
Numerical Modelling of Terahertz
Response from a HEMT Structure

Masters Thesis

Physics

Aalborg University

10th of June 2019





Department of Materials
and Production
Physics
Skjernvej 4a
9220 Aalborg

Title:
Numerical Modelling of Terahertz
Response from a HEMT Structure

Project:

Master Thesis

Project period:

February 1st, 2019 - June 10th, 2019

Project group:

5.336c

Student:

Kristian Nedergaard Jakobsen
Niklas Linaa Larsen

Supervisor:

Thomas Søndergaard

Pages: 94
Appendix: 14
Submission date 10-06-2019

Abstract:
Dette specialeprojekt er udarbejdet un-
der titlen Numerical Modelling of Ter-
ahertz Response from a HEMT Struc-
ture. Formålet med rapporten er at forstå
dannelsen af plasma bølger i high elec-
tron mobility transistors (HEMTs) two-
dimensional electron gas (2DEG) lag og
være i stand til at numerisk at kunne
bestemme resonans frekvenser i terahertz
området, hvordan det påvirker excitation
af disse bølger. Desuden vil sammen-
hænge mellem disse resonans frekvenser,
længden af gaten i transistoren og afs-
tand til 2DEGen undersøges. Til dette
formål er der blevet opstillet en metode
til at udregne strømmen i HEMT gaten,
som er baseret på Maxwell’s ligninger
og tilhørende elektromagnetiske grænse-
betingelser. Der blev som udgangspunkt
brugt point matching for at beskrive
strømmen, hvilket resulterede i inkonsis-
tent konvergens. For at forbedre dette
blev anden ordens basis funktioner an-
vendt, hvilket resulterede i en forbedret
konvergens. Desuden blev strukturen
analyseret for guidede modes, hvilket un-
der antagelsen af at 2DEG’en er uen-
delig tynd gav resonans frekvenser som
stemte overens med den numeriske model.
Generelt var det muligt at bestemme reso-
nans frekvenser i terahertz området for en
given struktur, der overvejende var i ov-
erensstemmelse med hvad var forventet.

The content of the report is freely available, but publication (with source reference) may only take place

in agreement with the authors.





Preface

This master thesis is written by Kristian Nedergaard Jakobsen and Niklas Linaa Larsen
4th semester master’s students of physics at the Department of Materials and Produc-
tion, Aalborg University. The subject of the project is Numerical Modelling of Terahertz
Response from a HEMT Structure and studies plasma waves in a HEMT structure and
attempts to use numerical modelling to describe the phenomena.
The report is divided into five parts; a theoretical introduction which introduces the for-
mulae and concepts which are used to describe and discuss the results; a section which
describes the methods used in the modelling of the HEMT structure; an analysis in which
specific structures are modelled and analysed; a discussion of the models where the theo-
retical knowledge is used to discuss the results; and the conclusion where the theoretical
knowledge is utilised to conclude upon the models. In addition an appendix with long
derivations, complementary theory, and additional figures is included.

Reading guide

In this report, references are a part of the text and are collected in the bibliography in
the back of the report.
References are indicated with [number ]. These numbers refer to the bibliography where
books are stated with author, title, edition, and publisher while web-pages are stated with
author, title and last date accessed.
In the text, vectors and matrices are shown as A.
Figures are numbered according to the chapter they appear in, i.e. the first figure in
chapter 2 is numbered 2.1, the second figure has the number 2.2, etc. Figures have an
explaining caption placed below.

Kristian Nedergaard Jakobsen Niklas Linaa Larsen
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Introduction 1
Frequencies in the range of 0.1 THz to 3 THz, are often called the terahertz gap, as
this range lies between the two well known domains of electronic and optical devices.
Technology operating in this range is difficult to fabricate, as the technologies which work
for higher or lower frequencies are not directly applicable to terahertz technology [1]. Many
common materials, and even living tissue, is semi-transparent in the terahertz domain
and because it is non-ionising, terahertz technology can be used for screening purposes.
This can be utilised in more commercial applications such as monitoring of compounding
processes or quality inspection of food products [2]. It has also gotten the attention in
military uses or security for airports for being able to detect weapons and drugs [3]. The
health sector has also gotten a keen interest as terahertz imaging has a potential for
detection of cancer [4].
Everything with a temperature of over 10 K, emits terahertz radiation as a part of
blackbody radiation, thus astronomers are also interested in terahertz technology to analyse
the cosmic background radiation [1]. A limiting factor for technologies utilising terahertz
radiation is that it is not capable of penetrating through water and therefore has limited
range in the atmosphere. It is, however, reasonable for uses within ≈ 10 m, thus might
have uses for short range technologies, i.e. high bandwith wifi systems [3]. There are
several methods which are capable of producing terahertz radiation, however most methods
are either expensive or inefficient. Terahertz technology is still in the developing stages
and cheap and effective terahertz sources and receivers are sought [3]. A new method
for creating terahertz radiation was postulated by Michael I. Dyakonov and Michael S.
Shur in 1993 [5], where the theory behind using the propagation of plasma waves in a
High Electron Mobility Transistor (HEMT) to create and measure terahertz radiation was
established. Since then a lot of effort has went into the construction of HEMT structures
which are capable of interacting with terahertz radiation. This could help revolutionise the
terahertz technology, as HEMT structures are well known and thus the existing knowledge
in the field can help create more efficient terahertz sources.
This project aims to understand the generation of terahertz radiation from the

propagation of plasma waves in a HEMTs two-dimensional electron gas (2DEG).
Furthermore, it seeks to develop a model for the response of a HEMT, to an incident
electromagnetic wave, in the terahertz range, in order to determine resonance frequencies
for a HEMT structure. To this end classical electromagnetism is used in combination with
Fourier analysis relevant structures. The project has put special focus on the AlGaN/GaN
HEMT structure, as this is a newer more prominent candidate for efficient terahertz sources
[6][7].
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Electromagnetic Theory 2
2.1 Maxwell’s Equations

This section is based on references [8] and [9]
In order to establish the propagation of plasma waves, basic electromagnetic theory will

be established. Propagation of electromagnetic waves are governed by Maxwell’s equations.
In a homogeneous, linear and isotropic material they are given as

∇ ·D(r, t) = ρ, (2.1)

∇ ·B(r, t) = 0, (2.2)

∇×E(r, t) = −∂B(r, t)

∂t
, (2.3)

∇×H(r, t) = Jf (r, t) +
∂D(r, t)

∂t
, (2.4)

where ρ is the free charges, E is the electric field, B is the magnetic induction field, Jf is
the free currents, D = εE is the displacement field and H = B

µ is the magnetic field. The
electric permittivity,ε, of the material and is given as ε = εrε0, where εr is the relative
permittivity and ε0 is the vacuum permittivity, and µ is the magnetic permeability and is
given as µ = µrµ0, where µr is the relative permeability and µ0 is the vacuum permeability.
The time dependence is assumed to be e−iωt unless otherwise specified.
Taking the curl of Eq. (2.3), taking the time derivative, and using the defined time

dependence, gives

∇×∇×E = iωµ∇×H = iωµ (Jf − iωεE) , (2.5)

where the last equality comes from inserting Eq. (2.4). Eq. (2.5) is known as the vector
wave equation. The vector identity ∇×∇× f = ∇(∇ · f)−∇2f is used to obtain

∇(∇ ·E)−∇2E = iωµ (Jf − iωεE) . (2.6)

Inserting Eq. (2.1) and defining ω2εµ = k2 gives(
∇2 + k2

)
E =

∇ρ
ε
− iωµJf (2.7)

For a situation where there are no free currents or charges, ρ = Jf = 0, which is known as
the Helmholtz equation.

2.2 Optical Cross Sections

This section is based on reference [10].
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Master Thesis 2. Electromagnetic Theory

In this section expressions for far field approximations for the magnetic field from a
scatterer will be derived, in order to calculate the radiation pattern emitted from a
structure and the related cross sections.

2.2.1 Scattering Cross Section

For a scatterer on a layered structure, which will be considered here, the expression of the
far field profile depends on which half-plane is considered. However since the derivation
is similar for both half-planes, only the upper half-plane, corresponding to θ ∈]0, π[ will
be derived thoroughly. Writing the field in the upper half-plane in its angular spectrum
representation yields

Hz,a(x, y) =

ˆ ∞
−∞

H̃a(kx; y = 0)eikxxeiky,aydkx, (2.8)

where the subscript a denotes the upper half-plane (ambient) and ky,a =
√
k2

0εa − k2
x. For

far field calculations, the evanescent waves can be ignored, thus the integral can be limited
to values for which Im(ky,a) = 0. Furthermore, by writing the spacial coordinates in polar
form:

x = r cos(θ) y = r sin(θ), (2.9)

and performing a similar change of variable for the wavevector components

kx = k0na cos(θk) ky = k0na sin(θk), (2.10)

with dkx = −k0na sin(θk)dθk, Eq. (2.8) becomes

H(ff)
z,a (r, θ) '

ˆ π

0
H̃a(kx)eik0nar cos(θ−θk)k0na sin(θk)dθk, (2.11)

where cos(θk) cos(θ) + sin(θk) sin(θ) = cos(θ − θk) has been used and the integration
direction has been reversed. For large r the exponential function eik0nar cos(θ−θk) will vary
very rapidly comparably to the rest of the terms of the integrand, except for when θ ' θk.
Therefore for very large r, only values of θk ≈ θ will contribute to the integral. For these
values the cosine term can be approximated by a Taylor expansion:

cos(θ − θk) ' 1− 1

2
(θ − θk)2. (2.12)

The integration limits can be extended to −∞ and ∞ due to the rapid oscillation of the
exponential function, as when values of θk are not near θ the extended limits will not
contribute to the integral. Furthermore, the slowly varying terms can be placed outside
the integral evaluated in θk = θ as these will only contribute to the integral when θ ' θk.
This leads to

H(ff)
z,a (r, θ) ' k0nae

ik0narH̃a(kx(θ)) sin(θ)

ˆ ∞
−∞

e−ik0nar
1
2

(θ−θk)2dθk. (2.13)

The integral of Eq. (2.13) is a Gaussian integral with an imaginary argument. This has
the known solution [10]

ˆ ∞
−∞

e−az
2+bzdz = eb

2/4a

√
π

a
, (2.14)
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2.2. Optical Cross Sections Aalborg University

which reduces Eq. (2.13) to

H(ff)
z,a (r, θ) ' k0nae

ik0narH̃a(kx(θ)) sin(θ)

√
2π

k0nar
e−i

π
4 , 0 < θ < π, (2.15)

where it is used that 1/
√
i = e−iπ/4. The far field expression governing the field in the

lower half-plane (denoted by s) can be obtained from a similar derivation by changing
the refractive index to that of the substrate, ns, and remembering that the field is now
examined in the interval θ ∈]− π, 0[, which leads to

H(ff)
z,s (r, θ) ' k0nse

−ik0nsrH̃s(kx(θ)) sin(θ)

√
2π

k0nsr
ei
π
4 , −π < θ < 0. (2.16)

In order to find the scattering cross sections, the scattered power is divided by the incident
beam, given as

Ii =
1

2na

√
µ0

ε0
|H0|2. (2.17)

The scattered power is found by integrating over the time-averaged Poynting vector flux,
giving

Psc,up =
1

2

√
µ0

ε0

1

na

ˆ π

0
|H(ff)

sc (r, θ)|2rdθ. (2.18)

The out-of-plane scattering cross sections is then given by normalising Eq. (2.18) with
the incident power, Eq. (2.28), and likewise for transmitted, by substituting na with ns,
yielding

σsc,up =
1

|H0|2

ˆ π

0
|H(ff)

z,r (r, θ)|2rdθ, (2.19)

σsc,down =
1

|H0|2
na
ns

ˆ 0

−π
|H(ff)

z,t (r, θ)|2rdθ. (2.20)

In order to plot the radiation pattern, the scattered power per unit angle is needed, this
is termed the differential cross section and is given by

∂σsc
∂θ

=

 1
|H0|2 |H

(ff)
z,r (r, θ)|2r 0 < θ < π,

1
|H0|2 |H

(ff)
z,t (r, θ)|2 nans r −π < θ < 0.

(2.21)

2.2.2 Extinction Cross Section

The extinction power represents the power lost due to scattering by the scatterer and
absorption by the scatterer. For a layered structure an extinction cross section for both
the reflected field due to scatterer and the transmitted field can be found. In order to
derive these expressions the beam power is examined in the far field over a small angle 2θb,
which is done in order to not include too much of the scattered intensity. In the upper
half-plane, the upward propagating part of the field will consist of the reflected field from
the structure and the scattered field from the scatterer:

Htot,r(r, θ) = H0,r(r, θ) +Hsc(r, θ), (2.22)

5



Master Thesis 2. Electromagnetic Theory

where the amplitude of H0,r is related to amplitude of the incident field by the Fresnel
reflection coefficient for the layered structure. In order to find this reflected field, a
Gaussian wave is used to describe the incident field, and it is given as

H0,i(x, y = 0) = H0e
−x2/w2

0 , (2.23)

where w0 is the beam waist radius. In order to propagate this beam, the Fourier transform
and a propagator is used to get

H̃0,i(kx; y) =
1

2π

ˆ
H0,i(x, 0)eikyyeikxxdx. (2.24)

The angular spectrum, H̃0(kx; y = 0), can be found by

H̃0,i(kx; y = 0) =
1

2π

ˆ
H0(x, 0)e−x

2/w2
0e−ikxxdx =

H0w0

2
√
π
e−k

2
xw

2
0/4, (2.25)

where the last equation is found using Eq. (2.14). Now to find the reflected part of the
incoming wave, the Fresnel reflection coefficient, r(kx), is used to get

H0,r(x, y) =

ˆ
r(kx)H̃0,i(kx; 0)eikxxeikyydkx. (2.26)

If the incident wave is a plane wave, this can be achieved by assuming a very large
beam waist, and letting w0 → ∞. The far field is sought, thus the reflected wave is
transformed into polar coordinates in the far field, where it is used that kx = k0na sin(θk),
ky = k0na cos(θk), x = r sin(θ) and y = r cos(θ). These angles are defined with respect to
the normal incidence, in order to simplify the calculations. This allows for the field to be
written as

H
(ff)
0,r (r, θ) =

H0w0

2
√
π

ˆ
r(kx)e− sin2(θk)

(w0k0na)
2

4 eik0nar cos(θk−θ)k0na cos(θk)dθk, (2.27)

where cos(θk) cos(θ) + sin(θk) sin(θ) = cos(θ − θk) has been used. As stated earlier, this
type of integral only gives something when θ is close to θk. Thus the slowly varying terms
can be moved out, making the Fresnel coefficient r(kx = 0) and using a Taylor expansion
to get sin2(θ) ≈ θ2. The faster varying term can be handled with a second order Taylor
expansion cos(θk − θ) ≈ 1− 1/2(θk − θ)2, giving

H
(ff)
0,r (r, θ) ≈ H0w0

√
k0na
2r

r(kx = 0)e−
θ2

4
(k0w0na)2e−iπ/4eik0nar, (2.28)

where again Eq. (2.14) has been used. The reflected beam power is obtained by integrating
over the time-averaged Poynting vector flux over the small angular interval

Pbeam,r =

ˆ θb

θ=−θb

1

2
Re
(
E(ff)(r, θ)× [H(ff)(r, θ)]∗

)
· r̂rdθ

=
1

2

√
µ0

ε0

1

na

ˆ θb

θ=−θb
|H(ff)

0,r (r, θ) +H(ff)
sc (r, θ)|2rdθ. (2.29)

In the limit for θb → 0 the total power can be divided into two parts

Pbeam,r = P0,r − Pext,r, (2.30)

6



2.2. Optical Cross Sections Aalborg University

where the reflected part, P0,r, from the structure is given by

P0,r =
1

2

√
µ0

ε0

1

na

ˆ θb

θ=−θb
|Hff

0,r(r, θ)|
2rdθ, (2.31)

and the negative reflected extinction power, −Pext,r is given by

−Pext,r =

√
µ0

ε0

1

na

ˆ θb

θ=−θb
Re
(
H

(ff)
0,r (r, θ)

[
H(ff)
sc,r (r, θ)

]∗)
rdθ. (2.32)

The squared term of H(ff)
sc,r has been neglected as the incident field is several magnitudes

stronger than the scattered field. Inserting Eq. (2.28) gives

−Pext,r =

√
µ0

ε0
H0w0

√
k0r

2na
r(kx = 0)

ˆ θb

θ=−θb
Re

(
e−

θ2

4
(k0w0na)2e−iπ/4eik0nar

[
H(ff)
sc,r (r, θ)

]∗)
dθ.

(2.33)

Again using Eq. (2.14) and using that H(ff)
sc (r, θ) ≈ H(ff)

sc (r, θ = 0) gives

−Pext,r =

√
µ0

ε0

H0

na

√
2πr

k0na
r(kx = 0)Re

(
e−iπ/4eik0nar

[
H(ff)
sc,r (r, θ = 0)

]∗)
. (2.34)

The extinction cross section is given as the fraction of the total scattered power against
the power of the incident beam Ii,

σext,r =
Pext,r
Ii

, (2.35)

where Ii is given in Eq. (2.17). A similar derivation is valid for the extinction cross section
for the transmitted beam, where the refractive index has to be that of the final layer and
the reflection coefficients should be changed to the transmission coefficients for the layered
structure.

7





Field-Effect Transistors 3
This chapter is based on references [11] and [12].
In this section the concept of Field-Effect Transistors (FETs) will be presented. The idea

was first proposed by Lilienfeld in 1926 when he filed for a patent for a three electrode
structure in Method and Apparatus for Controlling Electric Currents later to be known as
a field effect transistor [13]. Today a large number of variations exists but the principle,
illustrated in Fig. 3.1, has remained the same. The FET is a three terminal structure,
which functions as a capacitor with one plate working as a conducting channel between
two of the terminals, denoted the source and drain terminal. The other plate, i.e. the
gate terminal, regulates the charge carriers induces into the channel, which comes from
the source and moves toward the drain.

Figure 3.1. Schematic structure of the concept of a field-effect transistor.

The FET principle has been implemented in a plethora of different devices, which are
mainly categorised by their gate material, location of the gate with respect to the channel,
how the gate is isolated from the channel and which type of carriers is moved through
the channel. This gives rise to the distinction of n-channel devices, p-channel devices, and
Double Injection Field-Effect Transistors, which uses electrons, holes or both as carriers
respectively. Some of the most common devices are the Metal Oxide Semiconductor
Field-Effect Transistor (MOSFET), the MEtal Semiconductor Field-Effect Transistors
(MESFET) and the Junction Field-Effect Transistors (JFET) [11]. The MOSFET has
especially been used extensively in electronic circuit applications due to its small size,
which allows for hundreds of millions transistors to be placed on a single chip [14].
As transistors continue to become smaller quantum mechanical effects starts to have a
significant effect, which introduces new problems, thus limiting the scaling of conventional
MOSFETs [15][16].
A relatively new FET structure is the Heterostructure Field-Effect Transistors (HFET)

[17], also commonly referred to as High Electron Mobility Transistor (HEMT), has been
emerging as a subject of great interest. A HEMT consists of two semiconductor materials,

9



Master Thesis 3. Field-Effect Transistors

which forms an abrupt discontinuity in conduction and valence bands and will be the main
subject of this chapter. Firstly the theory of heterojunctions will be presented with focus
on their banddiagrams and the formation of a Two-Dimensional Electron Gas (2DEG)
adjacent to the interface. Secondly the HEMT will be examined with special focus on the
AlGaN/GaN heterostructure.

3.1 Heterojunctions

A heterojunction consist of an interface of two semiconductors with different bandgaps.
This difference results in a discontinuity of the bandgaps at the junction interface. In
general there are two methods of designing a heterojunction; either an abrupt junction
in which the semiconductor changes abruptly from one to the other, or a graded
heterojunction as for example GaN/AlxGa1−xN, where x may vary continuously. The
graded heterojunction essentially enables one to design the bandgap energies at the
interface.

3.1.1 Energy-Band Diagrams

Many of the characteristics of the heterojunction can be determined from its bandgap.
Especially the formation of the 2DEG at the interface can be understood from the bending
and discontinuity of the bandgaps at the interface. In the formation of a heterojunction
between a narrow-bandgap material and a wide-bandgap material the alignment of their
bandgap energies plays an important role for the resulting structure. In this report the
type of heterojunctions called a straddling heterojunction is considered. This is the
most common type of heterojunction and is the case where the wide-bandgap material
completely overlaps the narrow-bandgap material as seen in Fig. 3.2. The heterojunction
can further be seperated into four types based on how the two semiconductors are doped:
Anisotypes in which the dopant type changes at the junction, nP or Np where the large
letter indicates the wide-bandgap material. Isoptyes which have the same dopant type on
both side forming either nN or pP heterojunctions.

Figure 3.2. Banddiagrams of straddling heterojunctions, where (a) separated AlGaN and GaN
and (b) AlGaN/GaN heterojunctions. EV is the valence bands maximum, EC is the
conduction bands minimum, EF is the Fermi level, φS is the work functions, χS is
the electron affinities and UB is the built-in voltage. A 2DEG gas is confined on in
the triangular quantum well on the GaN side.

10
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Only the bandgap of an isotype junction will be considered here, as only they can form
the 2DEG at the interface [12]. In particular the AlGaN/GaN heterojunction will be
examined, but this exposition should be valid for most isotype junctions. In Fig. 3.2(a)
the band diagrams of isolated AlGaN and GaN, being the wide-bandgap and narrow-
bandgap semiconductor respectively, are shown with the vacuum level used as reference.
Here EC1, EV 1, EF1, φS1, χS1 and UB1 are the conduction band minimum, the valence
band maximum, the Fermi level, the semiconductor work function, the electron affinity and
the built-in voltage for AlGaN and EC2, EV 2, EF2, φS2, χS2 and UB2 are the respective
parameters of GaN. The energy discontinuity between the conduction bands and valence
bands are denoted ∆EC = EC1−EC2 and ∆EV = EV 1−EV 2 and from Fig. 3.2(a) it can
be seen that

∆EC = e(χS1 − χS2) (3.1)

and

∆EV = ∆Eg −∆EC , (3.2)

where ∆Eg = Eg1 − Eg2 is the energy gap discontinuity.
When joining two semiconductors to form a heterojunction, the atoms at the interface

need to form chemical bonds. As the lattice constants of the two materials differ, atoms at
the interface have to adjust, by developing strain. Depending on the degree of mismatch the
interface can be far from ideal and noticeable unwanted consequences can occur. However,
in order to establish the theoretical foundation, an ideal heterojunction will be assumed.
The ideal model was first developed by R. L. Anderson [18], which states that the energy

bands in both materials forming the heterostructure are not affected by the combination of
the two materials. This reduces the problem to alignment of the band edges at the interface.
The assumption for an ideal heterojunction is that the vacuum level is continuous and thus
the discontinuities in the conduction band and valence band, Eqs. (3.1) and (3.2), will
exist at the interface, this is also known as the electron affinity rule.

