include since the EUS-images contained unclear and indistinct edges
due to the speckle noise and artifacts.
λ1, λ2, and µ were adjustable parameters that weighted the three terms. These were tested in a
structured parameter search in section 3.6, in order to obtain the most accurate segmentation of
the vessel lumen. By changing λ1 and λ2, the external energy was varied, and by increasing these
parameters, the intensity information in the image was weighted higher. The parameter µ adjusted
the length of the curve, where a high value resulted in a smoother curve, and a small value resulted
in a more accurately fitted curve.
When transforming the Mumford-Shah functional to a level-set framework, the curve was represented
by the zero level-set of the level-set function, φ. In order to transform the functional to a level-set
framework, the Heaviside function, H(φ), and the Dirac Delta function, δ(x), were utilized, as shown
in equation 3.10. [60, 67, 69]

F (c1, c2, φ) =λ1

∫
Ω

(I0 − c1)2H(φ)dxdy + λ2

∫
Ω

(I0.c2)2(1−H(φ))dxdy + µ

∫
Ω

δ(φ)|∇φ|dxdy

(3.10)

Where the Heaviside function is approximately either one or zero depending on whether the level-set
function is positive or negative, as seen in the following formula.

H(φ) =

{
1 φ > 0
0 else

(3.11)
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The Dirac Delta function was used in the length term, since it excluded everything except the
boundary, as it was one at the boundary and zero everywhere else, as shown in the following formula.
[67]

δ(~x) =

{
1 ~x = 0
0 else

(3.12)

With the purpose of finding the best contour estimation of the anastomosis vessel boundaries, the
energy, F , should be minimized with respect to φ to which Euler-Lagrange equations were utilized.
[60, 67, 69] In order to minimize the energy, the Euler-Lagrange equation should approach zero, to
which gradient descent was utilized. The level-set function adjusted the implicit curve iteratively and
continued to deform until a stopping criterion was reached. The segmentation process would stop
if the contour was unchanged during five consecutive iterations or if a specified maximum number
of iterations was reached. A maximum number of iterations was a necessary stop criterion, due
to the presence of speckle, shadows and structures around the anastomosis vessels appeared with
similar intensities. This could result in the contour leaking beyond the vessel boundaries and include
additional structures as shadows. To achieve the most optimal value for the maximum number of
iterations, several values were tested in a parameter search.

3.6 Parameter search

The two segmentation methods; local-phase based snake and Chan-Vese were tested in a structured
parameter search to determine which parameter and combinations would produce the most accurate
estimated segmentation of the anastomosis vessel. The specific parameters and ranges are described
and separated into two sections; local-phase based snake and Chan-Vese.
The parameter searches were performed on the selected development set, consisting of EUS-frames
from seven patients. The two segmentation techniques were both initialized with an initial curve
obtained from the vessel lumen detection.
To examine the performance of the segmentation techniques with the different parameters and com-
binations, a Dice similarity coefficient was calculated between the automatically segmented vessel
lumen and the belonging manual expert anastomosis annotation. The Dice coefficient is a measure-
ment for how similar two images are, where the output value is between 0 and 1, where 0 represents
no similarity and 1 represents a perfect match of the two images. The Dice similarity measure was
calculated using equation 3.13.

Dice(A,B) =
2 · TP

2 · TP + FP + FN
(3.13)

The Dice coefficient was dependent on the amount of true positive (TP ), false positive (FP ), and
false negative (FN) pixels that were in the automatically segmented image when compared to the
manual annotations.
The optimal parameter combination for both segmentation techniques was selected through an
analysis of the mean Dice coefficients and standard deviations calculated from all EUS-frames.
To avoid disturbing the result of the parameter search, detections with a Dice coefficients of 0
were excluded. The Dice coefficients were plotted to get an insight into the variation of the Dice
coefficients between the several parameter combinations. The parameter combination was assumed
the most suitable in the segmentation of EUS-frames when a high mean of the Dice coefficients and
a low standard deviation were obtained.

Local-phase based snake
The optimal performance of the local phase-based snake segmentation was found by testing param-
eters for both the generation of the phase map and the behavior of the snake. The parameters
associated with the phase map were related to the characteristics of the gabor filter, where wave-
lengths in the interval 20 − 28 were tested for every 4th value, along with a spatial frequency
bandwidth for every 0.2 value in the interval 1− 1.4.
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The tested snake parameters were the weights of the two internal energies and external energies,
all within the interval 0.25 − 0.75 with intervals of 0.25. Furthermore, a parameter search on the
maximum number of iterations was performed in the interval 30− 50 for every 10th value.

Chan-Vese
In the parameter search for the Chan-Vese segmentation the weights for the internal and external
energies were tested. The external energies, λ1 and λ2, were tested with weights in the interval
0.3 − 0.9 for every 0.3th value, and the weight for the internal energy µ, which determined the
smoothness of the curve, was tested in the interval 1.5 − 3 for every 0.5th value. Furthermore, the
number of maximum iterations was tested for every 50th value in the interval 100− 200.

3.7 Patency estimation

The patency estimation was implemented to identify and highlight possible sub-optimal patencies in
the vessel lumen. The intention was to provide decision support in terms of an objective assessment
of the anastomoses during CABG-procedure and indicate whether a revision was to be considered.
In order to determine the patency of the segmented vessels, the cross sectional diameter throughout
the vessels was to be calculated. To accommodate the variations of orientation and shape of the
anastomoses, a centerline along the coronary artery and graft was constructed. The purpose of the
line was to measure the diameter orthogonal to the centerline which followed the vessel course. The
centerline was constructed by using continuous morphological erosion, only allowing the object to
maintain a width of one pixel, and thus constituting the skeleton of the anastomosis, as shown by
the example in Figure 3.17(a).

(a) Centerline for the segmented vessels

(b) Orthogonal scanlines defined along the path of the centerline

Figure 3.17: EUS-frame where the red boundary represents the boundary of the vessel lumen, and
the white line within the boundary is its centerline. The blue lines are orthogonal scan lines which
were used to determine the diameters of the vessels.
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As the data was sorted to contain only end-to-side anastomoses, the centerline was ideally made
up of one branch point near the merge point between the graft and the coronary artery, and three
endpoints; two at each end of the coronary artery and one at the end of the graft. Equivalently, this
notation along with the fact that the graft was located above the coronary artery, made it possible to
automatically identify which of the three lines originating from the branch point belonged to either
the graft or coronary artery. In cases where just one vessel was detected or extra branches were
segmented it was not possible to divide the vessels into graft and coronary artery, as there would be
no specific landmarks or characteristics identifying each vessel.
To better determine the patency, the centerline was decomposed into linear segments, by selecting
every 10 points along the centerline and constructing a linear line between the points. From these
lines, angles were calculated to which orthogonally placed scanlines measured the diameter of the
vessel. The scan lines had a fixed length covering 200 pixels, which were determined based on
observations of vessel lumen diameters in the development set. In Figure 3.17(b) an EUS-frame
with vessel boundaries, corresponding centerline, and the orthogonal scan lines are visualized.
Using the scan lines the diameter was determined by a distance measure between the two nearest
edge points of the segmented vessels in each individual scan line. This prevented the scan lines that
covered both the graft and coronary artery to be included in the distance measure. Additionally,
scan lines which only covered one edge point were excluded from the distance measure. The distance
was measured as the euclidean distance between the two intersection points between the scan line
and the boundary of the segmentation. This was calculated using equation 3.14.

ds =
√

(x1 − x2)2 + (y1 − y2)2 (3.14)

In equation 3.14 ds refers to the distance between the two points (x1, y1) and (x2, y2), representing
the diameter of vessel lumen for the given scan line.
Sub-optimal patency was determined on the same criteria as the FitzGibbon grading, where sub-
optimal patency is presumed if the stenotic rate is greater than 50 % of the maximum vessel diameter,
as first mentioned in Table 2.1. Sub-optimal patency was determined if:

50 >
ds
dref

∗ 100 (3.15)

Here ds is the distance determined for a single scan line and dref was the reference diameter. As
errors and irregularities in the vessel boundaries could occur in the segmentation, the reference
diameter was chosen to be more general, as the maximum vessel diameter could be a sensitive
measure. Thus, the reference diameter was calculated through equation 3.16.

dref = mean(d > mean(d)) (3.16)

Where d represented all cross sectional diameters measured in the given vessel. The distance measure
could be performed separately on the graft and coronary artery in segmentations with the charac-
teristic "y”-shape, as it was possible to identify which scan lines belonged to the graft and coronary
artery. This was beneficial as the internal diameter of the graft and coronary artery was observed
to vary considerably in some cases. In segmentations that represented one vessel or multiple extra
branches, e.g. segmented shadowing, the reference diameter would be determined by the equation
using all cross sectional diameters in the vessels. In cases of sub-optimal patencies in the anastomosis
vessels the area was highlighted in the EUS-frame.
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3.8 Validation

The automatic quality assessment model was tested and validated in three parts; vessel lumen detec-
tion, vessel lumen segmentation, and patency estimation. The three parts were tested individually,
despite being dependent on the preceding part.
Manual expert annotations of the anastomoses were available for all EUS-frames in the development-
and test set, thus a comparison between the output of the model and a "ground truth" was possible.
This was done for both the development set, consisting of 96 EUS-frames from seven patients, and
the test set, consisting of 271 EUS-frames from 24 patients.

