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Abstract:

The aim of this master thesis is to build the best predic-
tion model that classify which children and adolescents get
ASD or ADHD, respectively. If the model predict sufficiently
good, it can be used to support the theory within the fields
of ASD and ADHD. If the model is very good at predicting,
it can be used by clinicians to substantiate their suspicion
of diagnosis.

We started out by writing a protocol, used to order the data
set used in this master thesis. Since it takes a long time
from us ordering the data until us receiving the data, we
end up simulating a data set, which we expected had the
same properties as the ordered. This has proved to be a
great advantage, as we have learned to simulate, link theory
and practice and it has prepared us for the ordered data set.
The master thesis focuses on the classification method logis-
tic regression, where we use splines for our continuous vari-
ables and LASSO to select the most important variables.
We also use other non-likelihood based classification meth-
ods such as classification trees, which also contributed to
our variable selection. When we fit a prediction model, it
is important to determine whether it predicts good at all
and whether it predicts better than other models. To de-
termine this, we have used various evaluation measures, but
our main focus has been AUC. All our evaluation measures
are 10-fold cross-validated.

We do not recommend using the models that we have
reached at present time, but rather we recommend expand-
ing our thoughts and ideas for further research. We experi-
ence problems with logistic regression in the form of a time-
dependent response as well as informative censoring for the
predictors. Furthermore, we believe that one of the most ad-
vantageous improvements would be to add more predictors

for the prediction models to become sufficiently good.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.
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Preface

This master thesis has been written by two students at mathematics, Aalborg University.
To be able to read this project, it is expected that the reader has a basic understanding
of statistics.

The thesis is structured in a theory section with examples followed by an analysis
section, applying the theory. Figures, tables and equations are numbered consecutively
by chapter. References are listed by a number in brackets and a complete bibliography is
available at the end of the project. A section is always based on [1] or [2] unless otherwise
stated in a footnote at the beginning of a section. The sign B indicates completion of a
proof and O indicates the end of an example. The program R [3] is used for all statistics
calculations and analyzes.

Notation

Throughout this thesis vectors are presented in bold x;,Y,B and are always column
vectors. Scalars are unbolded z;;, y;, 85, ¢, k and estimates have a hat B, 7;. Matrices are
upper case X, ¥, which is also the case for random variables Y, X; where the distinction
should be self-evident from the context.

For the data matrix X the ¢'th row, denoted x;, represents all predictors for obser-
vation ¢. The jth column of the data matrix X are all observations within predictor 7,
denoted x,;, making x;; the predictor j value for observation 7.

Nicolai Sgndergard Schjgtt Simon Grgntved
<nschjol0@student.aau.dk> <sgront12@student.aau.dk>

vii
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Danish Summary (Dansk resumé)

Dette kandidatspeciale handler om preaediktionsmodeller og hvordan de kan anvendes til
klassifikation. Vi gnsker at praediktere hvilke bgrn og unge, der er i risikogruppe for at fa
hhv. ASD eller ADHD pa baggrund af en rackke variable. Formalet med dette speciale
er at lave den bedste praediktionsmodel baseret pa data trukket fra de danske registre.
Hvis modellen praedikterer tilstrackkelig godt, kan den anvendes til at underbygge teori
inden for felterne ASD og ADHD eller antyde nye ukendte sammenhange. Hvis modellen
pradikterer meget preecist, kan den anvendes af klinikere til at underbygge deres mistanke
om diagnose.

Vi har selv skrevet protokol til at bestille registerdata fra kandidatspecialets start og har
derfor matte vente pa at modtage vores dataszet. Da der gar lang tid fra bestilling til
modtagelse, valgte vi at simulere et datasaet, der kunne afspejle de egenskaber, vi kunne
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forvente at se i det bestilte datasaet. Dette har vist sig at veere en stor fordel, idet vi
herved har leert at simulere, koble teori og praksis samt forberedt os pa, hvordan vi skulle
handtere det bestilte dataseset. Projektet har fokus pa klassifikationsmetoden logistisk
regression, hvor vi blandt andet har anvendt splines for vores kontinuerte variable samt
LASSO til at udveelge de vigtigste variable. I kandidatspecialet har vi ogsa anvendt andre
ikke-likelihood baserede klassifikationsmetoder sasom klassifikations traeer, der ogsa har
bidraget til vores variabel udvaelgelse.

Fra kandidatspecialets start var vores plan at lave vaesentlig flere variable, men da
vi modtog vores datasaet forholdsvis sent, kunne dette ikke realiseres. Vi havde ellers
forberedt os pa at skulle anvende metoder til at udfgre en sonderende analyse af vores
variable ved at anvende PCA samt klynge analyse metoderne K-means- og hierarchical
clustering.

Nar vi har tilpasset en praediktionsmodel, er det naturligvis vigtigt at afggre, om den
overhovedet praedikterer godt og om den praedikterer bedre end andre modeller. Til at
afggre dette har vi anvendt diverse evalueringsmal, hvor der hovedsageligt er lagt veegt pa
AUC, eftersom der for vores datasaet er en meget lav forekomst af diagnosticeret personer
med ASD og/eller ADHD.

Efter modtagelse af datasaettet har vi udfert datamanagement samt lavet en analyse.
Analysen handler i hgj grad om kalendertidsproblemer, fordi der i lgbet af arene 1995 til
2017 bliver diagnosticeret markant flere personer med ASD og ADHD hvert ar. Et andet
problem, som vi stgder pa i analysen er imputering af manglende veerdier samt, at der
ikke er fuld opfelgning pa mange personer i vores datasat, eftersom vores population er
bgrn og unge under 18 ar.

Vi anbefaler ikke at anvende de modeller, som vi er naet frem til pa nuvaerende tid-
spunkt, men derimod at udbygge vores tanker og ideer til videre forskning. Den bedste
praediktionsmodel for dette kandidatspeciale er bygget pa baggrund af klassifikations-
metoden logistisk regression. Vi oplever dog problemer med logistisk regression i form
af en tidsathaengig respons samt informativ censurering for nogle praediktorer. Vi an-
befaler, at der konstrueres flere variable, fgr praediktionsmodellerne bliver tilstraekkelig
gode. Ydermere anbefaler vi, at det undersgges nsermere, hvordan manglende veerdier
skal behandles.






Introduction

The reported prevalence of Autism Spectrum Disorder (ASD) and Attention Deficit Hy-
peractivity Disorder (ADHD) has been increasing worldwide [4, 5], to a point where it
is estimated that 1% of the Danish population have one of the diagnoses of ASD [6] and
5% one of the diagnoses of ADHD [7]. Various factors have been linked to ASD, some to
ADHD, and some to both. These factors include prenatal risk factors, early-life infections,
inherited and molecular factors, and other environmental factors [8-21].

Statistical prediction tools can be used to aid in the diagnostic and prognostic pro-
cesses and in some cases might form the basis for public health recommendations. Such
tools have been used on a number of somatic conditions including breast and ovarian can-
cer [22], myocardial infarction [23, 24], and lymphoma [25]. In Denmark, the models used
for estimating the risk of chromosomal abnormalities during the 12-week pregnancy scan
[26] are probably the best known application of prediction models. Among the statistical
methods previously used to predict disease in other areas of health care are Cox Propor-
tional Hazards [22, 24], logistic regression [23], and various machine learning classification
algorithms [25]. Within the psychiatric field, one study predicted depression [27], while
another study predicted ADHD in a Danish Cohort [28], and several others have tried
to predict ADHD [29, 30] or ASD [31, 32] outside of Denmark. To our knowledge, no
previous studies have statistically predicted both ADHD and ASD in a Danish cohort
using a broad range of predictors.

We have thus defined the project:

"Predicting Autism Spectrum Disorder and Attention Deficit Hyperactive Dis-
order in a Danish Cohort of Children and Adolescents".

The aim of this project is to develop statistical models to predict a diagnosis of ASD
and ADHD, both individually and combined, based on the Danish registers. We want
to develop different predictive models, both regarding the time to prediction and the
selection of predictors, and to evaluate and compare such models.

The project is conducted in collaboration with the Research unit for Child and Adoles-
cent Psychiatry and The Psychiatric Research Unit, North Denmark Region Psychiatry,
Aalborg, Denmark, that will grant us access to several Danish registers. As part of this
collaboration we plan to write several peer reviewed articles that will spring from decisions
and recommendations produced by this master thesis.



2 Preface

In this thesis several supervised learning models will be specified and tested. Because
of the nature of the outcome (presence/absence of ASD and/or ADHD), we will use
methods for classification, mainly the methods described in [1, 2].

To conduct and present our work we will follow the recommendations in [33-35].
The initial selection of predictors includes risk factors known from the literature and
are chosen in collaboration with an experienced child and adolescent psychiatrist, Mar-
lene Briciet Lauritsen'. We will propose different forms of coding the predictors including
re-categorization, splines, and interactions between predictors and investigate how this af-
fects the models. Under variable selection and model specification we might include meth-
ods such as subset selection, PCA and shrinkage. Bootstrapping and/or cross-validation
will be used to evaluate the model. The model performance will be assessed both visually
via ROC curves and computationally with, among others, the evaluation F-score [35, 36].

In Chapter 1, we first describe how we designed the study and why. We round off
the chapter by simulating a small data set for use in our examples throughout the thesis.
This data set will be simulated in such a way that some of the properties expected in the
real data are represented. In Chapter 2 we describe, how we intend to explore the data.
The chapter contains theory and application of Principal Component Analysis, Hierar-
chical Clustering and K-Means Clustering, which are all unsupervised learning methods.
Chapter 3 covers the main classification method of this thesis, logistic regression, both
in theory and examples. For logistic regression we present methods for transforming pre-
dictors and methods for selecting predictors. We also present several other methods for
classification and compare them to logistic regression. The methods we use for evalua-
tion of our models are presented, theoretically, described and tested on simulated data in
Chapter 4. In Chapter 5 we describe what data we use and the registers from which it
originates. We then apply most of the methods presented in the chapters 2, 3 and 4 to
this real data.

1Child and Adolescent Psychiatry, Region of Northern Jutland Psychiatry, Aalborg, Denmark



1. Study Design

Most of the decisions made regarding the design of this study are based on the article "To
Explain or to Predict" by Galit Shmueli [34], hence this chapter starts out with a short
summary of this article. After this we present a section on how we simulate a small data
set for use in our examples throughout the thesis.

To Explain or to Predict

Shmueli discriminates between Explanatory studies and Prediction studies, and argues
that several decisions throughout a study should take this distinction into account.

Explanatory modeling is conducted when the theory in a given field is studied and
certain hypothesis are set up, usually about a causal mechanism. Statistics can then be
used to support an association, and thus verify the causal mechanism set up by the field
specific theory. Statistical models are also used to describe the magnitude of such an asso-
ciation. Explanatory statistical models are thus generally preferred to be comprehensible
and interpretable.

Predictive modeling, which is the focus of this thesis, aims to best predict an outcome
based on available data. In predictive modeling, the field specific theory is used to select
the predictors, on which to base the statistical model, but other than that, a predictive
model does not rely on the field’s specific theory, there is no hypothesis to reject or
approve. As the goal is to best predict, complicated and less interpretable models are
accepted, as long as they produce better results than simpler ones. We will later define,
what better is.

A central part of study design is study size. In explanatory studies, as the object is
to explain, confirm or reject some field specific theoretical assumptions, there is a limit
to how large a study is needed to reach a certain level of certainty. After that limit is
reached, increasing the study size provides only small amounts of further information,
thus making it possible to respect time and cost restrictions. Furthermore, the study size
in an explanatory study can be lowered by selecting the participants in a way so that
only the necessary information is gathered. This is not preferable in a predictive study.
Here all data contains useful information, and "cleaning" of data can lead to neglecting
unknown dependencies. Using noisy data restricts interpretability which is not as big an
issue in predictive studies as in an explanatory one. The sample size in predictive studies
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is chosen based on availability, here more data will always lead to better results, so the
goal is to optimize sample size with respect to time, cost, and data quality. Whereas in
an explanatory study the variables are preferred to be as close to the assumed underlying
theoretical construct as possible. This would lead to interpretable results, and make sure
that any finding actually does match the theories in question.

In a predictive study some underlying theory is indeed needed, as predictors should at
least be associated, even if not causally, with the outcome one is trying to predict. But
as no assumptions are to be described, the main considerations when choosing predictors
are the quality and availability. Furthermore, as interpretability is not a goal in itself,
one can deviate from the hierarchical principle and include interactions without including
main effects. For a predictive study to be applicable to the real world, a predictor should
be chronologically available prior to the response.

Thus, the model construction and variable selection in an explanatory study is done
prior to evaluation, based on theory from the relevant discipline, whereas in a predictive
study the model selection is done based on statistical evaluation of how well the model
predicts, or is expected to predict, new data.

The study on which this masters thesis is based has access to data from the Danish
registers, which have some of the world’s widest covering and a highest data quality [37,
38]. We understand from "To Explain or to Predict" by Galit Shmueli [34] that the high
data quality and wide coverage makes the Danish registers ideal for predictive studies.
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1.1 Simulated Data

To investigate and explain the methods presented in this thesis, we have simulated a
data set. This data set is designed to emulate some of the properties we expect in the
real data set. The simulated data set consist of 1000 observations, where 10 observa-
tions of the response class 1percent are drawn from the multivariate normal distribution

No ([897,[5927]), 50 observations of the class 5percent drawn from N ([ 951 [332 e D

and 940 observations of the class 94percent drawn from N, ([15650 : { A 5%4D. The

names of the classes (1percent, 5percent and 94percent) are based on the fact that the
class sizes are the same as we expect ASD and ADHD to be in the real data, based on the
literature [6, 7]. The means and variances are chosen, such that it is possible to distinguish
the classes, the covariances are furthermore randomly generated, but restrained by the
pre-chosen variances and the fact that a covariance matrix is positive semidefinite. Figure
1.1 shows a plot of the data set. The simulated data set will be tweaked and expanded in

Weight
60 70 80 90 100
! ! ]
o

50

140 150 160 170 180

Height

Figure 1.1: Three simulated classes based on the bi-variate normal distributions of 1percent (red),
Spercent (blue) and 94percent (green).

examples throughout the thesis. We call the values on the z-axis Height and the values
on the y-axis Weight.






2. Exploratory Data Analysis

The aim of this chapter is to acquire knowledge about the data set, based only on the data
itself. We thus consider unsupervised learning methods, where the interesting thing is not
to predict a predetermined y, but rather to study the relationship between the predictors
Xo; for 7 = 1,...,p. An approach addressed is clustering, where it is examined which
predictors are similar to each other and on the basis of this subgroups of predictors are
found, where a subgroup has predictors similar to each other and predictors in different
subgroups are quite different. Another approach known as Principal Component Analysis
(PCA) creates new and fewer predictors by making linear combinations of the original
predictors.

As the relationships between predictors are explored, this may give rise to exclusion
or inclusion of predictors in the models. It should be noted that there is no way to
evaluate unsupervised learning methods, and thus the performance of the methods is
subjective, whereas models in a supervised learning setup can be evaluated by using
evaluation measures, which is discussed in Chapter 4.

2.1 Clustering Methods

In our project, clustering is used to split the set of predictors into subgroups where each
subgroup includes predictors that are quite similar, and thus are assumed to capture the
same latent variable. Predictors in different subgroups are assumed to capture different
latent variables. The purpose of clustering methods in our project is therefore to find
structure in data that should be considered throughout the analysis, as this may give
rise to including or excluding predictors in models or found a basis for choosing which
predictors to aggregate. Two common clustering methods are K-means clustering and
hierarchical clustering, as the rest of this section elaborates.

2.1.1 K-Means Clustering

Choose K as the number of clusters desired for the p predictors and let C,Cs, -+, Ck
denote the sets that contain the indices of the predictors in each cluster, that is 7 € C
means that predictor x,; is contained in the k’th cluster. How to choose an optimal K
in a given situation is treated in an example after this theoretical section. According to
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K-means clustering, the K clusters must satisfy that all predictors are contained in one
of the clusters and that each predictor is only contained in one of the clusters. In order
to find out which cluster a predictor should belong to, a measure W (CY%) is introduced,
which indicates how different predictors within cluster k are. Often, squared Euclidean
distance between standardized predictors is used to measure the variation within a cluster
k given by

W(Cy) = |Ck > Z(x” riy) (2.1)

] eCk =1
where |C| denotes the number of predictors in the k’th cluster. It is desirable to have
minimum variation within each cluster and therefore it is desired to solve the optimization
problem

C1,Ca,+ ,CgeC k=1

arg min (Z W(Ck) ) : (2.2)

where C'is the set of all possible clusters. There are almost K? ways to split the p predic-
tors, thus the optimization problem is not straightforward to solve. Instead, Algorithm
2.1 is performed, which will provide a local minimum.

Algorithm 2.1 K-Means Clustering

1: Each predictor is randomly assigned a number from 1 to K.

2: repeat

3: For each cluster a so-called cluster centroid vector is calculated, where the average
of each of the n observations values of the predictors contained in this cluster is found.

4: Each predictor is then assigned to the cluster where the distance between the
predictor and the cluster centroid is smallest.

5: until all predictors stop changing clusters

Since the algorithm will find a local minimum, which depends to a large extent on step
1 of the algorithm, the algorithm should be run multiple times and the result minimizing
(2.2) is chosen.

The algorithm converges towards a local minimum because (2.1) can be written as

2 n N2
Z Z (CL’U xij’) =2 Z Z (xij - xzk) s (23)
|Ck,| Lt
74,3'€C i=1 jeC i=1
where jzk = ﬁ ZjGCk Lij-
Line 3 in Algorithm 2.1 calculates such cluster centroids Z;;, and relocating the pre-
dictors in line 4 can therefore only make (2.2) smaller because of (2.3).
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The calculation in (2.3) holds as

=T Z(i’?m xij/)z (2.4)

| k’j]ECk’L 1

=D Z > |Ck| (xij — Tk + Tig — $¢jf)2 (2.5)

jeCy i=135'€Cy,

=2 Z > |O | (i = ) + (@ig — 2ip) + 2wy — ) (T — i), (26)

JECK i=13j'€Cy

where the last terms are equal to 0 because

2 o
Z(; C, |($zg Tik)(Tik — Tijr) (2.7)
Jj'€Cy
2
(25 — Zig) Z (Zg, — 450) (2.8)
e
J'€Ck
2
(xz xz Tij i" (29)
= gt =) 2\ 2

2
_ mQ(xzj ) (I%!'Ckl Sowp— Y xj) =0. (2.10)

J€Ck Jj'€Ck

The remaining part of (2.6) is thus

> Z > |C | ( vy — Ti)? + (T — l‘ij’>2> - GZC i (xz’j — fik)z + > i (jzk - Iz.j,)2

Jj€Ck =1 5'€Cy J i=1 j'eCy i=1
(2.11)

—2 % an (i — Za) s (2.12)
J€Ck 1

1

which is the right hand side of (2.3).

Example

As the idea in clustering for us is to cluster predictors, we first need more predictors
than we currently have in the simulated data set. We construct predictors that we expect
to cluster by transforming the ones we already have. One of these transformations is
Weight?2, which is created by multiplying Weight by 8 and adding a normally distributed
noise V/(0, 10). In this fashion we have created what we expect to be two clusters (Height,
Heightl, Height2, Height3) and (Weight, Weightl, Weight2, Weight3). AsHeight
and Weight are possibly correlated through the three classes 1percent, 5percent and
94percent, they might end up clustering together due to this correlation. Because of this
we generated two more possible clusters by drawing 1000 observations from A (50, 30) and
1000 observations from Unif(0, 1). Based on these draws we made the clusters (Normal,
Normall, Normal2, Normal3) and (Uniform, Uniforml, Uniform2, Uniform3) the
same way as the others, by transforming and adding noise. The exact transformations
can be seen in Table A.1 in Appendix A.
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Figure 2.1: Elbow-plot of K-means on scaled data with 16 predictors of 1000 observations.

When performing the K-means analysis, K has to be chosen. We make this choice
based on an elbow plot. One such plot is seen in Figure 2.1, here we see the total within
cluster sum of squares plotted against K. We choose 7 clusters, as there seems to be only
a little reduction in total within cluster sum of squares gained by increasing K to 8. The
total within cluster sum of squares for the K = 7 model was 1225.079.

In Table 2.1, we see the seven clusters, and they each consist of predictors we already
knew to be correlated. As we originally created four clusters, we performed K-means
clustering with K = 4, this yields a total within cluster sum of squares of 5859.278. The
resulting clusters seen in Table 2.2, unexpectedly, do not show the original four clusters.
Changing the random seed in the generation of predictors shows similar results.

Clusters Clusters
Height, Heightl, Height2, Height3 Height, Heightl, Height2, Height3
Weight, Weight2, Weight3 Weight, Weight2, Weight3
Weightl Weightl, Uniform, Uniforml, Normal, Normall
Normal, Normall Normal2, Normal3, Uniform2, Uniform3

Normal2, Normal3

Table 2.2: K-means clusters, when K is 4.

Uniform, Uniforml
K-means performed on scaled data

Uniform2, Uniform3

with 16 predictors of 1000 observations.

Table 2.1: K-means clusters, when K is 7.
K-means performed on scaled data
with 16 predictors of 1000 observations.

Note that when performing K-means clustering the initial assignment is random, thus
we performed K-means clustering 20 times for the chosen K, and choose the clustering
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with the least total within cluster sum of squares.

It is furthermore important to scale data prior to clustering. As an example we
performed K-means clustering on unscaled data, with K = 2 based on an elbow plot
with no visible change after 2. The result was a cluster containing only Height3, and
another one containing the remaining variables. It is clear from Table 2.3 why Height3
got clustered alone, as it is measured on a, compared to the others, extreme scale.

Height | Heightl | Height2 | Height3 Weight Weight1l Weight?2 Weight3
Mean | 160.36 481.00 22.88 4.52e+17 56.56 -7.00 452.30 16.08

Normal | Normall | Normal2 | Normal3 | Uniform | Uniforml | Uniform2 | Uniform3
Mean 49.04 1471.40 -735.50 -3464.64 0.4984 9.951 -5.00 -0.49

Table 2.3: K-means clusters, when K is 4.

We conclude, that scaling is of the utmost importance. When data is scaled the pre-
dictors in each cluster are almost what we expected from the design of the predictors. [

K-means clustering could be useful in creating clusters of predictors in our real data.
But as the elbow plot recommends seven clusters in this example, and we know there are
four, the K-means method might be too conservative. On the positive side, each of the
seven clusters did not contain predictors from more than one of the expected clusters, so
K-means clustering seems to be conservative, but correct. To figure out whether K-means
clustering is appropriate for our data we now investigate another clustering method for
comparison.

2.1.2 Hierarchical Clustering

Hierarchical clustering does not require predetermining the choice of clusters K as was
the case for K-means clustering. This section describes the most common type of hier-
archical clustering called bottom-up clustering, which can be represented in the form of
dendrograms. First, it is explained what a dendrogram is and how it is interpreted, after
which it is explained how dendrograms are build.

At the bottom of the dendrogram, so-called leaves are seen, each representing a pre-
dictor, where each predictor has its own cluster. Examples of dendrograms can be seen in
Figure 2.2. Above the leaves in the dendrogram it is seen that the leaves are merged and
then called knots, which means that two predictors now belong to the same cluster. If
predictors merge far down in the dendrogram, this means that these predictors are very
similar and predictors merging their clusters at the top of the dendrogram may be quite
different. Leaves and knots are fused until a single knot in the top of the dendrogram is
achieved, where all predictors belong to the same knot /cluster. Since it is noninformative
to have too many or too few clusters, the dendrogram has to be cut. A horizontal line in
the dendrogram is made to indicate where the cut should be. Based on this cut, a number
of clusters have been created.
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In order to build a dendrogram, a dissimilarity measure between each pair of predictors
is chosen and on the basis of this, clusters are merged. Typically, the Euclidean distance
or correlation are chosen as dissimilarity measure. Let all predictors belong to their own
cluster at the bottom of the dendrogram and merge the two clusters whose predictors are
least dissimilar. This process can always be done for two clusters representing leaves, but
in the case that one or both of the clusters represents a knot, then it is not obvious how
to measure dissimilarity and therefore a so-called linkage measure is used instead. Two of
the most common linkage measures are complete and average linkage. To use any of the
two linkage measures, first all pairwise dissimilarities between a predictor in one cluster
and a predictor in another cluster is measured. Complete linkage is the largest of the
dissimilarities and average linkage is the average of all the dissimilarities.

Example

Applying hierarchical clustering with euclidean distance and complete linkage (and others)
to the data set we previously used in the K-means example yields similar results as K-
means. The elbow plots suggest seven clusters, and the seven clusters are the same as in
Table 2.1. Setting the number of clusters to four, we again get the same clusters as in
Table 2.2. A dendrogram of hierarchical clustering with euclidean distance and complete
linkage can be seen in Figure 2.2 top left. As previously suggested, using correlation as
dissimilarity measure could be beneficial as we are clustering variables. When we use
correlation as dissimilarity measure, we get the four clusters that we originally designed,
no matter the linkage method, a plot of a dendrogram based on hierarchical clustering with
correlation as dissimilarity and complete linkage can be seen in Figure 2.2 top right. We
expect there to be issues with both dissimilarity measure and linkage when we include
binary predictors, thus we simulate two such. Sex is generated based on the already
present variable Height, as we expect men to be taller than women, we have drawn the
Sex predictor from a Bernoulli distribution with logit[Height| as the probabilities. We
have also drawn the predictor Smoke from a Bernoulli distribution, this time with the
probability of men smoking being 0.4 and the probability of women smoking being 0.6.

Now with the two binary predictors included they are vaguely suggested to be clus-
tered alone when using euclidean distance. But when using correlation as a dissimilarity
measure, the elbow plots do suggest that they each have their own cluster. Dendrograms
of hierarchical clustering on the dataset including Sex and Smoke can be seen at the
bottom of Figure 2.2.

When we set the number of clusters to four, Sex and Smoke are always clustered with
the height variables no matter the choice of linkage method. One would expect the binary
variables to be hard to cluster, as the observations have always (especially in euclidean
distance) either the extreme lowest or extreme highest value. This is also what we saw in
the example. Though correlation seems to handle the binary variables better, this could
be due to the correlations over all better performance as dissimilarity measure. Note by
the way that correlation is, as opposed to the other dissimilarity measures, invariant to
scaling. 0
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Figure 2.2: The lefts: Dendrograms produced by hierarchical clustering based on euclidean distance.
The rights: Dendrograms produced by hierarchical clustering based on correlation.
The tops: Dendrograms produced by hierarchical clustering of 16 continuous predictors.
The bottoms: Dendrograms produced by hierarchical clustering of the 16 continuous
plus two binary predictors.

We find that hierarchical clustering with correlation as dissimilarity measure outper-
forms K-means on our simulated data. This might not be the case if we found a way to
use correlation as dissimilarity measure in K-means, but this would be outside the scope
of this thesis. Though the choice of linkage seems unimportant, this could be due to both
our limited number of predictors, or their highly correlated design, we thus expect to use
different linkage methods on the real data. For the real data we expect to use hierarchical
clustering over K-means clustering.

There are some problems with cluster methods. For the K-means clustering it is chosen
how many clusters are desired and for hierarchical clustering there is a corresponding
problem in selecting the number of clusters when the dendrogram is cut. In addition,
one will likely get different dendrograms depending on the choice of dissimilarity measure
as well as the type of linkage used. Several solutions should be considered as they may
reveal interesting aspects of data. As mentioned earlier we expect to use the clustering
information both in our descriptive analysis of data, but we are also interested in reducing
the number of predictors, and a way to aggregate predictors in the same cluster could be
principal component analysis.
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2.2 Principal Component Analysis!

How our different classes relate to the covariates can be visually inspected by two way
scatter plots, but this results in (g) scatter plots, which will become unmanageable when p
is large, as the method is subjective and each plot should be examined. Instead of having p
predictors, some of which may be correlated, linear combinations of the original predictors
can be made, such that we get fewer uncorrelated predictors. Principal component analysis
deals with how these linear combinations are found such that the amount of the original
variance retained from the data is maximized. Such a linear combination is called a
principal component.

First, we clarify the notation. Let X be the random vector containing the random
variables X1, Xo,..., X, of which X1, X2, ..., X, are realizations. Furthermore let the
data matrix X consist of realizations x; = x;1, %2, ..., %y for i =1,...,n of X.

Let the m’th principal component be denoted z,,, and given by

Zemn = ¢1mxol + ¢2mxo2 + -+ (bpmxop; (213)

where @1, @2, - - - Opm, are called the loadings, which are to be estimated. Note that the
left subscript for the loadings indicate which original predictor x,; it belongs to and the
right subscript refers to the principal component, in this case z,,.

The score of the m’th principal component for observation 7 is written as

Zim = Q1mTi1 + QomTiz + -+ + GpmTip = ¢;Xz‘- (2.14)

To estimate ¢1,¢o, ..., ¢y for the respective principal components, the first principal
component z; = @] x; is considered first, where it is desired that it captures as much
variance as possible. Thus we find the ¢, that fulfills

arg max (Var[d)lTX]) = arg max (¢1TVar[X]¢1) = arg max (¢1TZ¢1) . (2.15)
é1 é1 o1

Note that a maximum will only exist if ¢; is constrained, as ¢, else could be chosen

arbitrarily large in order to achieve larger variance. Therefore a normalization of ¢@; is

needed, which we choose to be ¢ ¢, = 1. Thus we have the optimization problem

arg max (¢1TE¢1) subject to @) ¢y = 1. (2.16)
é1

In practice, the covariance matrix for X is not known and therefore it has to be estimated.
It is estimated by the sample covariance matrix. When the original predictors have mean

set to 0, the sample covariance is given by
|
Y=-X"X. (2.17)
n

For the covariance matrix X, the entry (7, ;') is given by Cov[X;, X;/], when j # j" and
given by Var[X;], when j = j'.

