
Game performance sucks, and one
attempt at fixing it
- Master Thesis Project Report -

pt101f19

Aalborg University
Software

Copyright © Aalborg University 2016

Department of Computer Science
Selma Lagerløfs Vej 300

9220 Aalborg Øst
http://www.aau.dk

Title:
Game performance sucks, and one attempt at
fixing it

Theme:
Programming Technology

Project Period:
Spring 2019

Project Group:
pt101f19

Participant(s):
Carsten Schroll Ibsen
Frederik Palmelund Voldby

Supervisor(s):
Lone Leth Thomsen

Copies: 1

Page Numbers: 84

Date of Completion:
06/06/2019

Abstract:

In this thesis we present the aggrega-
tor, a memory isolation model inspired
by software transactional memory, and im-
plement it into a game engine, to test if it
is a viable alternative to lock-based paral-
lelism in game engines. We design and
implement three game engines: a sequen-
tial, parallel with locks, and parallel with
the aggregator, and test and compare them
over three tests to determine if the aggre-
gator game engine can outperform tradi-
tional parallelism with locks. The imple-
mentation is done in C++ with SFML as
graphics library. The tests involve single-
core overhead, work load, and handling of
critical regions. The tests are performed
on four different test systems, to gain bet-
ter understanding of how the game engines
perform across different hardware configu-
rations. Test results show that the aggrega-
tor game engine has potential as it was 4.6
times faster then sequential but still slower
then parallel game engine that was 7 times
faster. There are potential for the aggrega-
tor to perform better with changes to the
implementation.

The content of this report is freely available, but publication (with reference) may only be pursued due to agree-

ment with the author.

http://www.aau.dk

Summary

Formålet med dette projekt er at undersøge en ide, som vi har valg at kalde aggregator.
Ideen blev udarbejdet i vores forspeciale [5] med henblik på at gøre det nemmere at lave
game engines som bedre kan gøre brug af parallelitet. Ideen er inspireret af software
transactional memory.

Vi starter med at beskrive teorien bag ved aggregatoren, som omhandler hvordan ag-
gregatoren håndterer hukommelse over flere tråde uden behov for at blokere mellem
trådene, og en sammenligning med revisions, da både revisions og aggregator er lig-
nende ideer som er inspireret af software transactional memory.

Efterfølgende designer vi tre game engines; en som kører på én kerne, en som kører parallelt
med traditionelle låse, og en som benytter aggregatoren. Derudover designer vi også et
lille spil, som skal bruges til at vise at det er muligt at lave det samme spil i alle tre game
engines. Vi implementerer alle tre game engines i C++, med SFML som grafikbibliotek til
at rendere. Alle tre game engines implementeres med et fælles interface, for at begrænse
interfacet mellem game engines og spillet til de nødvendige implementeringsforskelle i de
forskellige game engines.

Vi tester alle tre game engines over tre forskellige tests: en test for performance overhead
ved én logisk kerne, en test for arbejsmængde, og en test for hvor godt de håndterer arbejde i
critical regions. Alle test køres på fire forskellige testsystemer for at få en forståelse
for, hvordan hver engine klarer sig under forskellige forhold. Resultaterne viser, at aggrega-
tor game engine mod vores forventninger klarer sig bedre på én kerne end den game engine,
som vi har lavet til at køre på en kerne. På flere kerner klarer aggregatoren sig 4.6 gange
så godt som den sekventielle game engine, men den parallelle game engine med låse klarer
sig stadig 7.5 gange bedre. I testen med critical regions klarer den parallelle game
engine sig bedst, mens at aggregator game engine ikke formår at klare sig bedre end den
sekventielle game engine.

De tre game engines vi designer i rapporten er simple, og udelader mange funktionaliteter
som ellers er at finde i de game engines, som findes på markedet, og vi giver derfor en
oversigt over nogen af funktionaliterne, og hvordan de kan påvirke aggregatoren.

v

vi

Til sidst diskuterer vi aggregatoren og testresultaterne, før vi konkluderer på projektet. Vi
kommer frem til, at der er potentiale for aggregatoren, men at den med vores nuværende
implementering har plads til forbedringer. Vi giver også et bud fremtidige muligheder for at
arbejde med aggregatoren.

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Delimitation . 2

2 Memory Isolation 3
2.1 Aggregator . 3
2.2 Related work . 7
2.3 Comparison of models . 10
2.4 Determinism . 11
2.5 Delimitation . 12

3 Design 13
3.1 Engine Requirements . 13
3.2 Sequential game engine . 14
3.3 Parallel game engine . 19
3.4 Parallel game engine with the aggregator 20
3.5 Game design . 23
3.6 Delimitation . 24

4 Implementation 25
4.1 Choise of technology . 25
4.2 Sequential game engine . 26
4.3 Sequential game . 31
4.4 Parallel engine . 35
4.5 Parallel game . 38
4.6 Aggregator Engine . 39
4.7 Aggregator Game . 41
4.8 Delimitation . 42

5 Test 43
5.1 Test strategy . 43
5.2 Test systems . 46
5.3 Single-core overhead . 47
5.4 Background elements . 50

vii

viii Contents

5.5 Gravity wells . 54
5.6 Problems encountered during testing . 57
5.7 Delimitation . 58

6 Excluded engine functionality 59
6.1 Delimitation . 61

7 Discussion 63
7.1 Design . 63
7.2 Test and test results . 64
7.3 Choice of technologies . 65
7.4 Immutability and determinism . 66
7.5 Improvements to implementation . 67
7.6 Real world application . 69
7.7 Game . 69

8 Conclusion 71
8.1 Future work . 72

List of Figures 74

List of Tables 75

List of Listings 76

Bibliography 77

A Test results 81

Preface

This report was written by Carsten Schroll Ibsen and Frederik Palmelund Voldby from
project group pt101f19 at Aalborg University. The project was made in the period of Febru-
ary 1st to June 6th as our master thesis. We would like to thank our supervisor Lone Leth
Thomsen for her feedback and guidance. We would also like to thank Bent Thomsen for
inspiration and input. Finally, we want to thank our group-room mates from pt102f19 and
pt103f19 for being good sports and camaraderie with room for ideas and help.

The code developed in this project is freely available under MIT license at https://
github.com/palmelund/Master-Engine.

Aalborg University, 06/06/2019

ix

https://github.com/palmelund/Master-Engine
https://github.com/palmelund/Master-Engine

x Preface

Aalborg University, 06/06/2019

Frederik Palmelund Voldby
fvoldb14@student.aau.dk

Carsten Schroll Ibsen
cibsen13@student.aau.dk

Reading Guide

This report documents the design, implementation, and test of three game engines, with fo-
cus on the aggregator game engine, which is an implementation of our idea for concurrency
based on software transactional memory.

We assume the reader has prior knowledge with concurrency, parallelism, and software
transactional memory. A prior understanding of game engines, specifically Unity, will also
be beneficial. We discuss concurrency, parallelism, and game engines in [5].

In this report we cover the following chapters:

Chapter 1: Introduction We present our motivation for the aggregator, and how it is a
continuation of prior work of ours, followed by a presentation of the problem definition.

Chapter 2: Memory Isolation We present the aggregator, and how it can integrate with a
game engine to create long-term, non-aborting, non-blocking parallelism based on software
transactional memory. We also compare the aggregator with revisions, which are also based
on software transactional memory.

Chapter 3: Design A design is presented for three different game engines: a sequential
game engine, a parallel game engine with locks, and a game engine implementing the aggre-
gator. We also design a small game, which will be implemented in all three game engines.

Chapter 4: Implementation We limit our choice of technology for programming lan-
guage and rendering framework. Implementation details are then presented for all three
game engines, and the implementation of the game in each of the game engines.

Chapter 5: Test We perform three different tests on each of the game engines over four
different test systems. The tests involve single-core overhead, work-load, and performance

xi

xii Preface

in critical regions.

Chapter 6: Excluded Engine Features Several features which are present in commercial
game engines were excluded from the game engines we develop. In this chapter we discuss
the features, and present how they would affect the aggregator game engine.

Chapter 7: Discussion We discuss our test results and test approach, design and technol-
ogy decisions, and how we perceive the real-world application of the aggregator.

Chapter 8: Conclusion In the conclusion we present our work and findings, and present
future work involving the aggregator.

Appendix A: Test results Test results for all three tests on all four test systems.

Glossary In the glossary we define terms which are necessary to know to understand the
report, or to understand our intentions when using the term.

Glossary
Term Definition
Game developer A person involved in game development.
Game designer A person involved in game development, but with no involve-

ment in programming.
Game programmer A person involved in game development, with involvement in

programming.
Iterative system A program with a main loop which iterates over the same meth-

ods for an unspecified duration, and where the output state of one
iteration is the input state of the next iteration. Game engines are
the iterative system we focus on in this project.

GameObject Base object for objects which directly interface with the game
engine.

Frame rate Number of rendered frames per second
Sequential game engine Game engine which only makes use of one CPU core
Parallel game engine Game engine which makes use of multiple cores, and uses locks

for mutual exclusion
Aggregator game engine Game engine which makes use of multiple cores, and uses the

aggregator for mutual exclusion (see chapter 2)
Multithreaded game
engines

Used when referring to both the parallel game engine and the
aggregator game engine

1 | Introduction

Computer games are resource demanding programs, which pushes the computer hardware
to the limit. But one part of the computer hardware which is not always fully utilized is the
CPU, which in modern CPU’s consist of many cores [12].

In [5], we investigated the architecture of a game engine, and how functional programming
and parallelism could be used to improve the CPU utilization of games. The research re-
sulted in the design of a pattern for iterative systems, and targeted towards game engines, we
named aggregator, based on software transactional memory. The aggrega-
tor is described more in detail in chapter 2 in this report, but a short explanation follows
below.

The aggregator is inspired by immutability in functional programming, but altered such that
the game state does not change for the duration of an iteration in a game engine, but keeps
track of assignments to variables internally, and merges the interval assignments with its
variable at the end of each iteration in the game engine. Immutability allows games to
trivially run in parallel, as there is no need for locking between threads. The game program-
mer is able to define how conflicts are handled when merging changes to a variable. In a
game engine, the aggregator allows the three phases input, update, and render to be
performed in parallel, where they traditionally are handled sequentially, even in concurrent
game engines.

We concluded [5, p27-p42] with a design for a basic game engine using the aggregator, and
preliminary test specification, but without any implementation and test results to determine
if the idea works and is viable in game engines and games.

In this project we execute parts of the test plan in [5, p39-p42] where we design, im-
plement, and test three game engines. The design involve a sequential game en-
gine, a parallel game engine with locking, and a parallel game en-
gine with the aggregator. We also implement an identical game in each of the
three game engines. The first game engine is a sequential game engine, which is our base
engine implementation, acting as a base benchmark to measure the multithreaded game en-
gines against. The parallel game engine is an adaption of the first engine modified to be

1

2 Chapter 1. Introduction

multithreaded, using traditional locking, to avoid race conditions. The aggregator game en-
gine is implemented using the aggregator, which allows for a parallel implementation which
better utilizes resources at the cost of the immutability of the game state. We include all
three game engines to measure how the aggregator game engine performs compared to a
sequential game engine, as an indication if we actually benefit from multiple cores, and a
parallel game engine, to determine how well we could benefit from multiple threads.

In [5, p1-p5] we used benchmarks from PCGamer [32] to determine that computer games
do not properly utilize computer hardware, as the base for our motivation. From the results
of our research we designed the aggregator, but never got a change to test it. We find it
interesting and essential to implement and test the aggregator, such that we can conclude if
the idea is a viable alternative for concurrency in game engines.

1.1 Problem definition

In this section, we propose the problem definition and sub-questions which we investigate
in this report. The problem definition is based on what we learned in [5] and working to
increase the knowledge and understanding of the aggregator.

We define the problem definition as:

How would a game engine implemented using the aggregator compare to game engines
using a sequential implementation or a lock-based parallel implementation.

1.2 Delimitation

In this chapter we have presented our problem, and motivation for working with the problem.
We also mentioned that the game engine designed in [5] was basic, as a lot of features which
are present in game engines implicitly have been excluded from the engine. Such features
include, but are not limited to, many resources, a full physics engine except for collision
detection, full 2D/3D support, components, and fixed updates. We explain each of these
features, and how their inclusion could affect the aggregator in chapter 6. The exclusions
allows theory, design, and implementation to be more focused on the core of the aggregator
in a game engine.

In the next chapter we describe the theory the aggregator, and draw a comparison with soft-
ware transactional memory, and related works.

2 | Memory Isolation

In this chapter we describe the aggregator, including clarification of many of the short-
comings and uncertainties which were present in in the original explanation in [5, p.27-
p.30]. We then present revisions in related work, which like the aggregator is also based
on software transactional memory, and compare similarities and differences be-
tween those ideas and the aggregator.

2.1 Aggregator

In this section, we describe the theory of the aggregator. The aggregator is a pattern which
allows programmers to trivially parallel code in iterative systems. The aggregator is inspired
by functional programming and software transactional memory. The game state is observ-
ably immutable during an iteration, hiding all updates and assignments on affected variables
internally, and merge them into the variables at the end of an iteration. In a concurrent
context, the aggregator allows code to be executed on multiple threads, with zero locking
between them. Forking and joining are handled internally, and the programmer only has to
provide what should be executed using the aggregator. The aggregator requires no use of
locks by programmers, and allows for non-blocking access to critical regions.

Throughout the rest of the report, we discuss the aggregator in the context of game engines.
We design a game engine with the aggregator in section 3.4. We also describe the imple-
mentation of a game engine with the aggregator in section 4.6 and game using the aggregator
engine in section 4.7.

We originally defined the aggregator in [5, p27-p37] but found that the descriptions were
confusing and lackluster. In this report, we expand upon the definitions and clarify where
necessary.

3

4 Chapter 2. Memory Isolation

Figure 2.1: Iteration of a potential game loop using the aggregator.

2.1.1 Game loop integrating the aggregator

In this subsection, we describe the aggregator with a focus on how it can be integrated with
a game engine. As part of the description, we also summarize the core parts of the game
loop in a game engine, while we have a general description in [5, p7-p16]. The game loop
of a simple game engine 1 has three main phases: input, update, and render. In a
conventional game engine, the three phases are executed sequentially. With the aggregator,
the three phases can be executed in parallel.

Figure 2.1 shows a game loop with the integration of the aggregator. At the start of each
iteration each of the input phase, update phase, and render phase are started in paral-
lel, but with some updates depending on the input phase to finish. Input is allowed
to block some updates, as some updates depend on the input state for the current
iteration for correct behavior, such as player movement.

The input phase is responsible for handling all player input. Input devices include mouse
and keyboard, but can in some games also extend to joy-sticks or wheels. In games with
clickable user interfaces, information about which buttons the user clicks are also handled
in the input phase. Mouse interaction with user interfaces goes beyond the goals of this
project, and will not be covered further in this report, limiting the input state to keyboard
only.

The update phase is responsible for running all updates on game objects. The update
phase executes the update and collision functions for each GameObject in the
game. There are no requirements for whether update or collision is processed first

1The full game loop for Unity can be seen in [18].

2.1. Aggregator 5

in a game engine, but the order does not matter in the aggregator as the results from either
wont affect the results of the other.

The render phase is responsible for rendering the frame to display at the end of the iter-
ation. The frame is rendered using the game state from the previous iteration. The conse-
quence is that the game always is one frame behind, compared to game engines where the
render phase is processed after the update phase in the same frame. With a sufficiently
high frame rate, the difference will be unnoticeable to the player.

By implementing the aggregator into the game engine, updates and assignments are hidden
away during the update phase, which trivializes parallelism, as there is no blocking when
updating variables in a concurrent context. One thread updating a variable does not affect
another thread updating the same variable.

The input phase remains the same, except that it only blocks execution of the parts of the
update phase which depends on input for the current frame. Due to input being run at
the same time as updates, the input state is mutable in the game engine during the update
phase.

The render is executed alongside the rest of the phases, as the game state does not
change during an iteration until after the renderer is done.

The aggregate phase is a new phase introduced into the game engine, which allows the
game engine to aggregate all changes made to affected variables, and make the changes vis-
ible in the game state. When aggregated, variables are merged using merge rules explained
in section 2.1.2.

Even though the aggregator makes the game state immutable, only types which utilize the
aggregator are affected. Local variables are always excluded, and class members have to
be defined using types integrating with the aggregator to obtain the behavior. In subsection
2.1.2, we define behaviors of types which are used with the aggregator. The aggregator also
introduces some overhead, which can be avoided for class-member types which are only
used internally in a type, where there is no risk of a race-condition between threads.

2.1.2 Behavior

In this subsection we describe the different behaviors that types can have, depending on how
they are modified. When the aggregator was first described in [5, p27-p37], we presented
some rules for how types in the aggregator behave but found them to be insufficient. We
expand upon them, drawing inspiration from section 2.2, with the introduction of priority
assignment.

Types that utilize the aggregator implements three different behaviors: deletion, as-

6 Chapter 2. Memory Isolation

signment, and relative operations. The operations are prioritized, and mutually
exclusive. If a deletion behavior is present, the aggregator ignores all assignment
and relative operations behaviors, while the presence of assignment behavior
excludes relative operations behavior. If none of the behaviors are present for a
variable, no aggregation is necessary for the variable.

Deletion behavior

The first behavior is deletion, which indicates if a type has been marked for deleting by
the game. If a type is marked for deletion, it is an indication that a type will not exist be-
yond the end of the current iteration, and all assignment and relative operations
behaviors will be ignored when aggregated, as the object no longer exists.

Assignment

The second behavior is assignment, which indicates that a value has been assigned to the
variable. To give the game programmer more freedom beyond that the first or last assignment
of an iteration is the final value, priority assignment is introduced. If an assignment is made
for a value with a higher priority, it stores the value and priority until the aggregation step at
the end of the iteration.

Relative operations

The third behavior is relative operations, which indicates that a value has been
modified by operations other than an assignment. Relative operations include all assignment
operations other than = by itself. When aggregating the results of relative operations, the
results are applied by their mathematical order, where all multiplications are applied to the
resulting value before additions. Examples of relative operations are assignment
operations such as + = and ∗ =.

2.1.3 Example with the aggregator

In this subsection, we give a short example explaining the behavior of the aggregator on two
variables across two threads.

