
Has Functional Got Game?
Evaluating the Benefits of Functional Programming

Languages in Game Development

Master thesis - 10th Semester Computer Science
PT102F19

Aalborg University
Department of Computer Science, SICT

Copyright © Aalborg University 2010

Written in LATEX from a template made by Jesper Kjær Nielsen.

Computer Science & Software
Engineering

Aalborg University
http://www.cs.aau.dk/

Title:
Evaluating the Benefits of Functional
Programming Languages in Game De-
velopment

Theme:
Scientific Theme: Language evaluation,
program benchmarking, game develop-
ment, functional programming, usabil-
ity evaluation

Project Period:
Spring Semester 2019

Project Group:
PT102F19

Participant(s):
Malte Emil Rosenbjerg Andersen
Thor Steen Jensen
Daniel Dirk Albert van Bolhuis

Supervisor(s):
Bent Thomsen & Lone Leth Thomsen

Copies: Digital distribution only

Page Numbers: 73

Date of Completion:
June 6, 2019

Abstract:

For many years the functional
paradigm has been praised for im-
proving correctness of programs and
decreasing development time. Even
major figures in the game develop-
ment community has argued for the
use of the functional paradigm in
game development. Still, most game
development done today is using
object-oriented imperative program-
ming languages such as C++ and C#.
In this report, the performance cost
of using a functional, object-oriented
programming language, F#, instead
of an imperative, object-oriented
programming language, C#, for
game development is evaluated. The
evaluation consists of a benchmark
suite focusing on numerical- and
vector performance, and a usability
study focusing on the transition from
F# to C#, and how easy it is for
developers to transfer their existing
knowledge of the Unity game engine.
Through this evaluation, we show that
the performance penalty of using a
functional programming language is
negligible, and that the usability of
the Unity game engine with F# is
promising.

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the author.

Preface

This report builds on a prior report [1]. In section section 1.1 we give a summary
of the points from that report. We recommend reading the full report, but the
summary should make due.

We would like to thank Stefan Nordborg Eriksen for his valuable help in finding
participants, both medialogy students and Coding Pirates children. We would also
like to thank all of the participants that took part in our usability evaluation.

Thanks to Tobias Morell and Thomas McCollin for collaboration on creating the
F# introductory material, and for their help in testing the Unity extension and
pilot-testing our tasks.

Finally we would like to thank our supervisor, Bent Thomsen, for invaluable in-
sights throughout this project.

iii

Summary

In this section we provide a brief summary of this report.

In Chapter 1 the problem area is introduced and arguments from major figures in
the video game development community are presented. After these arguments, the
hypothesis that this report attempts to answer is presented. As this report builds
on previous work, a summary of that report is given in Section 1.1, including a
sample of the results and the cognitive dimensions that were applied.

In Chapter 2, the current work of two of the co-authors of the previous report is
presented, as we have worked together with them for some aspects of this report
as well, though they are not co-authors on this report. Afterwards, some other
related projects with similar focus are presented.

Chapter 3 has sections describing the functional languages and game engines that
were candidates for use in this report. The process of selection is also described
here.

In Chapter 4, a description of the current support for F# in Unity and of our
extension to Unity to provide better support for F#, is given.

The benchmarks performed for this report are described in Chapter 5 along with
a description of the test setup. First a description of the microbenchmark suite
is given along with the results and an analysis for a number of platforms. Then
the macrobenchmark, which is an implementation of an autonomous Artificial
Intelligence (AI) game. Finally the results of the macrobenchmark along with an
analysis of those results are presented.

Chapter 6 introduces the usability study by giving a description of the participants,
tasks and protocol. The results are then shown and significant results are explained
in depth. Finally, the threats to the validity of the usability study is discussed.

In Chapter 7, the qualitative measures of the usability study are presented and
applied. Several of the dimensions from the Cognitive Dimensions framework
are applied, and the results are discussed using code snippets from the solutions
submitted by the participants.

Chapter 8 contains a discussion of both the validity and other considerations re-
lated to this report. Interesting results, such as the difference between the results
from the two different groups of usability study participants are discussed.

Finally, in Chapter 9, we conclude on the results from the performance benchmarks
presented throughout this report, and on the results from the usability study.

Chapter 10 some relevant future work are presented, as there were many interesting

directions this project could have taken. Some of these are further refinements to
the F# extension to Unity, others are further investigations into the results from
working with Unity. The experiment of integrating dotnet into Unity is also
suggested as future work, as our results indicate that this could give a massive
performance improvement. Finally, a study of whether the (slow) adoption rate of
the functional paradigm could be a social issue rather than a technical is suggested,
since our results show that both the performance and the usability, with Unity at
least, is promising.

Contents

Preface iii

1 Introduction 2
1.1 Summary of An Analysis of Gameplay Programming Languages in

Free-to-use Game Engines . 3

2 Related work 8
2.1 A Game of Paradigms . 8
2.2 Language Support in Unity . 9
2.3 Game development tools . 9

3 Research 11
3.1 Functional Languages . 11
3.2 Game Engines . 12
3.3 Champagne prototyping . 13

4 Extending Unity to support F# 14
4.1 Current Support . 14
4.2 A Solution . 15

5 Benchmarks 17
5.1 Test Setup . 17
5.2 Microbenchmark . 19
5.3 Macrobenchmark . 27

6 Usability Study 32
6.1 Participants and Tasks . 32
6.2 Protocol . 33
6.3 Results . 34
6.4 Threats to Validity . 39
6.5 Improvements to the Extension . 40

7 Qualitative Measures 41
7.1 Usability of F# in Game Development 41

8 Discussion 46
8.1 Amount of Participants . 46

vi

8.2 Functional Paradigm or Just Functional Language 47
8.3 Performance Results . 47
8.4 Choice of Engine . 48
8.5 Medialogy Students versus Coding Pirates 48

9 Conclusion 49
9.1 Performance . 49
9.2 Usability . 50

10 Future work 51
10.1 Unity Extension . 51
10.2 Benchmarking the Old .NET Framework Runtime 52
10.3 Investigation on Start-Up Time . 52
10.4 Utilizing Unity’s New Features . 53
10.5 Unity with dotnet . 53
10.6 Exploring Different Engines . 53
10.7 Expanding the Microbenchmarks 54
10.8 Development time . 54
10.9 A Social Issue . 55

Bibliography 55

A Acronyms 61

B Microbenchmark Data 62

C Macrobenchmark Data 69

1

Chapter 1

Introduction

There has long been many arguments for adopting the use of functional program-
ming languages, such as lower development time and improved correctness [2]–[4].
Popular developers from the video game development community, Tim Sweeney
and John Carmack, has argued that the adoption of elements from the functional
paradigm could help develop better games by improving developer performance
[5], [6].

The main argument against the use of functional programming languages has
mostly been about performance, and more specifically, how difficult it is to achieve
performance that is comparable to something implemented using an imperative
language. In [7], the author argues that functional programming "sucks" and shows
this through aligning a series of test done in Node.js, which uses the V8 JavaScript
runtime, showing that functional constructs have not gotten faster, but imperative
constructs have become slower, such that their speed have almost aligned. In
[8] a question was asked about functional programming on StackOverflow and
the highest rated answer argues that functional programming is slower than its
imperative counter-part because of a historical commitment to allocating objects
on the heap and focusing on fast garbage collectors, rather than figuring out which
objects could be stack allocated and which can be heap allocated. Furthermore
he argues that functional languages are slower than their C counter-part, because
implementing large-scale multicore benchmarks, in which he claims that functional
languages will dominate, is not possible in C.

Epic Games’ founder and CEO, Tim Sweeney, expresses that he would willingly
trade a 10% decrease in performance for a 10% increase in productivity [6], strength-
ening the argument for using functional programming in game development fur-
ther.

We showed in [1] that it is possible to get performance from a C# program, running
in the dotnet runtime, that is comparable to the performance of C++ programs,
in the context of gameplay programming. Adopting C# could increase developer

2

performance by removing the concern of memory management.

In this report, we will continue the investigation by looking into whether a move
to the functional paradigm will have consequences for the performance of the
developed games and applications. The investigation builds upon the results from
[1], where existing video game-engines with a functional approach are evaluated;
Nu [9] and Helm [10], and a functional paradigm gameplay language developed for
use in the Unity, Arcadia[11].

This evaluation showed that these solutions still require a lot more maturing before
being an actual alternative to major game engines, such as Unity and Unreal
Engine. Arcadia was interesting because it extends Unity to support the functional
programming language of the same name, which was developed specifically for
game development with Unity [11].

This report attempts to answer the hypothesis:

Can functional programming languages, and the use of the functional
programming paradigm, be used with existing modern game engines,
without sacrificing performance and without increasing the cognitive
load for the developers too much?

It was formulated in such a way performance for long has been the counter-
argument to using the functional paradigm. Also the many game developers should
not have to start over with getting to know the game engine Application Program-
ming Interface (API)

1.1 Summary of An Analysis of Gameplay Pro-
gramming Languages in Free-to-use Game
Engines

In [1], our goal was to investigate the field of game development. In our research
we came across some interesting findings; one of the report’s points was to see how
prominent the functional programming paradigm was, since some famous game
developers had given the paradigm praise, saying that it should be used in game
development. Another discovery was a recent trend to abandon the old gameplay
languages in different engines in favour of C#. Languages like Lua, JavaScript
and proprietary solutions got deprecated in many game engines.

In addition to these discoveries, different game engines and their available lan-
guages were compared through a number of microbenchmarks. To even out the
advantages of using Just-in-Time (JIT)-compilation a bigger macrobenchmark was

3

performed, where the goal was to test the engines themselves, especially the parts
utilising the gameplay API. The macrobenchmark was a simple autonomous game
called Wumpus World. One of the major discoveries that came from this, was that
C# running on the dotnet-runtime could compete with C++ in the microbench-
mark suite.

As part of the research we wanted to see how far functional programming had come
in game development, since certain game developers truly believed that it could
help. We found 3 examples of game engines that used functional programming.
We found engines that fully supported functional programming: Nu and Helm.
They had been developed from the ground up with a functional language, Nu uses
F# and Helm is a Haskell “functionally reactive game engine”. It is required for
these engines that the rest of the game also is developed in the given language. The
other solution we found, was a group that had developed an extension to Unity
called Arcadia. Arcadia made it possible to use Clojure as a gameplay language.
That was done by utilising a .NET implementation of the Clojure runtime, so all
of Unity classes are available.

In our investigation working with these engines, we found that the biggest issue
was the lack of documentation and other learning material. This meant that the
investigation was less about exploring the different features and caveats of each
engine, but instead a fruitless search for documentation.

When researching what gameplay languages was used in different engines, we dis-
covered that engines such as Unity and CryEngine had replaced their gameplay
languages, JavaScript and Lua respectively, with C# and Godot was adding sup-
port for C#. We also saw that Unreal Engine had deprecated their old scripting
language UnrealScript [12], and Kismet [13], their first integrated Visual Program-
ming Language (VPL), which was also JIT-compiled.

We decided to test the different ways you could program the gameplay in the
different engines. We wanted to test Unreal Engine with C++, Unity with C#
and Arcadia, CryEngine with C# and C++ and Godot with C# and GDScript; a
language with a lot of similarities to Python. These languages were put through a
suite of microbenchmarks, inspired by the work of former research. We focused on
four areas, divided into 12 benchmarks, revolving around different mathematical
problems that had to be solved. The benchmark suite focused on Vector Math,
Sestoft’s Multiply, Primes100 and Array Allocation.

To our surprise we discovered that dotnet C# outperformed C++ with a signif-
icant margin, in execution time Figure 1.

4

Sca
le
Ve
cto
r 2
D

Sca
le
Ve
cto
r 3
D

Mu
ltip

ly
Ve
cto
r 2
D

Mu
ltip

ly
Ve
cto
r 3
D

Tr
an
sla
te
Ve
cto
r 2
D

Tr
an
sla
te
Ve
cto
r 3
D

Su
btr
act

Ve
cto
r 2
D

Su
btr
act

Ve
cto
r 3
D

Le
ng
th
Ve
cto
r 2
D

Le
ng
th
Ve
cto
r 3
D

Do
t P
rod

uct
2D

Do
t P
rod

uct
3D

Pr
im
e

Ar
ray

Al
loc
ati
on

Ses
tof
t

20

24

28

212

216

220

Ex
ec
ut
io
n
tim

e
(n
s)

Dotnet CSharp (release) Mono CSharp (release) Visual C++ (release) GCC C++ (release)

Figure 1: Graph over execution times in C++ and C#.

We also saw in the benchmarks Primes and Array Allocation, how effective
GNU Compiler Collection (GCC) and to our surprise Unreal Engine C++ was
at array allocation and primes, even when trying to force the compiler into not
optimising away all the work.

After the microbenchmarks, a bigger test was needed to test the actual engines.
For this we made a macrobenchmark, using an already existing AI game called
Wumpus world.

The goal of the game is for the AI agent to find the gold and deliver it back to the
start. The agent is blind and have to sense its way around the map. On their map
there is obstacles, there is a “Wumpus” that wants to eat the agent and pits the
agent can fall into. The Wumpus gives out a stench and the pits have a breeze that
the agent can sense when standing one tile away. The must navigate trough the
map, relying on the ability to percept the stench and breezes and logical reasoning
about where the obstacles are.

The two engines tested was Unreal Engine and Unity, because both did the best
with their respective languages. So a C++ and a C# version of Wumpus was
made in their respective engines and tested.

For the test we choose to use the metric of how much time does one world iteration
take, as our baseline for comparison. Each map would be run 10 times and where

5

one iteration would be from the agent starts moving, till he has delivered the gold
back to his start position.

We can see the results of the test, shown on Figure 2. The spikes in the performance
of Unreal Engine (iteration 14, 28 etc.) correspond to clearing the agent’s state
and beginning the next iteration. In the case of Unity, the execution time for
the agent’s first tour through the map is much higher than that of Unreal Engine.
The execution time in Unity stabilises after the thirteenth iteration, lying well over
the execution time in Unreal Engine. Interestingly, the spikes that correspond to
restarting the map (every thirteenth iteration) are higher in Unreal Engine than
they are in Unity. This comes at the cost of uneven execution time in Unity, which
could be caused by garbage collection. Generally Unreal Engine execution times
are more stable and predictable than those of Unity.

0 10 20 30 40 50 60 70 80 90 100 110 120 1300

200

400

600

800

1,000

1,200

1,400

Iteration No.

Ex
ec
ut
io
n
tim

e
in

m
ic
ro
se
co
nd

s

Unreal Unity

Figure 2: Wall clock-time for each invocation of the World.Iterate method

We were interested in researching the usability of languages used in engines. For
this we used cognitive dimensions [14] to get a better understanding of the lan-
guages. Cognitive dimensions is a framework that utilises dimensions that are
used to evaluate a language [14]. We then use these evaluations of the different
languages to put them up against each other in a comparison. We chose to omit
some of the dimensions because they where not fitting for game development, so
the specific dimensions we used were:

• Diffuseness/Terseness

• Hidden dependencies

• Premature Commitment

6

• Progressive Evaluation

• Role-expressiveness

• Viscosity

These dimensions were chosen because they favour fast development, problem
mitigation [15] and seemed the most relevant. This is especially important in
game development due to the complex nature [16].

We concluded that the languages are both members of the C-family and therefore
share many features and keywords. This means that most differences are in the
details, one of which is memory management. This is not covered by any of
the dimensions presented here, but could fall under the hard mental operations
dimension.

In conclusion, C# assists the programmer and steers them around pitfalls. C++,
on the other hand, allows the programmer to do any action, even when that
action is not advisable. Examples of this are the macros and templates of the
C++ language, which allow the programmer to increase code reuse at the risk of
creating code that is hard to reason about. Furthermore, traits such as progressive
evaluation, which only C# supports, allows programmers to find errors early and
avoid costly mistakes.

7

Chapter 2

Related work

2.1 A Game of Paradigms

A piece of closely related work is that of Morell and McCollin [17]. In their
report they explore Functional Reactive Programming (FRP) using F# and Unity.
For their research they perform a user study, which evaluates professional Unity
developers’ ability to use F# with FRP with Unity. The user test they evaulated,
they wanted to see how well experienced expert developers would take to F#. To
do this, they made a test, where they had 8 test cases they would put their users
through. They had to do these cases in both C# and F#, and they had 20 minutes
for the C# part and 40 minutes for the F# part. The test cases was as follow:

• FPS Controller

• 3rd Person Controller

• Talent Tree Walker

• Armour Graph

• Dialogue Tree

• Concurrency

• Unit Management (RTS)

• Magnetic objects

The report also covers the benchmarking of the concurrency in C#, F# and Unity,
because the lenient evaluation strategy they made use off was lacking. So they
decided to research the issue and they discovered that there was a overhead using
F# in Unity, but they would not say anything with certainty. They also conclude
that users even though struggled with various aspects of F#, they could still could
produce F# code that had certain qualities that where lacking in C#. But the
users where still hesitant to switch to F# but they could recognise the benefits of
the language.

We have also worked together with them on developing the F# introduction page,
as they also performed tests with users and needed material for introducing the

8

participants to the use of F# with Unity [17], [18].

2.2 Language Support in Unity

There have been several projects which aimed to add another language as the
gameplay programming language to Unity, such as Arcadia and Casanova [11],
[19].

These two projects have two different approaches to adding a new gameplay lan-
guage.

Casanova is both declarative and procedural language, for writing gameplay code
for Unity games [20]. It is transpiled to C# for use with Unity, but one of the
goals of the language is to have F# as a compile target [19], [21]. Casanova is a
much more high level language than most of the other gameplay languages used
in free-to-play game engines. The language describes entities and the rules these
entities follow.

Arcadia adds Clojure support to Unity via Clojure CLR: “a native implementation
of Clojure on the Common Language Runtime”1. Clojure is integrated as an
interpreted language on top of Unity. This means the code can be modified while
a game is running in the Unity Editor. It is mostly functional (and side-effect
free), but has some specific functions that affect the state of the game.

One of the nice features of Clojure is Software Transactional Memory (STM),
which is a way of handling concurrency. It is inspired from database transactions
and a variant of transactional memory. While there is no official page that states
Clojure CLR has support for STM there is some evidence, such as the STM tests
on their github page2. Arcadia and STM were explored in a previous report, and
the find was that STM was not the go-to method of managing memory in Unity
[1].

2.3 Game development tools

In the academic, there has been made a few game engines. One of those are
JOT, JOT is a specialised modular multipurpose massively multiplayer online
game engine [22]. JOT had a interesting and academic approach of making a
paper that specified a design and a architecture for the game engine. JOT was
implemented in Java, due to Java’s multiplatform abilities and the available third

1https://clojure.org/about/clojureclr
2https://github.com/clojure/clojure-clr/blob/master/Clojure/Clojure.Source/clojure/samples/stm/

9

party applications and libraries. The paper helps get a clearer picture of how a
game engine can be designed and how a architecture can look.

Another paper is "Leveling Up: Could Functional Programming Be a Game Changer?",
where the authors describe how FRP can be used for game development [4].
They show how games can be developed with the tool Yampa Arcade a "Haskell-
embedded incarnataion" as the developers describe it them self [23]. They go
through and show examples of games made in Yampa and then they go into what
FRP is and the different principles modelling with FRP.

10

Chapter 3

Research

In this chapter we will research the technologies we want to use, making arguments
and reasoning to why we choose the technologies, we will be going over what
languages we want to use and what game engine we want to work with.

3.1 Functional Languages

In [1] we investigated three solution for functional programming in game engines,
two of them being full engines that could be used with F# and Haskell, Helm
and Nu. We also tested Arcadia which allowed for functional programming with
Clojure in Unity. All three solutions had their own issues, but the biggest issue
that was consistent was the lack of documentation and examples to help actually
produce games and in the engines we could use, there were also performance issues.
Arcadia was substantially slower than any of the other programming languages,
always being slower than its mono C# counter part [1].

Haskell, F# and Clojure are some of the more popular functional programming
languages today, with it we also have languages like Prolog and Scala that also
are popular functional programming options [24]. What we find attractive for our
test, is a readable syntax, this of course is a subjective topic, but we would want a
syntax that is not too intimidating for less experienced or no experience program-
mer. While still being able to resemble the more popular gameplay programming
languages that already exists.

Haskell is a statically typed purely functional programming language with type
inference and lazy evaluation. Type classes, which enable type-safe oper-
ator overloading. Its main implementation is the Glasgow Haskell Com-
piler (GHC) [25].

11

Clojure is a dynamically typed mostly functional general purpose programming
language. Since it is a Lisp dialect, it also includes a macro system, and
makes use of the “code-as-data” philosophy. Clojure is compiled to run in
the Java Virtual Machine (JVM), so Java libraries are accessible [26].

F# is a strongly typed multi-paradigm programming language that encompasses
functional, imperative, object-oriented programming methods. F# is a mem-
ber of the ML language family and originated as a .NET Framework imple-
mentation of a core of the programming language OCaml [27].

We chose to proceed with F#, since it is supported by the mono runtime, which
several game engines use. This means that more effort is focused on applying
the functional paradigm to gameplay instead of attempting to glue a functional
language to an engine.

3.2 Game Engines

Before implementing F# support in an engine, we need to research how accessible
the different engines are. We could create a engine our self, but it creates a big
overhead and we need to focus time on production of parts that are not important
to the actual project. We worked with four engines last project, CryEngine, Godot,
Unity and Unreal Engine. How well documented are the different engines for
modifications or plugin creation.