IThis section is based on [1, 39-41].
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To maximize f(¢1) = ¢| X1, ie. the variance of the first principal component subject
to g(é1) = ¢ ¢, = ¢, where c is a constant (in our case 1), the technique of the Lagrange
multiplier is used. To solve this optimization problem we first find the critical points for
the function h; defined by

hi(@1,)) = f(81) = A (9(¢1) — ©) (2.18)
= 6561 — A (¢ — 1). (2.19)

The function h; is called the Lagrangian and the new variable X is called the Lagrange
multiplier. We differentiate hy with respect to ¢; and A\ and set the resulting gradient
equal to zero in order to find critical points. As differentiating with respect to A results
in ¢ ¢, = 1, which is the condition we previously specified, we now differentiate with
respect to ¢

Vg, hi(é1;2) =0 (2.20)
Vo (61561 —\@i¢1—1)) =0 (2.21)
25 — 2\ = 0. (2.22)
(= L,) ¢1 =0, (2.23)

where [, is the p x p identity matrix. We want to solve (2.23) with respect to ¢; and A and
since the equation is on this form, A is an eigenvalue of ¥ with corresponding eigenvector
¢1. In order to determine which eigenvector of ¥ gives the largest variance of the first
principal component (2.15), it is first noted that due to (2.23) and that ¢, is assumed to
be a non-zero vector, then the following applies

¢ Sp1 = ¢ My1 = Ap 1 = A, (2.24)

Thus, maximizing the variance Var[¢] X] corresponds to finding the largest eigenvalue
A of X, which has corresponding eigenvector ¢, where the estimated ¢; is used as the
loadings of the first principal component. Later, A will be denoted as \; to indicate that
it belongs to the first principal component.

In general, it can be shown that for the m’th principal component, \,, is the m’th
largest eigenvalue of 3, where ¢, is the corresponding eigenvector. This is proved for
m = 2, because the case where m > 3 is very similar, but more complicated. It is
desired that the second principal component z; = ¢, X; explains as much variation in
data as possible, which was also wanted for the first principal component. Thus we want
to maximize Var[Z;s] = ¢y L¢o under the condition that it is uncorrelated with the first
principal component z;; = ¢{ x;. Another way of formulating that the first two principal
components are uncorrelated can be derived by considering the covariance between the
two

Cov|Zi, Zin] = Cov|p| X, ¢y X] = ¢ Cov[X, X]¢y = ¢, Loy (2.25)
= ¢y Xp1 = ¢y \p1 = Ap; b1 = A| B (2.26)
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Thus another way of formulating that z;; and z;5 are uncorrelated is that any of these
equations are true

¢/ ¢y =0, (2.27)
61561 =0, (2.28)
¢l ds =0, (2.29)
¢s¢1 = 0. (2.30)

Note that the case of A = 0 would also result in z;; and z; being uncorrelated,
but as A = 0 would mean that the largest eigenvalue is 0, thus all eigenvalues are 0,
which indicates that the covariance matrix is equal to the zero-matrix, representing an
uninteresting special case.

It is chosen to use the equation ¢5@; = 0 to provide no correlation between the
first two principal components, which is an arbitrary choice and one might as well have
chosen one of the other equations. Furthermore, it is noted that the maximum variance,
as was the case for ¢;, cannot be found for the second principal component unless ¢,
is constrained. Thus it is chosen to normalize by ¢g@s = 1. To summarize, we will
maximize f(@s) = @9 Ly subject to g(@s) = @y P2 = c and §(¢1, @) = Py ¢ = ¢, where ¢
and ¢ are constants. As with the first principal component, the technique of the Lagrange
multiplier is used to find critical points for the function hy defined by

ha(d2; 81, A, A) = f(d2) — A (9(d2) — ) — A (§(1,82) — ©) (2.31)
= ¢, Sho — A (¢2T¢2 - 1) — A3 1, (2.32)

where A and X are Lagrange multipliers. In order to find critical points for the Lagrangian
hy with respect to ¢, the gradient is found and set equal to the zero vector

Ve, ho(pa, d1, A, A) = 25¢y — 2Xpy — A1 = 0. (2.33)
multiplying this by ¢, from the left yields
20] Sby — 2\p] 2 — Ap; 1 = 0. (2.34)

Since the first two terms are zero due to (2.27) and (2.29), and the fact that the normal-
ization @] ¢, = 1, we have that A\ = 0. Now consider (2.33), which is now reduced to
Yo — Apy = 0. This can be rewritten as

(X =) 62 =0, (2.35)

which means that A is also an eigenvalue of ¥ with corresponding eigenvector ¢o. Sim-
ilarly, as shown for the first principal component in (2.24), A\ = ¢J X¢, and A must
therefore be as large as possible to maximize the variance. The two eigenvalues A and )\
can not be equal to each other because it will cause ¢; = ¢, which is in violation with
& ¢o = 0 according to (2.29). Thus, A must necessarily be the second largest eigenvalue
of 3, where ¢, is the corresponding eigenvector and therefore A is denoted as . As
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previously mentioned, this can be extended to the m’th principal component having the
m’th largest eigenvalue \,, of X, where ¢,, is the corresponding eigenvector. Note that
the m’th principal component is found under the constraint that it be uncorrelated with
the previous m — 1 principal components.

After the M principal components are found, the (1\2/1 ) scatter plots can be considered to
examine data through these fewer predictors and in addition, these principal components
can be used instead of the original predictors to perform supervised learning in Chapter
3. To determine how many principal components to be made, it is investigated how much
variance is lost in performing PCA. The total variance in data after centering is defined
by

pln

iVar[Xj] = Z - Z x?j (2.36)

j=1"ti=1

and the variance for the m’th principal component is given by

n
I
m
N

Var[Z,,| =

zn: (Zp: qﬁjmxij) ) (2.37)

Thus, the m’th principal component represents the following proportion of the total vari-

ance )
Var|Z,] i=1 (Z§=1 (bjmﬂl?z‘j)

Z?:l Var[Xj] N Z?:l iy 3712;‘ '

It can be investigated how much variance the first m principal components represent of

(2.38)

the total variance by cumulating these values and thus it can be investigated how much
more variance an extra principal component will contribute.

Example

We first conduct PCA on the simulated data set from the clustering examples, which
currently consist of 1000 observations and 18 predictors. Consider the scree plot at the
top left corner of Figure 2.3. A scree plot is a plot indicating how much variance is
explained by each of the m principal components. We only show the first 10 principal
components at the top left corner of Figure 2.3, since not much variance is explained by
the remaining principal components. Note the big change from PC4 to PC5. This indicates
that four principal components could be enough to explain most of the variance in the
data. This becomes further apparent from Table 2.4. Here we see that beyond PC13, no
further variance is explained, and the cumulative proportion of variance is one, this is
of course a consequence of rounding as a cumulative proportion of variance should not
reach one before the last principal component (if none of the predictors in the data set
are co-linear).

We conclude that four principal components seem to explain most of the variation,
this is what we expected as we only have four underlying effects.

2
a combination of two plots, the first being a scatter plot of the scores (2.14) from two

Choosing four principal components, we have examined the (4) bi-plots. A bi-plot is
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Figure 2.3: Scree-plot of the explained variance of each principal component and selected bi-plots
from a principal component analysis of all 18 variables in the simulated data set. In the
bi-plots the loadings are on the right and top borders and the scores on the left and lower
borders. The red arrows represent the original variables respective loadings and the black
numbers the transformed observations, where the number indicates the class to which the
observation belongs.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
Proportion of Variance | 0.27 | 0.21 | 0.17 | 0.16 | 0.06 | 0.04 | 0.04 | 0.01 | 0.01
Cumulative Proportion | 0.27 | 0.48 | 0.65 | 0.80 | 0.86 | 0.90 | 0.94 | 0.95 | 0.97
PC10 | PC11 | PC12 | PC13 | PC14 | PC15 | PC16 | PC17 | PC18
Proportion of Variance | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cumulative Proportion | 0.98 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Table 2.4: The variance explained by the principal components, derived from a principal component
analysis of all 18 variables in the simulated data set.

principal components and thus represents the transformed observations, the other plot is
of the loadings from the same two principal components and thus represents the principal
components relation to the original predictors. We present three of the (;1) bi-plots in
Figure 2.3. Here we see in the top right plot that the height and weight variables align
with PC1, the normal variables with PC2 and the uniform variables seem unaffected by
PC1 and PC2. In the bottom left bi-plot of Figure 2.3 PC2 and PC3 seem to distinguish the
uniforms and the normals with little explanation of the weights and heights. Furthermore
note that the three classes are in the two first bi-plots not easily distinguished. Examining
the lower right bi-plot of PC1 and PC4, we see that PC1 and PC4 mainly explains the weight
and height variables, and thus it is possible to distinguish the three classes.

Combining hierarchical clustering from Section 2.1.2 and principal component analysis,
we can perform PCA on each of the four clusters: heights (including Sex and Smoke),
weights, uniforms and normals.
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Figure 2.4: Bi-plot of the two first principal components and scree-plot, both based on only the latent
variables Height, Weight, Uniform and Normal.

As we saw in Figure 2.3 the weights and heights seem to be explained by different
principal components than the uniforms and normals. We have performed PCA on just
the four main effects, and see in Figure 2.4, that the first pricipal component is closely
related to Height and Weight, and the second principal component seems closely related
to Uniform and Normal. As we know that the principal components are perpendicular,
this might suggest that Height and Weight explain different aspects than Uniform and
Normal.
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Figure 2.5: Bi-plot of the first two principal components from a principal component analysis of the
weight and height variables (without Weight and Height).

Using only the generated variables Height1, Height2, Height3, Weight1, Weight2 and
Weight3, and not the "latent" variables Height and Weight themselves, we can separate
the three classes quite well, thus representing the two latent variables by two principal
components based on the generated variables. A bi-plot of this separation is seen in Figure
2.5.

As in previous examples we have tried to use unscaled data, and as previously it results
in one principal component based primarily on Height3 explaining so much variance that
the remaining principal components become unimportant. U

As several of the predictors in our real data set are expected to explain different aspects
of the same latent variable, we will use both hierarchical clustering and PCA to try and
aggregate some of these. We expect a large number of predictors to induce overfitting,
and thus the reduced number of variables could produce better predictions.



3. Classification Methods

As this project deals with a categorical response variable, this chapter presents various
approaches to predicting such a response, called classification. Therefore, when an ob-
servation (individual) is predicted as belonging to a class, it is said that the observation
is classified. A particular classification method is called a classifier and in this chapter
some of the most common classifiers are presented. Special attention is given to logistic
regression, as this classifier assigns to each individual a probability that the individual
belongs to a certain class. The calculation of a probability expands our options when we
have to choose an evaluation measure. It further holds information of the certainty of a
given classification. We expect all these attributes to be useful as we have low incidences
of ADHD and ASD.

A model is built on the basis of given training data. It is desired that a built model
performs well on new data, that is, data which has not been used to build the model. In
order to evaluate how good the performance is, evaluation measures are used, these are
introduced in Chapter 4. When building a model based on training data, it is important
that the model is not overfitted to the training data, as this can lead to perfect predictions
for training data based on evaluation measures, but makes the model perform poorly on
new data. In other words, a sensible bias-variance trade-off is sought. The first section in
this chapter deals with this bias-variance trade-off before several classifiers are presented
in the remainder of this chapter.

3.1 The Bias-Variance Trade-Off

Assume we are given some training data {(x1,41), ..., (Xn,yn)}. Given that y; is a real-
isation of the random variable Y;, then the relation between x;, ¢ = 1,...,n and Y; can
generally be expressed by

Yi = f(xi) + e, (3.1)

where f is a fixed unknown function of x; and ¢; is a random error term, which is inde-
pendent of x;. It is assumed that the error term has mean 0 and variance o2 and thus
the random variable Y; can be estimated by

9 = f(x;), (3.2)

21
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where f is the estimate of f and g; is the estimation of y;, where y; is not itself used in
the estimation. The purpose of f is to make accurate predictions for y; in a predictive
study. Note that Y; is independent of the observations used to build f , making Y; and
f independent too. When f is computed, the average prediction error for individual i is

given by
E[(Y; — f(x:))?] = E[Y?] + E[f(x:)*] — 2E[Y f (x:)] (3.3)
= Var[y}] + E[Y;* + Var[f(x;)] + E[f(x)]? - 2f (x)E[f(x;)]  (3.4)
= Var[V;] + Var[f (x:)] + (f(x:)? + E[f(x,)]* = 2f (x:)E[f(x;)]) (3.5
= Var[¥] + Var[f(x;)] + (f(x) ~ E[f(x.)])” (3.6)
= E[(Y; — E[Y}))?] + Var[f(x)] + (f(x:) — E[f(x,)])” (3.7)
(3.8)

= ¢ + Var[f(x;)] + Bias[f(x:)]%,

where the term o2 in (3.8) is called the irreducible term as it is the error that cannot be
reduced when estimating f. The last two terms are called the reducible terms as they
can be reduced based on the statistical method used to make the estimation. It is desired
to decrease both of the reducible terms and since one of these increases when the other
decreases and vice versa, this is known as the bias-variance trade-off. The variance of
f' indicates how much f will change if another training data set is used to estimate it.
Thus, more flexible statistical models, e.g. models with more parameters , will have high
variance, as the model could be fit to the noise. Bias describes how well the fitted model
actually matches the data. For example, high bias can be obtained by linear models if the
data is not linear. Thus, flexible models generally have little bias. All in all, a sufficiently
flexible model must be found on the basis of the bias-variance trade-off in order to get
the best prediction for the test data. With bias-variance trade-off in mind, we are now
ready to present different classifiers.

3.2 Bayes Classifier

The goal of a classifier is to assign an individual to a certain class ¢ € {1,..., K}, for K
disjoint classes.
A simple way to classify an observation is through the Bayes classifier, which assigns
y; to the class ¢ for which P(Y; = ¢ | x;) i largest
9; = argmax P(Y; = ¢ | X = x;). (3.9)
ce{l,...,K}
The reason we do not simply use the Bayes classifier is that in order to calculate the
conditional probability of P(Y; = ¢ | x;), we need to know the distributions of all variables
in Y | X, and since the underlying distributions are unknown for the real data, we go
through several classifiers. The distribution is not unknown for the simulated data and
therefore the probability of belonging to each class can be calculated using Bayes’ theorem
P(Y; =)

PY,=c|x;) = Px)

P(x;|Y; =c¢), (3.10)
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where P(x; | Y; = ¢) = f.(x;) is the density function of X for an observation that comes
from the c’th class.

Example

The simulated data set with the two predictors Weight and Height is considered in an
example. As we know the distribution of lpercent, Spercent, and 94percent, it is
possible to calculate the density functions explicitly and thus utilize the Bayes classifier.
Figure 3.1 shows four plots, where the two at the top and the bottom left show the binary
classification problem, where the probability functions are set equal to each other to make
the decision boundaries, that is

PlYi=c|x;)=PY,=(|x) (3.11)

where P(Y; = ¢) and P(Y; = ) are estimated based on the proportion drawn from

10
1000

3.1. The plot at the bottom right shows the same decisions lines, but where the lines

each class. for example for the 1percent class the probability is equal to in Figure

are approximated based on where it is inconclusive which probability function gives the
highest value.

140 150 160 170 180 140 150 160 170 180

Figure 3.1: Top left, top right and bottom left are the Bayes classifier applied to each of our classes
against each other respectively. The bottom right is all classes classified simultaneously.
The circles are from our simulated data set, and drawn from the distributions on which

the Bayes decision areas are defined.

The top right plot in figure 3.1 has a red area in the lower left corner, but none of the
points in the simulated data are near this area. Therefore, an example is made where the
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number of observations for the red class are increased to 1000. In Figure 3.2, it is seen
more clearly that the distribution for red class is drawn closer to the red corner. This
makes sense as the ten originally drawn observations seem to come near the mean of the
distribution.

140 150 160 170 180

Figure 3.2: Our simulated data set with 990 further observations drawn from the 1percent class.

O

3.3 Generalized Linear Models!

As mentioned in the introduction to this chapter, extra attention will be paid to logistic
regression in this master thesis. A logistic regression model is a specific generalized linear
model (GLM). Thus, GLM is presented before specifying logistic regression.. We define
GLMs in Section 3.3.5, one of several requirements for a GLM is that the response should
have a density from the so-called exponential family.

3.3.1 Exponential Family

Let Y be the random vector containing the independent identically distributed (i.i.d.)
random responses Y; for ¢ = 1,2,...,n, of which y; is a realization. If the Y;’s have
marginal densities with respect to the Lebesgue measure of the form

yifi — b(0;

[ (i3 05, 0i) = h (yi; ;) exp (T()> ; (3.13)
then it is said that the Y;’s have a distribution from the exponential family. The parameter
0; is called the canonical parameter, b(-) and h(-) are functions, which are specific for a
certain exponential family (e.g. normal, Bernoulli, ...), while ¢; > 0 is a dispersion
parameter that can be known or unknown.

!This section is based on [42, 43].



3.3. Generalized Linear Models 25

Example

As this master thesis has a categorical response, it is shown that the Binomial and the
Bernoulli distributions belong to the exponential family. The probability function for a
binomially distributed random variable X ~ Bin(n,p) may be written as

fasn,p) = (Z)p””(l -p)" (3.14)
— exp (log ((Z) po(1 - p)“>) (3.15)
= exp (log (Z) + log (p*) + log ((1 - p)”_x)) (3.16)
= (1) exp (10200 + 1~ ) out1 = ) (317)
= (Z) exp (x (log(p) — log(1 — p)) + nlog(l — p)) (3.18)
= <Z> exp (:C log <1€p> + nlog(l — p)) : (3.19)
where © = 1,2,...,n indicates the number of successes. If we set § = log (%) then
isolating p yields
p
exp(#) = T (3.20)
exp(f) — pexp(d) = p (3.21)
exi’)(e) = 1+ exp(0) (3.22)
__exp(0)
1+ exp(d) (323)

Thus, it is seen that the binomial distribution belongs to the exponential family as (3.19)
can be written as (3.13) by setting h(z) = (Z), 0 = log (ﬁ), b(f) = —nlog(l — p),
¢; = 1.

When n = 1 only one person is considered, which means that the binomial distribution
reduces to the Bernoulli distribution and thus the Bernoulli distribution also belongs to
the exponential family. 0

3.3.2 Mean and Variance of the Exponential Family

Let Y; be a random wvariable with distribution from the exponential family. Subject to
certain reqularity conditions, the mean and variance of Y; are given by

E[Yi] = pi = ¥(6;) (3.24)
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Proof. We start by proving (3.24) and use that the mean of a random variable is defined

by E[Y:] = [v:f(y;)dy; and that the integral of a density function equals 1, that is 1 =
[ f(yi; 0;, ¢;)dy;. Differentiating the latter with respect to 6; yields
d
0= M/f(yi§9i7¢i)dyi (3.26)
d
:/ﬁf(yi;ghqbi)dyi (3.27)
291 b 91
_/dG (Yi, ¢i) exp (w> dy; (3.28)
i0i — b(b; i — V(0
= /h(@h@) exp (y ) ( )> <y ( )> dy; (3.29)
i bi
i — V(0
= /f(yi;9i7¢i) <y¢()> dy; (3.30)
1
=5 (/ Yif (yi; s, ¢i)dy; — b’(@-)/f(yi; 0;, gzﬁ,-)dyz-) (3.31)
1
Ia@M—WM) (3.32)

which proves (3.24). We now prove (3.25) by using that the variance of a random variable
Y; is defined by Var[V;] = E[(Y; — E[Y;])?]. Once again it is used that the integral of a
density function is 1, but this time the expression is differentiated twice with respect to

0;.

- T [ 06 (3.33)
- / i [P .00 (334
—b'(6; = b(6:)\*
= b;)f(yi; O, &) + <y¢b()> f(yi; 0i, ¢i)dy; (3.35)
_b//

= = [ pit0dn+ g [ =T 0h00dn (330

(6,
_ ¢E ) 4 ¢2V 1Y) (3.37)
=0=-0"(0;) + aVar[Yi}, (3.38)
which proves (3.25). |

Note that the mean and variance of a random variable with a distribution from the
exponential family are determined by the function b(-). As the variance is always non-
negative, 0'(6;) is a monotone function and thus there exists an inverse on its image.
Isolating 6; in (3.24) yields

0; = b () (3.39)
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and inserting this term in (3.25) leads to the variance becoming a function of the mean
i
Var[V] = ¢ib" (60:) = ¢ib" (0 (1)) = ¢V (), (3.40)

where V(j1;) = 0"(0/""(11;)) is called the variance function.

Example

In this example, we show that (3.24) and (3.25) hold for the Bernoulli distribution. Let
Y; ~ Bern(p;). Then the mean of the Bernoulli distribution is given by E[Y;] = p; and
the variance is given by Var[Y;] = p;(1 — p;). Thus it is shown that '(6;) = p; and
o:i"(0;) = pi(1 — p;). We first show that &'(;) = p; , where we use that b(6;) = log(1 — p;)

and p; = 1f;§f from the previous Bernoulli distribution example
b (0;) = —ilo (1—p;) (3.41)
i) = a6, g i .

d exp(6;)
=——1 1l—-—— 3.42
do; ° ( 1+ exp(@i)> (3.42)

d 1
=——1 _ 3.43
ag; " (1 + exp(@)) (343
= dcé log (1 + exp (6;)) (3.44)
1

_ exp(6s 3.45
1 + exp(6;) exp(0i) (3.45)
= Di- (3.46)

It is now shown that ¢;0”(0;) = Var[Y;], where ¢; = 1 for the Bernoulli distribution

V(6 = d(éb/(g ) (3.47)
d 1
" d0; 1+ exp(6;) xp(0:) (3.48)
_ el B S
B (1 + eXp(Q )) ( z) T 1+ 6Xp(9 ) p(Qz) (349)
_ —exp(6:)® + exp(0; )(12+ exp(6;)) 550
(14 exp(6;))

(3.51)

exp(6;) ( —exp(f;) 1+ exp(@i)>
1 +exp(d;) \1+exp(d;) 1+ exp(b;)

= pi(1 = pi). (3.52)

Thus (3.24) and (3.25) hold for the Bernoulli distribution. Finally, the variance function
of the Bernoulli distribution is given by

V(i) = Var[Yi] = pi(1 — pi) = pi(1 — ). (3.53)

U
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To summarize all distributions from the exponential family have their own specific
form of b(6;), which determines the mean, variance and variance function V(y;). To
define a GLM we need a variance function, a linear predictor and a link function. Thus,
the latter two are presented in the next section.

3.3.3 The Linear Predictor and the Link Function

The linear predictor n; for observation ¢ is a linear function of the covariates x;
n =%, B. (3.54)
The link function g describes how the linear predictor 7; is associated with the mean p;

g(pi) = ni. (3.55)

Thus the mean is not necessarily a linear combination of the covariates, as we are used
to in the linear normal models where 7; = p;. Assume that g is bijective such that g—!
exists. Then the mean can be seen as a function of the linear predictor, that is

pi=g ) =g (x/B). (3.56)

We now have two expressions containing the mean; p; = b'(6;) from (3.24) and n; = g(u;)
from (3.55) which combined lead to

ni=g(V(0)). (3.57)

The link function ¢(-) that causes the canonical parameter 6; to be equal to the linear
predictor 7; is called the canonical link function, that is g(u;) = n; = 6;.

Example

In this example it is shown that the canonical link function for the Bernoulli distribution

is the logit function. It is known that E[Y;] = w; = p; = 1?2(;9("(3') from (3.23) and

since the following applies, the logit transformation is the canonical link for the Bernoulli

distribution
" p exp(G(z') ) eXP(e(i) :
i [ 1+exp(6; 1+exp(0;
9(mi) = 1°g< > - 10g< ) =log | — ey | =18 | Tep@y—ewey | = %
L= g L=p 1 = o T lrew®)
(3.58)

Note that the canonical link function is not necessarily the one that best captures the
mean structure for a given data set, it is just the link function that fulfills n; = 6. 0

3.3.4 The Exponential Family Density Parameterized Relative
to (i

For GLMs, B is estimated from the linear predictor n; = x, 8 based on data. We wish to
apply maximum likelihood to estimate 8. Since B is not an obvious part of the density
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n (3.13), we now parameterize the density with respect to u; = g=* (xlT ,3)

The observations y; may be compared to the parameter values u; by using the unit
deviance defined by
Yiy, —u

du, (3.59)

where V() is the variance function.

It is now proved that the density of the exponential family can be parameterized in
relation to u; using the unit deviance in

f(is 1i; ¢i) = alyi, ¢i) exp ( d(ys, m)) : (3.60)

2¢;
where a(y;, ¢;) is a different function from h in (3.13).

Proof. Recall from (3.40) that the variance function is of the form

V(u) =b"(6"""(u)) (3.61)
Furthermore let v = &'~!(u), which yields u = ¥ (v). Differentiating u with respect to v
yields
d d
—u=—"b 3.62
Tou= 7 b() (3.62)
du =b"(v)dv. (3.63)

We now use integration by substitution to rewrite the unit deviance from (3.59)

Yiy, —u

d(y;, i) = 2 Vo) du (3.64)
Yi Yi —u
_9 / .
E) (3.65)
b= l(yz) y; — b’(v)
=2 / =" (v)d 3.66
b1 (1) b//(fl}) (U) v ( )
b (y:)
=2 [ = V() (3.67)
b ()
=2 [y — b(©)],, ", (3.68)

=2 (s (00 = 0 )) = (B ) = BB (1) ) (3.69)

We now insert this expression in (3.60)

Pl 10 65) = g, &) exp (— d(yi,u») (3.70)

1
20,
<yz,¢z>exp(—¢z (yz(b' Ny =V () — (b(b'-1<yi>>—b(b’-%m»))).

(3.71)
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From (3.39) we have that b'~*(p;) = 6;, which yields

(n
[y 05, 0i) = alyi, di) e < g Z/z b/ Hyi) — ‘9@) - (b(blfl(%)) - b(ez)))>> (3.72)
a(yi, ¢i) e <

S ) 0 ) - 00) ). 6T

5
Let a(yi, ¢i) = h(yi, i) exp <(; ( W0 (i) b’ 1(%)))), then we get the density of an

exponential family with respect to the canonical parameter 6;

f(is 05, i) = I (yi; i) exp <Wz;w> . (3.74)

To summarize, we now have two ways of presenting a density of an exponential family,
one by its definition (3.13) with respect to the canonical parameter §; and another one as
the parameterization relative to y;, as seen in (3.60).

3.3.5 Generalized Linear Models

A model is considered a GLM if the following assumptions hold.

e Let Y = (Y1,Y5,...,Y,)" be the random vector containing the i.i.d. random re-
sponses Y; for © = 1,2,...,n, of which y; is the realization.

e Let the Y;’s have densities of the form (3.60), with the same variance function V,
and assume that each response y; has covariates x;.

e The covariates influence the distribution of the response through the linear predictor
n; given by n; = x, B.

e The mean value E[Y;] = y; is a smooth and invertible function of the linear predictor
wi = g 1 (n;), where g(-) is the link function.

It is not necessary to estimate ¢; in this master thesis, as it is known that ¢; = 1 for the
binomial distribution, and we are thus left with the task of estimating 8, which we will
aim to do utilizing maximum likelihood estimation in the remainder of this section, where
it is assumed, that the weights are known.

3.3.6 The Joint Density of the Exponential Family

We now find the density function, log likelihood, score function, observed information and
the Fisher information for the exponential family, as they are all needed when we seek to
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estimate B in the next section. The joint density of Y = (Y3,Y5, ... ,Yn)T using the pa-
rameterization g = (uy, po, - . ., f4n) and dispersion parameter vector ¢ = (¢, da, ..., dn)
is due to independence given by

n n 1 n
f(yvﬂ'7¢) = Hf(?/u/iw@ = exXp ( Za yw,uz)) Ha<y’w¢z) (375)
=1 =1 =1
The log-likelihood is thus given by
1& 1
‘C()u'a Y) = _izg yzaluz =+ Zlog y17¢z)) . (376)
=1 77 =1

Differentiating this with respect to y; yields

1L, (Yiyi—u Ly -
( 2252, V<u>du> - 5500 (3.77)

Thus, the score function & with respect to p is given by

d

d
dp;

S (ll' y Y (_Z d yza,uz ) = diag (W) (y —/1,), (378)

where dz’ag( 1( _)) is an n x n diagonal matrix wherein the value of the i’th diagonal

(bzv Hi
. 1

entry is V)

The observed information is given by

lMMW——J;&WW) (3.79)
0 1

= ouT —+diag (qbz Vi 2)> (v — ) (3.80)
g () (3.81)

_ 1 1 V(i)
= di Gy + 3,0yt ) 352

And thus the Fisher information matrix is

) = B [ )] = i (). (38

3.3.7 Maximum Likelihood Estimation
Recall from (3.56) and (3.54) that u; = g~ (n;) and n; = x/ B, with the data matrix X
from Section 2.2. We then define the local design matrix corresponding to 8 by

<nm:§;, (3.84)
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which can then be rewritten as

o On  Op 99" (n)
X('B) = anT a,BT = anTX = 817T

1
X = dz’ag( X = diag (g’(,u')> X,

(3.85)

where diag (g,(lm)) is a n x n diagonal matrix, X is a given data matrix and n =

)
g'(g(m))

(Th? 2, . .- 777n)T‘

Now consider a GLM for Y as described in Section (3.3.5) with linear predictor n =
XB. Then the maximum likelihood estimate B for B is found as the solution to

X(B) in(m)(y —p) = 0, (3.86)
where X (B) is the local design matriz and p = p(B).

