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Abstract
In the transition from fossil-based to renewable energy

sources, the use of fuel pellets created from leftover biomass

from the industry for energy production has gained popu-

larity.

The pelleting process is an established technology, where

the main optimization focus in recent studies is based on

the material used in the process. The focus in this study

is the entire pelleting process, with an investigation of both

material parameters and process parameters.

Design Of Experiment was used to determine the experi-

mental variations to test at each run, from which an op-

timization equation with: total energy consumption of the

process, maximum pressure used in the process and dura-

bility of the produced pellets as response variables.

A statistical analysis using signi�cance was conducted on

the design variables to determine the signi�cance of the ef-

fect they have on the responses resulting in reducing the full

model of terms.

Optimized settings for the pelleting process at the four dif-

ferent durability limits of EU regulations are present in the

results along with a discussion and conclusion of the results.

Reading Guide

To distinguish between �gures, equations, and citations, [] is used for referring to

citations and numbers used for referring to �gures and equations.
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Nomenclature

Design Variables

A Design variable: Temperature ◦C

B Design variable: Moisture Content %

C Design variable: Particle Size mm

D Design variable: Inlet Angle ◦

E Design variable: Inlet Area Ratio −

F Design variable: Mass per Layer g

G Design variable: Roller Height mm

Pelleting

µ Friction coe�cient −

A Area of the piston mm2

c(x) Compression ratio −

F Force N

mpellet Mass of the produced pellet g

mtumbler Mass of the tumbled pellet g

P Pressure MPa

Px Pelleting pressure MPa

PNO Prestressing pressure MPa

r Radius of the pellet channel mm

s Extension of the piston mm

v Poisson's ratio −

W Work J

x Length of the pellet channel mm
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Design Of Experiment

βn E�ect of variable n on response

βnnn Three-way interaction e�ect on response

βnn Two-way interaction e�ect on response

xn Design variable n

y Response variable

Statistics

α Signi�cance level

x̄ Mean of variable x

ȳ Mean of response y

βn,0 Null hypothesis

β̂n Least Square Estimates of variable

se(β̂n) Standard error of β̂n

t Number of standard deviations from mean
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Chapter 1

Introduction

In the transition from fossil fuels to renewable energy sources, the use of biomass for

backup to the solar and wind primary energy production is gaining popularity [1].

The main problem with biomass is the transportation [2] since the biomass often

is produced far away from the power plants that generate electricity or heat from

it. A solution to this is preprocessing and pelleting, which ensures a higher energy

density of the biomass for transport. Other advantages of these processes include

homogeneous conditions such as temperature, water content and heating value of

the biomass [3].

The preprocessing of the material used in pelleting production follow three steps.

The �rst preprocess is drying of the biomass followed by the second process, which

is reduction of particle sizes using a hammer mill. The hammer mill grinds the raw

biomass into an easier to handle particle size. The third preprocess is conditioning

of the particle, meaning adding of moisture [4].

DryingBiomass Hammer Mill Conditioning Pelleting Post-
processing Pellets

Figure 1.1: Showing the entire process from biomass to fuel pellets

The preprocessed material then enters the pelleting machine, which makes use of an

eccentrically mounted roller within a ring die as seen in �gure 1.2a. A plane illus-

tration of the die can be seen in �gure 1.2b, which also shows the pellet channels,

where the biomass are compressed into pellets. The rollers compress the material

and press it down through the pelleting channels, resulting in pellets being pushed

out on the outside of the die.

Following the pelleting process, the pellets are then cooled using ambient cooling to

reach homogeneous conditions, before being tested for pellet quality.

1
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Figure 1.2: Showing the standard pelleting process

In 2016 Denmark used 2.6 Mio. tons [5] of wood pellets for energy purposes, this

amount demonstrates a need for the pelleting process to be as e�ective as possible.

This is done by experimenting with multiple variables to �nd the optimized settings

that the process can be run at. The statistical analysis of the study will be done in

the program Minitab.

This project included information about the experimental setup, design of experi-

ment, statistical analysis, experimental work and a discussion followed by a conclu-

sion.
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Chapter 2

Project De�nition

This MSc thesis aims to optimize the pelleting process; this is done by looking at the

entire pelleting process, such as the geometry of the pelleting equipment, prepro-

cessing conditions and the quality of the produced pellets. The goal is to decrease

the amount of energy used per produced pellets while maintaining the regulation

standards of quality. To this end, a statistical model is created using multivariate

data analysis. The data required to create the model is obtained experimentally,

by using a specially designed and manufactured modular single pellet piston unit

at Aalborg University Esbjerg. From the experiment, the needed constraints for

the optimization calculations are obtained. Furthermore, the statistical model will

undergo a signi�cance analysis to investigate the relevance of both the input and

output variables.

The procedure of this study were to make an investigation into the relevant pa-

rameters of the pelleting process, followed by the theory of reducing experimental

runs using Design Of Experiment. The chosen design from Design Of Experiment

was then performed as experimental work, and the result were used to create an

optimization model.

Parameter
investigation Experimental work Statistical model

V1

Review 
multivariate

Analysis

Optimization

Statistical model
V2

Bonus ObjectiveAnalysis

Further
workStart

Figure 2.1: Flowchart of the project
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Chapter 3

Pelleting Process Setup

In this chapter, the experimental setup commonly used in single pellet experiments

was investigated in such a way that a new setup with increased interchangeability

could be constructed. The chapter also includes a study of the relevant testing

parameters and the limits for each parameter.

3.1 Modular Single Pellet

For experimental purposes, a testing setup needed to be constructed. This setup

needed the ability to create pellets under di�erent parameters and measure the

relevant responses such as the pelleting pressure, energy consumption and the quality

of the pellets. The basic knowledge needed for creating such a setup was obtained

from a state of the art [6] study, that concluded that a single pellet setup which

is shown in �gure 3.1 was the standard for single pellet production created for

experimental purposes.

Figure 3.1a shows the �rst compression of an experiment. This �rst compression uses

a stop piston to create a material made stop piston for the following compressions.

After the �rst compression as seen in �gure 3.1b, the stop piston is then removed

before the pellet production can be started as shown in �gure 3.1c.

This setup is great for testing di�erent species of wood and changes to the mate-

rial such as; di�erent moisture contents, particle sizes and amount of mass in the

cylinder. The downside of this setup is the lack of options in changing the channel

dimensions such as inlet angle and area ratios.

4
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Figure 3.1: Pelleting process with circular die

To modify and improve the �xed single pellet setup, a modular single pellet setup

was created. The setup can be seen in �gure 3.2, which copies the use of a stop

piston for creating the material plug. The �gure shows a modular die as blue, which

can be changed between experimental runs so that more parameters can be tested.

Possible aditional parameters that can be tested with this setup is inlet angle, inlet

area ratio and pellet diameter.

Figure 3.2: Pelleting process with modular die setup

3.2 Physics/Variable Analysis

For the experimental and statistical work, some important testing parameters had

to be determined. The method for doing this is by creating a list of possible param-

eters by investigating the physics behind the pelleting process and the work done

5
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previously by others. This list of parameters can then be further investigated by

doing a statistical analysis of the result from the chosen design of Design Of Exper-

iment, which would result in the most important testing parameters.

Method One

The �rst method used for �nding parameters is investigating previous works. The

investigation into the pelleting pressure (Jens K. Holm et al. [4]) expressed the

pressure needed to compress the pellet and to move it a distance of x through the

cylinder. The expression they arrived at is shown in equation 3.1.