3.8.1 Vessel lumen detection
The vessel lumen detection was aimed to estimate an approximate location, shape, and size of the
anastomosis vessels. The output images from the detection algorithm contained a rough estimation
of the anastomosis vessels, which were validated through the use of Dice similarity measure between
the manual expert annotations and the detected vessel boundary. As the detection was meant
to produce a rough appearance of the of the anastomosis vessels, it was determined that a Dice
coefficient of 0.5 or above would be sufficient when compared with the manual annotations, and
would thereby count as an accepted detection of the anastomosis vessels. This Dice threshold was
selected based on the assumption that a 50 % overlap between an initial boundary of the detected
object and the anastomosis vessels would be enough for the segmentation methods to perform an
accurate segmentation of the anastomotic structures. To get insight into the performance of vessel
lumen detection algorithm, examples of both insufficient and sufficient detection boundaries are
visualized. Additionally, possible tendencies will be pointed out. Furthermore, the Mahalanobis
distance of the vessel candidates was investigated, to examine possible tendencies and patterns in
the Mahalanobis distance in relation to the different vessel candidates.

3.8.2 Vessel lumen segmentation
Validation of the vessel lumen segmentation was performed by calculating Dice coefficients between
the segmented anastomosis vessels and the manual expert annotation.
To evaluate the robustness of the vessel lumen segmentation independent from the performance
of the vessel lumen detection, modified versions of the manual annotations from the corresponding
frames in the test set were used as initial contours for the segmentation algorithms. Similarly, perfor-
mance was evaluated using Dice similarity measure from which an indication of the robustness could
be interpreted. Furthermore, examples of the segmentations performed with the modified initial
contours will be shown to describe variations in segmentation behavior. The initial contours were
created using morphological erosion on the manual annotation where two different variations were
tested. The initial contours were constructed using a disk shaped structuring element with a radius
of 10 pixels and 20 pixels to represent small and large variations, respectively. The segmentations
were performed using the same parameters derived from the parameter search for both segmentation
algorithms stated in section 3.6.

3.8.3 Patency estimation
The validation of the patency estimation algorithm was performed by applying the same algorithm
on the manual anastomosis annotations. This was performed to test the robustness of the algorithm,
as the manual annotations would represent the same anastomosis vessels as those identified by the
detection and segmentation algorithms, but could vary in vessel appearance. In the case of the
algorithm finding sub-optimal patency in either automated segmented vessels or manual annotations,
these were divided into their respective locations of the anastomosis vessels; heel site, toe site, or
the anastomosis orifice. This was to provide a better indication of agreement in the number of
sub-optimal patencies between the automatically segmented vessels and manual annotations. As
the purpose of the test was to identify patency of the anastomosis orifice, heel- and toe site in the
vessels, only automatically segmented vessels showing these parts of the vessels were included in this
test. Thus, EUS-frames where an insufficient segmentation was performed by the local-phase based
snake or the Chan-Vese algorithm were excluded. The test was executed twice; one comparing the
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patency in the manual annotations to the patency found in local-phase based snake segmentations,
and one where it was compared to the patency found in the Chan-Vese segmentations. Patency in
the anastomosis orifice, heel-, and toe site was evaluated for each segmented vessel, to which it was
noted whether sub-optimal patency was present or not. Differences between the patencies estimated
in the automatically- and the manually segmented vessels were calculated and presented in matrices
for each vessel location. In the matrices the agreement and disagreements between the patency
estimations of the automatic and manual annotations are stated.
Furthermore, it was possible to get expert observation on four selected EUS-frames from the chief
physician of thoracic surgery at Aalborg university hospital. These observations were used as a
qualitative analysis of the patency estimation, where observation would indicate whether actual
stenosis of the anastomosis vessels was to be considered in the given EUS-frames. The observation
stated the presence of stenoses, their rough locations, and whether it was as a result of either plaque
or suture error in the anastomosis. The four EUS-frame observations were compared to the result
of the patency estimation derived from the vessel detection and segmentation algorithms.
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4. Results

Results of the parameter search, the detection-, segmentation- and patency estimation of the vessel
lumen are presented in this chapter. The following will present the performance as well as specific
examples showing the weaknesses and strengths of the proposed methods.

4.1 Parameter search

The parameter search was performed using EUS-frames from seven patients from the development
set, where detections with a Dice coefficient of 0 were excluded, thus the parameter search was
performed on 94 EUS-frames. A total of 729 sets of parameters were tested for the local-phase
based snake algorithm and 324 sets for the Chan-Vese algorithm, where a Dice coefficient between
the segmentations and the manual anastomosis annotations was calculated for each parameter set
to evaluate their performance. Results showed that parameters tested for the Chan-Vese algorithm
had little influence on the Dice coefficient, compared to the parameters for the local-phase based
snake, where the parameters’ influence on the performance can be seen in Figure 4.1.

Figure 4.1: Dice coefficients calculated for the parameter combinations used for the local-phase
based snake and Chan-Vese algorithm. The plot of local-phase based snake parameters includes the
results for wavelength of 28, illustrating the effect of changing the remaining parameters. Changes
in spatial frequency bandwidth (SFB) is indicated with the colors blue, red, and green. The plot of
the parameter combinations for the Chan-Vese algorithm is indicated with magenta.

For the local-phase based snake the plot only shows the variation of the Dice coefficients for the
wavelength of 28, as the performance and tendencies of the parameter changes were near identical
at a wavelength of 20 and 24. Furthermore, a step-wise variation in the Dice coefficients can be
observed, which is as a result of changes to the spatial frequency bandwidth used to produce the
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phase map. At a spatial frequency bandwidth of 1 and 1.2 small variations occurred when changing
the remaining parameters, where the most significant drops in Dice coefficients were as a result of
an external weight parameter of 0.25. At a spatial frequency bandwidth of 1.4, the performance
became more unstable. Overall the most influential parameters for the local-phase based snake
were the ones that produced or weighted the external energies. The sets of parameters tested for
the Chan-Vese segmentation produced only a small variation between the parameters, as shown in
Figure 4.1, where an overall mean Dice coefficient of 0.8532±0.0079 was calculated. The local-phase
based snake segmentation showed a higher variation in Dice coefficients compared to the Chan-Vese,
having an overall mean of 0.8049± 0.0492.
The parameters that resulted in the highest segmentation performance for the local-phase based
snake achieved a mean Dice coefficient of 0.8523 with a standard deviation of 0.0818, where the
parameter combination for the Chan-Vese algorithm resulted in a Dice coefficient of 0.8642 with a
standard deviation of 0.0946 between automatic and manual segmentations. The parameter combi-
nations for both segmentation techniques are listed in Table 4.1.

Local-phase based snake Chan-Vese

Wavelength 28 Initial gaussian filter of EUS-image (SD) 2
Spectral frequency bandwidth 1 Smooth factor µ 3
Curve weight α 0.75 Foreground weight λ1 0.3
Continuity weight β 0.75 Background weight λ2 0.6
External weight γ 0.75 Maximum number of iterations 150
Maximum number of iterations 50

Table 4.1: Parameters that resulted in the highest performance in the local-phase based snake and
Chan-Vese algorithm.

4.2 Vessel lumen detection

The performance of the vessel lumen detection was evaluated based on the Dice coefficients between
the detected vessels and the manual anastomosis annotations, to which the mean performance in
Dice coefficients and the standard deviation are shown in Table 4.2.

Data set Mean Dice and SD
of all frames

Number of frames
with Dice ≥ 0.5

Number of frames
with 0 <Dice <0.5

Number of
false positives

Development set 0.8149 (±0.1423) 93 (96.88 %) 1 (1.04 %) 2 (2.08 %)
Test set 0.7412 (±0.2230) 247 (91.15 %) 7 (2.58 %) 17 (6.27 %)

Table 4.2: Mean and standard deviation (SD) of the Dice coefficients between the vessel detection
and manual anastomosis annotations for the EUS-frames in the development and test set. Fol-
lowed by the number of vessel detections which were considered sufficient (Dice ≥ 0.5), sub-optimal
detections (0 < Dice < 0.5), and false positive detections (Dice = 0).