Proof. Recall from (3.78) the score function with respect to p. If this is differentiated
with respect to B and set equal to 0, the maximum likelihood estimate is found with
respect to B8 by solving the resulting equation

o T
Sp(Byy) = ;ﬂSM(u;y) (3.87)
= Tdia ! —
= X6 i (e - w (359)
= X(B) iu(w)(y — n), (3.89)
where i, is the found Fisher information from (3.83). [

Equation (3.86) can not be solved directly, as it is not linear in B. Instead, the
maximum likelihood estimate is found by an iterative method called iteratively reweighted
least squares (IRWLS), which is based on the Newton Raphson method. For IRWLS, it
is assumed that the link function is the canonical link function, that is, g(u) = 6, which
due to (3.39) can be written as

g(m) =" (u). (3.90)

It is first noted that the differentiated canonical link function with respect to p is due to
differentiation of inverse function given by

0 1

() — — p—1 e 3.91
The denominator of (3.91) is by definition the variance function (3.40), thus
1
/
g = ——. 3.92
)= (3.92)

Therefore, in the case of the link function being the canonical link function, the local
design matrix is given by

X(B) = diag( ) X = diag(V(1;))X. (3.93)

g’ (1)
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Inserting this in (3.86) yields

(diagV (1)) X) " iu(w)(y — n(B) = 0. (3.94)

which we thus want to solve with respect to 8. This can also be written as

Tdi )) dia 1 — =
X diag (V(11)) d g( w(ui))(y w(B)) = 0 (3.95)
X dzag(;)mu(ﬂ)):o, (3.96)

where the left hand side of this equation is the score function for 8. For the Newton
Raphson method, the differentiated score function with respect to 8 must also be used.
It is given by

Sy853) = 5o X g (1) (v~ (9 (3.97)
= — X "diag (;) X(B) (3.98)
= — X "diag (; ) diag (V (1)) X (3.99)
— X" diag (ﬁ’”) X, (3.100)

where the second equal sign is due to 3.84 and the third equal sign is due to 3.93. The
Newton Raphson method is an iterative process for determining roots, in this case for
Sp(B;y) = 0. Newton Raphson’s formula is

Buir =B, [S5Biy)] Ss(BLiv). (3.101)

The formula therefore requires us to come up with a start guess BO. This iterative formula
is repeated until the difference of B, and B, is sufficiently small. The iterative process
can be written as

Buii =B, [Ss(By)]  Ss(Buiy) (3.102)
=B, + (Xszag (V;uﬁ) X) X " diag (; ) (v — p(B)). (3.103)

The method is called the iteratively reweighted least squares method because 3.103 is
a weighted least square estimate, where dmg( (qs# 1)). When it is not the canonical link
function that is used, then the process is called the Fisher scoring algorithm. Note that the
inverse of X " diag ( ( )) X is used, which is only possible if X has full rank as diag ( ))
is a diagonal matrix. Thus it is a requirement for GLM’s that n > p, that is, that there
are more observations than parameters.
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3.4 Logistic Regression

Some classifiers calculate the probability that an individual belongs to a specific group
and on the basis of a threshold value (the simplest being 50/50). Logistic regression is
one such classifier. For the case of only two classes K = 2, let Y be the random vector
containing the Bernoulli distributed responses Y; ~ Bern(P(Y; = 1 | x;)) for individual
t=1,...,n. We will later in this section look at an extension for over two classes.
Let X be the n x p data matrix for p covariates and let x; be the vector containing
all covariates for individual i.
In order to classify an individual, the probability P(Y; = 1 | x;) is considered. Since
probabilities have values between 0 and 1, functions with values within this range must
be used. Many functions fulfill this, but logistic regression uses the logistic function which
is given by
PV = 1| x,) = exp(x; B) |
1 +exp(x; )

where 8 is a vector of p parameters to estimate. To ease interpretation of the parameters

(3.104)

we manipulate equation (3.104) into log-odds by

(] B) o B)
oo [ EXi=11x) \ _ | Trewt8 | Ltexp(x; f) —x,B
P\1-PYi=1]x) Sl et & | Trewtl p-ewi]p) P
1+exp(xiT/3) 1+’3XP(X1-T.3)
(3.105)

The log-odds of the logistic function are linear and therefore the parameters are easier to
interpret than for the logistic function. We use this throughout the project and denote
the log-odds of the logistic function by logit { P(Y; =1 | x;)}.

Note that logistic regression is a special case of a GLM, where the Y;’s are Bernoulli
distributed and the link function is the logit function

PYi=1]|x)
1-PY,=1]x)

g9(pi) = logit {u;} = log ( ) =x; B = (3.106)
We already saw that the logit function also is the canonical link function for the Bernoulli
distribution in (3.58).

The parameter vector f# in (3.104) is estimated using maximum likelihood estimation.
Let y be the realization of Y and assume Y; and Y; are independent for ¢ # j. Consider
the density function for Y; given x;

flyi | x:B)=PYi=1|x)"(1-PYi=1]x,))". (3.107)
The joint density function for all responses Y7, Ys, ... Y, is the product of these densities
for i =1,...,n due to independence. That is

Fy | X:B) = [[P(Yi=1]x)" (- P(Y, = 1] x))"™". (3.108)

i=1
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Inserting the logistic function (3.104) yields

1-y;

n exp(x; B) " exp(x; B)
Fy [ X5B) = zzl_ll (1 + exp(xiT,B)) L= (1 + exp(x?ﬂ)) (3.109)
p o8 " 1L\
N Z:r[l (1 + exp(xjﬁ)) (1 + exp(xjﬁ)) ' (3.110)
The log-likelihood is then given by
" exp(x;B) | 1
o 0= (12050 (reaes) -

— z”: (yi (X,-T,B —log(1 + eXP(XiT,B))) — (1 —y;)log(1+ exp(xjﬁ))) (3.112)

=1

>~ (yix! B —log(1 + exp(x/ B))) - (3.113)

=1

s I

The maximum likelihood estimator for 8 can often not be expressed explicitly. In such
cases it can be solved iteratively with tools like the Newton-Raphson method [2]. Once
the estimate 8 is found, it can be used for estimating the logistic function in (3.104) and
thereby classify an observation based on the predicted probability. An example for logistic
regression in the binary case is presented after logistic regression for multiple response
classes in order to get fewer plots showing the same principle.

3.4.1 Logistic Regression for More Than Two Classes

For two classes, the log-odds are calculated by (3.105), where 1 — P(Y; = 1 | x;) is of
course the same as P(Y; = 0 | x;). When there are K classes, then the K — 1 log-odds
are calculated instead

log (5&:;“’2)) — x/ B, (3.114)
PYi=2]x)\
log (P(Yi — K| Xi)> =x, By (3.115)

PYi=K-1|x)) _
lo < P = K| x) >_xjﬁK_1, (3.116)

where the choice of denominator is arbitrary. If the exponential function is applied to
both sides and the numerator is isolated, the probability of belonging to a particular class
is obtained as

P(Y;=1]x;) = P(Yi =K | x;) exp(x; B1) (3.117)
P(Y; =2|x;) = P(Y; = K | x;) exp(x; B2) (3.118)

PY,=K—1]|x;)=P(Y; =K |x;)exp(x; Bx_1)- (3.119)
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Since all probabilities must sum to 1, P(Y; = K | x;) can be found by

K-1 K-1
PY,=K|x)=1-> PY,=c|x;)=1-> PY,=K| x;) exp(x; B.), (3.120)
c=1 c=1

which can be rewritten as

K x) — K-1
TRy = X oveTA) 3121)

1 K-1
s (3.122)
PY; = K | x;) — ! (3.123)

1+ > exp(x] Be)

If (3.123) is inserted in (3.117)-(3.119), the other probabilities can thus be found

exp(x, B
P =1]x) =+ K:pl(l ezxi(lTﬂC) (3.124)
P(Y, =2 x;) xp(x; B) (3.125)

1+ 2K Pexp(x/ Be)

PY,=K—1|x;) = xXp(x; Bre1) (3.126)

1+ Yexp(x/ B.)

In order to calculate the probabilities for an observation belonging to a particular class,

the parameters must thus be estimated, which, like the case with two classes, is estimated
by maximum likelihood, which can again be approximated by Newton-Raphson.

Example

The simulated data from Section 1.1 is used in this example. Logistic regression for the
binary case is presented first and then expanded to multiple classes.

Applying logistic regression we get an estimate 3 of 8 for (3.105). From this estimate,
when P(Y; = 1| x;) = 0.5, the left hand side of (3.105) is zero, and thus the decision line
for logistic regression is found by isolating ;5 and calculating the intercept and the slope
for the two dimensional case. That is

S B, (3.127)

T B B
_ B

5 is the slope. Figure 3.3 shows the simulated data,
where data is split into two categories based on these decision boundaries, where the top

T52
where 75—520 is the intercept and

left plot shows the case where an observation belongs to 1percent or not. Similarly, the
top right plot is whether the observation belongs to 5percent or not and the bottom left
plot shows whether the observation belongs to the 94percent class or not. These three
binary decision boundaries are assembled in the last plot at the bottom right, marked
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[
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Figure 3.3: Logistic regression binary classification with a threshold of 50% based on three logistic
regressions of class~Height+Weight, where class is 1percent, Spercent and
94percent in the three logistic regressions respectively. Gray indicates inconclusive areas.

with the same lines. The gray areas indicate initially inconclusive areas. We thus review
methods that can be used when there are more than two classes.

One way to avoid the gray decision areas is by using one-vs-rest logistic regression. The
method is based on the fact that with the three B estimates we have just calculated, the
black decision lines on the left plot of Figure 3.4 can be found by setting the probability
functions equal to each other, one of them is P(Y; =1 | x;) = P(Y; = 2 | x;), and thus
the plot is the result of one-vs-rest logistic regression for three classes. The plot to the
right in Figure 3.4 also shows the method one-vs-rest logistic regression, but where the
number of observations in each class are the same. Note that the number of observations
thus affects where the decision boundary is located for one-vs-rest logistic regression. We
conclude that given either unequal or equal n in the three classes the Bayes decision line
is nicely approximated with straight lines.
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Figure 3.4: One-vs-rest Logistic regression performed on the simulated data set on the left and
one-vs-rest Logistic regression performed on equally sized groups on the right. The Bayes
decision line is shown in gold.

Another method that can be used when there are more than two classes is multinomial
logistic regression. This method has been reviewed in theory in section 3.4.1. In the
case of three classes, 81 and Bs are thus estimated based on (3.114) and (3.115). Then
probabilities can be found for (3.124) and (3.125) and finally, the probability of the last
class can be found by

PY;=3|x;)=1-PY;=1|x;) — P(Y;=2]x). (3.128)

Similar to the one-vs-rest example, the probability functions are set equal to each other
in order to make the decision boundaries shown in Figure 3.5. The plots show that on
the simulated n = 1000 data set the multinomial logistic regression performs poorly, as
this might be due to the low occurrence of class 1percent. We thus try with equal class
sizes, and see slightly better results. The splitting of the area is still unstable under
change in reference class, we thus increase n to 3000 such that each class consist of 1000
observations. This increase in n led to more stable results, and we thus tried with uneven
class sizes. We conclude that the number of observations thus again has influence on
decision boundaries.
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Figure 3.5: Multinomial logistic regression with the red class as reference in the first column, blue
class as reference in the second column and green class as reference in the third column.
All three classes are drawn from the usual distributions from Section 1.1. In the first row
we have the usual dataset, in the second row there are 100 observations of each class, in
the third row there are 1000 observations from each class and in the bottom row we have
the classes 1percent, bpercent and 94percent as usual, but there are 10 times as many
observations as usually such that n = 10000.

One of the benefits of using logistic regression for us is that we can calculate the prob-
ability that an observation belongs to a particular class. In addition, decision boundaries
can be made based on different tresholds. In all of the above, a threshold of 0.5 is chosen.
Figure 3.6 shows two different thresholds. The solid line is the decision boundary for be-
longing to the class 94percent with the 0.5 threshold. The dashed line shows a threshold
of 0.9, such that there is considerably more certainty that one belongs to the green class
94percent. It is calculated by isolating x;» in (3.105).

The threshold thus has no influence on the slope, but the intercept is changed based on
the threshold. U
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Figure 3.6: Logistic regression for the binary case of green or not green. The solid line indicates a
threshold of 0.5 and the dashed line a threshold of 0.9.

One main advantage of logistic regression for us is the fact that logistic regression
produces a probability. Even though we aim to actually predict ADHD and ASD, the
certainty of such prediction is also important. Furthermore, the logistic regression model
is a simple classifier in the sense that it produces linear decision lines, and thus is a high
bias classifier, but with low variance. In the next section we try and alleviate some of the
bias by moving beyond linearity with ex. splines.
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3.4.2 Moving Beyond Linearity

Recall the logit function (3.105) for the log-odds of a binary response. We wish to extend
this to a model that allows for non-linear relationships between y and some or all of the
predictors X,;. Such a model is called a Generalized Additive Model (GAM), where instead
of estimating a single parameter (; to each predictor z,;, we fit a function f;(x;;) while
still maintaining additivity, that is

logit {P(Yi = 1| %)} = Bo + fi(wi1) + fa(wia) + ... + fiplp). (3.130)

A GAM is more flexible than the simpler linear models on the form y; = i x;3; which
i=1

can be graphed as a straight line, this flexibility can lead to better predictiozﬁs, especially
if a predictor x,; is related non-linearly to y. Previously we have considered flexibility in
terms of how many parameters are to be fit, and thus the degrees of freedom have been
equal to the number of predictors. Depending on the choice of f, this is no longer the
case, and we will from here on discuss flexibility in terms of degrees of freedom.

Extending a model with additional degrees of freedom, and manipulating the predic-
tors leads to complex and hard-to-interpret models, which is an acceptable drawback in
a predictive study.

A function f;(x;;) can be constructed in many ways, the remainder of this section
outlines a number of different ways to construct such a function for one given predictor j
henceforth denoted f(z;).

Step Function

Given a continuous variable X,g, in some cases it could be preferable to assign specific
values to different ranges of that variable. To create a step function we make K cut points
c1,C, ..., Cx in the range of x4¢ and generate K + 1 functions

C()(.I'io) = ]l[l'lo < Cl] s
Ch(wio) = 1er < a0 < €3],
1

Co(z40) = Lca < mip < 3],
Cr_1(zi) = lex—1 < @i < ck],
Cr(zio) = ek < zio] .

Generating a step function corresponds to creating an ordered categorical variable, and
thus fitting a model

logit {P(Y; = 1| xi0)} = Bo + f(zi0) = Bo + L1C1(wi0) + B2Ca(wio) + - .. + BrCx (2i0),
(3.131)
corresponds to a GAM with dummy variables and C1,...,Ck as added functions.
The function Cj is omitted as it is covered by the case of all other functions set to zero:
Ci =0y =---=Ckg =0. A step function uses K degrees of freedom as the original
variable is represented by K dummy variables.
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Polynomial Functions

Extending the linear model to a non-linear setting is straightforward with a polynomial
function. It is possible to approximate data extremely well with an n-degree polynomial,
this would of course introduce high variance, and we thus make do with polynomials of
a much lower degree than n. Even though a polynomial is straight line, we can still use
the linear setup to approximate the coefficients

A higher order polynomial can as mentioned fit arbitrarily well to the data, but high order
polynomials can adopt strange shapes and, especially near the boundaries, take extreme
values. Because of the high bias and unpredictable shape of higher order polynomials,
polynomials are usually not used with a degree of more than 3 or 4. A polynomial function
uses d degrees of freedom, besides the intercept, as a coefficient is fit for each degree of
the polynomial.

Combining a polynomial function with a step function allows for separate polynomials
on different ranges of a variable. This is useful if a variable has e.g. a change point or
outliers near the edges of the range of x49. Such a model is called a piece-wise polynomial.
For example, a d’th degree polynomial with one cutpoint ¢ is given by

Boa + BriTio + 52,156120 + 53,196?0 + ...+ 6d,1$§lo if xip <c

Boz + Bratio + Poo®dy + Baaxiy + ... + Bazxly if zio > ¢,
(3.133)
where the coefficients are estimated as for logistic regression, where 31,311, .. ., 841 are

estimated for z;0 < ¢ and (2, B1,2,- .., B4z are estimated for z;0 > c.

A piece-wise polynomial uses (K 4 1) x (d+ 1) degrees of freedom, as a d-dimensional
polynomial is to be fit to each step of the variable.

Generally, instead of just using the step function and the polynomial function sepa-
rately or together, whole functions, containing all kinds of transformations can be con-
structed for a predictor before conducting logistic regression. We call these functions basis
functions by,

logit {P(Y; = 1| i0)} = Bo+ Bibi(wio) + Baba(Tio) + Bsba(wio) + - . . + Brbr (Ti0), (3.134)

where, for example, the basic function of the polynomial function is bj(x;) = x.

Splines

The definition of a d-degree spline is a piecewise polynomial of degree d that is continuous
in the cut points and which 1,2,...,d — 1 derivatives are also continuous. A commonly
used spline is the cubic spline, which involves third degree polynomial functions, as they
look smooth to the human eye at the cut points. It turns out that a cubic spline with K
cutpoints can be modeled using the basis function model (3.134)

10g1t {P(Y; =1 | sz)} = 60 + Blbl(l‘i[)) + BQbQ(xz‘O) + ...+ 5]{+3b}(+3(1’i0) (3135)
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and the model, for an appropriate choice of basic functions, can thus be fitted by logistic
regression. A way to represent a cubic spline is to start out with a cubic polynomial and
then add a truncated power basis function h(z,, &) for each knot &.

Yo ¥ B .
h(zio, §) = (zio — S)i = (w0 = &) 4f o > ¢ (3.136)
0 otherwise,

where ” 4+ 7 indicates that the truncated power basis function is 0 for all values of ;o less
than or equal to the value of the cut point £&. Adding a truncated power basis function to
a cubic polynomial function yields

logit {P(Y; = 1| zi0)} = Bo + Przio + Pty + Psy + Bah(wio, €). (3.137)

We will show that this function is continuous and that the same applies to its first and
second derivatives. The functions g (zi0) = Zi0, ga(Tio) = 2%, gs(wi) = x3, are all contin-
uous and the same applies to their derivatives. Thus, the function h(x;, ) is considered,
which is continuous at the point ¢ if
lim (i — &)* = lim (0). (3.138)
zi0—>ET Tio—E~
Obviously, the function h(z, &) is continuous at the point . The first derivative of the
function is A'/(z;0,&) = 0 for z;0 < € and for ;0 > £ it is

((zio — €)®) = (a3, — 32%& + 306 — €%) = 322 — 6xyp + 3E2 (3.139)

The limit is taken correspondingly on both sides of the derivative function at the point &
to show continuity for the derivative function. The function is differentiated again to get
the second derivative

(a0 — €)°)" = 6aig — 6€,  for i > &, (3.140)

which means that the second derivative function is also continuous at the point £&. Thus,
the function h(zo¢) is continuous at £ and the same applies to its first and second deriva-
tives. The third derivative of the function is not continuous because

((zi0 — &))" =6, fora > ¢ (3.141)

and thus lim,, e+ h(z0,§) # limg, e- h(z40,§), because the limits are 6 and 0 respec-
tively. If K cut-points for a cubic spline are chosen, then the terms
Bah(xi0,&1), Bsh(zi0,&2), - - -, Brish(xi, k) are added instead of Byh(zio, &) in (3.137).
Thus, a cubic spline with K cut points has K + 4 degrees of freedom, where &1,&,, ..., ¢k
are the cut points.

Restricting a cubic spline even further, such that the first and last "pieces" are linear
is called a natural spline. The cut-points can be placed uniformly on the interval for a
variable and the number of cut-points is typically selected based on cross-validation, which
is described in more detail in Chapter 4. Instead, we can use smoothing splines where the
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number and location of the cut points should not be considered since a smoothing spline
uses a maximum number of points, one for each observation. Generally, it is desired to
maximize the log-likelihood function for logistic regression given by (3.113), which is done
by determining the function

f(zi0) = logit {P(Y; = 1| 24)} = x, B, (3.142)

that provides a maximum for the log-likelihood function. It implies that P(Y; = 1 | zy)
can be determined by

1+ exp(f(xi))
Since f can be chosen such that the function goes through all observations, which of

(3.143)

course will cause over-fitting, a restriction on the curvature is needed. Thus it is desired
to maximize the penalized log-likelihood given by

L(FN) = 3 [f () — log(L -+ expl(f(za)))] — 3 [ 770, (3.141)

=1

where A > 0 is a tuning parameter that determines how much curvature is allowed for the
function f. If A =0, it will result in no restrictions and A\ = oo will cause a straight line.
Thus, a value for A must be found which provides the best bias-variance trade-off. The
function that provides maximum for the penalized log-likelihood is called a smoothing
spline.

When expanding a model with splines and thus increasing the degrees of freedom,
the bias is reduced. Higher degrees of freedom is not necessarily a problem in predictive
studies, but overfitting might still be an issue. We thus utilize the fact that logistic
regression is likelihood-based and apply shrinkage methods.

3.4.3 Shrinkage Methods

Previously, models have been built with all p predictors. This can lead to unnecessary
noise from the parameters and therefore the model may be less likely to predict new
data correctly. Shrinkage methods shrink the parameter estimates towards 0, or even set
them to 0. Thus, Ridge regression and Least Absolute Shrinkage and Selection Operator
(LASSO) are presented, which are two common shrinkage methods. These two shrinkage
methods are likelihood-based and can therefore be used for logistic regression.

Ridge Regression

For logistic regression, the parameter vector 8 is estimated by Maximum Likelihood. In
Ridge regression the sizes of the parameters are penalized such that we seek to optimize

~R

B = arg;nax (E(,B;y | X) — AZB?) , (3.145)
j=1
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where A > 0 is a tuning parameter and the term A E?Zl 532 is called the shrinkage penalty
as it reduces the parameter estimates. The estimated parameter vector for Ridge regres-
sion is denoted BR. Typically, the predictors for Ridge regression are standardized and
centered before estimation. This allows the parameters 3;, 7 = 1,2,...,p to be penalized
on the same scale. Ridge regression has the disadvantage that the method still includes
all predictors, where it simply reduces the estimates, and hence makes the model less in-
terpretable. A better prediction model may be made by setting some parameter estimates
to 0 exactly as LASSO does.

LASSO
LASSO solves an optimization problem similar to that of Ridge regression
AL p
B = arg;nax (ﬁ(ﬂ;y | X) = 2> |b’j|) : (3.146)
j=1

where the shrinkage penalty is AY>7_, |3;] and X is again a tuning parameter. Thus, the
L1-norm is used in the shrinkage penalty

1811 = 151- (3.147)

The shrinkage penalty in this setting has the effect that when A is sufficiently large, then
some parameter estimates will be 0 exactly and thus LASSO can be used for variable
selection. The parameter estimates from LASSO are denoted BL. LASSO estimates pa-
rameters and selects predictors at the same time since some estimates are most likely 0.
Note that centering and standardization are also performed for LASSO as was the case
for Ridge regression.

The log-likelihood for logistic regression in the case of two classes was found by (3.113)
and if this likelihood is used in (3.146), the following optimization problem is obtained

3 - arg max (i lyix[ B — log(1 + exp(x] B))]] — A z_j !@-I) : (3.148)

i=1
which can be similarly done for Ridge regression. The optimization problem can again be
solved by maximum likelihood estimation using approximation methods such as Newton-
Raphson.

Comparison of Ridge Regression and LASSO

Using a different notation, Ridge regression (3.145) and LASSO (3.146) can be reformu-
lated as optimization problems, respectively solving

P
max (L(B;y | X)), subject to Y 7 <s (3.149)
=1
p
max (L(B;y | X)), subject to >_|B;| < s. (3.150)

J=1
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Thus, for every value of A there exists an s such that the optimization problem has the
same solution. Consider for simplicity the maximum likelihood estimate B for p = 2, that
is, only 2 predictors are considered. In the case of LASSO, the 8 must be found within
the diamond

51| + 52| < s. (3.151)

Similarly, the Ridge regression gives a parameter estimate within the circle
B+ B < s. (3.152)

Figure 3.7 illustrates what happens when LASSO and Ridge regression are used. In all
four plots we try to predict the class 5percent based on logistic regression with Height1
and Weight1 as predictors. In all four plots, the maximum likelihood estimate is indicated
by B = [0.46, —1.49]. The top left plot shows the LASSO decision area with A = 0.06 in
blue, and the black contours representing estimates resulting in smaller likelihoods than
the maximum on which B is based. The estimate of the parameter vector for LASSO is
the red point, where the contours meet the restricted area marked with blue. This gives
BL = [0, —0.59]. Similarly the top right plot shows the case of using Ridge regression,

where BR = [0.22,—0.79] with A\ = 0.06. That is, f* = 0 for LASSO exactly where for
Ridge regression @f{ is only shrunken towards 0. This will be the case for A sufficiently
large. The bottom left plot shows what happens if less penalty is applied using LASSO.
When A = 0.02, indicated by the blue solid line, then ,BIL 2 0. The dashed line indicates
what happens, if even less penalty is applied. The plot bottom right shows the situation
where A = 0, ie. where no penalty is imposed. This corresponds to maximizing the logistic
regression log-likelihood. Note that if A = 0 then there are infinitely many values for s
that satisfy this. Here we just outlined one of them, represented by the blue solid line.
In higher dimensions, that is, when more than two predictors are included, the contours
could hit surfaces and corners for LASSO and thus set more parameter estimates to 0.
The value of A that gives the best prediction model can be found based on cross-validation
as done in the example, for more on cross-validation see Section 4.2.1.

Example

First, a logistic model is fitted without a shrinkage penalty to be able to compare what
happens to the parameter estimates when using LASSO and Ridge regression. We fit
a logistic regression model with all height and weight variables defined in Appendix A,
which are designed to influence the response. Finally, in this example, all normal and
uniform variables that do not affect the response are included and therefore LASSO is ex-
pected to set their parameter estimates to 0. Furthermore all predictors are standardized
in this example in order to compare the influences of the 8 estimates. The estimates for
the logistic regression model are shown in the top row in Table 3.1.

It is now desired to find a LASSO and Ridge regression model. In order to create a
LASSO or Ridge regression model, a value for A must be selected first. Figure 3.8 shows a
plot of the B estimates for respectively LASSO to the left and Ridge to the right relative



3.4. Logistic Regression 47

BWeightl

BWeightl

AL
3 AR
a 2o
| ) [
=
(eaR
N N
| |
™ ™
| I I I I I I I
-0.5 0.0 0.5 1.0 -05 0.0 0.5 1.0
BHeightl BHeightl
N
o 0
S T
o
o o
nL -
E e g o
T 3 . Al A
\_\ \ CDE. B B
" — L 4
\-,- °
o ~
! |
o
P | | | ot | | |
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
BHeightl BHeightl

Figure 3.7: In all four plots we try to predict class 5percent based on logistic regression using
Heightl and Weight1 as predictors. In all four plots, the maximum likelihood estimate is
indicated by B = [0.46, —1.49].

Tops: On the left the LASSO decision area with A = 0.06 in blue, and the black contours
represents estimates resulting in smaller likelihoods than the maximum on which of ,B is
based. This gives ,BL = [0, —0.59]. Similarly for Ridge regression BR =[0.22,—0.79] on the
right with A = 0.06.

Bottoms: The plot on the left shows what happens if a lower penalty is applied using
LASSO. When A = 0.02, indicated by the blue solid line, then Bf # 0 . The dashed line
indicates what happens, if even less penalty is applied. The plot to the right shows the
situation where A = 0, ie where no penalty is imposed. This corresponds to maximizing
the logistic regression log-likelihood.
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Figure 3.8: The plgg L(a)n;fdzhe left shows how the parameter estimates for LASSO changing with
different choices of A. Similarly, for Ridge regression, which is seen on the plot to the
right. The logarithm of the A values can be seen in the bottom x-axis of each plot. Large
values of A cause more shrinkage of the parameters. For Ridge regression, it is seen that
the estimates are shrunk towards 0 and for LASSO they become 0 exactly. This is also
indicated at the top of each of the plots, showing how many parameter estimates differ
from 0 for a particular value of A.

to different choices of A\. Thus, for LASSO, a A value can be chosen which gives a desired
number of predictors. Figure 3.8 also shows that the estimates for both LASSO and Ridge
shrink towards zero when A is sufficiently large.

For both LASSO and Ridge, we now select A\ on the basis of 10-fold cross-validation,
where the AUC evaluation measure is used, as logistic regression returns probabilities
and thus is threshold dependent. For more on AUC see Section 4.1 and for more on
cross-validation see Section 4.2.1. The A value chosen is the largest A within one standard
deviation of the best A\, with the best A value being the one that gives the largest AUC
score. This resulted in a log(\) value for LASSO of log(A\¥) = —6.79 and for Ridge
regression, log(A?) = —3.23. The estimates for 8 based on these choices of A are shown
in Table 3.1.

| Intercept | Height | Height1 | Height2 | Height3 | Weight | Weight1 | Weight?2 | Weight3
LogReg| -14.977 | 9.311 | -0.209 | -0.603 | -3.175 | 1.803 | 9.465 | 5.344 | 1.111
Ridge -5.358 | 0.292 | 0.244 0.25 0.328 | 0.043 | 0.058 | 0.042 0.06
LASSO | -7.219 | 2.231 0 0 -0.048 0 1.89 0 1.553

Table 3.1: Parameter estimates for the model
lpercent~Height+Heightl+Height2+Height3+Weight+Weightl+Weight2+Weight3
using logistic regression, LASSO (with log(A\l) = —6.79)
and Ridge regression (with log(Af) = —3.23).

In Table 3.1 it can be seen that Ridge regression just shrinks the parameter estimates
towards 0 compared to what the estimates for the logistic regression are. LASSO sets
some parameter estimates to 0 exactly. It would have been expected that Height and
Weight, as the latent variables, would have been the ones selected but LASSO set Weight
to 0 and included Weightl and Weight3 instead. Note that not all parameter estimates
become smaller as A\ becomes larger. For example, looking at Table 3.1 we see that
the parameter estimate for Weight3 has increased for LASSO by using log(AL) = —6.79
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compared with logistic regression. This is also seen in Figure 3.8, where the estimate
value remains relatively high for this choice of .

Finally, we tried including all uniform and normal variables and correspondingly make
a logistic regression, a LASSO and a Ridge regression model. As expected, LASSO set
all the parameter estimates for the different uniform and normal variables to 0 and Ridge
regression shrunk them towards 0. We did not start out the example with all these pre-
dictors, as eg. the plots in Figure 3.8, would be even harder to visually interpret with 16
variables. 0

It may be that unnecessary noise has been removed by using LASSO or Ridge regres-
sion, and thus a better prediction model may be achieved. But whether the reduction of
parameters from LASSO is better than just shrinking them with Ridge regression remains
unexplored, and both will be applied to the real data.

The remainder of this chapter presents other classifiers, that might be applied to the
real data set, as to compare them with our main method, logistic regression.