All engines either have source available or a documented APIs that makes it pos-
sible to create extensions or change modules of the engine.

CryEngine uses the mono runtime, so it should be possible to use F#. This
is however not the case, as the CryEngine editor will not allow for creation
of F# scripts, nor is it possible to add F# files to the C# project without
getting compilation errors. It was not possible to add an F# project to the
Game-solution, as this was just removed by the editor each time it reloads
the solution. Adding a reference to a Dynamic Link Library (DLL) file
containing some F# functions is not possible either, as this results in some
other compilation error. Since the source code for the editor is available, it
would be technically possible for us to implement F# support. This seems
like a large task itself, so it would be more appropriate for a separate project
[28].

Godot can support F# fairly simply, but does require some basic setup [29].
With Godot it is possible to have both the default C# project and the F#
project in the same solution. Allowing for easy code integration between the
two languages. Again this lets us focus on running tests, instead of spending
time gluing components together [30].

12

Unity can support DLL-files created from any .NET project, including F#. The
project just needs to be built as a library, so it a DLL-file is created, which
can be imported into the editor and used. The library DLL can also be ref-
erenced from the C# project, so some of the codebase can be F#. Unlike in
Godot, this requires two instances of the Integrated Development Environ-
ment (IDE), as the projects cannot be in the same solution due to Unity’s
C# solution management. So while it is possible, it is cumbersome. It is
possible to extend the editor using the Unity Editor API, so there might be
a way in which to implement F# such that it is less of a hassle to work with
the language in Unity [31].

Unreal Engine is excluded as there is no official support for .NET. There is the
MonoUE project [32], which aims to integrate mono into Unreal Engine. It
is possible to make plug-ins with Unreal [33] and the engines source code
is available [34] such that F# support could be implemented, but with no
mono or dotnet, implementing F# would be, like with CryEngine, a bigger
project more appropriate for a different time [35].

The choice falls down to Godot and Unity because CryEngine and Unreal Engine
does not support the creation of F# scripts, and require too much work to support
the usage of F#. So we choose to continue with Unity, both because of personal
experience with the engine and because Unity is a more widely used engine. So
it will be easier to find test participants for our user study, which is covered in
Chapter 6.

3.3 Champagne prototyping

Used when an existing product needs a new feature added (such as a game engine
requiring a new language added). The champagne prototype is a visual simula-
tion of a feature implemented in an existing system [36]. The prototype is non-
functional, but it is designed in such a way that it looks to the user like it is
implemented. This gives the user the option to explore and interpret the feature.
Since the champagne prototype is implemented in the existing environment, the
user is able to explore and use the fully functional program as they are used to
with menus and everything.

An important step in champagne prototyping is the recruitment of highly qualified
participants. In their experiment, they wished to recruit participants that were
sufficiently advanced. Advanced enough the point where using matrix calculations
and user defined functions would make sense to the participant.

In recruiting these highly qualified people, the interviewer approached people,
without an appointment, carrying a bottle of champagne. Not wishing to give
anything away, they asked some questions to assess if the participant was eligible.

13

Chapter 4

Extending Unity to support F#

This chapter describes the exploration of adding F# support to Unity in a way that
is user-friendly enough to enable novice Unity developers to use F# to implement
their gameplay code.

4.1 Current Support

Currently there is no official support for using F# in Unity. Since F# projects
compile to DLL-files, exactly like C# projects, a F# project can be built and the
resulting DLL-file can either be referenced by the Unity C# project, or moved
into the Assets-folder of a Unity project. The Unity Editor will then detect the
change and index the file. After indexing the DLL-file, the classes inheriting from
MonoBehaviour are available for use as normal components in Unity, where they
can be dragged onto a GameObject to attach it.

To use a MonoBehaviour-class as a component, in a project created outside the
Unity Editor, it is necessary to add references to the Unity DLL-files that Unity
also references when creating a C# project through the Unity Editor. The path
to these files may vary between Operating Systems (OSs), and also depends on
which version of Unity is installed. Since the Unity Editor knows the correct path
for a given installation, the references can be extracted from the C# project file
created by Unity.

When the correct Unity references are added, it is possible to create types that
inherit from MonoBehaviour in the F# project. After compiling this project, it
is necessary to copy over the resulting DLL-file and the FSharp.Core.dll file
to Unity’s Assets-folder. FSharp.Core.dll is necessary since it contains the
F#.NET Standard library classes, such as FSharpOption.

All these steps make Unity development with F# cumbersome, and developers

14

would end up using a significant amount of time on all the legwork instead actually
writing gameplay code in F#.

4.2 A Solution

The first step is to look for similar solutions for inspiration. The Casanova com-
piler adds support for the Casanova language, which is transpiled to C# [19]. This
approach is partly different to what is needed for F# support, since F# already
compiles to Common Intermediate Language (CIL), which runs on the .NET plat-
form. Even though no transpilation is needed, the Casanova pipeline is still similar
to the one required for F# support. After new code is written in Casanova, a com-
mand is executed to call the compiler, and the output from the compiler is then
moved into the Unity Assets-folder.

Armed with this information, we have created a Unity package that adds an F#
menu to automate the extraneous work. The menu has buttons and functionality
for building, creating and opening F# projects, shown on Figure 3. The pack-
age handles creating an F# project, extracting and including the correct Unity
references, and finally, opening the F# project in the default editor, for conve-
nience. Finally, the package also handles copying over the needed files to the
Unity Assets-folder.

The package is released on GitHub and is freely available under GPLv3 license,
so the license will not get in the way of developers wanting experiment with using
F# in their Unity games [37].

Figure 3: Screenshot of the F# menu in Unity Editor.

The menu additionally allows changing some build-specific settings, such as build
mode and which Unity packages to references. For convenience, the menu also
supports creating the F# project in a single click and opening the project in the
default editor for such files. The menu finally has the Compile F# button, which
takes care of the entire build process. The compilation/build process is handled by

15

dotnet, depending on the number of lines of source code, the building process can
take some time (about ten seconds). This can be improved by building through
the IDE, since most IDEs use the incremental build option. The incremental build-
option lets the compiler cache the latest build-result of each file. Next time the
developer initiates building the project, the compiler can use the cached version
of all the files that has not been changed since last build. This speeds up the
build-time to around one to two seconds, which is much more acceptable. When
the developer presses compile in the F# menu in the Unity Editor, it is detected
that an IDE has created a recent build of the project. If the build is more recent
than any changes to the files of the given project, building the project again is
skipped and the needed DLL-files are copied over, thus saving several seconds. In
Figure 4 an example of using the Unity package in action. The underlined file on
the lower right is the compiled F# project. It expands to show all the different
MonoBehaviours available inside.

To summarise, the developer only has to press Create F# project, then Open
F# project in default editor, write some gameplay code, return to the
Unity Editor and press Compile F# and wait for the project to build. All the
MonoBehaviour-inheriting classes found are then made available by the Unity
Editor. This streamlines the development process using F# quite a bit, but the
developer still has to press compile themselves, whereas the Unity Editor auto-
matically detects changes to C# files and compiles them.

Figure 4: Screenshot of an example F#-Unity development environment.

16

Chapter 5

Benchmarks

In this chapter we are going to benchmark F# used in different environments so
that we can see what performance the code can perform. This will be a con-
tinuation of the benchmarks done in [1], using the same benchmarking methods
replicating the micro- and macrobenchmarks and expanding upon them. To these
results we are going to compare with one of the more popular gameplay program-
ming language used today, C# which was discovered in [1], which was showed to
even outperform C++ in some instances when developing games [1].

5.1 Test Setup

In this section we discuss the foundation of the benchmarks. It will be discussed
what type of benchmarks there will be used. Then our method of during the
benchmarks will be discussed. Finally we will present the platforms that will be
tested and what system on which the test are executed.

5.1.1 Types of Benchmark

We could not find a clear definition of what a micro-, macro- and application-
benchmarks are, within the programming-technology field besides the one defined
in [1]. In general benchmarks are tests of programs, that yield some metric. This
metric may be memory usage, execution time or throughput [38]. The benchmarks
are categorised by the size of the program under test. The following definitions is
taken from [1].

Microbenchmarking is also known as component-benchmarking and is defined
as a benchmark testing a single and minimal unit of functionality and ex-

17

cluding start-up time. In this case a unit of functionality is a single function,
object, or equivalent programming construct, of small size. The goal is to
test the performance of the single unit [1].

Macrobenchmarking is defined as a benchmark testing multiple units of func-
tionality and excluding start-up time. The main difference between micro-
and macrobenchmarking is the number of functional units. The goal of mac-
robenchmarking is to test the performance of a set of connected units [1].

Application-benchmarking is also known as program-benchmarking and is the
broadest category of benchmarks. They are defined as a benchmark testing
a full application, consisting of multiple units of functionality and including
start-up time [1].

5.1.2 Method

The tests will follow the same method as in [1], where we use a benchmark that
compensates for the warm-up of the virtual machine. We expect the same to be
the case for game engines. In order to avoid running the tests while the engine and
virtual machine is starting up, a small test-runner was written. The test-runner
starts the tests when the Space button is pressed. To run the tests, the program
is started followed by waiting three to five seconds before pressing space to start
the tests, to allow for initial loading to complete. To the extent it was possible,
the test-runner would output Comma Separated Values (CSV)-files containing the
data for each language/environment. Another small script to merge and format
the data was also written, which made it easier to work with the data [1].

5.1.3 Platform

This experiment examines F# and is going to be evaluating the language in dif-
ferent configurations. To have a point of comparison, C# will also be evaluated
since it is one of the most widely used gameplay programming languages, available
in most big free-to-use engines [1].

When evaluating F#, it of interest to test for a difference in performance when
writing mutable and immutable code. The benchmarks will be performed using two
different environments; Unity which uses a custom version of mono and dotnet.

5.1.4 System Setup

The system on which the tests were executed runs Windows 10 Pro and its speci-
fications are listed in Table 1.

18

Processor
Model Intel Core i5 4210U
Clock Frequency 1.7 GHz
Max Turbo 2.4 GHz
Physical 2 Cores
Logical1 4 Cores

Memory
Memory Size 12 GiB
Memory Speed 1600 MHz
Memory Type DDR3L 1600

OS
Type Windows 10 Education
Version Build 17134

Table 1: System specifications

5.2 Microbenchmark

In this experiment we want to see how efficient F# is compared to C#. C# is
the gameplay language used in most bigger free to use engines today [1], so it is a
good language to compare performance to.

The investigation in the following experiment can be formulated into these ques-
tions:

• Is there a significant difference in performance, depending on what environ-
ment F# is run in?

• Can F# run as fast as C# in the same environment?

• Is there a significant difference in the mutable and immutable F# solution?

5.2.1 Test Case

The test cases in [1] was made to explore different aspects of game programming
languages, the test cases was as follows and this is taken from [1]:

Sestoft’s Multiply is listed in Section 5.2.1 [39]. This method is designed to
prevent compilers from optimising the multiplication away with a constant

1Logical cores are sometimes called threads. However logical cores is used here to avoid
confusion with the software concept; threads, which is distinct from hardware threads.

19

value as well as keeping the input relatively small. It represents a minimal
computation that still has significant measurable execution time.

Vector Math is a series of vector operations, i.e. scaling a vector by a factor,
multiplying two vectors, translating a vector, subtracting two vectors, cal-
culating the length of a vector and calculating dot product of two vectors.
This is done for vectors of two and three dimensions.

Array Allocation allocates and initialises an array of 100,000 elements and re-
turns the last element.

Primes implements the Sieve of Eratosthenes algorithm [40] to generate all prime
numbers that are lower than 100. This produces a list of numbers, the last
of which is returned from the function.

1 private static double multiply(int i) {
2 double x = 1.1 * (double)(i & 0xFF);
3 return x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x

* x;↪→
4 }

Listing 1: Method proposed for benchmark by Sestoft [39].

Evaluating the microbenchmarks showed that there was too much focus on vector
calculations. To compensate for that, array- and numerical benchmarks was added,
besides having Primes and Sestoft’s Multiply. For our array benchmarks we make
use of the already established benchmarks “the Cowichan problems” [41]. Not
all 13 problems will be implemented, but a select few that are relevant for game
development.

For the numerical benchmarks a Fibonacci benchmark was added [42]. The Fi-
bonacci benchmark in [42] is designed for concurrency testing of server and clients,
but modified for the purpose of benchmarking the programming languages used
for game development. We implement the Fibonacci algorithm in each language
and measure how long it takes to calculate the nth Fibonacci number. We can
then compare which language is the fastest at a given benchmark, and from that,
the fastest at the benchmark suite in general.

Since the test originated in evaluating imperative and object oriented languages the
benchmarks have a certain bias towards these paradigms, since they were create
for these. To evaluate the functional language features, a series of functional
programming benchmarks have been added, specifically making use of features
from the functional paradigm. For F# that means that the data will be piped
through a map function and then a reduce, whereas for C# LINQ will be used.
Here Select for mapping and then Sum for reducing.

With the additions, the benchmark suite now includes:

20

Numerical Math is a series of numerical operations i.e. the new is Fibonacci
but Sestoft’s Multiply and Primes is also added to this category.

Matrix Math is a series of benchmarks implementiong some of the Cowichan
problems, specifically Conway’s Game of life, Invasion percolation and a
Random number generator for a N ·M matrix.

Functional programming A series of small benchmarks that make use of the
features in functional languages, specifically MapReduce, Discriminated Unions
and Pattern matching.

Vector Math the same series of vector math calculations as in [1].

5.2.2 Results

In this section the results of the test cases are presented and discussed. This is
done on the basis of the research questions that were presented in the start of this
section. The results from all the tests may be found in Appendix B. All tests results
are listed as mean running time in nanoseconds and the graphs use logarithmic
scale on the y-axis, as the running times vary wildly between the platforms.

Mutable and Immutable F#

In the exploration of the question "Is there a significant difference in the mutable
and immutable F# solution?" we implemented a series of our microbenchmarks in
F# such that they were in our opinion as equivalent as needed. Some microbench-
marks were excluded because it was not possible to our knowledge make an equiv-
alent mutable and immutable version. Both version was compiled in dotnet
2.2.

21

Sca
leV
ect
or2
D

Sca
leV
ect
or3
D

Mu
ltip

lyV
ect
or2
D

Mu
ltip

lyV
ect
or3
D

Tr
an
sla
teV

ect
or2
D

Tr
an
sla
teV

ect
or3
D

Su
btr
act
Ve
cto
r2D

Su
btr
act
Ve
cto
r3D

Le
ng
thV

ect
or2
D

Le
ng
thV

ect
or3
D

Do
tP
rod

uct
Ve
cto
r2D

Do
tP
rod

uct
Ve
cto
r3D

22

23

Ex
ec
ut
io
n
tim

e
(n
s)

FSharp-mutate FSharp-no-mutate

Figure 5: Graph over execution times in F# mutable and immutable implementations

We can see in Figure 5 that mutable edges it out and is faster in most cases, we can
see that the mutable ScaleVector3D implementation outperformed immutable quite
a bit. We believe we have made a proper solution, but there could always be the
chance that the immutable implementation could be optimised more. It is worth
mentioning, since there is such a huge difference in just one of the benchmarks.

F# and C#

In order to evaluate the question "Can F# run as fast as C# in the same envi-
ronment?" we will be taking the best results of mutable and immutable F# and
compare them to C#. Both are run in the same runtime; dotnet v. 2.2

22

Ma
pR
edu

ce
Fo
rea
ch

Ma
pR
edu

ce
Lin

q

Ma
pR
edu

ce
Str
uct

Ses
tof
t M

ult
ipl
y

Pr
im
es

Ra
nd
om
ize
Ar
ray

Ga
me
Of
Lif
e

Inv
asi
on
Pe
rco
lat
ion

Fib
on
acc
iRe

cur
siv
e

Fib
on
acc
iIt
era
tiv
e

Sca
leV
ect
or2
D

Sca
leV
ect
or3
D

Mu
ltip

lyV
ect
or2
D

Mu
ltip

lyV
ect
or3
D

Tr
an
sla
teV

ect
or2
D

Tr
an
sla
teV

ect
or3
D

Su
btr
act
Ve
cto
r2D

Su
btr
act
Ve
cto
r3D

Le
ng
thV

ect
or2
D

Le
ng
thV

ect
or3
D

Do
tP
rod

uct
Ve
cto
r2D

Do
tP
rod

uct
Ve
cto
r3D

21

24

27

210

213

216

Ex
ec
ut
io
n
tim

e
(n
s)

CSharp-release FSharp-release

Figure 6: Graph over execution times in F# and C# in dotnet

When looking at F# and C# in Figure 6 C# slightly edges out F# in a many of
the cases, all of them being very close, and F# being slightly faster in some such
as the SubtractVector, LengthVector and DotProduct vector benchmarks. In F#
Array is used instead of foreach, Seq instead of Linq and Discriminated
Unions instead of a struct and enum. Where the F# version uses discriminated
unions, instead of C# structs, it runs faster.

Benchmarks in Unity

In our last test we want to answer the question "Is there a significant difference in
performance, depending on what environment F# is run in?" to this we are going
to run the suite of microbenchmarks in Unity, both debug and release, to see if
Unity makes significant optimisations when creating a release build. The results
from running the benchmark suite in Unity is then compared to the results from
the dotnet runtime.

All benchmarks in Unity are performed with an empty scene, running in lowest
possible resolution and graphical fidelity.

23

Ma
pR
edu

ce
Fo
rea
ch

Ma
pR
edu

ce
Lin

q

Ma
pR
edu

ce
Str
uct

Ses
tof
t M

ult
ipl
y

Pr
im
es

Ra
nd
om
ize
Ar
ray

Ga
me
Of
Lif
e

Inv
asi
on
Pe
rco
lat
ion

Fib
on
acc
iRe

cur
siv
e

Fib
on
acc
iIt
era
tiv
e

25

28

211

214

217

Lower is better

Lo
ga
rit

hm
ic

Ru
n
T
im

e
(n
s)

Unity CSharp Unity CSharp Release Unity FSharp Unity FSharp Release

Figure 7: Graph over execution times in Unity C# and F# numeric tests.

24

Sca
leV
ect
or2
D

Sca
leV
ect
or3
D

Mu
ltip

lyV
ect
or2
D

Mu
ltip

lyV
ect
or3
D

Tr
an
sla
teV

ect
or2
D

Tr
an
sla
teV

ect
or3
D

Su
btr
act
Ve
cto
r2D

Su
btr
act
Ve
cto
r3D

Le
ng
thV

ect
or2
D

Le
ng
thV

ect
or3
D

Do
tP
rod

uct
Ve
cto
r2D

Do
tP
rod

uct
Ve
cto
r3D

26

27

Lower is better

Lo
ga
rit

hm
ic

Ru
n
T
im

e
(n
s)

Unity CSharp Unity CSharp Release Unity FSharp Unity FSharp Release

Figure 8: Graph over execution times in Unity C# and F# vector tests.

It is interesting that in Figure 7 and Figure 8 the results show that release F# is
slower than C# in the editor and we can see a quite a optimisation from editor C#
to release C#. Our guess is that the unity compiler, when building a release build
does some optimisations that could be counter productive to F#. It is especially
evident in the vector microbenchmarks in Figure 8.

In most cases in Figure 7 and Figure 8 C# outperforms F#, but we can see that
F# outperforms C# in TranslateVector, both 2D and 3D. In 2D by quite a lot.
F# also outperforms when Fibonacci is done recursive, but to our surprise C#
barely outperforms F# in the functional benchmarks.

The statistical analysis and ranking methods are heavily inspired by Nanz et al.
[43]. The statistical analysis used is the Wilcoxon signed-rank test (two-tailed
variant). Every language/configuration is compared to every other in each of two
groups: Debug/Editor and Release. As in [43] we say that when p < 0.05 there is a
significant difference, when 0.05 ≤ p ≤ 0.1 then the two languages/configurations
tend to be different. We also say that the two results have little tendency to be
different when 0.10 ≤ p ≤ 0.20.

In figure Figure 9 and Figure 10 the ranking of each language in both modes is
shown. In addition to their ranking, the statistical ordering is shown as well. The

25

C# Release

1

F# Release

1.07

C# Unity Release

4.12

F# Unity Release

5.93

Figure 9: Ranking & Statistical ordering of microbenchmark tests in release modes.

C# Debug

1.58

F# Debug

2.23

C# Unity Editor

7.33

F# Unity Editor

9.29

Figure 10: Ranking & Statistical ordering of microbenchmark tests in debug/editor modes.

statistical ordering is denoted by the arrows between configurations. A solid arrow
denotes a significant statistical difference. A dotted would arrow means that the
two results have little tendency to be different. As is the case of F# Release
compared to C# Release (in Figure 9) we have that 0.10 < p < 0.20. This is also
visible on the ranking where F# is merely 7% slower than C#. The performance
difference is of the same magnitude as the findings of the Casanova developers,
who found a 5% difference between C# and F# [21].

Note that each individual microbenchmark was run 5 times, we use the average
of those 5 runs to serve as the final result for each microbenchmark. The sum of
those averages is the metric function m, for microbenchmarks. The rating function
for microbenchmarks is defined in Figure 11, and is different from the one used in
the original paper [43]. The language with the fastest aggregated run time will be
of rank 1.0. A rank of 2.0 would have a mean run time twice as high as the fastest
language. The rankings in both debug and release are based on all languages,
though they are separated for readability.