Figure 2.2 shows how two variables x and y behaves across two threads over an iteration.
At the start of the iteration, both variables are instantiated to 0. At some point, the first
thread increments x by 1. Later in the same iteration, the second thread also increments x

2.2. Related work 7

Figure 2.2: Two threads modify shared variables. [] shows that the state value of the variables remains the
initial value, while the updates are visible after the threads.

by 1. After the second increment, the first threads increments y by the value of x. After both
threads have joined, it can be observed that x has the value 2, while y has the value 0.

The resulting value of x is the sum of the increments from both threads. y remains 0 despite
the same thread incremented x earlier in the same iteration. The lack of visible updates to
the values is caused by the immutability of the game state during the update phase. If the
same threads were to run for a second iteration with the updated state, the resulting values
of x is 4 while y is 2, as the read-value of x is the resulting value of the previous iteration.

2.2 Related work

In this section we describe a similar idea called revisions, based on software transactional
memory. We use the related works to draw an comparison with the aggregator in section 2.3.
We base the description on three papers with shared authors.

The article Lightweight Software Transactions for Games (Baldassin, Burckhardt)[2] inves-
tigates the use of software transactional memory and revisions in a small game. Concurrent
Programming with Revisions and Isolation Types (Burckhardt, Baldassin, Leijen) [4] covers
further research with revisions using the same game. A third article Semantics of Concurrent
Revisions (Burckhardt, Leijen)[3] focuses on the semantic parts of revisions.

The basic unit of concurrency in the articles is revisions, which are tasks that can be run on
separate threads. Revisions can spawn new revisions, and are later required to be rejoined
into a revision with the handle created when it was forked. Revisions are based on software
transactional memory, but are long-running, non-aborting and non-reverting.

Figure 2.3 shows a simple program with two versioned variables x and y. Changes made
by revisions to versioned variables are locally visible on the revision, but are only visible

8 Chapter 2. Memory Isolation

Figure 2.3: Revision diagram showing isolation between revisions. Figure 2 in paper [4].

Figure 2.4: Revision diagram showing nesting and joining of revisions. Figure 3 in paper [4].

2.2. Related work 9

to other revisions after joining. The main revision instantiates both variables to 0, before
spawning a new revision. The spawned revision assigns x = 1, while the main revision
assigns y = x. On join, the versioned value of x becomes visible to the main revision. The
assignment by the main revision was executed before the join, leaving the value of y = 0,
while x = 1. The result is always the same, independent of the order the two assignments
are executed between fork and join.

Figure 2.4 shows the flow of forking and nesting revisions, and which operations are allowed
for joining revisions. Any revision can fork a new revision, but not all revisions can join back
into other revisions. A revision can always be joined with its parent, as the parent holds the
handle to the revision. If a parent has already joined with its own parent, the handle to a child
revision is passed to the new parent, which then can join with the revision. It is not possible
for a revision to join with a grandparent, if the parent has not yet joined the grandparent first.

The article defines two memory types for handling shared memory in isolation: ver-
sioned and cumulative.

Versioned Versioned memory, such as the variables used in figure 2.3, are used where
there is no risk of concurrent modifications. When versioned types are joined, the value of
the forked revision is checked to determine if the value has changed. If the value is identical
to the parent revision, nothing is done, otherwise the value is overwritten by the forked
revision on join. Versioned types are also used where there is a priority between tasks, such
that results of higher priority revisions override the results of lower priority revisions. In a
multiplayer game, priority is used to indicate that network packages are more important than
local simulation [2] of the values in the package.

Cumulative Cumulative memory is used when a write conflict can occur between two
revisions. The cumulative type takes a merge function, which is given the current value
of the parent and fork revision, as well as the original value from when the revision was
forked. The programmer can then specify how the three arguments should be combined into
a resulting value. The code in listing 2.1 shows how a simple merge function could look for
integers, where they take the sum of the two revisions on join, and subtract the original value
at the point of forking.

1 int merge(int original, int master, int revised) {
2 return master + revised - original;
3 }

Listing 2.1: Merge function for integers.

Revisions and isolation is tested through an implementation of a game called SpaceWars3D
[4]. SpaceWars3D is used for teaching DirectX 2, and the game is not originally designed

2https://docs.microsoft.com/en-us/windows/desktop/direct3d

10 Chapter 2. Memory Isolation

with intentions for multithreading, but the authors found potential for multithreading the
collision detection in the game. The authors also found that there are restrictions to rendering
in the framework, limiting parallelism. Another opportunity for parallelism is the auto-save
system, which otherwise causes the game to freeze for a short duration.

A total of 22 types in the game were replaced with isolation types, being one of four
types: VersionedValue, VersionedObject, CumulativeValue, and Cumula-
tiveList.

They describe that the implementation is not always deterministic, as they cannot guarantee
that auto-save finishes in a timely manner, and have to check if it is done before joining.
User input, network packet timing, and random numbers all lead to non-determinism. They
redefine their goal from deterministic to deterministic record & play, as
it is easier to debug.

In a sequential implementation they found that revisions introduce a 5% overhead over a
normal sequential implementation. On four cores they got a speed-up of 2.6x. The limiting
factor for the game is the render task, which accounts for 99.5% of the frame time that
cannot be parallelized.

2.3 Comparison of models

In this section we compare the aggregator with revisions, which we cover in section 2.2. We
also compare the aggregator to software transactional memory, which both the aggregator
and revisions are inspired by.

Both the aggregator and revisions are long-running and non-reverting transactions. Both
transaction types run for a long time: until the user joins them back into the system for
revisions, or the end of an iteration for the aggregator. Both are also non-aborting, meaning
that they continue execution after the values they are bound to are changed, and do not roll
back. Instead, when joining, they merge their value based on merge rules, which for for
revisions and the aggregator can be defined by the programmer.

The aggregator differentiates itself from the revision and transactional memory in that it is
immutable during an iteration. When assignments or relative operations are performed on a
variable affected by the aggregator, the updated value is stored internally by the aggregator
until the end of the current iteration, at which point it merges any update that might have
happened to a variable, and makes it the new value if the variable for the next frame. For
revisions, the updated value is visible locally to the thread.

Figure 2.5 shows how the three models sequential consistency, transactional
memory, and concurrent revisions each handle updates to variables over two dif-
ferent threads. In the same scenario, where two variables are incremented if the other is not,

2.4. Determinism 11

Figure 2.5: Outcomes under different programming models. Figure 2 in [3].

the aggregator assert identically to concurrent revisions, as updates to variables are
invisible until the threads are joined and merged.

2.4 Determinism

In this section, we describe determinism in relation to games and the aggregator. We argue
when behavior should and should not be deterministic.

Physics in a game should always produce similar results when observed by the player. Inter-
nally physics can have small deviations, as long as the results are close to the same. Physics
engines in games prioritize speed over precision [33]. Side effects caused by physics, such
as collisions or triggers, might have more strict requirements for precision.

Random numbers are commonly used in games for a variety of things, including AI. Ran-
dom numbers are explicitly introduced by game programmers, and as such do not affect the
determinism of the aggregator itself.

When aggregating at the end of an iteration, everything is applied following the order of
behaviors defined in subsection 2.1.2. As long as the game is developed with the restrictions
of behaviors in mind, the game behaves deterministically. Assignment with the same priority
is non-deterministic, as only the first result is kept, which depends on the update which is
run first, which the engine again schedules first-in first-out using the internal order.

When describing behaviors in subsection 2.1.2, we describe that all multiplications are ap-
plied to a value before additions in the aggregate step. We make a distinction between the
two instead of just keeping an updated value in the background which is affected by both
multiplication and addition, as it makes the results more deterministic, and thus more pre-

12 Chapter 2. Memory Isolation

dictable. If the two were treated as a single value, it would also only leave a single value
to reduce between multiple threads, which is harder to reason about, as it is the same base
number which has been added and multiplied to with different numbers on different threads.
Should the result then be the new average, adding the difference from the base together, or
something else? While the behavior can be defined, it makes the results less deterministic,
and the solution seems more arbitrary.

2.5 Delimitation

In this chapter we have presented the theory of the aggregator, and how it can work in a game
engine, by changing the flow of the main loop. We have also compared the aggregator with
revisions, as they both are similar ideas inspired by software transactional memory. We also
investigated the importance of determinism in games, and if it is possible to implement the
aggregator with deterministic execution. This chapter gives background knowledge for the
aggregator necessary to follow the decisions behind the design for the three game engines
including the game engine implementing the aggregator that follows in the next chapter

3 | Design

In this chapter, we describe the design of the game engines we use for testing the aggregator
in chapter 5. We first present the design for the single-threaded game engine, followed by
the design changes necessary for making the game engine parallel with locks, and finally
the changes to design necessary for integrating the aggregator, explained in section 2.1, into
the parallel game engine. At the end of this chapter, we design a game which we use to
demonstrate that it is possible to create a playable game using all three game engines. Parts
of the game is also used in testing, which we explain in section 5.1. The requirements for
the game engine are explained in section 3.1, excluding the choices we already made in
section 1.2. The design for the sequential game engine is described in section 3.2, and acts
as the base on which both multithreaded game engines are built on top. Design details for
the multithreaded game engines are explained in section 3.3 and section 3.4. Design for the
game is described in section 3.5.

We are inspired by our previous experience with the Unity game engine, which influences
our design. We keep the game engines simple, compared to commercial game engines such
as Unity, to limit necessary design and implementation while still making a testable game
engine.

3.1 Engine Requirements

In this section we list the requirements for the game engine, which we base the game engine
design on. The requirements also ensure that we have the features necessary for designing
the game in section 3.5. The requirements are based on the original game engine require-
ments in [5].

The game engines follows the game loop: frame start, input, update, colli-
sion, delete, and render.

In the input phase the engine polls for input, and determines the current state of all rel-
evant keys. Relevant keys are specified by the game programmer, and added to input as

13

14 Chapter 3. Design

part of startup of the game engine. The update phase calls the update function of all
GameObjects, the collision phase checks for collision on all GameObjects, call-
ing OnCollision on all objects that are involved in a collision. Deleted GameObjects
are deleted in the delete phase, after the update and collision phases are done to
avoid invalidating iterators. GameObjects are rendered on the screen in the render
phase.

The game engines will implement the following features, which are required for the game
designed in section 3.5, and for the tests in chapter 5:

GameObject GameObjects are the master object which other game elements inherit from.
Input The game engine must be able to accept user input for any specified key on the key-

board.
Instantiate GameObjects can be created and instantiated. Part of instantiation includes allowing

GameObjects to to be rendered or check for collision.
Render GameObjects with sprites are rendered onto the screen. Sprites have a size and posi-

tion, and can be transparent. Sprites will be batched to reduce render time and GPU
time.

Collision GameObjects can have rectangular colliders attached to them, a function to call on
collision, and can be toggled to actively check for collisions, or passively be checked
against.

Time Frame rates are variable, and delta times should be available to account for the length
of the frame.

Resources Resources can be loaded into memory from disk. The operation performs disk I/O,
and should be possible at all times in the engine.

Audio was part of the original design in [5, p13-p16], but its inclusion is not essential for a
game engine, and would not contribute to the tests in chapter 5, because audio always should
be put on its own thread [28]. The input phase is not used in any of the tests performed in
chapter 5, but is still used in game we design in section 3.5.

3.2 Sequential game engine

In this section, we describe the design for a single-threaded implementation of the game
engine, based on the requirements in section 3.1. The design in this section is the foundation
for all three game engines we design, as both multithreaded game engines are built on top of
this design.

Figure 3.1 shows the UML design for the sequential engine, and the classes involved. Most
classes in the engine are static. Each static class is accessed multiple locations in the code,
and only one instance is ever required. The static classes are: Game Engine, Time,
Input, Renderer, and Resource Manager. We make the classes static as passing

3.2. Sequential game engine 15

Figure 3.1: UML diagram for the sequential game engine.

16 Chapter 3. Design

New Frame

Update OnCollision

Remove GameObject

Render

Input

Figure 3.2: Flow of the sequential game engine.

them around gets cumbersome, and often would require the game programmer to pass them
around, even without using them directly. Most of the classes could be made non-static,
but would require the game engine to be a singleton instead. In the rest of this section we
describe each of the classes in the diagram, and what role they serve in the game engine.

Figure 3.2 shows the flow of the sequential game engine, based on the game loop described
in section 3.1. A frame starts in New Frame, where frame setup is handled. Time and delta
time is updated at the start of the frame, and when the game engine is under test, logging is
also performed as part of frame start. Input reads the current state of all tracked keys,
and updates the internal key state. Input keeps track of the keys for both the current and
previous frame, to tell the difference between a key which is pressed down in the current
frame or previous frame, and if the key was released in the current frame. The update
phase iterates over the update functions for all game objects. Unlike for collision check-
ing, updates will always be executed for GameObjects. In the collision phase, all
GameObjects which have collision checking enabled checks against all objects with col-
liders, to determine if they collide with anything, and on collision calls the OnCollision
function on the GameObject. The game engine then deletes all GameObjects which
have been marked for deletion. This operation is performed separately from the other op-
erations to avoid iterator invalidation. GameObjects removes themselves from rendering
and collision checking, and the game programmer is responsible for ensuring that the objects
are also removed from all other collections where they can have pointers. The renderer
renders all GameObjects which have a sprite on the screen, and the game engine then
moves back to new frame, where it can start the next iteration in the game engine.

3.2. Sequential game engine 17

3.2.1 GameObject

In this section, we describe the design for the GameObject.

The GameObject is the core of any object defined by a game programmer in the game en-
gine. The GameObject is inspired by Unity’s GameObject [19] and MonoBehaviors [20].
When an object inherits from the GameObject it can override the start, update, and
OnCollision functions to add logic. The start function is called once by the engine
when the GameObject is created and instantiated, update is called once every frame dur-
ing the update phase, and OnCollision is called when the game object collides with
anything during the collision phase.

The Startup, Update, and OnCollision functions are reserved for execution by the
game engine.

3.2.2 Game Engine

The game engine object is the core of the game engine, handling initial setup, and run-
ning the main loop of the game engine. The init function sets up the system. The run
function starts the game loop. The loop first updates time for the frame, then processes
input, updates, and collision, and finally destroy objects and then render the
current frame. If time logging is enabled, such as for testing, it is also handled at at the start
and end of each iteration in the run function.

The game engine class also contains global collections of all instantiated GameOb-
jects, and all game objects that have the flag enable_collision set to true. The
collections are mostly used by the game engine, but are also available to the game program-
mer if they need to search for specific GameObjects which are currently instantiated in
the game.

The Init, Run, and Instantiate functions are required to be called by the game pro-
grammer when integrating the engine with the game. All other functions are reserved by the
game engine.

3.2.3 Time

The time class provides the game with functions related to time. The most important func-
tion in time is DeltaTime, which returns the time passed since last frame. DeltaTime
is used by everything in a game which depends on the frame rate, such as movement and
countdowns.

18 Chapter 3. Design

The StartUp and update functions are reserved by the engine and are used for initializ-
ing time values for the first frame and updating time information for each frame.

3.2.4 Input

The input class provides functions for accessing user input, and keeps track of all keys
defined in the game engine, and their state. A state is defined by the physical keys pressed
for the current frame and previous frame. A key has one of the four states: unpressed,
pressed, hold, or lifted. The key states are inspired by input in the Unity Engine
[25].

3.2.5 Renderer

The renderer is responsible for all rendering to the screen. Rendering is limited to sprites and
text to keep the design simple. More complex rendering could include user interface, sprites
of arbitrary size in the spritesheet, and meshes. The renderer generates a single image to
draw on the screen using BatchDrawable. The renderer also keeps a list of all text which
is to be drawn on the next frame. The rendering pipeline in the game engine is kept simple
as a custom graphics pipeline goes beyond the scope of the project.

3.2.6 BatchDrawable

BatchDrawable contains an internal collection of GameObjects to draw. Each GameOb-
ject contains an index for the sprite which the BatchDrawable should draw for the
GameObject. The BatchDrawable contains a sprite sheet, which contains all sprites.
The BatchDrawable can produce a single image, which can be drawn by the renderer.
The BatchDrawable could be optimized by keeping track of which elements move on the
screen, or keeping separate BatchDrawables for moving and static GameObjects, but
as all elements in the games and tests are moving on the screeen, such optimizations would
be unsuitable for this project. Because objects move on the screen it is not possible to cache
anything, and the full image has to be recalculated during every frame. The BatchDraw-
able uses a spritesheet for rendering, where each GameObject has an index for where in
the map the texture is located.

3.2.7 Resource manager

The resource manager is the interface between the game and resources for the game, loading
resources such as sprites from the disk. Due to the small size of the game engine, and the

3.3. Parallel game engine 19

New Frame

Update Update Update...

OnCollision OnCollision OnCollision...

Remove GameObjectRender

Input

Figure 3.3: Flow of the parallel game engine.

features excluded in section 1.2, the only resource used in the game engine is sprites. Sprites
are created from textures.

The resource manager offers a single function for getting textures: LoadTexture. When
a texture name is specified, the resource manager first checks if the texture is already loaded
into cache, and returns it. Otherwise it loads it from the file system, and caches it for later
look-ups.

3.3 Parallel game engine

In this section, we describe the necessary design changes for the game engine to be ideal
for parallel game development. Other than the introduction of locks into certain parts of
the game logic, there is no change compared to the design of the sequential game engine in
section 3.2. ThreadPool is a new class which is added to the UML, and which is used for
scheduling updates, and collisions on multiple threads.

Figure 3.3 shows the flow of an iteration in the parallel game engine. The flow is similar to
the sequential game engine on figure 3.2, except for the update and collision phases.
Both phases are parallel utilizing the ThreadPool, and can process multiple updates or
collision checks at the same time. The engine waits for all threads to complete the workload
of a phase before starting the next phase.

20 Chapter 3. Design

Figure 3.4: ThreadPool for parallelizing game logic.

3.3.1 Thread pool

The threadpool takes one or more functions as input, and schedules them to be run on
separate threads. A number of threads are created when the threadpool is instantiated, and
a thread always start working on scheduled functions if they are not currently busy working
on other scheduled functions.

The UML class for the ThreadPool can be seen on figure 3.4. The CreateThread-
pool function is used for instantiating the pool, and creating worker threads. The number
of threads created is equal to the number of threads available on the operating system, un-
less the engine is started with a flag limiting it to one thread, which is used for testing as
explained in section 5.1.

The function AddJob is used for scheduling a function in the ThreadPool. Functions
which are intended for scheduling are updates and collision checks. It is possible for
game programmers to schedule other functions in the ThreadPool.