In Table 4.2, 96.88% and 91.15% frames from the development and test set, respectively, were
considered sufficiently detected. Furthermore, 3.12% and 8.85% had a Dice coefficient lower than
0.5 in the development and test set, to which these were considered insufficient. Comparing the
performance of the detection on EUS-frames from development and test set, a drop in the mean
Dice coefficient of 0.0737 was observed. This was partly because 17 anastomosis vessels were false
positively detected in the test set, compared to two anastomosis vessels in the development set.
An illustration of the distribution of the Dice coefficients for each individual frame and patient for
both development and test set are visualized in Figure 4.2 and 4.3. In the figures, the frames from
the same patient are visualized with the same color, and the horizontal line in each plot indicates the
chosen threshold of 0.5 that determined whether the detection of anastomosis vessels was considered
sufficient or insufficient.
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Figure 4.2: Dice coefficients between the detected vessel lumen and manual anastomosis annota-
tions for each EUS-frame in the development set. Frames from the same patient are marked with
the same color.

Figure 4.3: Dice coefficients between the detected vessel lumen and manual anastomosis annota-
tions for each EUS-frame in the test set. Frames from the same patient are marked with the same
color.

In the figures, the most frames were detected with a Dice coefficient between 0.7-0.9 in both the
development and test set. However, the Dice coefficients calculated from the test set were more
widely distributed. An observation to be noted from the false positive detections in the test set,
from Figure 4.3, is that more consecutive frames were often false positively detected.
In Figure 4.2 it is evident that the patient with the EUS-frames number 85−96 had Dice coefficients
that were separated into two clusters. EUS-frames 85 − 93 had a Dice coefficient in the interval
0.75− 0.80 with the exception of one false positively detection, and EUS-frames 94− 96 had a Dice
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coefficient in the interval 0.57 − 0.61. Initially, these differences in Dice coefficients were thought
to be as a result of several anastomoses from the same patient, but as shown in Figure 4.4, the
EUS-frames visualized the same anastomosis vessels, but were from two different EUS-sequences.
In Figure 4.4(a) and 4.4(b) the identified vessel candidates with the corresponding Mahalanobis
distance are outlined with magenta, the detected vessels are marked with a cyan boundary, and the
manually annotated anastomosis vessels are marked with a yellow boundary.

(a) EUS-frame 92 with the vessel candidates and their corresponding Mahalanobis distance, and the
detected vessel with a Dice coefficient of 0.7961

(b) EUS-frame 94 with the vessel candidates and their corresponding Mahalanobis distance, and the
detected vessel with a Dice coefficient of 0.5705

Figure 4.4: Two EUS-frames from the same patient visualizing the same anastomosis. The vessel
candidates, outlined magenta, with the corresponding Mahalanobis distance are shown, along with
the final detected vessel, outlined cyan, and the manually annotated anastomosis, outlined yellow.

In Figure 4.4 it is seen that more of the true vessel in Figure 4.4(a) was detected compared to
the detection in Figure 4.4(b). However, a vessel candidate representing the coronary artery was
identified in Figure 4.4(b), but the candidates representing the graft and coronary artery were not
merged due to the variation in the mean intensities of the objects. This resulted in a lower Dice
coefficient for the detection in Figure 4.4(b), due to only the graft of the anastomosis vessels was
detected.
Another observation from Figure 4.2 and Figure 4.3 is that despite the false positively detected
anastomosis vessels, not all frames from one single patient were detected with a Dice of 0. However,
frame number 246, 247, and 249 from the same patient in the test set showed Dice coefficients
between 0.48−0.51, where only one frame had a Dice coefficient above the detection threshold. The
vessel candidates and the detection having a Dice coefficient of 0.49, are visualized in Figure 4.5.
Furthermore, the vessel detection in frame number 239 was observed to have a low Dice coefficient
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of 0.27, labeling it as an insufficient detection. The vessel candidates and the detection from frame
number 239 are visualized in Figure 4.5.

(a) EUS-frame 249 with the vessel candidates and their corresponding Mahalanobis distance, and
the detected vessel with a Dice coefficient of 0.4988

(b) EUS-frame 238 with the vessel candidates and their corresponding Mahalanobis distance, and
the detected vessel with a Dice coefficient of 0.2649

Figure 4.5: Detected vessels with a Dice coefficient lower than the threshold of 0.5. The ma-
genta boundaries represent the vessel candidates, and the yellow boundary represents the manual
anastomosis annotation and the cyan boundary represents the detected object.

In Figure 4.5(a), the detected object overestimated the actual vessel boundaries, and leaks into
non-acoustic contact and surrounding tissue consisting of low intensities. However, the detection
captures almost all of the actual anastomosis vessels. In Figure 4.5(b), the detection captures only a
part of the graft, despite the coronary artery being identified as a vessel candidate. Ideally, these ves-
sels should have been merged, but the mean intensities of the two objects varied with more than 5 %.

The detection algorithm was initiated with an entropy analysis with the purpose of identifying
and excluding non-acoustic contact present in the EUS-frames. However, results showed that the
entropy filtering operation did not always exclude the areas as intended. This is for instance shown
in Figure 4.5(a), where the non-acoustic contact was included as a part of the detected object. From
the results of the entropy filtering operation, three cases kept reoccurring, to which three examples
showing these are illustrated in Figure 4.6.
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(a) Case A (b) Case B (c) Case C

Figure 4.6: Three results of the entropy filtering. Case A illustrates the entropy filtering where
shadows and the anastomosis vessel are one coherent object. Case B identified the shadows in the
right corner, however it was connected to the toe of the anastomosis vessels. Lastly, case C shows an
example of the entropy filtering operation identifying the non-acoustic contact to the left successfully.

Case A, shown in Figure 4.6(a), shows that the entropy filtering operation identified the vessel lumen
along with shadows as areas with low randomness, thus the anastomosis vessels and the shadows
were represented in one object. This resulted in the object having an orientation of 140 degrees, and
thereby did not fulfill the criterion for being considered as shadows or non-acoustic contact. Case
B in Figure 4.6(b), showed an example of the entropy filtering operation identifying the shadows
correctly but included a small part belonging to the toe of the anastomosis vessel. In this example,
this object had an orientation of 85 degrees, to which it was considered as shadows or non-acoustic
contact, and the pixels within the area were replaced with pixel intensities of 255. This complicated
the later detection, segmentation, and patency estimation for this given frame. The last case, shown
in Figure 4.6(c), the entropy filtering operation did identify the non-acoustic contact correctly, and
the object’s orientation of 88 degrees fulfilled the criterion, to which the area was excluded from
further processing.

In order to investigate the false positive detections, examples showing the vessel candidates with
the corresponding Mahalanobis distance and the detected object along with the manual anastomosis
annotations are shown in Figure 4.6. The vessel candidates are shown with magenta boundaries,
manually annotated anastomosis vessels are shown as yellow boundaries, and the automatically
detected object with cyan boundaries.

(a) Vessel candidates, detected object, and the manual annotation from an EUS-frame from the de-
velopment set
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(b) Vessel candidates, detected object, and the manual annotation from an EUS-frame from the test
set

(c) Vessel candidates, detected object, and the manual annotation from an EUS-frame from the test
set

Figure 4.6: Insufficient detections, where the vessel candidates and their corresponding Maha-
lanobis distance are visualized. Vessel candidates are represented with magenta boundaries, the
detected vessels with cyan boundaries, and the manual annotated anastomosis vessels with yellow
boundaries.

The EUS-frame shown in Figure 4.7(a) belonged to the development set. In this example, three vessel
candidates were identified, to which two of these represented actual vessel structures. The difference
in Mahalanobis distances between these two vessel candidates was 0.51, where the Mahalanobis
distance was higher for the anastomosis vessel, to which the other vessel structure was detected.
A more significant difference in Mahalanobis distance can be seen between the vessel candidates
in Figure 4.7(b) and 4.7(c), which both were frames from the test set. In Figure 4.7(b) four ves-
sel candidates were identified through the correlation calculation, to which the candidate with the
lowest Mahalanobis distance did not resemble an end-to-side anastomosis. Additionally, the vessel
candidate with the lowest Mahalanobis distance in Figure 4.7(c), did not appear as an end-to-side
anastomosis. A tendency for the false positive detections was that the detected object appeared
either as a long horizontal object or a round object similar to the two examples in Figure 4.7(b)
and 4.7(c). In the two and 17 EUS-frames from the development and test set, respectively, resulting
in false positive detected vessels, all contained vessel candidates representing the true anastomosis
vessels.

Furthermore, the Mahalanobis distance for all the vessel candidates was investigated. In Figure
4.7, the Mahalanobis distance for the given vessel candidates in each frame are visualized, true
vessel candidates are marked blue and additional vessel candidates are marked red. The maximal
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Mahalanobis distance was 3,146 for the vessel candidates identified in the development set, however,
only candidates with Mahalanobis distances lower than 600 were visualized in the figure, to better
visualize the variation in Mahalanobis distance of the true anastomosis vessels. The insufficient
detected vessels, which had a Dice coefficient lower than 0.5 and higher than 0 are represented by a
magenta square. The false positive detected vessels, which had a Dice coefficient of 0, are illustrated
by a magenta circle.