Px =
PNO
v

(e2µvc(x) − 1) (3.1)

The pelleting pressure equation 3.1 has these terms; PNO is a prestressing pressure

which is a term that takes added deformation pressure into account, v is the poison's

ratio of the material, µ is the coe�cient of friction between the pellets and the

material of the die, c is the compression ratio shown in equation 3.2, which is the

relation between the length and radius of the pellet channel.

c(x) =
x

r
(3.2)

Relevant parameters:

• Poisson's ratio

• Coe�ecient of friction

• Length of pellet

• Diameter of pellet

Method Two

Finding any relation as part of the leading physics.

Some of the same parameters will be found in the physics involved in the pelleting

process, like those found in previous works.

The �rst concept to look at is the compression process. This is related to the material

used and its composition along with the Poisson's ratio of the species. Furthermore,

6
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the Poisson's is dependent on the moisture content of the wood.

The next concept is the friction between the wood and the experimental setup, here

the materials composition, moisture content [7] and internal friction comes into ac-

tion. Furthermore, the internal friction depends on the temperature of the material

[8].

The next is the �ow rate, which is considered to have a low in�uence on the pressure

due to it being a function of the speed of the pellet, which is very low.

The �nal parameters comes from the process itself, these parameters are such as;

inlet angle of the die, inlet area of the die, how high the roller is mounted in the

setup, how much material available per compression, the length and diameter of the

channel.

Relevant parameters:

• Compression

� Species

∗ Composition

� Poisson's Ratio

∗ Moisture Content

• Friction

� Internal Friction

∗ Temperature

• Additional

� Diameter of the cylinder

� Length of the cylinder

� Mass per layer

� Roller height

3.3 Parameter study

The following section investigates the di�erent parameters, to see if any can be

removed to simplify the experimental testing process. Below is listed all the param-

7
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eters from the parameter analysis, which all will be processed further in the next

section.

• Species of wood

� Composition

∗ Lignin

∗ Cellulose

∗ Hemicellulose

∗ Ash content

Poisson's ratio Friction coe�cient

� Density

� Moisture content

� Temperature of the biomass

� Particle size

• Process temperature

• Inlet angle

• Inlet area ratio

• Mass per compression/layer

• Roller height

3.3.1 Design and Response Variables

A requirement needed to do Design Of Experiment, which is later shown in chapter

4, is that the design variables are independent of each other. This requirement, along

with possible design variables from the previous section, results in the parameters

being divided into four groups, which are particle parameters, pellet parameters, die

parameters and response variables.

The �rst design variable group contains the particle parameters, which is the rele-

vant variables that are speci�c to the particles used in the pelleting process. These

design variables include all parameters that di�er between di�erent species of wood

8
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and particle parameters such as composition (the content of Lignin, Cellulose, Hemi-

cellulose, and Ash), friction coe�cient, Poisson's ratio, density, particle size, tem-

perature, and moisture content. As for composition, friction coe�cient, Poisson's

ratio, and density all are dependent on the species of wood used; these are all ne-

glected in the setup of the experiment. The composition of the species used will be

shown in the appendix if needed for any external source validation purposes.

The second design variable group is comprised of the pellet parameters such as

length and diameter. These parameters are regulated by the EU [9], which makes

these design variables not relevant for further study.

The third design variable group include the die parameters such as angle, tempera-

ture, and the ratio between the inlet area and piston area. All of these could have an

impact on the response variables, so they are therefore included in further studies.

Another interesting parameter to investigate is the placement of the rollers, in this

case how high they are placed above the die. The last parameter in this group is

the amount of material available per compression. Knowing that too much material

can plug the setup this parameter is therefore considered for testing.

The last group is the response variables, which in this study include maximum

pelleting pressure, total energy consumption, and quality control of the pellet. There

are two di�erent widely spread methods of testing for quality; these are the hardness

tests and the durability test. Previous works using the two di�erent quality methods

have concluded that durability testing involving rotating the pellet a set number of

times are superior to hardness testing which involves measuring the side force needed

to break the pellets [10].

3.3.2 Range Of Variables

For use in the following chapters, a high and low limit along with the center value

for each design variable is to be de�ned. This is done by reviewing previous works

and international requirements.

Group one:

Starting with the particle parameters, the �rst design variables is the species of wood

to be used in the experiments, to this end at least three di�erent variants needs to

be present, with more given additional information. It could be interesting and

relevant to review and experiment on the often used species of wood for pelleting. A

9
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number of seven species was therefore chosen for further investigation but was later

rejected because of the time constraint of this project, resulting in only testing of

one species of wood.

The particle size range was de�ned to be between zero and 3.15, which is the range

set by the standard from ISO 17827-2:2016. From the overall range, a set of three

sub-ranges was chosen to be from 0 to 1 as low limit, from 1 to 2 as center value

and from 2 to 3.15 as the high limit.

Regulating the temperature of the wood, which in this case should be read as the

biomass, is not a viable action due to the energy required for heating when it is

already known that the pelleting process generates heat due to friction and com-

pression. The temperature for the process will be discussed in group three. The

only positive e�ect of preheating the biomass is when the process temperature is

low, such as when the process is starting up.

Due to extensive testing done by other studies [11], the chosen range of the moisture

content was from 10% to 20 %

Group two:

The length and diameter of the pellets have to be created according to ISO regulated

17831-1:2015.

Group three:

The inlet angle as seen in �gure 3.3 was a variable with low to none research. It was

therefore interesting to look at a wide range to get an understanding of the e�ect it

would have on the process. The chosen range was from 60◦ to 140◦, which is a wide

range with no guaranty to have an optimum point within.

Inlet Area

Angle

Figure 3.3: Showing the inlet angle and inlet area

The ranges of the process or die temperature was chosen from state of the art

10
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investigation [6], that show a temperature range in the die from around 100◦C to

around 140◦C. Due to failed experiments and personal error, the used range was

80◦C to 120◦C on the �rst try and 100◦C to 120◦C on the second try. The lower

limit of 80◦C and 100◦C was shown by experimental testing to be to low for the

experimental setup, and therefore resulted in several failed experiments.

The inlet area ratio shown in �gure 3.3 is the ratio between the inlet area of the die

and the piston force area. Since it is a ratio, the high limit is 1, where a low limit

was chosen to be 0.6 due to lack of information.

Response variables:

The maximum pelleting pressure needed to create pellets is required to be as low as

possible. This is because the pressure in�uences the experimental setup, with lower

max pressure possibly resulting in a motor change to a smaller and more e�cient

version. The compression machine used in the experiment measures the applied

force, which has to be divided by the piston area, found from a diameter of [9mm],

to get pressure as seen in equation 3.3.

P =
F

A
(3.3)

The total energy consumption is an important response variable because the whole

pelleting process is about energy e�ciency, so lowering the total consumption makes

the whole pelleting process more e�cient. The energy consumption is calculated us-

ing the midpoint rule of integration which takes a mean value of two force [F ]

measurements and multiplies it by the extension [s] of the piston. This is shown in

equation 3.4.

Wtotal =
∑(

Fi+1 + Fi
2

· (si+1 − si)
)

(3.4)

The durability of a pellet is used to determine the quality of the pellets, with pellets

produced with lower quality resulting in the manufacturer being subjected to �nes.

The durability is calculated from the mass of the produced pellet [mpellet] divided by

the remaining mass after tumbling [mtumbler] as shown in equation 3.5. These �nes

are de�ned from which durability group that the sample of the pellets is within,

these groups can be seen in bullet form below.

11
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Durablility =
mpellet

mtumbler

(3.5)

EU/ISO Regulations in percentage: [9]

• Durability group one: ≥ 97.5%

• Durability group two: ≥ 96.5%

• Durability group three: ≥ 95.0%

• Durability group four: < 95.0%

3.3.3 Design Variables With Limits

Table 3.1 shows the di�erent design variables, with both center point, low and high

limits. From these variables, the di�erent experiment is set up, such that each

variable are tested the same amount of times for low and high limits.