3.4 Parallel game engine with the aggregator

In this section we describe the design of the game engine implementing the aggregator.
The aggregator is described in section 2.1, and the engine builds upon the engine designed
in section 3.3. The design covers how the aggregator game engine handles updates and
assignment to variables, and how it handles reducing and merging the updates at the end of
each iteration in the game engine.

In [5, p27-p30] we presented a possible solution for keeping track of updates to a variable
during a iteration in the game engine. A global collection would keep a record for each vari-
able, which contains all updates for the variable. At the end of the iteration, the aggregator
would apply all updates in the record to the variables. The idea was simple, and did not

3.4. Parallel game engine with the aggregator 21

New Frame

Update Update... OnCollision

Render

OnCollision..Input Delete

Reduce Aggregate

Figure 3.5: Flow of parallel game engine utilizing the aggregator.

consider thread-safety. In this project we improve on using records for storing changes, and
do it in a thread-safe, non-blocking manner. The collection of records is changed to con-
tain a list of records for each variable for each thread that has had an update for the current
thread. Updates from each thread are then tracked separately, and can then be combined
before aggregating with the introduction of a reduce phase in the game engine, taking place
just before the aggregate phase. In the reduce phase, records from each thread are combined
into a single collection of records, adding together the lists of changes from each thread into
one. Reduction was originally presented in [5, p29-p30], but as a low-priority background
process, which would reduce changes, limiting the workload when aggregating.

Figure 3.5 shows the flow for the aggregator. Variables in the aggregator game engine stores
updates to variables, but does not expose changes until the aggregate phase, and as such
the order in which many of the phases are performed becomes irrelevant. All updates
and collision checks which do not depend on user input are schedules as part of
new frame. The input phase is then processed on the main thread, after which all up-
dates and collision checks which do depend on input are scheduled. The current
frame is then rendered on the main thread, after which it waits for all worker threads in the
ThreadPool to finish. The main thread then starts the reduce step, after which the aggre-
gator applies the changes to the game state, before deleting game objects which are marked
for deletion.

The aggregator uses the same scheduler and thread pool we design in section 3.3, but the
reduction phase and aggregator phase also utilizes the thread pool, as reduction can
be performed with a divide-and-conquer approach, and reduced records for variables should
have no risk of race conditions in the aggregator step.

3.4.1 Wrapper types and deltas

The records stored in each thread collection follows the form of a delta type. A delta
type defines what operations have been performed on a variable during the current iteration.

22 Chapter 3. Design

Figure 3.6: Delta value for an int.

Common operations defined in section 2.1 and subsection 2.1.2 are deletion, assign-
ment, and relative operations.

Figure 3.6 shows the UML class for the structure of a basic delta value for integers. The vari-
ables assign_value and assign_priority are a pair, which we combined refer to
as an assignment pair. The assignment pair contains information about assign-
ments to the variable the delta relates to. assignment_priority contains the priority
of the current assigned value, and any new assignment to the variable is checked against
the priority first. If the priority of the new assignment is higher than the value of as-
signment_priority, then assignment_priority is set to the new priority, and
the value of assignment_value is set to the new assigned value. At the start of a new it-
eration, the value of assignment_priority is the minimum possible value of the type,
with the value of assignment_value being the current real value of the variable.

The variables multiplication_values and addition_values are used in rela-
tive operations. When a number is either added or subtracted through a relative operator,
such as +=, the value of addition_values is changes accordingly. Same applied for
multiplication and division for multiplication_values.

The variable delete is used to determine if a variable is marked for deletion at the end of
the iteration. A deleted value can be a pointer which is deleted or to indicate that the entire
GameObject is marked for deletion, as the variable the delta belongs to may no longer
exist in memory.

Wrapper types are introduced into the game engine and games, as an abstraction over vari-
ables and the deltas tied to them. Figure 3.7 shows a wrapper for an integer. The wrapper
contains the current value which it wraps, and which always is used on read operations for
the duration of the frame. The wrapper implements overloading for assignment operators,
which modifies the delta value for the wrapped value.

3.5. Game design 23

Figure 3.7: A wrapper for int values, with functions for modifying the value.

If a value is not wrapped, it is not affected by the aggregator, and instead modified as nor-
mally in an imperative system.

3.5 Game design

In this section we design a small game which we implement in each of the three game
engines to demonstrate that it is possible to create a playable game with the aggregator, and
which to a player is the same between the engines. Some of the features we design for
the game, background elements and gravity wells, are also used in testing in
chapter 5.

In [5, p59-p70] we designed a small game called Captain Functional and imple-
mented it in three game engines, Unity Engine (C#), Unreal Engine (C++), and Amethyst
(Rust), to experiment with and learn the game engines. In this section, we expand upon the
design to create elements relevant for testing.

Specific numbers for features are left out of the specification as some of them will be altered
as part of the tests we perform in chapter 5. Other numbers are non-essential for the chapter,
and are either used for fine-tuning or visual presentation such as screen size 1.

The game is a side-scroller, where the player moves around within the bounds of the screen
using the WASD keys, and firing bullets with Space. Enemies enter the screen from the right
and leave to the left. Enemies can fire projectiles left towards the player, with the projectiles
moving at a faster speed than the enemies. Both enemies and bullets can be destroyed by
getting hit by the player. A counter keeps track on the number of enemies the player has

1For numbers we use in the game engine we refer to the constants file located in Master-
Engine/CaptainEverythingShared/Constants.h in the source code.

24 Chapter 3. Design

killed, and another counter keeps track on the number of times the player has collided with
enemies or enemy bullets. The value of both counters are printed to the screen.

After a specified number of enemies have spawned on the screen, a boss is spawned, who
also enters from the right. The boss is surrounded by a number of shields, which rotates
around the boss with a constant speed. All shields have to be destroyed before the boss can
be hit directly with a bullet and killed.

Background elements are introduced as objects moving around in the background of the
game, colliding with each other. The background elements serve no real purpose other than
introducing work on the game engine, bringing down the frame rate. Background elements
are spawned into the game from the top, and slowly expands to fill the entire screen as they
move around.

Gravity wells are another introduction to the game. They are objects in the game which
affects all elements on the screen with colliders, applying a directional force to the objects.

3.6 Delimitation

In this chapter we have described the design of three game engines: a sequential game
engine, a parallel game engine, a and aggregator game engine, and described the design for
a game which we implement in all three game engines. The parallel game engine builds on
top of the design for the sequential game engine, and the aggregator game engine builds on
top of the parallel game engine.

In the design we have also described how the aggregator breaks the normal flow of a game
engine. Traditional game engines follows the flow of input, update, and render in
a sequential order. The aggregator game engine is able to handle input and render in
parallel with update and collision.

In the next chapter we describe the implementation of each of the three game engines, and
details about the implementation of the game in each of the three game engines.

4 | Implementation

In this chapter, we describe the implementations of the three game engines and games, and
argue for our choice of technologies.

The sequential game engine in section 4.2 and sequential game in section 4.3 describes
the sequential implementations, which are the foundation for the other game engine and
game implementations. The sections for the multithreaded games and engines describe the
interesting changes or additions made to the sequential implementation of the game engine
and game.

The code solution is structured in eight projects. Three projects are the game engine libraries.
One project is the shared engine functionality, which is used by all three game engines. One
project is code which is shared between the games. The last three solutions are game imple-
mentations. On the test branch, the game implementations are altered for testing purposes.
A separate project with the test runner is also present on the test branch.

4.1 Choise of technology

In this section we discuss the technologies we choose for creating the game engines, and
why. We discuss why C++ is our language of choice, and why we use an OpenGL wrapper
for graphics and input.

4.1.1 Choice of language

When working on [5] we discussed using C# for implementing the game engines and games,
but never included that discussion in the report, as we considered it implementation details,
that we had chosen to exclude from the report. C# was attractive to us, as we both have
prior experience with creating games in it using the Unity Engine. C# has Tasks, which
are attractive as they are a built-in feature for writing asynchronous code, that can run on
either the same or a different thread[13]. Another language we consider is C++, which is

25

26 Chapter 4. Implementation

commonly used for both game development and game engines [6]. We have prior knowledge
with using C++ in game development from the work on Unreal Engine in [5, p65-p70]. In
[2] they discuss that the rendering library they chose, DirectX, was the cause of a substantial
part of their workload, and for the concurrent implementation was the limiting factor for the
frame rate. To avoid such problems we wanted to use a smaller graphics library, and decided
to choose a language based on said library, where we chose OpenGL, but found that we
needed to use C++ to find bindings with proper documentation.

4.1.2 Choice of libraries

We chose to use OpenGL as opposed to DirectX or Vulkan, as we wanted a graphics library
with a small CPU and development overhead. DirectX and Vulkan also require a lot more
setup from the programmer to be used compared to some OpenGL libraries, as we discuss
in [5, p10-p11], and we want to avoid spending too much development time on the graphics
library compared to the rest of the game engine, so we chose the simple solution. We orig-
inally planned to use GLEW and GLFW as wrappers for OpenGL, but they only provided
a simple C interface, while SFML had a full C++ interface, which reduced our graphics
implementation size to a minimum, with the exception of BatchDrawable, which was
introduced to limit the work of both CPU and GPU. SFML is a higher level implementation,
but the overhead is small compared to DirectX in [2]. Late in development we came accross
a C# library called MonoGame, which feature-wise is similar to SFML[17], but have not
tested the performance overhead of the library.

To simplify dependency management we use VCPKG, a C++ package manager developed
by Microsoft, that integrates into Visual Studio without any additional interaction with a
build system.

4.2 Sequential game engine

In this section we describe interesting and central parts of the implementation of the sequen-
tial game engine. We will look at the main loop of the game, GameObject which is the
main object for elements which interface with the game engine, and resource manager which
are responsible for fetching resource.

4.2.1 Main Loop

Listing 4.1 shows the main loop of the game engine. The game loop is started by a game
programmer with a call to Run, after which control is moved to the game engine, until the
game window is closed, or the game is otherwise terminated. If the window is closed by

4.2. Sequential game engine 27

the player, the game receives the Closed event, which causes the renderer to clean up, and
is_open() returns false at the start of the next frame.

1 whi le (R e n d e r e r : : i s _ o p e n ()) {
2 Time : : t i c k () ;
3 . . .
4 s f : : Event e v e n t ;
5 whi le (R e n d e r e r : : p o l l _ e v e n t (e v e n t)) {
6 i f (e v e n t . t y p e == s f : : Event : : C losed) {
7 R e n d e r e r : : c l o s e () ;
8 }
9 }

10 I n p u t : : p r o c e s s _ i n p u t () ;
11 f o r (GameObject * o b j e c t : g e t _ g a m e s t a t e ()) {
12 o b j e c t > u p d a t e () ;
13 }
14 f o r (GameObject * o b j e c t : g e t _ g a m e s t a t e ()) {
15 o b j e c t > c o l l i s i o n _ c h e c k () ;
16 }
17 f o r (GameObject * game_ob jec t : g e t _ d e s t r o y e d _ g a m e _ o b j e c t s ())
18 {
19 d e l e t e game_ob jec t ;
20 }
21 g e t _ d e s t r o y e d _ g a m e _ o b j e c t () . c l e a r () ;
22 R e n d e r e r : : r e n d e r () ;
23 }

Listing 4.1: Main loop of sequential game engine.

At the start of each frame, time is updated to calculate delta time for the current frame.

When the game engine makes a call to poll_event(event) is also receives information
about a variety of other events, such as window resizing, or input, but we do not use the input
events directly from polling. The events are fired for any key which is either keyPressed
or keyReleased, but as mentioned for input in subsection 3.2.4, input in the game engines
have four states, and depends on a key state the frame after either of the frames have been
fired. We poll the current state for all keys each frame, to determine the current state based
on the previous state, as shows in the code in listing 4.2. If a key was pressed down in the
previous frame, and continues to be pressed down, its state is changed to being held down,
and remains in that state until the key is released. A key is only released for one frame, after
which it is unpressed.

1 void I n p u t : : p r o c e s s _ k e y _ i n p u t (s f : : Keyboard : : Key key) {
2 i f (s f : : Keyboard : : i s K e y P r e s s e d (key)) {
3 i f (k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)]
4 == K e y S t a t u s : : u n p r e s s e d
5 | | k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)]
6 == K e y S t a t u s : : l i f t e d) {
7 k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)]= K e y S t a t u s : : p r e s s e d ;
8 } e l s e {
9 k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)] = K e y S t a t u s : : ho ld ;

28 Chapter 4. Implementation

10 }
11 }
12 e l s e i f (! s f : : Keyboard : : i s K e y P r e s s e d (key)
13 && (k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)]
14 == K e y S t a t u s : : p r e s s e d
15 | | k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)]
16 == K e y S t a t u s : : ho ld)) {
17 k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)] = K e y S t a t u s : : l i f t e d ;
18 } e l s e {
19 k e y _ s t a t u s e s _ [s t a t i c _ c a s t < u i n t 6 4 _ t >(key)] = K e y S t a t u s : : u n p r e s s e d ;
20 }
21 }

Listing 4.2: Process current state of key.

After input has been processed, the game engines processed the update function of all
GameObjects which are currently instantiated. Update functions are used in game code,
and an example can be seen in listing 4.7 in section 4.3.

The game engine then performs collision checking for all game objects which have collision
checking enabled, and checks the colliders of the GameObject against all colliders for all
GameObjects which are currently instantiated.

After collision, all GameObjects marked for deletion are deleted. Deletion is performed
after updates and collision to avoid invalidating iterators during updates and collision check-
ing.

At the end of the loop all GameObjects are rendered on the screen. Listing 4.3 shows the
steps taken to render the the next frame. The window is cleaned, otherwise new rendering
would be drawn on top of the current frame. A call to BatchDrawable.Update() is
used to update the image which should be drawn when the subsequent call to Draw. All
text is then drawn on the screen after the batch. Elements are drawn in the order in which
they are instantiated, so elements instantiated early are drawn behind elements which are
instantiated later on. Game engines such as Unity uses layers for controlling which objects
to draw on top of others.

1 void R e n d e r e r : : r e n d e r () {
2 window_ . c l e a r (s f : : Co lo r : : Black) ;
3 b a t c h _ d r a w a b l e _ . u p d a t e () ;
4 window_ . draw (b a t c h _ d r a w a b l e _) ;
5 f o r (auto& t e x t : t e x t _ v e c t o r _) {
6 window_ . draw (t e x t) ;
7 }
8 t e x t _ v e c t o r _ . c l e a r () ;
9 window_ . d i s p l a y () ;

10 }

Listing 4.3: Code for rendering current frame.

4.2. Sequential game engine 29

The BatchDrawable was introduced to reduce the time spent drawing a frame. At 300
GameObjects on the screen, the draw call accounted for 12% of all CPU time during a
profiling test. To reduce time spent rendering, we implemented a BatchDrawable type,
which takes a sprite sheet, and all GameObjects which can be rendered to the screen in
a list. During the update of the BatchDrawable, the geometry and sprite of each game
object is calculated, before being rendered in a single draw call. At 300 GameObjects
the CPU time is reduced to 4%. This result was achieved on a dual core system with hyper-
threading for 4 logical cores. In comparison the tests described in section 2.2 used 24% of
CPU time on rendering on a 4 core system. There are no images of the game used in the test,
making it impossible to compare the graphical similarities between that game, and the game
we have created and render.

4.2.2 GameObject

When GameObjects are instatiated, they register themselves in the renderer such that
it knows the GameObject can be rendered. It also adds itself to the list of objects which
perform collision checks if it is instantiated with the flag set to true. Listing 4.4 and listing
4.5 shows the constructor and destructor for GameObjects. The constructor is responsible
for adding the game object to the global list of game objects, and add it to the list of colliders
if the collision flag is set. The destructor is responsible for removing the game object from
all game engine collections. Multiple collections are used to reduce the need for filtering
the global collection of GameObjects multiple times each frame, and the collections are
accessed more often than GameObjects are instantiated or destroyed.

1 GameObject : : GameObject (c o n s t bool c o l l i s i o n _ c o d e)
2 : s p r i t e _ p o s _ (1) ,
3 c o l l i s i o n _ c o d e _ (c o l l i s i o n _ c o d e) ,
4 i d _ (GameEngine : : ge t_new_id ()) ,
5 v e l o c i t y _ (s f : : V e c t o r 2 f { 0 , 0 }) ,
6 t a g _ (Tags : : D e f a u l t) ,
7 s i z e _ (R e n d e r e r : : g e t _ s p r i t e _ s i z e ())
8 {
9 GameEngine : : add_game_ob jec t (t h i s) ;

10 i f (c o l l i s i o n _ c o d e)
11 {
12 GameEngine : : a d d _ c o l l i d e r (t h i s) ;
13 }
14 }

Listing 4.4: Sequential game object constructor.

30 Chapter 4. Implementation

1 GameObject : : ~ GameObject ()
2 {
3 GameEngine : : g e t _ g a m e s t a t e () . e r a s e (t h i s) ;
4 u n s e t _ s p r i t e () ;
5 f o r (C o l l i d e r * c o l l i d e r : c o l l i d e r s _)
6 {
7 d e l e t e c o l l i d e r ;
8 }
9 i f (h a s _ c o l l i d e r _)

10 {
11 GameEngine : : r e m o v e _ c o l l i d e r (t h i s) ;
12 }
13 }

Listing 4.5: Sequential game object destructor.

Setting sprites for a game object are unrelated to the cosntructor, but the destructor still has to
clean the renderer for the object, if a sprite is set for the game object. Objects are only drawn
if a sprite index is passed to the game object. As rendering of a GameObject depends on
whatever it has a sprite or not, unset_sprites() also checks if a sprite is set first, as
it is expected that programmers also has an interest in removing an object from rendering
without deleting it.

4.2.3 Resource manager

The resource manager is the interface between GameObjects and files on the disk. It
handles loading the resources, and present them to the game in a more manageable format.
The resource manager also caches all resources it operates on, such that it only has to perform
I/O for an resource once. It is not possible to remove objects from the cache, but the cache
is not a problem due to the limited use of resources in the game.