One observation we made is that the difference between C# and F# is much higher
in the released Unity build, than in the Unity Editor. It is difficult to see when
comparing their absolute rank, but with a relative rank it is easier to visualise,
shown in Table 2.

C# F#
Release 1 1.44
Editor 1 1.26

Table 2: Unity F# ranked with C# in same configuration.

26

ratingmicro(L) = m(L)
min ∑

m(L′)∀L′∈L

where

L a language/configuration
L set of languages (and configurations)
m : L→ {0,∞} metric function
ratingmicro : L→ {1,∞} rating function

Figure 11: Rating function ratingmicro for microbenchmarks.

5.3 Macrobenchmark

For a more in-depth test of F#, and because microbenchmarks can be misleading
[39], [44], a macrobenchmark was implemented so C# and F# could be evaluated
in a broader scope.

As in [1], the macrobenchmark is an implementation of the AI simulation Wumpus
World [45]. The same rule-set as in [1] is used, which is a simplified version of
the actual Wumpus rule-set and the next section is a redone explanation of those
rules. The simplifications was to remove: grab and release, turn and forward and
climb. For a more detailed discussion as to why these simplifications was made, it
can be read in [1].

5.3.1 Rules in Wumpus World

The map of Wumpus World is an N x M grid. Each cell may contain one object.
The Wumpus World uses the term neighbouring cells. Given a cell X, the neigh-
bouring cells are those to the north, east, south or west of X. The cells on the
diagonal are not considered neighbours. A visual representation, as presented in
[45], is shown in Figure 12. There is a blind agent whose mission is to find and
collect the treasure without walking into a Wumpus or pit. A Wumpus gives off
a stench that the agent can detect when in one of the neighbouring cells of the
Wumpus. The same goes for for pits that have breezes that can be detected in
neighbouring cells. Last there is Glitter which indicates that the treasure is in
the current cell. The agent wins by getting back to the start position (0,0) after
retrieving the treasure.

27

Figure 12: A 4 x 4 Wumpus World with one Wumpus and two pits [45].

5.3.2 Platforms

The evaluation will be done in Unity with F# and C#. To be able to use F#
in unity, we use the developed plug-in such that it is possible to compile F# and
other necessary functions to make it work. To read more about the plug-in go to
Chapter 4.

5.3.3 Metrics

Unlike microbenchmarks, there is no clear metric for how to measure time while
doing macrobenchmarks. In [1] a discussion was made for which metric was best
used for raw computational throughput measurement, and it was decided to mea-
sure how much time, one world iteration took. It still seems the most sensible so we
decide to use the same metric or measurement for this Wumpus World evaluation.

5.3.4 Results

The difference between C# and F# is small, but there. As with the results in [1],
there is both an immense startup time, and a repeating spike on garbage collection
frames. The full dataset with all results is available in Appendix C.

l l l

In Figure 13 and Figure 14 we show the results for the macrobenchmarks, for C#

28

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

200

400

600

800

Frame

Ru
n
tim

e
in

m
ic
ro
se
co
nd

s

C# Editor C# Release

Figure 13: Wall clock-time for each frame of running the World.Iterate method.

and F# respectively, in both editor mode and in a release build. We omit the first
of the 25 runs in these graphs, because the startup time is roughly 40x-260x larger
than the average time for a single frame. This startup time is the highest in the
release mode builds (especially C# Release), though still high in editor modes. In
Figure 15 we compare C# with F# with both in release mode. The run time is
similar, but in fact the difference is statistically significant (see below). A thing
that stands out in Figure 15 is that F# has more smaller spikes than C#. An
explanation for this may be that F# simply generates more intermediary garbage,
which triggers Garbage Collection (GC) more often.

The ranking and statistical analysis for macrobenchmarks are similar to the the
ones used with microbenchmarks. For the ranking and the analysis the first iter-
ation is left out, because the startup time skews the results. The frame times for
each iteration (13 individual frames) were aggregated into a sum for each iteration.
The analysis and ranking was performed on the aggregated data.

C# Release

1

F# Release

1.08

C# Editor

1.81

F# Editor

1.852

Figure 16: Ranking & Statistical ordering of F# and C# run times, excluding first iteration.

29

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

200

400

600

Frame

Ru
n
tim

e
in

m
ic
ro
se
co
nd

s

F# Editor F# Release

Figure 14: Wall clock-time for each frame of running the World.Iterate method.

In Figure 16 the ranking and statistical ordering of each language in both con-
figurations is shown. The arrows have the same meaning as in Section 5.2. The
analysis of the macrobenchmark did not show any occurrences of two configura-
tions that only tended to be different, or that had little tendency to be different.
If the first iteration was included in the analysis, the only thing that changed was
that C#-release compared to F#-release only tend to be different, instead of a
significant difference. That would make the performance gap between C# and
F# even smaller. Further investigation in the startup time of both languages is
considered future work (see Section 10.3).

The rating function is similar to the one in Section 5.2, although the metric function
is different. The function is displayed in Figure 17. Here the mean run time of
calls to the World.Iterate-method is used as the metric function m.

30

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

200

400

600

Frame

Ru
n
tim

e
in

m
ic
ro
se
co
nd

s

C# Release F# Release

Figure 15: Wall clock-time for each frame of running the World.Iterate method.

ratingmacro(L) = m(L)
min m(L′)∀L′∈L

where

L a language/configuration
L set of languages (and configurations)
m : L→ {0,∞} metric function
ratingmacro : L→ {1,∞} rating function

Figure 17: Rating function ratingmacro for macrobenchmarks.

31

Chapter 6

Usability Study

For our usability study, we have taken inspiration from McCutchen et al. [46].
Additionally, some inspiration for our testing protocol is inspired by Champagne
Prototyping as explained in Section 3.3. We designed our usability study to inves-
tigate the following:

• Does using F# versus C# programming affect the cognitive load experienced
by developers?

• Does the use of F# versus C# affect the participant’s experience?

• Are any of the differences observed between participants due to their level
of expertise?

6.1 Participants and Tasks

We decided to test different levels of experience with programming by having two
different test groups. One of the groups consisted of four kids age 11-16, who
are learning to code games with help from an organisation called Coding Pirates,
where volunteers teach a weekly course of 2 hours each. They use the Unity engine
with C# to develop games. The second group consisted of six medialogy students
on sixth and eighth semester, age 21-28. The medialogy studens have all taken at
least one programming course at university level and have had some education in
game development with Unity as part of their studies.

Due to the mixed levels of expertise of the participants, and the fact that neither
group had used F# prior to the test, some concerns were raised:

1. The results may favour C#, since all participants have worked in it.

32

2. Little-to-no programming experience may mean that both languages appear
more cognitively difficult than they are in reality.

3. No programming training may mean that the participants focus more on their
experience with the syntax than the semantic constructs of the language(s).

4. The amount of participants is on the lower side of what we would have
preferred, so results might not be a true representation of the age-groups’
skill.

The tasks consists of implementing a game similar to Space Invaders [47]. This
game is chosen because it is simple and can be implemented in a short amount of
time. To ensure that the focus primarily is on coding, some aspects of the project
is prepared in advance. Prefabs are included and ready to use, and only requires
the script for a given prefab to be changed. The behaviour of the gameobjects will
be written by the test subjects in a series of small self-contained tasks in C# and
F#, and these tasks iteratively add the features to the game. Unlike the original
Space Invaders, we omit score, multiple lives, barricades and enemies shooting
back, for simplicity. So in this simplistic version, the swarm of enemies just move
from side to side and when one of them has reached the side they all move forward.
The player wins by shooting all enemies before they reach the player, and loses if
unable to destroy them before they reach the player.

The tasks are presented in Table 3. Each task consists of a title and a description
of the objectives to complete. Most tasks are divided into sub-tasks, to make it
easier to understand, and easier to assess if a task is completed. The full version
of the tasks can be found on the task sheet site1, or in Appendix C.

Task Summary
Task 1 Horizontal movement of the player (spaceship)
Task 2 Reacting to click on mouse (fire gun)
Task 3 Setting bullet prefab and sound when fired
Task 4 Firing of a bullet and removing it from scene when out of bounds
Task 5 Removing the enemy (and bullet) when hit
Task 6 Changing scene when all enemies are dead
Task 7 Synchronised movement of enemy ships and win condition

Table 3: Summary of tasks.

6.2 Protocol

Prior to the study, the participants were briefly instructed on to how to use F#
in Unity. The participants were informed they were allowed to use Google and

1https://sppt-2019.github.io/unity-fsharp-introduction/dmt/

33

any other form of documentation that could aid them in completing the task, just
as if they where doing a normal coding assignment. A test session consisted of
two parts, one where the participant used F# and one where they used C#. One
group of participants start with F# and the other start with C#, to counter-
balance the order of effects. Depending on the participants ability to understand
English, they would get a different questionnaire. The older participants would get
a questionnaire they would have to fill out as they completed each task, while the
younger Coding Pirates participants would be handed a questionnaire after they
had completed all the tasks they had time for. Both questionnaires were used to
measure their perceived workload. The questionnaire followed the format of the
NASA Task Load Index (TLX) questionnaire, a common tool used to let users
self-asses their workload during a task [48]. The questionnaire consist of six sub
scales: mental demand, physical demand, temporal demand, performance, effort
and frustration. The participant is asked to rate their subjective workload on each
scale, which ranges from 5 (low workload) to 100 (high workload) on a point 20-
point scale in the original TLX questionnaire. In the version of the questionnaire
used for this evaluation, the scale was modified so that the range starts from Very
Low and ends with Very High, on a 9 point scale. The points between the lowest
and highest option did not have any labels. These ratings can be averaged to yield
the overall cognitive load. During the assignment the participants are allowed to
ask questions about the syntax of F# and how to use F# with Unity, if they get
stuck. Then they would receive some help or tips on how to proceed. This was
primarily to counteract the issue of a new syntax being difficult to understand and
use in the short amount of time availble for solving the tasks.

6.3 Results

There was two groups of participants, a group of 6 medialogy students and a group
of 4 Coding Pirates. Because two of the Coding Pirates were very skilled they got
put in the same group as the medialogy students and did the same questionnaire.
Our questionnaire had physical demand included because it was part of the stan-
dard NASA TLX questionnaire, but the stat is not as important in these tests,
since there there is low physical activity in programming. Some of the participants
did not understand the question either, resulting in some participants not taking
the question seriously. The rest rated it very low, so it was excluded. In Figure 18
we show the possible scores to the TLX scales. Green is least demand/frustra-
tion/effort and good performance. Red is the most demand/frustration/effort and
poor performance.

Figure 18: The different colours showing the grades from most positive (left) to most negative.

All the participants progressed faster when using C#, and almost all of them got

34

further using C# than F#. There was only a single participant that managed to
complete the same number of tasks using F# as C#, though the results from the
questionnaire show that the overall load was higher when using F#.

Figure 19: Overview of which tasks the participants completed, and how hard it was overall.

The number of tasks completed varied a lot between participants. Five out of
the six medialogy students completed task 1, started working on task 2 and got
some progress but did not complete it fully, using C#. As shown in Figure 19.
The figure also shows the average “strain-level” for each completed task, to give
an overview of how difficult the task was perceived. The language a participant
started completing the tasks with is listed first. The task number is on the x
axis, each box denotes that the participant has at least started on the task. The
following sections go into depth with the different scales.

When looking at the progress of the Coding Pirates students in Figure 19, it is
shown that both of them got to task 4. One completed all of the tasks and the
other completed almost all the tasks and made it to task 6.

Of the 6 medialogy students, only 2 finished the first F# task and no one completed
the second.

6.3.1 Mental Demand

When looking at the overview of the mental demand in Figure 20, it is clear that
the participants experienced higher mental demand when using F# than C#, no
matter what order they completed the tasks in.

35

Figure 20: Overview of how great the mental demand was, according to the participants.

As Figure 21 shows, there is a much higher temporal demand with the F# tasks,
than the C# tasks. In many of the cases the participants felt twice the temporal
demand with the assignments, when using F#.

A part of it is because it is a new language and they have a limited amount of
time, which puts a certain amount of stress on the participant to finish and learn
the syntax of the language as fast as possible.

6.3.2 Temporal Demand

All participants felt a certain amount of rush as they had to do these assignments,
no matter if they had to do C# or F# which makes sense since they only had 30
or 45 minutes to do each part, while also having a difficult time completing the
task.

36

Figure 21: Overview of how great the temporal demand was, according to the participants.

It is very mixed whether participants felt the same rush when they worked with
C# as F#, or if they felt more rushed doing F#. Something peculiar is that some
participants felt less of a rush when using F#, which might have been because
they accepted that it was a new language and they did not feel the same need to
finish and prove themselves as much as they did with C#.

6.3.3 Effort

When looking at effort in Figure 22, the participants across the board rated the
amount of effort used on the F# solutions to be greater than what was needed
when using C#. It makes sense since it was a completely new language, where the
participants also have to learn the syntax while solving the tasks.

Figure 22: Overview of how great the participants rate their own effort.

37

It can also be seen that the effort increases for task number 2 for a lot of the
participants, which might be caused by the task asking for a solution using events,
which they might not have been using before.

6.3.4 Frustration

When looking at the insecurity overview show in Figure 23, it can be seen that
in F# the medialogy students had a high insecurity and none of them got to task
2. While we can see that some of the Coding Pirates had a high insecurity with
F# in task 1, but as they moved to task 2 the insecurity went down, this can be
because they asked questions and got more familiar with the language.

Figure 23: Overview of how insecure or frustrated the participants felt.

Looking at C#, the medialogy students were more insecure as they moved to task 2
and that might again be caused by them not having used events before. Whereas
the Coding Pirates asked what events are and concluded that there were other
ways to complete the task, instead of them getting stuck with completing the task
using events. The fact that they asked instead of getting stuck may have caused
them to progress faster. In Listing 2 is one of the participants solutions, avoiding
the use of events.

1 if(Input.GetButtonDown("Fire1"))
2 {
3 Instantiate(bullet, new Vector3(transform.position.x,
4 transform.position.y + 1,transform.position.z),Quaternion.identity);
5 audioSource.Play();
6 }

Listing 2: A participant’s solution without the use of events.

38

This is a valid way to solve the assignment as the functionality is the same, though
he did not use events as the tasks asked for.

6.4 Threats to Validity

An issue that was noticed while performing the usability tests with the medialogy
students was the lack of questions. The tasks left them puzzled and confused, but
as we were unable to view their screens while they where working, we were unable
to spot if they were stuck with a problem for too long.

The medialogy students had 15 minutes less to complete each run of the tasks
than the Coding Pirates, which can have resulted in a higher cognitive load and a
more rushed solution. But because of the time available to the students, and the
perceived skill of the students, we thought it would not make a big difference if they
got 15 minutes less. The medialogy students were all very busy with their semester
projects and could not dedicate more time than an hour for our evaluation.

Most of the problems the medialogy students experienced was understanding the
F# syntax and getting the code to compile using the Unity extension.

The Coding Pirates children were not shy of asking questions, which helped them
get started and after they has a basic understanding of the syntax, they could
solve exercises and write code without our help.

It is an important threat to validity and it shows how hard it is to get started with
a new language, because of the syntactical differences.

We had made two kind of surveys, one for the Coding Pirates and one for the
students in order to avoid giving the younger participants problems with under-
standing the questions as they were in English, and because it might end up taking
to much of their allotted time.

The Coding Pirates children were instead offered a Danish version of the survey in
which they did not answer a page after each task, but instead only when the time
was up. The two teenage Coding Pirates children were much more confident with
the English language and opted for the English version.

The two younger Coding Pirates children were beginners in Unity game develop-
ment and programming, so they required more help in completing the tasks and
also worked together on solving the tasks because that is what they were used to
and preferred. Evaluating the results of these two younger children should there-
fore be done differently than the results of the rest of the participants. Still, their
results can provide useful insight into the problems experienced by young, novice
game developers.

39

6.5 Improvements to the Extension

While conducting the tests with the participants, some problems arose. Specifically
some of them had problems remembering to press compile in the F# menu in the
Unity Editor. This may be because they are used to the way C# is supported in
Unity, where any changes are automatically detected. A solution to this problem
is considered in future work (see Chapter 10). It also seemed that the participants
had a hard time understanding the build-errors that was logged to the console of
the Unity Editor. The build-error output was made prettier and is now logged as
an error instead of a message, to ensure that developers do notice that building
the project has failed, and have a chance of understanding it.

40

Chapter 7

Qualitative Measures

In this chapter, the qualitative measures that we will be evaluating are presented.
This includes the use of several of the dimensions from the Cognitive Dimensions
framework. Some examples of the code submitted by participants are also shown
and discussed to highlight usability problems they may have experienced, some of
which could result in a higher cognitive load.

7.1 Usability of F# in Game Development

Using the the same dimensions as in [1], F# will be evaluated. To have some
reference point it is compared with C#. Unlike the analysis in [1], two languages
from different families, C and ML family, are compared. Instead of comparing two
evaluations of C like languages against each other.

Diffuseness/Terseness

First dimension we have is diffuseness/terseness, the dimension describes the amount
of code is used to archive a certain goal. Where the minimum code used to archive
a feature enables greater terseness.

When looking at F# it is possible to make use of the functional paradigm combined
with the syntax to archive functionality on few lines, which allows greater terseness.

An example can be seen in Listing 3 taken from one of the participants, he defines
the movement and the constraints of the player, the F# code is more condensed.
When compared to C# in Listing 4 both implementations are short, but the F#
implementation is shorter than its C# counterpart. If we look at line numbers in
the two listings we can see that F# is 7 lines long and C# is 13 lines.

41

1 if (Input.GetAxis("Horizontal") = 0.0f)|>not then
2 this.transform.position <- new Vector3(Input.GetAxis("Horizontal") *

speed + this.transform.position.x, -4.0f, 0.0f)↪→
3 if this.transform.position.x < -7.8f then
4 this.transform.position <- new Vector3(-7.8f, -4.0f, 0.0f)
5 elif this.transform.position.x > 7.8f then
6 this.transform.position <- new Vector3(7.8f, -4.0f, 0.0f)

Listing 3: A participant’s F# player movement code

1 if(Input.GetAxis("Horizontal") != 0)
2 {
3 transform.Translate (new Vector3(Input.GetAxis("Horizontal") * speed, 0, 0));
4 }
5
6 if(transform.position.x < -11)
7 {
8 transform.position = new Vector3(-11, -4, 0);
9 }

10 else if (transform.position.x > 11)
11 {
12 transform.position = new Vector3(11, -4, 0);
13 }

Listing 4: The same participant’s C# player movement code

Both implementations are short but the C# implementation spans double the lines
mostly because of C# good practice with curly braces. So both languages have
good diffuseness and terseness, but it seems F# is a bit better.

Hidden Dependencies

Hidden dependencies describes, among other things, the aspect of how certain code
can depend on other code and the dependency is not entirely visible. This is a a
issue that game development and game engines suffer from [16], [49], [50].

The most common examples are global values and GOTO statements. But, any
subroutine is a hidden dependency since the languages provides no means to deter-
mine where it was used. The hidden subroutine issue is mitigated by most modern
IDEs, which manage the code base and help developers display program flow,
therefore we will focus on global variables which may affect behaviour elsewhere
in the program.

An example of hidden dependencies in F# is that the order of which things are
declared have an effect on the program. The order in which files are placed in
the project file can make certain functions unavailable in other files, which can
cause confusion and errors that can be difficult to understand in our experience.
But when working with the test participants, they did not encounter any hidden
dependencies in either C# or F#.

42

Premature Commitment

F# presents a low premature commitment at a language level, but it is possi-
ble for the programmer to introduce premature commitments themselves through
linguistic features.

In our experience the biggest issue with premature commitment when it comes to
F# is that in dotnet, a lot of libraries are targeted for C#. The result is that
when trying to use the libraries with F#, there can be complications with the API
where certain keywords used in the library does not work in F# and you have to do
a easy but still frustrating workaround and use extra keywords to make the library
work correctly. But because of the way the task was set up, the participants did
not experience any premature commitment. Since all files they had to write code
in was set up, so they should just find them, write code and compile.

Progressive Evaluation

Progressive evaluation is a feature of the programming environment more than the
language itself. F# just like C# is a JIT-compiled language, which opens for the
opportunity to recompile bits of a program instead of the entire program on com-
pilation. Furthermore, the compiler utilises multithreading to recompile different
parts of the code. This functionality provides modern IDEs with rich information
such as type inference [51], without significant slowdowns. This enables the IDE
to inform the programmer about the state of the program and advanced error
detection/correction. C# has an advantage when it comes to progressive evalua-
tion in terms of maturity, since IDE developers have had more time to refine the
C# support. F#’s advantage is more integrated into the language itself. Since
typical F# programs are easily split into side-effect free functions that can be run
by themselves (optionally in F#-interactive). Furthermore, many game engines
utilise progressive evaluation to support the data driven architecture [1]. When
the test participants were doing the test, we noticed that using visual studio code,
which we had recommended did not have auto-complete words and was only a text
editor with highlighting which we had not noticed because our text editor of choice
was Rider, by Netbrains. So it became harder for the participants to make F#
code, because they would question themselves when writing the code and misspell
because there was no code finishing or other helpful tools from a IDE.