Figure 4.7: The Mahalanobis distance for the vessel candidates in each frame from the development
set. The true detected vessels are represented by blue asterisks, and the presence of additional vessels
candidates are represented by red asterisks. False positively detected vessels (Dice=0) are marked
as magenta circles and insufficiently detected vessels (0<Dice<0.5) are illustrated with a magenta
square.

In Figure 4.7, the true detected vessels with a Dice coefficient higher than 0.5 have a relatively low
Mahalanobis distance compared to the additional vessel candidates. The true detected vessels had a
Mahalanobis distance in the interval 1.47− 72.38, to which the Mahalanobis distances for the addi-
tional vessel candidates were in the interval 29.69− 3145.6. A general tendency seen in Figure 4.7 is
that the true vessel candidates had a Mahalanobis distance lower than 75, however additional vessel
candidates were also located lower than 75. Furthermore, the two false positive detected candidates
had a low Mahalanobis distance of 23.74 and 32.56.

Additionally, the Mahalanobis distances from the vessel candidates identified in the EUS-frames
from the test set are shown in Figure 4.8. Not all Mahalanobis distances are plotted given the
maximum distance of all vessel candidates in the test set was observed to be 3,630, thus to better
visualize the variation in Mahalanobis distance of the true anastomosis vessels, the figure only
included Mahalanobis distances lower than 800.

42



Figure 4.8: The Mahalanobis distance for the vessel candidates in each frame from the test set.
The true detected vessels are represented by blue asterisks, and the presence of additional vessels
candidates are represented by red asterisks. False positively detected vessels (Dice=0) are marked
as magenta circles and insufficiently detected vessels (0<Dice<0.5) are illustrated with a magenta
square.

A similar tendency was observed in the Mahalanobis distances for the vessel candidates achieved in
the test set, as seen in Figure 4.8. However, several true anastomosis vessels appeared with a higher
Mahalanobis distance, as seen in the EUS-frames in the interval 78-81. One of these EUS-frames,
which had a Mahalanobis distance of 156.2, are shown in Figure 4.9.

Figure 4.9: Vessel candidates and the detected anastomosis vessel along with the manually anno-
tated anastomosis vessels from EUS-frame number 80. The vessel candidates are represented by the
magenta boundaries, the detection is represented by the cyan boundary, and the manual anastomosis
annotation is represented by the yellow boundary.

In Figure 4.9 the vessel candidate with the Mahalanobis distance of 156.2 represents the true anas-
tomosis vessels, despite having a relatively high Mahalanobis distance. The lowest and highest
Mahalanobis distance achieved among all vessel candidates in the test set were 1.49 and 3630.3,
respectively.

43



Of the 91.15 % of the anastomosis vessels that were sufficiently detected from the test set, 9.31 %
of these had a Dice coefficient of 0.9 or higher. To investigate how well these anastomosis vessels
were estimated by the vessel lumen detection, two examples that resulted in high Dice coefficients
are shown in Figure 4.10.

(a) Dice coefficient of 0.9197

(b) Dice coefficient of 0.9198

Figure 4.10: Examples of two EUS-frames from the test set with the corresponding vessel candi-
dates, where the detection resulted in a Dice coefficient higher than 0.9. The vessel candidates are
represented by magenta, manual anastomosis annotations are represented by the yellow boundaries,
and the cyan boundaries represent the detected object.

In Figure 4.10 the boundary of the detected vessel is closely estimated to the manual anastomosis
annotation. However, the detected boundary in Figure 4.10(b) is slightly overestimated as it is placed
outside of the vessel lumen near the anastomosis orifice and coronary artery, presumably as a result of
the presence of speckle. In both examples shown in Figure 4.10, the uncertainty of selecting the true
anastomosis vessels was small given the significant variation between the Mahalanobis distances.
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4.3 Vessel lumen segmentation

Results of the vessel lumen segmentations are presented as Dice similarity measures for the local-
phase based snake and Chan-Vese segmentation. Examples of the segmentations are presented to
state the potential weaknesses and strengths for each of the techniques when segmenting vessel
lumen in EUS-frames. The mean Dice coefficient achieved for both the local-phase based snake
and the Chan-Vese segmentation performed on frames from the development and test set are shown
in Table 4.3. Additionally, the mean Dice coefficients of the segmentations initialized by sufficient
vessel detections are shown in the table.

Local-Phase Based Snake Chan-Vese

Mean Dice for
all detections

Mean Dice with
sufficient detections

Mean Dice for
all detections

Mean Dice with
sufficient detections

Development set 0.8345 (± 0.1467) 0.8565 (± 0.0709) 0.8493 (± 0.1559) 0.8722 (± 0.0828)
Test set 0.7577 (± 0.2258) 0.8134 (± 0.1057) 0.7589 (± 0.2273) 0.8187 (± 0.1031)

Table 4.3: Mean Dice coefficient from the local-phase based snake and Chan-Vese segmentations
for both the development and test set. The mean Dice coefficient of the segmentations, which were
performed with sufficient initial contours from the vessel lumen detection algorithm, are calculated.

In Table 4.3 it is shown that the Chan-Vese algorithm performed best on the EUS-frames compared
to the local-phase based snake. Comparing the segmentation Dice coefficients to the Dice coefficient
from the vessel lumen detections, a minor increase of 0.0165 and 0.0177 can be observed in the test
set for the local-phase based snake and Chan-Vese algorithm, respectively. As seven EUS-frames
were detected as insufficient, a mean Dice coefficient was calculated when initialized using only
sufficient detections. This raised the mean Dice performance of the local-phase based snake with
0.0722 and the Chan-Vese algorithm with 0.0775 in the test set. A slight variation between the
segmentation algorithms can be observed, to which examples of segmentations with the lowest and
highest difference between the two segmentation techniques are visualized in Figure 4.11, where the
local-phase based snake segmentation is marked with a green boundary, the Chan-Vese segmentation
with a red boundary, and the manual anastomosis annotations with a yellow boundary.

(a) Dice variation of 4.58× 10−5 (b) Dice variation of 0.0802

Figure 4.11: Two EUS-frames with the lowest and highest variation between the local-phase based
snake and the Chan-Vese segmentation, respectively. The boundary of the local-phase based snake
segmentation is green, and the boundary achieved by the Chan-Vese segmentation is red. The yellow
boundary represents the manual annotation.
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In Figure 4.11(a) a small variation in Dice coefficients of 4.58 × 10−5 was calculated between the
two automatically segmented anastomosis vessels, however, the boundary of the local-phase based
snake and Chan-Vese seems to vary slightly, despite the low variation between the Dice coefficients.
Noticeably, the Chan-Vese segmentation was better at estimating the edge of the plaque at the lower
vessel wall of the coronary artery compared to the local-phase based snake. Commonly for both
segmentations, despite the overestimation of the shadowing to the left, most of the anastomosis
vessels were estimated correctly by the segmentations. Thereby, the overestimation had a negative
impact on the Dice coefficient, even though the boundary of the vessels was relatively accurate
estimated.
The highest variation between the local-phase based snake and Chan-Vese segmentations was calcu-
lated to be 0.0802, where the segmentation boundary of the local-phase based snake and Chan-Vese
are shown in Figure 4.11(b). The local-phase based snake estimated the boundary of the anastomosis
vessels better with a Dice coefficient of 0.8468 compared to the Chan-Vese with a Dice coefficient
of 0.7666. The main difference between the segmentations was at the toe of the anastomosis vessels
where the local-phase based snake was better at estimating the edge of the vessel wall.

Furthermore, the Dice coefficients calculated for the segmentations, where the initial contour from
the detection was determined insufficient, were investigated. In the vessel lumen detection, 17
EUS-frames had a Dice coefficient of 0, thus these frames also had a Dice coefficient of 0 after the
segmentations. However, frames with a Dice coefficient above 0 and below 0.5, showed improvement
in the Dice coefficients after segmentation. For the local-phased based snake segmentation, four
of the seven EUS-frames achieved a Dice coefficient higher than 0.5 after segmentation, where the
Chan-Vese segmentation only improved one frame with a Dice coefficient above 0.5 after segmenta-
tion.

Overestimation of the anastomosis vessels where side branches were included in the segmentations
was observed in multiple EUS-frames, where an example is shown in Figure 4.12.

(a) Detected anastomosis vessels with a Dice coefficient
of 0.7428.

(b) Segmented anastomosis vessels with a Dice coefficient
of 0.7331 and 0.7750 for the local-phase based snake and
Chan-Vese segmentation, respectively

Figure 4.12: An EUS-frame where elongation of the vessel appears in the detection and in the
segmented boundaries. The detection boundary is marked with cyan, the boundary of the local-phase
based snake segmentation is marked green, and the boundary achieved by the Chan-Vese segmentation
is marked red. The yellow boundary represents the manual anastomosis annotation.