1 s f : : T e x t u r e& ResourceManager : : l o a d _ t e x t u r e (c o n s t s t d : : s t r i n g& t e x t u r e _ n a m e
) {

2 auto f i n d i n g = t e x t u r e s _ . f i n d (t e x t u r e _ n a m e) ;
3 i f (f i n d i n g != t e x t u r e s _ . end ()) {
4 re turn f i n d i n g > second ;
5 }
6 auto p a i r = t e x t u r e s _ . t r y _ e m p l a c e (t e x t u r e_ na me , s f : : T e x t u r e { }) ;
7 auto& t e x t u r e = p a i r . f i r s t > second ;
8 i f (! t e x t u r e . l o a d F r o m F i l e (t e x t u r e _ n a m e)) {
9 throw s t d : : e x c e p t i o n () ;

10 }
11 re turn t e x t u r e ;
12 }

Listing 4.6: Sequential resource manager.

Figure 4.6 shows the load function for textures, which is the only resource which we use

4.3. Sequential game 31

in the game engine and games. When a resource is requested, the resource manager first
checks the cache for the resource, before loading the file from disk. The resource manager
was originally intended to be used for several textures, but with the introduction of Batch-
Drawable, only a single sprite is loaded into the game, as it is used as a sprite map.

4.3 Sequential game

In this section, we explain the implementation of the sequential game, which is built on top
of the sequential game engine described in section 4.2. The game is an implementation of
the design in section 3.5.

4.3.1 Player

The player object was originally created to be controlled by a player, but with an early
focus on determinism in the tests, it was changed to be controlled by a AI without random
elements. Test plans were later changed to excluded the player object from tests entirely,
and as result changed back to be controllable by a player.

1 void P l a y e r : : u p d a t e () {
2 f i r e _ r a t e _ c o o l d o w n _ += Time : : d e l t a _ t i m e () ;
3 i f (f i r e _ r a t e _ c o o l d o w n _ > f i r e _ r a t e _
4 && I n p u t : : g e t _ k e y _ h o l d (s f : : Keyboard : : Key : : Space)) {
5 f i r e _ r a t e _ c o o l d o w n _ = 0 ;
6 GameEngine : : i n s t a n t i a t e (new P l a y e r B u l l e t ()) ;
7 }
8 s f : : V e c t o r 2 f v e l o c i t y = g e t _ v e l o c i t y () ;
9 i f (I n p u t : : g e t _ k e y _ h o l d (s f : : Keyboard : : Key : :W)) {

10 v e l o c i t y . y = speed * Time : : d e l t a _ t i m e () ;
11 }
12 e l s e i f (I n p u t : : g e t _ k e y _ h o l d (s f : : Keyboard : : Key : : S)) {
13 v e l o c i t y . y += speed * Time : : d e l t a _ t i m e () ;
14 }
15 i f (I n p u t : : g e t _ k e y _ h o l d (s f : : Keyboard : : Key : : A)) {
16 v e l o c i t y . x = speed * Time : : d e l t a _ t i m e () ;
17 }
18 e l s e i f (I n p u t : : g e t _ k e y _ h o l d (s f : : Keyboard : : Key : : D)) {
19 v e l o c i t y . x += speed * Time : : d e l t a _ t i m e () ;
20 }
21 s f : : V e c t o r 2 f p o s i t i o n = g e t _ p o s i t i o n () ;
22 p o s i t i o n = p o s i t i o n + v e l o c i t y * Time : : d e l t a _ t i m e () ;
23 / * Clamping o m i t t e d * /
24 GameObject : : s e t _ p o s i t i o n (p o s i t i o n) ;
25 GameObject : : s e t _ v e l o c i t y (v e l o c i t y) ;
26 }

Listing 4.7: Code snippet of player update.

32 Chapter 4. Implementation

Listing 4.7 shows how a player GameObject is controlled in the update function. The
player can fire a bullet by pressing space if the cooldown has passed the fire rate. When
a player fires a bullet, a new GameObject is instantiated, which is a bullet that spawns at
the players current position, and moves right until it hits something or leaves the screen.

The game then gets the current velocity of the player, and checks each directional key
(WASD) for the current state. If the state is hold, the vertical or horizontal velocity up-
dated based on the player speed and delta time.

The new position is then calculated based on the current position, new velocity, and current
delta time, and then clamped to the screen to prevent the player from moving outside the
screen.

Collision checking on a player is used to check if the player collides with enemies or enemy
bullets. Listing 4.8 shows how collisions for a player is handled when the game engine has
checked that the player is colliding with something.

1 void P l a y e r : : O n C o l l i s i o n (GameObject * c o l l i d e r)
2 {
3 i f (c o l l i d e r > g e t _ t a g () == Tags : : Enemy | | c o l l i d e r > g e t _ t a g () == Tags

: : EnemyBul le t)
4 {
5 Spawner : : g e t _ s i n g l e t o n () > a d d _ p l a y e r _ h i t () ;
6 GameEngine : : remove_game_objec t (c o l l i d e r) ;
7 }
8 }

Listing 4.8: Code collision code for player.

If a player collides with something which have the enemy or enemybullet tag, the inter-
nal counter for player hits is incremented, and the object the player collided with is removed
from the game.

4.3.2 Spawner

The spawner GameObject is a singleton which keeps track on how many enemies have
been spawned, and how many times enemies have hit the player.

1 void Spawner : : s t a r t _ u p () {
2 f o r (i n t i = 0 ; i < C o n s t a n t s : : b a c k g r o u n d _ e l e m e n t s () ; i ++) {
3 GameEngine : : i n s t a n t i a t e (new BackgroundElement () , s f : : V e c t o r 2 f {

s t a t i c _ c a s t < f l o a t > ((C o n s t a n t s : : b a c k g r o u n d _ e l e m e n t _ s i z e * i) % R e n d e r e r
: : ge t_window_s i ze () > x) , (f l o a t) ((C o n s t a n t s : : b a c k g r o u n d _ e l e m e n t _ s i z e *
i) / R e n d e r e r : : ge t_w indow_s i ze () > x) }) ;

4 }
5

6 GameEngine : : i n s t a n t i a t e (new P l a y e r () , s f : : V e c t o r 2 f { 5 0 . 0 f , R e n d e r e r : :

4.3. Sequential game 33

ge t_wind ow_s i ze () > y / 2 . 0 f }) ;
7

8 f o r (i n t i = 0 ; i < C o n s t a n t s : : g r a v i t y _ w e l l s () ; i ++) {
9 GameEngine : : i n s t a n t i a t e (new G r a v i t y W e l l () , s f : : V e c t o r 2 f { R e n d e r e r : :

ge t_wind ow_s i ze () > x / 2 . 0 f , R e n d e r e r : : ge t_w indow_s i ze () > y / 2 . 0 f }) ;
10 }
11 }

Listing 4.9: Startup code for spawner which instantiates background elements and gravity wells.

Listing 4.9 shows the startup code for the spawner. When started, the spawner instantiates
a number of background elements and gravity wells equal to the number defined in the
constants file. All objects spawned as part of start_up are spawned on top of each other,
which causes some slowdown at the start of the game.

Update is called each frame for the spawner, and handles spawning enemies and bosses
into the game. Listing 4.10 shows the code for spawning enemies. An internal timer is
incremented each frame, and compared against a constant to determine when the next enemy
should be spawned. The spawner instantiates new enemies in a deterministic position based
on the position of the last enemy and screen size, modified by a constant. If a number of
enemies have been instantiated, a boss is instantiated outside the screen, and moves into
view of the player. The spawner keeps track on number of enemies killed, and number of
hits to the player, and prints the numbers to the screen.

1 void Spawner : : u p d a t e () {
2 i n t e r n a l _ t i m e r += Time : : d e l t a _ t i m e () ;
3 i f (i n t e r n a l _ t i m e r > spawn_t ime) {
4 i n t e r n a l _ t i m e r = spawn_t ime ;
5 s p a w n _ p o s i t i o n _ += 300 .0 f ;
6 s p a w n _ p o s i t i o n _ = s t a t i c _ c a s t < f l o a t >(i n t (s p a w n _ p o s i t i o n _) % (

R e n d e r e r : : ge t_wind ow_s i ze () > y 30)) ;
7 GameEngine : : i n s t a n t i a t e (new Enemy () , s f : : V e c t o r 2 f { R e n d e r e r : :

ge t_wind ow_s i ze () > x + 100 .0 f , s p a w n _ p o s i t i o n _ }) ;
8 spawn_count_ ++;
9 i f (spawn_count_ > C o n s t a n t s : : b o s s _ s p a w n _ t h r e s h o l d) {

10 spawn_count_ = 0 ;
11 GameEngine : : i n s t a n t i a t e (new Boss () , s f : : V e c t o r 2 f { R e n d e r e r : :

ge t_wind ow_s i ze () > x + 100 .0 f , R e n d e r e r : : ge t_w indow_s i ze () > y / 2 . 0 f
}) ;

12 }
13 }
14 R e n d e r e r : : d r a w _ t e x t (" K i l l s : " + s t d : : t o _ s t r i n g (e n e m y _ k i l l s _) , 10 , 10 ,

20) ;
15 R e n d e r e r : : d r a w _ t e x t (" Damage : " + s t d : : t o _ s t r i n g (p l a y e r _ h i t s _) , 10 , 30 ,

20) ;
16 }

Listing 4.10: Update code for the spawner which spawns enemies and bosses.

34 Chapter 4. Implementation

4.3.3 Background element

Background elements are game objects which moves around in the background of the game.
They move with a velocity, and are reflected when colliding with another background ele-
ment or the edge of the screen.

1 void BackgroundElement : : o n _ c o l l i s i o n (GameObject * c o l l i d e r)
2 {
3 i f (c o l l i d e r > g e t _ t a g () == Tags : : Background)
4 {
5 s f : : V e c t o r 2 f p o s i t i o n = GameObject : : g e t _ p o s i t i o n () ;
6 s f : : V e c t o r 2 f c o l _ p o s i t i o n = c o l l i d e r > g e t _ p o s i t i o n () ;
7 s f : : V e c t o r 2 f v e l o c i t y = GameObject : : g e t _ v e l o c i t y () ;
8 s f : : V e c t o r 2 f f o r c e = { 0 ,0 } ;
9 s f : : V e c t o r 2 f r e l a t i v e _ p o s i t i o n = s f : : V e c t o r 2 f { (p o s i t i o n . x + (s i z e _ /

2)) (c o l _ p o s i t i o n . x + (c o l l i d e r > g e t _ w i d t h _ s i z e () / 2)) , (p o s i t i o n . y
+ (s i z e _ / 2)) (c o l _ p o s i t i o n . y + (c o l l i d e r > g e t _ h e i g h t _ s i z e () / 2))
} ;

10

11 i f (s t d : : abs (r e l a t i v e _ p o s i t i o n . x) > s t d : : abs (r e l a t i v e _ p o s i t i o n . y))
12 {
13 i f (r e l a t i v e _ p o s i t i o n . x > 0)
14 {
15 v e l o c i t y . x = s t d : : abs (v e l o c i t y . x) ;
16 }
17 e l s e
18 {
19 v e l o c i t y . x = 1 * s t d : : abs (v e l o c i t y . x) ;
20 }
21 }
22 e l s e
23 {
24 i f (r e l a t i v e _ p o s i t i o n . y > 0)
25 {
26 v e l o c i t y . y = s t d : : abs (v e l o c i t y . y) ;
27 }
28 e l s e
29 {
30 v e l o c i t y . y = 1 * s t d : : abs (v e l o c i t y . y) ;
31 }
32 }
33 GameObject : : s e t _ v e l o c i t y (v e l o c i t y) ;
34 }
35 }

Listing 4.11: OnCollision for background element.

Listing 4.11 shows Collision code for background elements. When colliding with another
background element, the background element determines on which side it collides with the
other game object, and inverts its velocity for one of its axis.

4.4. Parallel engine 35

4.3.4 Gravity Well

Gravity wells are stationary objects, whose collider covers an area around their position.
Listing 4.12 shows the code for collision handling when an object moves into the collider
of the gravity well. When inside the collider, a pull force is calculated, and applied to the
colliding GameObject. The force is then applied to the velocity of the colliding object,
which reacts to the new force at the next update call.

1 void G r a v i t y W e l l : : o n _ c o l l i s i o n (GameObject * c o l l i d e r)
2 {
3 f l o a t s i d e _ a = (g e t _ p o s i t i o n () . x + (C o n s t a n t s : : g r a v i t y _ w e l l _ s i z e / 2 . 0

f)) (c o l l i d e r > g e t _ p o s i t i o n () . x + (c o l l i d e r > g e t _ w i d t h _ s i z e () / 2 . 0 f
)) ;

4 f l o a t s i d e _ b = (g e t _ p o s i t i o n () . y + (C o n s t a n t s : : g r a v i t y _ w e l l _ s i z e / 2 . 0
f)) (c o l l i d e r > g e t _ p o s i t i o n () . y + (c o l l i d e r > g e t _ h e i g h t _ s i z e () / 2 . 0
f)) ;

5 f l o a t s i d e _ c = s t d : : s q r t (s t d : : pow (s i d e _ a , 2) + s t d : : pow (s ide_b , 2)) ;
6 f l o a t c a l _ p u l l f o r c e = (C o n s t a n t s : : g r a v i t y _ w e l l _ s i z e s i d e _ c) *

C o n s t a n t s : : g r a v i t y _ w e l l _ p u l l _ f o r c e ;
7 s f : : V e c t o r 2 f d i r e c t i o n _ v e c t o r { s i d e _ a / s i d e _ c , s i d e _ b / s i d e _ c } ;
8

9 c o l l i d e r > a d d _ v e l o c i t y (s f : : V e c t o r 2 f { d i r e c t i o n _ v e c t o r . x *
c a l _ p u l l f o r c e * Time : : d e l t a _ t i m e () , d i r e c t i o n _ v e c t o r . x * c a l _ p u l l f o r c e
* Time : : d e l t a _ t i m e () }) ;

10 }

Listing 4.12: OnCollision for gravity wells.

4.4 Parallel engine

In this section, we describe the implementation of the parallel game engine. The parallel
game engine is almost identical to the sequential game engine with the exception of the
introduction of the ThreadPool, and introduction of locking in critical regions. We also
discuss some of the problems encountered with multithreading the game engine.

4.4.1 ThreadPool

Spawning threads can be expensive when done often. A cheap alternative is to spawn a fixed
number of threads at once, and then reuse them [27], which is what the ThreadPool does.
The ThreadPool contains a queue of functions which is executed on an idle thread.

36 Chapter 4. Implementation

1 void ThreadPoo l : : C r e a t e T h r e a d P o o l () {
2 t h r e a d _ c o u n t _ = C a p t a i n E v e r y t h i n g S h a r e d : : C o n s t a n t s : : t h r e a d _ c o u n t () ;
3 f o r (i n t i i = 0 ; i i < t h r e a d _ c o u n t _ ; i i ++) {
4 Pool . emplace_back (s t d : : b ind (& ThreadPoo l : : w o r k e r _ t h r e a d _ l o o p , t h i s)

) ;
5 }
6 }

Listing 4.13: Creation of threads.

Listing 4.13 shows the startup code for the threadpool. The threadpool gets the number of
logical cores from the operating system, and spawns an equal number of threads. The code
is slightly modified for testing, where it also checks if the test is limited to a single core
before instantiating and thread.

Each thread runs the function worker_thread_loop, which can be seen in listing 4.14.
The loop runs forever until the thread is terminated with a call to ThreadPool::terminate().
The thread locks a mutex, and then checks if there is any work. If no work is currently
present, it notifies that it is done, and waits for new work. When new work is scheduled, or
or the queue is not empty, it first checks if is should return, allowing it to join with the main
thread. Otherwise it pops a function from the queue, and executes it, before restarting the
loop.

1 void ThreadPoo l : : w o r k e r _ t h r e a d _ l o o p () {
2 whi le (t rue) {
3 s t d : : f u n c t i o n < void () > Job ;
4 {
5 s t d : : u n i q u e _ l o c k < s t d : : mutex > l o c k (Queue_Mutex) ;
6 i f (w o r k i n g _ t h r e a d s _ == 0) {
7 c o n d i t i o n _ d o n e . n o t i f y _ o n e () ;
8 }
9 c o n d i t i o n . w a i t (lock , [t h i s] { re turn ! JobQueue . empty () | |

t e r m i n a t e _ ; }) ;
10 i f (t e r m i n a t e _) {
11 re turn ;
12 }
13 Job = JobQueue . f r o n t () ;
14 JobQueue . pop () ;
15 }
16 Job () ; / / f u n c t i o n <v o i d () > t y p e
17 w o r k i n g _ t h r e a d s _ ;
18 }
19 }

Listing 4.14: worker_thread_loop() code.

The variable working_threads is used to keep track of the amount of work in the queue
which still is not dot done. When the value is 0 the threads signal to the main thread that it
can continue to the next phase in the main loop.

4.4. Parallel engine 37

If terminate_ is set to true, the thread returns, stopping execution. This is not necessary
for running the game, but windows opens an error box when stopping the program, if the
threads are allowed to continue when closing the game.

4.4.2 Main loop

The main loop described in section 4.2.1 is modified to account for the ThreadPool.

1 a u t o& g a m e _ s t a t e = g e t _ g a m e _ s t a t e () ;
2 f o r (a u t o i = 0 ; i < g a m e _ s t a t e . s i z e () ; i ++) {
3 a u t o * o b j e c t = g a m e _ s t a t e [i] ;
4 t h r e a d _ p o o l _ . add_ job (s t d : : b ind (&GameObject : : upda te , o b j e c t)) ;
5 }
6 {
7 s t d : : u n i q u e _ l o c k < s t d : : mutex > l o c k (t h r e a d _ p o o l _ . queue_mutex) ;
8 t h r e a d _ p o o l _ . c o n d i t i o n _ d o n e . w a i t (lock , [] { re turn t h r e a d _ p o o l _ . j ob_queue

. empty () && t h r e a d _ p o o l _ . w o r k i n g _ t h r e a d s _ == 0 ; }) ;
9 }

Listing 4.15: Updates main loop using the threadpool.

Listing 4.15 shows how instead of iterating over update functions on GameObjects, all
update functions are scheduled in the threadpool. The game engine then waits until the
queue is empty and all tasks are done.

4.4.3 Problems with making the game engine parallel

A problem encountered while developing the parallel version of the game engine was several
exceptions thrown far down in the C++ libraries. Sometimes the error would be thrown from
the main thread, other times a different error would be thrown from a thread in the thread
pool. Exceptions include access violation exception, the executable as
encountered a breakpoint, and illegal address. The exceptions were only
thrown while running the game in debug mode. The problem was revealed to be caused
by iterator invalidation, and the code was changed to account for modifying collections, to
resolve the errors.