Role-Expressiveness

Role-expressiveness is often the responsibility of the programmer in textual pro-
gramming languages. It is the programmers job to give variables and functions
meaningful names signifying their role. Keywords are terminology that is related
to languages and will thus be discussed when evaluating role-expressiveness.

43

When looking at F# and C# the languages have both different keywords and
different syntax. This means the amount of keywords needed to express a con-
struct vary depending on the language, even when expressing similar constructs.
F# makes use of let as a keyword to declare both variables and functions. A
variable is usually declared if there is only one name on the left of the = operator.
There is an exception when returning a function bound to a single name with no
parameters. A function is defined when there are more names (arguments) on the
left side. Where in C# there is different syntax and keywords to define variables
and methods/functions respectively.

1 let mutable v = new Vector2(1.0f) 1 var v = new Vector2(1);

Listing 5: Definition of a mutable variable in F# and C#.

When defining a variable the keyword in C# is more clear as you are defining a
variable using the var keyword. In F# the let keyword is used, then the name
of the variable followed by the declaration.

In the example shown in Listing 5, F# syntax makes use of more keywords to define
a mutable variable when compared to C#. When defining immutable variables,
the opposite is true, that is F# is a keyword shorter than C#.

1 let v = new Vector2(1.0f) 1 readonly Vector2 v = new Vector2(1);

Listing 6: Definition of a immutable variable in F# and C#.

If we examine function definition (shown in Listing 7), C# makes use of more
keywords to to define a function. But since F# uses the same keyword for both,
the role of the function/variable may not be as immediately clear as the different
definitions found in C#.

The languages have two different takes on how to define variables, C# is of C style
where you have type name = value; and F# have a style where the compiler
infers the type, implicitly from the value name = value;.

1 let scaleVector2D scalar =
2 scalar * 42.0f

1 static float ScaleVector2D(int scalar)
2 { return scalar * 42.0f; }

Listing 7: Definition of a function(/method) in F# and C#

The static keyword are not necessary in all cases but they help close the gap
towards how the F# function works. The access modifier is omitted in the C#,
which results in the method being private. Since both the return type and type
of each parameter is inferred, there is less code to write, but the role of the written

44

words will not be as clear as in C#. Although it should be noted that it is also
possible to explicitly specify both return type and the type of all arguments in a
F# function, making it optionally as expressive as C#.

Operators may be different from language to language. Even within a single lan-
guage an operator can mean different things. This is the case with the = operator
in F#. The operator is used to declare variables & functions, and to express
boolean equality. In Listing 8 both of these cases are shown. This may cause
confusion for programmers, because in many other languages, including C#, the
second statement in Listing 8 would reassign the value of b to true.

1 let b = false
2 if (b = true) then ...

Listing 8: Assignment and boolean expression F#.

Viscosity

When talking about viscosity in F#, the same arguments can be made as was
done in [1] about C#. Every function and their implementation is done in the
same file. Just like in C#, which means that arguments and the function changed
in a single location. So as it was concluded in [1], C# had low viscosity and so
F# must have too, and it can be further reduced by disciplined adherence to best
practice standards. This thought matches the results found in [17], which is that
the viscosity is low in both C# and F# and they argue the reason is because higher
viscosity is found in visual programming languages. They further go to show that
viscosity can be increased by the programmers.

45

Chapter 8

Discussion

In this chapter, the validity of the results of the benchmarks are discussed. The
results from the usability study are explained while discussing their validity. The
choice of engine will also be discussed and it will be considered if there is other
engines that would have worked better or would maybe have given different results.
The results of the usability study showed an interesting difference between the
Coding Pirates children and the medialogy students, which will be discussed as
well.

8.1 Amount of Participants

As has been mentioned in threats to validity, the amount of participants were not
as high as we had hoped for, there is no right amount of participants. It has been
shown in results of the usability evaluation that the best amount of participants
for a quantitative evaluation is around 20 [52]. They admit that coming by 20
expert users in an area is tough and a handful (5) of users often catch most issues
in a usability evaluation [53]. In [54], Skov et al. show that a usability study using
5 participants highlighted 85% of the critical usability problems, and 68% of the
serious. Though we did not use the Instant Data Analysis (IDA) method described
in the paper, their finding that observing users of a system will yield most of the
important usability problems while requiring less time, is useful.

This of course is usability evaluation, with the goal being to catch as many us-
ability problems in a system, whereas we just want as much data as possible, to
be able to pinpoint the differences in the use of the two "systems". Having too
many participants would just have resulted in many sightings of the same usability
problems, which was already showing with the medialogy students, as all of them
completed almost the same (low) amount of tasks.

46

8.2 Functional Paradigm or Just Functional Lan-
guage

An issue with the usability evaluation is the lack of functional thinking. Even
though the evaluation was performed in F#, there was not any real functional
thinking involved. The same actions were performed in an imperative step-by-
step manner regardless of language used. This can be seen in Listing 10 and
Listing 9, where some code from one of the participants is displayed. The same 3
steps are displayed in both languages, with some minor differences:

1. Assign speed variable

2. Apply translation

3. If "Fire1" clicked, raise event

1 member this.Update() =
2 let mutable speed = Input.GetAxisRaw("Horizontal") * Time.deltaTime
3 this.transform.position <- this.transform.position + new Vector3(speed,0.0f,0.0f)
4 if (Input.GetButtonDown("Fire1")) then
5 event.Trigger()

Listing 9: Update loop of Player.fs component in usability evaluation.

1 baseSpeed = baseSpeed * Time.deltaTime;
2 speed += Input.GetAxisRaw("Horizontal") * Time.deltaTime;
3 transform.position = new Vector3(transform.position.x + baseSpeed + speed,

transform.position.y);↪→
4 if (Input.GetButtonDown("Fire1"))
5 OnClicked();

Listing 10: Update loop of Player.cs component in usability evaluation.

While this does no change anything in regards to whether F# is a useful game
development tool or not, it unfortunately means that we can not say as much
about the functional paradigm, besides that F# is a functional language and they
performed the task in the language.

8.3 Performance Results

At first, two implementations of the benchmark was created; one in F# and one
in C#. This raised some concern that small differences in the resulting CIL might

47

skew the results in either direction. The results showed that the concern was valid,
and needed to be mediated. The solution was to create an independent benchmark
project, which could be packed into a NuGet package and installed to any .NET
project.

The performance comparison between F# and C# is conducted using exactly
the same benchmark, as it is installed to both projects from the same package.
The measurements of mean running time and deviation should thus be directly
comparable.

8.4 Choice of Engine

It was decided to use Unity because it was one of the easiest engines to extend to
support F#, while also being one of the most popular game engines, which made it
easier to find participants. The other choice would have been Godot if we wanted
to implement F#, but Godot is still a new engine and is not as well known yet, so
finding participants that knew of it would be difficult and putting our participants
through both having to learn a new engine and a new language would further
increase the cognitive load. It would be interesting to see how F# would perform
in another engine that is widely used in the industry, such as Unreal Engine. That
would also allow for collecting more data, as to show how slow Unity is compared
to other engines; whether it is the model the Unity engine uses, or just mono that
is slow.

8.5 Medialogy Students versus Coding Pirates

One interesting result from the evaluation, was that the Coding Pirates children
were able to solve more tasks than the medialogy students. This came as a surprise
because the medialogy students were attending 6th and 8th semester, and had been
through a programming course and a Unity course. Nonetheless, the two older
Coding Pirates children were able to solve more tasks, both using C# and F#, than
any of the medialogy students. A reason for this can be that the medialogy students
are attending the study because they are interested in digital creative arts such
as drawing/modelling, world-building and storytelling. To them, programming
might just be another chore to complete when developing a game. That could
result in less focus on the craftsmanship of programming. Another source of stress
for the medialogy students may have been that the duration of the evaluation was
30 minutes instead of 45 minutes like the Coding Pirates. On top of that, the
medialogy students did not have time for a 5-minute introduction to F#, which
may have helped them understand the language and syntax better.

48

Chapter 9

Conclusion

In this report, we set out to answer if it was viable to use the functional program-
ming paradigm in game development. To test this, F# was evaluated on how well it
would work as a gameplay programming language. To do this, a number of bench-
marks were run to see how well the language would perform compared to already
existing gameplay programming languages. Also, a usability study was performed
to see how good the participants would be learning a functional programming lan-
guage. F# was tested against C#, not because they both run in dotnet, but
because C# is one of the most frequently used gameplay programming languages
in free-to-use game engines [1]. F# is a functional-first multi-paradigm program-
ming language, whereas C# is a imperative-first multi-paradigm programming
language. Because of this, F# seemed like a good candidate and since they both
use the same runtime, it is straight-forward to compare the performance results.

9.1 Performance

The results from the performance benchmarks show that the performance of F# is
comparable to C# (Section 5.2& Section 5.3). The new dotnet runtime from Mi-
crosoft has made it trivial to create F# programs with comparable performance
to C# programs. This shows that the old argument that programs written in
functional languages inherently are too slow to yield acceptable performance. The
mantra has always been that if you want performance, you need imperative lan-
guages [7], [8]. Many have further focused the argument by claiming that C++ is
the most suitable language for applications that require high performance [5].

In [1] we used benchmarks to show that C# code running on the dotnet runtime
could yield performance comparable to C++, and significantly better performance
in some cases.

49

Through the benchmarks described in this report, we have demonstrated that it
is possible to write F# code that yields performance comparable to C#, running
in the dotnet runtime. The same can not be said for the mono-derived runtime
that is used in Unity, since benchmarks show that the JIT optimiser used in
that runtime is not able to optimise the code as much as the dotnet runtime,
though the performance may still be acceptable for many types of games. From
these results it would seem that the argument for enforcing the use of imperative
languages, because of performance, is a moot point.

The adoption of functional languages should no longer be inhibited by the argu-
ment of performance, since we have shown that the performance is comparable.

9.2 Usability

An evaluation of how easy the adoption of F# would be to novice Unity developers
was performed. The evaluation showed that developers were able to transfer their
existing knowledge of the Unity API to F#, but also that many struggled with
learning the syntax of a new language while solving the tasks, which were expected.
The biggest issues for both of the two groups of participants, the medialogy stu-
dents and the Coding Pirates children, was getting started and understanding the
slight differences in syntax and how to run F# in Unity. This was the problem
most commonly experienced by the medialogy students, but they did not ask for
help. Instead they got stuck with syntax errors and did not manage to complete
many tasks. The Coding Pirates children asked for help when they got confused
and we could quickly tell them how to fix the syntax error or how to express some-
thing in F#. They were quick to learn the necessary F# syntax, and were able
to solve several of the tasks without having problems with the language. The big
difference between the two groups was the mentality towards asking for help. It
would be interesting to see how far the medialogy students would have gotten, had
they asked for help with syntax and compilation. Overall, the group of medialogy
students seemed to find the experience stressing and confusing. Only a single stu-
dent expressed an interest in learning more F# at the end of the evaluation. The
Coding Pirates children seemed to find it interesting to learn a new language and
use it to create a game. Both of the teenage Coding Pirates children seemed to be
interested in F# at the end of the evaluation.

50

Chapter 10

Future work

This chapter presents different ideas for what future work could be interesting
to research, following this project. Things that would be interesting to research
is topics such as, updating the plug-in on how it compiles, because we noticed a
repeating frustration with the users. While also wanting to figure out the extensive
start-up time that Unity have and try using the new features Unity introduced
while this paper was being written or try to use the dotnet prototype of Unity,
engineers at Unity have worked on. It will also be proposed why it would be
interesting to research the use of different engines with functional programming
and how the microbenchmarks could be expanded such that the results would be
even more extensive.

10.1 Unity Extension

As mentioned in Chapter 4, it was noticed that the participants had problems
remembering to press compile in F# in the Unity Editor. A solution to this could
be automatically detecting if the F# files have been changed when focusing the
Unity Editor. If any changes are detected, the compiler could be invoked. A
problem with this is that the hooks in the Unity API only allows for reacting to
changes to files in the Assets-folder. An alternative to detecting the file changes
when the Unity Editor is focused, is detecting the changes when the developers
enters play-mode. This is also available to hook onto using the Unity API and
does not require the files to be placed in the Assets-folder.

51

10.2 Benchmarking the Old .NET Framework Run-
time

It would be interesting to see how the old Windows-only .NET Framework runtime
performs compared to mono and the new, cross-platform dotnet runtime. A
result that could be interesting to see is whether mono is slower than the old,
windows-only .NET runtime. If it is, then it seems counter-intuitive to base the
game engine’s scripting runtime on it, though this was most likely because of mono
being cross-platform and open-source, which the old .NET runtime was not. The
new dotnet runtime is both cross-platform and open-source, released under MIT
license.

10.3 Investigation on Start-Up Time

As explained in Section 5.3, the macrobenchmark suffered under an extensive
startup time. Why exactly this is so extensive would be an interesting find, beyond
the guess that it is just JIT warm-up. Especially so since the startup is slower in
C# than it is in F#. One way to approach this would be to utilise Unity’s Profiler
tool, shown in Figure 24.

Figure 24: Screenshot of the Unity profiler tool.

52

10.4 Utilizing Unity’s New Features

In 2019 Unity has released a new “Data-Oriented Technology Stack”, which promises
performance improvements, multi-threading and better readability1. It would be
interesting to see how the new stack compares to C# running in dotnet Release
mode, and also to the old Unity results. Both the new Entity Component Sys-
tem (ECS) paired with the new Burst compiler may approach or (optimistically)
possibly exceed dotnet in performance.

In addition to code optimisation, a new incremental garbage collector has been
added as well. One of the claims in the release notes is “[...] support for incremental
Garbage Collection to avoid GC Spikes”2. We suspect that the spikes that were
visible in the graphs shown in Section 5.3 are these GC spikes.

10.5 Unity with dotnet

Engineers at Unity has been looking at the dotnet runtime for performance im-
provements, and has even gone as far as experimenting with creating a prototype
[55]. But the Unity development team has many things on their road-map for
Unity, before getting to work further on integrating the dotnet runtime into
Unity. If and when the prototype becomes mature enough to be made publicly
available, it could be interesting to run the benchmark suite and verify the perfor-
mance gains that are expected from the dotnet runtime.

10.6 Exploring Different Engines

An aspect that would be interesting to look into is to see the performance other
engines would have using F# compared to their native gameplay programming
language. We decided to focus on Unity because of its popularity, meaning that
it would be easier to find participants that had some experience with the engine.
But there are other game engines used both in the industry and by amateurs.
Engines such as Unreal Engine, Godot and CryEngine that are freely available for
everybody to use, but also proprietary engines used in-house by companies, such
as RAGE or Frostbite. To be able to do this, a new integration tool would have to
be made for each individual engine. Which would require time depending on what
language the engine already supports and how much API support is available.

BinSubaih et al. suggests that the future of game development lies in not just
1https://unity.com/dots
2https://unity3d.com/unity/beta/2019.1

53

in cross platform, but in cross engine development [56]. They talk of “G-factor
portability” which is the idea that a games state, logic and model all should be
game engine independent. With this in mind, some future work for this report is
to port the F# plugin to different game engines. This way, the F# part of game
development is game engine independent. This does not magically make different
game engine APIs compatible with each other, but it removes the barrier of using
different languages.

A step further, would be to more closely follow the ideas of BinSubaih et al,
and unify different game engine APIs under a single API. This opens up the
opportunity to develop a game without having to think of performance, graphics,
engine licencing, before the game is in a state where the developers are ready to
make such decisions.

10.7 Expanding the Microbenchmarks

It was decided that the microbenchmarks would be done mutably, because of the
compatibility with C# and because the performance difference between immutable
and mutable was varying and minimal in the small scope we tested it in. So we
programmed the way we found most comfortable.

It would be interesting to explore if benchmarks would show a larger difference
if they were programmed in a more functional way. Only using immutable vari-
ables could result in a increased need for GC, which could have an impact on
performance.

10.8 Development time

For the usability evaluation, the participants all have experience with C# and
Unity, and have never used F# before. This means that it is not possible to
evaluate whether using F# had a positive impact on development time. To better
be able to verify this claim, finding participants with little to no prior knowledge
of F#, C# and Unity, but still some programming experience. Then performing
a similar evaluation but with an hour, or perhaps even a mini-course, of learning
the language they will be solving the tasks with. The results from this could help
verify if game development using a functional language reduces development time.
The amount of tasks solved and the average cognitive load can give an indication
of whether the functional paradigm improves developer performance.

54

10.9 A Social Issue

In this report, a suite of benchmarks were performed and statistical analysis showed
that F# and C# yields comparable performance. The bigger issue with functional
programming is the social aspect of how the public conceive it. Functional pro-
gramming is still seen by many as inherently slower than imperative programming,
mostly because of the belief that since you have complete control of every single
step with imperative programming, you can avoid any extraneous work.

The usability study was performed to see how novice programmers would handle
and understand F#, when pitted against C# with which they had to solve the
same tasks. Some participants had difficulties no matter the language, but oth-
ers, specifically the teenage participants, picked up how to program in F# very
quickly, after only needing help with the syntax at the beginning. So it would
be interesting to see in future work, if a further study can be done testing the
functional paradigm to see if it gets taught at a younger age might help them
understand it easier or if it is teachable to older, more veteran C developers.
Hopefully, such a study could show whether the functional paradigm improves de-
veloper performance. This might help change the view of the functional paradigm
in the programming community, which in turn might improve adoption rate.

55

Bibliography

[1] M. R. Andersen, T. S. Jensen, T. G. McCollin, T. Morell, and D. van Bol-
huis, “An analysis of gameplay programming languages in free-to-use game
engines”, Aalborg University, Tech. Rep., 2019. [Online]. Available: https:
/ / projekter . aau . dk / projekter / da / studentthesis / en -
analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-
spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html.

[2] J. Hughes, “Why functional programming matters”, The computer journal,
vol. 32, no. 2, pp. 98–107, 1989. [Online]. Available: https://academic.
oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf.

[3] Z. Hu, J. Hughes, and M. Wang, “How functional programming mattered”,
National Science Review, vol. 2, no. 3, pp. 349–370, Jul. 2015, issn: 2095-
5138. doi: 10.1093/nsr/nwv042. eprint: http://oup.prod.sis.
lan/nsr/article-pdf/2/3/349/6087381/nwv042.pdf. [Online].
Available: https://doi.org/10.1093/nsr/nwv042.

[4] C. Maraffi and D. Seagal, “Leveling up : Could functional programming be
a game changer ?”, 2012.

[5] J. Carmack. (Apr. 2012). In-depth: Functional programming in C++. En-
glish, [Online]. Available: https://www.gamasutra.com/view/news/
169296/Indepth_Functional_programming_in_C.php (visited on
Sep. 21, 2018).

[6] T. Sweeney. (2006). The next mainstream programming language: A game
developer’s perspective. English, Epic Games, [Online]. Available: https:
//www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-
fp/docs/sweeny.pdf (visited on Nov. 20, 2018).

[7] zo0ok. (Jun. 2017). Functional programming sucks! (it is slow). English,
TechFindings, [Online]. Available: https://techfindings.one/archives/
2679 (visited on Dec. 6, 2018).

[8] J. Harrop. (Jun. 2012). Compilation - are functional languages inherently
slow? English, StackOverflow, [Online]. Available: https://stackoverflow.
com/questions/516301/are-functional-languages-inherently-
slow (visited on Dec. 6, 2018).

56

https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://doi.org/10.1093/nsr/nwv042
http://oup.prod.sis.lan/nsr/article-pdf/2/3/349/6087381/nwv042.pdf
http://oup.prod.sis.lan/nsr/article-pdf/2/3/349/6087381/nwv042.pdf
https://doi.org/10.1093/nsr/nwv042
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://techfindings.one/archives/2679
https://techfindings.one/archives/2679
https://stackoverflow.com/questions/516301/are-functional-languages-inherently-slow
https://stackoverflow.com/questions/516301/are-functional-languages-inherently-slow
https://stackoverflow.com/questions/516301/are-functional-languages-inherently-slow

[9] B. Edds. (Sep. 2018). Nu game engine. English, [Online]. Available: https:
//github.com/bryanedds/Nu/blob/master/Nu/Nu.Documentation/
Nu%20Game%20Engine.pdf (visited on Sep. 25, 2018).

[10] Z. Corr. (Oct. 2016). Helm: A functionally reactive game engine. English,
[Online]. Available: http://hackage.haskell.org/package/helm
(visited on Sep. 25, 2018).

[11] R. Nasser and T. Gardner. (Feb. 2017). Arcadia: Clojure in unity. English,
[Online]. Available: https://github.com/arcadia-unity/Arcadia
(visited on Sep. 25, 2018).

[12] Unreal Engine. (2012). Unrealscript. English, [Online]. Available: https://
api.unrealengine.com/udk/Three/UnrealScriptHome.html
(visited on Feb. 19, 2019).

[13] ——, (2012). Kismet visual scripting. English, [Online]. Available: https:
//api.unrealengine.com/udk/Three/KismetHome.html (visited
on Feb. 19, 2019).

[14] T. R. G. Green, M. Petre, et al., “Usability analysis of visual programming
environments: A ’cognitive dimensions’ framework”, Journal of visual lan-
guages and computing, vol. 7, no. 2, pp. 131–174, 1996.

[15] A. J. Ko and B. A. Myers, “Development and evaluation of a model of
programming errors”, in Human Centric Computing Languages and Envi-
ronments, 2003. Proceedings. 2003 IEEE Symposium on, IEEE, 2003, pp. 7–
14.