Table 3.1: Table showing the design variables at low, centerpoint and high limit

Inputs

Factor Low Center point High

Die Temperature (First Try) A 80◦C 100◦C 120◦C

Die Temperature (Second Try) A 100◦C 110◦C 120◦C

Moisture Content B 10% 15% 20%

Particle Size C 0 ≥ 1 1 > 2 2 ≥ 3.15

Inlet Angle D 60◦ 100◦ 140◦

Inlet Area Ratio E 0.6 0.8 1.0

Mass per Layer F 0.1 g 0.2 g 0.3 g

Roller Height G 1.00m 1.25 mm 1.50 mm

The �rst try of the temperature indicates that the �rst 15-20 experiments with 80◦C

as the low limit had multiple failed runs, this resulted in a retry with the lower limit

increased to 100◦C

12



Chapter 4

Design Of Experiment

Design of experiments (DOE) is a statistical method of experimental planning with

multiple usages with the main one focussing on minimizing the required number of

runs of an experiment needed to achieve the desired data.

Compared to the traditional approach of experimenting, which includes experiment-

ing with varying one variable at a time, using DOE varies several variables at a time.

Using DOE results in a decreased amount of runs and therefore reduces experimen-

tal cost. These bene�ts of DOE �ts the purpose of experimental design, which is

e�ciency and focus.

4.1 DOE in practice

4.1.1 How to design the experiment

The steps for building the design are presented in bullet points below.

First Step

The �rst step is determining the experimental responses for measurements and de-

sign variable to adjust the di�erent experimental runs. For this study, an example

is given in �gure 4.1.

13
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Figure 4.1: DOE: Design variables and responses

The noise variable is a collection of overlooked important design variables and other

sources that in�uence the response variables. Examples of these sources are noise

from instruments and measurement errors.

Second Step

The second step is de�ning levels to each of the design variables. The standard num-

ber of levels are based on the assumption that there is a linear relationship between

the change in a design variable and the e�ect it has on a response variable. This

linear relation requires two values, a low and a high value of each design variable.

In cases with a relation that are nonlinear, another point can easily be added for

increased accuracy. This is normally done by adding a center point for each design

variable, such that an experimental test of the mean value of all design variables can

be obtained. Notation of levels are commonly done with [-1] for low values, [+1] for

high values and [0] for center points.

14
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Table 4.1: Example of a two-level, two-factor DOE with notations

Factor

Runs A B

1 -1 -1

2 +1 -1

3 -1 +1

4 +1 +1

5 0 0

Third Step

The third step is de�ning the required information, such as an investigation of

design variable, factor, and interaction e�ects or �nding optimum values of the

design variables. From understanding what is to be investigated, the type of design

used is then chosen. These designs can be classi�ed into three model groups, as

described later in this chapter.

4.2 Types Of DOE

The �rst type investigated is the full factorial design. This is due to the fact that

these designs are the most extensive in terms of runs and therefore a good starting

point for understanding other less extensive designs.

4.2.1 Full Factorial Designs

The full factorial designs include all the information that can be obtained from

experimental testing. This is because all combinations of the design variables are

tested and investigated. In most cases this results in a high number of experimental

runs, with a low yield of additional information. The number of runs needed for full

factorial designs are calculated with 4.1. An example of a two-level, two-factor full

factorial design with one center point was used previously in table 4.1, showing all

of the possible di�erent runs with the two design variables. For the experimental

results, columns are added on the right side with the measured values of each run.

Runs = LevelsFactors (4.1)

15
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Table 4.2: Table showing two-level full factorial design

Factor 2 3 4 5 6 7 8 9

Runs 4 8 16 32 64 128 256 512

Table 4.2 shows the number of runs in full factorial design for a di�erent number of

design variables. From the table, it is clear that designs with several design variables

ranging from 4-5 and onwards requires an uneconomical amount of runs. Therefore

introducing Fractional Factorial Designs, which are based on the concept of Full

Factorial Design but with a decreased amount of runs.

E�ects

The main e�ect is the variation in a response variable when varying design variables

low and high level. The signi�cance of the main e�ect can be found statistically.

Another important e�ect is the interaction e�ect, which indicates the interaction

between two or more design variables. The same methods for �nding the main

e�ect can also be used to �nd the interaction e�ects, which will be explained in the

next chapter.

Important variables

Important variables are the design variables that are shown by statistical calculation

to have a main e�ect on a response variable. A design variable without a main

e�ect on a response variable can still be important if it has statistically signi�cant

interaction with another design variable. All non-important variables should be

excluded from any modeling work because they are without e�ect on the response

variables.

4.2.2 Fractional Factorial Designs

The concept of fractional factorial designs are running a full factorial design but

ignoring interaction terms, such as a design with a focus on main e�ect and two-

way interaction but assuming that three-way or more interactions can be neglected.

This results in a reduction in the number of runs required to obtain the required

information. The number of interaction available in a fractional factorial design is

shown by its resolution, these are indicated with Roman numerals, and an example

of how they work are shown later in this chapter. Table 4.3 shows di�erent factorial
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designs, including full and fractional designs. The "factors" in the table indicate

the number of independent design variables to investigate, whereas "run" indicates

the minimum number of experiments needed to get a proper understanding of the

independent variables signi�cance and the signi�cance of any interactions.

Table 4.3: Resolution of available factorial designs in Minitab [12]

Factors

Run 2 3 4 5 6 7 8 9 10 11

4 Full III

8 Full IV III III III

16 Full V IV IV IV III III III

32 Full VI VI IV IV IV IV

64 Full VII V V IV IV

128 Full VIII VI V V

Resolution

The drawback of using fractional design is the possibility of losing signi�cant data,

therefore introducing the resolution of a chosen design. These are indicated with

Roman numerals, and they show the amount of signi�cant information that can be

obtained from the chosen design.

The resolution indicates the level of the designs, which are ranging from full factorial

designs [Full] to fractional factorial designs [III, IV, V, V I...]. The full factorial

design includes signi�cant information for the variables, but also the information for

all interactions such as two, three, four...-way interactions. The fractional factorial

designs maintain the number of factors but use fewer runs to achieve the relevant

pieces of information. This is where the resolution comes into play. To understand

the resolution, two examples are made:

Resolution [III]

At this resolution, the basic variables are confounded with the two-way interaction

terms, meaning that the two-way interaction term and higher are inconclusive and

therefore irrelevant. The lack of interaction terms make this resolution a great tool

for basic order investigations, but a bad tool for overall investigations.
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Resolution [V]

For this resolution the confounded terms are: [V ] = 1 + 4 = 2 + 3, showing that the

confounded terms are the three-way and four-way interactions. This leaves the �rst

order and second order to be available for further processing, which in most cases

are more than enough.

The recommended resolution for a higher number of factors, where three-way inter-

actions or higher are neglected, is [V].

4.3 Choosing the model

4.3.1 Screening

The screening process is usually done at the start of a project with a large number

of design variables. This is done by minimum testing of the design variables where

the insigni�cant basic design variables are removed from further modelling. The

screening model usually consists of a linear model, only containing the main e�ects.

The most used design for screening is a resolution [III] fractional design with a focus

on the main e�ects only; this way, the important design variables remain. There is

still the possibility that an important interaction term is removed.