3.5 Linear Discriminant Analysis

Like logistic regression, linear discriminant analysis (LDA) is also a linear classifier. In
Section 3.4, P(Y; = 1 | x;) was estimated directly using the logistic function. In linear
discriminant analysis , the purpose is to estimate the same probability. The idea is to
utilize Bayes Theorem to approximate the Bayes classifier (3.9). We get from Bayes

theorem that
PX=x;|Y,=¢)PY;=¢)

where P(Y; = ¢ | X = x;) is called the posterior probability. Let the density function

P(Yi=c|X=x)= (3.153)

for an observation, which belongs to class ¢ be given by f.(x;) = P(X = x; | Y; = ¢).
Furthermore, let 7, = P(Y; = ¢) be the prior probability that an individual belongs to

class ¢, which means that 3% 7, = 1. Then the law of total probability implies

PX=x;|Yi=c)PYi=c)  fexi)m.
S PX=x |Yi=)PY,=1) T filx)m’

PYi=c|X=x;) = (3.154)
The choice of ¢ which maximizes (3.154) is the Bayes classifier. The prior probability 7, is
easily found by taking the number of observations with response Y; = ¢ and dividing it with
the total number of observations. However, estimating f.(x;) is not as straightforward
without some assumptions. LDA assumes that f.(x;) are ¢ densities and each of these
follows a p-dimensional normal distribution and assuming that the covariance matrix is
the same for all K classes yields

%) = g (3w S )] G5y

where . is a mean vector for class ¢ and X is a covariance matrix of size p x p, which is
thus assumed to be the same for all K classes. Inserting the density function in (3.154),
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we get

Tegmprrsre OXP (—5(xi — pe) T8N — pe)
P(Y; = ¢| X = x;) = ——CoOrPEE - ) (3.156)

Zz]; WZW exXp (_%(Xi — ) "X (% — Mz))

_ Te €XP (_%<Xi - #C)TZ_1<Xi - )u'c)) (3 157)
S5 T exp (—%(Xi — ) "ETN(x; —Ml)) |

Maximizing this equation corresponds to maximizing the numerator herein, since the
denominator is the same for all K classes. Moreover, since the logarithm is a monotone
function, maximizing (3.157) corresponds to maximizing

log (ﬂ-c exp <_;(Xi - MC)TE_I(XZ' - y’c))) (3158)

1

=log(me) — 5 (xi — pre) S (% — pee) (3.159)
1 1

=log(m.) +x; Xy — 5;&2*% — §sz—1xi. (3.160)

Since x; does not depend on ¢, under maximization (3.160) reduces to

5u(x;) = log(m.) + %/ 5 po — ;ujz—luc. (3.161)

The function d.(x;) is called the linear discriminant function because it is linear

for x; and used to choose how to discriminate Y;. In order to maximize (3.161) then

01(x;),02(%;), . .., Ik (x;) should be estimated, which is done by estimating the unknown

parameters [y, fto, ..., g and m, T, ..., Tk as well as ¥ and then inserting them into
(3.161). These are given by the maximum likelihood estimates

1
po=— Y x, (3.162)
C {iy;=c
n
F,o= < 1
o= (3.163)
. 1 & T .
Y= Yo (xi— ) (% — i), (3.164)
n— c=11y;=c

where n, is the number of observations in class ¢ and n is the total number of observations.
Thus LDA approximates the Bayes classifier by assigning Y; to the class for which the
discriminant function 0, is largest. Furthermore, P(Y; = ¢ | X = x;) can be estimated by
inserting i, 7, and 3 into (3.155) and then (3.154).

Quadratic Discriminant Analysis

LDA can be extended to Quadratic Discriminant Analysis (QDA), here we still try to
approximate the Bayes classifier with ¢ density functions following p-dimensional normal
distributions, but now we also have ¢ different covariance matrices ..
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Once again we maximize (3.157), now with 3., which corresponds to maximizing J.(x;)

1 _ 1
Sulox) = 5 (i = ) 50 (= ) — 5 Tog (15) + log () (3.165)
1 1 1
= XS X S e — S S e — 5 log (1%) +log (), (3.166)

which is a quadratic function in x; and thus called the quadratic discriminant function.
When the number of training observations is high QDA is preferred over LDA, due to
the bias-variance trade-off [1].

Example

In this example, the simulated data set described in Section 1.1 is used. This data set
is used because there are only two predictors Height and Weight. This is an advantage
because we can thereby illustrate decision boundaries between the 3 classes in our plots.
For the LDA, the three discriminant functions in equation (3.161) are set equal to each
other pairwise, which results in the black linear decision boundaries seen in all the plots
to the left in Figure 3.9. The top plot on the left is the unbalanced data set described
in Section 1.1. The middle plot on the left is the balanced case where for each of the
three classes there are 100 observations. The bottom plot on the left is the unbalanced
case where there are 100, 500 and 9400 observations respectively from the three classes
1percent, Spercent and 94percent. To the right, similar examples are made for QDA.
In this case, the quadratic discriminant functions from equation (3.166) are set equal
to each other pairwise, resulting in quadratic decision boundaries. The two classifiers
result in decision lines that are close to Bayes decision lines. The plots in the middle and
bottom show that we do not need to take extra account of our unbalanced data, if only n
is sufficiently large, thereby gaining decision boundaries near Bayes decision lines. This
makes sense because the mean values and covariance matrices are estimated assuming
that data is drawn from a multivariate normal distribution. Since the simulated data has
been drawn from the multivariate normal distribution, estimation will result in values
that are close to those of the simulated data when n is sufficiently large. Also, note that
QDA is preferred over LDA when n is large as mentioned in the theory. In general because
it is more flexible, furthermore in case of this specific example, because it corresponds to
the underlying model.

O

The decision lines of LDA look similar to those of logistic regression, this is further
supported by [2] which claims that there is little difference in LDA and logistic regression in
practice. We thus prefer logistic regression over LDA | as it is based on fewer assumptions.
Should our real data be multivariate normally distributed for the predictors and should
the classes have different covariance matrices, quadratic discriminant analysis would be
an appropriate approach, as the introducing of non-linearity to logistic regression that is
needed to model this situation is more complicated.
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140 150 160 170 180 140 150 160 170 180

Figure 3.9: All the plots on the left show decision lines using LDA and all the plots on the right show
decision lines using QDA. Bayes desision lines are depicted in gold. In the top row, the
simulated data from Section 1.1 is used. In the middle row, the balanced case is seen
where 100 observations for each of the classes 1percent, Spercent and 94percent are
drawn. The plots at the bottom are the simulated data set described in Section 1.1, where
10 times as many observations from each class are drawn.
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3.6 Tree Based Methods

Classification trees are another classifier, which can classify an individual’s response Y;
based on predictors x;. First, consider the set, Ry, called the root of the tree which
consist of all observations y;, © = 1,...,n, from the training data. The best prediction
7* that can be made based on the tree T' containing only Ry, is that it belongs to the
class that is most frequent among y. Thereby all individuals who do not belong to the
most frequent class are miss classified. This can be improved by splitting the Ry into two
disjoint subsets. Split data based on a single binary split of a predictor x,;. The resulting
new tree consists of the root and two nodes R; and Ry, as there are no further splits of
the sets R; and R, they are called terminal nodes or leaves. The prediction in each leave
is denoted ¢z, and §r,, respectively, and all predictions based on each set are again the
most frequent class within the set. The best split is based on a greedy algorithm, which
means that the best split at a given time is made without regard to whether a better split
can be performed later on. For a continuous predictor, select the sets

Ri(j,s) ={i| z; < s} Ry(j,s) ={i| zij > s}, (3.167)
which solve the optimization problem

min (Loss (Ry(j, 5)) + Loss (Ra(j, 5)) ). (3.168)
2,8

where a loss-function could be the classification error rate Err (4.1). In this case the
Err corresponds to the proportion that does not belong to the most frequent class in
that region and thus must be minimized in order to get pure response regions. The
classification error rate is thus given by

Loss (Rp) = Err (Rn) = 1 — max(Pme), (3.169)

where p,,. represents the proportion of subjects belonging to class ¢ for a given region R,,.
The best predictor x,; and the best split s for this predictor are chosen. If the predictor
is categorical, the classes for such predictors are split into two groups.

A larger tree is grown by splitting regions R; and R, respectively in the same manner
as we did with the root Ry. This procedure is repeated until each observation has its own
leaf or until a predetermined stop criterion is reached, such as if each leaf contains at least
5 observations [1]. A tree of that size will likely overfit the data, thus in order to get a
better bias-variance trade-off, the tree is pruned after growing a full tree, which means
omitting splits, starting from the leaves. It is done in practice by introducing a penalty
based on tree size, thus penalizing large trees. Let T” denote the set of bottom regions
R; € T (only the leaves of T') and let |T]| denote the number of leaves in the sub-tree
T; C T, and solve the optimization problem

min | Y Loss(R;) +a|T}| |, (3.170)
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where the parameter a > 0 indicates how hard to penalize large trees. As considering all
possible subtrees can be computationally overwhelming, this is generally done step-wise
by omitting splits starting from the leaves of the tree. This will not always lead to the
global minimum, which is not a problem, as reaching the global minimum can lead to
over-fitting.

In practice we will use the Gini index to grow a full tree instead of using classification
error rate, as it more specifically prioritizes, pure leaves, meaning that each individual
leaf should have a low classification error rate.

K
Loss (Ry,) = Gini (Rin) = > Dme (1 — Pme) - (3.171)
c=1

This measure can thus be used in order to calculate the purity for a region R,,, since
values of p,,. close to 0 and 1 across the K classes will result in a Gini index value close
to 0.

Example

Applying a classification tree to the usual simulated data set is unsatisfactory, as the
data is so nicely split that there is no meaningful difference in a "fully grown" tree and
a pruned tree. We thus apply the classification tree method to a similarly drawn data
set with n = 10,000, in which we previously have seen more mixing of 1percent and
94percent in eg. Figure 3.9 bottom.

Growing a "fully grown" tree is step one in the process of creating a useful classification
tree, we here keep "fully grown" in quotation marks, as a fully grown tree would have n
leaves. There is no need to grow the tree further than the point where all leaves are pure.
Furthermore, in this example we stop growing even earlier as a "fully grown" tree in this
example is a tree of dept 3, for visual reasons. In Figure 3.10 we see a "fully grown" tree
on our data. At the root of the tree all observations are classified as 94percent, resulting
in 600 mis-classifications. The "fully grown" tree has the number of mis-classifications
reduced to 69. Note that most of the observations end out in leaf 15, where 93.7% of
all observations in the data set are classified as belonging to class 94percent. We use
the Gini index to try and minimize the effect of the dominating class 94percent when
growing the tree.

After growing a full tree we prune the tree down to the smallest tree with a total
ten fold cross-validated Err within one standard deviation of the overall lowest ten fold
cross-validated Err in the "fully grown" tree. The pruning results in the tree depicted in
Figure 3.11. This tree mis-classifies 80 observations, but is expected to perform better on
new data as the variance of the model is reduced, though introducing more bias. When
the tree is pruned we use it as a classifier, and visualize the classification as we usually
do with a scatter-plot and decision lines. This visualization can be seen in Figure 3.12,
note how the decision lines are all straight lines as a consequence of the binary splits. [



3.6. Tree Based Methods 55

e [WeigRt) |
>=76.3
<76.3
.............
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<771 <80.1 <50.3 <73.1
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Figure 3.10: A tree grown to dept 3 on the 10,000 observations drawn as the simulated data set. The
knots are splits of either Height or Weight. In the leafs we see in the first line which
class is the dominant one, in the middle line it is reported how big a proportion of the
observations in a given leaf belongs to the classes 1percent, 5percent and 94percent
respectively. The bottom line in a leaf reports the percentage of all observations that end
up in a given leaf.
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e,
>= 176

<176
Weight | ...

Figure 3.11: The resulting tree after pruning the tree in Figure 3.10. The knots are splits of either

Height or Weight. In the leafs we see in the first line which class is the dominant one, in
the middle line it is reported how big a proportion of the observations in a given leaf
belongs to the classes 1percent, Spercent and 94percent respectively. The bottom line
in a leaf reports the percentage of all observations that end up in a given leaf.
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Figure 3.12: The pruned tree from Figure 3.11 applied as a classifier to the data set with n = 10, 000.
Decision lines in black and Bayes decision lines in gold.

An advantage of trees is that, at least when they are pruned, they are easy for health
care professionals to use in a clinical setting as they are flowcharts with yes/no options.
The real data set is most likely not as nicely separated as the simulated data, and we can
thus not expect a tree as simple as the one in Figure 3.11 to be optimal. As a classifier
we might expect the trees to overfit when applied to real data, but we saw no tendencies
of such in our work with the simulated data.

3.7 k Nearest Neighbors'

For a fixed k = 1,2,...,n, the k Nearest Neighbors (kNN) classifier compares a new
observation xj to all training observations x; for ¢ = 1,2,...,n, chooses the k nearest
observations according to some distance measure d(x;,x;) and classifies the new observa-
tion’s response g5 by majority vote between the K classes of y,

g=argmax Y  w(x;,xy)ly =, (3.172)
ce{l,..., K} ’i:xiGNk(xa)

where Ny (x{) are the k nearest neighbors of x{; according to the distance measure d(x;, X))
and w(x;,x5) is the weight of x; relative to xg. In the case of a tie between classes, the
class is chosen at random. The weights w(x;,x{) are usually set as a function of the

distance, for instance
1

- 3.173
1+ d(x;,x35)’ ( )

w(xiv XS) =

making training observations closer to xj more important. Weights can be useful in our
project as the occurrence of some of our classes is relatively low (ADHD 5% and ASD 1%).

IThis section is based on [1, 2, 44].
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Without weights the kNN classifier is strongly biased towards a dominant class purely
through the dominant class’ high occurrence. If these weights are not sufficient, a penalty
can be added to equation 3.172. For example, the penalty may be that the right side is
multiplied by (1 — a,), where a, is the proportion of observations belonging to class c.

The distance measure used to select the k closest neighbors is now discussed. First,
note that continuous and ordinal predictors are standardized to have mean 0 and standard
deviation 1 so that they can be measured on the same scale. The dissimilarity between
two observations is defined by

p
j=1

where the squared distance is often used as distance measure in case of continuous pre-
dictors

d (ZL’Z']', [Ei/j) = (CL’Z‘]’ - xi’j)2 . (3175)

The categorical variables are treated by applying d (xij, xi/j> = 0, if the j'th predictor
has categorical response and the two observations have the same level and if not, then
d (a;ij,:ci/j> =1.

Most of the classifiers in this project are off-line classifiers, meaning that after a model is
trained there is no need for the training data when a new observation is to be predicted.
This is not the case for kNN which is an on-line classifier. Every time a new observation
is to be predicted the n distances to all training observations must be computed. Thus,
PCA should be considered to reduce the large number of predictors before the kNN is
performed especially because we have a huge number of observations and therefore many
distances must be calculated, and reducing the number of dimensions would ease each of
these calculations. When determining the appropriate value of k for the kNN classifier,
cross-validation can be used, for more on cross-validation see Section 4.2.1.

Example

In this example we use the simulated data set from Section 1.1, which involves two predic-
tors. First we try with different choices of number of nearest points k& without any kind of
weights, neither w(x;, x§) nor .. Thus, for a new observation the k nearest neighbors are
obtained. This resulted in the plots shown in Figure 3.13. The plot at the top left shows
the situation when k£ = 1 and it is seen that the decision boundaries in this case tends to
overfit to the training data. In cases where the classes are not as nicely separated as our
simulated data is, it will become more apparent. The plot at the top right shows the case
when k = 3, which agrees overall with the bayes decision boundaries. The two bottom
plots show the situation where k is 20 and 100, respectively. Here it is clearly seen that
some kind of weight is required to control the unbalanced setup as the red decision area
becomes smaller as k increases. In the case where £ = 100, there will never be any red de-
cision areas, as there are only 10 red observations in the simulated training data. To find
the optimal k, we performed 10-fold cross-validation for £ =1,...,100 and based on the
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evaluation measure f-score, which will be elaborated in Section 4.1, the result was k = 3.
Cross-validation will be elaborated in Section 4.2.1. We chose to use the f-score instead
of the AUC as there is no threshold in kNN. We have also tried to run a corresponding
cross-validation with the weights w(x;,x5) in (3.173) and «,. both separately and at the
same time. This resulted in poorer f-scores based on cross-validation and therefore the
best result was k = 3 without weights. Note that the f-score measure is calculated by
considering a class as the event of interest and therefore we have made an f-score for each
of the classes, after which the average of these three f-scores is taken to make the final
f-score evaluation measure.

140 150 160 170 180 140 150 160 170 180

Figure 3.13: kNN applied to the simulated data set with different choice of & and no weights. The
plot top left has k = 1, the top right plot has k = 3, the bottom left plot has & = 20 and
the bottom right plot has £ = 100. Bayes decision boundaries are depicted in gold.

Since a low k is preferred when the number of observations for the smallest class
is 10 even with weights, we choose to use the simulated data set, where there are 10
times as many observations from the different classes, ie. 100 observations from the class
1percent, 500 observations from the class 5percent and 9400 observations from the class
94percent. A corresponding cross-validation is performed on this data set, which resulted
in the best cross-validation score for k& = 17 when both weights w(x;, xjj) and a. are used.
Figure 3.14 shows the case where kK = 17 and both weights are used for the large data
set. It is seen that KNN makes decision boundaries close to the Bayes decision boundaries
but visually, Figure 3.14 shows that the green area has generally lower priority than the
other two, indicating that the green class penalty is too high but better than no penalty
according to cross-validation. However, this kNN run tries to handle the overlay of the
two classes 1percent and 94percent. This can be seen as the decision area bottom left is
red and that small regions are red in the green area. It should be noted that we generally
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get high f-score measures based on cross-validation because data is so nicely split. Thus
a lower choice of k without any weights will also perform well for training data as not
many observations are misclassified hereby.

140 150 160 170 180

Figure 3.14: kNN applied to the simulated data set with 10 times as many observations from each
class. The plot shows the case where k = 17 and both weights are used, as it was the
best result based on 10-fold cross-validation with the evaluation measure f-score. Bayes
decision boundaries are depicted in gold.

O

For our project, we could discard kNN merely on the basis of it being an online
classifier, and thus not applicable in a real life setting, as the access to information on
all previous patients is restricted, in such a way that a clinician would not be able to use
kNN. But it is possible for us to use it in this project as we do have access to data, and
we can thus use it in comparison with the other classifiers. The kNN classifier is prone
to overfitting, and as there are also issues with the weights, we do not expect kNN to
perform well on the real data set.

3.8 Summarizing Remarks

The aspects of logistic regression described in this chapter provides a wide range of mod-
eling customization. The fact that logistic regression produces probabilities instead of
just pure classification further adds to our appreciation for this classifier. We choose to
proceed with logistic regression and seek to optimize logistic regression classification on
our real data set by using splines, LASSO and Ridge regression. Should we seek to com-
pare logistic regression to another classifier, we choose classification trees, as this method
is based on a completely different approach. It also seems that classification trees actually
do appear applicable to our data, at least on the simulated data set, whereas kNN faces
several issues.



4. Model Selection

In Chapter 3 various classifiers were presented. This chapter is about how to choose
between all these classifiers and variations of such. Since this master thesis aims at
constructing the best predictive model, we need to use one or more evaluation measures
to be able to compare such models. A presentation and discussion of different evaluation
measures are therefore presented in Section 4.1. Furthermore, when selecting a model,
the evaluation measure should be calculated for data that the model is not trained on.
This avoids overfitting and two methods that take this into account are cross-validation
and bootstrap, which are introduced in Section 4.2. Moreover, it is suspected that some
predictors may cause unnecessary noise that will lead to poorer predictions based on an
evaluation measure. Thus shrinkage methods were introduced in Section 3.4.3, but these
are, as mentioned in the section, likelihood based and therefore best subset selection is
introduced in Section 4.3, which can be used both for likelihood based and non likelihood
based classifiers.

4.1 Evaluation Measures!

When one or more models are built, a evaluation measure is needed to determine which
model predicts best and whether the best predictive model gives good prediction at all.
Since our setup is a classification problem, it is desired to use an evaluation measure
based on the correct classification of observations. An evaluation measure that can be
used, after fitting a model f to some training data {(x1,91),..., (X, yn)}, is called the
training error rate of f , which is calculated by

n

LSl # ], (@.1)

=1

where 1 is the indicator function and ; is the prediction from f (x;). The training error
rate is not as interesting as the test error rate

m

LS £ 31]. (42)

=1

1This section is based on [1, 35, 36].
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TP
FN

FP
TN

Figure 4.1: Above the blue line: The observation has the event of interest. Below the blue line: The
observation does not have the event of interest. Above the red line: Positive prediction.
Below the red line: Negative prediction.

where ¢ is the prediction from f(x¥), where {(x5,y%), ..., (x*, 4" )} are new observations
and thus not used to train f .

We want our models to predict future unknown responses, therefore we prefer eval-
uating them on other data than what we used to train it with. Such an evaluation can
be considered internal or external. Within the category of internal evaluation lie all eval-
uation measures that can be performed on the available data set, herein of course the
training error rate of (4.1), but also all other methods described later in this section.
Even though they can be used for external evaluation, we only perform internal evalua-
tion in this project. External evaluation consists of computing e.g. (4.2) for a data set not
only new to f , but also of different origin. Evaluating f on data collected later in time or
at another location than the original data will disclose information on the generalizability
of the model f and thereby evaluating the applicability of the model.

As mentioned, there are several evaluation measures. The training error rate indicates
how many observations are incorrectly classified, but since the incidence of ADHD(5%)
and ASD(1%) is low, a sensible classifier can be made by classifying all persons to not have
any of the mentioned diagnoses. By using such a classifier, 5% and 1% errors are made
respectively. Therefore, a precise classifier is made based on the training error rate, but
the classifier is of course useless since it does not identify the issues of interest. Another
and more useful evaluation measure for our setup should therefore be used. The binary
classification problem is considered below, as it applies similarly to the multiple class case
where there are several possibilities for a person not to have the event of interest.

Consider Figure 4.1, where the space within the ellipse denotes data that is either
training or test data. The ellipse is divided into two parts separated by the blue line,
where observations above the blue line have the event of interest, for example ADHD,
and observations below do not have the event of interest. In addition, a red line is
displayed, which represents a classifier who has respectively predicted a person to have
the event of interest or not having it based on data. Observations above the red line are
predicted to have the event of interest, for example ADHD, and the opposite is the case
for observations below the red line. Thereby, the ellipse is divided into 4 subsets, each
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Actual response

Positive Negative
Positi TP FP PPV | 2IF __
Classified by model ositive | # # #TP-;#;F P
Negative | #FN #TN NPV %

Sensitivity | Specificity
#TP #TN
#TP+#FN | #FTNLH#EP

Table 4.1: Confusion matrix.

representing one of the following situations

1. True positive: Correct positive prediction (TP)

2. False positive: Incorrect positive prediction (FP)
3. True negative: Correct negative prediction (TN)
4. False negative: Incorrect negative prediction (FN).

An observation belongs to one of the four subsets and based on this, the following so-called
basic measures can be calculated, which are used in several evaluation measures within
classification. The first basic measure is called sensitivity and describes the proportion of
observations that are correctly classified with the event of interest out of all observations
which actually have the event of interest, that is

4TP
4TP + #FN'

Sensivity = (4.3)
The sign # means the number of people belonging to the subset. Sensitivity thus describes
how good the model is at identifying the observations that have the event of interest.
Another basic measure is specificity, which similarly describes how good the model is to
identify people who do not have the event of interest

#TN

(4.4)
The last two basic measures presented in this project are two measures that are extremely
important for the doctor to know in our case. One is called positive predictive value
(PPV), which is the probability that a person has the event of interest given that the
person is classified as such

#TP
#TP + #FP’

Similarly, the last basic measure is called negative predictive value (NPV), which is the

PPV = (4.5)

probability that the person does not have the event of interest given that the model

classifies the person as such
#TN

#TN + #FN’

These basic measures are often gathered in a so-called confusion matrix, as in Table 4.1.

NPV =

(4.6)
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Note that there exists a confusion matrix for each choice of threshold for a threshold
based model. When evaluating the models, it is easier to evaluate by 1 measure, thus the
so-called F-score measure is introduced, which combines PPV and sensitivity

PPV - Sensivity

Fy= 1+~
A G )(72-PPV)—|—Sensim'ty’

(4.7)

where v > 0 is a parameter that determines how much PPV and sensitivity are weighted
in the overall measure F,. If v < 1 more focus is on PPV and if v > 1 is the case, then
there is more focus on sensitivity. It is interesting for us to try different values for + such
as %, 1,2, since both PPV and sensitivity are important to us.

Another evaluation measure is the area under the curve (AUC), where curve refers to
the receiver operating characteristic curve (ROC). A ROC curve is a discrete decreasing
function of sensitivity and specificity and can be made for all classifiers that require a
threshold. A confusion matrix such as Tabel 4.1 can be made for a classifier based on
a threshold and a ROC point has the coordinates (Specificity, Sensivity) that appear
from the confusion matrix. If several different thresholds are selected, several confusion
matrices and hence more ROC points are obtained. An example of a ROC curve is seen in
Figure 4.2, where it is noted that our x-axis ranges from 1 to 0, and therefore it is desired
to get points at the top left corner of the plot in order to have both high specificity
and sensitivity. Note that a ROC curve on this form always starts in (1,0) and ends in
(0,1). The advantage of ROC curves is that two models can be compared, for example,
as in Figure 4.2. The figure shows that the red model is better at predicting than the
black model, because this model generally has a better trade-off between sensitivity and
specificity. Which models the red and black curve represent is elaborated in the example
later in this section. ROC curves can therefore both be used to determine which model is
preferred, but also contribute to the choice of threshold value which provides a sensible
trade-off between sensitivity and specificity. In other cases, it is not as clear which model
is preferred and, moreover, a single value is desired to evaluate models instead of a plot
and therefore the concept of AUC is introduced. Note that the area of the entire square in
Figure 4.2 is 1 x 1 = 1. Thus, the AUC evaluation measure is the ratio of the area under
the curve to the total area. Generally, a reasonable model is obtained if AUC > 0.7. The
AUC value is calculated by adding the area of the polygons under the ROC curve.

Example

This example supports the explanation of ROC curve above this example by specifically
considering a logistic regression model. In this example, the Spercent class is considered
to be the event of interest, that is, the positive prediction. The logistic regression model
is fitted with the predictors Height, Heightl, Height2 and Height3. These variables
are chosen specifically because they do not produce a particularly good model, but still
a model that is better than random guessing. The simulated data set is so nicely split
by design, that including eg. Height and Weight produces a model with AUC almost
1, this can also be imagined by examining the top right plot in Figure 3.3. Note that
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Class 5percent predicted

1.0

Sensitivity
0.6

0.4

0.2
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0.0
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1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 4.2: ROC curves from a random model (black) and a logistic regression model (red)
5percent~Height+Height1+Height2+Height3.
Note that the x-axis indicating sensitivity goes from 1 to 0.

for this simulated data set there are 1000 observations, where 5% have observed response
Spercent. In order to compare the model with something we know predicts worse, we
compare this model with a classifier that returns probabilities uniformly between 0 and
1.

Based on the logistic regression model, the probability of a person belonging to the
Spercent class is calculated and compiled in a list as in Table 4.2, where the first men-
tioned person has the largest probability score, in this case it is the greatest value for
P(Y; = 5percent | x;).

We now select a range of threshold values between 0 and 1. Then all persons are
classified to have positive or negative response based on their probability score for one
specific threshold value and a similar list is made for other threshold values.

If the probability score > threshold, then the person is predicted as having a
positive response.

Based on this, a confusion matrix is made for each threshold value, one such is seen in
Table 4.3. As we in our project both want high sensitivity and specificity, we have chosen
to show the confusion matrix with a threshold of 0.057, which is the threshold that gives
the highest value of sensitivity + specificity.

The ROC curve seen in Figure 4.2 can now be made based on these confusion matrices,
where sensitivity and specificity are included. To compare the logistic regression model,
the ROC curve for the random model is also made. It is seen that the logistic regression
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ID | Observed Class | Probability
457 Negative 0.61
2 Negative 0.56
53 Positive 0.54
23 Positive 0.45
60 Positive 0.42
10 Negative 0.35
62 Negative 0.32
48 Positive 0.31
173 Negative 0.26
253 Negative 0.26

Table 4.2: The list is a summary of the individuals ID number, their observed response class and the
probability score calculated by logistic regression. The people are sorted so that the person
with the highest probability score is at the top of the list.

Actual response
Positive Negative
Positive | 31 213 PPV | 0.13
lassified b del
Classified by model =g 579 737 NPV | 0.98
Sensitivity | Specificity
0.62 0.78

Table 4.3: Confusion matrix for the logistic regression model 5percent ~
Height+Height1+Height2+Height3 with a threshold of 0.057, which is the threshold that
gives the largest value of sensitivity+specificity.

model predicts better based on the ROC curve than the random model since the ROC
curve for the logistic regression model is always above the random model and thus has a
better tradeoff between sensitivity and specificity.

Other times, the distinction is not as clear and therefore the measures, other than sen-
sitivity and specificity, should also be taken into account when evaluating a ROC curve.
Thus, the results from the logistic regression model 5percent~Height+Height1+Height2+Height3
and the random model are gathered in a table such as Table 4.4, which is used to select
models besides just the ROC curve. Table 4.4 shows that the logistic regression model
generally predicts better than the random model as it has higher basic and evaluation
measures. 0

PPV NPV Sens Spec F0.5 F1 F2 AUC
Random | 0.044 0.946 0.360 0.592 0.054 0.079 0.149 0.485
LogReg | 0.127 0.975 0.620 0.776 0.151 0.211 0.349 0.696

Table 4.4: Comparison of the logistic regression model 5percent~Height+Height1+Height2+Height3
and the random model. The comparison consists of basic measures and evaluation
measures mentioned in this section. A threshold of 0.057 is chosen for the logistic

regression model, and a threshold of 0.58 for the random model.
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For classification the F-score is always applicable, which is why we use it when com-
paring across classifiers where some are not probability based, or if a threshold is set for
the probability based models. When we compare probability based models (all of our
logistic regressions), we choose to use AUC, as this gives a measure of the models overall
predictive performance regardless of threshold.

All of the measures can be calculated for training data, whereby good results are often
achieved due to overfitting the model. Instead, it should be calculated on data that the
fitted model has not seen. Cross-validation and bootstrap are approaches that can be
used to try and address this dilemma.

4.2 Cross-Validation and Bootstrap

This section is about cross-validation and bootstrap, which also can be used when eval-
uating a model. Instead of using all training data to fit a model, cross-validation and
bootstrap can be used such that all (almost all, for bootstrap) training data is still used,
but data used to train the model is not used to evaluate it.