[16] J. Blow, “Game development: Harder than you think”, Queue, vol. 1, no. 10,
p. 28, 2004. [Online]. Available: http://faculty.salisbury.edu/
~xswang/Research/papers/game/queuefeb04/blow.pdf.

[17] T. G. McCollin and T. Morell. (2019). A Game of Paradigms: A Usability
Study of Functional Idioms in Gameplay Programming. English, [Online].
Available: https://morell.site/ (visited on May 27, 2019).

[18] M. R. Andersen, T. S. Jensen, T. G. McCollin, T. Morell, and D. van Bol-
huis. (2019). Unity F# Introduction. Danish, [Online]. Available: https:
//sppt-2019.github.io/unity-fsharp-introduction/ (visited
on May 27, 2019).

[19] M. Abbadi. (2015). Casanova-mk2. English, [Online]. Available: https:
//github.com/vs-team/casanova-mk2/blob/master/Unity/
Casanova%20template%20and%20binaries/Samples/MyFirstSample/
Assets/Editor/CasanovaAssetsImporter.cs (visited on Feb. 27,
2019).

[20] G. Maggiore, A. Spanò, R. Orsini, G. Costantini, M. Bugliesi, and M. Ab-
badi, “Designing casanova: A language for games”, in Advances in Computer
Games, H. J. van den Herik and A. Plaat, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 320–332, isbn: 978-3-642-31866-5.

57

https://github.com/bryanedds/Nu/blob/master/Nu/Nu.Documentation/Nu%20Game%20Engine.pdf
https://github.com/bryanedds/Nu/blob/master/Nu/Nu.Documentation/Nu%20Game%20Engine.pdf
https://github.com/bryanedds/Nu/blob/master/Nu/Nu.Documentation/Nu%20Game%20Engine.pdf
http://hackage.haskell.org/package/helm
https://github.com/arcadia-unity/Arcadia
https://api.unrealengine.com/udk/Three/UnrealScriptHome.html
https://api.unrealengine.com/udk/Three/UnrealScriptHome.html
https://api.unrealengine.com/udk/Three/KismetHome.html
https://api.unrealengine.com/udk/Three/KismetHome.html
http://faculty.salisbury.edu/~xswang/Research/papers/game/queuefeb04/blow.pdf
http://faculty.salisbury.edu/~xswang/Research/papers/game/queuefeb04/blow.pdf
https://morell.site/
https://sppt-2019.github.io/unity-fsharp-introduction/
https://sppt-2019.github.io/unity-fsharp-introduction/
https://github.com/vs-team/casanova-mk2/blob/master/Unity/Casanova%20template%20and%20binaries/Samples/MyFirstSample/Assets/Editor/CasanovaAssetsImporter.cs
https://github.com/vs-team/casanova-mk2/blob/master/Unity/Casanova%20template%20and%20binaries/Samples/MyFirstSample/Assets/Editor/CasanovaAssetsImporter.cs
https://github.com/vs-team/casanova-mk2/blob/master/Unity/Casanova%20template%20and%20binaries/Samples/MyFirstSample/Assets/Editor/CasanovaAssetsImporter.cs
https://github.com/vs-team/casanova-mk2/blob/master/Unity/Casanova%20template%20and%20binaries/Samples/MyFirstSample/Assets/Editor/CasanovaAssetsImporter.cs

[21] G. Maggiore, A. Spanò, R. Orsini, M. Bugliesi, M. Abbadi, and E. Steffin-
longo, “A formal specification for casanova, a language for computer games”,
Jun. 2012. doi: 10.1145/2305484.2305533.

[22] G. N. Amador and A. J. Gomes, “Jot: A modular multi-purpose minimalistic
massively multiplayer online game engine”, 2014. [Online]. Available: http:
//vj2016.di.ubi.pt/Amador_JOT_57-62.pdf.

[23] A. Courtney, H. Nilsson, and J. Peterson, “The yampa arcade”, in Proceed-
ings of the 2003 ACM SIGPLAN Workshop on Haskell, ser. Haskell ’03, Up-
psala, Sweden: ACM, 2003, pp. 7–18, isbn: 1-58113-758-3. doi: 10.1145/
871895.871897. [Online]. Available: http://doi.acm.org/10.
1145/871895.871897.

[24] TIOBE. (2019). Tiobe index. English, [Online]. Available: www.tiobe.com
(visited on May 27, 2019).

[25] Haskell. (2019). Main page. English, Haskell.org, [Online]. Available: https:
//wiki.haskell.org (visited on May 31, 2019).

[26] T. Hickey and R. Hickey. (2018). Clojure - rationale. English, [Online]. Avail-
able: https://clojure.org/about/rationale (visited on Nov. 29,
2018).

[27] F. S. Foundation. (2019). Clojure - main page. English, [Online]. Available:
https://fsharp.org/ (visited on May 31, 2019).

[28] Crytek GmbH. (2018). Cryengine | the complete solution for next generation
game development by crytek. English, Crytek GmbH, [Online]. Available:
https://www.cryengine.com/ (visited on Oct. 31, 2018).

[29] L. Kokemohr. (2017). Lars kokemohr using f# in godot 3. English, [On-
line]. Available: www.lkokemohr.de/fsharp_godot.html (visited on
Feb. 14, 2019).

[30] A. M. Juan Linietsky and the Godot Community. (2019). Godot engine -
main. English, [Online]. Available: https://godotengine.org (visited
on May 31, 2019).

[31] Unity Technologies. (2019). Extending the editor. English, [Online]. Avail-
able: https://docs.unity3d.com/Manual/ExtendingTheEditor.
html (visited on Feb. 22, 2019).

[32] MonoUE and M. Hutchinson. (2018). MonoUE | Mono for Unreal Engine
is a plugin for Unreal Engine that allows writing gameplay code with C#
and F#. English, [Online]. Available: https://mono-ue.github.io
(visited on Dec. 13, 2018).

[33] Unreal Engine. (2019). Plugins. English, [Online]. Available: https://
docs.unrealengine.com/en-us/Programming/Plugins (visited
on Feb. 22, 2019).

[34] Epic Games. (2014). Unreal engine, [Online]. Available: https://github.
com/EpicGames/UnrealEngine.

58

https://doi.org/10.1145/2305484.2305533
http://vj2016.di.ubi.pt/Amador_JOT_57-62.pdf
http://vj2016.di.ubi.pt/Amador_JOT_57-62.pdf
https://doi.org/10.1145/871895.871897
https://doi.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
www.tiobe.com
https://wiki.haskell.org
https://wiki.haskell.org
https://clojure.org/about/rationale
https://fsharp.org/
https://www.cryengine.com/
www.lkokemohr.de/fsharp_godot.html
https://godotengine.org
https://docs.unity3d.com/Manual/ExtendingTheEditor.html
https://docs.unity3d.com/Manual/ExtendingTheEditor.html
https://mono-ue.github.io
https://docs.unrealengine.com/en-us/Programming/Plugins
https://docs.unrealengine.com/en-us/Programming/Plugins
https://github.com/EpicGames/UnrealEngine
https://github.com/EpicGames/UnrealEngine

[35] Unreal Engine. (2019). Main. English, [Online]. Available: https://www.
unrealengine.com/en-US/ (visited on May 31, 2019).

[36] A. Blackwell, M. Burnett, and S. Peyton Jones, “Champagne prototyping:
A research technique for early evaluation of complex end-user programming
systems”, IEEE, Sep. 2004, pp. 47–54. [Online]. Available: https://www.
microsoft.com/en-us/research/publication/champagne-
prototyping-research-technique-early-evaluation-complex-
end-user-programming-systems/.

[37] M. R. Andersen and D. van Bolhuis. (2019). Unity F# Integration. En-
glish, [Online]. Available: https://github.com/sppt-2k19/unity-
fsharp-integration (visited on Feb. 22, 2019).

[38] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The cor-
rect way to summarize benchmark results”, Commun. ACM, vol. 29, no. 3,
pp. 218–221, Mar. 1986, issn: 0001-0782. [Online]. Available: http://doi.
acm.org/10.1145/5666.5673.

[39] P. Sestoft, “Microbenchmarks in java and c#”, Lecture Notes, Sept, 2013.
[Online]. Available: https://itu.dk/~sestoft/papers/benchmarking.
pdf.

[40] Wikipedia. (Oct. 2018). Sieve of eratosthenes. English, Wikipedia, [Online].
Available: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
(visited on Nov. 9, 2018).

[41] G. V. Wilson and R. B. Irvin, Assessing and comparing the usability of
parallel programming systems. Citeseer, 1995.

[42] R. Cardoso, M. Zatelli, J. Hübner, and R. Bordini, “Towards benchmarking
actor- and agent-based programming languages”, Oct. 2013. doi: 10.1145/
2541329.2541339.

[43] S. Nanz, S. West, K. S. Da Silveira, and B. Meyer, “Benchmarking usability
and performance of multicore languages”, in Empirical Software Engineering
and Measurement, 2013 ACM/IEEE International Symposium on, IEEE,
2013, pp. 183–192.

[44] J. Y. Gil, K. Lenz, and Y. Shimron, “A microbenchmark case study and
lessons learned”, in Proceedings of the compilation of the co-located work-
shops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, and
VMIL’11, ACM, 2011, pp. 297–308.

[45] G. Ingargiola. (Feb. 2012). Cis587: The wumpus world. English, Temple Uni-
versity, [Online]. Available: https://cis.temple.edu/~giorgio/
cis587/readings/wumpus.shtml (visited on Nov. 14, 2018).

59

https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.microsoft.com/en-us/research/publication/champagne-prototyping-research-technique-early-evaluation-complex-end-user-programming-systems/
https://www.microsoft.com/en-us/research/publication/champagne-prototyping-research-technique-early-evaluation-complex-end-user-programming-systems/
https://www.microsoft.com/en-us/research/publication/champagne-prototyping-research-technique-early-evaluation-complex-end-user-programming-systems/
https://www.microsoft.com/en-us/research/publication/champagne-prototyping-research-technique-early-evaluation-complex-end-user-programming-systems/
https://github.com/sppt-2k19/unity-fsharp-integration
https://github.com/sppt-2k19/unity-fsharp-integration
http://doi.acm.org/10.1145/5666.5673
http://doi.acm.org/10.1145/5666.5673
https://itu.dk/~sestoft/papers/benchmarking.pdf
https://itu.dk/~sestoft/papers/benchmarking.pdf
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://doi.org/10.1145/2541329.2541339
https://doi.org/10.1145/2541329.2541339
https://cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
https://cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml

[46] M. McCutchen, J. Borghouts, A. Gordon, S. Peyton Jones, and A. Sarkar,
“Elastic sheet-defined functions: Generalising spreadsheet functions to variable-
size input arrays”, Nov. 2018, [Online]. Available: https://www.microsoft.
com/en-us/research/publication/elastic-sheet-defined-
functions-generalising-spreadsheet-functions-to-variable-
size-input-arrays/.

[47] Giant Bomb. (2019). Space Invaders. English, [Online]. Available: https:
//www.giantbomb.com/space-invaders/3030-5099/ (visited on
Feb. 22, 2019).

[48] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load in-
dex): Results of empirical and theoretical research”, in Human Mental Work-
load, ser. Advances in Psychology, P. A. Hancock and N. Meshkati, Eds.,
vol. 52, North-Holland, 1988, pp. 139–183. doi: https://doi.org/10.
1016/S0166-4115(08)62386-9. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0166411508623869.

[49] V. Guana, E. Stroulia, and V. Nguyen, “Building a game engine: A tale
of modern model-driven engineering”, in Games and Software Engineer-
ing (GAS), 2015 IEEE/ACM 4th International Workshop on, IEEE, 2015,
pp. 15–21.

[50] R. Nystrom, Game programming patterns. Genever Benning, 2014.
[51] K. Stolk. (2017). Anders Hejlsberg on Modern Compiler Construction, Youtube,

[Online]. Available: https://youtu.be/wSdV1M7n4gQ.
[52] J. Nielsen. (2012). Quantitative studies: How many users to test? English,

Nielsen Norman Group, [Online]. Available: https://www.nngroup.
com/articles/quantitative-studies-how-many-users/ (vis-
ited on May 22, 2019).

[53] ——, (2012). How many test users in a usability study? English, Nielsen
Norman Group, [Online]. Available: https : / / www . nngroup . com /
articles/how-many-test-users/ (visited on May 22, 2019).

[54] J. Kjeldskov, M. B. Skov, and J. Stage, “Instant data analysis: Conducting
usability evaluations in a day”, in Proceedings of the Third Nordic Confer-
ence on Human-computer Interaction, ser. NordiCHI ’04, Tampere, Finland:
ACM, 2004, pp. 233–240, isbn: 1-58113-857-1. doi: 10.1145/1028014.
1028050. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
1028014.1028050.

[55] A. Mutel. (2018). Porting the Unity Engine to .NET CoreCLR. English, [On-
line]. Available: https://xoofx.com/blog/2018/04/06/porting-
unity-to-coreclr/ (visited on May 27, 2019).

[56] A. BinSubaih, S. Maddock, and D. Romano, “A survey of ’game’ portability”,
May 2019.

60

https://www.microsoft.com/en-us/research/publication/elastic-sheet-defined-functions-generalising-spreadsheet-functions-to-variable-size-input-arrays/
https://www.microsoft.com/en-us/research/publication/elastic-sheet-defined-functions-generalising-spreadsheet-functions-to-variable-size-input-arrays/
https://www.microsoft.com/en-us/research/publication/elastic-sheet-defined-functions-generalising-spreadsheet-functions-to-variable-size-input-arrays/
https://www.microsoft.com/en-us/research/publication/elastic-sheet-defined-functions-generalising-spreadsheet-functions-to-variable-size-input-arrays/
https://www.giantbomb.com/space-invaders/3030-5099/
https://www.giantbomb.com/space-invaders/3030-5099/
https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9
http://www.sciencedirect.com/science/article/pii/S0166411508623869
http://www.sciencedirect.com/science/article/pii/S0166411508623869
https://youtu.be/wSdV1M7n4gQ
https://www.nngroup.com/articles/quantitative-studies-how-many-users/
https://www.nngroup.com/articles/quantitative-studies-how-many-users/
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/
https://doi.org/10.1145/1028014.1028050
https://doi.org/10.1145/1028014.1028050
http://doi.acm.org/10.1145/1028014.1028050
http://doi.acm.org/10.1145/1028014.1028050
https://xoofx.com/blog/2018/04/06/porting-unity-to-coreclr/
https://xoofx.com/blog/2018/04/06/porting-unity-to-coreclr/