Plackett-Burman Designs

Other designs often used in screening are the Plackett-Burman designs. These de-

signs are primarily used when dealing with a high number of design variables while

doing a reduced number of experimental runs. As with the [III] design, Plackett-

Burman designs only focusses on the main e�ects. The lowest number of runs

needed for these designs are 12. Equation 4.2 show the model parameter obtained

from screening, with β0 being the intercept value for the response and βn is the

response change with increasing or decreasing xn.

Linear Model:

y = β0 + β1x1 + β2x2 + β3x3 (4.2)

4.3.2 Prediction Model

When a linear model fails to explain the response accurately, a prediction model

can be used. The di�erence between the linear model and the prediction model is
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the addition of interaction terms. Equation 4.3 shows the added terms compared

to equation 4.2. These terms are the so-called interaction terms, with x1x2 being a

two-way interaction and x1x2x3 being a three-way interaction. Higher than three-

way interaction is normally neglected because of the lack of information gained with

increased calculations.

Prediction Model:

y = Linear + β12x1x2 + β13x1x3 + β23x2x3 + β123x1x2x3 (4.3)

Figure 4.2 shows a two-factor version of the prediction model, the so-called cube

display. The blue points indicates the low and high value of each of the factors,

whereas the green point indicates the center point value.

Figure 4.2: The cube display of a two factor design

4.3.3 Optimization Model

An optimization model is based on a quadratic method, where the linear relation

of the basic variables from screening are combined with the two-way interactions of

the prediction model and the square e�ects to study the curvature of the response

surface.

Quadratic :

y = Predictionmodel + β11x
2
1 + β22x

2
2 + β33x

2
3 (4.4)

Cubic:

y = Quadratic+ β123x1x2x3 + β112x
2
1x2 + β113x

2
1x3 + β122x1x

2
2

+β133x1x
2
3 + β223x

2
2x3 + β233x2x

2
3 + β111x

3
1 + β222x

3
2 + β333x

3
3

(4.5)

Central Composite Designs

The most used design for optimization is the Central Composite Designs. The

Central Composite Designs can be categorized into three methods; these are the
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Circumscribed, Inscribed, and Face-centered designs, which will be described next.

For some Central Composite designs, it is possible to reuse some of the experimental

tests and results obtained from either the full or fractional factorial designs used as

screening or prediction.

Central Composite Circumscribed [CCC]

The original design for Central Composite is the circumscribed version, which in-

cludes some additional points called star points. These star points are located alpha

[α] from the center and are referred to as new extremes of both the high and low

level. The needed number of levels for CCC is the original three levels adding the

two new extreme points, leaving a need for �ve levels.

Alpha is used to make of design rotatable, which means that all points at a distance

of alpha from the center point are available as a response surface. Alpha in CCC

would be the distance from the center to the limit points (blue points), which shows

that the four new red points emerge.

From �gure 4.3, it can be seen that the new star points, which is marked by the

color red, are placed outside of the -1 to +1 range showing the new extreme levels

needed for doing CCC.

Figure 4.3: Showing the concept of CCC

Central Composite Inscribed [CCI]

The Central Composite Inscribed method uses the same principle as CCC to become

rotatable. This is done by using the low and high limits as the star points. This is

relevant when extreme limits are impossible to achieve. The concept can be seen in

�gure 4.4, which shows the CCC concept but restricted to the low and high limits.
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Figure 4.4: Showing the concept of CCI

Central Composite Face-Centered [CCF]

Another design is the Central Composite Face-centered, which is a nonrotatable

design. Like the CCI, this design uses the information available from the low, high,

and center point of each factor. The method uses a α value of zero, resulting in the

star points being located on the center of the cube. The information available from

the design is close to same as a full factorial design.

Figure 4.5: Showing the concept of CCF

Half Designs

The rules that apply to higher factor factorial design also apply to central compos-

ite designs, meaning that for higher factor designs a lower run with high enough

information is available. These designs are called half designs because they usually

require half as many runs as the full Central Composite designs. Table 4.4 shows

the number of runs needed for both full Central Composite designs, half Central

Composite designs and the Box-Behnken designs, which are explained below the

table.
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Table 4.4: Design methods of runs for statistical model

Design
Continuous Factors

2 3 4 5 6 7 8

Central Composite Full 13 20 31 52 90 152 -

Central Composite Half - - - 32 53 88 154

Box-Behnken - 15 27 46 54 62 -

Box-Behnken Designs

The Box-Behnken designs utilize the center point values of each factor to create a

rotatable representation of the optimization area. This can be seen in �gure 4.6,

which shows the center point of all factors in a three-factor design. The center point

on the back of the cube is also used, along with the center of the cube. By having

the same distance to all points, this method is classi�ed as a rotatable design.

The upside of using Box-Behnken is that only the low and high limits along with

center points are used. Whereas one of the downsides is the overuse of center points,

resulting in no reuse of results from previously created factorial designs.

Figure 4.6: Showing the concept of Box-Behnken

Methods for increasing accuracy of design

There are two general methods of increasing accuracy; these are increasing runs and

improved notation or grouping.

The �rst method can be achieved by adding more center points along with having

replicates of the experiment, which is a certi�ed way of increasing the accuracy of

the model.

The second method to increase accuracy is to decrease human interaction related

noise variables, such as performing the experiments in a random order removing
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any bias from the person running the experiment. This can also be done by the

use of blocks, which is a way of checking for noise variables between two sets of

experimental data, an example of this is if the experimental runs are done on di�erent

days, the block system could show if there are any noise variables as a function of

day change.

4.4 Model Selection

To get an overview of the di�erent designs and the needed runs between them, a

table with runs and designs can be seen below 4.5. The screening design chosen for

comparison was with 12 runs, whereas the prediction designs chosen were the Full

Factorial Designs and Fractional Factorial Design where the minimum resolution is

�ve.

Table 4.5: Listing the needed runs for the di�erent designs

Designs: 4 5 6 7 8

Screening - - - - 12

Fractional Factorial Designs [V-VI] 16 32 32 64 64

Full Factorial Designs 16 32 64 128 256

Central Composite [CCC,CCI,CCF] 31 52 90 152 304

Central Composite HALF - 32 53 88 176

Box-Behnken 27 46 54 62 124

Experimental constraints:

• Fewer Center Points Materials

• Time - Prefer Fewer Experiments

• No Extreme Limits/ Points

The time constraint makes all of the experiments with more than 100 runs impos-

sible. The lack of extreme limits makes the CCC impossible to do, while the lower

amount of center point material makes the CCI and Box-Benkhen more undesirable.

All of these constraints leave the CCF and factorial designs to be compared, with the

Full Factorial designs and CCF having more information and the [V-VI] Fractional

Factorial designs being shorter on runs. Getting the Full Factorial designs down

on runs require doing the screening process, which has no guarantee for lowering

the number of design variables and also has the chance of losing some important
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interactions, this leaves these designs as lacking compared to that of CCF designs.

Furthermore, the extra information gained from CCF compared to the [V-VI] Frac-

tional Factorial Designs, results in the CCF being chosen as the preferred designs

for the experimental setup.

The last problem addressed to decrease the number of runs of the CCF is removing

species as a design variable. This is done simply because of extensive research done

by others on these variables and also that harder woods would increase the needed

energy, but all other relations should remain the same when going from softwoods

to hardwoods.

This leaves CCF as the preferred design with seven design variables, meaning the

required number of runs needed are 88. A table 4.6 showing the �rst 15 runs describes

which settings to use in the di�erent experimental runs. To save space, the design

variables are designated by their assigned letters from table 3.1. The full table with

the 88 runs can be seen in the appendix A.1.