3.1.2 Two-Dimensional Electron Gas

This subsection is based on reference [1].
When forming a heterojunction the Fermi level must be constant throughout. This is

due to a varying Fermi level will induce an electric current. Therefore, under equilibrium
conditions where no such current flows, the Fermi level must be constant throughout the
system. This requirement leads to band bending, illustrated in Fig. 3.2(b). For the system
to reach equilibrium and thus aligning the Fermi level, electrons from the wide-bandgap
AlGaN region flow across the junction. This flow causes EF1 to lower and EF2 to increase,
due to several factors, e.g. repulsion effects, until the two fermi levels align. This creates a
depletion region in AlGaN and an accumulation region in GaN. This leads to the electrons
being confined in a potential well adjacent to the interface, wherein the Fermi level is higher
than the conduction band. As is known from quantum mechanics electrons in a potential
well will have their energy quantised. In other words, the electrons are accumulated in the
discrete quantum states of the quantum well and the 2DEG is formed at the interface on
the GaN side.

11
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The term two-dimensional electron gas is used to emphasise that the electron energy
is quantised perpendicular to the interface, but are free to move in the plane parallel to
the interface. A quantum mechanical description of the energy of the 2DEG based on a
one-dimensional triangular well is derived in App A.1.
The main advantage of the 2DEG is its high electron mobility compared to the bulk

material and large electron concentration, as a current parallel to the interface will be a
function of these parameters. In bulk material, electrons are often supplied by ionised
donors and will as such suffer from scattering of impurities. While, in the accumulation
region a large electron concentration can be created in an lightly doped or intrinsic region,
which in turn will diminish impurity scattering and the low-field mobility can therefore
be much higher. This is especially the case for low temperatures, where the ionised
impurity is the dominant form of scattering. In general for heterojunctions the wide-
bandgap material would have to be moderately to heavily doped, while the narrow-bandgap
material could be lightly doped or in some cases intrinsic. However, due to spontaneous and
piezoelectric polarisations the 2DEG can be induced in the AlGaN/GaN heterojunction
without intentional doping [1][19]. This among other prominent properties, e.g. high
breakdown voltage [20] making them candidates for high-power applications, makes the
AlGaN/GaN heterojunction excellent candidates for HEMTs [21].

3.1.3 AlGaN/GaN Field Effect Transistor

In this subsection the workings of a common HEMT will be explored, this includes a
short overview of the practical operation of a typical AlGaN/GaN HEMT, derivation of
a current-voltage characteristics and relating the gate voltage to the charge density of the
2DEG.
Fig. 3.3 illustrates a typical AlGaN/GaN HEMT structure. All HEMTs work by the same

principle. By applying a positive voltage to the gate (here a Schottky contact) electrons
are capacitively induced into the narrow channel at the GaN interface, i.e. the 2DEG,
allowing for a current to flow between the source and drain.

Figure 3.3. Schematic structure for a AlGaN/GaN HEMT on a substrate.

A Schottky contact is a switch utilising the Schottky barrier formed between a metal and
semiconductor. The Schottky barrier is the potential barrier the electrons have to pass if
they are to move from the metal into the semiconductor. In an ideal junction it is given
by

φB = φm − χ, (3.3)

where φm is the work function of the metal and χ is the electron affinity of the adjacent
semiconductor. The electrons in the conduction band of the semiconductor have a similar

12
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barrier called the built-in potential, if they are to move into the metal. It is given by

UB = φB − φn, (3.4)

where φn is the difference between the Fermi level and the conduction band.
Applying a negative gate bias increases the semiconductor-to-metal barrier, where for the

ideal case φB is constant. This raises the triangular potential well at the GaN interface
above the Fermi level and the accumulation layer is emptied. This lowers the carrier density
of the 2DEG significantly, making the current in the HEMT essentially zero, switching it
off, shown in Fig. 3.4(b). When zero or positive gate bias is applied the conduction band
is below the Fermi level and the situation is as described in previous section, with a large
electron density, shown in Fig. 3.4(a).

Figure 3.4. Energy band diagram of AlGaN/GaN HEMT in the direction from the gate to the
substrate. (a) with zero gate bias. (b) negative gate bias.

In the remainder of this section the current-voltage characteristics of the HEMT will
be developed based on a charge control model and assuming the Gradual Channel
Approximation (GCA). The GCA is based on the assumption that the electric charge
density which is related to the change in the electric field parallel to the conduction channel
is much smaller than the change in electric field perpendicular to it, i.e. ∂Ex

∂x �
∂Ey
∂y . This

means that the channel potential is assumed to change "gradually" and very little over
distances of the order of the insulator (here the AlGaN layer) thickness along the channel
length.
In the charge control model the channel carrier concentration is assumed to be given as

ns(x) =
ε1

e(d+ ∆d)
[Ug − Uth − U(x)], (3.5)

where d is the thickness of the AlGaN layer, ∆d is the thickness of the 2DEG, ε1 is the
dielectric permittivity of the AlGaN layer, Ug is the gate voltage, Uth is the threshold
voltage and U(x) is the potential along the channel due to the drain-to-source voltage,
which varies from 0 to Uds at x = 0 and x = L respectively. The source-drain current is

Ids = −ensvW, (3.6)

where v is the carrier drift velocity andW is the channel width. This expression is obtained
by considering the change in the resistance at a point x in the channel

dR =
ρdx

A(x)
, (3.7)
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where ρ is the resistivity and A(x) is the cross section at x. The cross section can change
along the channel by a varying thickness. For simplicity it is assumed to be constant
A(x) = A = ∆dW . The resistivity due to the 2DEG is

ρ =
1

eµnns
, (3.8)

where µn is the electron mobility, and ns is in charge per volume. Inserting Eq. (3.8) into
Eq. (3.7) yields

dR =
dx

∆dWeµnns
. (3.9)

The change in voltage across a length of dx can be written

dU(x) = IdsdR(x), (3.10)

where the source-drain current Ids is constant through the channel. Isolating the source-
drain current and using the expression for the resistance gives

Ids = ∆dWeµnns
dU(x)

dx
. (3.11)

The potential is related to the electric field as E(x) = −dU
dx . Furthermore the drift velocity

can be obtained as v = µE(x) and by including ∆d in ns making it charge per surface
area, one obtains the source-drain current in Eq. (3.6). Using Eq. (3.5), the source-drain
current can be expressed as

Ids = − Wε1ns
(d+ ∆d)

[Ug − Uth − U(x)]v. (3.12)

Applying E(x) = −dU
dx , the drain-source current becomes

Ids =
Wε1ensµ

(d+ ∆d)
[Ug − Uth − U(x)]

dU

dx
. (3.13)

Multiplying both sides by dx and 1/L and integrating along the channel yields

1

L

ˆ L

x=0
Idsdx =

µWε1

L(d+ ∆d)

ˆ Uds

U=0
[Ug − Uth − U(x)]dU. (3.14)

Assuming that the current and mobility are constant through the channel, the source-drain
current can be written as

Ids =
µWε1

2L(d+ ∆d)
[2(Ug − Uth)Uds − U2

ds]. (3.15)

It is clear that the source-drain current can be controlled by both the source-drain voltage
and the gate voltage. Furthermore, the gate voltage can be used to regulate the electron
density in the 2DEG. This can be seen from Eq. (3.5) and by letting U(x) = 0 the system
of the gate and the 2DEG can be seen as a capacitor with capacitance per area

Cg =
ε1

d+ ∆d
. (3.16)

The electron density can thus be regulated by the induced gate voltage as a capacitor by

Cg =
ens

Ug − Uth
. (3.17)
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3.2 Plasma Waves

This section is based on references [22] and [23].
Plasma waves are defined as oscillations in electron density. These oscillations have

wavelike characteristics and can travel faster than the velocity of electrons. In order to
describe the propagation of these waves a wave equation is needed. This is obtained by
considering Newton’s second law:

F = ma, (3.18)

where F is the force, m is the mass of the particle and a is the acceleration. In order to
simplify these waves, collisions are neglected and only the drift current, v, is considered.
In the case of an electron in an electric field, the force comes from the electric field, E, and
Newton’s second law thus becomes

m
dv

dt
= −Ee⇔ −enmdv

dt
= e2nE, (3.19)

where e is the electron charge and n is the electron density. Considering an electron in
a semiconductor, the mass, m, becomes the effective mass of the electron. The current
density, given as J = −env, can be inserted, yielding

dJ

dt
=
e2n

m
E. (3.20)

Through analysis of charge conservation, the relation between the current density and
the charge density, ρ, can be found. The current density through a closed surface must
correspond to the change of the charge density in the volume the surface encloses, thus

− ∂

∂t

ˆ
ρdV =

˛
J · n̂dA =

ˆ
∇ · JdV, (3.21)

where the divergence theorem has been applied to get the last equality. As the integrals
are both over the same arbitrary volume it must hold that

∇ · J = −∂ρ
∂t
. (3.22)

Differentiating Eq. (3.22) with respect to time and inserting Eq. (3.20) yields

∂2ρ

∂t2
+
e2n

m
∇ ·E = 0. (3.23)

In order to arrive at the dispersion relation, the divergence of the electric field is needed.

3D Ungated Case

The first case studied is for a three dimensional ungated structure. Here n is the electron
concentration per unit volume, and ρ is the charge per unit volume. For a 3D case Gauss’s
law, Eq. (2.1), given as ∇ ·E = ρ

ε , can be inserted into Eq. (3.23), yielding

∂2ρ

∂t2
+
e2n

m

ρ

ε
= 0, (3.24)

15



Master Thesis 3. Field-Effect Transistors

which is the equation for a harmonic oscillator, which has the solutions

ρ = Aeiωt +Be−iωt, (3.25)

where A and B are amplitude constants and ω is the angular frequency. Inserting the
solution into Eq. (3.24) gives the frequency

ω =

√
e2n

mε
, (3.26)

as such for the 3D ungated case the frequency is a constant with respect to the wavelength.

2D Gated Case

In the 2D case, J is the current per unit length, n is electron concentration per unit area
and ρ is the charge per unit area. To correlate the gate to the 2DEG, a loop is created
over the gate as shown in Fig. 3.5.

Figure 3.5. Schematic of the gate potential affecting the charge density in the 2DEG.

Through Gauss’s law, Eq. (2.1), which in integral form is given as
˛

D · n̂dA =

ˆ
ρdV, (3.27)

the situation in Fig. 3.5 gives

εExdxw = ρwdx⇔ Ex =
ρ

ε
, (3.28)

where only the free charges are considered in ρ. Combining Eq. (3.28) with the relationship
of the electric field and potential in a capacitor, E = U

d , gives

U = ρ
d

ε
=
ρ

C
, (3.29)

where C = d
ε is the capacitance per unit area, which holds when the change in the electric

field parallel to the interface is much smaller than the change in the direction perpendicular
to the interface. The electric field depends on the potential as E = −∇U , thus combining
this with Eq. (3.29) gives

E = −∇U = − 1

C
∇ρ. (3.30)
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Inserting Eq. (3.30) into Eq. (3.23) gives

∂2ρ

∂t2
− e2n

mC
∇2ρ = 0, (3.31)

where∇2 is the two dimensional Laplace operator. The solution to this differential equation
is on the form

ρ = Ae−iωteik·r +Be−iωte−ik·r. (3.32)

Inserting the solution into Eq. (3.31) and defining s2 = e2n
mC gives the dispersion relation

ω2 = k2s2, (3.33)

where k is the wave vector, and s is the speed of the plasma wave.

3.2.1 Density Response Theory

This subsection is based on references [24], [25] and [26].
Another approach to obtain the plasma wave dispersion relation, for the general case, the

problem can be established as a many-body problem involving the electrons in the 2DEG.
The plasma waves will depend on a non-local response in the dielectric function. Looking
at a non-local dielectric function, ε(r− r′, ω), the displacement field is given by

D(r, ω) =

ˆ
ε(r− r′, ω)E(r′, ω)d3r′. (3.34)

Taking the Fourier transform of the displacement field gives

D(q, ω) =
1

(2π)3

ˆ
D(r, ω)e−iq·rd3r = ε(q, ω)E(q, ω), (3.35)

where q denotes the wavevector. Fourier transforming the vector wave equation, Eq. (2.5)
yields

q× q×E(q) + k2
0ε(q)E(q) = 0. (3.36)

This allows for non-trivial solutions where E is in the same directions as q, if ε(q) = 0.
In order to find ε for the 2DEG, a quantum mechanical analysis of perturbations due to a

external field will be made. Assuming an external field, Vext(r), the quantum mechanical
Hamiltonian will be

Ĥ = −e
N∑
i

Vext(ri), (3.37)

where N is the number of electrons. An electron density, nind(r) is induced by the
perturbation. The operator for this perturbation is

∑N
i δ(r− ri), which gives

nind(r) = −
∑
m,n

fnm
〈n|
∑

i δ(r− ri)|m〉 〈m| − e
∑

i Vext(ri)|n〉
Em − En − ~ω

, (3.38)

which is derived in App. A.2 and where fnm = f(En) − f(Em), f being a probability
distribution, and 〈n|W |m〉 =

´
φ∗n(r1, . . . rN )Wφm(r1, . . . rN )d3r1 . . . d

3rN , where φn is
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the wave function for state n and W is an operator. The states used here are true many-
body states, meaning they depend on the entire system of electrons. For a symmetric
function, W =

∑
iw(ri) the integrals can be simplified by

〈n|W |m〉 =

ˆ
φ∗n(r1, . . . , rN )

∑
i

w(ri)φm(r1, . . . , rN )d3r1 . . . d
3rN

= N

ˆ
φ∗n(r1, . . . , rN )w(r1)φm(r1, . . . , rN )d3r1 . . . d

3rN

=

ˆ
ρnm(r)w(r)d3r, (3.39)

where

ρnm(r) = N

ˆ
φ∗n(r, r2, . . . , rN )φm(r, r2, . . . , rN )d3r3 . . . d

3rN . (3.40)

Using this on the operators from Eq. (3.38) gives

〈n |
∑
i

δ(r− ri)| m〉 = ρnm(r), (3.41)

〈m | − e
∑
i

Vext(ri)| n〉 = −e
ˆ
Vext(r

′)ρmn(r′)d3r′, (3.42)

which inserted into Eq. (3.38) gives

nind(r) = −e
ˆ
χ(r, r′)Vext(r

′)d3r′, (3.43)

where the density response function, χ(r, r′), is given as

χ(r, r′) =
∑
m,n

fnm
ρnm(r)ρmn(r′)

~ω − Em + En
. (3.44)

If instead of many-body states, single particle states are analysed, the potential affecting
the perturbation is given as the external field, and an induced Coulomb potential between
the electrons, thus Vtot(r) = Vext(r) + Vind(r). For a single particle, the density operator
becomes δ(r− r1) and the Hamiltonian becomes −eVtot(r), giving the induced density as

nind(r) = −
∑
m,n

fnm
〈n|δ(r− r1)|m〉 〈m| − eVtot(r1)|n〉

Em − En − ~ω
= −e

ˆ
χs(r, r′)Vtot(r

′)d3r′,

(3.45)

where χs(r, r′) is the single particle density response and is

χs(r, r′) =
∑
m,n

fnm
φ∗n(r)φn(r′)φ∗m(r′)φm(r)

~ω − Em + En
. (3.46)

The induced potential from the perturbations, is given through the Coulomb potential as

Vind = − e

4πε

ˆ
nind(r

′)

|r− r′|
d3r′. (3.47)
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By definition the total and external potentials are related by the dielectric function [26],

Vext(r) =

ˆ
ε(r, r′)Vtot(r

′)d3r′. (3.48)

Combining this with Vtot = Vext + Vind gives

ε(r, r′) = δ(r− r′)− e2

4πε

ˆ
1

|r− r′′|
χs(r′, r′′)d3r′′. (3.49)

Assuming a periodic structure, the wave functions can be written as Bloch waves, giving

φn(r) = un,k(r)eik·r, φm(r) = um,k+q(r)ei(k+q)·r, (3.50)

where u are periodic with the same periodicity as the lattice. As the product of un and
um is also periodic with the lattice, it can be written as a Fourier series on the form

u∗n,k(r)um,k+q(r) =
∑
G

Φn,m,k,q(G)eiG·r, (3.51)

where G is the reciprocal lattice vector. Inserting these definitions into Eq. (3.46), and
integrating over q and k to account for every solution, gives

χs(r, r′) =
∑
G,G′

ˆ
χsG,G′(q, ω)ei(G·r−G

′·r′)eiq·(r−r
′)dq, (3.52)

where

χsG,G′(q, ω) = 2
∑
n,m

ˆ
[f(En,k)− f(Em,k+q)]

Φn,m,k,q(G)Φ∗n,m,k,q(G′)

~ω + En,k − Em,k+q
dk, (3.53)

where the factor 2 comes from spin. Both k and q are within the Brillouin zone. Inserting
this expression for χs(r, r′) into Eq. (3.49), gives

ε(r, r′) = δ(r− r′)− e2

4πε

ˆ
1

|r− r′′|
∑
G,G′

ˆ
χsG,G′(q, ω)ei(G·r

′−G′·r′′)eiq·(r
′−r′′)dqdr′′.

(3.54)

For the potential, 1
4π|r−r′′| the inverse Fourier transform is used on the Fourier transform,

where the derivation of the Fourier transform can be found in Appendix A.3. For the three
dimensional case it gives

1

4π|r− r′′|
=

1

(2π)3

∑
G

ˆ
e−i(p+G)·(r−r′′)

|p + G|2
dp, (3.55)

where p is within the Brillouin zone. Inserting this into Eq. (3.54) gives

ε(r, r′) = δ(r− r′)

− e2

(2π)3ε

∑
G,G′

ˆ ˆ ˆ
χsG,G′(q, ω)ei(G·r

′−G′·r′′)eiq·(r
′−r′′) e

−i(p+G′)·(r−r′′)

|p + G′|2
dpdqdr′′

= δ(r− r′)− e2

(2π)3ε

∑
G,G′

ˆ ˆ
χsG,G′(q, ω)

|p + G′|2
ei(G·r

′−G′·r)ei(q·r
′−p·r)

ˆ
ei(q−p)·r′′dr′′dpdq.

(3.56)
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The integral over dr′′ gives δ(q− p) thus the equation simplifies to

ε(r, r′) = δ(r− r′)− e2

(2π)3ε

∑
G,G′

ˆ
χsG,G′(q, ω)

|q + G|2
ei(G·r

′−G·r)eiq·(r
′−r)dq, (3.57)

where G and G′ have been swapped. The Fourier transform of ε(r, r′) is sought, and can
be found by

ε(q, ω) =

ˆ ˆ
ε(r, r′)e−iq·(r

′−r)drdr′, (3.58)

thus

ε(q, ω) =

ˆ ˆ
e−iq·(r

′−r)δ(r− r′)drdr′

− e2

(2π)3ε

∑
G,G′

ˆ ˆ ˆ
χsG,G′(q

′, ω)

|q′ + G|2
ei(G·r

′−G·r)eiq
′·(r′−r)e−iq·(r

′−r)drdr′dq′. (3.59)

The integral over the Dirac-delta function gives 1. For the second part, the contributions
can be split into the parts regarding r and r′, yielding

ε(q, ω) = 1− e2

(2π)3ε

∑
G,G′

ˆ
χsG,G′(q

′, ω)

|q′ + G|2

ˆ ˆ
ei(q−q

′−G)·rei(q
′−q+G′)·r′drdr′dq′. (3.60)

The integrals over r and r′ gives zero unless q − q′ −G = q′ − q + G′ = 0. As both q

and q′ are in the Brillouin zone |q′ − q| < |G| and likewise for G′, thus G = G′ = 0 is
necessary for the integral to give a value different from zero. The only solution is then
q = q′. Therefore, the dielectric function becomes

ε(q, ω) = 1− e2

(2π)3εq2
χs0,0(q, ω). (3.61)

In order to simplify this expression, for small q, Φm,n,k,q(G) ≈ δm,nδG,0 [26] and if the
only significant contribution is from a single band, then χs00(q, ω) can be approximated by
the Lindhard function ,[26], given as

L(q, ω) = 2

ˆ
f(Ek)− f(Ek+q)

~ω + Ek − Ek+q
dk. (3.62)

Looking at the long wavelength limit, where q ∝ 1
λ → 0, and assuming the energy follows

a parabolic dispersion, E = ~2k2
2m∗ , where m

∗ is the effective mass, the term Ek −Ek+q can
be approximated with

Ek − Ek+q =
~2k2

2m∗
− ~2

2m∗
(k2 + 2k · q + q2) ≈ −~2k · q

m∗
. (3.63)

The Fermi-Dirac distributions can be approximated by [25]

f(Ek)− f(Ek+q) = f(Ek)− (f(Ek) + q · ∇kf(Ek)− . . .) ≈ −q · ∇kf(Ek). (3.64)

Inserting these approximations into Eq. (3.62) gives

L(q, ω) ≈ −2
∑
i

ˆ
qi
∂f(Ek)
∂ki

~ω − ~2 k·q
m∗

d3k = −2m∗

~2w

∑
i

ˆ
qi
∂f(Ek)
∂ki

1− k·q
w

d3k, (3.65)
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where i is the components of k and w = ~2ω
m∗ . As q → 0, k·q

w < 1, thus the denominator
can be written as (

1− k · q
w

)−1

≈
(

1 +
k · q
w

)
. (3.66)

Inserting this into Eq. (3.65) gives

L(q, ω) ≈ −2m∗

~2w

∑
i

ˆ
qi
∂f(Ek)

∂ki

(
1 +

k · q
w

)
d3k. (3.67)

The first term in the bracket gives 0, as after the integration it corresponds to taking f(Ek)

for k → ∞, which gives zero. The second term is then solved using integration by parts,
yielding

L(q, ω) ≈ − 2m∗

~2w2

{∑
i

[qif(Eki)kiqi]
∞
ki=−∞ −

ˆ
qif(Eki)qidki

}
. (3.68)

The first part is zero, as it corresponds to taking the distribution function for k at ∞,
which is zero. In order to solve the integral, assume a square box containing all the
possible states, with length L. Then the distance between each state is 2π