Appendix A

Acronyms

AI Artificial Intelligence

API Application Programming Interface

CIL Common Intermediate Language

DLL Dynamic Link Library

ECS Entity Component System

FRP Functional Reactive Programming

VPL Visual Programming Language

GCC GNU Compiler Collection

GHC Glasgow Haskell Compiler

JVM Java Virtual Machine

OS Operating System

CSV Comma Separated Values

GC Garbage Collection

IDE Integrated Development Environment

JIT Just-in-Time

STM Software Transactional Memory

61

Appendix B

Microbenchmark Data

62

C
debug dotnet

F# debug dotnet
C

release dotnet
F# release dotnet

Test
M

ean
D

eviation
C

ount
Test

M
ean

D
eviation

C
ount

Test
M

ean
D

eviation
C

ount
Test

M
ean

D
eviation

C
ount

M
apR

educe Foreach
841.087

17.926
524288

M
apR

educe A
rray

1024.932
13.612

262144
M

apR
educe Foreach

786.17
0.814

524288
M

apR
educe A

rray
878.114

3.001
524288

M
apR

educe Foreach
843.568

16.226
524288

M
apR

educe A
rray

1067.726
56.168

262144
M

apR
educe Foreach

791.497
5.013

524288
M

apR
educe A

rray
878.365

4.277
524288

M
apR

educe Foreach
831.242

8.698
524288

M
apR

educe A
rray

1014.008
7.638

262144
M

apR
educe Foreach

787.622
5.497

524288
M

apR
educe A

rray
883.425

13.016
524288

M
apR

educe Foreach
833.056

8.608
524288

M
apR

educe A
rray

1009.933
5.666

262144
M

apR
educe Foreach

790.261
4.573

524288
M

apR
educe A

rray
882.043

17.828
524288

M
apR

educe Foreach
828.946

11.334
524288

M
apR

educe A
rray

1006.983
8.939

262144
M

apR
educe Foreach

786.235
2.13

524288
M

apR
educe A

rray
885.052

13.902
524288

M
apR

educe Linq
1035.244

24.657
262144

M
apR

educe S
eq

1204.058
12.089

262144
M

apR
educe Linq

985.219
15.621

262144
M

apR
educe S

eq
1201.914

15.89
262144

M
apR

educe Linq
1011.744

10.155
262144

M
apR

educe S
eq

1190.614
3.79

262144
M

apR
educe Linq

994.457
19.324

262144
M

apR
educe S

eq
1186.597

1.99
262144

M
apR

educe Linq
1012.659

12.876
262144

M
apR

educe S
eq

1198.995
12.879

262144
M

apR
educe Linq

982.25
8.225

262144
M

apR
educe S

eq
1214.715

19.617
262144

M
apR

educe Linq
1008.993

8.106
262144

M
apR

educe S
eq

1193.162
7.223

262144
M

apR
educe Linq

995.127
17.484

262144
M

apR
educe S

eq
1211.072

10.033
262144

M
apR

educe Linq
1015.716

11.982
262144

M
apR

educe S
eq

1197.153
13.158

262144
M

apR
educe Linq

998.691
18.399

262144
M

apR
educe S

eq
1221.769

20.157
262144

M
apR

educe S
truct

142.578
2.098

2097152
M

apR
educe U

nions
281.43

6.545
1048576

M
apR

educe S
truct

105.398
1.163

4194304
M

apR
educe U

nions
77.993

1.214
4194304

M
apR

educe S
truct

140.094
1.4

2097152
M

apR
educe U

nions
278.606

1.1
1048576

M
apR

educe S
truct

105.507
0.988

4194304
M

apR
educe U

nions
78.052

0.448
4194304

M
apR

educe S
truct

140.158
0.753

2097152
M

apR
educe U

nions
280.025

3.283
1048576

M
apR

educe S
truct

104.856
0.226

4194304
M

apR
educe U

nions
77.105

0.465
4194304

M
apR

educe S
truct

139.908
0.75

2097152
M

apR
educe U

nions
278.342

1.655
1048576

M
apR

educe S
truct

105.285
1.153

4194304
M

apR
educe U

nions
77.287

0.842
4194304

M
apR

educe S
truct

144.327
6.362

2097152
M

apR
educe U

nions
279.437

2.449
1048576

M
apR

educe S
truct

105.601
1.191

4194304
M

apR
educe U

nions
84.184

8.303
4194304

S
estoft M

ultiply
16.322

0.083
16777216

S
estoft M

ultiply
25.337

0.073
16777216

S
estoft M

ultiply
10.567

0.079
33554432

S
estoft M

ultiply
10.879

0.13
33554432

S
estoft M

ultiply
16.659

0.591
16777216

S
estoft M

ultiply
25.97

0.118
16777216

S
estoft M

ultiply
10.61

0.099
33554432

S
estoft M

ultiply
10.756

0.087
33554432

S
estoft M

ultiply
16.55

0.159
16777216

S
estoft M

ultiply
26.062

0.418
16777216

S
estoft M

ultiply
10.528

0.052
33554432

S
estoft M

ultiply
10.724

0.083
33554432

S
estoft M

ultiply
16.589

0.269
16777216

S
estoft M

ultiply
26.196

0.464
16777216

S
estoft M

ultiply
10.515

0.042
33554432

S
estoft M

ultiply
10.703

0.079
33554432

S
estoft M

ultiply
16.285

0.107
16777216

S
estoft M

ultiply
26.091

0.256
16777216

S
estoft M

ultiply
10.63

0.108
33554432

S
estoft M

ultiply
10.776

0.227
33554432

P
rim

es
2139.125

14.377
131072

P
rim

es
4828.185

91.102
65536

P
rim

es
1405.523

7.895
262144

P
rim

es
3646.698

36.125
131072

P
rim

es
2163.568

45.122
131072

P
rim

es
4789.545

12.776
65536

P
rim

es
1403.528

14.909
262144

P
rim

es
4784.644

765.349
131072

P
rim

es
2189.421

73.126
131072

P
rim

es
4769.418

26.41
65536

P
rim

es
1393.515

16.515
262144

P
rim

es
4404.627

185.864
65536

P
rim

es
2146.107

12.003
131072

P
rim

es
4797.351

44.35
65536

P
rim

es
1401.289

12.052
262144

P
rim

es
4509.219

405.34
65536

P
rim

es
2164.624

20.142
131072

P
rim

es
4784.08

33.395
65536

P
rim

es
1404.408

14.36
262144

P
rim

es
3612.145

32.185
131072

R
andom

izeA
rray

2712.374
12.212

131072
R

andom
izeA

rray
2926.532

26.359
131072

R
andom

izeA
rray

2534.127
22.94

131072
R

andom
izeA

rray
2598.917

25.41
131072

R
andom

izeA
rray

2766.126
95.508

131072
R

andom
izeA

rray
2923.712

33.524
131072

R
andom

izeA
rray

2555.347
26.609

131072
R

andom
izeA

rray
2584.947

21.786
131072

R
andom

izeA
rray

2705.866
9.04

131072
R

andom
izeA

rray
2912.191

11.882
131072

R
andom

izeA
rray

2533.987
17.861

131072
R

andom
izeA

rray
2568.451

8.066
131072

R
andom

izeA
rray

2724.621
24.89

131072
R

andom
izeA

rray
2923.715

24.52
131072

R
andom

izeA
rray

2556.543
31.634

131072
R

andom
izeA

rray
2587.906

23.584
131072

R
andom

izeA
rray

2701.603
15.234

131072
R

andom
izeA

rray
2922.234

7.312
131072

R
andom

izeA
rray

2610.127
74.527

131072
R

andom
izeA

rray
2581.496

26.436
131072

G
am

eO
fLife

47912.363
325.375

8192
G

am
eO

fLife
68808.652

409.302
4096

G
am

eO
fLife

28183.036
133.557

16384
G

am
eO

fLife
23607.209

345.748
16384

G
am

eO
fLife

47909.119
161.095

8192
G

am
eO

fLife
69403.774

1450.791
4096

G
am

eO
fLife

28001.655
177.81

16384
G

am
eO

fLife
23308.954

75.01
16384

G
am

eO
fLife

48300.581
620.044

8192
G

am
eO

fLife
69120.977

339.178
4096

G
am

eO
fLife

28009.982
290.076

16384
G

am
eO

fLife
23302.052

372.771
16384

G
am

eO
fLife

47831.526
111.985

8192
G

am
eO

fLife
68734.351

581.746
4096

G
am

eO
fLife

27924.346
229.314

16384
G

am
eO

fLife
23442.487

121.45
16384

G
am

eO
fLife

48786.008
1220.741

8192
G

am
eO

fLife
69185.923

876.984
4096

G
am

eO
fLife

28202.855
343.77

16384
G

am
eO

fLife
23354.747

197.808
16384

InvasionP
ercolation

15313.796
231.198

16384
InvasionP

ercolation
23400.906

189.726
16384

InvasionP
ercolation

12535.422
135.108

32768
InvasionP

ercolation
17451.488

182.249
16384

InvasionP
ercolation

15210.797
176.75

32768
InvasionP

ercolation
23166.407

104.484
16384

InvasionP
ercolation

12515.507
96.858

32768
InvasionP

ercolation
17521.312

158.248
16384

InvasionP
ercolation

15131.755
36.055

32768
InvasionP

ercolation
23246.636

203.058
16384

InvasionP
ercolation

12395.677
34.215

32768
InvasionP

ercolation
17462.097

185.593
16384

InvasionP
ercolation

15114.775
34.942

32768
InvasionP

ercolation
23685.072

797.292
16384

InvasionP
ercolation

12464.341
109.683

32768
InvasionP

ercolation
17605.703

394.963
16384

InvasionP
ercolation

15205.361
89.946

32768
InvasionP

ercolation
23215.316

207.034
16384

InvasionP
ercolation

12497.908
110.565

32768
InvasionP

ercolation
17305.389

99.563
16384

FibonacciR
ecursive

2768.876
11.166

131072
FibonacciR

ecursive
529.299

3.172
524288

FibonacciR
ecursive

120.652
1.209

2097152
FibonacciR

ecursive
93.491

0.939
4194304

FibonacciR
ecursive

2798.858
55.522

131072
FibonacciR

ecursive
527.683

5.348
524288

FibonacciR
ecursive

119.845
1.404

2097152
FibonacciR

ecursive
91.438

0.81
4194304

FibonacciR
ecursive

2799.972
11.209

131072
FibonacciR

ecursive
527.009

2.112
524288

FibonacciR
ecursive

120.292
1.838

2097152
FibonacciR

ecursive
90.57

0.493
4194304

FibonacciR
ecursive

2786.775
25.538

131072
FibonacciR

ecursive
525.575

1.469
524288

FibonacciR
ecursive

118.887
1.487

4194304
FibonacciR

ecursive
91.269

0.856
4194304

FibonacciR
ecursive

2785.763
47.991

131072
FibonacciR

ecursive
524.536

1.538
524288

FibonacciR
ecursive

119.404
1.138

4194304
FibonacciR

ecursive
91.771

1.675
4194304

FibonacciIterative
614.935

1.662
524288

FibonacciIterative
692.11

3.065
524288

FibonacciIterative
90.881

0.437
4194304

FibonacciIterative
95.982

0.11
4194304

FibonacciIterative
615.412

4.615
524288

FibonacciIterative
694.08

4.78
524288

FibonacciIterative
91.11

0.457
4194304

FibonacciIterative
99.511

0.812
4194304

FibonacciIterative
617.042

5.201
524288

FibonacciIterative
695.181

4.406
524288

FibonacciIterative
90.576

0.59
4194304

FibonacciIterative
98.969

0.872
4194304

FibonacciIterative
616.262

3.858
524288

FibonacciIterative
691.554

1.987
524288

FibonacciIterative
91.074

0.677
4194304

FibonacciIterative
99.675

1.255
4194304

FibonacciIterative
615.43

1.573
524288

FibonacciIterative
692.185

1.147
524288

FibonacciIterative
92.241

3.157
4194304

FibonacciIterative
98.773

0.382
4194304

S
caleV

ector2D
36.754

0.866
8388608

S
caleV

ector2D
44.562

0.779
8388608

S
caleV

ector2D
6.955

0.024
67108864

S
caleV

ector2D
8.214

0.146
33554432

S
caleV

ector2D
36.415

0.1
8388608

S
caleV

ector2D
43.977

0.177
8388608

S
caleV

ector2D
7.031

0.061
67108864

S
caleV

ector2D
7.949

0.06
33554432

S
caleV

ector2D
36.209

0.265
8388608

S
caleV

ector2D
43.904

0.185
8388608

S
caleV

ector2D
7.033

0.038
67108864

S
caleV

ector2D
8.121

0.176
33554432

S
caleV

ector2D
36.582

0.338
8388608

S
caleV

ector2D
43.994

0.15
8388608

S
caleV

ector2D
7.106

0.252
67108864

S
caleV

ector2D
7.938

0.067
33554432

S
caleV

ector2D
36.557

0.436
8388608

S
caleV

ector2D
43.984

0.238
8388608

S
caleV

ector2D
6.999

0.054
67108864

S
caleV

ector2D
7.935

0.066
33554432

S
caleV

ector3D
41.659

0.155
8388608

S
caleV

ector3D
51.633

0.361
8388608

S
caleV

ector3D
4.18

0.028
67108864

S
caleV

ector3D
4.94

0.07
67108864

S
caleV

ector3D
41.774

0.146
8388608

S
caleV

ector3D
51.647

0.215
8388608

S
caleV

ector3D
4.169

0.043
67108864

S
caleV

ector3D
4.534

0.049
67108864

S
caleV

ector3D
41.85

0.525
8388608

S
caleV

ector3D
64.081

6.845
4194304

S
caleV

ector3D
4.158

0.036
67108864

S
caleV

ector3D
4.583

0.068
67108864

S
caleV

ector3D
41.862

0.291
8388608

S
caleV

ector3D
51.779

0.391
8388608

S
caleV

ector3D
4.149

0.043
67108864

S
caleV

ector3D
4.582

0.048
67108864

S
caleV

ector3D
41.704

0.175
8388608

S
caleV

ector3D
51.535

0.174
8388608

S
caleV

ector3D
4.186

0.053
67108864

S
caleV

ector3D
4.573

0.04
67108864

M
ultiplyV

ector2D
20.431

0.106
16777216

M
ultiplyV

ector2D
30.386

0.172
8388608

M
ultiplyV

ector2D
6.228

0.015
67108864

M
ultiplyV

ector2D
6.72

0.255
67108864

M
ultiplyV

ector2D
20.605

0.248
16777216

M
ultiplyV

ector2D
30.625

0.648
8388608

M
ultiplyV

ector2D
6.318

0.058
67108864

M
ultiplyV

ector2D
6.334

0.025
67108864

M
ultiplyV

ector2D
20.492

0.044
16777216

M
ultiplyV

ector2D
30.397

0.182
8388608

M
ultiplyV

ector2D
6.264

0.055
67108864

M
ultiplyV

ector2D
6.29

0.021
67108864

M
ultiplyV

ector2D
20.498

0.036
16777216

M
ultiplyV

ector2D
30.457

0.214
8388608

M
ultiplyV

ector2D
6.251

0.042
67108864

M
ultiplyV

ector2D
6.309

0.029
67108864

M
ultiplyV

ector2D
20.585

0.125
16777216

M
ultiplyV

ector2D
30.445

0.205
8388608

M
ultiplyV

ector2D
6.248

0.071
67108864

M
ultiplyV

ector2D
6.39

0.034
67108864

M
ultiplyV

ector3D
37.005

0.474
8388608

M
ultiplyV

ector3D
45.952

0.302
8388608

M
ultiplyV

ector3D
4.18

0.117
67108864

M
ultiplyV

ector3D
5.258

0.03
67108864

M
ultiplyV

ector3D
36.785

0.296
8388608

M
ultiplyV

ector3D
45.83

0.166
8388608

M
ultiplyV

ector3D
4.173

0.034
67108864

M
ultiplyV

ector3D
4.997

0.196
67108864

M
ultiplyV

ector3D
38.374

3.123
8388608

M
ultiplyV

ector3D
45.836

0.14
8388608

M
ultiplyV

ector3D
4.21

0.046
67108864

M
ultiplyV

ector3D
4.875

0.011
67108864

M
ultiplyV

ector3D
36.987

0.334
8388608

M
ultiplyV

ector3D
45.988

0.227
8388608

M
ultiplyV

ector3D
4.191

0.035
67108864

M
ultiplyV

ector3D
4.935

0.037
67108864

M
ultiplyV

ector3D
36.719

0.092
8388608

M
ultiplyV

ector3D
46.004

0.58
8388608

M
ultiplyV

ector3D
4.157

0.023
67108864

M
ultiplyV

ector3D
4.985

0.088
67108864

TranslateV
ector2D

20.088
0.057

16777216
TranslateV

ector2D
30.427

0.203
8388608

TranslateV
ector2D

6.211
0.03

67108864
TranslateV

ector2D
7.927

0.079
33554432

TranslateV
ector2D

20.113
0.042

16777216
TranslateV

ector2D
30.414

0.177
8388608

TranslateV
ector2D

6.179
0.035

67108864
TranslateV

ector2D
7.629

0.147
33554432

TranslateV
ector2D

20.206
0.123

16777216
TranslateV

ector2D
30.089

0.092
8388608

TranslateV
ector2D

6.216
0.089

67108864
TranslateV

ector2D
7.564

0.07
33554432

TranslateV
ector2D

20.149
0.076

16777216
TranslateV

ector2D
30.494

0.27
8388608

TranslateV
ector2D

6.16
0.037

67108864
TranslateV

ector2D
7.603

0.119
33554432

TranslateV
ector2D

20.162
0.13

16777216
TranslateV

ector2D
30.122

0.165
8388608

TranslateV
ector2D

6.191
0.052

67108864
TranslateV

ector2D
7.547

0.04
33554432

TranslateV
ector3D

35.977
0.081

8388608
TranslateV

ector3D
46.573

0.456
8388608

TranslateV
ector3D

4.147
0.031

67108864
TranslateV

ector3D
4.889

0.011
67108864

TranslateV
ector3D

35.988
0.075

8388608
TranslateV

ector3D
46.414

0.29
8388608

TranslateV
ector3D

4.171
0.009

67108864
TranslateV

ector3D
4.509

0.016
67108864

TranslateV
ector3D

36.229
0.331

8388608
TranslateV

ector3D
46.396

0.237
8388608

TranslateV
ector3D

4.128
0.017

67108864
TranslateV

ector3D
4.54

0.067
67108864

TranslateV
ector3D

36.561
0.822

8388608
TranslateV

ector3D
46.23

0.075
8388608

TranslateV
ector3D

4.154
0.028

67108864
TranslateV

ector3D
4.551

0.058
67108864

TranslateV
ector3D

36.369
0.656

8388608
TranslateV

ector3D
46.5

0.274
8388608

TranslateV
ector3D

4.213
0.048

67108864
TranslateV

ector3D
4.523

0.06
67108864

S
ubtractV

ector2D
20.174

0.055
16777216

S
ubtractV

ector2D
30.233

0.281
16777216

S
ubtractV

ector2D
6.17

0.055
67108864

S
ubtractV

ector2D
6.303

0.04
67108864

S
ubtractV

ector2D
20.425

0.255
16777216

S
ubtractV

ector2D
29.904

0.19
8388608

S
ubtractV

ector2D
6.164

0.033
67108864

S
ubtractV

ector2D
6.178

0.127
67108864

S
ubtractV

ector2D
20.285

0.189
16777216

S
ubtractV

ector2D
30.056

0.319
16777216

S
ubtractV

ector2D
6.275

0.078
67108864

S
ubtractV

ector2D
6.159

0.055
67108864

S
ubtractV

ector2D
20.289

0.165
16777216

S
ubtractV

ector2D
30.197

0.275
8388608

S
ubtractV

ector2D
6.184

0.079
67108864

S
ubtractV

ector2D
6.115

0.033
67108864

S
ubtractV

ector2D
20.106

0.079
16777216

S
ubtractV

ector2D
29.999

0.18
8388608

S
ubtractV

ector2D
6.199

0.058
67108864

S
ubtractV

ector2D
6.103

0.033
67108864

S
ubtractV

ector3D
20.078

0.051
16777216

S
ubtractV

ector3D
45.07

0.108
8388608

S
ubtractV

ector3D
6.179

0.034
67108864

S
ubtractV

ector3D
5.282

0.048
67108864

S
ubtractV

ector3D
20.115

0.179
16777216

S
ubtractV

ector3D
45.045

0.122
8388608

S
ubtractV

ector3D
6.155

0.021
67108864

S
ubtractV

ector3D
4.913

0.053
67108864

S
ubtractV

ector3D
20.282

0.448
16777216

S
ubtractV

ector3D
45.156

0.222
8388608

S
ubtractV

ector3D
6.204

0.074
67108864

S
ubtractV

ector3D
4.896

0.033
67108864

S
ubtractV

ector3D
20.177

0.231
16777216

S
ubtractV

ector3D
45.233

0.329
8388608

S
ubtractV

ector3D
6.194

0.131
67108864

S
ubtractV

ector3D
4.901

0.048
67108864

S
ubtractV

ector3D
20.155

0.107
16777216

S
ubtractV

ector3D
45.064

0.209
8388608

S
ubtractV

ector3D
6.178

0.065
67108864

S
ubtractV

ector3D
4.936

0.077
67108864

LengthV
ector2D

18.669
0.121

16777216
LengthV

ector2D
24.265

0.12
16777216

LengthV
ector2D

4.677
0.033

67108864
LengthV

ector2D
5.113

0.091
67108864

LengthV
ector2D

18.607
0.057

16777216
LengthV

ector2D
24.214

0.109
16777216

LengthV
ector2D

4.708
0.02

67108864
LengthV

ector2D
5.022

0.06
67108864

LengthV
ector2D

18.77
0.212

16777216
LengthV

ector2D
24.232

0.301
16777216

LengthV
ector2D

4.693
0.007

67108864
LengthV

ector2D
5.021

0.04
67108864

LengthV
ector2D

18.698
0.119

16777216
LengthV

ector2D
24.358

0.294
16777216

LengthV
ector2D

4.688
0.04

67108864
LengthV

ector2D
5.032

0.047
67108864

LengthV
ector2D

18.72
0.23

16777216
LengthV

ector2D
24.208

0.198
16777216

LengthV
ector2D

4.699
0.028

67108864
LengthV

ector2D
5.097

0.132
67108864

LengthV
ector3D

19.394
0.295

16777216
LengthV

ector3D
24.973

0.115
16777216

LengthV
ector3D

4.173
0.034

67108864
LengthV

ector3D
3.807

0.116
67108864

LengthV
ector3D

19.386
0.571

16777216
LengthV

ector3D
24.912

0.119
16777216

LengthV
ector3D

4.174
0.046

67108864
LengthV

ector3D
3.758

0.017
67108864

LengthV
ector3D

19.346
0.075

16777216
LengthV

ector3D
24.961

0.156
16777216

LengthV
ector3D

4.155
0.037

67108864
LengthV

ector3D
3.77

0.029
67108864

LengthV
ector3D

19.321
0.128

16777216
LengthV

ector3D
24.918

0.107
16777216

LengthV
ector3D

4.14
0.023

67108864
LengthV

ector3D
3.75

0.017
67108864

LengthV
ector3D

19.415
0.314

16777216
LengthV

ector3D
24.897

0.099
16777216

LengthV
ector3D

4.142
0.013

67108864
LengthV

ector3D
3.834

0.059
67108864

D
otP

roductV
ector2D

16.475
0.303

16777216
D

otP
roductV

ector2D
23.738

0.241
16777216

D
otP

roductV
ector2D

4.516
0.028

67108864
D

otP
roductV

ector2D
4.164

0.051
67108864

D
otP

roductV
ector2D

16.412
0.186

16777216
D

otP
roductV

ector2D
23.543

0.153
16777216

D
otP

roductV
ector2D

4.586
0.077

67108864
D

otP
roductV

ector2D
4.557

0.047
67108864

D
otP

roductV
ector2D

16.352
0.058

16777216
D

otP
roductV

ector2D
23.569

0.302
16777216

D
otP

roductV
ector2D

4.526
0.023

67108864
D

otP
roductV

ector2D
4.158

0.033
67108864

D
otP

roductV
ector2D

16.34
0.124

16777216
D

otP
roductV

ector2D
23.448

0.136
16777216

D
otP

roductV
ector2D

4.54
0.036

67108864
D

otP
roductV

ector2D
4.523

0.064
67108864

D
otP

roductV
ector2D

16.362
0.062

16777216
D

otP
roductV

ector2D
23.191

0.285
16777216

D
otP

roductV
ector2D

4.582
0.065

67108864
D

otP
roductV

ector2D
4.139

0.026
67108864

D
otP

roductV
ector3D

16.895
0.1

16777216
D

otP
roductV

ector3D
34.327

0.136
8388608

D
otP

roductV
ector3D

4.185
0.063

67108864
D

otP
roductV

ector3D
3.763

0.025
67108864

D
otP

roductV
ector3D

16.913
0.076

16777216
D

otP
roductV

ector3D
35.06

0.697
8388608

D
otP

roductV
ector3D

4.168
0.054

67108864
D

otP
roductV

ector3D
3.771

0.036
67108864

D
otP

roductV
ector3D

16.879
0.082

16777216
D

otP
roductV

ector3D
35.031

0.536
8388608

D
otP

roductV
ector3D

4.144
0.033

67108864
D

otP
roductV

ector3D
3.757

0.025
67108864

D
otP

roductV
ector3D

18.937
2.09

16777216
D

otP
roductV

ector3D
34.419

0.174
8388608

D
otP

roductV
ector3D

4.254
0.11

67108864
D

otP
roductV

ector3D
3.801

0.071
67108864

D
otP

roductV
ector3D

16.964
0.081

16777216
D

otP
roductV

ector3D
34.285