Table 4.6: Showing the �rst 15 of the 88 experimental runs

StdOrder RunOrder A B C D E F G

Random [◦C] [%] [mm] [◦] [-] [g] [mm]

1 81 100 10 1 60 0.6 0.1 1.5

2 79 120 10 1 60 0.6 0.1 1

3 39 100 20 1 60 0.6 0.1 1

4 9 120 20 1 60 0.6 0.1 1.5

5 46 100 10 3 60 0.6 0.1 1

6 88 120 10 3 60 0.6 0.1 1.5

7 75 100 20 3 60 0.6 0.1 1.5

8 78 120 20 3 60 0.6 0.1 1

9 62 100 10 1 140 0.6 0.1 1

10 24 120 10 1 140 0.6 0.1 1.5

11 17 100 20 1 140 0.6 0.1 1.5

12 27 120 20 1 140 0.6 0.1 1

13 87 100 10 3 140 0.6 0.1 1.5

14 77 120 10 3 140 0.6 0.1 1

15 47 100 20 3 140 0.6 0.1 1

24



Chapter 5

Statistical Analysis

The statistical objective of this chapter is reviewing how to �nd the e�ect of all of

the design variables on the responses, along with how to determine and select the

signi�cance of the design variables.

5.1 E�ect And Signi�cance

5.1.1 E�ect Calculation

Finding the e�ect of the design variables is done by the least square estimate method,

which is shown in equation 5.1, where β̂n is an estimation of design variables slope

on the response, x̄ and ȳ is the mean of x and y.

β̂n =

∑
xny − nx̄ȳ∑
x2 − nx̄2

(5.1)

The intercept value β0 is then found from a linear relation, as seen in equation 5.2.

β̂0 = ȳ − β̂1x̄ (5.2)

5.1.2 Signi�cance Calculation

For �nding the signi�cance of the design variables, a couple of statistical concepts

has to be reviewed. These concepts follow the route of doing a t-test to �nd a prob-

ability value p, which is then compared to a signi�cance level α.

The �rst concept is the t-test, which is found from equation 5.3. In this equation

βn,0 is the hypothesis value, which is typically zero, se(β̂n) is the standard error of β̂n.

t =
β̂n − βn,0
se(β̂n)

(5.3)

The results of the t-test are then shown in a normal distribution 5.1, where the t

value is the standard deviation from zero. The following �gure shows the normal

distribution with a t-value and the p-value, which is the next concept. As seen in
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the �gure, the p-value is the area from the t-value point to the right tail.

0 1 2Standard deviation:
t-value

Curve area = P-value

Alpha

Figure 5.1: Showing a normal distribution with a t-value, α and p area

The p-value is a level of trust in the null hypothesis, in such a way, that the lower the

p-value is, the more accepting the alternative hypothesis becomes. The signi�cance

level α is to point where you switch from the null hypothesis to the alternative one,

this is often set to be either 0.05 or 0.01, where 0.05 is the one used in this study. In

conclusion, if the p-value is below the signi�cance level of 0.05, then the investigated

design variable has a slope not equal to zero; therefore, it is relevant for the model.

• Null hypothesis

� Slope is not signi�cantly di�erent from zero. bn = 0

• Alternative hypothesis

� Slope is signi�cantly di�erent from zero. bn 6= 0

5.2 Model Reduction

5.2.1 R-Squared

The R2 value as seen in equation 5.4 is used to explain the di�erence between the

�tted regression model and the measurements. This gives that a high R2 value

indicates a well-�tted model. The downsides of using standard R2 is the inability

to determine if added model terms increase the e�ectiveness of the model. The R2

value will always go up when adding terms, so a model with fewer terms will always

be less accurate than a model with more terms, this is not true given that adding
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insigni�cant terms does nothing for the accuracy of the model.

R2 =
ExplainedV ariation

TotalV ariation
(5.4)

To address the problems with standard R2, other methods were created, the �rst

being the adjusted R2 and the last being the predicted R2.

The adjusted R2 was created to compare models with a di�erent number of design

variables or terms. The adjusted part is adjusting the models according to the num-

ber of terms so that the problem of standard R2 is removed.

The predicted R2 explains how well a model is to predict new measurement values.

This is done by removing a runs measurements and then calculating these measure-

ments using the �tted prediction model. The di�erence between the measured point

and the predicted point is then the predicted R2.

5.2.2 Reduction Methods

For reducing the terms included in the model, the following method is used. These

methods include forward selection, backward elimination, and stepwise reduction.

These methods will be compared to the full model from each of the models R2,

adjusted R2, and predicted R2.

The full model includes all parts of the quadratic equation, such as linear, two-way

interaction, and square relations.

Forward selection uses the pr-value of each e�ect to remove any insigni�cant design

variables. It does so by looking at all of the design variables, then selecting and

adding the most signi�cant one or the one with the lowest p-value to the model. It

continues to add to the model until no signi�cant variables remain.

Backward elimination uses a reversed method of forward selection, namely elimi-

nation instead. This is done by also looking at all design variables, but instead of

adding from a pool of variables to the model, it considered all variables as part of the

model from the beginning. It then �nds and removes the most insigni�cant or the
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one with the highest p-value from the model. This continues until only signi�cant

design variables remain in the model.

The stepwise reduction makes use of both forward selection and backward elimina-

tion. This is done by removing insigni�cant and adding signi�cant variables. This

is possible because the p-value of the design variables can change with removing

or adding terms. If the reduction parameters are correct, then the resulting model

should include all of the signi�cant variables.
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Chapter 6

Experiment

This chapter describes the experimental testing steps such as equipment used, the

accuracy of equipment, the material used and where it is from, the preprocesses

used on the material, execution of the experiment, result section and ending with

possible sources of error.

6.1 Experimental Equipment

This section includes a list of used equipment in the experiments. The industrial

machines used are listed with manufacturer and model, so that replication from an

outside source is possible.

• Compression Machine With Heating Chamber

� Manufacturer And Model: AMETEK - LLOYD LR50K

� Load Cell Accuracy < 0.5%

� Extension Resolution < 0.05 microns

• Modular Single Pellet Unit

� Nine Di�erent Dies - Appendix A.2

• Preheat Oven

• Precision Scale

� Manufacturer And Model: OHAUS - Pioneer Precision - PA214C

� Uncertainty Of The Instrument: ±0.110554 [mg]

• Computer

• Tumbler

� Regulation Approved

• Laboratory Test Sieve

� Mesh Size Of 3.15 mm, According To Regulations: ISO 17831-1:2015
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6.2 Material

The species of wood used in the experiment were Pine, which is obtained from

Sweden around the fall or winter of 2018.

6.2.1 Preprocessing

The material underwent the preprocessing as described in the introduction, starting

with a drying process, which was done in a 100◦C oven for one day, followed by a

particle size reduction using an industrial hammer mill. The resulting particles from

the hammer mill was then sieved so that a particle distribution could be obtained.

The particle distribution can be seen in �gure 6.1.
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Figure 6.1: Distribution of particle size

With the distribution of particles, it was then important for the limits of the ex-

periment to divide them into three groups or ranges. These ranges can be seen in

�gure 6.2 and are also de�ned in bullet form below the �gure.
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Figure 6.2: Showing the three particle ranges in cm

• Particle Range Distribution

� Range 1: From 0 To 1 mm

� Range 2: From 1 To 2 mm

� Range 3: From 2 To 3.15 mm

The last step of the preprocessing was conditioning, which consists of adding the

required moisture, as stated in chapter 3, to the di�erent particle ranges. Each of

the three particle ranges was added three di�erent moisture contents, which resulted

in 9 di�erent testing variations for the experimental runs. The material was then

placed in storage for a few days to insure that the moisture was uniform in the

sample. The method for adding moisture was in accordance with regulations: ISO

18134-1:2015.