L , thus the area
occupied by each state will be

(
2π
L

)3. The amount of electrons then becomes

N =
2(

2π
L

)3 ˆ f(Ek)d
3k, (3.69)

where the 2 comes from spin. Isolating the integral givesˆ
f(Ek)d

3k =
N

V

(2π)3

2
= n

(2π)3

2
, (3.70)

where the box have been changed into a container with volume V . Thus the Lindhard
function for long wavelengths become

L(q, ω) ≈ (2π)3m∗q2n

~2w2
=

(2π)3q2n

m∗ω2
. (3.71)

Inserting this expression into (3.61) gives

ε(q, ω) = 1− e2

(2π)3εq2

(2π)3q2n

m∗ω2
= 1− 2e2n

εm∗ω
. (3.72)

The transverse plasma modes are when ε = 0, thus

ωp =

√
e2n

εm∗
, (3.73)

which was the same as found in Sec. 3.2. For a 2D structure, the calculation are similar,
however the inserted Fourier transform of the Coulomb potential is different, the derivation
can be found in Appendix A.3, giving

ε(q, ω) = 1− e2

2εq(2π)2

q2n(2π)2

m∗ω2
= 1− e2qn

2εm∗ω2
, (3.74)

which makes the plasma frequency

ωp =

√
e2n

2εm∗
q. (3.75)

These correspond to the expressions stated in [23].
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3.3 Plasma Wave Instability

This section is based on references [5], [23] and [27].
In this section the main mechanisms behind the generation of spontaneous terahertz

radiation, termed the Dyakonov-Shur instability first described by M. Dyakonov and M.
Shur [5], will be presented. For short HEMTs the electrons have practically zero phonon or
impurity scattering as the transit time is shorter than the mean relaxation time. The main
type of scattering is electron-electron collisions and due to the high electron concentration,
the electrons can not be assumed as ballistic particles. Thus the electrons behave as a
fluid in a channel with no external friction and can be described through hydrodynamic
equations.
It will be shown that the steady state of this current-carrying HEMT can be unstable

due to the growth of plasma waves at terahertz frequencies, which can be exploited for a
variety of applications such as detectors, mixers and frequency multipliers [28][29].
Consider the HEMT of Fig. 3.1, but with a 2DEG at the interface of the substrate and

insulator. The electron sheet and the gate electrode form a capacitor, which above the
threshold voltage controls the surface concentration in the channel following Eq. (3.17),
as

ns = CU/e, (3.76)

where U = Ug − Uth and C is the capacitance per unit area given by Eq. (3.16). The
Dyakonov-Shur model is a classical model of the conduction channel. The model is
described by the surface concentration given by Eq. (3.76) and the electron velocity v

as a function of position and time. Limiting the motion to the source-drain axis, say the
x-axis, the fields obey the equation of motion

∂v

∂t
+ v

∂v

∂x
= − e

m

∂U

∂x
, (3.77)

where ∂U/∂x is the longitudinal electric field in the channel, v(x, t) is the local electron
velocity and m is the effective mass. Eq. (3.77) is called the Euler equation and its
derivation is done in App. A.4 . Furthermore, the fields also obey the continuity equation
so Eq. (3.77) has to be solved together with

∂ns
∂t

+
∂(nsv)

∂x
= 0, (3.78)

which by using Eq. (3.76) can be rewritten as

∂U

∂t
+
∂(Uv)

∂x
= 0, (3.79)

which is derived in App. A.4. These equations coincide with the hydrodynamic equations
governing shallow water.
The aim of this section is to study the time dependent effect a small perturbation has on

the steady state of the current. The instability of the steady state occurs for a uniform flow
of current through the channel, while being subject to specific boundary conditions. At
first assume that the gate voltage is fixed and no current is running through the channel.
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When analysing instabilities, the potential, the velocity, and the density are described as
a sum of a large dc part and a small ac part [30], i.e. (U, v, ns) = (U0, v0, n0)+(U1, v1, n1),
where (U1, v1, n1) ∼ exp(−iωt). Applying this in Eq. (3.77) and Eq. (3.79) yields

∂(v0 + v1)

∂t
+ (v0 + v1)

∂(v0 + v1)

∂x
+

e

m

∂(U0 + U1)

∂x
= 0, (3.80)

and

∂(U0 + U1)

∂t
+
∂(v0 + v1)(U0 + U1)

∂x
(3.81)

=
∂(U0 + U1)

∂t
+
∂v0U0

∂x
+
∂v0U1

∂x
+
∂v1U0

∂x
+
∂v1U1

∂x
= 0. (3.82)

Linearising these equations with respect to v1 and U1, i.e. ignoring products of small
quantities, and the assumption that no current runs through the channel (v0 = 0), reduces
them to

∂v1

∂t
+

e

m

∂U1

∂x
= 0, (3.83)

∂U1

∂t
+ U0

∂v1

∂x
= 0. (3.84)

Combining these equations yields the following wave equation

∂2U1

∂t2
− s2∂

2U1

∂x2
= 0, (3.85)

with the dispersion relation ω = ±sk, where s =
√
U0e/m, as was obtained in Sec. 3.2

for gated 2DEG. A similar equation can be obtained for v1. The dispersion relation is
the same as for shallow water with U0e/m in place of hg [31], further emphasizing the
similarities. If now the electrons move with a drift velocity, v0 6= 0, two more terms have
to be kept from Eqs. (3.80) and (3.82) when linearising, which then becomes

∂v1

∂t
+ v0

∂v1

∂x
+

e

m

∂U1

∂x
= 0, (3.86)

∂U1

∂t
+ v0

∂U1

∂x
+ U0

∂v1

∂x
= 0⇒ ∂v1

∂x
= − 1

U0

∂U1

∂t
− v0

U0

∂U1

∂x
. (3.87)

Differentiating Eq. (3.86) with respect to x and substituting in Eq. (3.87) yields

s2∂
2U1

∂x2
− v2

0

∂2U1

∂x2
− 2v0

∂2U1

∂t∂x
− ∂2U1

∂t2
= 0. (3.88)

Which gives a quadratic function in k (or ω) on the form

k2(v2
0 − s2)− 2v0ωk + ω2 = 0, (3.89)

Using the regular quadratic formula for its roots the dispersion relation becomes

k =
2v0ω ±

√
4v2

0ω
2 − 4ω2(v2

0 − s2)

2(v2
0 − s2)

= ω
v0 ± s
v2

0 − s2
=

ω

v0 ∓ s
. (3.90)
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It is clear from the change in the dispersion relation that the waves are in a way either
carried along or slowed down by the flow. It will now be shown that under asymmetric
boundary conditions this velocity difference leads to an instability, giving that the steady
state is unstable against spontaneous generation of plasma waves. The boundary conditions
under consideration are those given in Ref. [5], which are fixed voltage at the source and
fixed current at the drain: U = U0 at x = 0 and J = J0 at x = L. Applying Eq. (3.76)
and the assumption that the potential, velocity and density can be written on the form
(U, v, ns) = (U0, v0, n0) + (U1, v1, n1), the boundary conditions can restated as

U1(0) = 0, (3.91)

U0v1(L) + v0U1(L) = 0. (3.92)

Solutions for v1 and U1 to the linearised equations are then sought after as the sum of two
waves propagating from the source to the drain and the drain to the source (under the
assumption that s > v0), with wave vectors k+ and k−

v1 = Aeik+x +Beik−x, (3.93)

U1 = Ceik+x +Deik−x. (3.94)

Applying Eq. (3.86), the complexity of the problem can be reduced by relating v1 to U1,
therefore Eqs. (3.93) can be written as

v1 =
ek+

m(ω − v0k+)
Ceik+x +

ek−
m(ω − v0k−)

Deik−x, (3.95)

The constants can now be determined from the boundary conditions. The first boundary
condition U1(x = 0) = 0 yields

D = −C, (3.96)

which can be applied for the second condition U0v1(L) + v0U1(L) = 0 resulting in

s2k+

(ω − v0k+)
Ceik+L − s2k−

(ω − v0k−)
Ceik−L + v0Ce

ik+L − v0Ce
ik−L = 0. (3.97)

The goal is to find an expression for ω. To this end the exponential terms are isolated in
the following manner

s2k+

(ω − v0k+)
ei(k+−k−)L − s2k−

(ω − v0k−)
+ v0e

i(k+−k−)L − v0

= ei(k+−k−)L

(
s2k+

ω − v0k+
+ v0

)
− s2k−
ω − v0k−

− v0 = 0 (3.98)

⇒ ei(k+−k−)L =

s2k−
ω−v0k− + v0

s2k+
ω−v0k+ + v0

=
ω − v0k+

ω − v0k−

s2k− + v0(ω − v0k−)

s2k+ + v0(ω − v0k+)
. (3.99)
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By applying Eq. (3.90) on the last fraction of Eq. (3.99) can be reduced

s2k− + v0(ω − v0k−)

s2k+ + v0(ω − v0k+)
=
s2 ω
v0−s + v0(ω − v0

ω
v0−s)

s2 ω
v0+s + v0(ω − v0

ω
v0+s)

=

s2ω(v0 + s) + v0ω(v0 + s)(v0 − s)− ωv2
0(v0 + s)

s2ω(v0 − s) + v0ω(v0 + s)(v0 − s)− ωv2
0(v0 − s)

=

s3ω − sωv2
0

sωv2
0 − s3ω

= −1. (3.100)

This results in the expression

ei(k+−k−)L = −ω − v0k+

ω − v0k−
. (3.101)

By inserting the expressions for in k+ and k−, the exponent on the left side becomes

(k+ − k−)L =

(
ω

v0 + s
− ω

v0 − s

)
L =

2sL

s2 − v2
0

ω, (3.102)

and the right side becomes

−ω − v0k+

ω − v0k−
= −

ω − v0
ω

v0+s

ω − v0
ω

v0−s
= − ωsv0 − ωs2

ω(v0 + s)(v0 − s)− ωv0(v + 0− s)

= − ωv0s− ωs2

−ωs2 − v0sω
=
v0 − s
v0 + s

. (3.103)

Eq. (3.101) can be written on the form

e
i 2sL

s2−v20
ω

=
v0 − s
v0 + s

, (3.104)

which defines the complex frequency as a function of v0 and s. Finding an explicit
expression for ω is done by first taking the natural logarithm of Eq. (3.104). However,
when taking the logarithm of a complex number a bit of care has to be taken, especially
on the right-hand side. First note that any complex number can be written on the form
w = reiφ, where r = |w| and φ, called the argument of w or the phase, is the angle between
the point in the complex plane and the positive real axis. The left side written in this form
is self explanatory. The angle of the right side will, however, depend on whether or not the
fraction yields a positive or negative number, more precisely on the relative size between
v0 and s. Since s is positive the case will either be |v0| < s, in which case the fraction will
be negative and the phase will be φ = π, or |v0| > s and thus φ = 0. Since adding 2πn,
where n is a integer, to the phase of a complex number gives the same complex number,
a complex number will also have an infinite number of solutions, which are logarithms of
it, stated as

ln(w) = ln(r) + i(φ+ 2πn). (3.105)

With this in mind taking the logarithm of Eq. (3.104) becomes either

i

(
2sL

s2 − v2
0

ω + 2πn′
)

= ln

∣∣∣∣v0 − s
v0 + s

∣∣∣∣+ i(π + 2πm)⇔

ω = −is
2 − v2

0

2Ls
ln

∣∣∣∣v0 − s
v0 + s

∣∣∣∣+
s2 − v2

0

2Ls
π(1 + 2(m− n′))

= i
s2 − v2

0

2Ls
ln

∣∣∣∣v0 + s

v0 − s

∣∣∣∣+
s2 − v2

0

2Ls
π(1 + 2n) (3.106)
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for |v0| < s, where n = m− n′ is an integer, or

ω = i
s2 − v2

0

2Ls
ln

∣∣∣∣v0 + s

v0 − s

∣∣∣∣+
s2 − v2

0

2Ls
2πn (3.107)

for |v0| > s. Eq. (3.106) and (3.107) can be combined into a single expression and by
writing the real and imaginary part separately yields

w′ =
s2 − v2

0

2Ls
πn, (3.108)

γ =
s2 − v2

0

2Ls
ln

∣∣∣∣v0 + s

v0 − s

∣∣∣∣ , (3.109)

where n is an odd integer for |v0| < s and an even integer for |v0| > s. There are two
regions of stable flow and two regions of unstable flow, which can be deduced from Eq.
(3.109). For positive v0 the steady flow will become unstable if s > v0 and remain stable
if s < v0. The stable region can be difficult to reach as the electron drift velocity will
normally saturate at the order of 107 cm/s due to emission of optical phonons [5], whereas
s is typically on the order of 108 cm/s [23]. In the case of negative v0, which is obtained
simply by interchanging the boundary conditions at the source and drain [5], the flow is
stable when s > |v0| and unstable for s < |v0|.
As the negative v0 is symmetric to positive v0 and only the unstable region is of interest,

only the case with s > v0 > 0 will be analysed.
Writing the wave increment, i.e. γ, in units of s/2L it only becomes dependent on v0/s,

which makes it clear that in the limit v0/s� 1, γ reduces to

γ

(s/2L)
=

(
1− v2

0

s2

)
ln

∣∣∣∣1 + v0
s

1− v0
s

∣∣∣∣ ≈ ln(1) +
v0

s
−
(

ln(1)− v0

s

)
= 2

v0

s
⇒ γ ≈ v0

L
, (3.110)

which is the inverse of the electron transit time τ . Therefore shorter channels should be
more prone to this instability, which also is consistent with the fact that the hydrodynamic
description best describes short HEMTs.

3.3.1 Instability Origin

This subsection is based on reference [32].
The source of the instability can be deduced by considering the reflection of the wave at

the two channel boundaries and evaluating the amplitude of the reflection coefficient at the
boundaries. Here the reflection coefficient is termed as the amplitude ratio of the reflected
and oncoming waves. In order to simplify the analysis, a new notation for the first order
terms U1, v1 and n1 is introduced, represented by the linearly independent superposition
of a downstream term and an upstream term, e.g. U+ and U−, i.e. for the potential

U1 = U1+ + U1−, (3.111)

and similar expressions for v1 and n1. Eq. (3.111) is equivalent to Eq. (3.94). Examining
the reflection coefficient of the potential at the source (x = 0), and applying Eq. (3.96),
then

RU,s =
U1+(0)

U1−(0)
= −Ce

ik+0

Ceik−0
= −1 (3.112)
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shows that the reflection at the boundary does not change the amplitude of the wave, but
it does change its sign. While the reflection coefficient at the drain side (x = L) is equal
to

RU,d =
U1−(L)

U1+(L)
= −Ce

ik−L

Ceik+L
=
s+ v0

s− v0
, (3.113)

where Eq. (3.104) have been used for the last equality. Hence, in the case of s > v0 > 0,
Eq. (3.113) will always be greater than unity which results in wave amplification from the
reflection of the boundary with fixed current. The wave amplification is not solely a result
of the reflection with the drain contact, which can be shown by considering the current at
the boundaries, for the source:

RJ,s =
J1+(0)

J1−(0)
= −

v0 + s2 k+
ω−v0k+

v0 + s2 k−
ω−v0k−

=
s+ v0

s− v0
, (3.114)

where the results follows from Eq. (3.99) and Eq. (3.101) and at the drain side

RJ,d =
J1−(L)

J1+(L)
= −

(
v0 + s2 k−

ω−v0k−

)
eik−L(

v0 + s2 k+
ω−v0k+

)
eik+L

= −1, (3.115)

by Eq. (3.99). and expressions for J1± are obtained by

J1 = U0v1 + v0U1

= C
s2k+

(ω − v0k+)
eik+x − C s2k−

(ω − v0k−)
eik−x + v0Ce

ik+x − v0Ce
ik−x

= C

(
s2k+

(ω − v0k+)
+ v0

)
eik+x − C

(
s2k−

(ω − v0k−)
+ v0

)
eik−x = J1+ + J1−. (3.116)

The reflection coefficients are reversed compared to the potential. However, the product
of the reflection coefficients stays the same and this product is greater than unity if a
dc current is present and becomes unity if not. As such for every reflection with either
boundary the resulting wave is amplified. This is, according to Dyakonov and Shur [5][22],
the mechanism for the wave amplification in the channel, which then leads to an instability
of the steady state with respect to the generation of plasma waves.

3.3.2 Instability Conditions

There are two main decay mechanics which inhibit plasma wave growth from the instability:
First external friction due to electron scattering by impurities or phonons, and second
internal friction caused by the viscosity of the electron fluid. The external friction can
be accounted for by introducing the term −v/τ to the right side of equation Eq. (3.77).
This leads to the addition of −1/(2τ) to the wave increment of Eq. (3.109) [5][32], as
such setting a minimum velocity for the wave instability to grow or a requirement of few
scattering events doing the transit time. The viscosity, ν adds an additional damping of
the increment by νk2 [5], where k is the length of the wave vector, which in the limit
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v0/s� 1 is reduces to

νk2 = ν
ω2

(v0 − s)2(v0 + s)2
(2v2

0 + 2s2) = ν
w′2 − γ2 + 2iγω′

(v0 − s)2(v0 + s)2
(2v2

0 + 2s2)

= ν

(
s2−v20
2Ls πn

)2
−
(
s2−v20
2Ls ln

∣∣∣v0+s
v0−s

∣∣∣)2
+ 2i

(s2−v20)2

(2Ls)2
πn ln

∣∣∣v0+s
v0−s

∣∣∣2
(v0 − s)2(v0 + s)2

(2v2
0 + 2s2)

≈ ν π
2n2

2L2
, (3.117)

where ln
∣∣∣v0+s
v0−s

∣∣∣ ≈ 2v0/s and v0/s � 1 has been applied repeatedly. Hence, its effect
becomes more prevalent for higher order modes. By comparing γ with νk2 in the same
limit for the first order modes:

γ

νk2
=

2v0L
2

π2νL
=
Lv0

ν

2

π2
, (3.118)

the effect of the viscosity can be considered small when Lv0/ν � 1.
The instability will occur when the electron velocity, and hence, the current, exceeds a

certain threshold value, which in the limit v0/s� 1 is given by

v0

L
>

1

2τ
+ ν

π2n2

2L2
. (3.119)

Once the threshold is exceeded, plasma waves oscillations should grow, resulting in a
periodic variation of the channel charge, i.e. a periodic change of the dipole moment. This
variation can then lead to electromagnetic radiation [33].
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Method 4
4.1 Guided Modes

This section is based on reference [10].
Scattered light near a waveguide can result in the excitation of guided modes in the

waveguide. As the 2DEG exhibits metal-like properties, it is possible to find guided modes
for the structure in the same manner as for metal strips. The guided modes are described
through their mode index, nm, which is the refractive index for the x-dependent part of
the wave. In order to determine the mode index for these guided modes, the structure
is analysed. The guided modes for an ungated are found using transfer matrices, and is
explained in App. A.5.

4.1.1 Gated Structure

For the gated structure, the gate is assumed to be a perfect conductor, thus no field exist
in and above the gate. The gated structure is illustrated in Fig. 4.1.

Figure 4.1. The HEMT structure with a gate, which is assumed to be a perfect conductor. The
dashed lines are the fields which are zero for guided modes.

The 2DEG needs a dielectric constant of its own in order to describe the response in
the layer. This is done by considering the Drude model, derived in App. A.6, with the
effective mass of the electron, in order to account for the material, is used to describe the
conductivity of the 2DEG. Using Eq. (2.4) and that Jf = σE, the relative permittivity
can be found as

∇×H = Jf +
∂D

∂t
= σE− iωε0εE = −iωε0

(
ε+ i

σ

ωε0

)
E, (4.1)
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making the relative permittivity

ε2DEG = εs + i
σ

ωε0
. (4.2)

As σ is found through the sheet conductivity, when applying it to a layer with a finite
thickness, σ becomes σ/dL2DEG.
The field can now be split into three regions,

H = Ae−iky,syeikxx for y < 0, (4.3)

H =
(
B1e

iky,2DEGy +B2e
−iky,2DEGy

)
eikxx for 0 < y < dL2DEG, (4.4)

H =
(
C1e

iky,by + C2e
−iky,by

)
eikxx for dL2DEG < y < dtot, (4.5)

where dtot = dL2 + dL2DEG. For the boundary conditions, the tangential component of
the electric and magnetic field must be continuous, where the electric field can be found
using Eq. (4.8). For the boundary at y = dtot, Ex = 0, as the gate is a perfect conductor,
leading to

C1e
iky,bdtot − C2e

−iky,bdtot = 0⇔ C1 = C2e
−2iky,bdtot . (4.6)

For the boundary at y = dL2DEG the boundary condition for the tangential component of
the magnetic field gives

C1e
iky,bdL2DEG + C2e

−iky,bdL2DEG = B1e
iky,2DEGdL2DEG +B2e

−iky,2DEGdL2DEG . (4.7)

The other boundary condition is for the tangential component of the electric field, which
should be conserved. The electric field is related to the magnetic field through Eq. (2.4),
where Jf = 0, as

Ex =
i

ωε0εr

∂Hz

∂y
, (4.8)

giving the boundary condition as

ky,b
εb

(
C2e

−iky,bdL2DEG − C1e
iky,bdL2DEG

)
=
ky,2DEG
ε2DEG

(
B2e

−iky,2DEGdL2DEG −B1e
iky,2DEGdL2DEG

)
. (4.9)

The tangential component of the magnetic field at y = 0 gives

A = B1 +B2, (4.10)

and the electric field

ky,s
εs

A =
ky,2DEG
ε2DEG

(B2 −B1) . (4.11)

Combining Eqs. (4.10) and (4.11) yields

B1 = B2
ky,2DEGεs − ky,sε2DEG

ky,2DEGεs + ky,sε2DEG
= B2K1. (4.12)
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Inserting Eqs. (4.6) and (4.12) into Eq. (4.7) gives

C2

(
e−2iky,bdtoteiky,bdL2DEG + e−iky,bdL2DEG

)
= B2

(
K1e

iky,2DEGdL2DEG + e−iky,2DEGdL2DEG

)
, (4.13)

from which the correlation C2 = K2B2 can be found. Inserting Eqs. (4.6), (4.12), and
(4.13) into Eq. (4.9) yields

ky,b
εb
K2

(
e−iky,bdL2DEG − e−2iky,bdtoteiky,bdL2DEG

)
=
ky,2DEG
ε2DEG

(
e−iky,2DEGdL2DEG −K1e

iky,2DEGdL2DEG

)
. (4.14)

Subtracting the left side from Eq. (4.14) gives the function f(nm), where guided modes
are found when the equation f(nm) = 0 is fulfilled. The same methods as used for the
ungated structure in order to locate these mode indices, as described in App. A.5, can be
used for the gated structure. The contour plot is illustrated in Fig. 4.2.