4.2.1 Cross-Validation

Cross-validation is an internal validation tool used to estimate the external validity of a
given procedure. If one had, as we do in this project, a fair amount of data, a way to
evaluate a model on "new" data, could be to randomly take out a part of the training
data for validation use. This approach is computationally inexpensive and simple. Some
considerations about the size of such a holdout data set should be done. One would
usually use as much data as possible to train the model, but the holdout data set should
also be large enough for the evaluation to make sense.

The main concern with the holdout approach is the consideration that we would not
be sure whether the evaluation results obtained were due to chance and only applicable
to this particular split of data.

A way to overcome this is to do the split more than once. We split the data into k
subsets. For each subset we fit the model on the remaining &k — 1 subsets and predict
the responses not used in training. This is done k times and the mean of the evaluation
measure is obtained. This is called k-fold cross-validation

1 k
i=1

With the vast amount of computational power available today, it could be possible to
perform a k-fold cross-validation where the amount of data used for training is maximized
to the extend where £ = n and only one observation is predicted based on a model
trained on all remaining data, this is called leave-one-out cross-validation. Choosing this
approach makes the estimate of the evaluation measure almost unbiased. But as the
training sets in leave-one-out cross-validation are almost identical, the models fitted are
highly correlated, and as the mean of highly correlated quantities have a high variance,
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leave-one-out cross-validation results in an unsatisfactory bias variance trade-off in the
estimate of the evaluation measure. We use 10 fold cross-validation, as [1] states, that
this produces a good balance of variance and bias.

4.2.2 Bootstrap

Another approach to selecting parts of training data is by using bootstrap. Assume train-
ing data {(x1,91), (X2,%2) ;.- ., (Xn, ¥n)} is given. Bootstrap is about creating a new data
set by randomly drawing observations from the original training data with replacement.
This is done n times, such that a bootstrapped data set has the same size as the original
training data set, where an observation in the bootstrapped data set can occur several
times. The advantage is that B bootstrapped datasets can be used to build a model where
there is still test data that the individual models have never seen.

Example

In Table 4.4, various basic and evaluation measures were calculated for the logistic re-
gression model Spercent~Height+Heightl+Height2+Height3. In this example, it is
desired to compare these basic and evaluation measures with some found by 10-fold cross-
validation and bootstrap. For 10-fold cross-validation, data is divided randomly into
10 parts, one of the parts being used for evaluation and the remaining parts are each
time used to train a model. The final basic measures and evaluation measures are the
average of the different basic and evaluation measures. For bootstrap it was chosen to
make B = 1000 bootstrap data sets, where some observations can occur several times.
These bootstrapped training sets are used to train 1000 different models, after which they
are evaluated using the observations not included in the certain bootstrapped data sets.
Again, the average of all these basic and evaluation measures is finally taken to arrive at
final basic and evaluation measures.

Table 4.5 shows basic and evaluation measures for the logistic regression, for the
logistic regression where cross-validation is used, and the bootstrapped logistic regres-
sion model respectively. It is seen that the values are generally higher for the logis-
tic regression, which is suspected to be due to overfitting as the same data set has
been used for training and testing. To investigate this we drew 100,000 new obser-
vations from the same distributions as our simulated data set. We fitted the model
Spercent~Height+Height1+Height2+Height3 to 90,000 of these new observations and
evaluated on the remaining 10,000, and reported the basic and evaluation measures as
the pseudo truth.

We see in Table 4.5, that all the basic and evaluation measures are fairly close, this
might mostly be due to the ill construction of the example. The simulated origin of the
data set might interfere with the results from cross-validation and bootstrap, and we
further do not trust the "pseudo truth' as it might just emulate bootstrapping, at least
if n is sufficiently high for the simulated data set from which the bootstrap samples are
drawn.
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PPV NPV Sens Spec F0.5 F1 F2 AUC

LogReg 0.127 0.975 0.620 0.776 0.151 0.211 0.349 0.696
CV 10 fold 0.151 0.972 0.650 0.703 0.174 0.229 0.354 0.667
BS 1000 0.116 0.971 0.590 0.715 0.136 0.185 0.301 0.647

Pseudo truth | 0.123 0.969 0.489 0.818 0.144 0.196 0.306 0.682

Table 4.5: Comparison of the logistic regression model 5percent ~
Height+Height1+Height2+Height3. Various basic and evaluation measures are gathered
here based on respectively training data, 10-fold cross-validation and 1000 bootstrap
samples. Pseudo truth is the evaluation measures of a fit to a new data set with 90, 000
observations drawn from the original distributions that our simulated data set was drawn
from evaluated on 10,000 observations again drawn from the same distribution.

0

It seems that testing cross-validation and bootstrap on simulated data, at least data
simulated the way we have done, produces inconclusive results. We still do trust cross
validated and bootstrapped evaluation measures to be better estimates of the external
evaluation measures than the training evaluation measure, based on among others [2].

4.3 Best Subset Selection

For non-likelihood based classifiers such as kNN and LDA we can not use LASSO to
choose which predictors to include in order to get the best predictive model. Another
method called best subset selection can be used, which is applicable on all the classifiers
we have presented, also the likelihood based classifiers.

The idea in best subset selection is that p models are fitted with only one predictor in
each model, then the best model is selected based on which one has the best evaluation
measure. Similarly, a number of models are fitted that include exactly two predictors ie.

in total ' ( )
p p! p(p +
(2) T2A(p-2) 2 (4.9)

models. Again, choose the best model based on an evaluation measure. The same proce-

dure is also performed for 3,4, ..., p predictors. The best model among the p + 1 models
(including the null model) is chosen based on the evaluation measure, preferably cross val-
idated or bootstrapped. The best model is among the 27 models and therefore p should
not be much larger than 40, as it is beyond the limit of our accessible computational
power, but also due to the possibility of overfitting the model when fitting that many
models.

4.3.1 Stepwise Selection

To avoid fitting 2P models, when p is large, forward stepwise selection can be performed.
First, consider the null model M,. Then build p new models by including one predictor
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and choose the model that provide the best evaluation measure as M; . Then, the model
M is considered, and the remaining p — 1 predictors are added correspondingly in turn
to this model and the predictor that causes the best evaluation measure is added to the
model M, thus creating the model M,. This process is repeated until the full model,
where all the predictors are included, is reached. Finally, one of the p + 1 models are
chosen based on a cross-validated or bootstraped evaluation measure. Thus, one has to
fit way less models by using stepwise selection as the models chosen by stepwise selection
are among the 2P models. Another method of selecting variables is by using backward
stepwise selection, which is very similar to forward stepwise selection. Instead of starting
with the null model, start with the full model and instead of adding predictors, they are
removed one by one, again based on a evaluation measure.

Example

As an example we apply forward and backwards stepwise selection to our simulated
data set, including the variables Height, Height1, Weight, Weight1, Uniform, Uniforml,
Normal and Normall after which the two variable selection algorithms are compared to
LASSO.

To compare the three approaches we generate a new class called BernLogReg based on
logistic regression, such that we know which predictors we should expect to be selected.
The class BernLogReg is drawn from a Bernoulli distribution with each observation having
the probability

2.2 —0.14Height + 0.18Weight + 0.5Uniforml
P(Y; € BernLogReg | x;) = exp( eight + eight + niformi)

1+ exp(2.2 — 0.14Height + 0.18Weight + 0.5Uniform1)’
(4.10)

As we use ten fold cross-validation the simulated data set is too small, since some folds end

up containing no observations from the class BernLogReg, we thus increase n to 10, 000.
We use AUC to determine which variables to include/exclude, but when comparing the
models with different number of predictors we use 10-fold cross-validated AUC.

In Table 4.6 the variables selected by the two algorithms and LASSO are marked by
x’es. All three models include Weight, Weightl and Uniforml, even though Weight1
was not part of the original formula. This is interesting as the correlation resulting from
Weightl being a transformation of Weight should make the selection methods discard at
least one of them, like forward and backward stepwise selection did with Height when
including Height1.

It seems that the choice made by LASSO to exclude the information from the height
variables resulted in a slightly smaller cross-validated AUC, but as the AUC’s differ only
from the third digit, we can not conclude whether any of the methods are better than the
other based on this example.

We changed the coefficients in (4.10) in numerous different ways, but in most cases
the three variable selection approaches chose the exact same variables, and mostly the
correct ones thus making the shown example the most interesting. 0
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Height |Heightl |Weight |Weightl|Uniform|Uniforml |Normal |[Normall |CV AUC

LASSO X X X 0.8853

Forward X X X x 0.8884

Backward b X X X 0.8884
Truth X X X 1

Table 4.6: The variables selected by LASSO, forward step-wise selection and backward step-wise
selection marked by an x. The truth row is marking by x, the predictors on which the class
BernLogReg is actually based. The cross-validated AUC for each of the models is reported

in the far right column.

All three methods seem useful, and in most of our simulations they do find the correct
variables. We though once again end up inconclusive in our example construction, as we
do not have enough reasons to prefer any of the three methods. According to [45], step-
wise selection is not a good idea, but most of his arguments are founded in explanatory
modeling or are against the use of p-values as decision basis for variable inclusion/ex-
clusion. Since the three methods seem to produce the same, and [45] advises against
step-wise selection we choose to go forward with only LASSO.






5. Application to Real Data

This chapter presents the data-management and analysis of a data set commissioned by
the Research unit for Child and Adolescent Psychiatry and The Psychiatric Research Unit,
North Denmark Region Psychiatry, Aalborg, Denmark. Section 5.1 describes the data
sources and general characteristics of the data set. Section 5.2 contains the application
of the theory in chapters 2 — 4 to the aforementioned data set.

5.1 Data

Here, we go through the different public registers and the variables chosen for the analysis.

5.1.1 Registers & Variables

In this section we first present the 8 registers used to define variables in this master thesis.
At the bottom of each register description we list the variables originating from the par-
ticular register. A detailed description of how the predictors are specifically made from
the variables of the registers can be seen in Appendix B. Finally, after all the registers and
variables are presented Table 5.1 collects the most important information of this section
and Appendix B. The table shows all predictors, their type, a coverage period, and a brief
description of what a predictor indicate.

The Danish Registers can be linked uniquely through the personal CPR-number, mak-
ing the combination of data across registers possible, including linking persons to their
parents.

CPR

The Central Register of Persons (CPR, det centrale personregister) holds a large amount
of administrative data on the Danish population, such as where they live and who they and
their families are. The register was founded in 1968 and linked all existing information,
such that people born before 1968 also were included. We expect the CPR register to
be almost complete and correct, as so many aspects of people’s lives depend on the data
to be correct. Thus, each individual in the register has a self interest in the data being

73
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correct, as well does the Danish administration. The CPR register contributes in this
thesis to the variables: PNR, M_PNR, F_PNR, M_Age, F_Age, Sex and BirthYear.

LPR, MiniPas, LPR-PSYK & DCPR

In Denmark the public health care system covers everybody and it is free. Even though
it is free, there is still a payment system in place such that each individual treatment
facility gets funded according to the amount of treatment they deliver. For the purpose
of both this payment scheme and research, the national patient registers were founded
in 1976, comprising of all contacts to the Danish Regional health services begun or fin-
ished after 1977. The national health registers are seen as four different registers: the
"lands patientregister' (LPR), which is the main register that today actually holds all
information, but until 1995 psychiatric contacts were registered in a separate register "det
centrale psykiatriregister' (DCPR). As the use of a separate psychiatric register still was
needed after 1995 a special table in the LPR was made called the "lands patientregister-
psykiatri" (LPR-PSYK). The fourth register is, like LPR-PSYK, an integrated part of
the LPR, but as private health care facilities conducting work for the national health
service, report their activities to the national health service in a different manner than
the public facilities, all these activities can be seen as a separate register or table called
the "MiniPas-LPR" (MiniPas). All four registers are seen as complete when it comes to
activities paid for by the Danish health care system.

In our data set the MiniPas is nested within the LPR, whereas the DCPR and LPR-
PSYK registers are delivered separately. Thus we go through three tables each time we
seek information from the LPR. The national health register is used to create the variables:
ADHD, ASD and Jaundice.

MFR & L__FOED

Every time a child is born in Denmark, given that the birth is conducted in an official
setting, the midwife records several pieces of information in the "medicinske fgdselsreg-
ister' (MFR). The MFR is, like LPR-PSYK, a part of the LPR, and is delivered as a
separate table. Until 1995 the MFR was not a part of the LPR, and consist of data digi-
tized from paper questionnaires filled by the midwives. This part of the register, covering
births from 1973 to 1994, is called the "register over levendefgdte" L FOED, meaning
the register of live-born, thus only covering the births resulting in a living child. We get
the following variables from MFR/L_FOED: M_Age, F_Age, M_BMI, M_Smoking, GestAge,
Ext_Preterm, Ver_Preterm, Mod_Preterm, Visit_Mid, Visit_Doc, Visit_Spe, Sepsis,
M_Spon_Abort, Parity, Cont_Stim, Malformations, Sectio, B_Length, B_Weight,
ApgarbminQOK, Med_Initiate, Epidural, Infections and In_Asfyxi.

LSR

The Register of Medicinal Product Statistics or "Leegemiddelstatistikregisteret” (LSR)
consist of information on all prescriptions filled in a Danish pharmacy. The purpose of
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the register is to monitor the use of drugs. Thus the validity and quality of the register is

protected by law, making it illegal not to report or to report incorrectly to the register.
The register covers from 1995. We use the LSR to create the variables: M_ADHD_ Meds,
F_ADHD Meds, M_Alc _Meds, F_Alc_Meds, M _Drugs_Meds and F_Drugs_Meds.

Variables Covering Short description

Binary:

Sex 1968- 1 indicates that the subject is male and 0 indicates female

ADHD 1976- The subject received a diagnosis of ADHD before the age of 18

ASD 1976- The subject received a diagnosis of ASD before the age of 18
M_ADHD_Meds |1995- The mother got ADHD medicine before the subject’s 1st birthday
F_ADHD_Meds |1995- The father got ADHD medicine before the subject’s 1st birthday
M_Alc_Meds 1995- The mother got anti-alcohol medicine before the subject’s 1st birthday
F_Alc_Meds 1995- The father got anti-alcohol medicine before the subject’s 1st birthday
M_Drugs_Meds |1995- The mother got anti-drug medicine before the subject’s 1st birthday
F_Drugs_Meds |1995- The father got anti-drug medicine before the subject’s 1st birthday
M_Smoking 1991- Smoking mother during pregnancy

Ext_Preterm |[1973- Gestational age at birth within the weeks [22,27] (rounded)
Ver_Preterm |[1973- Gestational age at birth within the weeks [28, 31] (rounded)
Mod_Preterm |1973- Gestational age at birth within the weeks [32,37] (rounded)
Cont_Stim 1978-96, 1999- | The mother got contraction stimulation during birth

Epidural 2000- The mother got an epidural during birth

Med_Initiate |1991- The birth was medically induced

Sectio* 1978- The subject was born by cesarean section

ApgarbminOK | 1978- Acceptable APGAR score 5 minutes after birth (7,8,9 or 10)
Malformations | 1978-86, 1991- | The subject was born with a malformation

In_Asfyxi 1997- The subject experienced asfyxia in uterus during birth

Sepsis 1997- The subject experienced sepsis in uterus during the pregnancy
Infections 1997- The subject had infections at birth

Jaundice 1976- The subject is diagnosed with jaundice within the 1st year after birth
Categorical:

Parity* 1973- Mothers births including the subject (levels: 1,2,3,4,5,< 6)
Continuous:

M_Age 1968- Age of the mother when she gave birth to the subject

F_Age 1968- Age of the father when the subject was born

M_BMI 2003- BMI for the mother at first doctor visit during pregnancy
M_Spon_Abort |1997- Number of previous abortions for the mother

Visit_Mid 1978- Number of visits to midwife during pregnancy

Visit_Doc 1978- Number of visits to doctor during pregnancy

Visit_Spe 1978- Number of visits to special doctor during pregnancy

BirthYear 1968- The year that the subject was born

GestAge 1973- Gestational age measured in days

B_Length 1973- The subject’s length at birth in centimeter

B_Weight 1973- The subject’s weight at birth in gram

Table 5.1: The variables used in the thesis, constructed as described in Appendix B. For the binary
variables 1 indicate yes and 0 indicate no. *Note that the variable Sectio can be misleading
in the period 1978 — 1996 and that Parity can be misleading in the period 1973 — 1996.
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5.1.2 Initial and Exploratory Data Analysis

The commissioned data set consists of individuals born between the 1st of January 1977
and the 31st of December 2012, who have lived in Denmark for at least two years between
the 1st of January 1977 and the 31st of December 2018. The members of this population
are followed from birth until they turn 18, or until the 31st of December 2018, emigra-
tion or death. Because of the hereditary components of ADHD and ASD we also have
information on the parents of these individuals, this information is only limited by the
temporal coverage of the registers.

We have data on 3,260,957 subjects and 1,262,911 of their mothers and 1,230,674 of
their fathers.

The outcomes of interest are the diagnoses of ASD and ADHD registered as primary or
secondary diagnosis not given in an emergency department. They are defined in detail in
Appendix B. Note that for those not followed until they turn 18 (censored observations)
and those not receiving a diagnosis in their follow-up period are set as "no diagnosis',
although they could potentially still receive a diagnosis before turning 18. In the left
plot in Figure 5.1 we have plotted histograms over the number of new ASD diagnoses
in children/adolescents under the age of 18 in Denmark, this is known as the incidence.
Note that a subject need not be living in Denmark at the time of first diagnosis. This
incidence is merely diagnoses given to a subject who have not previously gotten a diagnosis
in Denmark. Likewise the incidence of ADHD is depicted in the plot to the right in
Figure 5.1. We see that the incidence of both diagnoses increases steadily in the new
millennium. Though it might seem that ADHD levels out from 2010 the incidence could
rise from 2013-2017 without this plot showing it, as we stop including subject in the
cohort in 2012. Thus the population of Danes under 18 in these plots is reduced by a
whole year’s births each year, making the incidence in 2017 for the population in the
age-range 5-18. It is interesting though that the incidence of ASD keeps increasing, even
though the cohort gets smaller. Furthermore, we know from the psychiatric consultant on
this project, Marlene Briciet Lauritsen!, that ASD can be diagnosed even before the age
of three, whereas ADHD is usually not diagnosed before the school age of five to six years.
Thus the flatting out of the ADHD incidence might be correct, but the ASD incidence
should be expected to rise even faster than depicted in Figure 5.1.

!Child and Adolescent Psychiatry, Region of Northern Jutland Psychiatry, Aalborg, Denmark
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Figure 5.1: Number of incident cases of ASD and ADHD in the Danish population under the age of
18. *Note that no new subjects are included into the study from 2013 and forward.

In Figure 5.2 we see the prevalence, which we have chosen to be the proportion of the
5-18 year old Danes diagnosed with ASD or ADHD. We see that the prevalence is steadily
increasing every year. Note that for a subject to contribute in a given year, the subject
needs to be between the age of 5 and 18, be alive and living in Denmark at some point
in that year. For the subject to belong to a diagnosed group, be it ASD or ADHD, the
subject needs to have gotten a diagnose of ASD or ADHD, respectively, prior to or in a
given year.
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Figure 5.2: Percentage of the Danish population between the ages of 5 and 18 with a diagnosis of
ASD or ADHD.

Not all the constructed variables are available for all 3,260,957 subjects. If a child for
instance is a refugee alone in Denmark, we have no knowledge about them in the MFR
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as they were born outside Denmark, and we have no knowledge of such a child’s parents,
as they do not have a CPR number, we thus define the data set AllObs.

AllObs: We have removed subjects with only information about Sex and
BirthYear from the data set, such that the data set now consist of 2,461,082
subjects, where we have at least one of our variables not missing. For this
data set 1.5% have a diagnosis of ASD and 2.0% have a diagnosis of ADHD.
This data set will henceforth be referred to as AllObs.

In Table 5.2 and Table 5.3 we present descriptive statistic for all the variables in Table
5.1, based on the subjects in AllObs. All continuous variables are summarized by their
mean and standard deviation and the binary and categorical variables by a count and
percentage. To compare the difference between the diagnosed and undiagnosed we have
calculated the odds-ratio (OR). The odds-ratio is defined by OR = ( 2 ) / ( a3 ), where

1-p1 1-p1
p1 is the probability of a subject belonging to class 1 given one predictor value x, and p; is

the probability of a subject belonging to class 1 given another value of the same predictor
Z. For logistic regression it is thus calculated by

(131) o (%) B exp(z3) B -
(25) (o)) o) = exp(B)" 7, (5.1)

T—P(Y,=1]7)

]

OR =

=

where P(Y; =1 |z) = % from (3.104). Thus for Table 5.2 and Table 5.3, we report
OR as exp(f) for all predictors, indicating how much a subject’s odds is multiplied if
the given predictor is changed by 1. Note that we calculate the OR by fitting a logistic
regression for all subjects with only the one predictor.

The first thing worth noting in the two tables is the vast amount of missingness, many
variables are missing over half the observations. Secondly, we note that having either
ASD or ADHD severely increases the risk of having the other to a degree where a fifth of
ADHD patients also have ASD and a third the other way around. This overlap may be
the reason we see the same tendencies in some of the ORs of the predictors, such that the
same predictors are protective for both diagnosis and the same predictors are harmful.
This is not the case for the parental age M_Age and F_Age that seem to be protective for
ADHD and harmful for ASD. We furthermore see that M_ADHD Meds and F_ADHD Meds
have much higher ORs for ADHD than for ASD, which should be expected. Another
odd observation is that the parents being treated with medication for alcohol or drug
abuse is protective for ASD. Finally note that the only predictor that seem not significant
is Infections, as 1 is within the confidence intervals (this also seem the case for birth
weight, but this is likely due to the measuring of weight in grams).
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ASD No ASD ASD Missing(%) | OR 95% CI

n 2425033 36049
Sex-male 1234433 (50.9) 26676 (74.0) 0.0 2.745 | 2.681 2811
ADHD 39234 ( 1.6) 10268 (28.5) 0.0 24.219 | 23.622 24.831
AgeAtADHD 10.63 (3.94) 9.55 (3.58) 98.0 0.93 0.924  0.935
M_Age 28.55 (5.09) 29.40 (5.15) 0.4 1.033 | 1.031 1.035
F_Age 31.49 (5.89) 32.29 (6.15) 2.4 1.022 1.021 1.024
M_ADHD_Meds 28427 ( 2.2) 1854 ( 6.3) 47.3 2905 | 2768  3.05
F_ADHD_Meds 24101 ( 1.9) 1306 ( 4.4) 474 2.38 2.248 2,519
M_Alc_Meds 49534 ( 3.8) 662 ( 2.2) 46.2 0.573 0.53  0.619
F_Alc_Meds 109527 ( 8.2) 1456 ( 4.9) 44.5 0.572 | 0.543  0.604
M_Drugs_Meds 18576 ( 1.5) 268 ( 0.9) 47.3 0.617 | 0.547  0.697
F_Drugs_Medi 22943 ( 1.8) 288 ( 1.0) 47.1 0.537 | 0.478  0.604
M_Smoking 263005 (20.8) 7158 (25.4) 47.6 1.294 | 1.259  1.329
M_BMI 24.27 (4.94) 25.05 (5.58) 78.4 1.029 | 1.025  1.032
M_Spon_Abort 0.18 (0.45) 0.19 (0.46) 58.0 1.037 | 1.009  1.066
Parity 10.9

First Birth 975514 (45.2) 16950 (50.6)

Second Birth 794913 (36.8) 11263 (33.6) 0.815 | 0.796  0.835

Third Birth 288216 (13.3) 3915 (11.7) 0.782 | 0.755  0.81

Fourth Birth 71655 ( 3.3) 993 ( 3.0) 0.798 | 0.748  0.851

Fifth Birth 18966 ( 0.9) 279 (0.8) 0.847 | 0.752  0.954

Sixth or over 10519 ( 0.5) 113 (10.3) 0.618 | 0.513  0.745
Ext_Preterm 3944 ( 0.2) 140 ( 0.4) 15.4 2171 | 1.834 2,571
Ver_Preterm 12254 ( 0.6) 329 ( 1.0) 15.4 1.645 | 1.474  1.836
Mod_Preterm 176052 ( 8.6) 3480 (10.4) 15.4 1.23 1.187  1.275
Visit_Mid 4.40 (2.05) 5.13 (2.00) 14.3 1.172 1.166 1.177
Visit_Doc 1.80 (1.53) 2.59 (1.17) 18.6 1.399 | 1.389 1.41
Visit_Spe 2.90 (2.87) 2.05 (2.39) 16.0 0.89 0.886  0.893
Cont_Stim 452240 (22.8) 7952 (25.8) 18.0 1.181 | 1.151  1.212
Epidural 95944 (11.8) 2272 (11.3) 66.2 0.95 0.909  0.993
Med_Initiate 162819 (12.0) 4224 (13.7) 43.6 1.161 1.123 1.2
Sectio 258743 (12.2) 6132 (18.0) 12.6 1.574 | 1.531 1.619
GestAge 277.21 (13.57) 276.28 (15.58) 154 0.995 | 0.995  0.996
B_Length 51.69 (2.74) 51.78 (3.13) 11.4 1.013 | 1.008  1.017
B_Weight 3437.35 (594.03) | 3461.49 (658.96) 10.5 1 1 1
Apgar5minOK 2066739 (98.6) 32928 (97.9) 13.4 0.698 | 0.647 0.753
Malformations 68303 ( 3.2) 2230 ( 6.5) 12.5 2.102 | 2.012 2.196
In_Asfyxi 10492 ( 1.0) 317 ( 1.2) 58.0 1.198 | 1.071  1.341
Sepsis 16071 ( 1.6) 733 (2.9) 58.0 1.829 | 1.696 1.971
Infections 2186 ( 0.2) 62 ( 0.2) 58.0 1.123 0.872 1.445
Jaundice 68625 ( 2.8) 2007 ( 5.6) 0.0 2.024 | 1.934 2.119

Table 5.2: Variable summaries for the data set Al1Obs, with 2,461,082 subjects where 1.5% has a
diagnosis of ASD before the age of 18. For continuous variables the mean(SD) is reported.

For binary and categorical variables the count(%) is reported. Also, the percentage of

missing values and odds ratio is reported for all variables.
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ADHD No ADHD ADHD Missing(%) | OR 95% CI

n 2411580 49502
Sex-male 1225837 (50.8) 35272 (71.3) 0.0 2.398 | 2.351  2.445
ASD 25781 ( 1.1) 10268 (20.7) 0.0 24.219 | 23.622 24.831
AgeAtASD 10.20 (4.47) 9.81 (3.81) 98.5 0.979 | 0.974 0.984
M_Age 28.57 (5.09) 28.11 (5.31) 0.4 0.982 | 0.981  0.984
F_Age 31.51 (5.89) 31.04 (6.15) 2.4 0.986 | 0.985  0.988
M_ADHD_Meds 25348 ( 2.0) 4933 (12.7) 47.3 7.08 | 6.855  7.313
F_ADHD_Meds 22194 ( 1.8) 3213 ( 8.4) 47.4 5079 | 4.887  5.278
M_Alc_Meds 48643 ( 3.8) 1553 ( 4.0) 46.2 1.064 1.01 1.12
F_Alc_Meds 107684 ( 8.1) 3209 ( 8.4) 445 1.037 | 1 1075
M_Drugs_Meds 18138 ( 1.4) 706 ( 1.8) 47.3 1.289 | 1.195 1.39
F_Drugs_Medi 22418 ( 1.8) 813 ( 2.1) 47.1 1.202 | 112 1.29
M_Smoking 256400 (20.5) 13763 (37.0) 47.6 2.283 | 2.235  2.333
M_BMI 24.25 (4.93) 25.57 (5.87) 78.4 1.046 1.043  1.049
M_Spon_Abort 0.18 (0.45) 0.19 (0.46) 58.0 1.059 | 1.034  1.085
Parity 10.9

First Birth 970970 (45.2) 21494 (46.5)

Second Birth 789816 (36.8) 16360 (35.4) 0.936 | 0.917  0.955

Third Birth 286037 (13.3) 6094 (13.2) 0.962 | 0.935  0.99

Fourth Birth 71070 ( 3.3) 1578 ( 3.4) 1.003 | 0.952  1.056

Fifth Birth 18763 ( 0.9) 482 ( 1.0) 1.16 1.059 1.272

Sixth or over 10430 ( 0.5) 202 ( 0.4) 0.875 | 0.761  1.006
Ext_Preterm 3912 ( 0.2) 172 ( 0.4) 15.4 1.958 1.68 2.281
Ver_Preterm 12058 ( 0.6) 525 (1.1) 15.4 1.946 1.782 2125
Mod_Preterm 174310 ( 8.6) 5222 (11.4) 15.4 1.374 | 1.335 1415
Visit_Mid 4.40 (2.05) 5.03 (2.07) 14.3 1.15 1.145 1.154
Visit_Doc 1.80 (1.53) 2.52 (1.26) 18.6 1.358 1.349  1.366
Visit_Spe 2.91 (2.87) 2.11 (2.46) 16.0 0.898 | 0.894  0.901
Cont_Stim 450138 (22.8) 10054 (24.0) 18.0 1.071 1.047  1.095
Epidural 95755 (11.8) 2461 (10.0) 66.2 0.823 | 0.789  0.858
Med_Initiate 161724 (12.0) 5319 (13.0) 43.6 1.098 | 1.066 1.131
Sectio 257254 (12.2) 7621 (16.4) 12.6 1.406 1.372  1.442
GestAge 277.23 (13.55) 275.58 (15.75) 154 0.992 | 0.992  0.993
B_Length 51.69 (2.74) 51.50 (3.12) 114 0.976 | 0.973  0.979
B_Weight 3438.32 (593.59) | 3409.75 (660.17) 10.5 1 1 1
ApgarbminOK 2054539 (98.6) 45128 (98.1) 13.4 0.746 | 0.697  0.798
Malformations 68122 ( 3.2) 2411 ( 5.2) 12.5 1.635 | 1568  1.704
In_Asfyxi 10401 ( 1.0) 408 ( 1.3) 58.0 1.225 1.109 1.354
Sepsis 16010 ( 1.6) 794 (2.5) 58.0 1.559 | 1.451 1.676
Infections 2184 ( 0.2) 64 ( 0.2) 58.0 0.913 0.712 1.171
Jaundice 63069 ( 2.8) 2563 ( 5.2) 0.0 1.88 1.805  1.958

Table 5.3: Variable summaries for the data set Al1Obs, with 2,461,082 subjects where 2.0% has a
diagnosis of ADHD before the age of 18. For continuous variables the mean(SD) is
reported. For binary and categorical variables the count(%) is reported. Also, the

percentage of missing values and odds ratio is reported for all variables.
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Clusters of Predictors

In Section 2.1 we described clustering methods, we will now apply k-means and hierar-
chical clustering to the predictors in AllObs. In both approaches observations including
missing values were omitted. The two approaches showed similar results, the elbow plots
both look like the one for K-means clustering depicted in Figure 5.3. The number of
clusters could not be decided based on the elbow plots. We tried clustering by k-means
into 2-20 clusters, the best way to describe our findings would be to refer to the other
approach, hierarchical clustering, as we got similar results but the dendrogram from hi-
erarchical clustering is easier to present.
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Figure 5.3: Elbow-plot of K-means clustering of 32 predictors for the data set AllObs with 2,461,082
observations (428,243 observations used).