6.3 Execution Of Experiments

The procedure of the experiment can be seen as a sketch in �gure 6.3. The �rst

step of the experiment was moving the setup from the preheating oven to the heated

compression chamber. Next step was to assemble the setup with the correct roller

height; this was done in settings on the computer attached to the compression

machine. After this the setup was complete, only the material preparation was

needed.
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Figure 6.3: Showing the experimental pelleting setup

The material preparations included picking the correct particle range along with

the correct moisture content. The loss of moisture in the material is considered to

be negligible, due to the fact that the material was stored in an airtight container

which was only opened during weighing of materials. After that, only the layer mass

size design variable was missing to achieve the same amount of material per pellet,

di�erent number of layers had to be added depending on the mass per layer. This

is shown in graph 6.4, which has the three di�erent layer masses 0.3, 0.2 and 0.1 as

pillars with the colors showing the di�erent pellets produced.

As the graph shows, then the �rst pellet, the red section uses more material than

the rest. This is because extra material is needed to be added compared to the layer

mass, to ensure that the cylinder was �lled adequately before removing the stop

piston. Given that this makes the �rst pellet di�erent in compression conditions

than the following pellets, the �rst pellet was discarded for each variation experi-

ment. After discarding the �rst pellet, it was easy to create multiple pellets under

the same conditions; therefore, three pellets were created for all variables making

averaged values possible. These extra pellets were added to the DOE as replicates.

Due to the replicates being done in sequence the same testing conditions across the

three produced pellets are not guaranteed, but a change in conditions such as tem-

perature of the process is considered negligible.
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To ensure that the �rst layer had su�cient mass to plug the cylinder, a mass was

calculated based on the volume of cylinders and of a frustum. The resulting values

can be found in appendix A.2.
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Figure 6.4: Showing the number of layers per experiment

6.3.1 Durability tests

The last experiment to run was the durability tests; these were done by measuring

the weight of the pellets before and after going through the tumbler. Inside the

tumbler, the pellets were subjected to 500 rotations. The last step before the last

measuring was sieving the pellets to separate approved sizes above 3.15 mm from

the discarded sizes below 3.15 mm according to regulation ISO 17831-1:2015.

Figure 6.5: Showing the experimental durability setup
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6.4 Results

6.4.1 Covariance Analysis

Relations between the response variables could simplify the optimization process in

that it could decrease the number of variables in the optimization settings and cal-

culations. Plotting the covariance between the response variables 6.6 shows if there

are any relation. From the scatterplot, the response total energy consumption can

be seen in the �rst row and column with the unit of [J], where the second row and

column show the durability as a ratio, the third row and column show the maximum

pressure in [MPa].

Looking at the relations it is shown in row one and column 3 that there are some

relation between the total energy consumption and the maximum pressure, which is

an information that can help reduce the setup of the optimization calculations. For

the relation between durability and the two other response variables, it can be seen

that no apparent relation is present.
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Figure 6.6: Showing the covariance between response variables

34



PECT10-6-F19

6.5 Model Reduction

Using the statistical p-value it is interesting to see the signi�cance of the terms of the

optimization mode. The following table 6.1 shows the R2 along with the adjusted

value and the predicted value of R2 for each of the three reduction methods which

was detailed in chapter 5. All of the reduction methods used a signi�cance [α] of

0.05.

Table 6.1: Showing the accuracy of the di�erent model reductions

R2 Full model Forward Backward Stepwise

Energy - 72.26 66.67 70.55 66.43

Pressure - 74.56 68.06 72.04 67.85

Durablility - 55.80 45.35 51.85 44.78

Average - 67.54 60.03 64.81 59.69

Energy Adjusted 67.75 64.70 68.40 64.74

Pressure Adjusted 70.42 66.16 69.87 66.09

Durablility Adjusted 48.63 41.88 48.57 42.25

Average Adjusted 62.27 57.58 62.28 57.69

Energy Predicted 61.53 61.80 65.37 62.23

Pressure Predicted 65.47 63.62 67.21 63.78

Durablility Predicted 38.47 36.81 43.40 38.26

Average Predicted 55.16 54.08 58.66 54.76

From the model, it can be concluded that the full and the backward models are

superior to the forward and stepwise models. This is determined by comparing

the averaged adjusted R2 and the averaged predicted R2 of the di�erent models.

For optimization calculation, both the full model and the backward model will be

included.

6.6 Optimization

For the optimization calculation some constraints are required, these includes which

response variable that is of most importance. The logical response constraint is

the durability levels as stated by the regulations, which stated that a penalty/�ne

system is in place for the durability ranges detailed in chapter 3. It is therefore

considered important to test the two models at the four di�erent levels. Furthermore

the relation between total energy consumption and maximum pressure results in
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a reduction in both responses when lowering one of them. From this is can be

concluded that only one of these responses could be set at the dominant variable to

minimize.

6.6.1 Optimized Settings

Full Model

Using the durability limits set as part of regulation ISO 17831-1:2015, four di�erent

results were calculated with the full model. A summary of the settings being shown

in table 6.2 and one visual representation can be seen in �gure 6.7 and the rest in

appendix A.5.

Figure 6.7 shows the relation between all of the design variables and the three re-

sponse variables. The composite desirability curve is a optimization tool to compare

the responses from set values of importance and weight.
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Figure 6.7: Showing the optimized conditions for 97.5% durability

Figure 6.7 and the table 6.2 shows that the more focus there is on durability, the

higher the total energy consumption becomes. The �rst three columns, with dura-

bility 97.5%, 96.5% and 95.0% are calculated with the important response variable
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set as the durability, whereas the last column had the energy consumption as the

most important response.

Table 6.2: Showing a summation of the di�erent optimization settings

Full Model: DU 97.5% DU 96.5% DU 95.0%
Min: Energy

DU 94.7%

Temperature [◦C] 120 120 120 120

Moisture Content [%] 16.46 16.67 15.05 18.08

Particle Size [mm] 1.0 1.10 1.36 1.83

Inlet Angle [◦] 86.67 133.54 123.43 140

Area Ratio [-] 0.60 0.60 0.60 0.60

Mass Per Layer [g] 0.19 0.22 0.19 0.22

Roller Height [mm] 1.43 1.49 1.32 1.32

Maximum

Pressure

[MPa] 227.7 222.5 208.8 216.9

[±] 1.138 1.112 1.044 1.085

Energy

Consumption

[J] 97016 84455 82421 75505

[±] 485.08 422.28 412.11 377.53

From the table 6.2, it can be concluded that the high limit of temperature is used

in all the calculations, which means that a higher temperature than 120◦C should

improve the process. Likewise the low limit of inlet area ratio is used, which suggest

that a lower area ratio should also improve the process.

The parameters that reach the limit on only some of the equations, could be further

investigated if that durability level is the required one.

Backward Elimination Model

Like the full model summary, a version for the backward Elimination model can be

seen in table 6.3 and visual representation can be seen in �gure 6.8 appendix A.7.
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Cur
High

Low

D: 0,9781

Optimal

Predict

d = 0,35877

Minimum

Max Pres

y = 294,0391

d = 0,99947

Targ: 0,9750

Durabili

y = 0,9748

d = 0,30748

Minimum

Energy

y = 1,370E+05

D: 0,9781

Desirability

Composite

1,0

1,50

0,10

0,30

0,60

1,0

60,0

140,0

1,0

3,0

10,0

20,0

100,0

120,0
MC Particle Angle Area Rat Layer RollerTemp

[100,0] [18,9633] [1,0] [60,0] [0,60] [0,10] [1,50]

Figure 6.8: Showing the optimized conditions for 97.5% durability

The optimization calculations for the backward model shows the same trend as the

full model when it comes to higher energy consumption with higher durability. The

huge di�erence lies in the changed design variables along with a great increase in

energy consumption.