Figure 4.2. The contour plot of f(nm) = 0 for a HEMT structure with a 2DEG.

From the contour plot the mode index for the guided mode was found to be nm,1 ≈
29.9 + 4.4i. Using the Newton-Raphson algorithm, described in App. A.5, gives a value of
nm = 29.9174 + 4.3672i which corresponds very well with the contour plot.

Infinitely Thin 2DEG

For the gated structure, a model where the 2DEG is infinitely thin has also been
constructed. The structure is illustrated in Fig. 4.3.
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Figure 4.3. The structure of a gated HEMT, with an infinitely thin 2DEG placed at y = 0.

The field can be split into two separate sections,

H = Ae−iky,ayeikxx for y < 0, (4.15)

H =
(
Beiky,by + Ce−iky,by

)
eikxx for 0 < y < dL2. (4.16)

For the boundary at y = dL2 the electric field must be 0, thus

C = Be2iky,bdL2 . (4.17)

For the boundary at y = 0, the change in magnetic field must be equal to the current in
the 2DEG, which can be described through Ohm’s law as

Ix(kx, y = 0) = σ(ω)Ex(kx, y = 0), (4.18)

where σ(ω) is the sheet conductivity of the plasma. The sheet conductivity can be
approximated using the Drude model, described in App. A.6, giving

σ(ω) =
e2Nτ

m∗(1− iωτ)
, (4.19)

where e is the electron charge, N is the electron density per area, m∗ is the effective mass
of the electrons and τ is the electron-scattering time. The electric field is found through
Eq. (4.8). Thus the boundary gives

B + C −A = σEx =
σky,b
ωε0εb

(C −B), (4.20)

where Ex is found through Eq. (4.8). The tangential component of the electric field must
also be continuous, giving

ky,b
εb

(C −B) =
ky,s
εs

A⇔ A =
ky,bεs
ky,sεb

B
(
e2iky,bdL2 − 1

)
. (4.21)

Combining Eq. (4.20) and Eq. (4.21) gives

1 + e2iky,bdL2 −
ky,bεs
ky,sεb

(
e2iky,bdL2 − 1

)
=
σky,b
ωε0εb

(
e2iky,bdL2 − 1

)
. (4.22)
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Subtracting one side from the other gives f(nm) and solutions are found when f(nm) = 0.
The contour plot is illustrated in Fig. 4.4

Figure 4.4. The contour plot of f(nm) = 0 for a HEMT structure with an infinitely thin 2DEG.
The distance between the gate and the 2DEG, is 10 nm. The right figure is focused
on the mode index.

The value of the mode index is nm ≈ 255.1 + 60.2i. Through the Newton-Raphson
algorithm the mode index is found to be nm = 255.07 + 60.21i. This differs greatly
from the mode index for the gated structure where the gate was assumed to be of a finite
thickness.

4.2 Integral Equation Method for 2DEG

This section is based on reference [34].
In this section a method for numerical modelling the electromagnetic radiation pattern

of a HEMT with an active 2DEG layer will be established. In order to construct such a
model, Maxwell’s equations with appropriate boundary conditions will be used to describe
how the electromagnetic wave behaves through the structure. The analysed situation is
illustrated in Fig. 4.5.

Figure 4.5. Schematic of the gated 2DEG, positioned distance d below the gate where the width
of the gate is W .

Assuming an incident plane wave polarised along the x-axis, i.e. p-polarised, is travelling
along the negative y-axis. Such a field is given as E0,x = E0e

−ik0y. For a standard
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HEMT structure, the 2DEG is in the interface between 2 different materials with different
dielectric constants. Setting the 2DEG as y = 0, the relative dielectric constants will be

εr = εa = 1 for y > d, (4.23)

εr = εb for 0 < y < d, (4.24)

εr = εs for y < 0, (4.25)

for the ambient medium, the insulator layer and the substrate respectively. The gate
electrode is considered to be a perfect electric conductor and infinitely long along the
z-axis, with a width of w and assumed to be infinitely thin, placed a y = d. The
HEMT, except the gate, is assumed to be infinitely long and homogeneous along the
x- and z-axes. This includes the 2DEG, which is a rough approximation, but can still
provide some insight in the radiation pattern. Boundary conditions are formulated at the
interfaces at, y = 0 and y = d. The tangential part of the electric field, Ex has to be
continuous across the boundaries, while the difference in the tangential magnetic field is
Hz(x, y = (0+, d+)) − Hz(x, y = (0−, d−)) = Ix(x, y = (0, d)), where Ix(x, y = (0, d))

is the sheet current density. The correlation between the electric and magnetic fields, is
described through Eq. (4.8). Thus the incident magnetic field can be written as

H0,z =
i

ωµ0

∂E0,x

∂y
=

k0

ωµ0
E0e

−ik0y =

√
ε0

µ0
E0e

−ik0y, (4.26)

where k0 = ω
c = ω

√
ε0µ0 has been inserted. The structure can be regarded as three

separate regions with dielectric constants given by Eqs. (4.23), (4.24), and (4.25), each
with its own electric and magnetic field components. In the ambient medium, y > d,
the total field will be a combination of the incoming field and the field reflected from the
structure, thus

Hz = Hz,0 +Hz,a for y > d. (4.27)

The reflected field can be represented as a sum over all plane waves propagating in the
positive y-axis:

Hz,a(x, y) =

ˆ
A(kx)eikxxeiky,aydkx, (4.28)

where ky,a =
√
k2

0 − k2
x. In the substrate, y < 0, only a downwards propagating wave

makes physical sense, as such the magnetic field can likewise be represented by

Hz,s(x, y) =

ˆ
D(kx)eikxxe−iky,sydkx, (4.29)

where ky,s =
√
k2

0εs − k2
x. In the insulator, 0 < y < d, The field will have a component

propagating in the positive y direction and a part propagating in the negative y direction.
Such a field can be written on the form

Hz,b(x, y) =

ˆ
(iB(kx) sin(ky,by) + C(kx) cos(ky,by)) eikxxdkx, (4.30)
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where ky,b =
√
k2

0εb − k2
x. The fields are analysed in k space, by using the Fourier transform

on the fields, yielding

Hz(kx, y) =
1

2π

ˆ
Hz(x, y)e−ikxxdx. (4.31)

In order to describe the field, the coefficients, A(kx), B(kx), C(kx) and D(kx) must be
found through the four boundary conditions of the system.

Boundary at y = 0

For the boundary at the 2DEG, y = 0, applying the boundary condition for the magnetic
field gives the first relation between two of the coefficients as

Hz(kx, y = 0+)−Hz(kx, y = 0−) = C(kx)−D(kx) = Ix(kx, y = 0). (4.32)

Furthermore using the other boundary condition regarding the tangential component of the
electric field and that the electric field is related to the magnetic field through Eq. (4.8),
which allows the boundary condition Ex(kx, y = 0+) = Ex(kx, y = 0−) to be expressed as

B(kx)
ky,b
εb

= −D(kx)
ky,s
εs

. (4.33)

Isolating for D(kx) and inserting this into Eq. (4.32) gives

C(kx) +
ky,bεs
ky,sεb

B(kx) = Ix(kx, y = 0). (4.34)

The current in the 2DEG can be described through Ohm’s law as Eq. (4.18), where σ
is found through Eq. (4.19). Inserting the electric field given from Eq. (4.8), using the
magnetic field from Eq. (4.30), into Eq. (4.18) gives

Ix(kx, y = 0) = σ(ω)Ex(kx, y = 0) = σ(ω)
i2ky,b
ωε0εb

B(kx) = −σ(ω)
ky,b
k0εb

√
µ0

ε0
B(kx). (4.35)

Inserting this expression for Ix(kx, y = 0) into Eq. (4.34) gives

C(kx) = −B(kx)

[
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

]
. (4.36)

This makes the Fourier representation

Hz(kx, y) = B(kx)

[
i sin(ky,by)−

{
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

}
cos(ky,b)

]
, (4.37)

for 0 < y < d.

Boundary at y = d

The last two boundary conditions are at the gate on top of the structure, at y = d. The
first is obtained from the discontinuity across the surface of the tangential part of the
magnetic field, Hz(kx, y = d+)−Hz(kx, y = d−) = Ix(kx, y = d), giving

Ix(kx, y = d) = A(kx)eiky,ad +

√
ε0

µ0
E0e

−ik0dδ(kx)

−B(kx)

[
i sin(ky,bd)−

{
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

}
cos(ky,bd)

]
, (4.38)
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where
√

ε0
µ0
E0e

−ik0dδ(kx) is the Fourier transform of the incident field, Eq. (4.26). The
last boundary condition is that the tangential component of the electric field is conserved
across the boundary. The electric field is found through Eq. (4.8), yielding

A(kx)iky,ae
iky,ad − ik0

√
ε0

µ0
E0e

−ik0dδ(kx) =

ky,b
εb
B(kx)

[
i cos(ky,bd) +

{
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

}
sin(ky,bd)

]
. (4.39)

Isolating A(kx)eiky,ad in Eq. (4.38) and inserting that into Eq. (4.39) leads to

iky,a

(
Ix(kx, y = d)−

√
ε0

µ0
E0e

−ik0dδ(kx) +B(kx)

[
i sin(ky,bd)−

{
ky,bεs
ky,sεb

+

σ(ω)
ky,b
k0εb

√
µ0

ε0

}
cos(ky,bd)

])
− ik0

√
ε0

µ0
E0e

−ik0dδ(kx) =

ky,b
εb
B(kx)

[
i cos(ky,bd) +

{
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

}
sin(ky,bd)

]
. (4.40)

Using that ky,aδ(kx) = k0δ(kx) and gathering all terms containing B(kx) on the right-hand
side gives

iky,aIx(kx, y = d)− 2ik0

√
ε0

µ0
E0e

−ik0dδ(kx) =

B(kx)

(
sin(ky,bd)

[
ky,a +

ky,b
εb

{
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

}]
+

i cos(ky,bd)

[
ky,b
εb

+ ky,a

{
ky,bεs
ky,sεb

+ σ(ω)
ky,b
k0εb

√
µ0

ε0

}])
. (4.41)

In order to simplify the expression, four variables are defined, Z0 =
√

µ0
ε0
, χa = k0

ky,a
,

χb = εbk0
ky,b

, and χs = εsk0
ky,s

+ Z0σ(ω). Using these variables and multiplying both the
numerator and denominator with 1

ik0
, the expression for B(kx) can be found as

B(kx) =

1
Z0

2E0e
−ik0dδ(kx)− 1

χa
Ix(kx, y = d)

i sin(ky,bd)
[

1
χa

+ 1
χb

χs
χb

]
− cos(ky,bd)

[
1
χb

+ 1
χa

χs
χb

] . (4.42)

The electric field in the region 0 < y < d can be found through Eq. (4.37) and Eq. (4.8),
which gives

Ex(kx, y) = B(kx)
1

χb
Z0

[
i sin(ky,by)

χs
χb
− cos(ky,by)

]
. (4.43)

Evaluating the field at the y = d, the electric field becomes

Ex(kx, y = d) =

{
i sin(ky,bd)χsχb − cos(ky,bd)

}{
2E0e

−ik0dδ(kx)− Z0Ix(kx, y = d)
}

χaχb

{
i sin(ky,bd)

[
1
χa

+ 1
χb

χs
χb

]
− cos(ky,bd)

[
1
χb

+ 1
χa

χs
χb

]} ,

(4.44)
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where δ(kx)χa = δ(kx) has been used. This can be simplified by multiplying by 1
sin(ky,bd)

in both the numerator and denominator, yielding

Ex(kx, y = d) =
iχsχb − cot(ky,bd)

i
[
χb + χa

χs
χb

]
− cot(ky,bd) [χa + χs]{

2E0e
−ik0dδ(kx)− Z0Ix(kx, y = d)

}
. (4.45)

Now as the field is zero at the gate, assuming it is a perfect conductor, the only unknown
will be the current at gate. By determining this current the coefficients for the magnetic
and electric field can be found and thus the radiation pattern of the HEMT. To find the
current at the gate, a new variable is defined,

Zk(kx) =
iχsχb − cot(ky,bd)

i
[
χb + χa

χs
χb

]
− cot(ky,bd) [χa + χs]

. (4.46)

The current is given as

Ix(kx, y = d) =
1

2π

ˆ w
2

−w
2

Ix(x′, y = d)e−ikxx
′
dx′. (4.47)

Thus the field at the gate can be found as

Ex(x, y = d) =

ˆ ∞
−∞

Ex(kx, y = d)eikxxdkx

=

ˆ ∞
−∞

Zk(kx)
[
2E0e

−ik0dδ(kx)− Z0Ix(kx, y = d)
]
eikxxdkx (4.48)

where inserting Eq. (4.47) gives

Ex(x, y = d) = 2E0e
−ik0dZk(0)−

ˆ w
2

−w
2

ˆ ∞
−∞

Z0

2π
Zk(kx)I(x′, y = d)eikx(x−x′)dkxdx′. (4.49)

At the gate, |x| ≤ w
2 , the electric field is zero, as the gate is a perfect conductor, yielding

2E0e
−ik0dZk(0) =

ˆ w
2

−w
2

Z(x− x′)Ix(x′, y = d)dx′, (4.50)

where

Z(x− x′) =

ˆ ∞
−∞

Z0

2π
Zk(kx)eikx(x−x′)dkx. (4.51)

Now the current can be found using numerical methods.

4.3 Reference Field

Another approach follows a similar procedure to the one in Sec. 4.2, but instead of looking
at the total field, the field is split into two parts: a reference field for the system without
the scatterer and the field generated from the scatterer, i.e. the gate in this case. The
reference structure is seen in Fig. 4.6.
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Figure 4.6. Reference structure for how the field would propagate without the scatterer at surface
y = d.

Assuming a p-polarised wave, (H = ẑH), The corresponding reference field can be stated
as

Href (x, y) =H0

(
e−iky,a(y−d) + rase

iky,a(y−d)
)
eikxx y > d, (4.52)

Href (x, y) =
(
Brefe

−iky,b(y−d) + Crefe
iky,b(y−d)

)
eikxx 0 < y < d, (4.53)

Href (x, y) =H0tase
−iky,syeikxx 0 > y. (4.54)

Thus expressions for Bref , Cref , ras and tas are needed.
This can be done by considering the boundary conditions for the two surfaces. The same

boundary conditions as in Sec. 4.2 are valid, i.e. the tangential electric field component is
continuous and the tangential component of the magnetic field has a jump equal to surface
current present. For the reference field this means that the magnetic field is continuous at
the interface y = d and the difference is equal to σEx at y = 0, where σ is given by Eq.
(4.19).
First the single interface reflection and transmission coefficients for each interface will

be derived as these are needed to establish three layer coefficients. Considering a single
interface at y = d one can state that the field above the interface consists of a wave
propagating downwards and upwards due to reflection at the interface and below the
interface the field is what has been transmitted through the surface illustrated in Fig. 4.7.

Figure 4.7. Field components for a single layer under consideration with an incident wave from
layer α, where αi = [a, b, s] and yi = [0, d], for i = 1, 2.
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The boundary conditions for the surface y = d results in the relations

1 + rab = tab (4.55)
ky,a
εa

(1− rab) =
ky,b
εb
tab, (4.56)

which gives the expression for the single layer reflection coefficient:

rab =
ky,aεb − ky,bεa
ky,aεb + ky,bεa

, (4.57)

and the transmission coefficient can be obtained from Eq. (4.55). A similar consideration
can be done for the surface y = 0, which gives the relations

H0(1 + rbs − tbs) = σEx (4.58)
ky,b
εb

(1− rbs) =
ky,s
εs

tbs, (4.59)

for the tangential magnetic and electric field boundary condition respectively, where Ex
is given by Eq. (4.8). Again searching for an expression for the single interface reflection
coefficient leads to

rbs =
ky,bεs(1 + σ

ky,s
ωε0εs

)− ky,sεb
ky,bεs(1 + σ

ky,s
ωε0εs

) + ky,sεb
, (4.60)

and a transmission which can be obtained from

tbs = (1− rbs)
ky,bεs
εbky,s

. (4.61)

The reflection and transmission coefficient for the whole structure, ras and tas, can be found
by considering propagation throughout the entire structure. For the reflection coefficient
the path can be described as

ras(kx) = rab + tabe
iky,bdrbse

iky,bdtba

∞∑
n=0

(
rbae

2iky,bdrbs

)n
, (4.62)

The first term is the reflection at the first interface. The following term for n = 0 the
wave is firstly transmitted through the first interface, propagates down through the second
layer to the second interface where it is reflected back up to the first interface and gets
transmitted into the first layer. For n > 0, the situation is the same but the wave does n
extra turns back and forth in the second layer before being transmitted back through the
upper interface and into the first layer. The sum in Eq. (4.62) can be reduced by noting
that it is in fact a geometric series, which converges to

∞∑
n=0

axn =
a

1− x
, for |x| < 1. (4.63)

Eq. (4.62) can therefore be simplified to

ras =
rab + rbse

2iky,bd

1 + rabrbse
2iky,bd

, (4.64)
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where rba = −rab and tabtba = 1 − r2
ab has been used. The three layer transmission

coefficient can be obtained by a similar line of thought:

tas =
tabtbse

iky,bd

1 + rabrbse
2iky,bd

. (4.65)

The coefficients Bref and Cref can be obtained by considering the fields of Eq. (4.54) at
the interface y = d. Here, the magnetic and electric field boundary conditions yield

H0(1 + ras) = Bref + Cref , (4.66)
ky,aεb
εaky,b

H0(1− ras) = Bref − Cref . (4.67)

By respectively adding and subtracting these equations one obtains the following
expressions for the coefficients:

Bref =
1

2
H0

(
(1 + ras) + (1− ras)

ky,aεb
εaky,b

)
, (4.68)

Cref =
1

2
H0

(
(1 + ras)− (1− ras)

ky,aεb
εaky,b

)
. (4.69)

The reference field can now be calculated, which leaves the contribution from the scattered
field, illustrated in Fig. 4.8.

Figure 4.8. Field emitted from the scatterer placed on the interface y = d.

As in Sec. 4.2 the electromagnetic fields can be in expressed through the Fourier transform
as follows

Hsc(x, y) =

ˆ
Asc(kx)eiky,a(y−d)eikxxdkx y > d, (4.70)

Hsc(x, y) =

ˆ (
Bsc(kx)e−iky,b(y−d) + Csc(kx)eiky,b(y−d)

)
eikxxdkx 0 < y < d, (4.71)

Hsc(x, y) =

ˆ
Dsc(kx)e−iky,syeikxxdkx y < 0. (4.72)

Likewise the current in the gate can be represented by its Fourier transform:

Ix(x, y = d) =

ˆ
Ix(kx, y = d)eikxxdkx. (4.73)
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Similarly to the reference field the coefficients for the scattered field must be found from
the boundary conditions. Unlike before, for the reference structure, the current in the gate
is also an unknown, which must be determined, which will be done in a similar vein to
what was done in Sec. 4.2. From the boundary conditions at the gate, y = d, the following
relations must be satisfied

Asc − (Bsc + Csc) = Ix, (4.74)
ky,a
εa

Asc = −
ky,b
εb

(Bsc − Csc). (4.75)

In the second layer the upward propagating field can be related to the downward
propagating field, by realising that the only contribution to the upward propagating field
is from what has been reflected field at the interface at y = 0, hence the fields are related
as

rbsBsce
iky,bd = Csce

−iky,bd ⇒ Csc = rbsBsce
2iky,bd. (4.76)

Using this expression for Csc in Eq. (4.75) two equations for Asc can be obtained as

Asc = Bsc(1 + rbse
2iky,bd) + Ix, (4.77)

Asc = −Bsc(1− rbse2iky,bd)
ky,bεa
εbky,a

, (4.78)

which can be combined to find an expression for Bsc

Bsc(1 + rbse
2iky,bd) + Ix = −Bsc(1− rbse2iky,bd)

ky,bεa
ky,aεb

⇔ Bsc = − Ix

(1 + rbse
2iky,bd) + (1− rbse2iky,bd)

ky,bεa
ky,aεb

. (4.79)

All the coefficients can now be determined provided Ix is known. In order to determine
Ix, the tangential component of the electric field is evaluated a small distance, δ, below
the gate, yielding

Ex,sc(kx, y = d− δ) =
ky,b
ωε0εb

Bsc

(
eiky,bδ − rbseiky,b(2d−δ)

)
= −Ix

ky,b
ωε0εb

(
eiky,bδ − rbseiky,b(2d−δ)

)
(1 + rbse

2iky,bd) + (1− rbse2iky,bd)
ky,bεa
ky,aεb

= −Ix(kx)Z(kx) (4.80)

where Eq. (4.76) has been used for the first equality and

Z(kx) =

ky,b
ωε0εb

(
eiky,bδ − rbseiky,b(2d−δ)

)
(1 + rbse

2iky,bd) + (1− rbse2iky,bd)
ky,bεa
ky,aεb

. (4.81)

Using that the gate is a perfect conductor, then for |x| < w
2 the tangential component of

the field slightly below the gate can be approximated to be zero, i.e.

Ex,ref (x, y = d− δ) + Ex,sc(x, y = d− δ) ' 0. (4.82)
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Therefore by transforming Eq. (4.80) to real space one can write

Ex,ref (x, y = d− δ)−
ˆ
Ix(kx)Z(kx)eikxxdkx = 0, (4.83)

the Fourier transform of the current is written as the inverse Fourier transform, where it
should be noted that the integral limits can be restricted to run from ±w

2 , as the current
is restricted to the gate:

Ex,ref (x, y = d− δ) =
1

2π

ˆ w
2

−w
2

ˆ ∞
−∞

Ix(x′)Z(kx)eikx(x−x′)dkxdx′ (4.84)

=
1

2π

ˆ w
2

−w
2

Ix(x′)Z(x− x′)dx′, (4.85)

where

Z(x− x′) =

ˆ ∞
−∞

Z(kx)eikx(x−x′)dkx. (4.86)
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Analysis and Discussion 5
In the following analysis an AlGaN/GaN HEMT structure will be used for calculations
gate current calculations following the methods described in Sec. 4.2 and Sec. 4.3, which
will be referred to as RF (Reference Field) and PPS (Popov, Polischuk, Shur). The general
structure parameters required for the analysis is first of all the dielectric constants of AlGaN
and GaN respectively in the THz range. The dielectric constant for GaN has been acquired
from references [35][36] and is set to 5.3. For the insulator layer of AlGaN the dielectric
has been set to 9.5 based on references [37][38]. Parameters such as frequency, f , electron
concentration, Nc, momentum relaxation time, τ , gate length, w, and distance from the
gate to the 2DEG, d, will in general be variable parameters and their influence will be
analysed. Furthermore the amplitude of the incident field is set to H0 = 1. However,
for the initial analysis, which is the calculation of the current, these parameters will be
constant, with the exception of gate length and frequency in order to determine how
convergence is affected by these parameters. The values used for these parameters are
f = 1.44 Thz, Nc = 1017 m−2 [19], τ = 2.27 × 10−13 s [38], w = 400 nm and d = 10 nm
when the 2DEG layer is infinitely thin and d = 6 nm and d2DEG = 4 nm when it has a
finite thickness, furthermore the value for the effective mass is taken as m = 0.22m0 from
Ref. [33][19].