For both methods, B_Weight and B_length were the closest related variables, easily
seen in the dendrogram from hierarchical clustering in Figure 5.4, but also clear from
k-means as they would always appear in the same cluster. It is clear directly in the den-
drogram, what we saw in the elbow-plots, that a preferred number of clusters is not easily
determined. Most clusters are non-surprising, like F_Age and M_Age clustering. But also
the parity variables do cluster, which is expected, as they are constructed to be mutually
exclusive. An interesting cluster could be Epidural, Cont_Stim and Med_Initiate, as
one could speculate that these three all would be part of a long and hard labor.
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Figure 5.4: Dendrogram of hierarchical clustering of 32 predictors for the data set AllObs with
2,461,082 observations (428,243 observations used).

As we did not find a definitely preferred number of clusters and 32 predictors is not a
particularly large amount of predictors, we choose not to go forward with any dimension
reduction methods and continue to the prediction of ASD and ADHD.

5.2 Analysis

In Section 5.1.2 we defined the data set AllObs. In this section we analyze this data
set using two classifiers: logistic regression and classification trees and at the end of this
section, we summarize which models are the best for ASD and ADHD, respectively. In
order to fit logistic regression models, we need a data set without missing values and we
therefore describe in the next section, how we avoid this.

Imputation

As described in Section 5.1.2, we have a considerable amount of missing values even in
our data set AllObs. How to best handle this missingness is outside the scope of this
master thesis, but we cannot completely ignore it. We have thus chosen to impute missing
categorical values with an extra level indicating missing and the continuous variables are
imputed as the mean of the non-missing values. This imputation enables us to conduct
analysis on 2,461,082 subjects utilizing 57 variables, as the categorical predictors are
converted to binary predictors.

We further expand the number of variables to 81 by replacing six of our predictors with
natural splines. Our incidence and prevalence plots, Figure 5.1 and Figure 5.2, indicate
that the expected risk of getting a diagnose is not linear over time, thus we spline the



5.2. Analysis 83

predictor BirthYear. The predictors M_Age and F_Age are splined because we expect
the risk of diagnosis to be high for both young and old parents, but lower for median
aged parents. The predictors M_BMI, B_Weight and GestAge are all expected to result in
severely higher risk at low values than normal and high. We now define what we mean
by an imputed data set with splined variables.

AllObsImputed: This data set is made by performing imputation on the
data set AllObs and furthermore spline 6 predictors, as elaborated above.
The data set AllObsImputed includes 2,461, 082 subjects and 81 predictors,
where 1.5% of the subjects have an ASD diagnose and 2.0% have an ADHD
diagnose.

We now investigate whether it was wise to spline the six continuous predictors. Note that
the continuous predictors are imputed before they are splined.

Investigation of the Splined Predictors

We set up a small example; we build 24 simple logistic regressions models, 12 models with
ASD as response and 12 with ADHD as response. Out of the 12 models, we estimate
the probability of ASD for 6 of these models using one of the continuous predictors
M_Age, F_Age, B _Weight, GestAge, BirthYear and M_BMI, respectively. Furthermore
we fitted 6 logistic regressions to the splined transformations of said six predictors, and
again estimated the probabilities of getting a diagnosis of ASD. Similarly is done for the
remaining 12 models which have ADHD as response.

ASD ~ M_Age ASD ~ F_Age
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Figure 5.7: Plots of the probability of getting diagnosed with ASD based on logistic regression of only
a continuous predictor or the same predictor as a natural spline. The data set used is
AllObsImputed with 2,461,082 subjects, where 1.5% have an ASD diagnose.

In Figure 5.7 we see that modeling the probability of ASD with splined continuous
variables reveals what we suspected in Section 5.2, that e.g. maternal age increases the
risk of ASD both for low ages and high ones. Interestingly, only low paternal age deviates
from the unsplined model. We also see that if the mother has extremely low BMI or
relatively high BMI then this increases the risk of the subject having ASD. One of the
most interesting findings in these splined variables are that splined birth year decreases for
the late years and therefore captures that many of the late-born children do not have full
follow-up and therefore do not get any diagnose even though they may get it later in their
youth. It is also interesting that higher birth weight increases the probability of diagnosis,
we only expected this to be the case for low birth weight. The low probabilities for the
extremely low birth weight and gestational age might be due to the difficulty of extremely
early born babies to live long enough to even get a diagnosis of ASD. Furthermore, note the
sharp change points for especially the splined predictors M_BMI, B_Weight and GestAge.
This occurs because the mean value of the original predictors is imputed for missing values
before the predictors are splined, assigning many subjects the mean values, thus placing
the spline knots (that are placed at the 20tn, 40tn, 60tn and 80tn percentiles) closer to
the mean.
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ADHD ~ M_Age ADHD ~ F_Age

0.08
I

0.02
|

m M_Age

B F_A
B splined M_Age —ge

B splined F_Age

Probability of ADHD diagnosis before 18
Probability of ADHD diagnosis before 18

o o
(ST S -
e T T T T T T T T °© T T T T T T
15 20 25 30 35 40 45 50 20 30 40 50 60 70
M_Age F_Age
ADHD ~ BirthYear ADHD ~ M_BMI

0.04
|

m M _BMI
B splined M_B|

Probability of ADHD diagnosis before 18
0.02
1

Probability of ADHD diagnosis before 18

M_BMI
s | 8 B splined M_BMI
e T T T T T T T ° T T T T T T
1980 1985 1990 1995 2000 2005 2010 10 20 30 40 50 60
BirthYear M_BMI
ADHD ~ B_Weight ADHD ~ GestAge

~

S .
® ° 2
o o 9
3 84 s 37
& © 8
@ @ =
g 8 g
g ° g g
T < T ©
[=) o
5 2 5
< <
5 o - o
= 2 . z 37
5 @ B_Weigth 5
S o B splined B_Weigth 8 - W@ GestAge
S 2 o [ B splined GestAge
a ©° b o

3
o

T T T T T T T T
2000 4000 6000 8000 150 200 250 300

B_Weight GestAge

Figure 5.10: Plots of the probability of getting diagnosed with ADHD based on logistic regression of
only a continuous predictor or the same predictor as a natural spline. The data set used
is AllObsImputed with 2,461,082 subjects, where 2.0% have an ADHD diagnose.

In Figure 5.10 we see for ADHD similar results as we did for ASD. But we also see
to an even bigger extent the necessity to spline these predictors. In Figure 5.7 we saw
that for ASD it was convenient to spline the predictors such that the probability could
deviate from the flatter nature of the unsplined predictors. But in Figure 5.10 we see the
unsplined predictors actually aiming at lower probabilities for higher values of maternal
age and birth weight, whereas the splined predictors again predict higher probabilities for
higher values. These plots justifies the use of splines for our data.

We now fit five logistic regression models to the data set AllObsImputed including
splined predictors.
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Specification of Logistic Regression Models

We now define five different logistic regression models that will be used several times
throughout the analysis, but for different subjects.

e LASSO: A LASSO regression model including all 81 predictors, where A is chosen
based on 10-fold cross-validated AUC.

e Ridge: A Ridge regression model including all 81 predictors, where A is chosen
based on 10-fold cross-validated AUC.

e GLM Full: A logistic regression model including all 81 predictors.

e GLM 10: A logistic regression model including 10 selected predictors, 5 of them
replaced by splines. The predictors included were: Sex, M_Smoking, GestAge,
B_Weight, Jaundice, BirthYear, Sectio, Malformations, M_Age and F_Age.

e GLM 5: A logistic regression model including 5 selected predictors, 2 of them
replaced by splines. The predictors included were: Sex, M_Smoking, GestAge,
B_Weight and Jaundice.

The predictors selected for GLM 10 and GLM 5 were chosen by the authors, we aimed
to get both binary and continuous splined predictors in both models. We also included
predictors that clustered in the EDA like GestAge and B_Weight as well as predictors
expected to be very different like Sex and M_Smoking. The two models merely represent
smaller models, and the predictors included in them could most likely have been chosen
more wisely.

How We Evaluate our Models

We compare the models using the measures presented in Section 4.1, which are 10-fold
cross-validated, such that e.g. the PPV is the mean of the 10 PPV’s from the ten folds.
The 10-fold cross-validated AUC can be computed in two ways, it can be the mean of
the 10 AUC’s, which is what we report in the tables of performance measures. The other
way to calculate the AUC is to use the probabilities produced by each fold of the cross-
validation and calculate an overall AUC, this is what we report in the figures in Appendix
C. Both calculations produce almost the same AUC estimate, which is due to the large
number of observations we have available.

5.2.1 The First Analysis Using Logistic Regression

We fit the five logistic regression models previously presented for the data set AIlObsIm-
puted, which results in the evaluation measures presented in Table 5.4 and Table 5.5.
Table 5.4 is with ASD as response and Table 5.5 is with ADHD as response. In general,
we want to compare the logistic regression models based on their AUC scores, but as
the other evaluation measures can provide further insight about the models’ qualities,
these are also reported. Furthermore, for this first analysis, ROC curves are presented
in Figure 5.11 for the 5 models of both ASD and ADHD, but since these curves do not
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explain more than the tables, besides having an 95% confidence interval shown, we have
chosen to move all other ROC curves to Appendix C. Each table caption refers to the
corresponding ROC curve plot in the appendix. In Table 5.4 and Table 5.5 we see that it
is generally equally difficult to predict ASD as ADHD with these five models as the AUC
scores are generally very close to each other. However, the F-score measure is generally
better for ASD, indicating that there is a better balance between sensitivity and PPV,
even though the PPV will always be low due to the low prevalence of ASD and ADHD.
Note that the model with the best AUC score for both ASD and ADHD is the logistic
regression model with all predictors GLM Full. This indicates that we have such a large
amount of subjects, that we cannot overfit the models to the 81 predictors. However,
the GLM Full models are very close to the LASSO and Ridge model’s AUC scores and
therefore the models are almost equally good at predicting the response.

ASD PPV NPV Sens Spec Fys Fi Fq AUC
LASSO 0.030 0.994 0.759 0.639 4.746 3.038 4.746 0.764
Ridge 0.030 0.994 0.760 0.633 4.750 3.040 4.750 0.762
GLM Full | 0.030 0.995 0.767 0.632 4.795 3.069 4.795 0.765
GLM 10 0.029 0.995 0.782 0.605 4.885 3.127 4.885 0.754
GLM 5 0.030 0.992 0.616 0.703 3.851 2.464 3.851 0.701

Table 5.4: 10-fold cross-validated evaluation measures for five different models predicting ASD in the
data set AllObsImputed with 2,461,082 subjects, where 1.5% have an ASD diagnose. For
ROC curves see Figure 5.11.

ADHD | PPV NPV Sens Spec Fyjs Fiq Fq AUC
LASSO 0.046 0.992 0.711 0.693 4.445 2.845 4.445 0.773
Ridge 0.046 0.991 0.702 0.701 4.384 2.806 4.384 0.773
GLM Full | 0.045 0.992 0.724 0.682 4.528 2.898 4.528 0.775
GLM 10 0.041 0.991 0.717 0.656 4.482 2.868 4.482 0.749
GLM 5 0.038 0.989 0.647 0.659 4.043 2.588 4.043 0.695

Table 5.5: 10-fold cross-validated evaluation measures for five different models predicting ADHD in
the data set AllObsImputed with 2,461,082 subjects, where 2.0% have an ADHD
diagnose. For ROC curves see Figure 5.11.
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Figure 5.11: 10-fold cross-validated ROC curves for five different models predicting ASD and ADHD,
respectively, in the data set AllObsImputed with 2,461,082 subjects, where 1.5% have
an ASD diagnose and 2.0% have an ADHD diagnose.
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Logistic Regression Applied to Fewer Subjects

As it is computional heavy to compute the models for the data set AllObsImputed

(about 5 days computation time), we chose to run all models from now on only for ﬁ

part of any data set, randomly chosen, before using it for all subjects. Furthermore, we
did it in order to investigate whether more data would always produce better predictive

models as 2—(1)0 is still a considerable amount of subjects, that is %0’0082 ~ 12, 305 subjects.

Note that this random sampling does not necessarily keep the ratio between diagnosed
and non-diagnosed. Table 5.6 and Table 5.7 show evaluation measures for the five logistic
regression models on such a smaller data set. This is generally the result we see in all

our analysis with less data, that these models predict poorer than models made on the

full data set AllObsImputed. However, of course we also experience some ﬁ parts,

which happens to be really good splits. We have also tried to run the analyses with 2—10
of the data set AllObsImputed and draw the same conclusion. More data gives better
AUC scores and thus better predictive models. Table 5.6 and Table 5.7 are analyses on

the same 2—(1)0 and here the tables indicate that it is easier to predict ADHD with LASSO

than to predict ASD with any of these logistic regression models. The random cut is thus
of great importance and we should clearly use the full data set AllObsImputed in our
analysis instead of a fraction of it.

ASD PPV NPV Sens Spec Fys Fi Fq AUC
LASSO 0.030 0.997 0.853 0.598 5.329 3.410 5.329 0.742
Ridge 0.030 0.997 0.852 0.612 5.323 3.407 5.323 0.749
GLM Full | 0.034 0.996 0.788 0.665 4.923 3.151 4.923 0.730
GLM 10 0.030 0.997 0.840 0.615 5.250 3.360 5.250 0.742
GLM 5 0.032 0.995 0.787 0.636 4.918 3.148 4.918 0.712

Table 5.6: 10-fold cross-validated evaluation measures for five different models predicting ASD in ﬁ
of the data set AllObsImputed. For this cut we have 12,305 subjects, where 1.4% have an

ASD diagnose. For ROC curves see Figure C.1.

ADHD | PPV NPV Sens Spec Fogs F, Fs AUC
LASSO 0.0564 0.993 0.756 0.688 4.726 3.025 4.726 0.760
Ridge 0.068 0.991 0.647 0.773 4.046 2.589 4.046 0.741
GLM Full | 0.052 0.992 0.746 0.658 4.665 2.986 4.665 0.725
GLM 10 0.046 0.991 0.698 0.665 4.361 2.791 4.361 0.702
GLM 5 0.040 0.991 0.749 0.568 4.678 2.994 4.678 0.661

Table 5.7: 10-fold cross-validated evaluation measures for five different models predicting ADHD in
ﬁ of the data set AllObsImputed. For this cut we have 12,305 subjects, where 2.1%
have an ADHD diagnose. For ROC curves see Figure C.1.
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5.2.2 Observations with No Missing Values

In this section we use only a part of the data set AllObs to avoid imputing.

ObsNoMissing: This data set is made by extracting all subjects that have
no missing values for the data set AllObs and imputation is therefore not
necessary. The data set ObsNoMissing has 428,943 subjects, where 2.0%

have an ASD diagnose and 2.4% have an ADHD diagnose.

89

We avoid imputing, but on the other hand, we do not have as many observations,
which we previously showed give worse predictive models. Since the variable with the
latest start of coverage, M_BMI, starts in 2003, all observations from 2002 and before have
missing values and these subjects are thus not included in this data set. As we only have
observations from 2003 onward, we do not have full follow-up on these subjects, as they
do not reach the age of 18, because we only have data until 2017. Table 5.8 and Table
5.9 show the evaluation measures for the five logistic regression models using the data set
ObsNoMissing. Note that these AUC values are not higher than the AUC values found
for the data set AllObsImputed, that is Table 5.4 and Table 5.5. We therefore do not
get better predictive models by settling for observations that do not have missing values.

In the next section, we try to make better predictive models by using classification trees.

ASD PPV NPV Sens Spec Fys Fq Fq AUC
LASSO 0.033 0.990 0.730 0.569 4.564 2.921 4.564 0.697
Ridge 0.033 0.991 0.734 0.566 4.587 2.936 4.587 0.698
GLM Full | 0.035 0.990 0.704 0.599 4.398 2.815 4.398 0.700
GLM 10 0.030 0.990 0.754 0.511 4.713 3.017 4.713 0.661
GLM 5 0.030 0.991 0.765 0.499 4.779 3.058 4.779 0.655

Table 5.8: 10-fold cross-validated evaluation measures for five different models predicting ASD in the
data set ObsNoMissing with 428,943 subjects, where 2.0% have an ASD diagnose. For
ROC curves see Figure C.2.

ADHD | PPV NPV Sens Spec Fyjs Fi Fq AUC
LASSO 0.052 0.989 0.690 0.690 4.311 2.759 4.311 0.754
Ridge 0.049 0.990 0.714 0.662 4.460 2.855 4.460 0.755
GLM Full | 0.0560 0.990 0.712 0.672 4.448 2.847 4.448 0.757
GLM 10 0.041 0.987 0.669 0.616 4.181 2.676 4.181 0.694
GLM 5 0.036 0.988 0.757 0.499 4.731 3.028 4.731 0.673

Table 5.9: 10-fold cross-validated evaluation measures for five different models predicting ADHD in
the data set ObsNoMissing with 428,943 subjects, where 2.4% have an ADHD diagnose.

For ROC curves see Figure C.2.
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5.2.3 Analysis Using Classification Trees

This section includes models made using classification trees on the basis of the data set
AllObsImputed. As we shall see later in this section, the trees helped us to identify a
major problem of our logistic regression models, and that problem is calendar year. Table

5.10 and Table 5.11 show the evaluation measures for full trees grown to several different
depths for ASD and ADHD respectively.

ASD PPV NPV Sens Spec Fyps Fq Fq AUC
Depth 2 | 0.032 0.992 0.624 0.721 3.900 2.496 3.900 0.714
Depth 8 | 0.028 0.995 0.783 0.602 4.893 3.131 4.893 0.757
Depth 14 | 0.029 0.994 0.745 0.625 4.653 2.978 4.653 0.738
Depth 20 | 0.027 0.992 0.653 0.653 4.081 2.612 4.081 0.678

Table 5.10: 10-fold cross-validated evaluation measures for classification trees predicting ASD, grown
to different depths. The data set used is AllObsImputed with 2,461,082 subjects, where
1.5% have an ASD diagnose.

ADHD | PPV NPV Sens Spec Fys Fy Fy AUC
Depth 2 | 0.106 0.986 0.358 0.818 2.237 1.432 2.237 0.595
Depth 8 | 0.043 0.991 0.710 0.678 4.435 2.839 4.435 0.761
Depth 14 | 0.043 0.991 0.688 0.683 4.297 2.750 4.297 0.742
Depth 20 | 0.042 0.988 0.572 0.733 3.575 2.288 3.575 0.672

Table 5.11: 10-fold cross-validated evaluation measures for classification trees predicting ADHD,
grown to different depths. The data set used is AllObsImputed with 2,461,082 subjects,
where 2.0% have an ADHD diagnose.

Note that the trees with depth 20 have poorer AUC scores than the models with depth
8. It makes sense, as a depth of 20 corresponds to 220 = 1,048,576 leaves and since we
have 2,461,082 subjects in the imputed data set AlIlObsImputed, many observations
from the training data have their own leaf, thus overfitting the model. The tree models
with depth 8 have about as good AUC values as the best logistic regression models from
Table 5.4 and Table 5.5. We have chosen the depths 2, 8,14 and 20 arbitrarily, but later
in Section 5.2.5, we actually do use the optimal depth for the specific situation. Figure
5.12 and Figure 5.13 on the other hand do not show a full tree but pruned trees grown to
depth 8. We show the pruned tree since a full tree, grown to depth 8, is too large to be
visually displayed in a meaningful way in this thesis.
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Figure 5.12: A pruned tree predicting ASD after being grown to depth 8 on the data set
AllObsImputed with 2,461,082 subjects, where 1.5% have an ASD diagnose.
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Figure 5.13: A pruned tree predicting ADHD after being grown to depth 8 on the data set
AllObsImputed with 2,461,082 subjects, where 2.0% have an ADHD diagnose.
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Note in Figure 5.12 and Figure 5.13, that one of the most important predictors is
BirthYear since it appears relatively high in the trees and in several places for both the
ASD and ADHD models. The predictor BirthYear is important for our models because
both the number of ASD and ADHD dignoses increase over the years, which can be seen
in our prevalence and incidence figures, Figure 5.1 and Figure 5.2. However, it does not
make sense to include this predictor in a predictive model to predict ASD and ADHD in
the future, as e.g. all boys born in or after 2008 and girls born in or after 2005 will never
get a diagnosis of ADHD if we follow the flowchart in Figure 5.13

Thus, we choose to exclude BirthYear and fit trees on the remaining predictors. We
chose not to show all trees and thus we only describe, what we saw in these plots. The plots
that appear indicate that predictors such as M_BMI and Epidural are important predictors,
as they appear relatively high in the trees. We suspect that these variables are chosen
because they have a late covering time and therefore people before this coverage time have
missings for these variables, making missingness describe time, this is thus again a calendar
year problem. We therefore fit tree models based on our data set ObsNoMissing without
the variable BirthYear. Table 5.12 and Table 5.13 show evaluation measures for three
trees fitted on three different data sets respectively. In all trees we have chosen a depth
of 8 as it seems reasonable from the first tree models. The first tree is the model based
on the data set AllObsImputed, the second model is based on 2—(1)0 randomly selected
observations of the data set AllObsImputed and for the last model we use the data set
ObsNoMissing where the predictor BirthYear is omitted.

ASD PPV NPV Sens Spec Fys Fs Fs AUC
AllObsImputed 0.028 0.995 0.783 0.602 4.893 3.13 14.893 0.757
1/200 of AllObsImputed | 0.028 0.994 0.727 0.596 4.545 2.909 4.545 0.677
ObsNoMissing 0.031 0.990 0.744 0.525 4.649 2.976 4.649 0.669

Table 5.12: 10-fold cross-validated evaluation measures of trees predicting ASD, grown to depth 8 on
three different datasets. The data set AllObsImputed includes 2,461,082 subjects, where
1.5% subjects are diagnosed with ASD. The data set ﬁ of AllObsImputed includes
12,305 subjects, where 1.4% subjects are diagnosed with ASD. The data set
ObsNoMissing includes 428,943 subjects, where 2.0% subjects are diagnosed with ASD.

For ROC curves see Figure C.3.

ADHD PPV NPV Sens Spec Fos Fy Fy AUC
AllObsImputed 0.043 0991 0.710 0.678 4.435 2.839 4.435 0.761
1/200 of AlObsImputed | 0.050 0.975 0.591 0.670 3.692 2.363 3.692 0.645
ObsNoMissing 0.050 0.987 0.610 0.712 3.816 2.442 3.816 0.720

Table 5.13: 10-fold cross-validated evaluation measures of trees predicting ADHD, grown to depth 8
on three different datasets. The data set AllObsImputed includes 2,461,082 subjects,
where 2.0% subjects are diagnosed with ADHD. The data set ﬁ of AlObsImputed
includes 12,305 subjects, where 2.1% subjects are diagnosed with ADHD. The data set

ObsNoMissing includes 428,943 subjects, where 2.4% subjects are diagnosed with

ADHD. For ROC curves see Figure C.3.

Table 5.12 and Table 5.13 show that the AUC scores are best for the full imputed
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data set AllObsImputed, but it is clear that a good classifier for the early years in
our analysis is that no person has ASD and ADHD, again due to the incidence and
prevalence. Thus, we will continue to study models where we try to take calendar year
into account. Tree models based on the data set ObsNoMissing without the predictor
BirthYear can be seen in Figure 5.14 and Figure 5.15, where the pruned trees are shown.
These models indicate that predictors such as Sex, M_ADHD Meds and M_BMI are of great
importance, again because they appear high in the trees. The first two predictors Sex and
M_ADHD Meds are not surprising, but this is not the case for the predictor M_BMI, which
our consulting psychiatrist Marlene Briciet Lauritsen! finds as having not previously been
associated with ASD. In the next section we fit logistic regression models based on the
fact that calendar year is a problem.
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Figure 5.14: A pruned tree predicting ASD after being grown to depth 8 on the data set
ObsNoMissing with 428,943 subjects, where 2.0% have an ASD diagnose.
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Figure 5.15: A pruned tree predicting ADHD after being grown to depth 8 on the data set
ObsNoMissing with 428,943 subjects, where 2.4% have an ADHD diagnose.

5.2.4 Models That Take Calendar Year into Account

In order to investigate how important calendar year is for the logistic regression models,
we first make three of our five logistic regression models by including only 1 predictor,
BirthYear, for the data set AllObsImputed. These logistic regression models are shown
in Table 5.14 and Table 5.15.

ASD PPV NPV Sens Spec Fgs Fy Fy AUC
LASSO | 0.024 0.994 0.793 0.518 4.953 3.170 4.953 0.703
Ridge 0.024 0.994 0.793 0.518 4.953 3.170 4.953 0.701
GLM 0.024 0.994 0.793 0.518 4.953 3.170 4.953 0.704

Table 5.14: 10-fold cross-validated evaluation measures for three different models predicting ASD with
only splined BirthYear as a predictor. The data set used is AllObsImputed with
2,461,082 subjects, where 1.5% have an ASD diagnose. For 10-fold cross-validated ROC

curves see Figure C.4.

ADHD | PPV NPV Sens Spec Fgs F Fq AUC
LASSO | 0.032 0.991 0.786 0.512 4.912 3.143 4.912 0.683
Ridge 0.032 0.991 0.786 0.512 4.912 3.143 4.912 0.683
GLM 0.032 0.991 0.786 0.512 4.912 3.143 4.912 0.684

Table 5.15: 10-fold cross-validated evaluation measures for three different models predicting ADHD
with only splined BirthYear as a predictor. The data set used is AllObsImputed with
2,461,082 subjects, where 2.0% have an ADHD diagnose. For 10-fold cross-validated ROC

curves see Figure C.4.
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We only fit three models because GLM Full, GLM 10 and GLM 5 are the same in this
case. These models with only this one predictor predict a little worse than the models
based on all our predictors shown in Table 5.4 and Table 5.5, but are not particularly
worse. It is therefore clear that calendar year is a problem in our models. Based on
this, we chose to fit logistic regression models with data set ObsNoMaissing without the
predictor BirthYear. The models that emerge from this fit have evaluation measures
shown in Table 5.16 and Table 5.17.

ASD PPV NPV Sens Spec Fos Fy Fs AUC
LASSO 0.032 0.990 0.721 0.561 4.508 2.885 4.508 0.682
Ridge 0.032 0.990 0.727 0.556 4.543 2.908 4.543 0.683
GLM Full | 0.032 0.991 0.746 0.539 4.666 2.986 4.666 0.685
GLM 10 0.031 0.990 0.745 0.520 4.658 2.981 4.658 0.661
GLM 5 0.030 0.991 0.765 0.498 4.780 3.059 4.780 0.655

Table 5.16: 10-fold cross-validated evaluation measures for five different models predicting ASD in the
data set ObsNoMissing without BirthYear included as predictor. The data set consists
of 428,943 subjects, where 2.0% have an ASD diagnose. For ROC curves see Figure C.5.

ADHD | PPV NPV Sens Spec Fys F, Fo AUC
LASSO 0.051 0.988 0.631 0.711 3.947 2.526 3.947 0.733
Ridge 0.049 0.988 0.656 0.686 4.099 2.623 4.099 0.734
GLM Full | 0.051 0.988 0.647 0.698 4.043 2.587 4.043 0.736
GLM 10 0.041 0.987 0.664 0.619 4.152 2.657 4.152 0.694
GLM 5 0.036 0.989 0.770 0.487 4.812 3.080 4.812 0.673

Table 5.17: 10-fold cross-validated evaluation measures for five different models predicting ADHD in
the data set ObsNoMissing without BirthYear included as predictor. The data set
consists of 428,943 subjects, where 2.4% have an ASD diagnose. For ROC curves see

Figure C.5.

We see that the models naturally predict worse than the full imputed data set shown
in Table 5.4 and Table 5.5. On the other hand, these models make much more sense to
apply for new data in 2019. Note, however, that these AUC values are about 0.68 — 0.73,
thus these models are not particularly good at predicting.

5.2.5 Full Follow-Up

To circumvent the problem of administrative censoring (uncomplete follow-up) while hav-
ing information from as many variables as possible, we choose to define a data set contain-
ing subjects born between 1997 and 1999. Since there are not many observations for the
years 1997-1999 without a single missing value, we choose to make an imputed data set
over these years in order to get a reasonable data set with full follow-up (though subjects
can still be lost to follow-up due to death or emigration).

FullFollowUp9799Imputed: This data set is made based on the data set
AllObs, where we have excluded the predictors Cont_Stim, Epidural and
M_BMI, as these variables are not available until a later date. We also exclude
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BirthYear to avoid predicting by calendar year. Furthermore, we have ex-
tracted all subjects having BirthYear in 1997 — 1999 and imputed the missing
values. The data set FullFollowUp9799Imputed contains 220, 458 subjects,
where 2.5% have an ASD diagnose and 3.5% have an ADHD diagnose.

We thereby have full follow-up on three years at a small expense of excluding three
predictors besides BirthYear. Table 5.18 and Table 5.19 show evaluation measures for
models fitted on the data set FullFollowUp9799Imputed. Note that we get worse AUC
scores than we get for the data set ObsNoMissing without the predictor BirthYear with
evaluation measures shown in Table 5.16 and Table 5.17. We think this is due to us only
including subjects for three years making the data set almost half size compared to the
data set ObsNoMissing. Furthermore, as the prevalence has risen and more actual
diagnoses are added both to the predicted group and the un-predicted group, the PPV
rises with the more true positives, but the sensitivity lowers with the false negatives

increasing.