Another problem encountered with the introduction of the ThreadPool was synchroniza-
tion with the main thread. The first implementations only checked if the queue was empty
before continuing to the next step, but it resulted in the game engine starting to delete game
objects, while some threads were still not done, causing iterator invalidation or null pointer
exceptions.

38 Chapter 4. Implementation

4.5 Parallel game

In this section we discuss how the game was changes to implement the ThreadPool and
parallelism. At this point in development we also performed some small tests to determine
if the game was suitable for parallelism, or if we needed to go back and redesign the game.

The only necessary change to the game is the introduction of mutexes and locks in critical
regions, and to introduce the thread pool to thread the game.

1 c l a s s BckgroundElement {
2 p u b l i c :
3 s t d : : mutex v e l o c i t y _ m o d i f y _ m u t e x ;
4 . . .
5 void u p d a t e () {
6 s t d : : u n i q u e _ l o c k < s t d : : mutex > l o c k (GameObject : :

v e l o c i t y _ m o d i f y _ m u t e x) ;
7 / / Update l o g i c
8 }
9 }

Listing 4.16: Locking of background element in parallel game implementation.

Listing 4.16 shows an example of how mutexes are used to ensure mutual exclusion for the
critical regions in the code. Mutexes are introduced to the player, boss, enemies, spawner,
bullets, and background elements.

4.5.1 Performance comparison

In this subsection, we describe the performance difference between the sequential and paral-
lel implementations. We do this to argue that the game is usable in a multithreaded context
and that the game engines, and sees a speedup from it, as we otherwise would need to re-
design the game. We consider it a valid approach to change the game if the results do not
meet our expectations since it is known that commercial games benefit from multiple cores
[1].

Small 30-60 second runs of the game with logging to the console show that the parallel
implementation of the game performs 1.4 times better compared to the sequential imple-
mentation. By modifying the number of background elements, an even better performance
can be achieved. From the performance improvements in the parallel version, we are confi-
dent that features in the game can be used for testing, and that the game can work on both
the sequential game engine, and both multithreaded game engines.

We perform full tests and comparisons of the engines in chapter 5, while this only is used as
an indication for our work.

4.6. Aggregator Engine 39

4.6 Aggregator Engine

In this section we discuss the changes and additions made to the game engine to include the
aggregator. Focus is on the implementation of the wrapper and delta classes, which are used
for connection the game with the features of the aggregator.

4.6.1 Delta

Deltas are types which contains the updates for variables for the duration of an iteration.
Delta types contains internal variables for all the different operations which can be performed
as explained in section 3.4.1.

1 void I n t D e l t a : : r e d u c e (void * p o i n t e r)
2 {
3 c o n s t auto t a r g e t = s t a t i c _ c a s t < I n t D e l t a * >(p o i n t e r) ;
4 a d d i t i o n s _ += t a r g e t > a d d i t i o n s _ ;
5 m u l t i p l i c a t i o n s _ *= t a r g e t > m u l t i p l i c a t i o n s _ ;
6 a s s i g n (t a r g e t > a s s i g n _ , t a r g e t > a s s i g n _ p r i o r i t y _) ;
7 }
8

9 void I n t D e l t a : : merge ()
10 {
11 i f (a s s i g n _ p r i o r i t y _ > 0)
12 {
13 o r i g i n a l _ v a l u e _ > s e t _ v a l u e (a s s i g n _) ;
14 re turn ;
15 }
16 o r i g i n a l _ v a l u e _ > s e t _ v a l u e (o r i g i n a l _ v a l u e _ > g e t _ v a l u e () * m u l t i p l i c a t i o n s _

+ a d d i t i o n s _) ;
17

18 }

Listing 4.17: IntDelta reduce and merge function.

Listing 4.17 shows the delta functions for reducing and merging the delta into the variable it
is related to. Reduction is done using a divide and conquer strategy, combining deltas from
each thread into a single collection. Merge then applies the delta to the related variable,
either making an assignment if a priority has been set, or modifying it based on relative
operations otherwise.

4.6.2 Wrapper

Wrappers are types which are used in code instead of normal values when the aggregator
should affect them. The wrapper contains the original value which it affects, and functions
and operator overloads which modifies the delta value.

40 Chapter 4. Implementation

1 void I n t W r a p p e r : : operator +=(c o n s t i n t & r h s)
2 {
3 auto * p o i n t e r _ d e l t a s = &Mas te rEng ine : : L i b A g g r e g a t o r : : ThreadPoo l : :
4 d e l t a s [s t d : : t h i s _ t h r e a d : : g e t _ i d ()] ;
5 i f (p o i n t e r _ d e l t a s > f i n d (t h i s) != p o i n t e r _ d e l t a s > end ())
6 {
7 auto d e l t a = s t a t i c _ c a s t < I n t D e l t a * >(p o i n t e r _ d e l t a s > a t (t h i s)) ;
8 d e l t a > a d d i t i o n (r h s) ;
9 }

10 e l s e
11 {
12 auto n e w _ d e l t a = new I n t D e l t a { t h i s } ;
13 new_de l t a > a d d i t i o n (r h s) ;
14 p o i n t e r _ d e l t a s > i n s e r t (s t d : : p a i r < void * , B a s e D e l t a * >(t h i s , n e w _ d e l t a)) ;
15 }
16 }

Listing 4.18: Example of a wrapper operator overload.

Listing 4.18 shows how the overload of += modifies the delta of the wrapper. First the
wrapper looks through the list of deltas for the current thread. If it finds the delta, it adds the
new value to the current value in the delta. If it does not find the delta, it creates a new delta,
and adds it to the list of deltas for the thread.

4.6.3 Main loop

The main loop is modified to account for the introduction of reduction and the aggregator,
as shown in figure 3.5.

1 auto& g a m e _ s t a t e = g e t _ g a m e _ s t a t e () ;
2 f o r (auto i = 0 ; i < g a m e _ s t a t e . s i z e () ; i ++) {
3 auto * o b j e c t = g a m e _ s t a t e [i] ;
4 t h r e a d _ p o o l _ . add_ job (s t d : : b ind (&GameObject : : upda te , o b j e c t)) ;
5 }
6

7 f o r (auto i = 0 ; i < c o l l i s i o n _ g a m e _ o b j e c t s _ . g e t _ v a l u e () . s i z e () ; i ++) {
8 auto o b j e c t = c o l l i s i o n _ g a m e _ o b j e c t s _ . g e t _ v a l u e () [i] ;
9 t h r e a d _ p o o l _ . add_ job (s t d : : b ind (&GameObject : : c o l l i s i o n _ c h e c k , o b j e c t)) ;

10 }
11

12 I n p u t : : p r o c e s s _ i n p u t () ;
13 R e n d e r e r : : r e n d e r () ;
14

15 / / Wait f o r Threadpoo l t o f i n i s h a l l j o b s
16 . . .
17

18 / / / A g g r e g a t o r s t e p s t a r t
19 auto r e d u c t i o n _ s t e p s = t h r e a d _ p o o l _ . t h r e a d _ c o u n t ;
20 whi le (r e d u c t i o n _ s t e p s != 1)

4.7. Aggregator Game 41

21 {
22 c o n s t auto f l o o r = r e d u c t i o n _ s t e p s / 2 ;
23 c o n s t auto c e i l = (r e d u c t i o n _ s t e p s + 1) / 2 ;
24

25 f o r (unsigned i = 0 ; i < f l o o r ; i ++) {
26 c o n s t i n t i n d e x = i + c e i l ;
27 t h r e a d _ p o o l _ . add_ job (s t d : : b ind (&GameEngine : : m e r g e _ l i s t ,
28 ThreadPoo l : : t h r e a d s _ i d s [i] , Th readPoo l : : t h r e a d s _ i d s [i n d e x])) ;
29 }
30

31 / / Wait f o r Threadpoo l t o f i n i s h a l l j o b s
32 . . .
33

34 r e d u c t i o n _ s t e p s = c e i l ;
35 }
36 f o r (c o n s t auto d e l t a : ThreadPoo l : : d e l t a s [ThreadPoo l : : t h r e a d s _ i d s [0]]) {
37 auto o b j e c t = d e l t a . second ;
38 t h r e a d _ p o o l _ . add_ job (s t d : : b ind (& B a s e D e l t a : : merge , o b j e c t)) ;
39 }
40 / / Wait f o r Threadpoo l t o f i n i s h a l l j o b s
41 . . .

Listing 4.19: Snippet of the game engine for the aggregator.

Listing 4.19 shows the updated game look, with some details omitted. Functions are added
over two rounds depending on if they require input or not, on either side of the call to
Input::process_input(). After the frame has been rendered the loop waits for syn-
chronization similar to how it is done in the parallel game engine. The aggregator performs
a reduction of deltas on all threads by using divide and conquer, scheduling each iteration
in the ThreadPool, until a single collection contains all the deltas. After reduction, the
aggregator schedules merge for all deltas in the ThreadPool. The loop waits for synchro-
nization after merging.

4.7 Aggregator Game

In this section, we describe the changes to the game to utilize the aggregator game engine.
The only classes which require changes to use the aggregator are the player and background
elements, which both are changed such that velocity and position is wrapped instead of used
directly.

1 s f : : V e c t o r 2 f p o s i t i o n = GameObject : : g e t _ p o s i t i o n () ;
2 s f : : V e c t o r 2 f v e l o c i t y = GameObject : : g e t _ v e l o c i t y () ;
3 s f : : V e c t o r 2 f f o r c e = { 0 , 0 } ;
4 i f (p o s i t i o n . x < 0 && v e l o c i t y . x < 0)
5 {
6 f o r c e . x =2* s t d : : abs (v e l o c i t y . x) ;
7 }

42 Chapter 4. Implementation

8 e l s e i f (p o s i t i o n . x > R e n d e r e r : : ge t_window_s i ze () > x s i z e _
9 && v e l o c i t y . x > 0)

10 {
11 f o r c e . x = 2 * s t d : : abs (v e l o c i t y . x) ;
12 }
13 i f (p o s i t i o n . y < 0 && v e l o c i t y . y < 0)
14 {
15 f o r c e . y = 2* s t d : : abs (v e l o c i t y . y) ;
16 }
17 e l s e i f (p o s i t i o n . y > R e n d e r e r : : ge t_window_s i ze () > y s i z e _
18 && v e l o c i t y . y > 0)
19 {
20 f o r c e . y = 2* s t d : : abs (v e l o c i t y . y) ;
21 }
22 GameObject : : v e l o c i t y _ += (f o r c e) ;

Listing 4.20: Code for the backgroundelement update.

Listing 4.20 shows the updated logic for updates in background elements. Instead of assign-
ing the force, it is done as a relative operation with +=. This change is important, as the test
in section 5.5 is designed around this behavior.

4.8 Delimitation

In this chapter we have described the implementation of each of the three game engines:
sequential game engine, parallel game engine, and aggregator game engine, and the game
which is implemented in each of the three game engines.

Both the parallel game engine and aggregator game engine are implemented by modifying
the sequential game engine, keeping the three game engines very similar to each other.

In the next chapter we test the three game engines, by using two of the features designed for
the game: background elements, and gravity wells.

5 | Test

In this chapter we present the test strategy for the game engines we have implemented in
chapter 4, and the test results for three different test types performed on four different com-
puters. In the test strategy in section 5.1 we present what we test and why, and how we
perform the tests.

5.1 Test strategy

In this section, we describe how we test the different game engines, and why we perform the
tests that we do. We also describe how we perform the different tests. The goal of the tests
is to generate results which can help determine if the aggregator is a viable alternative to
lock-based parallelism. We also describe why we include the three different game engines
we have implemented in the tests.

In this project we have designed three different game engines that are described in chapter
3, and with implementation described in chapter 4. We perform three different tests on each
game engine, which cover single-core overhead, work-load, and handling of critical regions,
all of which we explain later in this section.

The three game engines are:

• Sequential game engine, operating on only a single thread.
• Parallel game engine, operating on multiple threads using a locking model.
• Aggregator game engine, operating on multiple threads using the aggregator.

The sequential game engine is included in the tests as a baseline to measure performance
against for the other game engines. The game engine runs sequentially with no use of locking
or concurrency, and can be used to show the overhead introduced with the multithreaded
game engines.

The parallel game engine is introduced as a traditional example of how to use concurrency
and mutual exclusion by using mutex locks. In section 2.1 we mention that the aggregator

43

44 Chapter 5. Test

Figure 5.1: Background elements moving down from the top during game startup.

does not use locks to prevent concurrent access to critical regions, but instead keeps track of
updates to variables internally. Through the tests we can determine if our lock-free approach
with the aggregator can outperform the traditional approach with locks.

Multiple tests will be run on all three game engines, on four computers, to gain a better un-
derstanding of how the engines perform on different hardware configurations, with different
test sizes.

We conduct three different tests to determine how the different game engines perform com-
pared to each other. The first test is a single-core test to determine the overhead of the
multithreaded game engines compared to the sequential game engine. The second test tests
how the engine performs on different sizes of workload. The third test tests how well the
engines perform in cases that make excessive use of critical regions.

The y-axis for all figures of test results, such as figure 5.2, is the frame rate, which we use
for all comparisons. The x-axis for the single-core test and background elements tests are
the number of background elements used in the test. The x-axis for the gravity wells test is
the number of gravity wells used in the test. All figures present results where the average
frame rate on the y-axis is Log10 values. We have chosen to run each test for 60 seconds,

5.1. Test strategy 45

as each test is a full system test which runs long enough that small background processes
can cause temporary changes in frame rate, even when most processes have been killed.
A test has a startup of five seconds before collection of test results starts, where the frame
rate of the game is allowed to stabilize from spawning background elements. Background
elements are spawned at the top of the screen, and take a few seconds to spread out on the
screen, during which the frame rate is lower. The lower frame rate at the start of a test
is caused by background elements overlapping when first instantiated, causing additional
collision checking. Figure 5.1 shows how background elements move in from the top, and
many elements still overlap each other.

In section 3.5 we designed a game called CaptainEverything, with a variation for each game
engine, based on a similar game we designed in [5, p59-p60], and called them CaptainEv-
erythingSequnetial, CaptainEverythingParallel, and CaptainEvery-
thingAggregator. The implementation of the games is explained in chapter 4. The
game implementation shows that it is possible to create a simple and playable game which is
identical in all three game engines. The game has gameplay features which makes it unsuit-
able for the tests that we perform in this chapter. Everything in the foreground of the game
is removed: the player, enemies, and the boss. While the removed elements all are logic, it is
hard to modify and scale for testing purposes, while background elements, and gravity wells
are more suited for the scales we need for the tests, as many different test sizes are required.
The game is also altered such that the number of background elements and gravity wells can
be specified with optional command line arguments. The game is also provided with the
text to use as the window name, as it makes it easy to keep track of the current test number,
without the need of interaction with the test system while it is running. When first running
the tests, we observed strange behavior in some of the results. After an analysis we found
that the problem was caused by the GPU being at 100% load when rendering several gravity
wells. Gravity wells are transparent sprites, which cause the cost of rendering multiple of
then on top of each other to explode. Rendering of the gravity wells was disabled to prevent
the GPU from throttling those tests. The rest of the screen is rendered as normal, as no other
features cause problems which result in the GPU throttling the system. Results from each
test are logged in a file, which logs total time, frames, average frame rate, and startup time.

For the first test we expect the sequential game engine to perform best of the three game
engines, as it has no overhead introduced for concurrency, while both multithreaded game
engines are expected to perform similarly, but worse than the sequential game engine. From
the test we are interested in finding out how much worse they perform. The second test is
about workload, and we expect the parallel engine to perform the best, but for the aggre-
gator to be close, with the sequential engine lacking behind depending on the number of
threads. The naive estimation would be a performance increase equal to the number of cores
on the computer, but due to the overhead, we estimate the numbers to be a little lower in
performance increase, due to Amdahl’s Law [8]. The third test makes heavy use of critical
regions, so we expect the aggregator engine to perform at least equal to the parallel game
engine, while the sequential game engine lacks behind. We expect the aggregator to perform
based on the number of threads, with the parallel game engine a little slower due to locking.

46 Chapter 5. Test

System Spec
Laptop #1 i7-6500U (2.5GHz/3.1GHz), Integrated Graphics, 8GB

DDR3
Laptop #2 i7-7500u (2.70GHz/3.50GHz), Nvidia GeForce 940MX,

16GB DDR4
Desktop #1 i7-7700k (4.2GHz, 4.5GHz), NVidia GeForce GTX 970,

16GB DDR4
Desktop #2 i7-3770 (3.40 GHz/3.90GHz), NVidia GeForce GTX 970,

24GB DDR3

Table 5.1: Test systems.

We have chosen the three tests for the game engines as they test the core features relevant
to the aggregator: The overhead, the ability to handle workloads, and the ability to handle
critical regions. Other tests we could perform could be mixed load with background elements
and gravity wells, or small variations to the aggregator, where we change parts such as
reduction or the scheduler, but those had to be omitted due to development time. The runtime
for each full test is also so long that testing time could become a problem, but we discuss
how testing times can be reduced in section 7.2.

5.2 Test systems

In this section we describe the specifications of each of the four computers which we test on.
Different hardware can have vastly different performance in computer games [32], and as
such, we test on 4 different computers: two laptops, and two desktops. The tests conducted
in [4] where done on only a single system, but as mentioned in [32], it does not represent
all computers. The CPU and GPU used in the test is not consumer hardware [10, 14], as the
hardware is geared more towards enterprise usage.

The four hardware configurations presented in figure 5.1 are all very different configurations,
and with CPUs from different generations where performance increase from generation to
generation [31]. In section 5.1 we described how we removed rendering of gravity wells to
avoid the GPU bottle-necking the rest of the system. As the GPU is only a very small part
of the final system after the optimization, the CPU is the critical factor in the tests that we
perform.

5.3. Single-core overhead 47

Elements Parallel Aggregator
30 8,6% - 65,8% 2,3% - 27,0%
300 85,4% - 92,3% 5,1% - 29,1%
1000 118,0% - 128,5% 12,1% - 83,7%

Table 5.2: Percentage-wise performance range compared to sequential implementations for single-core test.

5.3 Single-core overhead

In this section, we describe the single-core test and the results of the test. The purpose of
the single-core test is to measure the overhead of the parallel and aggregator game engines
compared to the sequential game engine when limited to one logical core.