5.1 Mode Indices

Based on the theory established in Sec. 4.1 and App. A.5, mode indices for different
HEMT structures can be found and analysed. In Sec. 4.1 the mode index for the gated
structure are found. First the model with a finite thickness of the 2DEG will be analysed.
The mode index depends on the parameters of the setup, the dependency on the frequency
for an ungated structure is shown in Fig. 5.1.
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Figure 5.1. The mode index for a ungated structure, versus different frequencies.

The imaginary part of the mode index is almost constant, while the real part increases
almost linearly as the frequency increases. The frequencies tested are from 0.1 THz to 10
THz. For the gated structure the dependency on frequency is shown in Fig. 5.2.
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Figure 5.2. The mode index for a gated structure, versus different frequencies.

Compared to the ungated structure, the gated structure has the same linear tendency
for higher frequencies, however for low frequencies, lower than 1 THz, the mode index
increases.
By varying the distance from the gate to the electron gas, the mode index also varies.

This has been illustrated in Fig. 5.3
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Figure 5.3. The mode index for both the gated and ungated structure, versus different distances
to the electron gas from the gate.

The ungated mode index does not change significantly with changing distance. As the
distance to the 2DEG is relatively small compared to the wavelength, for the ungated
structure, the difference in nm scale, the effective material above the 2DEG is largely
unaffected, which could explain the irrelevance of the distance to the 2DEG. However for
the gated structure, the mode index rises very high for low distances, which could be
explained by the gate drastically changing the material above the 2DEG, as it does not
have an infinite amount of ambient material above.
When changing the thickness of the 2DEG, the mode index also changes. For the models

in Secs. 4.2 and 4.3, the thickness of the 2DEG has been assumed to be zero. The mode
index as the thickness of the gas goes to zero, should show which plasma modes can be
expected in the models. In Fig. 5.4 the dependency of thickness is illustrated.

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-9

0

5

10

15

20

25

Real Part

Imaginary Part

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-9

0

2

4

6

8

10

12

Real Part

Imaginary Part

Figure 5.4. The mode index for both the gated and ungated structure, versus different
thicknesses of the electron gas.

It can be seen that as the 2DEG becomes thinner, the mode index decreases for the gated
structure. The models where the 2DEG was considered to be infinitely thin, the distance
to the 2DEG is set to be 10 nm, instead of the 6 nm used in the standard calculations for
the mode index. To account for this, the mode index have been found for even thinner
electron gas, with a distance from the gate of 10 nm, which is shown in Fig. 5.5.
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Figure 5.5. The mode index for both the gated structure, versus different thicknesses the electron
gas. The distance from the gate to the 2DEG is 10 nm.

The mode index tends to zero as the thickness of the electron gas decreases. This disagrees
with the method for the infinitely thin 2DEG. For the infinitely thin 2DEG the mode index
was found to be nm = 255.07 + 60.21i in Sec. 4.1, however, that method incorporated the
surface currents of the 2DEG, which might explain the difference in the supported modes
as the thickness goes to zero. For the mode index found through the infinitely thin model,
the optimal gate length can be calculated, assuming the gate operates as a dipole antenna,
where the optimal length is (

1

2
+m

)
λ ≈ w, (5.1)

where w is the gate length [39]. Using the relation between the plasma wavelength and
the incident wavelength

λp =
λ

nm
, (5.2)

the fundamental peak will be for a gate length of

w ≈ λ

2nm
. (5.3)

For an incoming wave with a frequency of 1.44 THz, the optimal gate length becomes

w ≈ c

2nm × 1.44 THz
≈ 408 nm. (5.4)

Thus a gate length of around 400 nm should be have a resonant response to the plasma
waves, if the 2DEG is assumed to be infinitely thin. The mode index for an infinitely thin
2DEG for different frequencies is shown in Fig. 5.6.
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Figure 5.6. The mode index for both the gated infinitely thin 2DEG structure, versus different
frequencies. The distance from the gate to the 2DEG is 10 nm.

The real part of the mode index for the gated structure seems to have a minimum, which
would correspond to the longest plasma modes the structure can support, for a frequency of
around 1.9 THz, where the mode index is nm ≈ 250.01+46.83i. For the gated structure, the
mode increases rapidly for frequencies lower than 1 THz, both for the real and imaginary
part. The real part of the mode index for the ungated structure seems to increase almost
linearly as was seen for the model with a finite thickness. The mode index for a 10 THz
radiation is nm = 294.65 + 12.89i. For this wavelength the optimal gate length, again
assuming that dipole antenna theory holds, would be w = 50.91 nm. The amount of
electrons in the 2DEG can be affected by applying a potential on the gate as mentioned
in Sec. 3.1.3, thus the mode index for varying charge carrier concentrations are shown in
Fig. 5.7.
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Figure 5.7. The mode index for both the gated infinitely thin 2DEG structure, versus different
sheet carrier concentrations. The distance from the gate to the 2DEG is 10 nm.

The mode index seems to rise as Nc decreases. This was not as expected from Eq. (3.75),
where ω2

p should be proportional to Nc, which would suggest nm ∝
√
Nc.

The distance from the 2DEG to the gate, can also have an effect on the possible plasma
modes. Thus the mode indices for an interval of 2DEG depths are shown in Fig. 5.8.
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Figure 5.8. The mode index for both the gated infinitely thin 2DEG structure, versus different
2DEG depths. The distance from the gate to the 2DEG varies and the rest of
parameters are the same as in Fig. A.4.

For the gated structure, the mode index increases as the distance decreases. For large
distances, another mode appears, with a low real part and a high imaginary part. For the
ungated structure, the mode index increases linearly.

5.2 The PPS Method

In order to model the electromagnetic radiation, as described in Sec. 4.2, the current in
the gate is described through point matching. The gate is split into N sections, each with
length ∆ and the current at each section is assumed to be constant. Thus at point i the
current needs to satisfy,

E0,i =
N∑
j=1

Z(xi − xj)Ij∆, (5.5)

where both xi and xj are points along the gate and E0,i = 2E0e
ik0dZk(0). This can be

written as a matrix equation,

E0 = ZI, (5.6)

where the elements of Z can be found using Eq. (4.51). However the Z(x − x′) does not
converge, as can be seen in Fig. 5.9 as the linear tendency continues when increasing |kx|.
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Figure 5.9. Plot of the integrand of Z(x− x′) versus kx.

A possible solution to this is letting the electric field be zero a small distance, δ, beneath
the gate, so that Ex(|x| ≤ w

2 , d− δ) = 0, where δ will depend on the division of the gate.
The electric field can be found from Eq. (4.43) which leads to

Ex(kx, y = d− δ) =
i sin(ky,b(d− δ))χsχb − cos(ky,b(d− δ))

i sin(ky,bd)
[
χb + χa

χs
χb

]
− cos(ky,bd) [χa + χs][
2E0e

−ik0dδ(kx)− Z0Ix(kx, y = d)
]
, (5.7)

Using the same approach as in Sec. 4.2, the field at the gate gives

2E0e
ik0dZδ,k(0) =

ˆ w
2

−w
2

Zδ(x− x′)I(x′, y = d)dx′, (5.8)

where

Zδ,k(kx) =
i sin(ky,b(d− δ))χsχb − cos(ky,b(d− δ))

i sin(ky,bd)
[
χb + χa

χs
χb

]
− cos(ky,bd) [χa + χs]

, (5.9)

and

Zδ(x− x′) =

ˆ ∞
−∞

Z0

2π
Zδ,k(kx)eikx(x−x′)dkx. (5.10)

The integral of Zδ does converge, the integrand is illustrated in Fig. 5.10, where it converges
to zero for increasing |kx|. The integral should be calculated for all for all xn − x′m, where
both n andm runs over N . However, due to the translational symmetry of Eq. (5.10), only
the N integrals for the first measuring point and the N integrals for the last measuring
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point has to be calculated, as this covers all the possible exponents in the integrand. The
remaining integrals can simply be extracted from these 2N integrals.
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Figure 5.10. Plot of the integrand of Zδ(x− x′) versus kx.

However, letting kx go towards infinity results in numerical problems for MATLAB, as
both the numerator and denominator tends to infinity. The denominator does go to
infinity quicker than the numerator and as such the integrand should tend towards 0.
MATLAB, however, seems to evaluate the numerator and denominator separately (at
least partially) and for very large values of kx the integrand becomes ∞/∞, which is
indeterminate and the integral becomes undefined. The integral of Eq. (5.10) is therefore
done over a limited amount of kx from which the integrand has become vanishing small
but are within MATLABs numerical limits, these limits are denoted from −kx,lim to kx,lim.
There is in fact an upper limit on how high kxs needs to be included in the integral. This
is due to MATLABs floating-point number limit, being about 10308, and that 1/x in the
limit x lim∞ → 0 . When the denominator of Eq. (5.10) reaches the limit it simply sets
the value to zero even though the fraction itself might not be close to zero. This causes a
discontinuity, and if the function is not sufficiently close to zero at this point problems can
occur when integrating. The discontinuity can be seen in Fig. 5.11 for N = 700, where
the real part of the integrand of Eq. (5.10) is taken as an example.
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Figure 5.11. Plot of the real part of the integrand of Zδ(x − x′) versus kx showing the
discontinuity due to MATLABs floating-point number limit for N = 700.

Since the denominator is independent of the number of divisions, N , in the gate this limit
is constant for any number and is ca. |kx| ∼ 7.10476 × 1010. This is not a problem for
low numbers of N as the function is practically zero before reaching this value, but it does
become increasingly relevant when increasing number of gate divisions. For high division of
the gate, N ≥ 1300, another problem occurs due to the size of δ. AsN increases δ decreases
and the numerator of Eq. (5.10) becomes less suppressed and increases more rapidly. At
about N ≥ 1300 it reaches MATLABs numerical limit before |kx| ∼ 7.10476× 1010, where
the denominator is set equal to ∞ and the function is set to ∞ and cannot be integrated.
The effect of this is shown in Fig. 5.12 for N = 3000, where one can observe that the
x-axis simply ends at about |kx| = 7.10476× 1010. The further effect of δ will be analysed
further at the end of this section.
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Figure 5.12. Plot of the integrand of Zδ(x − x′) versus kx, with the number of gate divisions
being N = 3000.

Following the preceding analysis the integration is limited to |kx| = 7.10476 × 1010 and
N = 1200. When the integral is computed the matrix equation, Eq. (5.6), can be used to
find the current at the gate.
If the current is converged, its value should go towards a constant with increasing number

of gate divisions and if the change in between increasing number of segmentation becomes
acceptably small, while the amount of segments is small enough to allow for the integrand
to go to zero, the result is usable.

5.2.1 Calculating the current

The current has been calculated for an increasing number of gate divisions, from N = 100

to N = 1200 in steps of 100. In Fig. 5.13 the current for N =100, 200, 500, 800, 1000,
1200 has been plotted.
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Figure 5.13. Convergence plot for the absolute value of the current from Eq. (5.6) for N =100,
200, 500, 800, 1000, 1200.

As the number of gate divisions increase, the current across the gate drops. The max value
of the current drops to about half the value when the amount of segments is doubled.
At about N = 1000 this tendency becomes less obvious as the function seem to start
overlapping due to the scale of the axis, however focusing on the higher amounts of
segments, the same tendency can be observed, which is illustrated in Fig. 5.14.
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Figure 5.14. Convergence plot for the absolute value of the current from Eq. (5.6) for N =800,
900, 1000, 1100, 1200.

The pattern with a halving in current when doubling in N also seems to continue if the
calculated values are compared. If this tendency is consistent for all values of N , one
should be able to observe a strong correlation between the value of the current and 1/N ,
this has been plotted in Fig. 5.15.
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Figure 5.15. The blue ’stars’ are the calculated maximum value of the absolute value of the
current against −1/N . The red line is the regression line obtained from the
calculated values. Plotting against −1/N is done in order to have increasing N
in the positive x direction. The points on the x-axis is given in values of N .

The plot shows a very strong linear relation. Therefore, by making a linear regression of
the function y = az + b, where y is Max(abs(I)) and z = 1/N , the intersection with the
y-axis can be found, which corresponds to the limit for N → ∞, under the assumption
that the function is valid outside the calculated interval.
Performing the linear regression one obtains

y = z × (−0.121293436)− 0.000000651, (5.11)

which practically says that the absolute value of the current converges to a negative
number. As this cannot be the case the relation cannot be valid outside the observed
interval. This indicates that this method is poor at describing the current in the gate.
One option that is worth exploring is the dependency of δ, the small displacement in y,

and ∆ the length of the segmentation. So far δ has been calculated as

δ =
∆

2
=

w

2N
, (5.12)

where w is the width of the gate. The reasoning behind this specific distance is showcased
in Fig. 5.16, where the black dots represents the measuring points. By moving the
measuring points further away from the gate will make neighbouring sections and its
own contributions more equal, as the distance between its own section and its neighbours
becomes comparable. Therefore the value of δ should at most be on the order of the
segmentation length.
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Figure 5.16. Schematic illustration of the displacement of measuring points from the gate strip.

However, the function will obviously also become a problem for increasing N as the
measuring points moves closer to the gate and integrand shown in Fig. 5.9 is restored.
The value for N for which the displacement becomes too small is ca. N = 1300 as was
found earlier. It is clear that having a dependency as in Eq. 5.12 cannot be used for
the method in the general case. So in an attempt to improve the convergence different
constant values of δ has been used in calculating the current. It should be noted that δ
also has a maximum and minimum value limited by the distance to the 2DEG, as placing
the measuring point for the gate in the 2DEG is nonsensical, and placing the measuring
points closer than 1.5385 × 10−10 m, which corresponds to N = 1300, as δ becomes too
small, which causes numerical instability. If δ is a set value, N is no longer restricted in
value. Results for δ = w/300, w/1000, w/1800, w/2400 are shown in Fig. 5.17.
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Figure 5.17. Current plots for constant value of displacement δ where the legends indicate the
number of segmentation, for values δ = w/300, w/1000, w/1800, w/2200.

It would seem that for δ = w/1000 the current converges. For a gate length of 400 nm

this corresponds to a distance of 0.4 nm. Decreasing the distance further restores the more
square current profile seen in Fig. 5.17 for δ = w/1800 and w/2200 and in Fig. 5.14
for the variable δ. Increasing the distance to about a third of the distance between the
gate and 2DEG, seen in the top left of Fig. 5.17, the corners are poorly described, which
can be due to the concern expressed in connection with Fig. 5.16, i.e. the contribution
from nearby compared to far away points becomes comparable. Increasing the number of
segments for this distance simply breaks the model, which might be due to an increasingly
poor description of the neighbouring contributions as the segments becomes smaller.
The corners for δ = w/1000 also have some problems and again becomes worse as the

segmentation increases. By the previous reasoning one should able to improve this by
moving the measuring points slightly closer to the gate. In Fig. 5.18 different values of
δ has been used for the same number of segments, N = 3000, in order to examine this
assertion.
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Figure 5.18. Left figure shows a current plot as function of δ, with constant segmentation,
N = 3000. The legend is the value, K, used for δ = w/K. The right figure is
a close up of the end of the gate.

From Fig. 5.18 it is clear that moving the measuring points closer to the gate the
consistency of the increase. The cost is, however, a weaker convergence and past
δ = w/1200 ≈ 0.33 nm it becomes increasingly difficult to say with certainty that it
has in fact converged with the tested number of segmentation. For δ = w/1100 the
current still converges strongly before N = 2800 and the sharp edges has been reduced
from δ = w/1000, which will therefore be as the value of δ for the rest of this section.
If the gate is shortened the correlation between convergence and segmentation does not

seem to change considerably. But the measuring points have to be moved closer to the gate
to find the minimum distance for convergence in order to account for the now inherently
smaller segments. The same relation can be found when increasing the gate length, where
the measuring points have to placed further away to obtain the minimum distance required
for convergence.
Before examining the various cross sections and the radiation patterns from the structure,

it would be of interest to test whether the current is actually calculated correctly or if the
more numerically stable method derived in Sec. 4.3 is able to reduce some of the difficulties
of this method and if the calculated current is consistent with what is obtained through
the PPS model.

5.3 The RF Method

In this section the model derived in Sec. 4.3 will be used in to determine the current in
the gate strip. The advantage of this model should be that in contrast to the integral of
Eq. (5.10), the integrand of Eq. (4.86), Z(kx), goes towards zero in a more numerical
stable manner due to the exponential functions in the numerator naturally going to zero
for large kx, as

ky,b = i
√
k2
x − k2

0εb ' ikx
(

1− 1

2

k2
0εb
k2
x

)
, (5.13)

which would give a exponential decreasing function in the numerator of Eq. (4.86). This
is indeed confirmed by plotting the Z(kx), shown in Fig. 5.19.
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Figure 5.19. The function Z(kx) from Eq. (4.81) exemplifying the exponentially decreasing
nature of the function.

Similarly to the method previous method the current in the gate is described through point
matching. The same set of equations are obtained, i.e. Eq. (5.5) and Eq. (5.6), but the
function Z(x − x′) are that of Eq. (4.86). Initially the distance δ is calculated from Eq.
(5.12), in order to examine if this method has the same issues as the method analysed in
Sec. 5.2. The current has been plotted for a number of segmentation in Fig. 5.20.
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Figure 5.20. Convergence plot for the absolute value of the current. On the left N=100, 200,
500, 700, 900, 1100. On the right N=1100, 1200, 1400, 1600, 1800, 2000.

The same problem of no convergence as was previously observed is still present if the
displacement δ follows the segmentation. But, as is clear from Fig. 5.20, the limitations of
the number of segmentation have been removed with the new integrand. This is in itself
a large improvement to the previous method.
The displacement δ is now set to a constant value and the current is again determined

for an increasing number of segments, the results for a 400 nm gate is shown in Fig. 5.21.
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Figure 5.21. Convergence plot for a 400 mn gate with constant displacement of δ = w/1100 =
0.36364 nm with different number of segmentation N = 2200, 2400, 2600, 2800,
3000.

Again with the constant displacement the current converges and to the same shape as seen
in Fig. 5.17. However, the value for the current distribution has dropped by a factor of
10−6, which is a large discrepancy between the two approaches. There is no obvious reason
for this difference as the parameters used for both calculations are identical.
In order to improve the consistency of the RF method, it is expanded upon by using

second order basis functions to possible give a better description of the current and to
improve the convergence as having to use up to 3000 segments for convergence for sub-
micrometer gates cannot be said to be great. The RF is chosen as this method omits some
of the numerical difficulties of the PPS method and are in this sense more versatile.