ASD PPV NPV Sens Spec Fys Fi Fq AUC
LASSO 0.039 0.986 0.683 0.562 4.266 2.730 4.266 0.653
Ridge 0.039 0.985 0.677 0.567 4.233 2.709 4.233 0.653
GLM Full 0.039 0.986 0.691 0.556 4.319 2.764 4.319 0.656
GLM 10 0.038 0.985 0.692 0.538 4.327 2.770 4.327 0.636
GLM 5 0.037 0.985 0.676 0.542 4.227 2.705 4.227 0.628
Tree Depth 7 | 0.037 0.986 0.718 0.513 4.485 2.871 4.485 0.642

Table 5.18: 10-fold cross-validated evaluation measures for six different models predicting ASD in the
data set FullFollowUp9799Imputed with 220,458 observations (ASD 2.5%). Tree
depth chosen between 1 and 20. For ROC curves see Figure C.6.

ADHD PPV NPV Sens Spec Fys Fq Fsy AUC
LASSO 0.072 0.978 0.546 0.737 3.410 2.182 3.410 0.693
Ridge 0.071 0.979 0.572 0.719 3.572 2.286 3.572 0.694
GLM Full 0.069 0.979 0.575 0.712 3.595 2.301 3.595 0.696
GLM 10 0.055 0.978 0.630 0.596 3.936 2.519 3.936 0.651
GLM 5 0.051 0.978 0.674 0.531 4.211 2.695 4.211 0.628
Tree Depth 7 | 0.074 0.976 0.482 0.777 3.013 1.928 3.013 0.678

Table 5.19: 10-fold cross-validated evaluation measures for six different models predicting ADHD in
the data set FullFollowUp9799Imputed 220,458 observations (ADHD 3.5%). Tree
depth chosen between 1 and 20. For ROC curves see Figure C.6.

We have chosen the depth 7 for the tree classifier because it is the depth giving the
highest AUC value. For the classification trees we clearly saw that we can easily overfit
a model by making it too complex and therefore we choose to elaborate this it in the
following example.

Overfitting in Practice

Theoretically, we dealt with the bias-variance trade-off throughout the thesis, but when
we got to the actual analysis, we were not able to overfit the logistic regression models
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to the data. This was possible with the classification trees, as we saw in Table 5.10 and
Table 5.11, the models got worse as the trees were grown to greater depths. This should
be due to overfitting and we now try to illustrate this in an example. For the data set
FullFollowUp9799Imputed we grew trees to depths 1:20, estimating the generalizabil-
ity using 10-fold cross-validated AUC as usually by predicting the test observations in the
last tenth. We also predicted the %’s in the training sets on which each of the ten models
were trained, enabling us to get a 10-fold cross-validated AUC measure of how well the
tree fit the data which it was trained on, by the mean of ten internal AUCs.
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Figure 5.16: Threes grown to several depths predicting ASD and ADHD, respectively. 10-fold cross
validated AUCs of trees predicting new observations (green). AUCs of trees predicting
the data they were trained on (blue).

In Figure 5.16 we see that when fitting and testing on the same data set, the AUC
value becomes better the deeper the tree is grown. Furthermore, we see how more com-
plex models lead to overfitting, as the internal AUC gets better (blue line), but the more
complex models lead to worse predictions (green line). For the models fitted with training
data and tested by a hold-out test data, we see that the best AUC value is reached at
a depth of 7. Our tree models with depth 1 are very simple, as there is only one split
and therefore there is low variance, but high bias. Conversely, when we are fitting com-
plicating trees with depth 20, the models contain high variance, but low bias. This is an
example of the bias-variance trade-off in practice.

This was a little sidetrack about overfitting and we now turn our attention back to
the search for better prediction models. Another way to get better predictive models is
to include more or other predictors that are known to be associated with the response,
but we are unable to do it in this master thesis due to time constraints. Instead, we add
more variables by including interaction terms, which are a combination of our current
predictors.
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5.2.6 Models with Interaction Terms

In this section we try to fit models where we include interaction terms. We first chose to
fit a LASSO model to the full follow-up data set FullFollowUp9799Imputed, where
we use all the variables and all two-way interaction terms for these variables. Note that
four of the original variables are splined.

The ASD and ADHD models from this LASSO fit resulted in slightly better AUC
scores than those found in Table 5.18 and Table 5.19 in the previous section. The tables
are omitted as we instead report other models in this section. Like for all other models,
these AUC scores are 10-fold cross-validated and therefore the AUC scores are an average
of 10 different splits respectively, of which different variables are selected by LASSO. For
the 10 splits we counted which interaction terms were included 8,9 or 10 times in the 10
splits for ASD and ADHD respectively. Based on how many times an original variable
is included in these interaction terms and on the basis of important predictors identified
from our classification trees, we believe that the following variables are important for our
models:

ASD:
Sex, F_Age, M_ADHD Meds, F_ADHD Meds, M_Smoking, GestAge, Malformations.

ADHD:
Sex, F_Age, M_ADHD_Meds, F_ADHD Meds, F_Alc_Meds, M_Smoking, B_Weight.

We therefore choose to fit a LASSO, a Ridge and a full logistic regression model
based on the data set FullFollowUp9799Imputed, where all main effects and two-way
interaction terms between the 7 selected variables for ASD and ADHD, respectively, are
included. The resulting cross-validated evaluation measures are shown in Table 5.20 and
5.21. The AUC scores for both ASD and ADHD are slightly lower than those found in
Table 5.18 and Table 5.19 indicating that this selection of variables and the choice of
including interaction terms did not give us better prediction models. As we do not seem
to be close to overfitting our logistic regression models by including too many predictors,
the equally good or worse models are not due to overfitting, so maybe they are just bad
predictors. Instead, we made models based on the data set FullFollowUp9799Imputed,
but now including both all the predictors originally in this data set but also the interaction
terms between the seven selected variables described above. We did not get better or worse
prediction models than before, and thus including interaction terms seem not to be the
way to go.
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ASD PPV NPV Sens Spec Fys Fq Fo AUC
LASSO 0.038 0.986 0.698 0.542 4.361 2.791 4.361 0.646
Ridge 0.038 0.986 0.698 0.538 4.362 2.792 4.362 0.646
GLM Full | 0.038 0.986 0.695 0.546 4.341 2.778 4.341 0.647

Table 5.20: 10-fold cross-validated evaluation measures for three different models predicting ASD in
the data set FullFollowUp9799Imputed 220458(ASD 2.5%), with only 7 selected
predictors and their interactions. For ROC curves see Figure C.7.

ADHD | PPV NPV Sens Spec Fgs Fq Fy AUC
LASSO 0.070 0.977 0.541 0.725 3.380 2.163 3.380 0.685
Ridge 0.070 0.977 0.534 0.737 3.336 2.135 3.336 0.685
GLM Full | 0.073 0.977 0.526 0.747 3.286 2.103 3.286 0.687

Table 5.21: 10-fold cross-validated evaluation measures for three different models predicting ADHD in
the data set FullFollowUp9799Imputed 220458( ADHD 3.5%), with only 7 selected
predictors and their interactions. For ROC curves see Figure C.7.

5.2.7 Final Models

In this section we review in details the models fit to the data set FullFollowUp9799-
Imputed with evaluation measures found in Table 5.18 and Table 5.19. We find that
these models are currently the best predictive models as they take our calendar year
problem into account. Furthermore, we have full follow-up for these subjects. We do not
choose the models including interaction terms as they do not show a difference in the
evaluation measures and they are considerably more difficult to interpret.

We now review the three logistic regression models LASSO, Ridge and GLM Full fitted
to the data set FullFollowUp9799Imputed, but this time we do not use 10-fold cross-
validation to estimate the coefficients for the logistic regression models, but use the entire
data set in order to include the remaining 10% data into the fit. In Table 5.22 and
Table 5.23 we see evaluation measures for the three logistic regression models fitted to
the entire data set FullFollowUp9799Imputed and tested on the same data set. We
see that we are not close to overfitting our models as the evaluation measures are only
slightly better than those found by 10-fold cross-validation in Table 5.18 and Table 5.19.
For both ASD and ADHD, the best models based on AUC scores are the full models GLM
Full, which include all variables from the data set FullFollowUp9799Imputed. This
again indicates that the number of predictors included in our logistic regression models
do not lead to overfitting, as there seem to be no use for shrinkage. We choose not to
show results for the two logistic regression models GLM 5 and GLM 10, as these are models
containing predictors that we ourselves have chosen.

ASD PPV NPV Sens Spec Fgs Fq Fq AUC
LASSO 0.039 0.985 0.656 0.582 4.100 2.624 4.100 0.656
Ridge 0.039 0.985 0.660 0.577 4.124 2.639 4.124 0.655
GLM Full | 0.038 0.986 0.698 0.546 4.364 2.793 4.364 0.660

Table 5.22: Evaluation measures for three different models predicting ASD in the data set
FullFollowUp9799Imputed for 220,458 subjects (ASD 2.5%).
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ADHD | PPV NPV Sens Spec Fgs Fq Fq AUC
LASSO 0.064 0.979 0.599 0.679 3.743 2.395 3.742 0.695
Ridge 0.070 0.978 0.552 0.730 3.453 2.210 3.453 0.695
GLM Full | 0.072 0.978 0.540 0.745 3.375 2.160 3.375 0.699

Table 5.23: Evaluation measures for three different models predicting ADHD in the data set
FullFollowUp9799Imputed with 220,458 subjects (ADHD 3.5%).

Coeflicients for the three logistic regression models LASSO, Ridge and GLM Full for
ASD and ADHD can be seen in Table 5.24 and Table 5.25, fitted to the whole data set
FullFollowUp9799Imputed. Table 5.24 includes all non splined variables in the models
and Table 5.25 includes all the splined variables included in the three logistic regression
models. Note that coefficients below 0 are protective and coefficients higher than 0 are
risk factors for having the diagnose. Based on coefficients higher than 0.2 and the selec-
tion done by LASSO in Table 5.24, the most important non splined predictors seem to be:

ASD:
Sex, M_ADHD_Meds, F_ADHD_Meds, M_Smoking, Malformations, Sepsis.

ADHD:
Sex, M_ADHD_Meds, F_ADHD Meds, M_Alc_Meds, F_Alc_Meds, F_Drugs_Meds, M_Smoking.

We do not want to comment too much on the coefficients for the splined variables
as they are not straightforward to interpret. Note, however, that LASSO chooses at
least one splined predictor for both ASD and ADHD for the variables M_Age, F_Age,
B_Weigth, but not the splined GestAge variables. In addition, note that the supreme
most important predictors we have in our study to predict both ASD and ADHD seem
to be Sex, F_ADHD Meds and M_ADHD Meds.

Note how some predictors have NA as coefficient for the GLM Full. This is because
these predictors are completely explained by a linear combination of other predictors, and
they are thus excluded from the coefficient estimation. Furthermore, the predictors for
which the coefficient is blank for the LASSO models, indicate that the coefficient is set
to 0 exactly.

In this section we also show how Ridge regression shrink the coefficient estimates that
belong to each predictor towards 0 for ASD and ADHD in Figures 5.17 and Figure 5.18.
In addition we show how LASSO sets the coefficient estimates to 0 exactly in Figure 5.19
and 5.20. The black dashed line in all four plots indicates the estimated penalty parameter
that gives the best AUC score for the model. For example, in Table 5.24, we see that the
model fitted with LASSO for ADHD has an estimate of 2.007 for the coefficient belonging
to the predictor M_ADHD_Meds, which can also be found in Figure 5.20 (It is the point
where the leftmost curve hits the black dashed line).

As an example we have tried to predict the probability of two fictive subjects, born
between 1997 and 1999, getting a diagnosis of ASD or ADHD. We have constructed a
girl, who is the second child that her mother has born, a mother who has redeemed
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a prescription of anti drug medication prior to the girls first birthday. We have also
constructed a boy, who was born three weeks (21 days) prior to the mean gestational age
of all other children. His parents have both redeemed a prescription of ADHD medicine
before his first birthday. Besides these characteristics, the two subjects have the mean in
all continuous predictors and 0 in all binary and categorical predictors.

Predicting their probabilities of ASD from the GLM Full model with coefficients as in
Table 5.24 and Table 5.25, we get that the girl has a 0.9% risk of getting a diagnosis of
ASD before her 18th birthday and the boy has a 23.4% risk of getting a diagnosis of ASD
before his 18th birthday. With the recommended threshold (based on sensitivity plus
specificity) being 2.5% the girl would be predicted as not getting a diagnosis, whereas the
boy would be predicted as getting a diagnosis.

When we predict the probabilities of getting a diagnosis of ADHD before the 18th
birthday, with the GLM Full model, the girl’s risk is 1.6% and the boy’s risk is 48.8%.
With a recommended threshold of 3.8%, the girl would be predicted as not getting a
diagnosis of ADHD and the boy would be predicted as getting a diagnosis of ADHD.
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2l 2| 2 2l 2| 2

ASD s & © ADHD s e ©
(Intercept) -4.190 | -4.059 | -6.371 (Intercept) -4.158 | -3.775 | -5.580
Sex 0.802 | 0.339 | 0.878 Sex 0.651 | 0.383 | 0.753
M_ADHD_Meds 1.134 | 0.809 | 1.210 M_ADHD_Meds 2.007 | 1.735 | 2.013
F_ADHD_Meds 0.911 | 0.658 | 1.017 F_ADHD_Meds 1.549 | 1.321 | 1.573
M_Alc_Meds 0.086 | 0.121 M_Alc_Meds 0.077 | 0.214 | 0.218
F_Alc_Meds 0.035 | 0.023 F_Alc_Meds 0.213 | 0.238 | 0.299
M_Drugs_Meds -0.061 | -0.227 M_Drugs_Meds 0.185 | 0.156
F_Drugs_Medi 0.012 | -0.058 F_Drugs_Medi 0.087 | 0.257 | 0.252
M_Smoking 0.156 | 0.117 | 0.218 M_Smoking 0.490 | 0.340 | 0.519
M_Smoking_NA -0.056 | -0.050 | -0.094 M_Smoking_NA -0.028 | 0.006
M_Spon_Abort 0.020 | 0.051 M_Spon_Abort 0.008 | 0.054 | 0.079
Parity_2nd -0.038 | -0.049 | -0.222 Parity_2nd 0.033 | 0.116
Parity_3rd -0.095 | -0.091 | -0.374 Parity_3rd 0.055 | 0.169
Parity_4th -0.069 | -0.113 | -0.481 Parity_4th 0.099 | 0.231
Parity_b6th 0.022 | -0.180 Parity_5th 0.233 | 0.431
Parity_6thNM -0.167 | -0.275 | -1.110 Parity_6thNM -0.018 | 0.021
Parity_NA -0.033 | -0.073 Parity_NA -0.018 | 0.076
Ext_Preterm 0.052 | 0.461 Ext_Preterm -0.073 | 0.695
Ext_Preterm_NA -0.017 | 0.049 Ext_Preterm_NA -0.013 | 0.052
Ver_Preterm 0.012 | 0.133 Ver_Preterm -0.090 | 0.208
Ver_Preterm_NA -0.017 NA Ver_Preterm_NA -0.013 NA
Mod_Preterm -0.006 | -0.082 Mod_Preterm 0.050 | 0.074 | 0.130
Mod_Preterm_NA -0.017 NA Mod_Preterm_NA -0.013 NA
Visit_Mid 0.002 | 0.003 Visit_Mid -0.002 | 0.003
Visit_Doc 0.007 | 0.012 Visit_Doc 0.020 | 0.046
Visit_Spe 0.004 | 0.004 Visit_Spe 0.035 | 0.031 | 0.048
Med_Initiate 0.075 | 0.154 Med_Initiate 0.035 | 0.019
Med_Initiate_NA | -0.445 | -0.068 | -0.624 Med_Initiate_NA | -0.280 | -0.061 | -0.548
Sectio 0.024 | 0.048 | 0.049 Sectio 0.013 | 0.018
Sectio_NA 0.000 | -0.069 NA Sectio_NA 0.000 | -0.061 NA
B_Length 0.003 | 0.002 B_Length -0.003 | -0.011
ApgarbminOK 0.033 | 0.082 ApgarbminOK 0.015 | 0.083
ApgarbminOK_NA -0.038 | 0.031 Apgar5minOK_NA -0.008 | 0.153
Malformations 0.185 | 0.158 | 0.285 Malformations 0.027 | 0.112 | 0.170
Malformations_NA | 0.000 | -0.069 NA Malformations_NA | 0.000 | -0.061 NA
In_Asfyxi -0.196 | -0.599 In_Asfyxi -0.057 | -0.137
In_Asfyxi_NA 0.000 | -0.069 NA In_Asfyxi_NA 0.000 | -0.061 NA
Sepsis 0.324 | 0.275 | 0.453 Sepsis 0.119 | 0.198
Sepsis_NA 0.000 | -0.068 NA Sepsis_NA -0.061 NA
Infections 0.126 | 0.257 Infections -0.112 | -0.263
Jaundice 0.022 | -0.013 Jaundice -0.009 | -0.039

Table 5.24: Coeflicients from logistic regression models fitted to the data set
FullFollowUp9799Imputed with 220,458 subjects (ASD 2.5% and ADHD 3.5%) with
ASD and ADHD as response, respectively.
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2 2| 2 2 2| 2

ASD — ~ © ADHD — = ©
M_Agel -0.036 | 0.888 M_Agel -0.034 | 0.006
M_Age2 -0.031 | 0.958 M_Age2 -0.076 | 0.078
M_Age3 0.070 | 0.651 M_Age3 -0.028 | -0.133 | -0.578
M_Age4d 0.188 | 0.160 | 2.617 M_Age4d 0.734 | 0.363 | 1.440
M_Ageb -0.126 | 0.777 M_Ageb -0.015 | -0.516 | 1.171
F_Agel -0.055 | 0.054 F_Agel -0.052 | -0.255
F_Age2 0.005 | 0.082 F_Age2 -0.048 | -0.259
F_Age3 0.308 | 0.148 | 0.574 F_Age3 -0.024 | -0.041
F_Age4d 0.048 | 0.190 F_Age4d 0.359 | 0.225 | 0.017
F_Age5 0.040 | 0.016 F_Age5 -0.304 | 0.005
GestAgel 0.024 | 0.922 GestAgel -0.015 | 1.384
GestAge2 -0.042 | 0.826 GestAge2 0.014 | 1.499
GestAge3 -0.024 | 0.453 GestAge3 -0.006 | 0.823
GestAged 0.037 | 1.727 GestAged 0.085 | 2.898
GestAgeb -0.048 | 0.315 GestAgeb -0.171 | 0.518
B_Weigthl -0.048 | 0.122 B_Weigthl -0.012 | 0.280
B_Weigth2 0.014 | 0.255 B_Weigth2 -0.013 | 0.328
B_Weigth3 0.052 | 0.101 B_Weigth3 -0.064 | -0.089
B_Weigth4 | 0.164 | 0.124 | 1.055 B_Weigth4 | 0.202 | 0.170 | 1.357
B_Weigthb -0.201 | 0.482 B_Weigth5 | -0.351 | -0.303 | 0.800

Table 5.25: Coeflicients from logistic regression models fitted to the data set
FullFollowUp9799Imputed with 220,458 subjects (ASD 2.5% and ADHD 3.5%) with
ASD and ADHD as response, respectively. The splined predictors.
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The Ridge penalized coefficients of logistic regression for different values of A\. The
regression is fitted on the data set FullFollowUp9799Imputed with 220,458 subjects

Figure 5.18

(ADHD 3.5%) with ADHD as response. The dotted line representing the optimal A,

chosen by 10-fold cross-validated AUC.
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The LASSO penalized coefficients of logistic regression for different values of A\. The
regression is fitted on the data set FullFollowUp9799Imputed with 220,458 subjects

(ASD 2.5%) with ASD as response. The dotted line representing the optimal A, chosen

.

Figure 5.19

by 10-fold cross-validated AUC.
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6. Concluding Remarks

We have investigated several classification methods theoretically and applied the ones,
that we found most relevant to data from the Danish registers. We have found that
logistic regression is a powerful classifier, but the diagnoses of ASD and ADHD are not
straightforward to predict. In this chapter we discuss the main problems faced in this
master thesis, how we handle them and how the work of the master thesis can be expanded.
The chapter is ended by our conclusions.

Designing a Study and Commissioning a Data Set

The master thesis preparation started with us writing a study protocol in cooperation with
the Research unit for Child and Adolescent Psychiatry and The Psychiatric Research
Unit, North Denmark Region Psychiatry, Aalborg, Denmark. Properly designing and
describing the project was necessary to obtain the approval from the relevant agencies
needed to order the data set. It was soon clear too, that properly designing a study was
not straightforward and it turned out to be quite time consuming. We ended up spending
the first month of our master thesis on designing a study and deciding which variables to
order.

In the process we acquired knowledge about how to design a predictive study, where
our main source was "To explain or to Predict" by Galit Shmueli [34]. To be able to order
the correct variables, we consulted Marlene Briciet Lauritsen!, an experienced child and
adolescent psychiatrist and expert on ASD. Based on her recommended variables, we had
to plan how to create these variables and in which registers that information could be
found. When selecting which variables to order, we focused on quality and accessibility
as we had learned from Shmueli.

Furthermore, managing the acquired data and actually creating the variables, we had
already designed before we ordered the data, turned out to be a time consuming task.
The amount of time put into the design and creation of the actual variables used in the
analysis have given us the insight into the data needed to actually conduct the analysis,
and was therefore well spent.

1Child and Adolescent Psychiatry, Region of Northern Jutland Psychiatry, Aalborg, Denmark
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Simulated Data

While waiting for the real data set, we simulated a data set, such that we could familiarize
ourselves with the methods we sought to use in our study. This proved to be of great value
to multiple aspects of the thesis. We got a better understanding of the theory behind our
methods. By applying the methods to constructed data, we could investigate how they
behave and familiarize ourselves with the different kinds of results, we could expect.

The value of getting to know how the R implementations of the models functioned and
how data should be processed for a model to be applied to it, cannot be understated. We
saved many hours of debugging when the real data set arrived, because of the familiarity
with the R implementations earned on the simulated data set.

Being able to evaluate the different classification methods on the simulated data also
helped us decide, which methods to use on the real data set, and which methods not
to use. The application of the methods to the simulated data had great impact on how
this thesis is formed and helped to decide where to place our focus and time. We think
that one should always start out on simulated data when familiarizing oneself with new
methods.

Exploratory Data Analysis

We might have laid too heavy focus on exploratory data analysis in the planning and
theoretical phase. After the process of constructing the real variables from the raw data
and our consultations with psychiatrist Marlene Briciet Lauritsen!, we were quite familiar
with our data set already before the actual exploratory data analysis. Thus the clustering
methods only confirmed what we already knew or what was unsurprising, like birth length
and birth weight clustering.

When we evaluated the number of clusters preferred (made the elbow plot) for hier-
archical clustering, we used total within cluster sum of squares, as we did for k-means
clustering. This might not have been the best way to evaluate the clusters, as we had
already earlier decided that an Euclidean based distance measure should not be used for
hierarchical clustering in our setting. We should instead have found a correlation based
measure for within cluster dissimilarity.

The number of predictors we chose to construct did not necessitate dimension reduc-
tion, and we thus skipped PCA in the analysis.

Even though we did not see great use of the clusterings for our real data, one could use
the clusters when evaluating the results of the LASSO variable selections. As a predictor
might not be unimportant just because it is excluded by the LASSO, it might just be
that the predictor is closely related to another predictor that explains almost the same.

Logistic Regression

As we never got to overfit the logistic regression models, we did not get to explore the
benefits of the shrinkage provided by LASSO and Ridge on the real data. We still expect

' Child and Adolescent Psychiatry, Region of Northern Jutland Psychiatry, Aalborg, Denmark
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there to be a benefit in shrinkage, but this might not be before more predictors are added.

We did not find time to conduct multi class logistic regression. Exploring the multi
class setting might provide great insight, as we see already in Table 5.2 and Table 5.3 that
there is a great overlap between the two diagnoses. When identifying predictors suited for
predicting ASD, the predictors for parental ADHD medication, keeps showing up. Had
we worked in a multi class setting, we expect the double diagnosed to be predictable by
these predictors and could thus focus more on the pure ASD class.

Other Classifiers

Not using LDA in the analysis seemed obvious based on [1] stating that results should
almost be similar to logistic regression. Had we conducted the multi class analysis, LDA,
and especially QDA could have been interesting to use.

The classifier KNN was not used on real data either. This was due to the fact that,
as an online classifier, the kNN method would not be applicable to a real life setting, as
data in the Danish registers is access restricted.

Classification trees on the other hand proved to be of great value to the project. As a
classifier, it was not particularly worse than the logistic regression, which it was expected
to be severely outperformed by. But the advantageous uses of the visual interpretations of
the pruned trees justify the classification trees’ role in this thesis. The pruned trees quickly
visualized which predictors could be of importance to a prediction model and played a
big role in us identifying BirthYear as an issue. This was backed by the incidence and
prevalence plots. Identifying important predictors by another method than the thesis’
main method, logistic regression, helped us to be more confident in the findings from
our logistic regression analysis. We could have laid a heavier focus on classification trees
and evaluated pruned trees as predictors. This might have led to us recommending the
marginally worse predictor, but with an easy to follow flow-chart as the actual prediction
model, as opposed to presenting the coefficients in Table 5.24 and Table 5.25.

Evaluation Measures

We could have split up our data in such a way that external validation could have been
done on data from a held-out hospital or some held-out years. We chose to only perform
internal validation, as any splitting of the original data set, to create an external one,
would reduce the data on which we can perfect our models. We would rather create
the best possible model than prove how generalizable it is. Furthermore, we believe
that cross-validation is an acceptable approximation of generalizability. We have thus
10-fold cross-validated all of our evaluation measures. We could have used bootstrap
samples instead, but did not, due to time constraints and because we find cross-validation
sufficient. The choice of AUC as the main evaluation measure seemed straightforward, as
it measures the overall performance of a type of model, instead of just a specific model
given by a certain threshold. In the end we choose a model /threshold based on maximum
sensitivity and specificity. We could instead have chosen models based on the F-scores,
taking the balance between sensitivity and positive predictive value into account. It could
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have been interesting to see, whether the final model had been chosen as the same, had
we optimized the F-score all the way trough instead of the AUC.

Variable Selection

All variable selection ended out being done "manually’, as we decided to exclude variables
based mainly on temporal coverage. But in the reduced model with interaction terms,
we did base our decisions on what predictors to include on LASSO results, clustering
indications and the classification trees. The way we did it is in fact in violation with
the cross-validation principle. We looked at LASSO performed on all ten folds, before
we decided which predictors to include. The clustering methods being trained on and
classification tree grown on the whole data set, and not folds of it, was also in violation
with the cross-validation principle. To implement variable selection into a cross-validated
setup, the variable selection needs to be done by an algorithm, which we did not find
the time nor the need to do. This is also why we never got to apply forward/backwards
variable selection to the real data.

The Analysis

Instead of focusing on design and evaluation of prediction models we ended out spend-
ing most of the analysis selecting a data set on which to perform the analysis. In this
process we identified time (calendar year) as the main obstacle in the way of us being
able to design and evaluate credible prediction models. Mainly time in the sense, that
as the incidence of ASD and ADHD is rising every calendar year, this increase is not
straightforward to model. The time issue extended into our handling of missing values,
as the missingness often was informative about calendar year. How to handle missingness
in general, and informative missingness in particular, could be the aim of a whole thesis
in itself. We suspect that our handling of missing values could have been done in a more
proper way, e.g. by following [46].

Conducting the evaluation of our prediction models on the data set FullFollow-
Up9799Imputed, seems to be valid, as we have full follow-up on the subjects and the
missingness should not be informative, at least not about calendar year. The models that
we evaluated should be applicable for the cohorts a few years ahead, but at some point
the incidence has risen to an extend where the models should be refitted. Even though
the models might be valid to use, the AUC scores we obtained are not in a range where
any of the models presented can be categorized as good prediction models. In a clinical
setting the models presented seem to be of little value. For the purpose of investigating
the correspondence between the theory behind ASD and ADHD and real life, this the-
sis does provide some insight. We did find that the hereditary component of ADHD is
present, as the medication of parents with ADHD medication turned out to be a strong
predictor. The link between malformations and ASD [47] also seem to be confirmed, as
the malformation predictor contributed to the ASD prediction models.

In the sense of finding new and not yet investigated links, the link between maternal
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BMI and both ADHD and ASD is interesting. Even though we could not include it in the
models for the data set FullFollowUp9799Imputed, we still believe it is worth looking
into in future studies.

According to [48], high explanatory power, e.g. a large odds-ratio does not necessarily
lead to high predictive power. In our setting the high-scorers on the odd-ratio, maternal
and paternal ADHD medicinal use, also seem to be central prediction variables. This is
also the case for malformations for ASD. On the other hand, maternal smoking with an
OR of 2.283 for ADHD has played a lesser role in our prediction models. We have not
investigated the individual predictive power of our predictors, and are thus not able to
conclude anything definitely.

In [34] it is stated that, how much the results of corresponding predictive and explana-
tory studies differ is an indication of how far the theory within a given field is from reality.
We think that the theory on both ASD and ADHD is not yet complete, as we were not
able to construct good prediction models, based on several predictors suggested both by
the literature and a psychiatric expert. We do still believe that the prediction models can
be improved by adding more predictors, which is the plan to do in the future.

Perspectives

Conducting a statistical prediction study will contribute to the debate on which of the
already known, and possibly new risk factors, associate with ASD and ADHD. This might
even lead to hypotheses on new predictors and their association with ASD and ADHD
[34]. This is why we believe that the predictive study should be conducted to its full
extent, including many more predictors.

As for the investigation into prediction models, we would like to investigate the ASD
diagnoses given before a subject’s third birthday. This would enable us to have full
follow-up on our entire data set. Furthermore, children diagnosed with ASD so early are
probably different from those diagnosed in their teenage years and it could thus be easier
for us to predict such a diagnosis.

In our search for evaluation measures we have come across calibration plots several
times, e.g. in [49]. These might provide even further insights into our prediction models
and could thus be considered in the future.

To better handle the calendar year issues, models more suited for data collected over
time, like survival analysis using Cox proportional hazards [50], could be considered. Even
though the time varying prevalence is not easily handled here either, to the extend of our
limited knowledge.