In the overhead test performed in [4], a single test for overhead with a single core was
performed, using a test size of 800 elements. In section 5.2 we mentioned how computer
games perform different on different hardware configurations. To gain an understanding of
the single-core overhead of the parallel and aggregator engine compared to the sequential
game engine, we perform a test with three different test sizes to gain a better idea of the
overhead, and how it changes over different work loads.

We perform three tests with 30, 300, and 1000 background elements. A test with 0 back-
ground elements in unsuitable for a test comparison, as the overhead introduced for thread
safety only is present with work load.

1 s t a r t \ w a i t \ a f f i n i t y 4 C a p t a i n E v e r y t h i n g X . exe Y 0 1 < t i t l e >

Listing 5.1: Command for running game under single-core test.

The tests were run with the command in listing 5.1 where affinity specifies which logi-
cal core the operating system should limit the program to, by using a bit-mask, which for the
value 4 indicates that the program is limited to logical core #3. Wait indicates that start
waits for termination before returning control to the test runner. The X in CaptainEvery-
thingX.exe is replaced with the engine which should be used for the test; for example
CaptainEverythingAggregator.exe. Y is the number of background elements to
spawn for the test. The 0 and 1 arguments in the command tells the game to spawn 0 gravity
wells, and only allocate for one logical core in the threadpool.

Each of figure 5.2, figure 5.3, figure 5.4 and figure 5.5 shows that with a sufficiently high
number of background elements, the parallel game engine performs better than the sequen-
tial game engine. For all four test systems it is apparent that the aggregator performs the
worst.

Table 5.2 shows the range in performance difference for the different engines when working
on different sizes of data. If an game engine has a performance of 100 % it indicates that it

48 Chapter 5. Test

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

5

200 400 600 800 1000

Sequential Parallel Aggregator

Single-core - Desktop #1

Figure 5.2: Single-core performance for Desktop #1.

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

200 400 600 800 1000

Sequential Parallel Aggregator

Single-core - Desktop #2

Figure 5.3: Single-core performance for Desktop #2.

5.3. Single-core overhead 49

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

200 400 600 800 1000

Sequential Parallel Aggregator

Single-core - Laptop #1

Figure 5.4: Single-core performance for Laptop #1.

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

200 400 600 800 1000

Sequential Parallel Aggregator

Single-core - Laptop #2

Figure 5.5: Single-core performance for Laptop #2.

50 Chapter 5. Test

performs equally to the sequential game engine for a value. The values shown in the table is
the range in which the engines performs. We present the numbers as such, as it shows how
big the difference can be for the same games and sizes on different systems. We can see that
while the parallel game engine worst case performs poorly on a small number of background
elements, out performs better than the sequential game engine when processing a sufficiently
high number of background elements. The differences between the two engines are locking
in the parallel game engine, and the thread pool where work is scheduled from. We assume
that CPU pipe-lining and certain thread-specific optimizations are the cause of the speedup,
as the sequential game engine otherwise should be the faster engine.

Another observation is that Desktop #1 sees in increase in frame rate from 30 to 300 back-
ground elements for the parallel game engine. We are unsure what could be the cause of the
increase in frame rate, as the increased work load should lead to a lower frame rate. Worst
case performance for the aggregator game engine is low for all test sizes. It performs closer
to the sequential game engine with more background elements, but unlike the parallel game
engine it does not out-perform the sequential game engine within the work loads of the tests.

As described in section 5.1 we expected the sequential game engine to perform better than
the parallel game engines. From the test results we determined that the parallel game engine
out-performs the sequential game engine with a high enough number of background ele-
ments. The aggregator performs worse, but following the curve, it is possible that it would
pass the sequential engine with enough background elements.

5.4 Background elements

In this section, we describe the background elements test and the results of the test. The pur-
pose of the background elements test is to measure how the different game engines perform
under different sizes of workload, when not limited to a single logical core. Two of the three
game engines we test are multithreaded, but we want to investigate how well they handle a
work load, and if the aggregator game engine or parallel game engine performs better under
different workloads.

We perform four tests with 30, 300, 1000, and 2000 background elements. A test with
0 background elements in unsuitable for a test comparison, as the overhead introduced for
thread safety only is present with a work load. We added a test for 2000 background elements
in addition to those in the single-core test, as the multithreaded game engine implementations
still has a frame rate in the 100’s at 1000 background elements. While we could push the
tests until the frame rate goes into single-digits, it would result in a loss in precision, and
lose real-world relevance as the frame rate goes further beneath 60 fps.

1 s t a r t \ w a i t C a p t a i n E v e r y t h i n g X . exe Y 0 0 < t i t l e >

Listing 5.2: Command for running game under background elements test.

5.4. Background elements 51

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

500 1000 1500 2000

Sequential Parallel Aggregator

Background elements - Desktop #1

Figure 5.6: Background elements performance for Desktop #1.

Each test is run with the command in listing 5.2, which is mostly similar to the command
for single-core test explained in section 5.3, except that the number of threads the threadpool
should allocate for is set to zero, which allows the game to use the number specified by the
operating system though a call to std::thread::hardware_concurrency().

Each of figure 5.6, figure 5.7, figure 5.8, and figure 5.9 shows that the sequential game engine
performs the best on few background elements, but is overtaken by the parallel game engine
as the number of background elements increase. The aggregator never performs better than
the parallel game engine, but passes the sequential game engine between 300 and 1000
background elements. On laptop #1, the aggregator just about passes the sequential game
engine at 300 elements with a 99% performance compared to the sequential game engine.

Similar to the parallel game engine for Desktop #1 in the sequential test in section 5.3, both
multithreaded game engines increase in frame rate from 30 to 300 background elements for
Laptop #2. We have no real assumption as to why this could be the case, as we would have
expected the frame rate to always decrease as the work load increases.

Table 5.3 shows the range in performance difference for different game engines as also
explained in section 5.3. From the performance, we can observe that the sequential game
engine performs the best at 30 background elements. The aggregator game engine’s best
performance is close to the sequential game engine at 99,2% for 300 background elements.
The aggregator game engine outperforms the sequential game engine by 1000 background
elements, and ends with performing 4 times better than the sequential game engine at 2000

52 Chapter 5. Test

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

500 1000 1500 2000

Sequential Parallel Aggregator

Background elements - Desktop #2

Figure 5.7: Background elements performance for Desktop #2.

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

500 1000 1500 2000

Sequential Parallel Aggregator

Background elements - Laptop #1

Figure 5.8: Background elements performance for Laptop #1.

5.4. Background elements 53

Background elements

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

500 1000 1500 2000

Sequential Parallel Aggregator

Background elements - Laptop #2

Figure 5.9: Background elements performance for Laptop #2.

Elements Parallel Aggregator
30 51,4% - 90,8% 31,7% - 72,7%
300 111,6% - 134,8% 40,7% - 99,2%

1000 236,6% - 474,6% 156,9% - 248,9%
2000 332,6% - 704,2% 270,0% - 464,1%

Table 5.3: Percentage-wise performance range compared to sequential implementations for background ele-
ments test.

54 Chapter 5. Test

background elements, while the parallel game engine performs just over 7 times better than
the sequential game engine at the best test system.

As described in section 5.1 we expected the parallel game engine to perform the best, but for
the aggregator to perform close to it. From the numbers in table 5.3 we can determine that
as the number of background elements increase, the advantage to the parallel game engine
increases further, with the worst increase being 332, 6% for a laptop with a dual-core and
hyper-threading, and up to 704, 2% for a quad-core with hyper-threading. Meanwhile we
observe that the aggregator lacks behind compared to the parallel game engine, where the
performance difference between them can go up over 100%. While we assume that the
graphs cross at some point, it will be at frame rates so small that it would be useless for
actual games.

5.5 Gravity wells

In this section, we describe the gravity wells test and the results of the tests. The purpose of
the gravity wells test is to generate a lot of updates in critical regions.

We perform a total of 14 tests using gravity wells. In the initial plan we planned to have tests
for 0, 1, 5, 10, 25, and 100 gravity wells, but found that we still had high enough frame rates
that we could increase the number of gravity wells to also include 250, 300, 350, 400, 450,
500, 550, and 600. We initially assumed that 100 would be sufficient as the gravity wells are
set up to fill the entire screen, and as such every gravity well affects all background elements
in the test. Each test is limited to 100 background elements, as the test needs an object
which can be influenced in sufficiently large quantity that the difference is visible, and small
enough that background objects does not become the primary factor to the performance of
the test.

1 s t a r t \ w a i t C a p t a i n E v e r y t h i n g X . exe 100 Y 0 < t i t l e >

Listing 5.3: Command for running game under gravity wells test.

The tests were run with the command in listing 5.3, as explained in section 5.3. The differ-
ence is that all commands are run with 100 for background elements, where Y is changed
based on the number of gravity wells to spawn.

Each of figure 5.10, figure 5.11, figure 5.12, and figure 5.13 shows that the sequential game
engine performs the best with few gravity wells, but eventually gets passed by the parallel
game engine for both Desktop #1 and #2. For laptop #1 the parallel game engine reaches
performance similar to the sequential game engine until 300 gravity wells, after which it
moves down towards the performance of the aggregator game engine. Laptop #2 sees both
multithreaded game engines increasing in performance with a few elements, but none of
the graphs ever cross. For both desktops we observe that the sequential game engine and

5.5. Gravity wells 55

Gravity Wells

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

0 200 400 600

Sequential Parallel Aggregator

Gravity Wells - Desktop #1

Figure 5.10: Gravity wells performance for Desktop #1.

Gravity Wells

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

0 200 400 600

Sequential Parallel Aggregator

Gravity Wells - Desktop #2

Figure 5.11: Gravity wells performance for Desktop #2.

56 Chapter 5. Test

Gravity Wells

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

0 200 400 600

Sequential Parallel Aggregator

Gravity Wells - Laptop #1

Figure 5.12: Gravity wells performance for Laptop #1.

Gravity Wells

Lo
g1

0
av

er
ag

e
fr

am
e

ra
te

0

1

2

3

4

0 200 400 600

Sequential Parallel Aggregator

Gravity Wells - Laptop #2

Figure 5.13: Gravity wells performance for Laptop #2.

5.6. Problems encountered during testing 57

Gravity wells Parallel Aggregator
0 43,7% - 89,1% 18,1% - 63,1%
1 43,6% - 80,4% 22,4% - 85,7%
5 43,7% - 83,0% 22,5% - 89,6%
10 43,3% - 86,4% 22,9% - 91,6%
25 48,2% - 87,4% 25,3% - 89,2%

100 69,4% - 94,1% 34,5% - 82,1%
250 75,3% - 129,3% 57,9% - 75,7%
300 75,5% - 135,5% 57,3% - 77,7%
350 75,9% - 142,4% 56,8% - 78,9%
400 75,2% - 150,5% 55,8% - 85,4%
450 75,7% - 154,4% 56,4% - 90,6%
500 74,3% - 157,4% 56,1% - 90,9%
550 74,5% - 160,0% 55,2% - 94,1%
600 74,0% - 163,6% 55,2% - 96,9%

Table 5.4: Percentage-wise performance range compared to sequential implementations for gravity wells test.

aggregator game engine meet at 600 gravity wells, and as such we can assume that the
aggregator game engine will pass the sequential game engine if we continue with a higher
number of gravity wells, but the parallel game engine performs better.

Table 5.4 shows the range in performance difference for the different game engines as also
explained in section 5.3. From the performance difference we can see that the parallel game
engine passes the sequential game engine between 100 and 250 gravity wells. For the worst
test system, the parallel game engine never outperforms the sequential game engine. The
aggregator game engine never passes the sequential game engine, but comes close with
96,9% for 600 gravity wells for the best test system, but the worst test system still only
performs 55,2% compared to the sequential game engine.’

As described in section 5.1 we expected the aggregator to perform the best of the three game
engine, but the tests have shown that it performs the worst of the three engines for all test
sizes.

5.6 Problems encountered during testing

Many of the tests have given one or more problems that we need to check and verify to make
sure that there was not made an error in the implementation. An example is for the single-
core test where the multithreaded game engines end up being faster than the sequential game
engine. We are unsure why this is the case, and have been unable to identify the cause of
the performance. We assume pipelining and compiler optimizations affect the performance

58 Chapter 5. Test

with the inclusion of threads when limited to a single logical thread. We also changed the
number of background elements used in the gravity wells tests. It was originally planned for
the test to use 1000 background elements, but too much time was spent on collision checking
between background elements, so the number was reduced to 100 background elements. In
the first run of the single-core test we encountered stuttering in both multithreaded game
engines. The stuttering was caused by context switching in the thread pool, as the game kept
allocating threads equal to the number provided by the operating system, even though we
only allowed to run on one logical thread. We removed the problem with context switching
by adding a flag specifying if the game should be run with only a single core. The addition
was made to both multithreaded game engines.

5.7 Delimitation

In this chapter we have tested the game engines over three different tests on four differ-
ent systems. In the single-core test we found that when limited to one logical core, the
multithreaded game engines were able to outperform the sequential game engine with high
enough work load. In the background elements test, where the multithreaded engines have
access to all cores on the system, we found that both multithreaded game engiens outperform
the sequential game engine. The parallel game engine performs the best, but the aggregator
also outperforms the sequential game engine with with higher work loads. In the gravity
wells test, in which we perform many operations in critical regions, the parallel game engine
outperforms the sequential game engine. The aggregator game engine never outperforms
the sequential game engine, but on both desktop test systems the aggregator game engine
performs equally to the sequential game engine on the highest work load.

In the next chapter we will discuss some of the game engine features which we excluded in
chapter 1, and how they could affect the aggregator.

6 | Excluded engine functionality

In this chapter we discuss the engine features which we chose to exclude in section 1.2, as
we decided in [5] that we can design a testable game engine with the aggregator without the
features. All omitted features are part of commercial game engines such as Unity.

First we will discuss hierarchies and components, which are used to structure games and
objects in a game world. Then we will discuss resources, and how they are used in game
engines. After that we explain physics and fixed updates, and how it is used in game engines,
before finally covering 2D and 3D game engines. For all features we also mention how the
aggregator affects or is affected by each feature.

The game engines created in this project uses a flat hierarchy; Game objects all exist in a
flat list with no further relation to each other. Game engines such as Unity have a hierarchy
of GameObjects, where some GameObjetcs are child objects to other GameObjects. When
a parent GameObject is moved, all child objects move accordingly. The introduction of a
hierarchy has no effect on the behaviors of the aggregator.

Components are sub-objects which can be attached to objects at runtime to give them new
functionality [29]. In the game engines we implemented in chapter 4, we added position,
rendering and collision into the GameObject. In a game engine using components, posi-
tion, renderer, and collision would be added as components. In unity, position is part of a
transform, which is a required component for GameObjects, as it manages the hierarchy for
a GameObject [21]. Objects such as player and enemy would also be components of a
GameObject, instead of inheriting from it. With the aggregator, it would just be more types
to keep track of, but additional merge rules are required for them.

The game engines include a simple resource manager, which is used to load sprites into the
game at runtime. Other resources that games can need to load can include audio, shaders,
and prefabs. Prefabs are objects which have been constructed and saved as a resource. An
example of a prefab could be the enemies in Captain Everything, which we designed
in section 3.5. Enemies are currently simple objects, but with the introduction of compo-
nents, objects can be more complex than what is viable to manually construct each time the
object is instantiated. With a prefab, an enemy is constructed and then saved as a resource.

59

60 Chapter 6. Excluded engine functionality

The resource manager can then be used to instantiate the enemy prefab in a single command,
only requiring the position to spawn the enemy at. Resources are loaded from the desk when
needed, but can be cached in memory for faster access. Caching an entire game at startup
will not always be possible, as some games can have game sizes over 60GB, and the size in-
crease for newer games [15]. Unity also allows resources to be assigned to variables through
its editor, removing explicit access to the resource manager, and optimizing resource usage
at compile time [26].

In section 1.2 we limited the physics in the game engine to collision detection on rect-
angular colliders. Objects in real games can also be circles or polygons [22]. In a 3D
setting, collision also affects cubes, spheres, capsules, and 3D polygons. Such shapes can
have more complex collision detection then rectangles, which can be more computationally
expensive[30]. Collision checking in the game engine currently has time complexity O(n2),
where n is the number of game objects affected by physics collision. The complexity is so
big it would be unsuitable to use in real games. It is possible to reduce the time complexity
using a multi-phase approach [11], but we estimate that the time required to implement a
better detection algorithm would out-weight the benefits, when limited to the scope of this
project, based on prior experience with collision detection. Other features that we could
include includes rigid bodies, resistance, gravity, ray tracing, and forces. We use a sim-
ple force implementation in the games developed in this project, but it is implemented in
the game layer and not the engine layer. More complex features could include soft body
simulation of clothes, destructible objects, and fluid simulation. Many of these features are
implemented through a third-party physics engine, or by using technology directly from
GPU companies [24, 7]. Physics would have no real influence on the functionality on the
aggregator, but unlike with other game engines [18], everything can be executed in parallel
with other update logic.

Game engines such as Unity also implements fixed updates in addition to updates[18,
23]. Fixed updates are executed a fixed number of times each second, in-between normal
updates. Fixed updates are used when interacting with the physics system, such as
rigid bodies, or when interacting with features which can be processed independently from
normal updates. Fixed updates can be included in a game engine with the aggre-
gator, but it requires a small redefinition of the aggregator game engine to work. Because
of the possibility that multiple fixed updates are executed at one iteration if the fixed
update rate is high enough. Instead the aggregator game engine reduces and aggregates at
the end of each fixed update, in addition to the reduction and aggregation which is done after
input, update, and rendering.

The game engines are created to be simple 2D game engines, but are limited to only sprite
rendering. Commercial game engines offer more rendering options for 2D and/or full 3D
support, and a full rendering pipeline. Even simple 2D game engines can put stress on
hardware, as we also mentioned in section 5.6, where the GPU under full load for simpler
systems, such as those using integrated graphics. The problem was caused by multiple layers
of images with transparency, as the cost of rendering the sprites exploded as more transparent

6.1. Delimitation 61

sprites were drawn on top of each other. In section 4.1 we mentioned that we chose to use
SFML as graphics library, but it is likely that even with the optimizations that we made, it
does not handle a lot of work that well. A move to Vulkan would be the best alternative, as
it is a new graphics API, which is set to replace OpenGL. We already discussed the use of
Vulkan in [5, p10-p11].

6.1 Delimitation

In this chapter we have discussed the engine features which we chose to exclude in chapter 1.
The inclusion of the features would show how the aggregator game engine would perform
in a more real-world scenario. An option for testing an engine with many of the features
covered in this chapter would be to include the aggregator in an existing game engine, as we
further discuss in section 8.1.