In Figure 4.12 an overestimation of the coronary artery appears in both the detection and the seg-
mented anastomosis vessels, which did not appear in the manual annotation. The overestimation of
the coronary artery is a side branch, to which it is understandable why it is included in the segmenta-
tion. Despite the segmentations leaking into the side branch of the vessels, most of the anastomosis
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vessels are captured by the segmentation algorithms. Thus, the overestimation influenced the Dice
coefficient negatively, even though the boundary of the vessels was relatively accurately estimated.
Similarly, this occurred in EUS-frames where shadows and non-acoustic contact were present.

Another observation that was made was that the segmentation algorithms showed a tendency to
underestimate the edge of the anastomosis vessels. Two examples of this are shown in Figure 4.13.

(a) Dice coefficient of local-phase based snake: 0.8702
and Dice coefficient of Chan-Vese: 0.8730

(b) Dice coefficient of local-phase based snake: 0.9155
and Dice coefficient of Chan-Vese: 0.8903.

Figure 4.13: Two EUS-frames where the segmented boundaries are located within the manual
annotation. The boundary of the local-phase based snake segmentation is marked green, and the
boundary achieved by the Chan-Vese segmentation is marked red. The yellow boundary represents
the manual anastomosis annotation.

In Figure 4.13(a) the boundaries of the segmentations were slightly underestimated compared to the
manual anastomosis annotation. Additionally, the segmentation boundaries appeared within the
manual annotation in Figure 4.13(b). In this case, the segmentations were not able to segment the
edge correctly at the upper vessel wall near the heel. The area between the manual annotation and
the segmentation boundaries at the heel appeared with brighter intensities, and with higher entropy,
compared to the rest of the vessel lumen. The local-phase based snake estimated the boundary of
the coronary artery more accurately, however, the plaque just below the anastomosis orifice was
better represented in the Chan-Vese segmentation.

The highest Dice coefficients achieved in the test set for the local-phase based snake and Chan-Vese
were 0.9312 and 0.9616, respectively, where the corresponding EUS-frames are shown in Figure 4.14.

47



(a) Dice coefficient of local-phase based snake: 0.9312
and Dice coefficient of Chan-Vese: 0.9521

(b) Dice coefficient of local-phase based snake: 0.9196
and Dice coefficient of Chan-Vese: 0.9616

Figure 4.14: Two EUS-frames with the segmented boundaries, which resulted in the highest Dice
coefficient for the local-phase based snake and Chan-Vese segmentation. The boundary of the local-
phase based snake segmentation is marked green, and the boundary achieved by the Chan-Vese seg-
mentation is marked red. The yellow boundary represents the manual annotation.

Figure 4.14(a) shows the EUS-frame where the local-phased based snake achieved the highest Dice
coefficient among all frames in the test set with a Dice coefficient of 0.9312. The Chan-Vese seg-
mentation did, however, achieve a Dice coefficient of 0.9521, and thereby performed better than the
local-phase based snake. The highest Dice coefficient for the Chan-Vese segmentation was achieved
in the frame shown in Figure 4.14(b), where a Dice coefficient of 0.9616 was achieved. The local-
phase based snake segmented the vessel lumen with a Dice coefficient of 0.9196 in this frame. It
may be discussed whether the overestimation of the toe in Figure 4.14(b) was segmented correctly,
despite the cutoff by the manual annotation, as the overestimated area appeared similar to the vessel
structure of the coronary artery. Comparing the Dice coefficients achieved in Figure 4.14(a) to the
Dice coefficient of the detection of the same frame, shown in Figure 4.10(a), an increase of 0.0115
and 0.0324 was observed for the local-phase based snake and Chan-Vese algorithms, respectively.

A robustness test was performed on both segmentation algorithms, where the initial contour was
derived from the manual anastomosis annotations, making it independent from the vessel lumen
detection. The manual annotation was eroded with a disk shaped structuring element with a radius
of 10 and 20 pixels, to which the mean Dice coefficients of the segmentations are stated in Table 4.4.

Disk radius Dice of
initial contour

Dice of
local-phase based snake

Dice of
Chan-Vese

10 0.8423 (±0.0409) 0.9067 (±0.0341) 0.8957 (±0.0383)
20 0.6197 (±0.1072) 0.7853 (±0.1018) 0.7921 (±0.0918)

Table 4.4: Mean Dice coefficients for both segmentation algorithms initialized by an initial contour
derived from manual annotations eroded using a disk shaped structuring element with a radius of 10
and 20 pixels.

Table 4.4 shows that the mean Dice coefficient of the initial contour was lower before segmentation
for both initial contours eroded with a disk radius of 10 and 20 pixels. The greatest increase in
performance is shown as the segmentation was initiated with the contour eroded with a radius of 20
pixels. The test showed that given the initial contour was located within the vessel lumen the two
segmentation algorithms were able to locate the edge of the vessel walls. Two EUS-frames are shown
in Figure 4.15. Figure 4.15(a) illustrates the initial contours, where yellow is the manual annotation,
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green is the contour eroded by a disk radius of 10 pixels, and the red boundary is the contour eroded
with a disk radius of 20 pixels. In Figure 4.15(b) the Chan-Vese segmentation is illustrated for the
two frames, the boundaries are represented with the same colors as the initial contours. Similarly,
the result of the local-phase based snake segmentation is shown in Figure 4.15(c).

(a) Initial contours

(b) Chan-Vese segmentation

(c) Local-phase based snake segmentation

Figure 4.15: Results of subjecting local-phase based snake and Chan-Vese segmentation to varying
initial contours derived from the manual annotations, marked yellow. Green boundaries represent
the eroded initial contour with a disk radius of 10 pixels, and the corresponding segmentation, and red
boundaries represent the initial contour eroded with a disk radius of 20 pixels with the corresponding
segmentations.
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Both segmentations were able to find the edges of plaque in the frame to the left in Figure 4.15.
Comparing the two segmentations, the local-phase based snake appeared more sensitive to edge in-
formation inside the vessel lumen than the Chan-Vese algorithm, when located further from the true
edge. This can be seen by the red lines in Figure 4.15(c), where the Chan-Vese algorithm performed
slightly better when initiated with the eroded contour using a higher disk radius. Furthermore, it
is shown that the local-phase based snake segmentation, where the initial contour was narrow, had
a tendency to collapse towards the same edge, which can be observed in the toe of the anastomosis
vessels in the right frame in Figure 4.15(c). The Chan-Vese segmentation also showed a tendency to
separate the vessels at locations near plaque as seen in the toe of the anastomosis in the right image
of Figure 4.15(b).

Considering the manual annotations and the segmentations, cases were found where the boundary
of the manual annotation appeared questionable. A specific example is shown in Figure 4.16.

(a) Original EUS-frame (b) Segmentation boundaries (c) Manual annotation

Figure 4.16: EUS-frame where differences in the segmentation boundary and manual annotation
were observed. The boundary of the local-phase based snake segmentation is marked green, and the
boundary achieved by the Chan-Vese segmentation is marked red. The yellow boundary represents
the manual annotation.

From the original EUS-frame shown in Figure 4.16(a), along with the boundary of the segmentations
and the manual annotation shown in Figure 4.16(b) and 4.16(c), the anastomosis orifice in the manual
annotations appears very narrow. However, looking at the original EUS-frame and the segmentation
boundaries the width of the anastomosis orifice appears wider, thus it is questionable whether the
actual boundary near the anastomosis orifice was annotated correctly.
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4.4 Patency estimation

The patency estimation was validated by comparing the patency estimates of the automatically and
manually segmented vessels. In Figure 4.17 and Figure 4.18 the numbers of sub-optimal patency
and optimal patency found of the anastomosis orifice, and at the heel- and toe site are shown.

(a) Anastomosis orifice (b) Heel site (c) Toe site

Figure 4.17: The number of sub-optimal and optimal patencies found in the anastomosis orifice,
heel and toe sites in all anastomosis vessels in the test set where these locations were visible in the
local-phase based snake segmentations.

(a) Anastomosis orifice (b) Heel site (c) Toe site

Figure 4.18: The number of sub-optimal and optimal patencies found in the anastomosis orifice,
heel and toe sites in all anastomosis vessels in the test set where these locations were visible in the
Chan-Vese segmentations.

Based on the figures the accuracy for estimating the patency in the anastomosis orifice, heel site,
and toe site was calculated, which are shown in Table 4.5.