Table 6.3: Showing a summation of the di�erent optimization settings

Backward Model: DU 97.5% DU 96.5% DU 95.0%
Min: Energy

DU 92.5%

Temperature [◦C] 100 118.99 120 120

Moisture Content [%] 18.96 14.55 16.36 20.00

Particle Size [mm] 1.00 1.00 1.00 1.83

Inlet Angle [◦] 60.0 60.0 140 140

Area Ratio [-] 0.60 0.60 0.60 0.60

Mass Per Layer [g] 0.10 0.10 0.21 0.21

Roller Height [mm] 1.50 1.50 1.44 1.50

Maximum

Pressure

[MPa] 294.04 253.15 228.76 202.50

[±] 1.470 1.266 1.144 1.013

Energy

Consumption

[J] 136951 119922 84756 72118

[±] 684.76 599.61 423.78 360.59
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From the table 6.3, it is shown that some parameters such as; temperature, particle

size, inlet angle, inlet area ratio, mass per layer and roller height reach limits at

some of the durability levels, which suggest that further testing could be relevant

for those levels.
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Chapter 7

Summary And Conclusion

In this study, an investigation into relevant parameters that a�ect a pelleting pro-

cess was performed. To investigate the parameters an experiment was set up using

Design Of Experiment as the method of designing the experimental runs and a mod-

ular single pellet processing unit to produce the pellets with the variables de�ned

by Design Of Experiment.

The design variable temperature was for the �rst experimental runs set with limits

of 80◦C and 120◦C, which resulted in several failed experiments at the lower limit.

The following experiments were then executed with a lower limit of 100◦C, which

later showed to also be too low to avoid failed runs. The conclusion of this com-

pared with the trend of temperatures e�ect on the responses is that the optimal

area for pelleting of the process temperature is higher than 110◦C, with increasing

e�ectiveness with higher temperatures.

The selected design for DOE was the Central Composite Face-Centered half design,

which included all the terms needed to create an optimization equation. The down-

side that a halfed design only get half the information is concluded irrelevant due

to the fact that the resulting relations follow the expected trends.

An investigation into the covariance between the di�erent responses showed that

there is no apparent way to lower the total energy consumption while raising the

durability since the durability has high and low measurements at both the high and

low point of total energy consumption and maximum pressure.

Assuming that pelleting process manufacturers wants to construct a setup that pro-

duces the highest possible durability or at least reaching the limits of 97.5 %, then

it can be concluded from the full model that the only design variables that would

decrease the total energy consumption while maintaining the high durability level

are a higher temperature and lower inlet area ratio. The same investigation into the

backward elimination model shows that there is no apparent design variable that

can be optimized without lowering the durability.
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As for the accuracy of the models, it can be concluded that the backward model is a

better predictor than the full model, this is due to the removal of unwanted terms.

Another conclusion to the backward model is the lack of complete explanation, with

an adjusted R2 of roughly 62.28, indicating that there are some important variables

that were not included in the Design Of Experiment part of the study.

As a �nal note, the most important information gained in the study is the relations

between the design variables and the responses, which all show the di�erent opti-

mum points for the variables. Another important conclusion is that all of the design

variables is signi�cant either as a basic variable or as an interaction.
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Appendix A

Appendix

A.1 The DOE Results

Table A.1: Showing the result of the DOE with 88 runs

StdOrder RunOrder A B C D E F G

[◦C] [%] [mm] [◦] [-] [g] [mm]

1 81 100 10 1 60 0.6 0.1 1.5

2 79 120 10 1 60 0.6 0.1 1

3 39 100 20 1 60 0.6 0.1 1

4 9 120 20 1 60 0.6 0.1 1.5

5 46 100 10 3 60 0.6 0.1 1

6 88 120 10 3 60 0.6 0.1 1.5

7 75 100 20 3 60 0.6 0.1 1.5

8 78 120 20 3 60 0.6 0.1 1

9 62 100 10 1 140 0.6 0.1 1

10 24 120 10 1 140 0.6 0.1 1.5

11 17 100 20 1 140 0.6 0.1 1.5

12 27 120 20 1 140 0.6 0.1 1

13 87 100 10 3 140 0.6 0.1 1.5

14 77 120 10 3 140 0.6 0.1 1

15 47 100 20 3 140 0.6 0.1 1

16 14 120 20 3 140 0.6 0.1 1.5

17 64 100 10 1 60 1 0.1 1

18 12 120 10 1 60 1 0.1 1.5

19 76 100 20 1 60 1 0.1 1.5

20 45 120 20 1 60 1 0.1 1

21 82 100 10 3 60 1 0.1 1.5

22 10 120 10 3 60 1 0.1 1

23 34 100 20 3 60 1 0.1 1

24 43 120 20 3 60 1 0.1 1.5
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25 57 100 10 1 140 1 0.1 1.5

26 85 120 10 1 140 1 0.1 1

27 26 100 20 1 140 1 0.1 1

28 42 120 20 1 140 1 0.1 1.5

29 48 100 10 3 140 1 0.1 1

30 65 120 10 3 140 1 0.1 1.5

31 28 100 20 3 140 1 0.1 1.5

32 69 120 20 3 140 1 0.1 1

33 32 100 10 1 60 0.6 0.3 1

34 29 120 10 1 60 0.6 0.3 1.5

35 55 100 20 1 60 0.6 0.3 1.5

36 54 120 20 1 60 0.6 0.3 1

37 66 100 10 3 60 0.6 0.3 1.5

38 18 120 10 3 60 0.6 0.3 1

39 59 100 20 3 60 0.6 0.3 1

40 11 120 20 3 60 0.6 0.3 1.5

41 44 100 10 1 140 0.6 0.3 1.5

42 60 120 10 1 140 0.6 0.3 1

43 19 100 20 1 140 0.6 0.3 1

44 5 120 20 1 140 0.6 0.3 1.5

45 13 100 10 3 140 0.6 0.3 1

46 7 120 10 3 140 0.6 0.3 1.5

47 1 100 20 3 140 0.6 0.3 1.5

48 36 120 20 3 140 0.6 0.3 1

49 23 100 10 1 60 1 0.3 1.5

50 68 120 10 1 60 1 0.3 1

51 3 100 20 1 60 1 0.3 1

52 33 120 20 1 60 1 0.3 1.5

53 52 100 10 3 60 1 0.3 1

54 41 120 10 3 60 1 0.3 1.5

55 31 100 20 3 60 1 0.3 1.5

56 84 120 20 3 60 1 0.3 1

57 70 100 10 1 140 1 0.3 1

58 71 120 10 1 140 1 0.3 1.5

59 25 100 20 1 140 1 0.3 1.5
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60 50 120 20 1 140 1 0.3 1