5.4 Second Order Basis functions

In order to improve the convergence of the method, instead of assuming the current is
constant in each segment, second order basis functions are used to improve the method.
The basis functions are given as

f (0)(x) = 2x2 − 3x+ 1, (5.14)

f (1)(x) = −4x2 + 4x, (5.15)

f (2)(x) = 2x2 − x. (5.16)

(5.17)
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Starting from Eq. (4.84), the current can be written as

Ix(x′) =

N∑
n=1

2∑
ν=0

a(ν)
n f (ν)

n , (5.18)

where the basis functions are given as

f (ν)
n (x) = f (ν)

(
x− x(s)

n

x
(e)
n − x(s)

n

)
for x(s)

n < x < x(e)
n , (5.19)

where x(s)
n is the start of element n and x(e)

n is the end of element n, and f (ν)
n = 0 everywhere

else. Inserting this into Eq. (4.84) gives

Ex,ref (x, y = d− δ) =

N∑
n=1

2∑
ν=0

a
(ν)
n

2π

ˆ w
2

−w
2

ˆ ∞
−∞

f (ν)
n (x′)Z(kx)eikx(x−x′)dkxdx′. (5.20)

As the basis functions are zero when not in the appropriate region, the integral over x′ can
be split into integrals over each section. Looking at a specific section, n, gives

Ex,ref (x, y = d− δ) =

2∑
ν=0

a
(ν)
n

2π

ˆ x
(e)
n

x
(s)
n

ˆ ∞
−∞

f (ν)
n (x′)Z(kx)eikx(x−x′)dkxdx′. (5.21)

The integral over x′ can be identified as the Fourier transform into k-space:

f̃ (ν)
n (kx) =

1

2π

ˆ ∞
−∞

f(x′)e−ikxx
′
dx′ =

1

2π

ˆ x
(e)
n

x
(s)
n

f(x′)e−ikxx
′
dx′. (5.22)

Inserting this into Eq. (5.21) gives

Ex,ref (x, y = d− δ) =
N∑
n=1

2∑
ν=0

a(ν)
n

ˆ ∞
−∞

f̃ (ν)
n (kx)Z(kx)eikxxdkx. (5.23)

In order to evaluate Eq. (5.22), the variable is changed from x′ to z = x′−x(s)n
∆ , where

∆ = |x(e)
n − x(s)

n |, which gives

f̃ (ν)
n (kx) =

1

2π

ˆ 1

0
f (ν)(z)e

−ikx
(

∆z+x
(s)
n

)
∆dz. (5.24)

The basis functions are then inserted from Eqs.(5.14), (5.15), and (5.16). The first basis
function becomes

f̃ (0)
n (kx) =

∆e−ikxx
(s)
n

2π

ˆ 1

0

(
2z2 − 3z + 1

)
e−ikx∆zdz = An

ˆ 1

0

(
2z2 − 3z + 1

)
e−ikx∆zdz,

(5.25)

where An = ∆e−ikxx
(s)
n

2π . The integral can be split into three separate integrals as

f̃ (0)
n (kx) = An

(ˆ 1

0
2z2e−ikx∆zdz −

ˆ 1

0
3ze−ikx∆zdz +

ˆ 1

0
e−ikx∆zdz

)
. (5.26)
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The last integral can be readily integrated, giving
ˆ 1

0
e−ikx∆zdz =

[
−e
−ikx∆z

ikx∆

]1

0

=
1− e−ikx∆

ikx∆
. (5.27)

The second integral is evaluated using integration by parts giving,

ˆ 1

0
3ze−ikx∆zdz =

[
−3ze−ikx∆z

ikx∆

]1

0

+

ˆ 1

0
3
e−ikx∆z

ikx∆
dz

=

[
−3ze−ikx∆z

ikx∆

]1

0

+

[
3e−ikx∆z

k2
x∆2

]1

0

= −3e−ikx∆z

ikx∆
+ 3

e−ikx∆z − 1

k2
x∆2

. (5.28)

The first integral is also handled by integration by parts, yielding

ˆ 1

0
2z2e−ikx∆zdz =

[
−2z2 e

−ikx∆z

ikx∆

]1

0

+

ˆ 1

0
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−
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ikx∆
+

4e−ikx∆
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x∆2

+
4e−ikx∆ − 4

ik3
x∆3
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(5.29)

Inserting these into Eq. (5.26) gives the Fourier transformed basis function as

f̃ (0)
n (kx) = An

(
−2e−ikx∆

ikx∆
+

4e−ikx∆

k2
x∆2

+
4e−ikx∆ − 4

ik3
x∆3

+
3e−ikx∆z

ikx∆
− 3e−ikx∆z − 3

k2
x∆2

+
1− e−ikx∆

ikx∆

)
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(
1

ikx∆
+
e−ikx∆ + 3

k2
x∆2

+
4e−ikx∆ − 4

ik3
x∆3

)
. (5.30)

The other Fourier transformed basis functions are similarly derived in Appendix, A.7, and
are

f̃ (1)
n (kx) = 4An

(
−e
−ikx∆ + 1

k2
x∆2

− 2e−ikx∆ − 2

ik3
x∆3

)
, (5.31)

and

f̃ (2)
n (kx) = An

(
−e
−ikx∆

ikx∆
+

3e−ikx∆ + 1

k2
x∆2

+
4e−ikx∆ − 4

ik3
x∆3

)
. (5.32)

These basis functions can be inserted into Eq. (5.23) and the current can be found. The
basis functions are dependent on 1/k3

x, however they are still stable in the limit kx → 0,
which can be shown by using the Taylor expansion on the exponential function e−ikx∆,
giving

e−ikx∆ ≈ 1− ikx∆− 1

2
k2
x∆2. (5.33)

Inserting this into Eq. (5.30) gives

f̃ (0)
n (kx) ≈ An

(
1

kx∆
[−i− i+ 2i] +

1

(kx∆)2
[1 + 3− 4] +

1

(kx∆)3
[4− 4]− 1

2

)
= −An

2
,

(5.34)
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and for Eq. (5.31) it gives

f̃ (1)
n (kx) ≈ 4An

(
1

kx∆
[i− i] +

1

(kx∆)2
[−2 + 2] +

1
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1

2

)
= 2An, (5.35)

and for Eq. (5.32)

f̃ (2)
n (kx) ≈ An
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1

kx∆
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1

(kx∆)2
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[4− 4] + 1− i1

2
kx∆− 3

2

)
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(
−1

2
ikx∆− 1

2

)
. (5.36)

Thus for kx → 0 the integrals are not singular.
To properly handle the extra unknowns introduced from the second order basis functions,

the middle point of each segment is also incorporated in the calculations, thus for N
segments, there are 2N + 1 points.

5.4.1 Current Analysis

The current from the second order basis functions are then found through the integral in
Eq. (5.23). Again the translational symmetry can be used to decrease computation time.
In order to avoid the singular behaviour of the basis functions at kx = 0, a distance in
kx, δk, is introduced, where the second order Taylor expansion for the basis functions are
used. The Taylor expansion in Eq. (5.33) is expanded for ∆kx ≈ 0, and as ∆ depends
on the segmentation, N , δk is set to δk = A/∆, in order to keep δk constant for changing
segmentation. The current is illustrated for different amounts of segments in Fig. 5.22.
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Figure 5.22. The current in the gate for varying segmentation. The values used for the
calculations are for a AlGaN/GaN structure. As the segments now have a middle
point, the displacement is set to δ = ∆/4, δk = 10−4/∆. The right plot is zoomed
on the top of the curve.

It can be seen from the figure, the value seems to converge decently for a relatively low
segmentation, for N ≥ 50 the values seem to differ very little. After reaching a plateau,
the values seem to decrease as N , the correlation between the max value of the current
and segmentation is seen in Fig. 5.23.
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Figure 5.23. The maximum value of the current in the gate for varying segmentation with a fit
of aN−b + c.

The convergence in the plot seem to follow a aN (−b) + c tendency, with coefficients
a = −67.8805, b = 1, 4128 and c = 8.7399. The current fit does seem to follow the
convergence decently, however for higher amounts of segments, the current has a lower
value than the fit, thus the approximated converged current of Ic = 8.7399 is likely higher
than the real converged value. The percentage difference in the maximum value of the
current between N = 100 and N = 1000, is ≈ 0, 64%, thus there is little difference in the
current for N > 100, thus N = 100 seems a reasonably convergent value. For the rest of
the convergence tests, N = 100 has been chosen. In order to test the dependency of δk,
the function have been plotted with different values of δk/∆. The dependency on δk which
is shown in Fig. 5.24.
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Figure 5.24. The absolute value of the current along the gate for different δk.

It seems that as long as δk/∆ ≤ 1 the approximation is valid. Setting the δk/∆ = 10,
gives a much lower current that all the other δk/∆. The current for δk/∆ = 1 is almost
identical to the values for lower δk/∆. The computation time needed for these solutions
did not differ significantly, thus δk = 10−4/∆ is chosen to be the standard δk.
The electric field is set to be 0 a small distance, δ, below the gate in order to have the

integrals converge. As δ is a significant variable in the expression for the current it would
be of interest to examine its effect on the calculated current. The current for different
values of δ is shown in Fig. 5.25

Figure 5.25. The absolute value of the current along the gate for different δ and N = 100. The
right picture is focused on the corner of the gate.

The overall value does not seem to change much depending on δ, as long as δ is not too
big, however the corners seem to have problems with lower values of δ. For δ ≥ w/500 the
corners seem to be completely smooth. For higher values of δ the corners continues to be
smooth, however the overall value of the current seems to decrease. For δ ≤ w/100 the
model starts to break as is illustrated in Fig. 5.26.
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Figure 5.26. The absolute value of the current along the gate for δ ≤ w/50 and N = 100.

This is likely due to the observation point being to far from the gate, thus the model
breaks and the contributions begin to be poorly weighted as was discussed at Fig. 5.16.
In Fig. 5.26, the furthest distance was δ = 400 nm/25 = 16 nm which corresponds to the
measuring point being below the 2DEG. The total value seems to have a peak and then
decrease as δ decreases, which is shown in Fig. 5.27.

Figure 5.27. The maximum absolute value of the current along the gate for varying δ and
N = 100.

For low δ the current decreases as δ decreases. This indicates that the model does not
converge with respect to δ. Even for δ = w/105 the current continues to follow the
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decreasing tendency shown in Fig 5.27. Using a fixed δ the model seems to converge with
respect to N . For a fixed δ = w/1500 the current for increasing segmentation is shown in
Fig. 5.28.

Figure 5.28. The absolute value of the current along the gate for δ = w/1500 and for increasing
N . The right picture the convergence of the absolute value of the current with an
approximation of aN−b + c plotted.

The current does not seem to differ significantly for different values of N . The convergence
of the current seems to follow the form aN−b+c with the values a = −10.1811, b = 1.7043

and c = 8.6768 which suggests that the converged value for the current is Ic = 8.6768,
however as can be seen from Fig. 5.28, the fit seem to diverge slightly for higher values of
N (N ≥ 750). For high values of N , the current at the corners of the gate starts to break
and show strange shapes, which is consistent with Fig. 5.25, thus for high N a smaller δ
is required for the corners to be calculated properly. Thus the convergence for a smaller
δ is relevant in order to see if the convergence can be consistent. In Fig. 5.29 the current
for increasing N and δ = w/3000 is shown.

Figure 5.29. The absolute value of the current along the gate for δ = w/3000 and for increasing
N . The right picture the convergence of the absolute value of the current with an
approximation of aN−b + c plotted.

Again the current seems to differ very little for increasing N , however the overall value of
the current is lower than for δ = w/1500, which is to be expected from the tendency seen in
Fig. 5.27. The approximation of aN−b + c with a = −10.6419, b = 1.7053 and c = 8.6498
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is decent. According to the fit, the converged value of the current is Ic = 8.6498, which is
lower than the converged value for δ = w/1500. For this smaller δ, the corners are smooth
for all N shown in the figure. To see if this trend continues, the convergence for N with
δ = w/4500 is shown in Fig. 5.30.

Figure 5.30. The absolute value of the current along the gate for δ = w/4500 and for varying
N . The right picture the convergence of the absolute value of the current with an
approximation of aN−b + c plotted.

The model seems to converge very quickly with respect to N . The corners are still smooth
and the current has dropped a tiny amount. The fit of aN−b + c seems decent with
a = −10.8281, b = 1.7063 and c = 8.6400 which would correspond to a converged current
of Ic = 8.6400, which again is lower than the larger values of δ, which is to be expected.
The model should also be capable of handling different wavelengths, so far only a wave

with the frequency of 1.44 THz has been used, but in order to check convergence, a wave
with a frequency of 10 THz is used for different N with δ = w/3000 is shown in Fig. 5.31.

Figure 5.31. The absolute value of the current along the gate for δ = w/3000, a frequency of 10
THz and for varying N . The right picture the convergence of the absolute value of
the current with an approximation of aN−b + c plotted.

For 10 THz, the model seems to converge a bit slower, possibly because of the more complex
pattern of the current. For low N , the current is not symmetric and does not represent the
pattern well. The approximation of aN−b+c was again used to check for convergence, and
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the values used are a = −4.2742, b = 1.1598 and c = 1.6407. For this situation, N ≥ 50

seems to be necessary for a reasonably converged value.
In order to check if the convergence depends on the gate length, different lengths of gates

are checked in order to insure convergence for several cases. First a gate with a length of
100 nm and δ = w/1500 is used, and the convergence plot is shown in Fig. 5.32.

Figure 5.32. The absolute value of the current along the gate for δ = w/1500, a gate length of
100 nm and for varying N . The right picture the convergence of the absolute value
of the current with an approximation of aN−b + c plotted.

The current seems to converge very quickly for this gate length as well. The approximation
of aN−b + c with values a = −0.1994, b = 1.0477 and c = 0.4180 seems to fit decently.
The convergence has also been tested for δ = w/3000 and δ = w/4500, which seems to
follow the same tendencies, as δ gets lower, the current in the gate drops, however the
convergence for N still seems strong, this is shown in Fig. 5.33.

Figure 5.33. Both plots are of the maximum of the absolute value of the current for an antenna
with length w = 100 nm and with an approximation of aN−b + c plotted. The left
picture is for δ = w/3000 and the right for δ = w/4500.

The fit for δ = w/4500 is a = −0.2333, b = 1.1433 and c = 0.4155 and for δ = w/3000

it is a = −0.1994, b = 1.0477 and c = 0.4180, thus the lower value of δ has a lower
approximated converged value, which is consistent with the previous results.
In order to check the convergence for longer gates, a gate length of w = 1000 nm is

checked. For δ = w/1500 and varying N is shown in Fig. 5.34.
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Figure 5.34. The absolute value of the current along the gate for δ = w/1500, a gate length
of 1000 nm and for varying N . The right picture the convergence of the absolute
value of the current with an fit of aN−b + c plotted.

The current seems decently converged for N ≈ 30. The shape seems to shift to the right as
the number of segments increase. The power fit describes this setup well, and the current
seems to converge. The values used are a = 0.0787, b = 0.2138 and c = 5.6527. The current
does seem to converge towards a higher value than the fit suggests. The convergence for
different values of δ have been done as well and the convergence is shown in Fig. 5.35.

Figure 5.35. Both plots are of the maximum of the absolute value of the current for an antenna
with length w = 1000 nm and with an fit of aN−b + c plotted. The left picture is
for δ = w/3000 and the right for δ = w/4500.

The power fit for δ = w/3000 have the coefficients a = 0.0471, b = 0.3840 and c = 3.1074

and for δ = w/4500 have the coefficients a = 0.0260, b = 0.2446 and c = 5.7715. It seems
as δ decreases, the current increases, which differs from earlier results. The convergence
pattern is also significantly different.
In order to see better analyse the dependency on δ, the gate with w = 1000 nm has been

tested for N = 100 and varying δ, in order to test the convergence. The result is shown in
Fig. 5.36.
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Figure 5.36. The absolute value of the current along the gate for varying δ, a gate length of 1000
nm and for N = 100. The right picture the convergence of the absolute value of
the current.

It seems that for high values of δ, the pattern is inconsistent, however as δ decreases the
pattern seems to converge as well as the maximum value of the current.
When taking δ → 0 the model starts to break and MATLAB is unable to solve the

integrals properly, thus limiting the possible δ to check. As the model seems reasonably
convergent within the tested parameters the current of the gate found for structures within
these tested parameters, can be used for e.g. calculating radiation patterns, cross sections
and determining plasma wave resonances.

5.5 Radiation Pattern Analysis

For the following analysis the far field radiation pattern, as well as optical cross sections,
introduced in Sec. 2.2, will be analysed for possible resonances as function of frequencies
and gate lengths, with the effect of parameters such as gate to 2DEG distance examined.
At first an InGaAs HEMT structure will be analysed in order to compare the RF model
with a similar analyses given in Ref. [34]. Afterwards an AlGaN/GaN HEMT, with
parameters given in the analysis introduction, will be studied and compared to the InGaAs
for similarities and differences.

5.5.1 InGaAs HEMT

For this section the RF model will be used on the InGaAS HEMT analysed in Ref. [34] in
order to compare it with the inspiration for the PPS model. The parameters used for the
InGaAs HEMT are: dielectric constants εb = 13.88, εs = 13.88, and sheet carrier density
Nc = 3 × 1012 m−2, relaxation time τ = 2.8 × 10−12 s, and the effective mass is taken as
m = 0.042m0 [34].
First the far field radiation pattern calculated from Eq. (2.21), using the different models

for obtaining the gate current, is compared to that of Fig. 7 in Ref. [34], which is added
for easier comparison. The radiation patterns are shown in Fig. 5.37.
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Figure 5.37. Far field radiation pattern calculated for an InGaAs HEMT, with parameters
of: gate length w = 400 nm, distance to the 2DEG d = 10 nm, ε = 13.88,
m∗ = 0.042m0 and τ = 2.8 × 10−12 s for a frequency of 1.44 THz. The figures
are obtained by the following: (a) is obtained from Ref. [34], (b) is calculated by
RF using second order basis function and (c) by PPS with point matching.

It is clear that the three calculated by the models in the project ((b),(c)), differ by some
amount from the one calculated in Ref. [34], (a), especially the lobe in the ambient layer
are significantly larger than those calculated by the derived models. Furthermore, its shape
is also quite different the spherical lobes of the other models, with very sharp cutoff angles.
The scattered field in the substrate have over all a more similar shape. The bottom

side lobes of (a) begins at about 40°, whereas the other three has power going out at
an angle of 30°, measured from the horizontal axis. This is the same as is seen for the
upper lobe, where the intensity increases more rapidly with the angle than for the other
models. The main lobe of the fields in this project have approximately the same ratio
between the power going directly up (90°) and directly down (270°) of 1390% for RF
and PPS, more power going directly into the substrate. For the substrate lobes in Fig.
5.37(a), in Ref. [34] they calculate the total reflection angles θr in which they obtain
θr = 270°± sin−1((1/ε

1/2
s )) ≈ 270°± 17,3°, which almost corresponds to what is observed

in the figure, it is in actuality closer to 20°. However, by using this angle and calculating
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the used εs one obtains ∼ 11.3, which differs from what is stated has been used. This
change in substrate dielectric could explain the difference of scattering into the ambient
medium as the far field calculated in this section has been done with equal substrate and
barrier/insulator dielectric 13.88 = εb = εs, which would limit the reflection from the
interface between these two mediums to the term provided by the 2DEG in Eq. (4.60).
Calculating the value for rbs for a normal incident wave for both mediums having the same
dielectric constant εb,s = 13.88 gives a reflection coefficient of 0.0011+0.0279i, while using
different dielectric constants, εb = 13.88 and εs = 11.3 one obtains a reflection coefficient
of −0.0502 + 0.0208i, which is a relatively large difference for the real part. The effect
of this modification on the scattering is shown in Fig. 5.38, where it has been calculated
using the RF method.
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Figure 5.38. Far field radiation pattern using the same parameters as Fig. 5.37 with the substrate
dielectric constant change to εs = 11.3.

Visually the change is very minor, comparing it with Fig. 5.37(b) one can observe that
scattering into the substrate has clearly been reduced. Likewise, the scattering into the
ambient can be seen to be slightly larger. This is also confirmed by like before by calculating
the relative size of the power scattered directly up and down. In this case the ratio has
fallen to 1289% from 1387%. The change in dielectric constant of the substrate does,
however, not reproduce the far field pattern from Fig. 5.37(a). But, if the angle of total
reflection is calculated for εs = 13.88 an angle of 270°± 15,6°, which is the angle measured
on Fig. 5.37(b) and as stated εs = 11.3 corresponds to θr = 270°±17,3°, which is also what
is seen in Fig. 5.38. As stated earlier by actually measuring the angle in Fig. 5.37 one
gets an angle of ∼ 20°, again different from what is stated or used for the calculation, the
corresponding substrate dielectric for this angle is 8.55, the calculated far field is shown in
Fig. 5.39.
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Figure 5.39. Far field radiation pattern using the same parameters as Fig. 5.37 with the substrate
dielectric constant change to εs = 8.55.

As expected by the previous reasoning this increases the scattering into the ambient
medium, by having a greater disparity in dielectric constants between substrate and barrier
layer. However, it still does not reproduce the exact far field pattern of Fig. 5.37(a). The
answer to this disparity might lie in the fact that the Z(kx), Eq. (4.46), obtained by the
same method as prescribed in Ref. [34] differ from the one shown in the reference.
Likewise for comparison the scattering cross sections has been calculated from Equations

(2.15) and (2.16). In Ref. [34] the total scattering cross has been calculated for a 1000
nm gate with varying distances to the 2DEG layer. A corresponding calculation has been
done and the results are shown side by side in Fig. 5.37.
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Figure 5.40. Total scattering cross section for a 1000 nm gate as function of frequency with
different values of gate to 2DEG layer distances. On the left obtained from Ref.
[34], for distances of d/w(10−3): 2, 4, 6 and 10. On the right the calculated values
using RF for d/w(10−3): 4, 6, 10, 12, 14 and 16. The parameters are otherwise
those stated in Fig. 5.37.
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In terms of position of the resonance frequencies the model in this project are in agreement
with the ones of Ref. [34], with the resonance frequencies being 0.4 THz, 0.5 THz and
0.6 THz for d/w(10−3)= 4, 6 and 10 respectively. For the d/w(10−3)=4 scattering length
calculated begins to increase again at the edge of the calculated interval, this is not seen
on the left plot of Fig. 5.40, however, examining the first peak of this figure, the scattering
length is not calculated for the entire interval. This might also be true for the corresponding
d/w(10−3)=2 peak and as such this second peak is not shown.
Otherwise, the optimal distance to the 2DEG obtained by RF is different from the

reference. For this HEMT, a gate to 2DEG distance of around 12-14 nm is seen to have the
largest resonance peak where afterwards the resonance decreases. The increase in peaks
from the 6 nm and 10 nm compared to the larger distances is quite large. This is essentially
also observed on the left of Fig. 5.40 but at a smaller distance. It would seem that the
resonances calculated here are shifted towards higher frequencies compared to those in
[34].
Likewise, the values calculated for all gate to 2DEG distances are approximately a factor

100 larger than those of Ref. [34], which far exceeds the geometrical width of the gate.
Similarly for the absorption length/total extinction cross section the maximum resonance
are shifted to the higher frequencies, as was observed for the scattering cross section. Note
that the extinction cross section from Ref. [34] is simply obtained by adding the values of
the two left figures of Fig. 5.40 and Fig. 5.41 together.
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Figure 5.41. Total absorption cross section from Ref. [34] and total extinction cross section
calculated by the RF model both for a 1000 nm gate as function of frequency with
different values of gate to 2DEG layer distances. On the left obtained from Ref.
[34], for distances of d/w(10−3): 2, 4, 6 and 10. On the right the calculated values
using RF for d/w(10−3): 4, 6, 10, 12, 14 and 16. The parameters are otherwise
those stated in Fig. 5.37.

As was the case for the scattering cross section, the value rises to a maximum where after
it decreases steadily as the gate to 2DEG distance increases. The reason for a maximum
gate to 2DEG distance can be understood by considering the mechanism for a resonance
in the first place. Resonances in the channel arises due to the excitation of plasma waves
oscillations by the scattered fields from the gate. If the 2DEG layer is too far away from
the gate the scattered fields are too weak for an effective excitation. In the other limit
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placing the 2DEG layer too close to the gate, will cause the perfectly conductive gate
screen the plasma oscillation in the 2DEG [34]. By this reasoning the two first distances of
Fig. 5.40(b) are still being effectively screened by the gate, whereas the gate to 2DEG of
6 nm are closer to the optimum distance, in contrast to Fig. 5.40(a), where the optimum
distance is for 4 nm.
A noticeable difference for the total extinction cross section is that its value becomes

negative. This is more easily understood by plotting σext,r and σext,t separately, Shown in
right side of Fig. 5.42.

0.2 0.4 0.6 0.8 1 1.2 1.4

-8

-6

-4

-2

0

2

4

6

8

10
-5

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10
-6

Figure 5.42. Extinction and scattering cross sections for a 1000 nm gate with gate to 2DEG
distance of 10 nm.

A negative extinction cross means that the power, either reflected or transmitted depending
on which medium is considered, is increased by the presence of the gate. This makes sense
as the gate is assumed to be a perfect conductor and should therefore reflect any and all
light incident on it. It is clear by comparing the two figure of Fig. 5.42 that the extinction
cross section is much larger than the scattering. If this is to be believed it would mean
that most of the extinction cross section comes from absorption either by the scatterer
(into heat) or by being coupled into the guided modes namely the plasma waves.
As a last comparison of the method the extinction and scattering cross section has been

calculated for the same relative gate to 2DEG distance, d/w = 0.1, and normalised by the
gate length. According to Ref. [34] should the normalised scattering cross section vary
proportional with w and should therefore decrease for smaller gate lengths. The calculated
normalised values are shown in Fig. 5.43.
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Figure 5.43. Total Extinction and scattering cross sections normalised by per unit gate length.
for a 1000, 400 and 200 nm gate with a constant gate to 2DEG ratio of d/w = 0.01.