0.105
8388608

D
otP

roductV
ector3D

4.153
0.032

67108864
D

otP
roductV

ector3D
3.784

0.036
67108864

C
editor unity

F# editor unity
C

release unity
F# release unity

Test
M

ean
D

eviation
C

ount
Test

M
ean

D
eviation

C
ount

Test
M

ean
D

eviation
C

ount
Test

M
ean

D
eviation

C
ount

M
apR

educe Foreach
3164.587

15.363
131072

M
apR

educe A
rray

3811.875
230.127

131072
M

apR
educe Foreach

1018.475
6.841

262144
M

apR
educe A

rray
1298.441

19.357
262144

M
apR

educe Foreach
3193.387

64.181
131072

M
apR

educe A
rray

3636.335
40.848

131072
M

apR
educe Foreach

1011.843
5.119

262144
M

apR
educe A

rray
1378.75

102.925
262144

M
apR

educe Foreach
3351.121

420.595
131072

M
apR

educe A
rray

3661.75
43.04

131072
M

apR
educe Foreach

1018.703
11.604

262144
M

apR
educe A

rray
1295.649

12.909
262144

M
apR

educe Foreach
3165.949

15.65
131072

M
apR

educe A
rray

3943.603
420.565

65536
M

apR
educe Foreach

1030.809
28.152

262144
M

apR
educe A

rray
1288.887

14.162
262144

M
apR

educe Foreach
3167.574

19.044
131072

M
apR

educe A
rray

3701.37
47.298

131072
M

apR
educe Foreach

1021.479
8.234

262144
M

apR
educe A

rray
1294.176

17.19
262144

M
apR

educe Linq
4120.558

95.981
65536

M
apR

educe S
eq

4873.857
78.192

65536
M

apR
educe Linq

1698.881
29.945

262144
M

apR
educe S

eq
2228.795

93.004
131072

M
apR

educe Linq
4114.522

92.308
65536

M
apR

educe S
eq

4858.675
94.379

65536
M

apR
educe Linq

1710.208
39.441

262144
M

apR
educe S

eq
2277.074

64.762
131072

M
apR

educe Linq
4120.561

54.382
65536

M
apR

educe S
eq

4852.566
80.279

65536
M

apR
educe Linq

1691.499
42.582

262144
M

apR
educe S

eq
2320.62

68.792
131072

M
apR

educe Linq
4087.197

79.096
65536

M
apR

educe S
eq

4822.636
88.193

65536
M

apR
educe Linq

1731.838
107.427

262144
M

apR
educe S

eq
2286.958

42.783
131072

M
apR

educe Linq
4059.504

64.34
65536

M
apR

educe S
eq

4864.76
114.624

65536
M

apR
educe Linq

1717.52
22.71

262144
M

apR
educe S

eq
2259.42

55.52
131072

M
apR

educe S
truct

325.775
2.066

1048576
M

apR
educe U

nions
487.822

3.452
1048576

M
apR

educe S
truct

171.425
1.832

2097152
M

apR
educe U

nions
316.746

4.672
1048576

M
apR

educe S
truct

331.116
18.997

1048576
M

apR
educe U

nions
489.137

10.842
524288

M
apR

educe S
truct

171.935
1.125

2097152
M

apR
educe U

nions
318.839

2.374
1048576

M
apR

educe S
truct

323.903
0.793

1048576
M

apR
educe U

nions
544.872

68.631
524288

M
apR

educe S
truct

172.826
1.312

2097152
M

apR
educe U

nions
322.757

2.037
1048576

M
apR

educe S
truct

323.678
1.439

1048576
M

apR
educe U

nions
500.583

18.614
524288

M
apR

educe S
truct

171.752
0.865

2097152
M

apR
educe U

nions
316.76

5.884
1048576

M
apR

educe S
truct

323.873
1.254

1048576
M

apR
educe U

nions
487.255

5.887
1048576

M
apR

educe S
truct

171.851
0.254

2097152
M

apR
educe U

nions
318.087

2.927
1048576

S
estoft M

ultiply
55.425

0.321
8388608

S
estoft M

ultiply
62.619

0.515
4194304

S
estoft M

ultiply
48.464

0.275
8388608

S
estoft M

ultiply
53.065

0.231
8388608

S
estoft M

ultiply
55.429

0.265
8388608

S
estoft M

ultiply
62.968

0.77
4194304

S
estoft M

ultiply
50.564

3.205
8388608

S
estoft M

ultiply
52.946

0.065
8388608

S
estoft M

ultiply
55.64

0.42
8388608

S
estoft M

ultiply
62.8

0.402
4194304

S
estoft M

ultiply
48.538

0.322
8388608

S
estoft M

ultiply
53.446

0.332
8388608

S
estoft M

ultiply
55.689

0.559
8388608

S
estoft M

ultiply
62.657

0.531
4194304

S
estoft M

ultiply
48.3

0.451
8388608

S
estoft M

ultiply
54.352

2.985
8388608

S
estoft M

ultiply
55.829

0.434
8388608

S
estoft M

ultiply
62.431

0.556
4194304

S
estoft M

ultiply
48.252

0.169
8388608

S
estoft M

ultiply
53.03

0.276
8388608

P
rim

es
10132.123

131.699
32768

P
rim

es
20324.99

569.503
16384

P
rim

es
3684.169

104.678
131072

P
rim

es
8452.111

238.768
32768

P
rim

es
10101.887

104.354
32768

P
rim

es
20081.245

354.162
16384

P
rim

es
3742.526

106.047
131072

P
rim

es
8883.235

89.874
32768

P
rim

es
10150.407

121.193
32768

P
rim

es
22216.256

2753.199
16384

P
rim

es
3742.986

93.652
65536

P
rim

es
8803.849

167.795
32768

P
rim

es
10132.115

110.725
32768

P
rim

es
20130.051

288.94
16384

P
rim

es
3895.292

326.877
131072

P
rim

es
8413.988

361.921
32768

P
rim

es
10095.747

93.919
32768

P
rim

es
20141.995

504.021
16384

P
rim

es
3755.088

170.541
131072

P
rim

es
8829.361

140.399
32768

R
andom

izeA
rray

6575.88
58.54

65536
R

andom
izeA

rray
7097.305

99.746
65536

R
andom

izeA
rray

3201.197
90.282

131072
R

andom
izeA

rray
4153.095

179.54
65536

R
andom

izeA
rray

6591.145
44.984

65536
R

andom
izeA

rray
7060.705

113.015
65536

R
andom

izeA
rray

3348.754
27.72

131072
R

andom
izeA

rray
4244.465

177.662
65536

R
andom

izeA
rray

6966.116
594.971

32768
R

andom
izeA

rray
7036.956

34.983
65536

R
andom

izeA
rray

3275.138
97.445

131072
R

andom
izeA

rray
4349.842

133.79
65536

R
andom

izeA
rray

6618.575
52.626

65536
R

andom
izeA

rray
7109.857

83.25
65536

R
andom

izeA
rray

3324.304
32.371

131072
R

andom
izeA

rray
4284.013

194.005
65536

R
andom

izeA
rray

6615.596
51.122

65536
R

andom
izeA

rray
7469.491

542.426
65536

R
andom

izeA
rray

3332.205
53.62

131072
R

andom
izeA

rray
3253.89

42.284
131072

G
am

eO
fLife

222240.146
1843.336

2048
G

am
eO

fLife
316419.844

5798.59
1024

G
am

eO
fLife

126828.97
10026.121

4096
G

am
eO

fLife
202029.541

3874.481
2048

G
am

eO
fLife

223319.629
4174.32

2048
G

am
eO

fLife
318766.172

3818.383
1024

G
am

eO
fLife

121061.392
618.655

4096
G

am
eO

fLife
202328.018

4789.254
2048

G
am

eO
fLife

223711.621
2596.205

2048
G

am
eO

fLife
318571.289

5135.903
1024

G
am

eO
fLife

121759.248
820.012

2048
G

am
eO

fLife
207980.488

6170.934
2048

G
am

eO
fLife

224389.98
7229.533

2048
G

am
eO

fLife
317786.406

4383.526
1024

G
am

eO
fLife

122630.596
936.892

2048
G

am
eO

fLife
207976.807

6626.907
2048

G
am

eO
fLife

235318.037
18242.984

2048
G

am
eO

fLife
319738.32

5144.06
1024

G
am

eO
fLife

122401.445
559.289

2048
G

am
eO

fLife
205252.686

8132.406
2048

InvasionP
ercolation

86571.396
1111.207

4096
InvasionP

ercolation
75396.167

1550.079
4096

InvasionP
ercolation

57051.06
531.019

8192
InvasionP

ercolation
53659.233

171.562
8192

InvasionP
ercolation

88230.62
1970.792

4096
InvasionP

ercolation
76275.967

1265.009
4096

InvasionP
ercolation

56995.862
705.31

8192
InvasionP

ercolation
55098.845

1354.991
8192

InvasionP
ercolation

87839.595
1257.445

4096
InvasionP

ercolation
76517.568

1235.348
4096

InvasionP
ercolation

56945.4
714.778

8192
InvasionP

ercolation
54081.78

1134.522
8192

InvasionP
ercolation

88816.143
790.545

4096
InvasionP

ercolation
76128.608

1392.821
4096

InvasionP
ercolation

61647.793
5810.038

4096
InvasionP

ercolation
53786.57

376.806
8192

InvasionP
ercolation

87501.25
617.089

4096
InvasionP

ercolation
75628.057

1426.16
4096

InvasionP
ercolation

56659.26
917.26

8192
InvasionP

ercolation
53918.176

495.915
8192

FibonacciR
ecursive

2394.282
22.328

131072
FibonacciR

ecursive
739.018

11.388
524288

FibonacciR
ecursive

665.275
3.29

524288
FibonacciR

ecursive
159.921

0.751
2097152

FibonacciR
ecursive

2382.123
4.27

131072
FibonacciR

ecursive
737.38

10.007
524288

FibonacciR
ecursive

664.132
2.193

524288
FibonacciR

ecursive
159.547

0.268
2097152

FibonacciR
ecursive

2397.332
23.216

131072
FibonacciR

ecursive
740.196

9.623
524288

FibonacciR
ecursive

666.046
5.157

524288
FibonacciR

ecursive
160.214

1.395
2097152

FibonacciR
ecursive

2549.806
249.258

131072
FibonacciR

ecursive
745.104

10.814
524288

FibonacciR
ecursive

669.477
4.935

524288
FibonacciR

ecursive
166.486

13.792
2097152

FibonacciR
ecursive

2397.312
11.575

131072
FibonacciR

ecursive
735.433

14.049
524288

FibonacciR
ecursive

664.513
3.724

524288
FibonacciR

ecursive
158.896

0.731
2097152

FibonacciIterative
994.318

3.173
262144

FibonacciIterative
564.586

4.47
524288

FibonacciIterative
88.346

0.546
4194304

FibonacciIterative
134.874

0.707
2097152

FibonacciIterative
994.304

1.707
262144

FibonacciIterative
564.356

4.618
524288

FibonacciIterative
88.594

0.686
4194304

FibonacciIterative
133.604

1.079
2097152

FibonacciIterative
1001.149

3.38
262144

FibonacciIterative
560.857

1.625
524288

FibonacciIterative
87.832

0.362
4194304

FibonacciIterative
134.08

0.785
2097152

FibonacciIterative
1012.602

23.487
262144

FibonacciIterative
562.177

4.922
524288

FibonacciIterative
87.441

0.726
4194304

FibonacciIterative
134.082

0.916
2097152

FibonacciIterative
999.562

8.774
262144

FibonacciIterative
566.452

4.389
524288

FibonacciIterative
87.864

0.392
4194304

FibonacciIterative
133.515

0.691
2097152

S
caleV

ector2D
100.554

0.477
4194304

S
caleV

ector2D
111.826

0.778
4194304

S
caleV

ector2D
72.377

0.611
4194304

S
caleV

ector2D
78.82

0.324
4194304

S
caleV

ector2D
101.222

1.611
4194304

S
caleV

ector2D
111.305

0.46
4194304

S
caleV

ector2D
72.509

0.425
4194304

S
caleV

ector2D
79.248

0.592
4194304

S
caleV

ector2D
102.127

4.736
4194304

S
caleV

ector2D
111.234

0.319
4194304

S
caleV

ector2D
72.449

0.439
4194304

S
caleV

ector2D
78.62

0.452
4194304

S
caleV

ector2D
100.269

0.595
4194304

S
caleV

ector2D
111.297

0.499
4194304

S
caleV

ector2D
72.342

0.463
4194304

S
caleV

ector2D
83.525

7.301
4194304

S
caleV

ector2D
99.888

0.107
4194304

S
caleV

ector2D
111.189

0.366
4194304

S
caleV

ector2D
72.103

0.729
4194304

S
caleV

ector2D
78.624

0.523
4194304

S
caleV

ector3D
97.363

0.869
4194304

S
caleV

ector3D
108.895

0.236
4194304

S
caleV

ector3D
68.578

0.309
4194304

S
caleV

ector3D
77.059

0.358
4194304

S
caleV

ector3D
96.696

0.105
4194304

S
caleV

ector3D
110.224

0.931
4194304

S
caleV

ector3D
68.863

0.843
4194304

S
caleV

ector3D
77.153

0.446
4194304

S
caleV

ector3D
96.935

0.356
4194304

S
caleV

ector3D
109.808

1.111
4194304

S
caleV

ector3D
68.724

0.273
4194304

S
caleV

ector3D
77.526

0.62
4194304

S
caleV

ector3D
97.456

0.787
4194304

S
caleV

ector3D
109.704

0.86
4194304

S
caleV

ector3D
68.864

0.556
4194304

S
caleV

ector3D
77.677

0.542
4194304

S
caleV

ector3D
97.028

0.422
4194304

S
caleV

ector3D
109.576

0.358
4194304

S
caleV

ector3D
68.742

0.644
4194304

S
caleV

ector3D
78.056

0.96
4194304

M
ultiplyV

ector2D
84.877

1.243
4194304

M
ultiplyV

ector2D
97.394

0.107
4194304

M
ultiplyV

ector2D
61.167

0.192
4194304

M
ultiplyV

ector2D
66.29

0.197
4194304

M
ultiplyV

ector2D
84.304

0.199
4194304

M
ultiplyV

ector2D
98.791

1.127
4194304

M
ultiplyV

ector2D
61.385

0.524
4194304

M
ultiplyV

ector2D
66.291

0.262
4194304

M
ultiplyV

ector2D
84.732

0.436
4194304

M
ultiplyV

ector2D
97.986

1.251
4194304

M
ultiplyV

ector2D
61.554

0.687
4194304

M
ultiplyV

ector2D
66.005

0.167
4194304

M
ultiplyV

ector2D
84.59

0.679
4194304

M
ultiplyV

ector2D
97.74

0.413
4194304

M
ultiplyV

ector2D
61.478

0.532
4194304

M
ultiplyV

ector2D
71.389

6.626
4194304

M
ultiplyV

ector2D
85.212

0.721
4194304

M
ultiplyV

ector2D
97.963

0.729
4194304

M
ultiplyV

ector2D
61.286

0.43
4194304

M
ultiplyV

ector2D
66.005

0.168
4194304

M
ultiplyV

ector3D
88.164

0.505
4194304

M
ultiplyV

ector3D
104.129

0.732
4194304

M
ultiplyV

ector3D
63.24

0.362
4194304

M
ultiplyV

ector3D
71.389

0.212
4194304

M
ultiplyV

ector3D
88.934

2.548
4194304

M
ultiplyV

ector3D
103.338

0.64
4194304

M
ultiplyV

ector3D
63.584

0.519
4194304

M
ultiplyV

ector3D
71.58

0.213
4194304

M
ultiplyV

ector3D
87.544

0.622
4194304

M
ultiplyV

ector3D
103.582

0.501
4194304

M
ultiplyV

ector3D
68.628

8.353
4194304

M
ultiplyV

ector3D
71.675

0.832
4194304

M
ultiplyV

ector3D
92.978

8.79
4194304

M
ultiplyV

ector3D
103.478

0.581
4194304

M
ultiplyV

ector3D
63.334

0.199
4194304

M
ultiplyV

ector3D
71.39

0.129
4194304

M
ultiplyV

ector3D
87.783

0.817
4194304

M
ultiplyV

ector3D
103.808

0.859
4194304

M
ultiplyV

ector3D
62.954

0.2
4194304

M
ultiplyV

ector3D
71.532

0.262
4194304

TranslateV
ector2D

109.037
0.934

4194304
TranslateV

ector2D
100.363

0.904
4194304

TranslateV
ector2D

76.822
0.398

4194304
TranslateV

ector2D
53.096

0.416
8388608

TranslateV
ector2D

108.465
0.815

4194304
TranslateV

ector2D
100.783

0.57
4194304

TranslateV
ector2D

77.299
0.689

4194304
TranslateV

ector2D
52.787

0.159
8388608

TranslateV
ector2D

108.505
0.391

4194304
TranslateV

ector2D
99.571

0.226
4194304

TranslateV
ector2D

77.362
0.71

4194304
TranslateV

ector2D
55.591

4.608
8388608

TranslateV
ector2D

108.751
0.687

4194304
TranslateV

ector2D
100.233

1.102
4194304

TranslateV
ector2D

77.026
0.274

4194304
TranslateV

ector2D
52.708

0.179
8388608

TranslateV
ector2D

112.135
6.999

4194304
TranslateV

ector2D
99.558

0.352
4194304

TranslateV
ector2D

77.316
0.505

4194304
TranslateV

ector2D
53.072

0.369
8388608

TranslateV
ector3D

115.199
7.823

4194304
TranslateV

ector3D
114.369

2.945
4194304

TranslateV
ector3D

74.565
0.064

4194304
TranslateV

ector3D
71.368

0.505
4194304

TranslateV
ector3D

108.418
0.172

4194304
TranslateV

ector3D
112.517

0.608
4194304

TranslateV
ector3D

74.868
0.701

4194304
TranslateV

ector3D
70.866

0.213
4194304

TranslateV
ector3D

108.421
0.418

4194304
TranslateV

ector3D
112.802

0.431
4194304

TranslateV
ector3D

77.157
4.97

4194304
TranslateV

ector3D
70.722

0.199
4194304

TranslateV
ector3D

108.515
0.268

4194304
TranslateV

ector3D
117.855

10.4
4194304

TranslateV
ector3D

75.106
0.641

4194304
TranslateV

ector3D
70.722

0.104
4194304

TranslateV
ector3D

108.704
0.514

4194304
TranslateV

ector3D
112.321

0.459
4194304

TranslateV
ector3D

75.611
1.419

4194304
TranslateV

ector3D
70.722

0.199
4194304

S
ubtractV

ector2D
109.201

2.405
4194304

S
ubtractV

ector2D
122.721

0.953
2097152

S
ubtractV

ector2D
80.54

0.922
4194304

S
ubtractV

ector2D
85.854

0.196
4194304

S
ubtractV

ector2D
108.049

0.449
4194304

S
ubtractV

ector2D
122.859

0.797
2097152

S
ubtractV

ector2D
80.301

0.375
4194304

S
ubtractV

ector2D
87.267

2.133
4194304

S
ubtractV

ector2D
107.942

0.695
4194304

S
ubtractV

ector2D
121.797

0.545
2097152

S
ubtractV

ector2D
80.778

0.378
4194304

S
ubtractV

ector2D
86.495

0.608
4194304

S
ubtractV

ector2D
108.227

0.831
4194304

S
ubtractV

ector2D
122.205

0.256
2097152

S
ubtractV

ector2D
80.65

0.771
4194304

S
ubtractV

ector2D
86.405

0.639
4194304

S
ubtractV

ector2D
108.656

0.773
4194304

S
ubtractV

ector2D
129.787

11.112
2097152

S
ubtractV

ector2D
80.491

0.636
4194304

S
ubtractV

ector2D
86.788

0.747
4194304

S
ubtractV

ector3D
107.656

0.314
4194304

S
ubtractV

ector3D
122.355

0.433
2097152

S
ubtractV

ector3D
80.62

0.44
4194304

S
ubtractV

ector3D
83.795

0.633
4194304

S
ubtractV

ector3D
108.228

0.74
4194304

S
ubtractV

ector3D
122.778

0.508
2097152

S
ubtractV

ector3D
85.346

6.51
4194304

S
ubtractV

ector3D
83.451

0.265
4194304

S
ubtractV

ector3D
107.656

0.199
4194304

S
ubtractV

ector3D
122.927

0.755
2097152

S
ubtractV

ector3D
80.443

0.264
4194304

S
ubtractV

ector3D
83.685

0.261
4194304

S
ubtractV

ector3D
107.799

0.463
4194304

S
ubtractV

ector3D
123.242

1.286
2097152

S
ubtractV

ector3D
80.688

0.669
4194304

S
ubtractV

ector3D
83.493

0.211
4194304

S
ubtractV

ector3D
108.18

0.692
4194304

S
ubtractV

ector3D
123.43

1.388
2097152

S
ubtractV

ector3D
80.684

0.431
4194304

S
ubtractV

ector3D
85.924

6.19
4194304

LengthV
ector2D

56.497
0.099

8388608
LengthV

ector2D
69.15

0.543
4194304

LengthV
ector2D

44.44
0.289

8388608
LengthV

ector2D
51.088

0.285
8388608

LengthV
ector2D

56.783
0.481

8388608
LengthV

ector2D
71.58

6.221
4194304

LengthV
ector2D

44.511
0.105

8388608
LengthV

ector2D
51.517

0.26
8388608

LengthV
ector2D

56.592
0.12

8388608
LengthV

ector2D
68.34

0.201
4194304

LengthV
ector2D

44.583
0.052

8388608
LengthV

ector2D
51.263

0.502
8388608

LengthV
ector2D

57.26
1.566

8388608
LengthV

ector2D
68.625

0.556
4194304

LengthV
ector2D

44.606
0.4

8388608
LengthV

ector2D
51.209

0.176
8388608

LengthV
ector2D

56.52
0.234

8388608
LengthV

ector2D
69.387

2.389
4194304

LengthV
ector2D

45.011
1.16

8388608
LengthV

ector2D
51.303

0.183
8388608

LengthV
ector3D

58.165
0.272

8388608
LengthV

ector3D
73.342

7.487
4194304

LengthV
ector3D

47.155
0.308

8388608
LengthV

ector3D
54.209

0.358
8388608

LengthV
ector3D

58.307
0.525

8388608
LengthV

ector3D
69.864

0.258
4194304

LengthV
ector3D

47.061
0.366

8388608
LengthV

ector3D
55.615

4.215
8388608

LengthV
ector3D

58.065
0.22

8388608
LengthV

ector3D
70.332

0.322
4194304

LengthV
ector3D

47.228
0.136

8388608
LengthV

ector3D
53.956

0.265
8388608

LengthV
ector3D

58.212
0.247

8388608
LengthV

ector3D
70.442

0.585
4194304

LengthV
ector3D

47.394
0.433

8388608
LengthV

ector3D
53.868

0.298
8388608

LengthV
ector3D

58.363
0.375

8388608
LengthV

ector3D
70.137

0.561
4194304

LengthV
ector3D

47.251
0.246

8388608
LengthV

ector3D
53.701

0.114
8388608

D
otP

roductV
ector2D

57.098
0.488

8388608
D

otP
roductV

ector2D
71.038

0.163
4194304

D
otP

roductV
ector2D

38.621
0.12

8388608
D

otP
roductV

ector2D
41.939

0.436
8388608

D
otP

roductV
ector2D

56.902
0.216

8388608
D

otP
roductV

ector2D
71.525

0.53
4194304

D
otP

roductV
ector2D

38.625
0.098

8388608
D

otP
roductV

ector2D
41.843

0.155
8388608

D
otP

roductV
ector2D

56.949
0.279

8388608
D

otP
roductV

ector2D
71.105

0.426
4194304

D
otP

roductV
ector2D

38.72
0.237

8388608
D

otP
roductV

ector2D
41.723

0.271
8388608

D
otP

roductV
ector2D

59.69
3.922

8388608
D

otP
roductV

ector2D
71.035

0.325
4194304

D
otP

roductV
ector2D

38.78
0.469

8388608
D

otP
roductV

ector2D
41.938

0.534
8388608

D
otP

roductV
ector2D

57.164
0.284

8388608
D

otP
roductV

ector2D
70.921

0.129
4194304

D
otP

roductV
ector2D

38.621
0.066

8388608
D

otP
roductV

ector2D
44.148

4.695
8388608

D
otP

roductV
ector3D

61.381
0.549

4194304
D

otP
roductV

ector3D
77.357

0.589
4194304

D
otP

roductV
ector3D

42.393
0.05

8388608
D

otP
roductV

ector3D
49.087

0.358
8388608

D
otP

roductV
ector3D

62.286
2.226

4194304
D

otP
roductV

ector3D
77.474

0.569
4194304

D
otP

roductV
ector3D

42.622
0.527

8388608
D

otP
roductV

ector3D
48.903

0.242
8388608

D
otP

roductV
ector3D

61.62
0.322

4194304
D

otP
roductV

ector3D
77.761

0.541
4194304

D
otP

roductV
ector3D

42.487
0.231

8388608
D

otP
roductV

ector3D
48.927

0.309
8388608

D
otP

roductV
ector3D

61.956
0.53

4194304
D

otP
roductV

ector3D
77.526

0.525
4194304

D
otP

roductV
ector3D

42.587
0.524

8388608
D

otP
roductV

ector3D
48.778

0.29
8388608

D
otP

roductV
ector3D

61.382
0.211

4194304
D

otP
roductV

ector3D
77.435

0.464
4194304

D
otP

roductV
ector3D

42.367
0.32

8388608
D

otP
roductV

ector3D
48.885

0.293
8388608

Appendix C

Macrobenchmark Data

69

Unity-F#-Editor Unity-F#-Release Unity-C#-Editor Unity-C#-Release
Iteration no. Time (microseconds)Comment Iteration no. Time (microseconds)Comment Iteration no. Time (microseconds)Comment Iteration no. Time (microseconds)Comment