61 2 100 10 3 140 1 0.3 1.5

62 8 120 10 3 140 1 0.3 1

63 15 100 20 3 140 1 0.3 1

64 6 120 20 3 140 1 0.3 1.5

65 21 100 15 2 100 0.8 0.2 1.25

66 58 120 15 2 100 0.8 0.2 1.25

67 53 110 10 2 100 0.8 0.2 1.25

68 83 110 20 2 100 0.8 0.2 1.25

69 49 110 15 1 100 0.8 0.2 1.25

70 51 110 15 3 100 0.8 0.2 1.25

71 63 110 15 2 60 0.8 0.2 1.25

72 22 110 15 2 140 0.8 0.2 1.25

73 74 110 15 2 100 0.6 0.2 1.25

74 72 110 15 2 100 1 0.2 1.25

75 16 110 15 2 100 0.8 0.1 1.25

76 35 110 15 2 100 0.8 0.3 1.25

77 38 110 15 2 100 0.8 0.2 1

78 80 110 15 2 100 0.8 0.2 1.5

79 61 110 15 2 100 0.8 0.2 1.25

80 73 110 15 2 100 0.8 0.2 1.25

81 86 110 15 2 100 0.8 0.2 1.25

82 67 110 15 2 100 0.8 0.2 1.25

83 56 110 15 2 100 0.8 0.2 1.25

84 4 110 15 2 100 0.8 0.2 1.25

85 20 110 15 2 100 0.8 0.2 1.25

86 30 110 15 2 100 0.8 0.2 1.25

87 40 110 15 2 100 0.8 0.2 1.25

88 37 110 15 2 100 0.8 0.2 1.25

A.2 Di�erent dies and �rst layers
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Table A.2: Di�erent dies with �rst layer mass

Number Angle Area
First layer mass at roller height in [g]

1.00 mm 1.25 mm 1.50 mm

6 60 0.6 0.260 0.282 0.304

7 60 0.8 0.290 0.312 0.334

8 60 1.0 0.332 0.354 0.376

9 100 0.6 0.252 0.274 0.296

10 100 0.8 0.266 0.288 0.310

11 100 1.0 0.286 0.308 0.330

12 140 0.6 0.247 0.269 0.291

13 140 0.8 0.253 0.275 0.297

14 140 1.0 0.262 0.284 0.306
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A.3 Experimental Pictures

Tumbler:

Figure A.1: Showing the tumbler machine

Laboratory Test Sieve - 3.15 mm:

Figure A.2: Showing the 3.15 sieve for durability testing
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A.4 FULL MODEL

Energy = 884034−6670Temp−13811MC−35650Particle+201Angle−74162AreaRatio−
682463Layer − 173405Roller + 17.7Temp · Temp+ 37MC ·MC + 12207Particle ·
Particle+0.51Angle ·Angle−32263AreaRatio ·AreaRatio+771129Layer ·Layer+

43811Roller ·Roller+ 79.8Temp ·MC − 33.8Temp ·Particle− 5.46Temp ·Angle+

311Temp ·AreaRatio+ 2699Temp ·Layer+ 187Temp ·Roller−312MC ·Particle+

1.62MC · Angle + 3234MC · AreaRatio − 1634MC · Layer + 1096MC · Roller +

54.8Particle·Angle−13456Particle·AreaRatio−12911Particle·Layer+2681Particle·
Roller−30Angle·AreaRatio+596Angle·Layer−43.7Angle·Roller+35544AreaRatio·
Layer + 40810AreaRatio ·Roller − 28993Layer ·Roller

MaxPressure = 130000 − 975Temp − 1885MC − 3932Particle − 128.2Angle −
13527AreaRatio+23643Layer−36577Roller+2.69Temp ·Temp+27.7MC ·MC+

1070Particle·Particle+0.386Angle·Angle−10618AreaRatio·AreaRatio+71354Layer·
Layer + 7383Roller ·Roller + 7.45Temp ·MC + 4.0Temp · Particle− 0.109Temp ·
Angle+ 79.6Temp ·AreaRatio− 127Temp ·Layer+ 48.0Temp ·Roller− 105.4MC ·
Particle+ 0.176MC ·Angle+ 399MC ·AreaRatio− 800MC · Layer + 192.2MC ·
Roller+ 10.83Particle ·Angle− 1470Particle ·AreaRatio− 3309Particle ·Layer+

954Particle·Roller+26.9Angle·AreaRatio+27.2Angle·Layer+6.2Angle·Roller−
1256AreaRatio · Layer + 10025AreaRatio ·Roller − 7960Layer ·Roller

Durability = 2.34− 0.0334Temp + 0.0598MC + 0.1376Particle− 0.00132Angle−
0.621AreaRatio−0.459Layer+0.218Roller+0.000156Temp ·Temp−0.001547MC ·
MC−0.0080Particle·Particle−0.000001Angle·Angle+0.350AreaRatio·AreaRatio−
1.02Layer · Layer − 0.099Roller · Roller − 0.000020Temp ·MC − 0.000490Temp ·
Particle−0.000011Temp·Angle−0.00092Temp·AreaRatio+0.00736Temp·Layer+

0.00086Temp ·Roller−0.001434MC ·Particle+0.000064MC ·Angle−0.00114MC ·
AreaRatio−0.02170MC ·Layer−0.00371MC ·Roller+0.000148Particle ·Angle−
0.0255Particle · AreaRatio − 0.0525Particle · Layer − 0.0303Particle · Roller +

0.000495Angle · AreaRatio + 0.002238Angle · Layer + 0.000396Angle · Roller +

0.437AreaRatio · Layer + 0.0472AreaRatio ·Roller − 0.024Layer ·Roller
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A.5 Optimization [FULL MODEL] Results

Cur
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D: 0,9473
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Predict

d = 0,66279

Minimum
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y = 222,4783

d = 0,99964

Targ: 0,9650
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d = 0,79095

Minimum

Energy

y = 8,446E+04

D: 0,9473

Desirability

Composite

1,0

1,50

0,10

0,30

0,60

1,0

60,0

140,0

1,0

3,0

10,0

20,0

100,0

120,0
MC Particle Angle Area Rat Layer RollerTemp

[120,0] [16,6667] [1,1010] [133,5354] [0,60] [0,2212] [1,4949]

Figure A.3: Showing the optimized conditions for 96.5% durability
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d = 0,99991

Targ: 0,950
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y = 0,9500

d = 0,80968
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Figure A.4: Showing the optimized conditions for 95.0% durability
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d = 0,90955
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[120,0] [18,0808] [1,8283] [140,0] [0,60] [0,2172] [1,3182]

Figure A.5: Showing the optimized conditions for 91.3% durability
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A.6 Backward MODEL

Energy = 573344−2334Temp−12192MC−53486Particle+282Angle−82543AreaRatio−
833874Layer − 26021Roller + 14533Particle · Particle + 1003732Layer · Layer +

80.2Temp ·MC − 5.80Temp ·Angle+ 2673Temp · Layer + 3255MC ·AreaRatio+

55.2Particle∗Angle−12590Particle·AreaRatio+629Angle·Layer+35170AreaRatio·
Roller

MaxPressure = 1083.6 − 4.227Temp − 10.18MC − 98.5Particle − 0.375Angle −
274.7AreaRatio− 450Layer− 161.5Roller+ 28.34Particle ·Particle+ 2274Layer ·
Layer+0.1031Temp ·MC−1.717MC ·Particle+5.57MC ·AreaRatio−12.43MC ·
Layer+0.1630Particle ·Angle−24.60Particle ·AreaRatio−47.0Particle ·Layer+

14.74Particle ·Roller + 147.8AreaRatio ·Roller
Durability = 0.750−0.001080Temp+0.04617MC+0.0162Particle−0.001840Angle−
0.1233AreaRatio−0.995Layer+0.0883Roller−0.001370MC ·MC+0.00731Temp ·
Layer − 0.001244MC · Particle + 0.000065MC · Angle − 0.02180MC · Layer +

0.000165Particle·Angle−0.0311Particle·Roller+0.002291Angle·Layer+0.435AreaRatio·
Layer
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A.7 Optimization [Backward MODEL] Results
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Figure A.6: Showing the optimized conditions for 96.5% durability
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Figure A.7: Showing the optimized conditions for 95.0% durability
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Figure A.8: Showing the optimized conditions for 92.5% durability
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