This tendency is not observed here, rather the normalised scattering cross section seems to
fairly weakly depend on the gate length and the extinction cross section is seen to increase
slightly for smaller gate lengths. This essentially means that a smaller gate should couple
better into the guided modes relative to its length.
It would seem that the RF model are able to predict the same resonances as in [34], but

the calculated values and which resonance is the maximum does differ. Nevertheless the
method will be used on a AlGaN/GaN HEMT in order to examine if the same relation as
observed here can be produced and if other correlations can be deduced.

5.5.2 AlGaN/GaN HEMT

For the AlGaN/GaN structure the far fields are plotted similarly to the InGaAs HEMT.
First the far field for a 400 nm gate, for an incident wave with a frequency of f = 1.44

THz is shown in Fig. 5.44.
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Figure 5.44. The far field plot for a gate length of 400 nm with a incoming wave with frequency
of f = 1.44 THz.

The far field representation of the structure is very similar to the far field of InGaAs/GaAs.
The angle of total reflection was calculated to be 270± 25.7. The lobe into the upper half-
plane is significantly larger than for the InGaAs HEMT, however there is still significantly
more power scattered into the structure. The power going directly up, compared to the
power going down has a ratio of 530%, which is a lot lower than for the InGaAs structure.
The reason for this bigger reflected power is likely due to the higher difference in the
dielectric constants of the materials, compared to the InGaAs structure.
The optimal gate length for the standard structure with a frequency of f = 1.44 THz, is

assumed to be around 400 nm as stated in Eq. (5.4), using the mode index and antenna
theory. The extinction and scattering cross sections for different lengths of gates are shown
in Fig. 5.45.
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Figure 5.45. The extinction and scattering cross sections for different gate lengths. The
frequency is 1.44 THz.

The scattering cross sections increases as the gate length increases, which makes sense as a
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longer gate can scatter more light. There is a significant increase at a gate length of around
320 nm, where after there is a slight plateu before the scattering cross section increases
again. For the extinction cross sections, there is a peak around 320 nm.This differs from
the expected peak from the mode index, found in Eq. (5.4). If dipole antenna theory holds
for this case, the maximum current in the gate should correspond to the calculated gate
length from the mode index. In order to analyse if this corresponds to the optimal gate
length, the maximum of the current for the different gate lengths is shown in Fig. 5.46.
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Figure 5.46. The maximum of the absolute value of the current for different gate lengths with
parameters as in Fig. 5.45.

The maximum current corresponds to a gate length of around 410 nm, which corresponds
perfectly with what was predicted from the mode index. It appears that higher order
modes are not as easily excited, as no peaks can be seen for w ≈ 1200 nm, which is where
the next peak was expected from dipole antenna theory. However, there is a dip at around
1140 nm, which might be due to the resonance. In order to examine this, the current for
a gate of 1140 nm is compared to gates of similar length in Fig. 5.47.
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Figure 5.47. The absolute value of the current for a gate length of 1000 nm, 1140 nm and 1250
nm with parameters as in Fig. 5.45.

The current has three separate peaks for w = 1140 nm, which is consistent with a antenna
with a length of 3/2λ. This indicates that this length corresponds to another plasma
mode. However there is a dip in the maximum current. This is due to the current being
more evenly distributed in the gate, thus a lower maximum current is found. In order to
compare the current in these different gates, the current per length of gate is found by

Itot
w

=
∑
n

In
∆

w
, (5.37)

where Itot is the total current, and In is the current for segment n. Thus the current per
length for w = 1140 nm is 7.8296, while the current for w = 1250 nm is 7.700 and the
current per length for w = 1000 nm is 7.3351. Thus a gate at the dip in maximum current
still have a significant amount of current. The current per length plot is shown in Fig.
5.48.
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Figure 5.48. The current per length for gates of different lengths, with parameters as in Fig.
5.45.

There is a clear peak for a gate length of around 400 nm, which is to be expected, while a
slight peak at the second resonance for a gate length of around 1200 nm can be seen.
The model have also been tested for an incoming wave with the frequency of 10 THz.

The optical cross sections are shown in Fig. 5.49.
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Figure 5.49. The extinction and scattering cross sections for different frequencies. The incoming
wave has a frequency of 10 THz.

The scattering cross section for low gate lengths is very low, and after a gate length of
around 120 nm, the scattering cross section increases dramatically. The current is shown
in Fig. 5.50.
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Figure 5.50. The maximum current for gates of different lengths, with parameters as in Fig.
5.49.

The current has a peak for a gate length of around 50 nm, which corresponds with the
gate length for the mode index, obtained in Sec. 5.1. There is also a peak for a gate length
of around 150 nm, which would correspond to the second resonant mode for the structure.
This peak is even higher than the fundamental mode, which might be due to the gate
being so small at 50 nm, that the response is severely limited. The current for the gate
lengths responding to the resonant modes is shown in Fig. 5.51.
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Figure 5.51. The current per length for gates of different lengths, with parameters as in Fig.
5.49.
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According to the shapes, these lengths corresponds to the two first resonances.
In order to analyse the frequency dependency, the cross sections for a gate of 400 nm

with varying frequency is shown in Fig.5.52.
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Figure 5.52. The extinction and scattering cross sections for different frequencies. The gate
length is 400 nm.

There appear to be periodic dips in both the scattering cross section and the extinction
cross section. There appears to be a large peak at around 1.4 THz for the scattering cross
sections, which corresponds to the expected plasma resonance. In order to see the effect
of these dips, the current for the same setup is shown in Fig. 5.53.
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Figure 5.53. The maximum of the absolute value of the current for frequencies with parameters
as in Fig. 5.52.

It is clear there is a peak around 1.4 THz, which corresponds to the previous result. The
dips in the scattering cross sections seem to correspond to dips in the current for higher
frequencies.
The impact of changing distance from the gate to the 2DEG is tested in Fig. 5.54.
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Figure 5.54. The extinction and scattering cross sections for different frequencies. The distance
to the 2DEG varies.

It can be seen that as the distance to the 2DEG increases, the peak of the scattering cross
section shifts towards higher frequencies. The shapes of the cross sections seem consistent
while shifting. The highest scattering is found for d = 6 nm, while the scattering decreases
if d is either higher or lower. As mentioned earlier, there appear to be an optimal distance
for scattering. This optimal scattering length does not correspond to an optimal current,
which can be seen in Fig. 5.55.
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Figure 5.55. The maximum of the absolute value of the current for frequencies and different
distances to the 2DEG.

The current decreases as the distance to the 2DEG increases. There are oscillations after
the peak, as for the scattering cross section. The shorter the distance to the 2DEG, the
better the gate and the 2DEG can interact, which could cause this higher current.
In order to compare how this frequency dependency changes according to the structure,

the cross sections for a gate with length 50 nm for different frequencies is shown in Fig.
5.56.
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Figure 5.56. The extinction and scattering cross sections for different frequencies. The gate
length is 50 nm.

There is a clear peak for both the extinction cross sections and the scattering cross sections,
however the peaks are shifted a bit in respect with each other. For the scattering cross
sections the peak is around 8.1 THz, where for the extinction cross section the peak is
around 8.8 THz. This is a much higher frequency than was found for the 400 nm gate.
This is likely due to the gate being shorter, thus shorter wavelengths are necessary to
generate a similar response. The currents dependency on the frequency for the same gate
is shown in Fig. 5.57.
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Figure 5.57. The maximum of the absolute value of the current for frequencies with parameters
as in Fig. 5.56.

The current exhibits a peak at the same frequency the scattering cross sections peak, at
around 8.1 THz. In order to analyse if the results for the gate length of 400 nm are
consistent, the effects of increasing the distance to the 2DEG is shown in Fig. 5.58.
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Figure 5.58. The extinction and scattering cross sections for different frequencies. The distance
to the 2DEG varies.

It seems the peak shifts and decreases as the distance to the 2DEG increases, which
corresponds well with the results for the 400 nm gate. The optimal distance for scattering
is not found for the values analysed. It is assumed to be d < 4 nm. The peaks are also
much broader than they were for the 400 nm gate. This broadening can be explained by
the fact that the plots are shown in frequency. As λ ∝ 1/f the values for low frequencies
are more closely spaced in wavelength compared to the higher wavelengths. If the peaks
are comparably broad in wavelengths, when shown in frequencies, the shift in packing, will
broaden the higher frequency peaks.
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6.1 Discussion

For the mode indices the two models predicted significantly different guided modes. The
model assuming the 2DEG having a finite thickness, did not converge towards the higher
values of the infinitely thin model as was expected, but converged towards 0. This might
be explained due to the method with a finite thickness not incorporating surface currents
at the boundaries, and instead assuming that the H field is simply continuous across these
boundaries. The mode indices found using the infinitely thin model, did correspond with
the results from the numerical models. The overall tendencies for the two methods were
the similar when changing the parameters of the 2DEG, though with the infinitely thin
model still predicting many times larger mode indices. When changing the sheet carrier
density, both models predicted that the mode indices decreased with increasing sheet
carrier density, however, by comparing this to the plasma dispersion relation obtained in
Sec. 3.2, a positive proportionality was expected. This discrepancy cannot be explained,
as it occurs for both models. Initially the current was calculated by the PPS method
outlined in [34], however this method had in general numerical problems especially for a
large number of segments and only converged when δ was set as a constant value. The
convergence was still rather poor and occurred for a small span of constant δs. This is
likely due to the model being numerically unstable as δ → 0 and poorly weighted for
larger δ. The PPS method was in general very numerically unstable and the integrals had
a limited precision as they could only be done to a certain limit before the integrand was
set to zero.To combat this problem, the RF method was established and for this model the
integrals showed greater numerical stability, but the convergence was still rather poor as it
was still depended on the displacement δ being in a specific range and then still required
a high number of segments for convergence.
This method was improved to incorporate second order basis functions, which gave a

very stable model. The model had to be handled carefully around kx = 0, however this
was accomplished by using a second order Taylor expansion around kx = 0. The model
was extremely consistent with regard to this area, as long as the Taylor expansion was
done for values < 1. The model did, however, still show problems at the corners of the
gate for low values of delta, which again likely is due to the distance between the elements
becoming too small a part of the distance to the measuring point. The model had a very
stable convergence with respect to segmentation for a set δ however the model did not
exhibit convergence with respect to δ, and the maximum value of the current decreased
as δ decreased. This decrease, however, was vanishingly small, thus the model might be
usable, as long as δ was a set value. When computing more complex patterns, the model
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still needed a relatively high number of segments in order to properly converge. For around
100 segments, the model seemed decently converged for all tried cases. The value of the
current in the different models were not comparable, with the point matching being in the
order of 10−3 and second order being in low integers. This is likely due to the current
simply being poorly described by the point matching models.
Far field radiation patterns as well as scattering and extinction cross section was at first

calculated for an InGaAs HEMT in order to compare the results with those of Ref. [34].
The radiation pattern obtained was in somewhat disagreement in Ref. [34], shown in Fig.
5.37, especially the scattered lobe into the ambient medium, differed by its general shape,
being more triangular, whereas all the far field calculated in this project are circular.
The lobes into the substrate were more in agreement, but due to questionable parameters
used in the reference, this could not be reproduced exactly. To obtain the larger lobe
in the ambient medium, a bigger difference in dielectric constants between the substrate
and barrier layer is assumed to be necessary, which was also showed to have the wanted
effect, but not to the degree required for reproducing the far field pattern. In terms of
the calculated scattering and extinction cross section many of the same correlation was
found in this project as those described in Ref. [34]. However, a general tendency was that
optimum resonance peaks were shifted towards higher frequencies. This difference might
be due to the uncertainty in the parameters used for the InGaAS HEMT. However, the
trends for the resonance frequencies for both the extinction and scattering cross sections
are consistent for a gate length of 1000 nm and varying distances to the 2DEG. The
normalised extinction and scattering cross section has also been analysed and here it was
found that the scattering cross section are in largely independent of the gate width, whereas
the extinction cross section seem to be weakly, increasing with the decrease in gate length,
with a constant gate to 2DEG ratio of d/w = 0.01, shown in Fig. 5.43. This is not in
agreement with what was found in Ref. [34], where the absorption was also found to be
weakly varying with the gate length, but is instead decreasing with shorter gate lengths.
And the scattering cross section is seen to have an almost proportional relationship with
the gate length.
The far field and scattering plots for the AlGaN HEMT was performed and showed the

same tendencies as the InGaAs HEMT. The far field plot showed an even larger lobe
in the ambient medium, as was to be expected from the much larger difference in the
dielectric constants of the insulator and the substrate. The maximum current corresponded
extremely well to the expected resonance peaks from the mode indices for the infinitely
thin 2DEG. As both build on the assumption that the 2DEG is infinitely thin, this was to
be expected.
Negative extinction cross sections were found for several cases. A negative σext,up

corresponds to a larger amount of field being reflected upwards for the structure with the
scatterer, compared to the structure without the scatterer. The scatterer was assumed to
be a perfect conductor, thus should reflect all incident light. The extinction cross sections
were all much higher values than the scattering cross sections, indicating a large amount
of absorption, which could be partly due to guided modes.
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6.2 Conclusion

In this project the effects of the 2DEG in a HEMT structure has been used in order
to determine the terahertz response. A method for examining the mode indices for the
different structures were established. Two models were established, one where the 2DEG
had a finite thickness and a model where the 2DEG was assumed to be infinitely thin.
The first model predicted guided modes with a mode index of around 30 to 50 in the real
part. When letting the finite thickness in the model d2DEG → 0, the model predicted
nm → 0. This conflicted with the results for the model with the infinitely thin 2DEG,
which predicted guided modes with a mode index of nm ≈ 250 for similar cases. The
difference is believed to originate in the handling of the boundary conditions for the finite
thickness model.
Theory was established using the electromagnetic boundary conditions, in order to

establish models comparable to the ones presented in Ref. [34]. First the model was
established using point matching and included a small distance, δ, in order to make the
model numerically stable. The model depended greatly on δ, where for only for a small
interval of values of δ the model seemed to converge. The model also proved numerically
unstable when extending the integrals, giving undefined values. The model was rewritten
to be more numerically stable and more consistent results were obtained, however the
model still depended greatly on δ. For too low values of δ, the model never converges,
and for too high values of δ, the model has problems fully determining the current at
the corners of the gate. In order to improve the convergence of the model, second order
basis functions were introduced to help the model converge. For the second order basis
functions, the model still showed a dependency on δ and never converged with respect to
δ, however the dependency on δ was very small, thus the model might still be valid as
long as δ is kept small. For too high values of δ the model exhibits the same problem at
the corners of the gate as point matching. However the model converged with respect to
segmentation if δ was kept constant. The model gave consistent shapes as long as δ was
kept on an order smaller than the segmentation lengths.
Due to the second order basis functions being singular around kx = 0 a second order

Taylor expansion was used In order to avoid numerical problems for kx = 0, this included
a distance around kx = 0, δk for which the approximation could be justified. The model
was found to be very consistent for different values of δk, as long as δk∆ < 1. The model
converged very well with respect to segmentation, even for relatively long gates and small
wavelengths. For reasonably convergent values for the different structures, N = 100 was
chosen as for all the tested structures, N = 100 was decently close to the convergent shape
and the differences in values was negligible.
The far field was established using the model with the second order basis functions. It

was attempted to replicate the patterns shown in Ref. [34]. The far field patterns created
using the established model differed from the patterns from the reference, especially the
field scattered into the ambient medium was not possible to be reproduced. In general
the far field patterns show a high amount of power being sent into the structure, with
only a small part leaving the structure. This can be increased by having a larger contrast
in substrate and barrier dielectric due to a increasing the reflection coefficient for this
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interface. The far field patterns are relatively consistent for different gate lengths and
wavelengths, due to the gate being very small compared to the wavelength, therefore the
differences barely matter for the far field radiation pattern. It was also attempted to
reproduce the optical cross sections presented in Ref. [34]. The cross section for a gate
length of 1000 nm as function of gate to 2DEG, was found to be in somewhat agreement
with the Ref. [34], with the same tendency observed but with a shift to higher frequencies.
The correlation between the normalised cross sections found in Ref. [34] and different gate
length was not observed in this project.
Radiation patterns and optical cross sections were tested for an AlGaN HEMT, where

peaks corresponding to the mode indices were found, using antenna theory. Especially the
fundamental resonant modes were significant, exhibiting huge peaks in the scattering cross
sections and in the currents. The dependency on the distance between the gate and the
2DEG were also tested, and as the distance increased, the resonance shifted to a higher
frequency and the effect of the resonance produced greatly reduced peaks. The tendencies
shown in the InGaAs structure were also seen in the AlGaN structure.

90



Bibliography

[1] Jiandong Sun. Field-effect Self-mixing Terahertz Detectors (Springer Theses).
Springer, 2016.

[2] Christian Jansen, Steffen Wietzke, Ole Peters, Maik Scheller, Nico Vieweg,
Mohammed Salhi, Norman Krumbholz, Christian Jördens, Thomas Hochrein, and
Martin Koch. Terahertz imaging: applications and perspectives. Appl. Opt., 49(19):
E48–E57, Jul 2010.

[3] Ashish Y. Pawar, Deepak D. Sonawane, Kiran B. Erande, and Deelip V. Derle.
Terahertz technology and its applications. Drug Invention Today, 5(2):157 – 163,
2013.

[4] Calvin Yu, Shuting Fan, Yiwen Sun, and Emma Pickwell-MacPherson. The
potential of terahertz imaging for cancer diagnosis: A review of investigations to
date. Quantitative Imaging in Medicine and Surgery, 2(1), 2012.

[5] Michael Dyakonov and Michael Shur. Shallow water analogy for a ballistic field
effect transistor: New mechanism of plasma wave generation by dc current. Phys.
Rev. Lett., 71:2465–2468, Oct 1993.
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Appendix A
A.1 Energy Levels of 2DEG

An electron in a bulk semiconductor is subject to a three-dimensional periodic potential
due to the lattice. Furthermore, the potential due to the quantum well can be described
by a one-dimensional confining potential V (z). The electron can be described by the
effective-mass theorem [40]−~2

2

∑
i,j

(
1

mij

∂

∂xi

∂

∂xj

)
+H′

Ψ = EΨ, (A.1)

where H′ is a potential and mij is the effective mass tensor. The energy near the band
edge can be obtained from the central equation as [11] [41]

E(k) = E(k0) +
~2

2

∑
i,j

(
1

mij
kikj

)
, (A.2)

where k0 is the wave vector at the band edge. The effective mass comes as a consequence
of the electron moving in a periodic potential and can be seen as the mass the electron
seems to have when it is affected by forces. It can be obtained by differentiating the group
velocity given as vg = 1

~∇kE(k), with respect to time

dvg
dt

=
d

dt

1

~
∇kE(k) =

1

~
∇k

dE(k)

dt
. (A.3)

The time derivative of the energy can be rewritten using the chain rule, yielding

dE(k(t))

dt
= ∇kE ·

dk

dt
, (A.4)

which by using that the force due to the lattice is given by F = ~dk/dt Eq. (A.3) can be
written as

dvg
dt

=
1

~2
∇k (F · ∇kE) . (A.5)

Taking the ith element from Eq. (A.5) yields

dvg,i
dt

=

 1

~2

∑
j

d2

dkidkj
E(k)

Fj , (A.6)

where the inverse of the bracket can be identified as a mass, i.e. the effective mass mij . If
1/mij is a diagonal matrix. Eq. (A.1) will have a solution of the form

ψn,kx,ky = eikxxeikyyfn(z), (A.7)



where fn(z) is a solution to

− ~2

2mzz

d2fn
dz2

+ V (z)fn = En,zfn. (A.8)

The total energy will thus be

En(kx, ky) = En,z +
~k2

x

2mxx
+

~k2
y

2myy
. (A.9)

The energy is essentially the same as for zone boundary in a periodic potential, but with
the constant energy term (either EC or EV for conduction or valence band) quantised in
n subbands.

Figure A.1. (a) Conduction band at the AlGaN/GaN interface; (b) The well can approximated
as a triangular quantum well with discrete energy levels.

Considering the conduction band near the abrupt junction interface, shown in Fig. A.1(a),
the potential well can be approximated by a triangular potential well, as shown in Fig.
A.1(b), which has the following boundary conditions for the potential

V (z) =∞ for z ≤ 0, (A.10)

V (z) = eEz for z > 0. (A.11)

Inserting this potential in Eq. (A.8) yields

d2fn
dz2

+
2mzz

~2
(En,z − eEz)fn = 0. (A.12)

By introducing a new variable as ζ = z(2meE
~2 )1/3 − 2mEn,z

~2 ( ~2
2eE )2/3, Eq. (A.12) can be

written on the form

d2fn(ζ)

dζ2
− ζfn(ζ) = 0. (A.13)

This can readily be confirmed by noting that from the chain rule:

d2fn(z)

dz2
=

d2fn(ζ)

dζ2

(
d2ζ

dz2

)2

=
d2fn(ζ)

dζ2

(
2meE

~2

)2/3

. (A.14)

The form of Eq. (A.13) is known as the Airy equation, which has solutions called Airy
functions, Ai(ζ) and Bi(ζ), they are shown in Fig. A.2.
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Figure A.2. The two Airy functions Ai(ζ) and Bi(ζ)

The wave function is required to be well behaved for z →∞, which means the Bi(ζ) can be
rejected as it diverges for increasing ζ, which is also for increasing z. From the boundary
condition at z = 0 it is required that fn(z = 0) = fn(ζ = −2mEn,z

~2 ( ~2
2eE )2/3) = 0. For

negative values of ζ Ai(ζ) is a periodic function oscillating around the axis, as such there
is an infinite number of values for ζ where Ai(ζ) = 0 which is denoted by −cn, where the
minus is to remove the sign. Therefore to ensure that the wave function vanish at z = 0,
cn =

2mEn,z
~2 ( ~2

2eE )2/3 and the allowed energy does becomes

En,z = cn

(
~2(eE)2

2m

)1/3

, (A.15)

where cn can be approximated with the following formula cn ' [3
2π(n− 1

3)]2/3 [42].