Anastomosis
Orifice Heel site Toe site

Local-phase based snake 83.90 % 61.86 % 82.29 %
Chan-Vese 88.15 % 64.44 % 75.56 %

Table 4.5: The performance accuracy of the patency estimation of the anastomosis orifice, heel
site, and toe site for the local-phase based snake and Chan-Vese segmentation compared to manual
annotations.
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As indicated by the matrices in Figure 4.17 and 4.18 and Table 4.5 the patency estimation of the
anastomosis orifice and the toe site of the anastomosis performed with the highest accuracies. Com-
paring the two segmentations, the Chan-Vese segmentation estimated the anastomosis orifice more
consistent to manual annotations, to which an accuracy of 88.15% was achieved. Contrary, the local-
phase based snake estimated the toe site more consistent to manual annotations than the Chan-Vese
algorithm, where a variation of 6.73% was to be seen in the performance accuracies. Both segmen-
tation techniques showed disagreement with a higher amount of false positives and false negatives
in the estimation of the heel site of the anastomosis vessels compared to the manual annotation,
resulting in the performance accuracy of 61.86 % and 64.44 %.

In Figure 4.19 two EUS-frames showing disagreement between the estimation of patency was present
between the manual annotated vessels and the Chan-Vese segmentation. The detection boundaries
for the frames are marked in cyan, the Chan-Vese segmentations are marked in red, and the manually
annotated vessel boundaries are marked in yellow. The sub-optimal patencies are marked in the
frames as yellow lines, and the reference diameter is marked as green lines.

(a) Detection of the vessel lumen (b) Patency estimation on Chan-Vese
segmentation

(c) Patency estimation on manual an-
notations

(d) Detection of the vessel lumen (e) Patency estimation on Chan-Vese
segmentation

(f) Patency estimation on manual an-
notations

Figure 4.19: Two EUS-frames with corresponding detection boundary, outlined cyan. A difference
in patency estimation between the Chan-Vese segmentations and the manually annotated vessels is
present. The Chan-Vese segmentation is oulined with a red boundary, and the manual anastomosis
annotation is outlined with a yellow boundary. The sub-optimal patencies are marked with yellow
lines, and the reference diameters are marked as green lines.

In the EUS-frame shown in Figures 4.19(a), 4.19(b), and 4.19(c) the patency estimation algorithm
identified sub-optimal patency at the heel site in the manually segmented vessels, while no stenoses
were identified at the heel site for the Chan-Vese segmentation. However, sub-optimal patency was
found at the toe site in the segmentation but not in the manual annotation. The disagreement
occurred as the detection did not find the edges of the plaque at the heel site of the anastomosis
vessels, to which it was included as a part of the segmented vessel lumen. Additionally, the Chan-Vese
segmentation had a more jagged boundary compared to the manually segmented vessels, making it
more prone to find very small areas of sub-optimal patency, as seen in Figure 4.19(c) in toe site of
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the anastomosis vessels.
Conversely, segmentations occurred where soft plaque was not included in the automatic segmenta-
tion whereas these areas were included in the manual annotations, as seen in the heel site in Figure
4.19(e) and 4.19(f). Thus, the difference in patency estimations was typically as a result of the
segmentation which was based on the vessel lumen detection.

In EUS-frames where the vessel lumen segmentation included surrounding structures in the segmen-
tation, the patency estimation algorithm could find sub-optimal patency in the extra branches, as
shown in Figure 4.20.

(a) Manuel anastomosis annotation (b) Local-phase based snake segmentation

Figure 4.20: Patency estimation of a manual anastomosis annotation, marked yellow, and the
corresponding local-phase based snake segmentation, marked as the green boundary, where an extra
branch is included in the segmentation. Sub-optimal patency is marked with yellow lines, and are
present in the heel and toe site of the anastomosis vessels as well as in the extra branch.

As shown in Figure 4.20 sub-optimal patency was highlighted in the extra branch, which was not
a part of the anastomosis vessels, but the result of an overestimation. Additionally, sub-optimal
patency was highlighted at the heel- and toe site of the anastomosis vessels.

A more qualitative analysis of the patency estimation was performed, where a chief physician of
thoracic surgery at Aalborg University Hospital had evaluated the patency of the four anastomosis
vessels shown in Figure 4.21.
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(a) Case A (b) Case B

(c) Case C (d) Case D

Figure 4.21: Specific case examples of EUS-frames that were evaluated by a chief physician of
thoracic surgery at Aalborg University Hospital.

The chief physician had the following comments to the patency of the anastomosis vessels in the
four cases as seen in 4.21.

• Case A: The graft is slim, but fine patency of the anastomosis orifice

• Case B: The suture might be too tight, thus there is a stenosis in the anastomosis orifice

• Case C: Stenosis in the anastomosis orifice

• Case D: The graft appears narrowed near the anastomosis orifice

The patency estimation was performed on the local-phase based snake and Chan-Vese segmentations,
where segmentations are shown in Figure 4.22, in order to identify sub-optimal patency in the four
frames.

54



(a) Case A (b) Case B

(c) Case C (d) Case D

Figure 4.22: The segmentations on the four cases performed by the local-phase based snake marked
as the green boundary and the Chan-Vese algorithm marked with a red boundary.

The patency was investigated in the anastomosis orifice in the automatically segmented vessels, as
this was the only location of interest based on the evaluations performed by the physician. Fur-
thermore, no stenoses were identified in the heel or toe sites in the segmentations. The manual
anastomosis annotations were investigated as well to test whether sub-optimal patency was to be
found in these. In Table 4.6 the reference diameter and the minimal diameter found in the anas-
tomosis orifices are stated for the segmentations and the manual annotated anastomosis vessels.
Sub-optimal patency was identified if the minimum diameter constituted a 50 % or lees of the refer-
ence diameter.
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Reference diameter Minimum diameter
Case A Local-phase based snake 60 33

Chan-Vese 56 35
Manual 104 25

Case B Local-phase based snake 66 35
Chan-Vese 82 55
Manual 90 70

Case C Local-phase based snake 98 50
Chan-Vese 98 68
Manual 108 67

Case D Local-phase based snake 66 25
Chan-Vese 68 24
Manual 106 35

Table 4.6: The reference diameter and the minimum diameter of the anastomosis orifice found in
the local-phase based snake and Chan-Vese segmentation, as well as the manual annotation for the
four cases. Sub-optimal patency was identified if the minimum diameter constituted 50 % or less of
the reference diameter.

The patency estimation algorithm found no sub-optimal patency in case A in either the local-phase
based snake or the Chan-Vese segmentation, which was in agreement with the physician evaluation.
The patency estimation of the manually segmented anastomosis vessels found sub-optimal patency in
the anastomosis orifice, as the minimal diameter found was lower than 50 % of the reference diameter.
The reference diameter for the manual annotation was much higher than for the two automatically
segmented vessels, which was due to the algorithm finding four branches. Consequently, the reference
diameter was based on the maximal reference diameter found in the segmented vessels.
The patency estimation algorithm was not able to identify sub-optimal patency in either case B or
C for any of the segmentations, despite the expert identifying stenosis in the anastomosis orifice
in both frames. It should be noted that the local-phase based snake segmentation was 1-2 pixels
from estimating stenoses in the anastomosis orifice in case B and C. The subsequent frame in the
EUS-sequence was investigated for the segmentations, to which sub-optimal patency was identified
in the anastomosis orifice in the local-phase based snake in the consecutive frame in case B. The
following frame had a reference diameter of 96 in the anastomosis orifice and a minimum diameter
of 34, indicating the presence of a stenosis, which was in agreement with the physician’s evaluation
of the anastomosis. The EUS-frame with the indicated sub-optimal stenosis is illustrated in Figure
4.23.

Figure 4.23: Subsequent EUS-frame to the frame in case B, where sub-optimal patency is marked
in the anastomosis orifice. The patency estimation is based on the segmentation from the local-phase
based snake. Sub-optimal patency is highlighted with yellow lines, and the reference diameters are
marked as green lines.
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When comparing the local-phase based snake segmentation in case B, shown in Figure 4.22(b) and
the segmentation of the following frame, shown in Figure 4.23, it is evident that the segmentation
algorithm segmented more of the graft in the subsequent frame. This influenced the reference
diameter, as the graft had a wider area in Figure 4.23, to which the anastomosis orifice was considered
sub-optimal.
The patency estimation algorithm found sub-optimal patency in the anastomosis orifice in case D for
both the local-phase based snake and Chan-Vese segmentation, and the manual annotation, which
was in agreement with the physician evaluation of case D. In Figure 4.24 the sub-patency area in
the anastomosis orifice is marked with yellow lines, the boundaries for the local-phase based snake
are marked with green and the Chan-Vese segmentation is marked with red.

Figure 4.24: Case D, where sub-optimal patency is marked in the anastomosis orifice with yellow
lines. The patency estimation is based on the segmentation from the Chan-Vese algorithm, but is
similar in size and shape in the local-phase base snake segmentation. The local-phase based snake is
marked green, and the Chan-Vese algorithm is marked red.