Another type of classifier to consider would be neural networks [41]. These are not
better at predicting in general, but are well suited for large data sets. We do not know if
the size of this data set could be considered "large", but as long as it is possible to fit a
logistic regression, we do not see a need for neural networks.
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Conclusion

We conclude that logistic regression is the best classification method for the data handled
in this thesis. Classification trees are useful as a supplement and shrinkage might become
important when more predictors are added.

A time dependent outcome with varying prevalence and informative censoring of vari-
ables, are the main issues for the data handled in this thesis.

To further investigate the models in this thesis, we recommend investigating the diag-
nosis of ASD before the age of three. To expand the work of the thesis, we recommend
investigating a multi class setting. To go another way, we recommend survival analysis
or neural networks. To improve the work, we recommend creating more predictors and
learning how to handle the missingness.
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A. Simulated Variables

Name

Origin

Height
Heightl
Height2
Height3
Sex
Smoke
Weight
Weightl

Weight?2
Weight3
Uniform
Uniformil
Uniform2
Uniform3
Normal
Normall
Normal2
Normal3

As described in Section 1.1
3Height + N(0, 16)

1Height + N(0,0.25)
(Height + N(0,04))®

As described in Section 2.1.2
As described in Section 2.1.2
As described in Section 1.1
— exp (%) + N (0,0.16)
8Weight + N (0, 100)

log (Weight*) + A/(0,0.01)
Unif(0, 1)
20Uniform + N(0, 1.44)
—10Uniform + N(0,4)
—(Uniform + A(0,0.16))?

N (50, 30)
30Normal + N (0, 225)
—15Normal + N(0, 64)
—(Normal + A (0, 100))?

Table A.1: Simulated variables and transformations.
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B. Real Variables

Other

e PNR: The pseudo randomized personal record number (PNR).
The variable is taken directly from the CPR register and links all our observations,
both subjects and parents across all the registers.

e M_PNR: The mother of the child’s pseudo randomized personal record number (PNR).
The variable is made based on the LFOED variable PNRM covering 1973 — 1996 and
the variable PNRM from MFR covering 1997—, indicating the biological mother of
the child. The merged variable M_PNR has a few missings, which was instead taken
from the CPR register, this is the legal mother of the child the 1st of January 2019.
The variable M_PNR is covering 1973—.

e F_PNR: The father of the child’s pseudo randomized personal record number (PNR).
The variable is made based on the LFOED variable PNRF covering 1973 — 1996 and
the variable PNRF from MFR covering 1997—, indicating the biological father of the
child. The merged variable F_PNR has many missings, which was instead taken from
the CPR register, this is the legal father of the child the 1st of January 2019. The
variable F_PNR is covering 1973—.

Binary variables

e Sex: The sex of the subject.
The Sex variable is taken directly from the CPR register indicating the legal sex
of the subject the 1st of January 2019. The variable covers all subjects and has no
missing values.

e ASD: Indicating whether the child has gotten a diagnosis of Autism Spectrum Dis-
order before it’s 18th birthday.
The variable is based on the LPR, LPR-PSYK and DCPR. In all three registers we
have excluded diagnoses given in the emergency room and referral diagnosis as these
two are usually not confirmed by specialists. Between the remaining diagnosis, we
have identified all diagnoses with the ICD 8 classification 299 and the ones with the
IDC 10 classification F84. For all of these diagnoses we have reduced them to the
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Note:

Appendix B. Real Variables

first one given to each subject and evaluated whether the admission date for the
record leading to the diagnosis was prior to the subject’s 18th birthday. If this was
the case ASD is set to 1, otherwise ASD is set to 0. Overall ASD is an indicator variable
indicating if the child has gotten an ASD diagnosis before it’s 18th birthday. The
variable covers all children in the study, thus 1977-.

ADHD: Indicating whether the child has gotten a diagnosis of Attention Deficit Hy-
peractive Disorder before it’s 18th birthday.

The variable is based on the LPR, LPR-PSYK and DCPR. In all three registers
we have excluded diagnoses given in the emergency room and referral diagnosis, as
these two are usually not confirmed by specialists. Between the remaining diagnosis,
we have identified all diagnoses with the ICD 8 classifications 406.39 and 308, and
the ones with the IDC 10 classifications F90.0, F90.1, F90.8 and F98.8. For all of
these diagnoses we have reduced them to the first one given to each subject and
evaluated whether the admission date for the record leading to the diagnosis was
prior to the subject’s 18th birthday. If this was the case ADHD is set to 1, otherwise
ADHD is set to 0. Overall ADHD is an indicator variable indicating if the child has
gotten an ADHD diagnosis before it’s 18th birthday. The variable covers all children
in the study, thus 1977-.

All medicine variables are made based on the register LSR and are made in the same
way. Therefore we only describe in detail how the variable M_ADHD Meds is made.

M_ADHD Meds: Indication of whether the mother of the child redeemed a prescription
of ADHD medicine before the child’s first birthday.

In the register LSR an observation represents a redeemed prescription, for each of
these transactions, among other things, we get the three variables PNR, the variable
ATC, denoting which medicine is redeemed during the transaction and the variable
expd, which refers to the dispatch date from the pharmacy. A person is only in this
database if she gets any medicine. Based on these three variables, we have made
the variable M_ADHD Meds in the following way. First, we extracted all observations
with ATC codes NO6BA02, NO6BA04, NO6BA0O7, NO6BA09, NO6BA12, C02AC02,
as these are the ATC codes for ADHD medicine. For each personal record number
M_PNR, we then only store the first dispatch date. If the first dispatch date is before
the child’s first birthday, we choose to assign the mother as being an ADHD medicine
user. We chose that it should be before the child’s first birthday as in a predictive
study, we must not use variables recorded later in time to describe a response. In
this case, the child having ADHD and according to psychiatrist Marlene Briciet
Lauritsen!, children generally does not get diagnosed with ADHD before the age of
1. Overall, the variable M_ADHD Meds is an indicator variable, where 1 means that
the mother of the child used ADHD medicine before the child’s first birthday and
0 means that the mother has not taken any ADHD medicine before the child’s first

1 Child and Adolescent Psychiatry, Region of Northern Jutland Psychiatry, Aalborg, Denmark
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birthday or that the mother has not taken ADHD medicine at all. The variable
covers 1995—.

F_ADHD Meds: ADHD medicine for the father.

We make this variable by using the same ATC codes as for the variable M_ADHD Meds.
The variable F_ADHD Meds is an indicator variable, where 1 indicates, that the father
has received ADHD medicine before the child’s first birthday. This variable covers
the period 1995—.

M_Alc_Meds: Alcoholic medicine for the mother.
We make this variable by using the ATC codes NO7BB01, NO7BB02, N07BBO03,
NO07BB04, NO7TBB05. The variable M_Alc_Meds is an indicator variable, where 1
indicates, that the mother has received alcoholic medicine before the child’s first
birthday. This variable covers the period 1995—.

F_Alc_Meds: Alcoholic medicine for the father.

We make this variable by using the same ATC codes as for the variable M_Alc_Meds.
The variable F_Alc_Meds is an indicator variable, where 1 indicates, that the father
has received alcoholic medicine before the child’s first birthday. This variable covers
the period 1995—.

M _Drugs_Meds: Drug medicine for the mother.

We make this variable by using the ATC codes NO7BC01,NO7BC02, NO7BCO03,
NO7BC04, NO7TBC05, NO7TBC06, NO7TBC51. The variable M_Drugs_Meds is an indi-
cator variable, where 1 indicates, that the mother has received drug medicine before
the child’s first birthday. This variable covers the period 1995—.

F_Drugs_Meds: Drug medicine for the father.

We make this variable by using the same ATC codes as for the variable M_Drugs _Meds.
The variable F_Drugs_Meds is an indicator variable, where 1 indicates, that the fa-
ther has received drug medicine before the child’s first birthday. This variable covers
the period 1995—.

M_Smoking: Maternal smoking prior to birth.

The variable is made based on the LFOED variable B_RYGER covering 1991 — 1996
and the variable RYGERSTATUSMODER from MFR covering 1997—. The variable
B_RYGER has non-smokers marked with 0 and smokers marked with 1 and a level
with blanks, which we set as missing. The variable RYGERSTATUSMODER also has a
level with blanks that is set as missing. Furthermore the variable has the levels
00,10, 11, 20, 21, 22, 23, 29, 99, which we have interpreted as if 00 is means 0, that is
non-smokers. The level 99 indicates NA and the remaining levels are different kinds
of smokers, but since we are interested in merging the variable with B_RYGER, we
simply consider all these as the level 1, that is, they are smokers.

Overall, the variable M_Smoking is thus an indicator variable containing the levels
0,1 and NA, which indicates whether the mother has been smoking prior to birth
and the variable is covering 1991 —.
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e Ext Preterm: This variable and the next two indicate whether the child was pre-

maturely born based on the continuous variable GestAge (see continuous variables).
This specific variable indicates an extreme premature birth.

According to [51], doctors should try to rescue the child if the gestational age is at
least 22 weeks and the source calls the child extremely early born if the gestational
age is between 22 — 27 weeks. We therefore make an indicator variable to indicate
whether the subject is born with a gestational age in between 22 — 27 weeks by
dividing all entries in the variable GestAge by 7 because it is measured in days. We
then rounded these values to the nearest whole number of weeks. If the child is born
with a gestational age of 22 or 27 weeks or a number in between, then the person
belongs to the level 1, indicating extremely early born. If the gestational age for a
birth is less than 22 or more than 27, the person belongs to the level 0, indicating
that the birth was not extremely preterm. In addition to these two levels we also
have some missing values. The variable Ext_Preterm is covering 1973-.

Ver Preterm: This variable indicates whether the child was prematurely born based
on the continuous variable GestAge (see continuous variables). This specific variable
indicates a very premature birth.

This variable is made exactly like the previous one, where this is just a very early
birth instead of an extremely early birth. According to [51] a very early birth is
indicated by having a gestational age of 28 — 31 weeks, including week 28 and 31.
Thus for the variable Ver_Preterm, a person belongs to level 1 if the person has
a gestational age of 28,29,30 or 31 weeks and if the person has a other number
reported, then the person belongs to the level 0. There is also a level indicating
missing.

Mod_Preterm: This variable indicates whether the child was prematurely born based
on the continuous variable GestAge (see continuous variables). This specific variable
indicates a moderately premature birth.

This variable is made exactly like the previous one, where this is just a moderate
early birth instead of a very early birth. According to [51] a moderate early birth is
indicated by having a gestational age of 32 — 37 weeks, including week 32 and 37.
Thus for the variable Mod_Preterm, a person belongs to level 1 if the person has a
gestational age of 32,33, 34, 35,36 or 37 weeks. If the person has another number
reported, then the person belongs to the level 0. There is also a level indicating
missing.

Cont_Stim: This variable indicates whether the mother of the child received con-
traction stimulation during the birth of the child.

The variable is made based on the LFOED variables B_I1 covering 1978 — 1990 and
B_VESTIM covering 1991 — 1996 and furthermore based on the variable MARKOER_-
VESTIMULATION from MFR covering 1999—. For the LFOED variables 1 indicates
that the mother of the child has been given contraction stimulation during the
birth and 0 indicates that the mother has not received it. There are many miss-
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ings for both these two variables, which is because they both only cover part of the
overall period 1973 — 1996. Therefore, these variables are combined by taking the
variable B_VESTIM and changing its values to O if there is 0 in the variable B_I1
for one person and correspondingly done with the level 1. For MFR, the variable
MARKOER_VESTIMULATION covers 1999— and we have thus not observed the variable
in the period 1997 — 1998. Furthermore, the variable MARKOER_VESTIMULATION only
contain values for the levels 1 and blank. Many of the blank ones are of course
0, but some of these observations can also belong to level 1, because we have an
uncovered period. We therefore choose to put all persons to 0 who have the year of
birth 1999— and people who were born in 1997 — 1998 are set as missings.

Overall, the merged variable Cont_Stim indicates that if a person has 1, the mother
of the child has received contraction stimulation and if the person has 0, the sub-
ject’s mother has not been given contraction stimulation. The variable Cont_Stim
covers 1978 — 1996 and 1999—.

Epidural: Indication of whether there has been an epidural blockade during child-
birth.

The variable is made based on the categorical MFR variable EPIDURALBLOKADE cov-
ering 2000—. The MFR variable has the levels blank, NAADO, NAADO00, NAADO1,
NAADO2, NAADO03, NAADOA, NADOB. All the levels starting with NAA are the
ICD 10 codes for a kind of epidural that the mother has had during the childbirth,
but since we in this master thesis are not interested in which kind of epidural, the
variable is made as a binary variable. Here, 1 indicates that the mother had an
epidural. All blanks was dealt with such that if the child has a year of birth in
2000 or later, the child belongs to the level 0 indicating that there was no epidural.
Otherwise the child belongs to the level missing.

Overall, the variable Epidural is an indicator variable, where level 1 means that
the mother had a epidural blockade during birth and the level 0 indicates, that the
mother has no epidural blockade during birth. The variable is covering 2000—.

Med_Initiate: Indication whether the mother of a child has received medical com-
mencement during birth.

The variable is made based on the LFOED variable B_F3 covering 1991 — 1996 and
the variable MARKOER_IGANGSAETTELSE from MFR covering 1997—. The LFOED
variable B_F3 does not cover a large period of LFOED and therefore there are of
course many blanks for this variable. All persons who have a year of birth in the
year 1990 or earlier are therefore set as missing, which resulted in all blanks becom-
ing NA. For the MFR variable MARKOER_IGANGSAETTELSE, there are only the levels
blank and 1. Since the variable covers the entire period for MFR, all these blanks
are set to 0, as it is assumed that it is a check box where no marking means no
medical commencement.

Overall, the variable Med_Initiate is an indicator variable, where 1 indicates that
the mother of the child has received medical commencement and 0 indicates, that the
mother has not received medical commencement. The variable is covering 1991 —.
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e Sectio: Indication of whether the child is delivered through a cesarean section.

The variable is made based on the LFOED variables B_I11 covering 1978 — 1990 and
B_SECTIOU covering 1991 — 1996 and furthermore based on the variable MARKOER_-
KEJSERSNIT from MFR covering 1997—. The LFOED variables B_I11 and B_SECTI0OU
contains the levels 0,1 and blank and we thus choose to make it as an indicator
variable. According to the official documentation of the register [52], 0 means no
cesarean section, 1 means cesarean section and blank means not informed for both
variables. The variables are covering different time period and thus everything
should be okay, but these two variables give us 72,593 sections and according to
Sundhedsdatastyrrelsen [53|there should have been 141,597 in this time period. We
do note that some individuals have been removed from the data set, but not that
many. This is odd and thus we should be careful when including this variable be-
fore 1997. For the MFR variable MARKOER_KEJSERSNIT, the levels are blank and 1,
where blank is treated as no cesarean section since this variable covers the entire
MFR period, referred as 0. The level 1 means that the mother had cesarean section
when giving birth to the child. Note that this variable was not as we had hoped,
as we are not only interested in whether the mother had a cesarean section during
birth, but more interested in whether the mother got an acute cesarean section dur-
ing birth. There are two variables in LFOED B_I9 and B_I12, where B_I9 indicates
whether the mother has received a scheduled cesarean section and B_i12 indicates
whether the cesarean section was acute. Since both of these variables contained
only the levels 0 and NA and each cover the periods 1978 — 1990, we contacted
Sundhedsdatastyrrelsen to hear more about these cesarean section variables, but we
are still waiting for an answer and must therefore omit the acute cesarean section
in our master thesis.

Overall the variable Sectio is an indicator variable, where 0 means that the mother
of the child has not been given a cesarean section during birth and 1 means that the
mother of the child had a cesarean section during birth. The variable covers 1978-,
but we are aware that the variable may be odd before 1997.

ApgarbminOK: The Apgar score of the child recorded 5 minutes after birth.

The variable is made based on the LFOED variable V_APGAR5 covering 1978 — 1996
and the variable APGARSCORE_EFTERSMINUTTER from MFR covering 1997—. An Ap-
gar score indicates the degree to which the child is alright, in this case 5 minutes after
birth. The highest score is 10 indicating that the child breathes and looks healthy.
The lowest score is 0, indicating that the child is dead 5 minutes after birth. All
integers in between are also possible scores. Since 93% of newborns scored 10, there
is not much variation in this variable. Therefore, we made it as an indicator variable
based on [54], which suggests that the levels 8,9 and 10 correspond to a fine Apgar
score and that the levels 0 — 7 indicate a troublesome Apgar score. For this indicator
variable 1 means that the child has a fine score, whereas level 0 indicates that the
child has a poor score. Values that are not 0 — 10 are set to missing, as these are
not possible scores. We treat the MFR variable APGARSCORE_EFTERSMINUTTER in
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the same way.
Overall, the combined variable Apgarb5minOK is an indicator variable, where 1 in-
dicates a fine Apgar score and 0 indicates a poor score. The variable is covering

1978—.

Malformations: Indication of whether the child has malformations after birth noted
by the midwife.

The variable is made based on the LFOED variable C_MISDAN covering 1978 — 1996
and furthermore based on the variable MARKOER_B_MISDANNELSE from MFR covering
1997—. The LFOED variable C_MISDAN contains the levels blank,0, 1 and 2 and since
the MFR variable is an indicator variable, we also choose to make this as an indi-
cator. According to the official documentation [52], 0 means not informed, 1 means
the child has malformations and 2 means no malformations. As there were almost
just as many observations for each level, it indicated that extremely many children
were born with malformations and therefore we contacted Sundhedsdatastyrrelsen
to hear if it could be right. They responded by sending a detailed documentation.
Here it appears that for the period 1978 — 1986, 0 means malformation, the level 1
has no observations included and 2 means no malformation / uninformed. In the
period 1987 — 1990, all observations are missing and for the period 1991 — 1996,
0 means uninformed, 1 means no malformation and 2 means malformation. This
answers our concern that we had from the start on this variable. We chose to put
all children with malformations as 1 and children without malformations are set
as 0. For the MFR variable MARKOER_B_MISDANNELSE, the levels are blank and 1,
where blank is treated as no malformation since this variable covers the entire MFR
period. The level 1 means malformation.

Overall the variable Malformations is an indicator variable, where 0 means no mal-
formations for the child at birth noted by the midwife and 1 means that the child
has malformations. The variable covers 1978-1986 and 1991-.

In Asfyxi: Indication of whether the child had inter-uterine asphyxia during the
mother’s pregnancy period.

The variable is made based on the binary MFR variable INTRAUTERIN_ASFYXI cov-
ering 1997—. The MFR variable includes only the levels blank and DO363, where
DO363 indicates, that the child had asphyxia in the mother’s uterus and thus re-
ferred as 1 for the newly made variable In_Asfyxi. Since the entire MFR period is
covered, it is chosen to put all blanks as 0 indicating that the child had not asphyxia
Overall, the variable In_Asfyxi is an indicator variable, where level 1 means that
the child had asphyxia in uterus during the mother’s pregnancy period and the level
0 indicates that the child had not. The variable is covering 1997—.

Sepsis: Indication of whether the child had sepsis during the mother’s pregnancy
period.

The variable is made based on the categorical MFR variable SEPSIS_BARN covering
1997—. The MFR variable has the levels blank, DP36, DP360, DP361, DP362,
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DP363, DP364, DP365, DP368, DP369, which are ICD 10 codes for different kinds
of sepsis. Since we are not interested in which kind of sepsis the children had, we
choose to gather all the levels such that 1 indicates, that a child had sepsis. As the
variable covers the entire MFR period, the blanks are considered non-sepsis.
Overall, the variable Sepsis is an indicator variable, where level 1 means that the
child had sepsis in uterus during the mother’s pregnancy period and the level 0
indicates that the child had not. The variable is covering 1997—.

Infections: Indication of whether the child had an infection shortly after birth.
The variable is made based on the binary MFR variable MARKOER_INFEKTIONER
covering 1997—. The MFR variable include only the levels blank and 1, where 1
indicates, that the child had infections. Since the entire MFR period is covered, it
is chosen to put all blanks as 0 indicating that the child had no infections.

Overall, the variable Infections is an indicator variable, where level 1 means that
the child had an infection shortly after birth and the level 0 indicates, that the child
had no infections. The variable is covering 1997—.

Jaundice: Indicating whether the child had gotten a diagnosis of jaundice before
it’s first birthday.

The variable is based on the LPR. In the LPR we have excluded diagnoses given in
the emergency room and referral diagnosis, as these two are usually not confirmed
by specialists. Between the remaining diagnosis we have identified all diagnoses
with the ICD 8 classifications 282, 774 and 7852 and the ones with the IDC 10
classifications A270, D58, D598, D599, E031, E742, E804, E805, E848, K729, K831,
P550, P551, P559, P579, P58, P59, Q441, Q443 and R17. For all of these diagnoses
we have reduced them to the first one given to each subject, and evaluated whether
the admission date for the record leading to the diagnosis was prior to the subject’s
first birthday. If this was the case Jaundice is set to 1, otherwise Jaundice is set
to 0. Overall Jaundice is an indicator variable indicating whether the child had
gotten a jaundice related diagnosis before it’s first birthday. The variable covers all
children in the study, thus 1977-.

Categorical variables

e Parity: Number of births including the newborn child.

The variable is made based on the LFOED variable V_TIDLLEV covering 1973 — 1996
and the variable PARITET from MFR covering 1997—. The variable V_TIDLLEV
indicates how many live born children the mother has given birth to, excluding the
newborn child. We choose to include the new baby as MFR does and therefore we
add 1 to every levels. In addition, the variable is made as a categorical variable
with the levels NA, 1,2, 3,4, 5 and the level 6 or more births. The variable PARITET
indicates how many birth the mother has including still born children. We must
therefore be aware that the two variables do not indicate exactly the same when
we evaluate our models. The variable has a level with blank that is set as missing.
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We also make this variable as a categorical NA,1,2,3,4,5 and the level 6 or more
births.

Overall, the variable Parity is thus a categorical variable containing the levels
NA,1,2,3,4,5 and 6 >, which indicates how many birth the mother has including
the new born child and the variable is covering 1973—. Note that Parity can be
misleading as the period 1973 — 1996 does not include still born children and the
period 1997— includes still born children.

Continuous variables

e M_Age: Age of the mother at the birth of the child.

The variable is made based on the LFOED variable V_MALDER covering 1973 — 1996
and the variable ALDER_MODER from MFR covering 1997—. The variable V_MALDER
is numeric and indicates the age of the mother when she gives birth to the child.
The variable ALDER_MODER indicates the same but for another period and there are
no strange inputs for these variables and no missings. This could indicate, that the
variable is made based on the CPR register. For the children not registered in the
MFR and the children with missing V_MALDER we calculate the maternal age from
the mothers birthday and the child’s birthday in the CPR register.

Overall, the variable M_Age is thus a numeric variable indicating the age of the
mother when giving birth to the child and the variable is covering 1973—.

o F_Age: Age of the father at the birth of the child.

The variable is made based on the LFOED variable V_FALDER covering 1973 — 1996
and the variable ALDER_FADER from MFR covering 1997—. The variable V_FALDER
is numeric and indicates the age of the father when the child is born. The variable
ALDER_FADER indicates the same but for another period. There are some few levels
indicating that the father’s age is 6 years or younger and even negative values, which
is set to NA, as the next smallest values beyond 6 are 15 years. For the children
not registered in the MFR and all other children with missing F_Age we calculate
the paternal age from the father’s birthday and the child’s birthday in the CPR
register.

Overall, the variable F_Age is thus a numeric variable indicating the age of the father
when the child is born and the variable is covering 1973—.

e M BMI: Mother’s BMI prior to pregnancy.

The variable is made based on the numeric MFR variable BMI_MODER covering
2003—. There are many different values for BMI because it is a composition of
height and weight for each person. To identify strange levels, we round the BMI
values, where no remarkable levels were found and thus the previous values are re-
tained. All BMI, which are equal to or smaller than 7 and BMI values of 68 or more
is set as missing as these are extremely unrealistic BMI scores.

Overall, the variable M_BMI is a numeric variable indicating the BMI of the mother
at first doctor visit. The variable is covering 2003—.
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Appendix B. Real Variables

e M _Spon_Abort: Number of previous spontaneous abortions for the mother before

the birth of this child.

The variable is made based on the numeric MFR variable TIDLIGERESPONTANEABOR-
TER covering 1997—. The MFR variable has the levels 1 — 12 and NA. Since the
variable covers the entire MFR period, we choose to consider the the level NA as
no previous spontaneous abortions.

Overall, the variable M_Spon_Abort is a numeric variable indicating the number of
previous spontaneous abortions for the mother. The variable is covering 1997—.

Visit_Mid: Number of visits to midwife.

The variable is made based on the LFOED variable V_U1 covering 1978 — 1996 and
the variable BESOEGHOSJORDEMODER from MFR covering 1997—. The variable V_U1
is numeric and indicates how many visits to midwives the mother had during preg-
nancy. The same is the case for the variable BESOEGHOSJORDEMODER and therefore
they can be merged without doing any transformations. There are also missings in
both variables.

Overall, the variable Visit Mid is thus numeric and indicates how many visit to
midwife the mother had during pregnancy covering 1978—.

Visit_Doc: Number of visits to doctor.

The variable is made based on the LFOED variable V_U2 covering 1978 — 1996 and
the variable BESOEGHOSLAEGE from MFR covering 1997—. The variable V_U2 is nu-
meric and indicates how many visits to doctor the mother had during pregnancy.
The same is the case for the variable BESOEGHOSLAEGE and therefore they can be
merged without doing any transformations. There are also missings in both vari-
ables.

Overall, the variable Visit Doc is thus numeric and indicates how many visit to
doctor the mother had during pregnancy covering 1978—.

Visit_Spe: Number of visits to specialist doctor.

The variable is made based on the LFOED variable V_U3 covering 1978 — 1996
and the variable BESOEGHOSSPECTALLAEGE from MFR covering 1997—. The variable
V_U3 is numeric and indicates how many visits to specialist doctor the mother had
during pregnancy. The same is the case for the variable BESOEGHOSSPECIALLAEGE
and therefore they can be merged without doing any transformations. There are
also missings in both variables.

Overall, the variable Visit_Spe is thus numeric and indicates how many visit to
specialist doctor the mother had during pregnancy covering 1978—.

BirthYear: The year, that the subject was born.
The variable is extracted from the subject’s birthday in the CPR register. The
variable BirthYear has full coverage.

GestAge: Days between last menstruation and birth also known as gestational age.
The variable is made based on the LFOED variable V_SVLANGDE covering 1973—1996
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and the variable GESTATIONSALDER_DAGE from MFR covering 1997—. The variable
V_SVLANGDE is numeric and indicates how many weeks have passed between last
menstruation and birth. All levels are multiplied by 7, so it is instead indicated in
days. This is done as the variable GESTATIONALDER _DAGE from MFR is indicated in
days. Therefore nothing needs to be done about the latter, which is also a numeric
variable.

Overall, the variable GestAge is thus a numeric variable indicating how many days
have gone between last menstruation and the birth. The variable is covering 1973—.

B_Length: The birth length of the child.

The variable is made based on the LFOED variable V_LANGDE covering 1973 — 1996
and the variable LAENGDE_BARN from MFR covering 1997—. The variable V_LANGDE
is numeric and indicates the length of the child when born recorded in centimeters
without decimals. The variable LAENGDE BARN indicates the same but for another
period. The levels 90 and 99 is considered as missings.

Overall, the variable B_Length is thus a numeric variable indicating the length of
the child when born recorded in centimeters and the variable covers 1973—.

B_Weight: The birth weight of the child.

The variable is made based on the LFOED variable V_VAGT covering 1973 — 1996
and the variable VAEGT_BARN from MFR covering 1997—. The variable V_VAGT is
numeric and indicates the weight of the child when born. Since the variable is
recorded in grams without decimals, there are many different values (in total 3543).
We investigated how many observations occurred for each level to find out if 99
could, for example, indicate missing. There were no remarkable strange levels and
therefore it was only decided to put 0,9900,9990 and 9999 as missings as these are
unrealistic and not other values were close to them. Similarly the MFR variable
VAEGT_BARN is numeric and we set the same levels to missing as for the variable
V_VAGT and furthermore the level 9920 is set as missing.

Overall, the variable B_Weight is thus a numeric variable indicating the weight of
the child when born recorded in grams and is covering 1973—.






C. ROC Curves of Models on Real
Data
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Figure C.1: 10-fold cross-validated ROC curves for five different models predicting ASD and ADHD,
respectively, in ﬁ of the data set AllObsImputed with 12,305 subjects, where 1.4%
have an ASD diagnose and 2.1% have an ADHD diagnose
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Figure C.2: 10-fold cross-validated ROC curves for five different models predicting ASD and ADHD,
respectively, in the data set ObsNoMissing with 428,943 subjects, where 2.0% have an
ASD diagnose and 2.4% have an ADHD diagnose

135



136

Sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

Appendix C. ROC Curves of Models on Real Data
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Figure C.3: 10-fold cross-validated ROC curves of trees predicting ASD and ADHD, respectively,
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grown to depth 8 on three different data sets. The data set AllObsImputed includes
2,461,082 subjects (ASD 1.5%, ADHD 2.0%). The data set ﬁ of AllIObsImputed
includes 12,305 subjects (ASD 1.4%, ADHD 2.1%). The data set ObsNoMissing

includes 428,943 subjects (ASD 2.0%, ADHD 2.4%). For ROC curves see Figure C.3
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Figure C.4: 10-fold cross-validated ROC curves of three different models on the data set
AllObsImputed with 2,461,082 subjects (ASD 1.5%, ADHD 2.0%) only using time as
predictor for ASD and ADHD, respectively.
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Figure C.5: 10-fold cross-validated ROC curves for five different models predicting ASD and ADHD,

respectively, in the data set ObsNoMissing without BirthYear included as predictor.
The data set includes 428,943 subjects (ASD 2.0%, ADHD 2.4%)
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Figure C.6: 10-fold cross-validated ROC curves for six different models predicting ASD and ADHD,
respectively, in the data set FullFollowUp9799Imputed with 220,458 subjects (ASD
2.5%, ADHD 3.5%).
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Figure C.7: 10-fold cross-validated ROC curves of three different models on the data set
FullFollowUp9799Imputed with 220,458 subjects (ASD 2.5%, ADHD 3.5%) with
imputed missing values. Only selected variables and interaction terms
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