A.2 Linear Response Theory

This section is based on reference [26].
A system under the effect of an external field, which varies with time, what is called

time-dependant perturbation theory. In order to simplify only the linear changes to the
wave function are analysed. Starting from a unperturbed system, the system can be
described through the time in-dependant Hamiltonian, Ĥ0 and assuming the solutions to
the Schrödinger equations are known, such that

Ĥ0φn = Enφn, (A.16)

where φ is the stationary wave function. The time-dependence of the perturbation is
assumed to be harmonic, i. e. only depending on a single frequency. The Hamiltonian
changes due to the perturbations to Ĥ0 + 1

2Ĥ1e
−iωt + 1

2Ĥ
†
1e
iωt, where Ĥ†1 is the Hermitian



Conjugate. In order to describe this perturbation, the time-dependant Schrödinger
equation is used, so that

i~
∂ψ

∂t
=

[
Ĥ0 +

1

2
Ĥ1e

−iωt +
1

2
Ĥ†1e

iωt

]
ψ. (A.17)

The wave function can be written in the following form, as φn constitute a complete set,

ψ =
∑
n

anφne
−iEnt/~, (A.18)

where an is an unknown, time-dependant coefficient. Inserting this into Eq. (A.17) gives∑
n

{
anEnφn + i~

∂an
∂t

φn

}
e−iEnt/~ =

∑
n

an

{
Ĥ0φn +

1

2
Ĥ1φne

−iωt +
1

2
Ĥ†1φne

iωt

}
e−iEnt/~.

(A.19)

From Eq. (A.16) the first part on both sides cancel out, giving∑
n

∂an
∂t

φne
−iEnt/~ =

1

2i~
∑
n

an

{
Ĥ1e

−iωt + Ĥ†1e
iωt
}
φne

−iEnt/~. (A.20)

Using the orthogonality of the wave functions, multiplying with φm and integrating gives

∂am
∂t

=
1

2i~
∑
n

an

{〈
φm|Ĥ1|φn

〉
e−iωt +

〈
φm|Ĥ†1 |φn

〉
eiωt
}
eiEmnt/~, (A.21)

where Emn = Em − En and Dirac notation has been used. Making a Taylor expansion of
an gives

an = a(0)
n + a(1)

n + . . . , (A.22)

and combining this with the fact that if for all x,
∑

p bpx
p =

∑
p cpx

p then cp = bp, it can
be found that

∂a
(p)
m

∂t
=

1

2i~
∑
n

a(p−1)
n

{〈
φm|Ĥ1|φn

〉
e−iωt +

〈
φm|Ĥ†1 |φn

〉
eiωt
}
eiEmnt/~, (A.23)

where the (p − 1) on the right side comes from the fact that the right-hand side already
contains one power of perturbation. Setting p = 0 gives the time dependency of the
unperturbed system,

∂a
(p)
m

∂t
= 0, (A.24)

which is as expected. Taking p = 1 gives

∂a
(1)
m

∂t
=

1

2i~
∑
n

a(0)
n

{〈
φm|Ĥ1|φn

〉
e−iωt +

〈
φm|Ĥ†1 |φn

〉
eiωt
}
eiEmnt/~. (A.25)

Integrating this to get a(1)
m gives

a(1)
m = −1

2

∑
n

a(0)
n

{〈
φm|Ĥ1|φn

〉 e−iωteiEmnt/~
Emn − ~ω

+
〈
φm|Ĥ†1 |φn

〉 eiωteiEmnt~
Emn + ~ω

}
, (A.26)



assuming the perturbation was zero for t = −∞. The result in Eq. (A.26) is idealised as
dampening effects are not included. A dampening can be included, which yields

a(1)
m = −1

2

∑
n

a(0)
n

{〈
φm|Ĥ1|φn

〉 e−iωteiEmnt/~

Emn − ~ω − i~Γ
+
〈
φm|Ĥ†1 |φn

〉 eiωteiEmnt~

Emn + ~ω − i~Γ

}
.

(A.27)

Now the expectation value of a time-independent operator X̂, which corresponds to a
measurable quantity, is found through

〈
ψ|X̂|ψ

〉
. Inserting the wave function from Eq.

(A.18) and only keeping the linear contributions gives〈
ψ|X̂|ψ

〉
≈
∑
m,n

{
a(0)∗
n a(0)

m + a(0)∗
n a(1)

m + a(1)∗
n a(0)

m

}〈
φn|X̂|φm

〉
e−iEmnt/~. (A.28)

From the normalisation of the wave function, it is given that

1 = 〈ψ|ψ〉 =
∑
n

|an|2, (A.29)

where the last equality comes from Eq. (A.18). If there is no perturbation then then∑
n

|a(0)
n |2 = 1. (A.30)

As such, the value |a(0)
n |2 is interpreted as the probability that the unperturbed system is

in state n. For thermal equilibrium this can be exchanged for the probability distribution
function |a(0)

n |2 = f(En). Due to the orthogonality of the wave functions,

a(0)∗
n a(0)

m = f(En)δm,n. (A.31)

Using this and Eq. (A.27), Eq. (A.28) can be rewritten,〈
ψ|X̂|ψ

〉
≈
∑
n

f(En)
〈
φn|X̂|φn

〉
+
∑
m,n

a(0)∗
n a(1)

m
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〉
e−iEmnt/~

+
∑
m,n

a(1)∗
n a(0)

m
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φn|X̂|φm

〉
e−iEmnt/~. (A.32)

where through Eq. (A.27) the first sum over n and m becomes∑
m,n

a(0)∗
n a(1)

m

〈
φn|X̂|φm

〉
e−iEmnt/~

=
∑
m,n

〈
φn|X̂|φm

〉
e−iEmnt/~
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2

∑
n′

a
(0)
n′ a
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n
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〈
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e−iωteiEmn′ t/~

Emn′ − ~ω − iΓ~

+

〈
φm|Ĥ†1 |φn′
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e−iωteiEmn′ t/~

Emn′ + ~ω − iΓ~

 . (A.33)

Here using Eq. (A.28), the sum becomes

−1

2

∑
m,n

〈
φn|X̂|φm

〉
f(En)


〈
φm|Ĥ1|φn

〉
e−iωt

Emn − ~ω − iΓ~
+

〈
φm|Ĥ†1 |φn

〉
eiωt

Emn + ~ω − iΓ~

 . (A.34)



The second sum over n and m can be handled similarly, thus the expression in Eq. (A.32)
becomes〈

ψ|X̂|ψ
〉
≈
∑
n

f(En)
〈
φn|X̂|φn

〉
(A.35)

− 1

2

∑
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f(En)
〈
φn|X̂|φm
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φm|Ĥ1|φn

〉
e−iωt

Emn − ~ω − iΓ~
+
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φm|Ĥ†1 |φn
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eiωt
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 (A.36)

− 1

2

∑
m,n

f(Em)
〈
φn|X̂|φm

〉
〈
φm|Ĥ†1 |φn

〉
eiωt

Enm − ~ω + iΓ~
+

〈
φm|Ĥ1|φn

〉
e−iωt

Enm + ~ω + iΓ~

 . (A.37)

The Fourier decomposition of this expression is [26]〈
ψ|X̂|ψ

〉
=
∑
n

f(En)
〈
φn|X̂|φn

〉
+

1

2
X(ω)e−iωt +

1

2
X∗(ω)eiωt. (A.38)

Combining the parts in Eq. (A.37) which goes as eiωt and the parts which goes as e−iωt

shows that

X(ω) = −
∑
m,n

[f(En)− f(Em)]

〈
φm|Ĥ1|φn

〉〈
φn|X̂|φm

〉
Emn − ~ω − iΓ~

(A.39)

A.3 Fourier Transform on Coulomb Potential

In order to use the Coulomb potential in k-space, the Fourier transform of the Coulomb
potential is necessary. The Coulomb potential is given as

V (r) =
e2

4πεr
. (A.40)

The Fourier transform of V (r) is found through

V (k) =

ˆ
V (r)eik·rdr. (A.41)

The Fourier transform will first be done in 3D, then in 2D.

3 Dimensions

For the 3D Fourier transform, the problem will be solved using the Yukawa potential, given
as

Vλ(r) =
e2e−λr

4πεr
, (A.42)

where λ is a damping term and in the end letting λ → 0. Taking the integral and
transforming to polar coordinates gives

V (k) =
e2

4πε

ˆ
e−λr

r
eik·rd3r =

e2

4πε

ˆ 2π

0

ˆ π

0

ˆ ∞
0

e−λr

r
eikr cos(θ)r2 sin(θ)drdθdφ. (A.43)



As it the integral does not depend on φ the first integral gives 2π. In order to solve the
second integral, substitution is used, with u = cos(θ), giving

V (k) =
e2

2ε

ˆ 1

−1
re−λreikrudrdu =

e2

2ε

ˆ ∞
0

re−λr
[
eikr

ikr
− e−ikr

ikr

]
dr. (A.44)

The last integral can be solved analytically as long as it is the Yukawa potential, giving

V (k) =
e2

2ikε

ˆ ∞
0

e(ik−λ)r − e−(ik+λ)rdr =
e2

2ikε

[
e(ik−λ)r

ik − λ
+
e−(ik+λ)r

ik + λ

]∞
0

. (A.45)

Giving the exponentials the same denominator and inserting the limits, gives

V (k) =
e2

2ikε

[
ik − λ+ ik + λ

k2 + λ2

]
=

e2

k2 + λ2ε
. (A.46)

Letting λ→ 0 gives the Fourier transformed Coulomb potential as

V (k) =
e2

k2ε
(A.47)

2 Dimensions

For 2D situations, the Fourier transform of Coulomb potential can be calculated directly.
Starting from Eq. (A.42), the Fourier transform becomes

V (p) =
e2

4πε

ˆ
eip·r

r
d2r. (A.48)

Transforming into polar coordinates gives

V (p) =
e2

4πε

ˆ ∞
0

ˆ 2π

0
eikr cos(θ)drdθ =

e2

2ε

ˆ ∞
0

J0(kr)dr, (A.49)

where J0(kr) is the zeroth order Bessel function. The integral of the Bessel function from
0 to ∞ is unity, thus

V (p) =
e2

2εp

ˆ ∞
0

J0(p′)dp′ =
e2

2εp
. (A.50)

A.4 Fluid Dynamics

This section is based on reference [31].
It turns out that the governing equations for a 2DEG coincides with those of shallow

water waves. As such an understanding of how these equations emerge in fluid dynamics
is useful. First the continuity equation is derived.
The continuity equation in fluid dynamics represents the conservation of matter. Consider

some volume, V0, the mass of fluid flowing out through the surface enveloping this volume
per unit time is

˛
ρv · n̂dS, (A.51)



where, ρ is the fluid density. The mass inside the volume will decrease per unit time as
the derivative of the mass inside the volume, given as

− ∂

∂t

ˆ
ρdV. (A.52)

As the mass passing through the surface of the volume must be equal to the change of
mass in the volume, Eq. (A.51) must be equal to Eq. (A.52), thus

˛
ρv · n̂dS = − ∂

∂t

ˆ
ρdV. (A.53)

The left-hand side can be transformed into a volume integral through the divergence
theorem,

‹
g(F · n̂)dS =

˚
[F · (∇g) + g(∇ · F)] dV, (A.54)

where using [F · (∇g) + g(∇ · F)] = ∇ · (gF), leads to
ˆ [

∂ρ

∂t
+∇ · (ρv)

]
dV = 0. (A.55)

As this equation must hold for every arbitrary volume, the integrand must vanish, yielding

∂ρ

∂t
+∇ · (ρv) = 0. (A.56)

This equation is known as the continuity equation.
To derive the equation known as the Euler equation, consider again some volume, V0, in

a liquid. The force acting on this volume is equal to

−
˛
P n̂dS = −

ˆ
∇PdV, (A.57)

where the first integral is of the pressure on the surface and the second comes from the
divergence theorem. Thus the fluid surrounding an element with volume dV exerts the
force −∇PdV on the volume. The force per unit volume is therefore −∇P . From Newton’s
second law, this force can be written as

ρ
dv

dt
= −∇P. (A.58)

As the fluid changes position in time the time derivative has to take into account that the
position r = r(t) is a function of time as well. The change in velocity dv during the time dt

can be split into two parts, the change in velocity at a fixed position and the difference in
the velocity of two points dr apart, where dr is the distance the fluid particle have moved
in dt. The change at a fixed position in time dt is ∂v

∂t dt. The second part can be written
as

dx
∂v

∂x
+ dy

∂v

∂y
+ dz

∂v

∂z
= (dr · ∇)v. (A.59)

Combining these gives

dv =
∂v

∂t
dt+ (dr · ∇)v. (A.60)



Dividing both sides with dt to obtain an expression for dv
dt yields

dv

dt
=
∂v

∂t
+ (v · ∇)v. (A.61)

Inserting this into Eq. (A.58) gives

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P. (A.62)

This is known as the Euler equation and is the equation of the motion of a fluid. This
equation does not take into account the effects of energy dissipation, e.g. through internal
friction due to viscosity. Any forces that act upon the fluid is added to the right-hand
side, e.g. if the fluid is affected by a gravitational force ρg, Eq. (A.62) becomes

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P + g. (A.63)

A.5 Mode Index for an Ungated Structure

This section is based on reference [10].
A layered structure without a gate, illustrated in Fig. A.3, is analysed.

Figure A.3. The HEMT structure without a gate. The dashed lines are the fields which are zero
for guided modes.

The structure can be split into four section, where for each section the field can be described
as

H(r) = eikxx
(
H+
α e
−iky,α(y−yα) +H−α e

iky,α(y−yα)
)
, (A.64)

where α represents one of the regions in Fig. A.3, H+
α is the coefficient for the field

propagating downwards and H−α is for the field propagating upwards. In order to



determine the guided modes in the 2DEG, solutions are sought for which the emitted
waves perpendicular to the surface becomes evanescent. Defining ky,α =

√
k2

0εα − k2
x,

where ky,α is the wavevector for region α, gives the condition that Im{ky,α} ≥ 0, for the
waves perpendicular to the surface being evanescent. In order to find the mode index
of these guided modes, the propagation throughout the structure has to analysed, which
entails the transmission through each interface and the propagation through the individual
layers. As stated in reference [10] transmission through a single interface can be obtained
using the standard electromagnetic boundary conditions, which gives the matrix equation
for the fields on either side of a boundary:[

H̃+
α

H̃−α

]
=

1

tα,α+1

[
1 rα,α+1

rα,α+1 1

][
H+
α+1

H−α+1

]
= Hα,α+1

[
H+
α+1

H−α+1

]
, (A.65)

where H̃α represent the field at the bottom of layer α, rα,α+1 is found as in Eq. (4.57)
and tα,α+1 is found as in Eq. (4.55). In order to handle the propagation of the field in the
given layers, a propagation matrix is used, which according to reference [10] is given as,[

H+
α

H−α

]
=

[
e−iky,αdα 0

0 eiky,αdα

][
H̃+
α

H̃−α

]
= Lα

[
H̃+
α

H̃−α

]
, (A.66)

where dα is the thickness of layer α. By applying the matrices from Eq. (A.65) and (A.66)
from the first layer throughout the structure, the following relation between the fields at
the beginning of the structure and the end of the structure is obtained:[

H+
1

H−1

]
= H1,2L2H2,3L3H3,4

[
H+

4

H−4

]
=

[
M11 M12

M21 M22

][
H+

4

H−4

]
. (A.67)

For guided modes it is required that H−4 = H+
1 = 0, which means M11 = 0. The mode

index, nm, is related to the x-component of the wavevector as kx = k0nm. In order to find
these mode indices, the real and imaginary part of M11(nm) must both be zero. This can
be checked using a contour plot, illustrating the points where either the imaginary and
real part of M11 is zero. An example of a contour plot is illustrated in Fig. A.4.

Figure A.4. The contour plot of M11(nm) = 0 for a HEMT structure with a 2DEG, with
parameters as given in Ch. 5, where dL2 = 6 nm and dL2DEG = 4 nm. The
right picture is focused on the guided mode.



From the contour plot, the mode index can be read off as nm ≈ 12 + 5.7i. Another
way of finding mode indices is the Newton-Raphson algorithm. The Newton-Raphson
algorithm starts from an estimated value, nm1 and improves the solution into by assuming
the function M11(nm) is linear, thus giving

M11(nm) = M11(nm1) + (nm − nm1)
dM11(nm1)

dnm
. (A.68)

Using the algorithm, the next guess for the mode index is

nm,i+1 = nm,i −
M11(nm,i)
dM11(nm,i)

dnm

. (A.69)

This can be done iteratively until a desired precision is attained. It should be noted
that the function only converges if the initial estimate is close enough to the solution and
the function is approximately linear at the initial estimate. In order to find the initial
estimates, the complex plane, where the solutions are sought after, is split into sections,
and the phase shift from the corners of each section is checked in order to find possible
mode indices. If the phase shifts more than π across the section, an initial estimate in the
center of the section is used, as this indicates a change in sign on either the real or the
imaginary part of the mode index, e.i. an area where the function has a zero. Using the
Newton-Raphson algorithm on the structure described in Fig. A.4 gives the mode index
as nm = 12.01 + 5.722i, which corresponds with the value found from the contour plot.
In order to compare with the models where the 2DEG is assumed to be infinitely thin, the

mode index for a structure with an infinitely thin 2DEG has also been established. The
method is similar, although only a three layer structure is considered, where the 2DEG
is incorporated into the boundary between the layer with εb and the layer with εs. The
reflection coefficient for the 2DEG boundary is given in Eq. (4.60) and the transmission
coefficient is given in Eq. (4.61). The contour plot is illustrated in Fig. A.5.

Figure A.5. The contour plot of f(nm) = 0 for a HEMT structure with a infinitely thin 2DEG,
where the distance from the gate to the 2DEG is 10 nm and the rest of the parameters
are as in Ch. 5.



The mode index corresponds to nm ≈ 12 + 5.75i, which is very similar to the model
with a thick 2DEG. Using the Newton-Raphson algorithm, the mode index is found to be
nm = 12.025 + 5.741i, which is very similar to the thick 2DEG.

A.6 Drude Model

This section is based on reference [43].
In order to analyse the 2DEG, the behaviour of the electrons is considered using the

Drude model. The Drude model is a simple model which describes electrons as spherical
particles and their momentum through collisions. The relation between an electric field
and the current density it introduces is given as

E =
J

σ
, (A.70)

where σ is the conductivity of the material. For a n electrons, the current density can also
be described as their movement, yielding

J = −nev, (A.71)

where v is the velocity of the electrons. In the presence of a constant electric field, the
electrons will experience a force from the electric field, causing the average velocity of the
electrons to be

vavg = −eEτ
m

, (A.72)

where, τ is the relaxation time, the average time between collisions. Combining Eq. (A.70),
(A.71) and (A.72), gives the conductivity as

σ =
e2nτ

m
. (A.73)

For a time-varying electric field, the average velocity can be described through the
momentum, making the current density

J = −nep
m

. (A.74)

In order to determine p(t), examine p(t + dt), where dt is a small time step. The
electrons which experiences collision in the time dt, will have a negligible contribution
to the momentum, and can thus be ignored. The probability the electron experiences a
collision in dt, is dt/τ , thus making the non colliding electrons, 1 − dt/τ . The electrons
will experience a force from the electric field as −eEdt, giving the momentum of the non
colliding electrons as

p(t+ dt) =

(
1− dt

τ

)
[p(t)− eEdt] . (A.75)

Rearranging and dividing with dt gives

p(t+ dt)− p(t)

dt
= −eE − p(t)

τ
+ eE

dt

τ
. (A.76)



Taking the limit where τ goes to zero, gives

dp(t)

dt
= −p(t)

τ
− eE. (A.77)

A solution is given as p(t) = p(ω)e−iωt. Inserting this solution and the time dependency
of E into Eq. (A.77) yields

−iωp(ω) = −p(ω)

τ
− eE(ω). (A.78)

Isolating −p(ω) gives

p(ω) = − eEτ

1− iωτ
, (A.79)

which inserted into Eq. (A.74) gives

J = −ne p
m

=
ne2τ

m(1− iωτ)
. (A.80)

A.7 Fourier Transform of Second Order Basis Functions

Here the Fourier transforms of the two last second order basis functions from Sec. 5.4 are
derived. The first is

f (1)
n (kx) = 4An

ˆ 1

0

(
−z2 + z

)
e−ikx∆zdz = 4An

(ˆ 1

0
ze−ikx∆zdz −

ˆ 1

0
z2e−ikx∆zdz

)
.

(A.81)

First integral, by integration by parts

ˆ 1

0
ze−ikx∆zdz =

[
−ze

−ikx∆z

ikx∆

]1

0

+

ˆ 1

0

e−ikx∆z

ikx∆
dz = −e

−ikx∆

ikx∆
+
e−ikx∆ − 1

k2
x∆2

. (A.82)

The second integral by integration by parts

ˆ 1

0
z2e−ikx∆zdz =

[
−z

2e−ikx∆z

ikx∆

]1

0

+

ˆ 1

0
2z
e−ikx∆z

ikx∆
dz

= −e
−ikx∆

ikx∆
+

[
−2ze−ikx∆z

k2
x∆2

]1

0

−
ˆ 1

0
2
e−ikx∆z

k2
x∆2

dz

= −e
−ikx∆

ikx∆
+

2e−ikx∆

k2
x∆2

+
2e−ikx∆ − 2

ik3
x∆3

. (A.83)

Combined this gives

f (1)
n (kx) = 4An

(
−e
−ikx∆

ikx∆
+
e−ikx∆ − 1

k2
x∆2

+
e−ikx∆

ikx∆
− 2e−ikx∆

k2
x∆2

− 2e−ikx∆ − 2

ik3
x∆3

)
= 4An

(
−e
−ikx∆ + 1

k2
x∆2

− 2e−ikx∆ − 2

ik3
x∆3

)
. (A.84)



The last basis function is

f (2)
n (kx) = An

ˆ 1

0

(
2z2 − z

)
e−ikx∆zdz = An

(ˆ 1

0
2z2e−ikx∆zdz −

ˆ 1

0
ze−ikx∆zdz

)
.

(A.85)

The first integral is handled through integration by parts, yielding the same result as Eq.
(A.83) times two, while the last integral gives the same result as Eq. (A.82), making the
basis function

f (2)
n (kx) = An

(
−2e−ikx∆

ikx∆
+

4e−ikx∆

k2
x∆2

+
4e−ikx∆ − 4

ik3
x∆3

+
e−ikx∆

ikx∆
− e−ikx∆ − 1

k2
x∆2

)
=

(
−e
−ikx∆

ikx∆
+

3e−ikx∆ + 1

k2
x∆2

+
4e−ikx∆ − 4

ik3
x∆3

)
. (A.86)
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