As seen in Figure 4.24 the sub-optimal patency in the anastomosis orifice is being identified, despite
the segmentation algorithms not being able to segment all of the anastomosis vessels, as the toe site
is missing in both segmentations.
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5. Discussion

In this chapter the methods used for designing an automatic and objective quality assessment model
are discussed in terms of the performance of each of the three parts in the model; vessel lumen
detection, vessel lumen segmentation, and patency estimation, as well as the overall performance of
the model. Furthermore, the limitations and strengths of the model are discussed, to which further
improvement of the model could be beneficial before implementing the model in practice.

5.1 Vessel lumen detection

The vessel lumen detection resulted in a mean Dice coefficient of 0.8149 for the development set
and 0.7412 for the test set. This difference in performance between the two data sets indicated that
the detection algorithm may have been developed on too few EUS-frames in order to represent the
general descriptive properties of the anastomosis vessels. However, a difference in performance was
expected as the detection algorithm was based on selected descriptive anastomosis features derived
from the development set. Furthermore, the variation between the two mean Dice coefficients of the
development and test set may partly be as a result of the 17 false positive detections in the test set,
which may be as a consequence of the small development set only consisting of anastomoses from
seven patients, displaying the same anastomosis vessels multiple times in the 96 EUS-frames.
The false positive detections were often round objects or longitudinal objects oriented horizontally,
reflecting myocardial tissue information. This could indicate that the current features used for
detecting the anastomosis vessels may be reevaluated or that more descriptive features could be in-
cluded e.g. intensities or size of the object. Additionally, a feature describing the shape of the object
could be included, as the traditional longitudinal end-to-side anastomosis was rarely observed cir-
cular. It could be beneficial to include more anastomosis vessels with varying appearance to deduce
more general features describing the anastomosis vessels to increase the performance of the detec-
tion algorithm. However, these improvements may not accommodate for the detection algorithm
not being able to differentiate between anastomosis vessel and other longitudinal vessel structures
present in the EUS-frames, thus the wrong vessel structures could be detected, as observed in this
project.

The initial operation in the vessel lumen detection was identification of missing acoustic contact
and shadowing. Through the test of the vessel lumen detection, and subsequently the vessel lumen
segmentations, it was observed that it was not always possible to exclude regions of non-acoustic
contact. This was mainly as a result of low randomness in the vessel lumen, which resulted in
more than the intended shadowing being identified. In these cases, the identified object did not
fulfill the criterion of the orientation, thereby not considered shadowing or non-acoustic contact.
A more comprehensive feature analysis of more EUS-frames containing missing acoustic contact or
shadowing may be performed to better identify shadowing, or perhaps develop a classifier for classi-
fication of the regions with low entropy. However, the use of entropy filtering would not be suitable
due to its tendency of considering non-acoustic contact and vessel lumen of low entropy as one object.

The detection algorithm identified several vessel candidates in the EUS-frames by using correlation
between the frames and predefined templates that imitated a rough vessel structure. It could be
discussed whether more tailored templates could increase the performance of the detection algorithm.
For instance templates could be constructed with speckle noise or with similar intensities of the

58



vessels and surrounding myocardium in the given EUS-frame instead of using the extremes; black
and white. Moreover, the size, angle and shape of the templates could be investigated to construct
more representative correlation templates. Furthermore, additional templates could be constructed
to identify shadows and non-acoustic contact in the frames.
In this project no preprocessing of the EUS-frames was performed which resulted in 91.15 % anas-
tomosis vessels being sufficiently detected, however it may be discussed whether improvements can
be achieved by despeckling or contrast enhancing in the images. Conversly these operations could
reduce the edge information in the image leading to a higher risk of overestimation.
In some EUS-frames extra objects were connected to the anastomosis vessels, as a result of the
merging step, where objects located within 200 pixels were merged if the mean intensities of the
objects varied with less than 5 %. These extra objects were often other vessel structures present
in the EUS-frame. However, the merging step prevented that only parts of the anastomosis vessels
would be detected, as the model was designed to only detect one vessel candidate. An alternative
approach could be to initialize the segmentation with multiple initial contours derived from more
vessel candidates representing the anastomosis vessels.
The use of Mahalanobis distance identified the true anastomosis vessels in 97.92 % and 93.73 %
of EUS-frames from the development and test set, to which it was indicated that anastomosis
vessels could be identified with the use of Mahalanobis distance with the features; orientation,
EquivDiameter, extent and deformity.
For further improvement a threshold of the Mahalanobis distance could be implemented to indicate
whether a vessel candidate should be considered an anastomosis vessel. However, more frames or
features could be considered implemented, as multiple alternative vessel candidates in this project
had a relatively low Mahalanobis distance. Moreover, it would be possible to exclude vessel can-
didates based on the Mahalanobis distance, to which a vessel lumen detection was not forced to
choose a vessel candidate. This could exclude detections where no anastomosis vessels were present,
to which the segmentation and patency estimation should not be initiated.

The vessel lumen detection was performed on individual EUS-frames independent from the previous
frames in the EUS-sequence. This limited contextual information in the sequence, as prior detection
and segmentation knowledge potentially could have restricted the spatial information within a region
of interest in the EUS-frame. Additionally, the prior shape information of the vessel may have been
used to derive a rough initial contour of the anastomosis vessels in future frames, dependent on the
amount of deformation occurring between frames.

5.2 Vessel lumen segmentation

The vessel lumen segmentations; local-phase based snake and Chan-Vese, had a mean Dice coefficient
of 0.8134 and 0.8187, respectively, when initializing the segmentations with the vessel lumen detec-
tions that were considered sufficient in the test set. This was a relatively large improvement from
using all the vessel lumen detections, including the false positively detected vessels as initial contours
in the segmentation. This indicated that the two algorithms would benefit from being initialized
with a curve close to the anastomosis vessel boundaries, which was also supported by the robust-
ness test performed on the test set. According to the results of the robustness test, the local-phase
based snake might be slightly more sensitive to the location of the initial curve, as this segmentation
performance increased with 0.1214, when initializing the curve closer to the vessel boundary, where
the Chan-Vese segmentation increased with 0.1036. This may be compatible with the theory behind
the two segmentation models as the local-phase based snake deforms the curve based on local image
information, where the Chan-Vese algorithm utilizes region based image information. An observa-
tion that should be taken into account when analyzing the robustness of the segmentations is that
the parameters of each segmentation was identical whether the manual annotation were eroded with
a disk radius of 10 or 20 pixels. Thus, the test where the manually annotated vessel was eroded
with a structuring element of radius 20 pixels might need a higher maximum number of iterations
for the curve to be able to reach the vessel boundary, compared to the curve that was eroded with
a structuring element with a disk radius of 10. However, the use of maximum iterations as a stop
criterion was preferable given the overestimation of the anastomosis vessels would be restricted. Ad-
ditionally, when comparing the Dice coefficients from the segmentations to the Dice coefficients of
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detections for all frames in the test set, it was apparent that the segmentation performance did not
provide an overall significant improvement, and could not consistently accommodate for the possible
inaccuracies of the detection. However, the segmentation of the vessel lumen was found to closely
estimate the boundaries of the manual annotations, despite the lower Dice coefficients.
When comparing the segmentation performance of the local-phase based snake and the Chan-Vese
algorithm, it was seen that the Chan-Vese segmentations had a slightly higher mean Dice coeffi-
cient. However, the difference in Dice coefficients between the segmentation algorithms for the test
set, where insufficient detections were excluded, was only 0.0053. Despite the minor variation, the
Chan-Vese segmentation appeared better to segment plaque and abrupt indentations of the vessel
boundaries. Both segmentation techniques segmented the anastomosis vessels accurately despite the
inclusion of shadows and non-acoustic contact, which influenced the Dice coefficients negatively.
A considerable difference between the local-phase based snake and the Chan-Vese algorithm was
the ability to adapt to topological changes in the objects, as one was a parametric and the other a
geometric deformable model. The initial curve, which was derived from the vessel lumen detection,
was always one object due to the merging operation before using the boundary as an initial curve.
In theory the Chan-Vese segmentation should be able to automatically separate the vessels in case
of occlusions in the anastomosis vessels, to which the local-phase based snake segmentation could
not. However, no EUS-frames in either the development- or test set showed anastomosis vessels with
occlusions. However, it was observed that the Chan-Vese segmentation had a tendency to separate
vessels at possible stenoses, while the local-phase based snake remained as one connected segmenta-
tion. A tendency observed of the local-phase based snake was that the snake collapsed to one edge
if the initial curve was too narrow. A possible way to prevent the snake from collapsing would be to
add an additional energy to the local-phase based snake algorithm, e.g. the balloon force in order to
force the snake contour outwards. However, this energy could also make the local-phase based snake
more susceptible to leak into shadowing or non-acoustic contact. Alternatively, the segmentation
techniques could be combined, to which the level-set method could be guided by the energies derived
from the phase map.