In the next chapter we will discuss test results for the engine we did test, as well as the
viability of using the aggregator in its current state.

7 | Discussion

In this chapter, we discuss the project and reflect over the choices we have made, and the
consequences of those choices.

7.1 Design

In this section we discuss the design we have made in chapter 3, and how the decisions can
have affected development and tests.

In section 2.1 we define the aggregator as immutable for the duration of an iteration, but in
section 3.4 we allow input to block execution of some update functions, because they can
depend on the current state of keys. The alternative would be to save the new state of each
key in a delta, and then merge it at the end of an iteration like the rest of the game state.
The reason we do not do this is because it would delay the effects of keyboard input until
the next frame. Because the results of updates using input is pushed back one frame, so is
rendering of the results of the keyboard input. In traditional game engines with the flow input
=> update => render, the new frame shows the interaction immediately. With the aggregator
under the current implementation, displaying input on the frame is delayed by one frame.
With the change proposed in this section, it is delayed by another frame, such that input now
is off by two frames. The change will be unobservable at a very high frame rate, but might
become visible at a lower frame rate. Testing would need to be performed to determine if it
can be a cause of problems for players.

We also designed the ThreadPool in section 3.3 under the assumption that the language
we chose would not offer similar functionality out of the box. In C# Tasks and Parallel
could be alternatives for non-blocking and blocking concurrency.

63

64 Chapter 7. Discussion

7.2 Test and test results

In this section we discuss our test approach and test results. The discussion is based on our
work in chapter 5, which is based on the game engine design in chapter 3 and implementation
in chapter 4.

From the tests we found that the results did not match our expectations which we presented
in section 5.1. For the singe-core test we predicted that the sequential game engine would
perform the best, while the multithreaded game engines would perform worse, but not a big
difference between the multitreaded game engines. From the test results we found the paral-
lel game engine outperforms the sequential game engine, while the results indicate that the
aggregator game engine eventually will overtake the sequential game engine as well. Both
the parallel game engine and the aggregator game engine performs better than the sequen-
tial game engine even though they are implemented with threads and thread syncronization,
which should result in slower execution. We speculate that some compiler optimizations
and pipelining can be the cause of the performance increase for both multithreaded applica-
tions. The tests run on a single core, leading to no context switching for the parallel game
engine, and thus one part of the engines without overhead. We predicted that the parallel
game engine would perform the best in the background elements test, with the aggregator
game engine following closely. The parallel game engine and aggregator game engine both
outperformed the sequential game engine, but with different magnitudes. The parallel game
engine performs better than the aggregator game engine by over 250% when compared to
single-threaded performance. The aggregator was expected to perform the best in the gravity
wells test, but performed the worst of the three game engines. From the results in table 5.4
we can see that the best performance is 96, 9%, which is almost equal to the sequential game
engine, and the growth points towards passing the sequential game engine. The results for
few gravity wells shows that it has a quick positive and negative growth, which is caused
by the difference in change of frame rate for the game engines at few gravity wells. The
sequential game engine has no overhead, and the parallel game engine has locking, but can
update the values directly. The aggregator has to look up delta values and update them first,
which profiling have shown is a huge contributor to the slowdown for the aggregator, and
which leads us to believe that the implementation of deltas are the cause.

When preparing for the tests we followed the test hints in [16], which recommends closing
most external programs, and watching out for windows update. All test systems were up-
dated and rebooted before the tests and rechecked for updates, leaving no risk for windows
updating in the background. All IO is performed by the game engine either before test mea-
surement starts, when loading the binary and resources, or after the test is done, when results
are written to disk. All windows apps were shut down, and some background processes such
as Microsoft OneDrive. Some restrictions were also put on Windows defender, as the test
binary used for most test systems were built on a single system and then redistricuted, and
as such an unknown and unsigned binary downloaded from the internet.

7.3. Choice of technologies 65

When performing the tests we chose to run each test for a full minute as it was a full sys-
tem test when testing the game, and we wanted enough time to account for small deviations
caused by windows in the background, which is apparent as there still was differences be-
tween each of the five runs for each test. As tests take one minute per run, and five seconds
of startup, a full test run lasts close to six hours. The system is based on an iterative system
and as such needs to run for a number of iterations for a test to cover usable results. An
options would be to run a number of tests for a specific duration, and then perform the same
tests with a longer duration, until we find the minimum duration which consistently produce
the same results. Another option would be to count the duration which it takes to make a
number of iterations, but as some of results in chapter 5 show, the results range from over
10.000 to under 10 frames per second, and and can still vastly affect the results depending
on the number of iterations. We believe that either are possible options for reducing testing
times, which makes it easier to run more different tests, or as we discuss below, more of the
same tests.

During data processing, we attempted to create tendency lines for the results to better de-
scribe the flow and development, and to predict when lines would cross for the tests where
we estimate that they will cross, but do not have test data for it. We used exponential ten-
dency lines, and judged the usefulness of the lines by using the r2 value, where a value
closer to 1 is better. For some tests, a r2 over 0.95 were possible, which makes for a decent
line, but other results had tendency lines in the area of 0.80 which is too low for a line to
be usable. A great line would need a r2 of 0.99. If we had made more tests in-between the
current test-sizes, and beyond the upper limits, more numbers would have been available,
which would help providing a better tendency line.

All three game engines used in the tests are written in C++. The authors of the project have
prior experience with C++ through university courses and working with Unreal Engine in
[5], but no other real experience. A consequence of this is that the game engine imple-
mentations may be sub-optimal, and some implementations while similar, favor one of the
three engines more than others. More experience with C++, or implementations in another
language the authors have more experience with could lead to different results. During im-
plementation we also decided to complete the implementation for one engine before starting
the next, and then copy the code over to the new engine, and then modify it. It is possible
that separate implementations from scratch could lead to engines which better utilize the
restrictions based on which of the three game engines it is.

7.3 Choice of technologies

In this section we discuss and reflect over the choices we made when deciding which tech-
nologies to use for the game engines in section 4.1.

We chose C++ as programming language as a result of originally deciding on OpenGL as

66 Chapter 7. Discussion

the rendering framework of choice, because the documentation of all wrappers for C# ports
of OpenGL were poor or non-existing, and creating our own wrappers would take away
from the focus of the project. After choosing C++ we also tried multiple frameworks before
deciding on SFML. It was the only framework with a C++ interface, which made it a better
working experience for us, than writing GLEW and GLFW, which only provided a C inter-
face. Vulkan and DirectX 12 were never really considered due to their size, and because we
had a fear that they would steal too much development time, which otherwise should be used
on implementing the rest of the game engines.

When we worked with C++ in [5] we often encountered problems where C++ would take
more than 10 minutes each time we compiled the game, which is similar in complexity to
the game we designed in this project in section 3.5. We did not encounter the same problems
with C++ in this project, but instead encountered other problems with MSBuild, which were
the build system we used for the game. Early in the project we decided to split the code
project into multiple libraries, such that we could have one library for engine features, a
library for each game engine, and a library for each game. When running the game, Visual
Studio would only compile the project marked as startup project, omitting changes
in the other libraries, leading to much frustration and debugging time. Line numbers in error
messages would also be incorrect due to the mistake, causing much frustration before we
became aware of the cause of the problem.

Another problem we had with C++, and which we were aware of when choosing the lan-
guage, was the error messages. They would often appear 10 layers deep in the standard
library, and not say anything helpful about why something in the code could not compile,
or on runtime where a simple mistake such as invalidating an iterator would have to be
discovered independently of the error message.

As far back while working on [5] we considered C# as the language of choice due to the
authors better familiarity to it. Well into the project we became aware of a C# library called
MonoGame1, which feature-wise is equivalent with SFML.

The best part of working with C++ was the package manager we chose, VCPKG, which
integrated with Visual Studio, such that we never had to touch the build system directly to
add new libraries to the project. It also made it easy for us to try the different libraries before
deciding on SFML, as it took a single line in a terminal, and VCPKG would compile and
configure everything for us.

7.4 Immutability and determinism

One of the strengths of the aggregator is how it hides assignments to an variable, and allow
for easy parallelism, but hiding assignments can also cause problems for some games. If

1http://www.monogame.net/

7.5. Improvements to implementation 67

a game have two AIs where the choice of one AI can affect another AIs choice, such as
invalidating it, the AIs work for the frame would be invalidated. The two ways to currently
avoid the problem is to either process all related AI logic in one update function, but
risk losing all benefit to having multiple threads, or move parts of the AI logic outside the
aggregator.

One way to avoid the problems is to redesign the AI such that the outcome of one AI cannot
affect the decision of another AI in the same frame, but might require changes to the func-
tionality of game mechanics of the game the AI is part of. An alternative is to extend the
existing wrappers, adding the option to peek the current value if merged.

When coming up with the aggregator, we chose to value determinism due to the complexity
in many games. Testing games is a big task, and also involves many test disciplines other
than just those in traditional software testing [9], and determinism can make testing for many
of them harder, when a problem is difficult to reproduce, or only occur in some customer’s
computer configuration.

The aggregator game engine can become non-deterministic with priority assignment, if mul-
tiple assignments are made with the same priority, as the game engine only keeps the results
of the first assignment, which can happen from any thread.

7.5 Improvements to implementation

This section is about the improvements that can be made to the aggregator game engine, and
in extension all three game engines. The tests in chapter 5 which we discussed in section
7.2 shows that the aggregator does not perform as well as we expected. We have run the
aggregator game engine under the Visual Studio Performance Profiler, where we look at
CPU usage. Figure 7.1 shows the CPU usage different functions in the aggregator game
engine. We can observe that worker threads, collision detection, and collision handling
account for the majority of the total CPU time, but the += operator also accounts for 55% of
all CPU usage.

If we investigate the function, we can see that 38% of all CPU time is spend finding the
relevant delta for the wrapper for the current thread. We iterate over all deltas to determine
if an delta already exist for the wrapper, and either get it, or create a new delta and add to
the list. We store all deltas in a global collection such that it is simple to iterate over in the
reduction phase and aggregate phase.

The simple solution to the problem would be to keep a local reference to the delta in the
wrapper, such that it is faster to loop up at runtime. We did not implement this fix for
retesting due to the time required for running tests, as discussed in section 7.2.

68 Chapter 7. Discussion

Figure 7.1: profiled result of gravity well test with 600 gravity well.

Figure 7.2: operator+= profiled result of gravity well test with 600 gravity well.

7.6. Real world application 69

7.6 Real world application

In this section we will discuss if it makes sense to use the aggregator to create games and
game engines outside academia. Two factors are important to consider: the usability of the
aggregator, and performance of the aggregator compared to alternatives.

In this project we have only focused on whether the aggregator game engine works, and
how well it performs compared to a sequential game engine and parallel game engine. In
[5, p.49-p.50] we discussed options for testing how easy the aggregator is to use compared
to other game engines, but based most of it on speculation as we only had a design to base
it on. In this project we have shown that it is possible to create small games using the
aggregator game engine. It is essential that using the aggregator is not harder than software
transactional memory or revisions, if it is going to be adapted. Many games use forces
when interacting with the position of objects, and requires a minimum of changes to use the
aggregator instead.

In section 7.5 we discussed options for improving the performance of the aggregator. It
is important that the aggregator performs on parallel systems to be usable for adaptation,
and in the gravity wells test in section 5.5 we found that the aggregator only performed
equally to the sequential game engine. Further improvements have to be made, such that it
is a viable choice when programmers and game developers choose their tool for concurrent
programming.

7.7 Game

In this section we discuss the game which we designed in section 3.5 and implemented in
chapter 4. The game itself was not the focus in the project, but allowed us to show that
the same game can be implemented in all three game engines, and be playable. If the game
had played or behaved differently in the aggregator game engine compared to the other game
engines, it would be a negative to the aggregator, as it would limit the ability to create games,
or create game which are not enjoyable. If the aggregator caused stuttering or other problems
visible to the player due to the design of the aggregator game engine, it would be unusable
for game development. From our personal experience with the game, and also playing the
game on the different game engines, we can not feel any difference on how the player or
enemies move and behave on the screen. The difference can sometimes be observed in the
behavior of background elements, but can be fixed with minor changes to some assignments
in the code, which can be changed to relative operations.

8 | Conclusion

In this project we have worked with the idea we call the aggregator, which is based on
software transactional memory and first described in [5]. The aggregator has been designed
for iterative systems such as game engines, which are used for making computer games. In
[5] we ended our work with a design for the aggregator and game engines. In this report
we have further described the theory of the aggregator, and compared it to revisions which
have many similarities. We have designed three game engines: a sequential game engine,
a parallel game engine with locks, and a game engine using the aggregator. We have also
designed a game with the intent of showing that all three game engines can be used to
implement the same game. All three game engines have been implemented, and the same
game implemented for each of the game engines. We have tested the game engines with the
goal of comparing the aggregator game engine to the parallel game engine over three tests
on four different test systems

Through the tests we have shown that the aggregator game engine is capable of out-performing
a sequential game engine by 4.6 times in the best case, but performs worse than a similar
parallel game engine using locks. In other tests it performs worse than the single-threaded
game engine which we also implemented to be as similar as possible, but we have assumed
that is a problem with the implementation which causes that problem.

We have implemented a game for all three game engines, to demonstrate that all three games
can be used for creating the same, simple game. The engines have been designed to be as
similar as possible, and the game engine interface for the games was identical, except for the
features unique for each game engine.

The game engines have been implemented using C++, with the OpenGL wrapper SFML as
graphics library. When investigating related works we came across [2], where the rendering
library was a limiting factor for the frame rate, and we have chosen a low-level graphics
back-end to avoid the same problem.

71

72 Chapter 8. Conclusion

In the start of the project we asked the question:

How would a game engine implemented using the aggregator compare to game engines
using a sequential implementation or a lock-based parallel implementation.

From the tests we have concluded that in some tests the aggregator game engine performs
better than the sequential game engine, and in other tests it performs worse than the sequen-
tial game engine. It does not at any point in any test perform better than a parallel game
engine utilizing locks.

Although not ready yet, our initial tests have shown potential for the aggregator, and with a
little more work it should be possible to improve the aggregator game engine to out-perform
the sequential game engine, and have a performance close to the parallel game engine.

8.1 Future work

In this section we propose options for future work based on this project. We look at usability
testing the aggregator, and implementing the aggregator in an existing game engine. Both
topics in this section are also briefly described in [5, p41, p49-p50].

8.1.1 Usability testing

In [5, p41] we included usability testing as a possible option for testing, including a list of
possible areas to test. While the tasks listed are few, they cover features beyond what is cur-
rently supported in the game engines. For any meaningful usability test with the aggregator
in a gaming context, a more mature game engine is needed, which implements many of the
features discussed in chapter 6.

The purpose of the usability test will be to document the users ability to create games under
the restrictions of the aggregator, to determine if and how the aggregator affects a persons
ability to make concurrent computer games. To limit variables in the usability tests, we use
both multithreaded game engines for the tests due to their similarity.

We perform two tests with test users: one where we test the aggregator game engine by itself,
and one where we compare the aggregator game engine with the parallel game engine. In
the test focusing on the aggregator game engine, we will perform an in-depth usability test
of the aggregator game engine, testing how the user interacts with many of the different
game engine features. In the comparison test we ask the test person to implement a small
concurrent game in both game engines, and then comment on which engine they found the
easiest to work with and why.

8.1. Future work 73

8.1.2 Implement the aggregator in an existing game engine

In this project we have implemented a minimal game engine with the aggregator, but omit-
ted several engine features which can affect the aggregator as explained in chapter 6. An
endeaver is to implement the aggregator into another, existing game engine with a more
complete feature set.

Starting with a smaller game engine with the features we have omitted, the porting to using
the game engine would give insight into several areas:

• Porting the game engine to use the aggregator would give measurements on the time
and changes necessary to port the entire game engine, as well as the problems that
will be encountered in the process. The numbers can be used to approximate the cost
of later porting another game engine to use the aggregator, and determine if the same
problems are encountered in ports for different game engines.

• It gives access to larger, complete games implemented in the game engine. Parting
the games gives an indication of the cost associated with converting the games, and
metrics on the performance difference between the game on the normal game engine
and the aggregator game engine.

• It helps finding limitations in the aggregator, as situations will be encountered which
are currently not considered in the design or implementation of the aggregator.

List of Figures

2.1 Iteration of a potential game loop using the aggregator. 4
2.2 Two threads modify shared variables. [] shows that the state value of the

variables remains the initial value, while the updates are visible after the
threads. 7

2.3 Revision diagram showing isolation between revisions. Figure 2 in paper [4]. 8
2.4 Revision diagram showing nesting and joining of revisions. Figure 3 in paper

[4]. 8
2.5 Outcomes under different programming models. Figure 2 in [3]. 11

3.1 UML diagram for the sequential game engine. 15
3.2 Flow of the sequential game engine. 16
3.3 Flow of the parallel game engine. 19
3.4 ThreadPool for parallelizing game logic. 20
3.5 Flow of parallel game engine utilizing the aggregator. 21
3.6 Delta value for an int. 22
3.7 A wrapper for int values, with functions for modifying the value. 23

5.1 Background elements moving down from the top during game startup. . . . 44
5.2 Single-core performance for Desktop #1. 48
5.3 Single-core performance for Desktop #2. 48
5.4 Single-core performance for Laptop #1. 49
5.5 Single-core performance for Laptop #2. 49
5.6 Background elements performance for Desktop #1. 51
5.7 Background elements performance for Desktop #2. 52
5.8 Background elements performance for Laptop #1. 52
5.9 Background elements performance for Laptop #2. 53
5.10 Gravity wells performance for Desktop #1. 55
5.11 Gravity wells performance for Desktop #2. 55
5.12 Gravity wells performance for Laptop #1. 56
5.13 Gravity wells performance for Laptop #2. 56

7.1 profiled result of gravity well test with 600 gravity well. 68
7.2 operator+= profiled result of gravity well test with 600 gravity well. 68

74

List of Tables

5.1 Test systems. 46
5.2 Percentage-wise performance range compared to sequential implementations

for single-core test. 47
5.3 Percentage-wise performance range compared to sequential implementations

for background elements test. 53
5.4 Percentage-wise performance range compared to sequential implementations

for gravity wells test. 57

75

List of Listings

2.1 Merge function for integers. 9
4.1 Main loop of sequential game engine. 27
4.2 Process current state of key. 27
4.3 Code for rendering current frame. 28
4.4 Sequential game object constructor. 29
4.5 Sequential game object destructor. 30
4.6 Sequential resource manager. 30
4.7 Code snippet of player update. 31
4.8 Code collision code for player. 32
4.9 Startup code for spawner which instantiates background elements and grav-

ity wells. 32
4.10 Update code for the spawner which spawns enemies and bosses. 33
4.11 OnCollision for background element. 34
4.12 OnCollision for gravity wells. 35
4.13 Creation of threads. 36
4.14 worker_thread_loop() code. 36
4.15 Updates main loop using the threadpool. 37
4.16 Locking of background element in parallel game implementation. 38
4.17 IntDelta reduce and merge function. 39
4.18 Example of a wrapper operator overload. 40
4.19 Snippet of the game engine for the aggregator. 40
4.20 Code for the backgroundelement update. 41
5.1 Command for running game under single-core test. 47
5.2 Command for running game under background elements test. 50
5.3 Command for running game under gravity wells test. 54

76

Bibliography

[1] Hin Y. Lee Abu Asaduzzaman and Deepthi Gummadi. Impact
of thread synchronization and data parallelism on multicore game
programming. https : / / pdfs.semanticscholar.org / 533c /

18be4bcd951b336d8efcee6d0b8615bdaf2c.pdf, 2014. Online; accessed
2019-03-26.