A preprocessing of the EUS-frames could potentially provide a smoother transition towards the true
edge in the phase map used in the local-phase based snake algorithm. Furthermore, the amount
of scaling or orientations used to derive the phase map could be analysed to find more optimal
parameters. Initial experimentations of adding additional scales and orientations indicated only
little to no variation to the phase map, to which the simpler setup was considered sufficient. A
preprocessing of the frames, e.g. smoothing or additional intensity transformations, could influence
the external weights in the Chan-Vese algorithm which were determined based on the EUS-frames
smoothed with a Gaussian filter with a standard deviation of 2. Moreover, the weight modifying the
internal energy in the Chan-Vese algorithm, should be tested if preprocessing was implemented.
As for the actual snake segmentation, the initial contour was uniformly parameterized for every 10
pixels from the detected vessel boundary. This was chosen as experimentations showed it to be
sufficient for the snake segmentation to estimate the boundary of the vessel or plaque. However, it
may be discussed whether 10 pixels were enough to catch abrupt changes in the vessel edge, which
potentially could reflect suture errors.

5.3 Patency estimation

The patency estimation was performed on the segmented vessels from the segmentation, thus the
identification of sub-optimal patency was dependent on the performance of the segmentation meth-
ods. If the segmentation was inaccurate, then the performance of the patency estimation algorithm
would be affected.
The patency estimation algorithm showed an agreement between patency of anastomosis orifice in
manual and automatically segmented vessels, to which accuracies of 83.90 % and 88.15 % for the
local-phase based snake and Chan-Vese segmentation were achieved. The Chan-Vese segmentation
was observered to estimate the boundary of the anastomosis orifice more accurately, compared to
the local-phase based snake. This could be as a result of the snake being restricted by the number
of control points.
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The patency estimation was aimed to be used as decision support during CABG-surgery to indicate
possible sub-optimal patency in the anastomosis vessels. Given that the model should be used
as a decision support system the false positive sub-optimal patencies would not be considered as
problematic as false negatives. The algorithm found false positively identified sub-optimal patencies
in the anastomosis orifice in 9.32 % and 5.93 % for the local-phase based snake and Chan-Vese
segmentation. Furthermore, 6.78 % and 5.93 % were estimated false negatively, indicating that the
algorithm was more likely to estimate sub-optimal patencies in the anastomosis vessels found in the
manual annotations.
The performance accuracy of the patency estimation of the toe in the anastomosis vessels were
82.29 % and 75.56 % for the local phase-based snake and Chan-Vese segmentation. This indicated
that the local-phase based snake estimated the boundary at the toe of the anastomosis vessels more
accurately than the Chan-Vese. Thus, a combination of the two segmentation algorithms may be
preferable, as one was better at estimating the anastomosis orifice and another better at estimating
the toe of the anastomosis vessels.
The algorithm resulted in a lower performance accuracy for the heel of the anastomosis vessels for
both segmentations, which was a result of the heel being the most problematic part to detect and
segment, as the heel often appeared small and indistinct from the surrounding myocardium.

It was observed that the segmentations of vessels in EUS-frames from the same patient could vary
slightly, which consequently affected the patency estimation, to which an anastomosis could have
different patency estimations. In order to accommodate for this sensitivity, the patency information
from the previous EUS-frames could be taken into consideration when finding the reference diameters
in the vessels. This would also be beneficial in segmentations where only a small part of the vessel
was segmented.
It was observed through the patency estimation performance on the test set that the separation
of the anastomosis vessels into the graft and the coronary artery was not always possible. This
was due to the automatically segmented vessels not always having the characteristic "y”-shape as
longitudinal end-to-side anastomoses have. If the automatically segmented vessel included extra
branches, the algorithm was not able to identify which branches were the coronary artery and graft.
Thus, the patency of the graft and coronary artery could not be evaluated separately based on two
different reference diameters, but based on the same reference diameter. A method to accommodate
for this could be to give each vessel an individual reference diameter, so that if the segmentation
had included extra branches, these would be evaluated individually as well instead of based on the
maximum diameter among all branches.

Consideration related to the handling of the manual annotations may also be discussed, as it was
decided to include segments of the graft or coronary artery even though they were annotated as
separated objects. This may have been a cause of lowering the Dice coefficients as only one vessel
candidate would be chosen in the vessel detection, and that no tendency of including the segment
was observed after segmentation. However, in few cases, it was observed that the vessel detection
connected the segments of the vessels into one object. This could indicate that some EUS-frames
contained sufficient information between the segments for them to be connected despite the sepa-
ration defined in the manual annotations. An additional observation that could potentially have
lowered the overall Dice coefficient of the segmentation, and caused disagreement in the patency
estimation was that the manual annotation was performed on the individual vessel segments of the
anastomosis. The combination of these segments may not represent the same boundary as if the
anastomosis vessels were annotated as a whole.
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5.4 Expansion of the model

The automatic quality assessment model was designed based on EUS-frames containing longitudinal
end-to-side anastomoses. It may be possible to expand the model to include side-to-side anasto-
moses or cross sectional anastomoses as well, by modifying the three parts; vessel lumen detection,
vessel lumen segmentation, and patency estimation. The vessel lumen detection was dependent of
descriptive features derived from longitudinal end-to-side anastomoses, to which descriptive features
from other types of anastomoses should be analyzed and implemented. However, a risk of including
additional types of vessel structures in the feature analysis is the possibility of the features becoming
too general to identify both types of anastomoses from the surrounding structures.
The current model used segmentation methods that were independent of the size and shape of the
region of interest, to which these segmentation techniques were believed to be applicable in other
segmentation problems.
The patency estimation was designed based on longitudinal vessels, to which it would be more
complicated to include cross sectional vessels in this algorithm. Currently, the algorithm is able
to estimate the diameter of vessels and identify sub-optimal patency in "y”-shaped structures, and
was further designed to manage longitudinal end-to-side structures with extra branches as it was
observed that the segmentation in some instances had extra side branches. Thus, determining the
patency in side-to-side anastomoses may not be complicated to implement in the algorithm.

5.5 Applications

The currently proposed method is intended to provide decision support of CABG-surgery using
EUS-recordings, providing an objective estimation of stenoses in the anastomoses vessels.
Implementation of the system may support physicians to intraoperatively determine whether an
anastomosis requires immediate revision, eliminating additional surgery and relieve stress done to
the patient. Additionally, the quality assurance support provided by the objective patency estimation
may improve the long term outcome for the patient, as it would help to ensure early optimal patency
of the anastomosis essential for the long term clinical outcome.
However, further investigations are recommended to improve the performance of the patency esti-
mation, as it is currently limited to longitudinal images of anastomosis vessel. By including larger
variations and types of anastomoses into the patency estimation, the method would also become
more applicable as an intraoperative tool for decision support. More extensive validation tests may
be performed to validate the patency estimations performance, by including larger amounts of data
containing significant stenoses. The method may also be optimized for it to be used in a real-time
application.
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6. Conclusion

Coronary artery bypass graft surgery remains the only major vascular surgery that is not routinely
intraoperatively quality assessed. The typically used methods for quality assessment are either
impractical in use or may provide a false impression of the quality of the anastomosis. Epicardial
ultrasonography (EUS) is a method that has shown potential for providing structural insight into the
quality of anastomoses, however, the patency evaluation is currently subjective, leading to cases of
missing or unnecessary revision of the anastomoses. The methods proposed in this project showed
that it was possible to detect and segment vessel lumen in EUS-frames and identify sub-optimal
patencies of anastomoses vessels. The performance of the methods lead to the detection of 91.15 %
anastomoses with a Dice coefficient higher than 0.5. Evaluation of the segmentation results showed
that the Chan-Vese algorithm performed with a higher Dice coefficient compared to the local-phase
based snake. However, the difference in performance was not significant. From the 271 EUS-
frames included in the test set the patency of 118 local-phase based snake segmentations and 135
segmentations performed with the Chan-Vese algorithm was investigated. Validation of the patency
estimation of the anastomosis orifice resulted in a performance accuracy of 83.90% and 88.15% using
the segmentations from the local-phase based snake and Chan-Vese algorithm, respectively. The
overall performance of the patency estimation was 76.02% and 76.05% using the two segmentation
algorithms, respectively. Further optimization of the model is recommended in order to achieve a
higher and more reliable performance.
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Acronyms

CABG coronary artery bypass grafting.

CAD Coronary artery disease.

CT computed tomography.

ECG electrocardiography.

EUS epicardial ultrasonography.

LIMA left internal mammary artery.

MIDCABG minimally invasive direct coronary artery bypass grafting.

MRI Magnetic resonance imaging.

OPCABG off-pump coronary artery bypass grafting.

PCI percutaneous coronary intervention.

TTFM Transit time flowmetry.

US Ultrasound.
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