[2] Alexandro Baldassin and Sebastian Burckhardt. Lightweight software transactions for
games. In Proceedings of the First USENIX Workshop on Hot Topics in Parallelism
(HotPar’09), 2009.

[3] Sebastian Burckhardt and Daan Leijen. Semantics of concurrent revisions. In European
Symposium on Programming, pages 116–135. Springer, 2011.

[4] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent program-
ming with revisions and isolation types. SIGPLAN Not., 45(10):691–707, Octo-
ber 2010. ISSN 0362-1340. doi: 10.1145/1932682.1869515. URL http://

doi.acm.org/10.1145/1932682.1869515.

[5] Frederik Palmelund Voldby Carsten Schroll Ibsen. Designing a tool for multithreading
game engines in a multicore environment, 2018.

[6] Wikipedia contributors. List of game engines. https://en.wikipedia.org/wiki/

List%5fof%5fgame%5fengines, 2018. online; accessed 2018-09-07.

[7] Epic Games. Physics simulation. https://docs.unrealengine.com/en-us/

Engine/Physics, 2019. online; accessed 2019-05-24.

[8] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):
33–38, July 2008. ISSN 0018-9162. doi: 10.1109/MC.2008.209.

[9] Johan Hoberg. Differences between software testing and game testing.
https : / / www.gamasutra.com / blogs / JohanHoberg / 20140721 / 221444 /

Differences % 5fbetween % 5fSoftware % 5fTesting % 5fand % 5fGame %

5fTesting.php, 2014. online; accessed 2019-06-05.

77

https://pdfs.semanticscholar.org/533c/18be4bcd951b336d8efcee6d0b8615bdaf2c.pdf
https://pdfs.semanticscholar.org/533c/18be4bcd951b336d8efcee6d0b8615bdaf2c.pdf
http://doi.acm.org/10.1145/1932682.1869515
http://doi.acm.org/10.1145/1932682.1869515
https://en.wikipedia.org/wiki/List%5fof%5fgame%5fengines
https://en.wikipedia.org/wiki/List%5fof%5fgame%5fengines
https://docs.unrealengine.com/en-us/Engine/Physics
https://docs.unrealengine.com/en-us/Engine/Physics
https://www.gamasutra.com/blogs/JohanHoberg/20140721/221444/Differences%5fbetween%5fSoftware%5fTesting%5fand%5fGame%5fTesting.php
https://www.gamasutra.com/blogs/JohanHoberg/20140721/221444/Differences%5fbetween%5fSoftware%5fTesting%5fand%5fGame%5fTesting.php
https://www.gamasutra.com/blogs/JohanHoberg/20140721/221444/Differences%5fbetween%5fSoftware%5fTesting%5fand%5fGame%5fTesting.php

78 Bibliography

[10] Intel. Intel xeon processors. https://www.intel.com/content/www/us/en/

products/processors/xeon.html, 2018. online; accessed 2019-05-16.

[11] Santosh Pande Jaswanth Sreeram. Parallelizing a real-time physics engine using trans-
actional memory. In Jean Roman Emmanuel Jeannot, Raymond Namyst, editor, Euro-
Par 2011 Parallel Processing, pages 206–223, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. ISBN 978-3-642-23397-5.

[12] Jeremy Laird. Why you don’t need more than four cpu cores. https://

www.rockpapershotgun.com/2015/03/05/quadcore-gaming/, 2015. online;
accessed 2018-12-15.

[13] microsoft. Task-based asynchronous programming. https : / /

docs.microsoft.com/en-us/dotnet/standard/parallel-programming/

task-based-asynchronous-programming, 2019. online; accessed 2019-06-03.

[14] Nvidia. Quadro. https://www.nvidia.com/en-us/design-visualization/

quadro/, 2019. online; accessed 2019-05-16.

[15] PCGamer. The problem with growing download sizes. https://www.pcgamer.com/

the-problem-with-growing-download-sizes/, 2015.

[16] Peter Sestoft. Microbenchmarks in java and c. http://academia.edu, 2015.

[17] Slant. Monogame vs sfml. https://www.slant.co/versus/1069/1100/

~monogame%5fvs%5fsfml, 2019. online; accessed 2019-06-03.

[18] Unity Technologies. Execution order of event functions. https : / /

docs.unity3d.com/Manual/ExecutionOrder.html, 2018. online; accessed
2018-12-06.

[19] Unity Technologies. Gameobject. https : / / docs.unity3d.com /

ScriptReference/GameObject.html, 2018. online; accessed 2018-10-30.

[20] Unity Technologies. Monobehaviour. https : / / docs.unity3d.com /

ScriptReference/MonoBehaviour.html, 2018. online; accessed 2018-12-
19.

[21] Unity Technologies. Transform. https://docs.unity3d.com/Manual/class-

Transform.html, 2018. online; accessed 2018-10-30.

[22] Unity Technologies. Scripting api: Collider. https://docs.unity3d.com/

ScriptReference/Collider.html, 2019. online; accessed 2019-05-21.

[23] Unity Technologies. Scripting api: Monobehaviour.fixedupdate(). https://

docs.unity3d.com / ScriptReference / MonoBehaviour.FixedUpdate.html,
2019. online; accessed 2019-05-21.

https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.rockpapershotgun.com/2015/03/05/quadcore-gaming/
https://www.rockpapershotgun.com/2015/03/05/quadcore-gaming/
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://www.nvidia.com/en-us/design-visualization/quadro/
https://www.nvidia.com/en-us/design-visualization/quadro/
https://www.pcgamer.com/the-problem-with-growing-download-sizes/
https://www.pcgamer.com/the-problem-with-growing-download-sizes/
https://www.slant.co/versus/1069/1100/~monogame%5fvs%5fsfml
https://www.slant.co/versus/1069/1100/~monogame%5fvs%5fsfml
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/ScriptReference/Collider.html
https://docs.unity3d.com/ScriptReference/Collider.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html

Bibliography 79

[24] Unity Technologies. Announcing unity and havok physics for dots. https:

/ / blogs.unity3d.com / 2019 / 03 / 19 / announcing - unity - and - havok -

physics-for-dots/, 2019. online; accessed 2019-05-24.

[25] Unity Technologies. Scripting api: Input. https://docs.unity3d.com/

ScriptReference/Input.html, 2019. online; accessed 2019-05-29.

[26] Unity Technologies. Scripting api: Resources. https://docs.unity3d.com/

ScriptReference/Resources.html, 2019. online; accessed 2019-05-21.

[27] theburningmonk. Threading – using the threadpool vs. creating your own
threads. https://theburningmonk.com/2010/03/threading-using-the-

threadpool-vs-creating-your-own-threads/, 2010.

[28] Real time audio programming 101: time waits for nothing. Ross bencina. http://

www.rossbencina.com/code/real-time-audio-programming-101-time-

waits-for-nothing, 2019. online; accessed 2019-06-03.

[29] Unity. Introduction to components. https://docs.unity3d.com/Manual/

Components.html, 2019.

[30] Unity. Mesh collider. https : / / docs.unity3d.com / Manual / class -

MeshCollider.html, 2019. online; accessed 2019-05-17.

[31] Nail Valimatov. What is the difference between intel core generations? https:

/ / www.quora.com / What - is - the - difference - between - Intel - core -

generations, 2018. online; accessed 2019-05-16.

[32] Jarred Walton. The best cpu for gaming. https://www.pcgamer.com/best-cpu-

for-gaming/, 2018. online; accessed 2018-10-04.

[33] Andrew Wesson. Do video game engines use actual physics equations in their algo-
rithms? https://www.quora.com/Do-video-game-engines-use-actual-

physics-equations-in-their-algorithms, 2016. Online; accessed 2019-03-
11.

https://blogs.unity3d.com/2019/03/19/announcing-unity-and-havok-physics-for-dots/
https://blogs.unity3d.com/2019/03/19/announcing-unity-and-havok-physics-for-dots/
https://blogs.unity3d.com/2019/03/19/announcing-unity-and-havok-physics-for-dots/
https://docs.unity3d.com/ScriptReference/Input.html
https://docs.unity3d.com/ScriptReference/Input.html
https://docs.unity3d.com/ScriptReference/Resources.html
https://docs.unity3d.com/ScriptReference/Resources.html
https://theburningmonk.com/2010/03/threading-using-the-threadpool-vs-creating-your-own-threads/
https://theburningmonk.com/2010/03/threading-using-the-threadpool-vs-creating-your-own-threads/
http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing
http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing
http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/class-MeshCollider.html
https://docs.unity3d.com/Manual/class-MeshCollider.html
https://www.quora.com/What-is-the-difference-between-Intel-core-generations
https://www.quora.com/What-is-the-difference-between-Intel-core-generations
https://www.quora.com/What-is-the-difference-between-Intel-core-generations
https://www.pcgamer.com/best-cpu-for-gaming/
https://www.pcgamer.com/best-cpu-for-gaming/
https://www.quora.com/Do-video-game-engines-use-actual-physics-equations-in-their-algorithms
https://www.quora.com/Do-video-game-engines-use-actual-physics-equations-in-their-algorithms

A | Test results

81

Single Core
Desktop #2 Sequential Parallel Aggregator Parallel % Aggregator%

30 5769,574 3075,17 1349,516 53,29977569 23,3902191
300 1041,724 889,2608 206,3056 85,36433835 19,80424757

1000 101,8888 120,2096 60,27936 117,9811716 59,16190985

Desktop #1 Sequential Parallel Aggregator Parallel % Aggregator%
30 10664,34 921,938 246,721 8,645054453 2,31351401

300 1331,736 1229,416 96,75044 92,31679552 7,264986454
1000 120,0816 154,3384 83,62468 128,5279343 69,63987822

Laptop #1 Sequential Parallel Aggregator Parallel % Aggregator%
30 469,7316 309,2642 126,8676 65,8384916 27,00852998

300 323,5036 288,421 16,34408 89,15542207 5,05220962
1000 63,44476 80,61966 7,698303 127,0706359 12,13386732

Laptop #2
Laptop #2 Sequential Parallel Aggregator Parallel % Aggregator%

30 1789,112 960,236 426,9854 53,67109493 23,86577252
300 756,4234 694,846 220,814 91,85940044 29,19185208

1000 87,6383 110,6408 73,33512 126,247086 83,6793046

Background elements
Desktop #2 Sequential Parallel Aggregator Parallel % Aggregator %

30 5575,384 4131,818 2989,09 74,10822286 53,61227137
300 1186,064 1548,796 483,3124 130,5828353 40,74926817

1000 104,461 405,9888 163,8692 388,6510755 156,8711768
2000 19,68834 133,9934 69,71346 680,5723591 354,0850067

Desktop #1 Sequential Parallel Aggregator Parallel % Aggregator%
30 7347,316 5400,236 3768,184 73,49943843 51,28653783

300 1464,652 1973,97 959,543 134,7739941 65,51337792
1000 116,7522 554,0824 290,6334 474,5798366 248,9318403
2000 23,313 164,161 107,4906 704,1607687 461,0757946

Laptop #1 Sequential Parallel Aggregator Parallel % Aggregator%
30 478,7054 434,9032 347,8908 90,84986298 72,67325583

300 335,456 374,4402 332,6872 111,6212558 99,17461605
1000 63,90102 164,7342 119,1386 257,7958849 186,4424073
2000 15,87852 56,65912 44,59214 356,8287221 280,8331003

Laptop #2 Sequential Parallel Aggregator Parallel % Aggregator%
30 1830,076 940,0054 580,8516 51,36428214 31,73920646

300 767,558 936,8056 653,9026 122,0501382 85,19259782
1000 87,79652 207,7072 160,4056 236,5779418 182,7015467
2000 18,50752 61,56184 49,96824 332,6314925 269,9888478

Gravity Wells
Desktop #2 Sequential Parallel Aggregator Parallel % Aggregator %

0 4161,486 1869,226 1172,384 44,91727234 28,17224424
1 4052,5 1865,076 1130,976 46,02285009 27,90810611
5 3920,126 1936,432 1112,194 49,39718774 28,37138398

10 3889,294 2019,976 1040,58 51,93682967 26,75498432
25 3331,914 2271,684 927,5694 68,17955085 27,83893582

100 1784,288 1472,436 615,3088 82,52232823 34,48483653
250 534,04 646,9034 323,2978 121,1338851 60,53812449
300 397,8212 519,7 271,6538 130,6365774 68,28540058
350 310,7518 428,7548 234,127 137,9733923 75,34212191
400 248,9426 359,7888 199,1536 144,5268106 79,99980718
450 205,5234 305,039 172,6232 148,4205691 83,99199313
500 170,97 262,1798 153,2696 153,3484237 89,64707259
550 144,7014 227,8546 134,3766 157,4653735 92,86475459
600 124,3686 198,9354 120,4568 159,9562912 96,85467232

Desktop #1 Sequential Parallel Aggregator Parallel % Aggregator %
0 8764,834 3830,66 2085,316 43,70487792 23,7918482
1 8614,236 3759,312 1929,406 43,64068967 22,39787719
5 8344,502 3645,37 1874,828 43,68589042 22,46782372

10 8286,856 3585,634 1817,704 43,26893094 21,93478443
25 6736,298 3247,674 1705,55 48,21155477 25,3188027

100 2423,98 2197,64 1124,128 90,66246421 46,37530013
250 735,269 950,7076 552,7952 129,3006505 75,18271544
300 551,4168 747,3652 428,509 135,5354425 77,71054491
350 433,0666 616,8166 341,5716 142,4299634 78,8727646
400 345,1898 519,4074 294,9314 150,4700892 85,44035774
450 282,5538 436,2644 256,0904 154,4004717 90,63420842
500 238,0358 374,5812 216,4718 157,3633882 90,94085848
550 202,71 324,4342 190,7982 160,0484436 94,12372355
600 172,269 281,8884 166,6164 163,6326907 96,71873639

Laptop #1 Sequential Parallel Aggregator Parallel % Aggregator %
0 418,9596 373,3662 264,3376 89,11747099 63,09381621
1 472,8486 380,2944 405,2612 80,4262506 85,70633391
5 467,4008 387,7488 418,7118 82,95852296 89,58303024

10 452,7318 391,187 414,821 86,40590301 91,62621225
25 456,6296 398,9518 407,4126 87,36879957 89,22167989

100 401,025 377,387 329,2564 94,10560439 82,10370925
250 243,694 236,0262 184,5674 96,85351301 75,73735915
300 204,8834 198,8854 153,5164 97,07248123 74,92866674
350 177,9926 160,1368 128,9766 89,96823463 72,4617765
400 150,995 130,8904 109,7264 86,68525448 72,66889632
450 130,1502 112,5008 93,97992 86,43920639 72,2088172
500 115,5462 95,35674 80,62034 82,52693728 69,77325087

550 100,26748 81,3411 69,24654 81,12410923 69,06181346
600 88,20348 68,55578 60,84316 77,72457504 68,98045293

Laptop #2 Sequential Parallel Aggregator Parallel % Aggregator %
0 1638,708 1037,7232 297,3548 63,32569317 18,1456855
1 1583,198 1106,592 362,8568 69,89599532 22,91923057
5 1570,054 1183,666 416,5776 75,39014582 26,53269251

10 1543,302 1178,064 428,954 76,33399037 27,79455998
25 1482,036 1118,538 568,6104 75,47306543 38,36684129

100 1107,486 768,2782 630,1186 69,37136903 56,89630388
250 448,4456 337,7054 259,5244 75,3057673 57,87199161
300 354,0894 267,1814 202,794 75,45591594 57,27197708
350 283,8884 215,5722 161,1154 75,93554369 56,75307621
400 235,504 177,036 131,4308 75,17324547 55,80830899
450 195,0412 147,604 110,0644 75,67836949 56,43135912
500 166,2982 123,5582 93,22114 74,29918063 56,05661396
550 142,633 106,2574 78,66852 74,4970659 55,15450141
600 122,7606 90,88034 67,7138 74,030544 55,15922861

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Problem definition
	1.2 Delimitation

	2 Memory Isolation
	2.1 Aggregator
	2.2 Related work
	2.3 Comparison of models
	2.4 Determinism
	2.5 Delimitation

	3 Design
	3.1 Engine Requirements
	3.2 Sequential game engine
	3.3 Parallel game engine
	3.4 Parallel game engine with the aggregator
	3.5 Game design
	3.6 Delimitation

	4 Implementation
	4.1 Choise of technology
	4.2 Sequential game engine
	4.3 Sequential game
	4.4 Parallel engine
	4.5 Parallel game
	4.6 Aggregator Engine
	4.7 Aggregator Game
	4.8 Delimitation

	5 Test
	5.1 Test strategy
	5.2 Test systems
	5.3 Single-core overhead
	5.4 Background elements
	5.5 Gravity wells
	5.6 Problems encountered during testing
	5.7 Delimitation

	6 Excluded engine functionality
	6.1 Delimitation

	7 Discussion
	7.1 Design
	7.2 Test and test results
	7.3 Choice of technologies
	7.4 Immutability and determinism
	7.5 Improvements to implementation
	7.6 Real world application
	7.7 Game

	8 Conclusion
	8.1 Future work

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	A Test results