0 17531.7 0 155972.4 0 8818.6 0 131205.2
1 863.9 1 919.4 1 786.1 1 8737.9
2 414.8 2 363.1 2 325.4 2 6953.2
3 798 3 1071.7 3 810.4 3 1834.6
4 196.3 4 71 4 107.3 4 102.2
5 144.1 5 86.4 5 136 5 89.8
6 716.3 gold 6 545.3 gold 6 679.9 gold 6 16123.4 gold
7 644.4 7 360.9 7 716.7 7 23246.9
8 118 8 54.3 8 97.1 8 76.6
9 142.9 9 105.6 9 132.1 9 401.6

10 129.5 10 70.1 10 129.6 10 50
11 155.7 11 91.1 11 332.3 11 59
12 1161.1 reset 12 825.3 reset 12 1865.8 reset 12 1123.9 reset
13 180.1 13 76.5 13 139.8 13 72.3
14 133 14 69.3 14 121.4 14 56.9
15 163 15 78.2 15 136.8 15 91.5
16 158.3 16 62.9 16 128.3 16 67.6
17 158.7 17 121 17 142.8 17 71.4
18 267.3 18 63.8 18 121.1 18 65
19 194.5 gold 19 174 gold 19 171.9 gold 19 156.9 gold
20 156.9 20 73.2 20 136.9 20 67.6
21 153.5 21 56 21 104.4 21 80
22 168.9 22 76.1 22 143.6 22 63.3
23 147.9 23 54.3 23 113.7 23 56
24 148.8 24 84.3 24 133.9 24 79.6
25 241.6 reset 25 141.2 reset 25 211.2 reset 25 123.5 reset
26 163 26 87.7 26 154.9 26 111.2
27 214.2 27 59.5 27 112.1 27 59
28 383.2 28 83 28 136.4 28 73.1
29 153.5 29 74 29 124 29 64.5
30 165.1 30 78.7 30 139.8 30 88.9
31 140.7 31 66.3 31 118.5 31 62.4
32 255.8 gold 32 91.1 gold 32 316.9 gold 32 159.9 gold
33 148.8 33 67.6 33 203.2 33 71.9
34 115.9 34 119.7 34 98.7 34 81.3
35 245.1 35 73.1 35 184.7 35 61.6
36 206.1 36 69.3 36 115 36 54.3
37 178.7 37 629 37 140.7 37 66.3
38 405.5 reset 38 190.7 reset 38 252.8 reset 38 121 reset
39 157.4 39 98.3 39 201.9 39 76.6
40 239.1 40 58.2 40 109.9 40 62
41 207.4 41 78.7 41 154 41 541.8
42 148.4 42 69.7 42 129.6 42 92.8
43 164.3 43 77.4 43 136.8 43 71
44 141.6 44 60.7 44 121.4 44 56.9
45 366.9 gold 45 91.1 gold 45 171.1 gold 45 91.1 gold
46 212.2 46 73.5 46 141.6 46 100
47 124.9 47 59.8 47 96.7 47 56
48 142 48 94 48 115.9 48 64.6
49 118 49 61.6 49 100.9 49 49.2
50 151.8 50 69.3 50 124.9 50 92.4
51 248.9 reset 51 122.3 reset 51 221.1 reset 51 128.7 reset
52 225.8 52 116.7 52 156.1 52 75.7
53 134.7 53 77 53 212.1 53 55.6
54 155.7 54 76.1 54 148.4 54 63.3
55 149.7 55 87.2 55 249.8 55 62.9
56 218.1 56 80.8 56 198.4 56 71.4
57 141.1 57 60.7 57 121.5 57 61.2
58 189.4 gold 58 93.6 gold 58 171.9 gold 58 121 gold
59 162.1 59 71 59 143.2 59 70.5
60 118.9 60 64.6 60 109.1 60 52.6
61 178.8 61 68.4 61 124.5 61 61.1
62 116.7 62 62.4 62 116.4 62 52.6
63 409.7 63 66.3 63 139 63 66.3
64 238.7 reset 64 176.6 reset 64 266 reset 64 127.9 reset
65 382.7 65 72.3 65 162.9 65 74.5
66 146.6 66 60.8 66 126.6 66 58.2
67 159 67 75.7 67 150.1 67 64.6
68 146.2 68 64.1 68 143.3 68 62
69 119.3 69 80.9 69 162.1 69 66.7
70 139.9 70 71 70 133.4 70 65.4
71 224.6 gold 71 83.4 gold 71 198.8 gold 71 112.5 gold
72 373.3 72 69.3 72 156.9 72 95.8
73 151 73 62 73 252.7 73 64.6
74 143.7 74 68.4 74 408.4 74 81.2
75 114.2 75 55.2 75 376.7 75 55.6
76 125.8 76 68 76 148.4 76 60.7
77 229.2 reset 77 125.8 reset 77 205.3 reset 77 128.3 reset
78 162.9 78 129.1 78 131.3 78 76.1
79 122.8 79 59.1 79 118.1 79 54.8
80 173.7 80 71 80 141.1 80 67.1
81 150.5 81 88.1 81 129.6 81 59.8
82 156.1 82 67.5 82 144.1 82 73.1

83 176.6 83 431.1 83 125.3 83 74
84 217.2 gold 84 93.7 gold 84 176.2 gold 84 479.8 gold
85 170.2 85 67.6 85 189 85 65.9
86 114.6 86 54.7 86 97.9 86 55.2
87 146.3 87 72.2 87 128.8 87 73.2
88 126.1 88 57.7 88 121.8 88 65.9
89 147.1 89 70.5 89 90.2 89 62.8
90 255.3 reset 90 130.9 reset 90 226.2 reset 90 129.6 reset
91 170.2 91 69.3 91 145 91 89.4
92 444.3 92 142.4 92 105.2 92 56.9
93 163.7 93 83.8 93 140.7 93 68
94 189.5 94 75.7 94 128.3 94 65.9
95 124.9 95 72.7 95 136.4 95 64.6
96 135.6 96 63.3 96 165.9 96 61.1
97 361.4 gold 97 88.5 gold 97 231.8 gold 97 85.5 gold
98 179.2 98 74.4 98 161.3 98 90.6
99 111.6 99 55.2 99 97.5 99 53.5

100 162.1 100 63.7 100 127.5 100 83.4
101 133.8 101 58.5 101 103.9 101 55.6
102 163.3 102 68 102 127.8 102 68.8
103 260 reset 103 174.9 reset 103 223.7 reset 103 127 reset
104 185.6 104 94.9 104 140.2 104 92.8
105 146.7 105 62.5 105 113.8 105 54.8
106 156.1 106 72.2 106 175.8 106 66.3
107 144.5 107 62.8 107 149.2 107 63.3
108 166.8 108 76.5 108 167.6 108 97.5
109 140.7 109 65 109 140.7 109 59.8
110 198.9 gold 110 90.7 gold 110 204 gold 110 78.7 gold
111 150.6 111 96.6 111 159.5 111 74
112 118.5 112 53.9 112 116.3 112 50.9
113 307.5 113 77.9 113 167.2 113 58.6
114 118.1 114 57.8 114 122.7 114 54.3
115 141.5 115 71.9 115 146.2 115 64.2
116 238.7 reset 116 133.8 reset 116 845.9 reset 116 163.8 reset
117 156.5 117 80.4 117 538.4 117 79.2
118 170.6 118 63.3 118 107.4 118 56
119 154.4 119 106.1 119 145.8 119 68
120 181.8 120 67.2 120 144.1 120 60.3
121 196.3 121 79.1 121 175.8 121 73.1
122 145 122 69.2 122 137.3 122 56.4
123 419.5 gold 123 87.2 gold 123 209.1 gold 123 85.5 gold
124 172.3 124 66.3 124 203.2 124 70.1
125 136.4 125 53.9 125 122.3 125 53.1
126 161.7 126 70.6 126 151.9 126 67.1
127 169.4 127 57.3 127 119.7 127 56.9
128 135.6 128 75.3 128 157 128 69.3
129 237.8 reset 129 161.6 reset 129 266.8 reset 129 125.3 reset
130 172 130 627.4 130 175.7 130 67.6
131 230.9 131 60.7 131 144.1 131 54.8
132 157.4 132 69.3 132 167.2 132 465.7
133 152.7 133 83.9 133 165.1 133 66.7
134 161.2 134 97.1 134 142.4 134 94.1
135 240.8 135 67.6 135 113.8 135 62
136 198 gold 136 88.1 gold 136 171.9 gold 136 88.1 gold
137 151.8 137 91.9 137 186 137 66.3
138 121 138 59.9 138 101.8 138 50
139 159 139 84.7 139 127 139 71.4
140 114.6 140 63.2 140 100.9 140 63.7
141 250.6 141 75.3 141 135.1 141 68.8
142 518.3 reset 142 134.7 reset 142 244.2 reset 142 127.5 reset
143 172.8 143 74.4 143 314.3 143 71.4
144 132.2 144 62.8 144 284.4 144 56.4
145 165.5 145 71.9 145 144.2 145 68.9
146 183.1 146 74 146 127.8 146 67.1
147 184.3 147 110.3 147 142.9 147 93.2
148 143.7 148 68.9 148 119.3 148 60.7
149 201.8 gold 149 95 gold 149 176.2 gold 149 90.7 gold
150 167.7 150 104.8 150 135.1 150 67.6
151 207.8 151 52.1 151 105.6 151 56.4
152 173.7 152 66.7 152 137.2 152 64.6
153 135.2 153 53.5 153 91.5 153 59
154 162.1 154 93.2 154 129.6 154 59.9
155 263.8 reset 155 123.2 reset 155 228.8 reset 155 304.5 reset
156 159.9 156 75.7 156 141.2 156 84.3
157 130 157 62 157 103.1 157 62.1
158 234.4 158 74.4 158 143.7 158 115.5
159 145.8 159 75.2 159 125.3 159 76.2
160 127 160 99.7 160 142.4 160 74.9
161 137.2 161 86.8 161 456.7 161 86.4
162 196.7 gold 162 95 gold 162 183 gold 162 139 gold
163 197.6 163 76.9 163 175.3 163 100.1
164 86.4 164 52.6 164 247.2 164 76.6
165 160.3 165 66.7 165 120.2 165 96.6
166 133.9 166 56.1 166 107.4 166 55.6
167 161.6 167 67.6 167 171 167 63.7

168 264.3 reset 168 155.2 reset 168 223.2 reset 168 124 reset
169 183.4 169 78.3 169 145.8 169 93.2
170 148 170 83 170 120.2 170 55.2
171 175.7 171 78.7 171 178.8 171 73.6
172 276.7 172 64.2 172 128.3 172 60.3
173 120.6 173 74.9 173 138.1 173 70.6
174 142.9 174 69.7 174 118.9 174 75.7
175 258.3 gold 175 148 gold 175 156.9 gold 175 90.6 gold
176 154.8 176 70.2 176 138.2 176 66.3
177 120.2 177 61.2 177 103.9 177 436.2
178 139.4 178 67.6 178 130.9 178 81.3
179 121.1 179 62 179 97.5 179 66.7
180 144.6 180 62.9 180 125.3 180 128.3
181 411 reset 181 128.8 reset 181 229.2 reset 181 158.7 reset
182 153.1 182 72.2 182 147.5 182 75.7
183 132.1 183 73.2 183 121 183 59.9
184 134.3 184 79.5 184 139 184 65.1
185 152.3 185 71.9 185 115.9 185 71.4
186 162.1 186 76.1 186 245 186 70.5
187 144.1 187 87.2 187 86.9 187 62
188 193.3 gold 188 103.9 gold 188 172.3 gold 188 88.9 gold
189 153.1 189 192 189 141.2 189 68
190 84.7 190 72.7 190 103 190 54.3
191 143.3 191 74.9 191 130.4 191 59.9
192 112.1 192 57.3 192 96.2 192 57.7
193 145 193 67.5 193 124.9 193 132.6
194 242.4 reset 194 313 reset 194 225.8 reset 194 164.2 reset
195 155.2 195 77.9 195 154.4 195 107.8
196 133.4 196 64.6 196 148.4 196 57.3
197 279.7 197 67.1 197 141.1 197 74.9
198 144.5 198 63.7 198 126.6 198 58.6
199 158.2 199 74 199 143.2 199 72.3
200 176.6 200 64.2 200 163.4 200 70.1
201 267.3 gold 201 82.2 gold 201 169.8 gold 201 121.1 gold
202 144.5 202 76.1 202 142.8 202 68.4
203 121.1 203 77.4 203 100.9 203 53.5
204 141.6 204 68.8 204 130.4 204 64.6
205 115.9 205 56.4 205 110.8 205 52.6
206 179.6 206 65 206 211.3 206 60.8
207 208.7 reset 207 135.9 reset 207 309.2 reset 207 133 reset
208 160 208 68.9 208 141.5 208 65.8
209 130.8 209 61.2 209 116.4 209 57.3
210 110.3 210 74 210 138.1 210 67.6
211 148.9 211 86.8 211 122.3 211 75.7
212 160.3 212 69.7 212 140.2 212 65.4
213 138.9 213 71 213 116.8 213 64.5
214 192.8 gold 214 102.2 gold 214 179.2 gold 214 84.7 gold
215 148 215 95.8 215 180.5 215 65.8
216 117.2 216 56.9 216 102.2 216 62.5
217 192 217 68.4 217 128.7 217 61.1
218 121.8 218 55.6 218 95.8 218 49.2
219 172.8 219 66.2 219 128.7 219 87.7
220 303.7 reset 220 236.9 reset 220 231 reset 220 135.6 reset
221 284.8 221 79.1 221 150.1 221 67.2
222 132.6 222 70.9 222 112.4 222 59.4
223 186.1 223 472.5 223 142.4 223 68.4
224 260.8 224 69.3 224 98.3 224 458.4
225 177.1 225 68.4 225 145.8 225 71.9
226 143.6 226 78.7 226 121.9 226 58.6
227 190.3 gold 227 94.1 gold 227 179.6 gold 227 79.1 gold
228 265.1 228 88.5 228 189.5 228 95.8
229 116.4 229 60.3 229 103.5 229 51.7
230 142 230 63.7 230 385.7 230 59.4
231 128.3 231 54.3 231 240.4 231 53
232 154.8 232 72.3 232 346.8 232 82.9
233 266.4 reset 233 249.3 reset 233 244.2 reset 233 136.4 reset
234 168.5 234 81.7 234 144.6 234 101
235 135.9 235 60.7 235 116.7 235 58.1
236 176.6 236 68 236 191.5 236 67.6
237 144.2 237 65 237 128.3 237 57.7
238 168.1 238 88.9 238 147.1 238 77.9
239 138.9 239 150.5 239 119.3 239 57.3
240 189.9 gold 240 92 gold 240 146.2 gold 240 88.5 gold
241 154.9 241 70.1 241 141.1 241 64.1
242 122.7 242 54.7 242 100.1 242 50.5
243 138.5 243 79.9 243 131.2 243 65.4
244 95.3 244 62.8 244 105.2 244 53
245 166.8 245 64.2 245 130.9 245 60.3
246 294.6 reset 246 134.8 reset 246 222.3 reset 246 200.2 reset
247 161.2 247 82.1 247 144.1 247 74
248 97.5 248 61.2 248 112.5 248 56.1
249 192.9 249 85.5 249 145.4 249 67.5
250 180.9 250 63.3 250 134.7 250 64.2
251 189.9 251 74.9 251 134.7 251 95.3
252 136.9 252 65.4 252 335.7 252 61.6

253 195.4 gold 253 81.7 gold 253 182.6 gold 253 91.5 gold
254 151.4 254 71 254 137.7 254 65
255 119.3 255 91.1 255 101 255 56
256 140.3 256 148.4 256 133.4 256 66.3
257 118.1 257 74.4 257 96.6 257 50
258 136.9 258 71 258 127.9 258 67.5
259 242 reset 259 124 reset 259 235.2 reset 259 163.4 reset
260 156.1 260 74 260 154.4 260 90.7
261 221.1 261 58.2 261 109.9 261 61.6
262 159.1 262 72.3 262 138.6 262 65
263 146.7 263 65 263 130 263 63.3
264 159.9 264 69.7 264 151.4 264 65.5
265 169.3 265 62.5 265 124.4 265 60.7
266 228.8 gold 266 204.4 gold 266 183.8 gold 266 88.5 gold
267 153.5 267 67.6 267 139.8 267 70.6
268 123.2 268 70.1 268 100.5 268 50.9
269 251.5 269 83.4 269 129.1 269 64.1
270 137.7 270 691.9 270 103.4 270 565.4
271 272 271 163.7 271 128.7 271 67.1
272 420.8 reset 272 125.7 reset 272 252.7 reset 272 124.4 reset
273 372.1 273 70.1 273 333.6 273 69.3
274 152.2 274 68.4 274 118.5 274 63.7
275 164.3 275 92.8 275 336.1 275 71.9
276 165.5 276 68.4 276 130.9 276 108.6
277 164.2 277 69.3 277 142 277 68
278 142.4 278 59 278 118.9 278 74.8
279 189.9 gold 279 86 gold 279 236.5 gold 279 83 gold
280 153.5 280 71.4 280 196.3 280 73.9
281 139.8 281 64.1 281 129.2 281 52.6
282 168.5 282 64.6 282 157.4 282 66.3
283 141.1 283 64.6 283 128.2 283 52.1
284 163.3 284 74 284 161.2 284 108.7
285 272.4 reset 285 128.3 reset 285 282.6 reset 285 121.4 reset
286 164.7 286 70.2 286 197.5 286 73.6
287 131.8 287 59.9 287 113.3 287 54.7
288 198.9 288 70.5 288 256.5 288 103.1
289 148.4 289 68.4 289 126.6 289 63.8
290 285.7 290 80.4 290 142.8 290 68.9
291 139.8 291 87.2 291 116.3 291 55.6
292 193.3 gold 292 115.1 gold 292 172.8 gold 292 93.2 gold
293 132.2 293 68.5 293 261.8 293 67.6
294 118.9 294 62.9 294 274.6 294 66.3
295 160.8 295 128.3 295 122.7 295 77
296 119.7 296 57.7 296 97 296 56
297 136.4 297 65.4 297 123.2 297 61.5
298 247.2 reset 298 122.7 reset 298 254.5 reset 298 130.4 reset
299 207 299 70.5 299 141.6 299 66.7
300 133.4 300 88.1 300 115 300 57.3
301 161.7 301 74.9 301 137.3 301 100.1
302 146.3 302 66.3 302 131.3 302 86
303 270.7 303 73.6 303 145 303 75.7
304 156.1 304 153.5 304 123.6 304 62.4
305 197.5 gold 305 86 gold 305 178.8 gold 305 81.7 gold
306 156.9 306 67.5 306 140.3 306 94.5
307 125.7 307 63.8 307 100.9 307 66.3
308 124.9 308 83.4 308 118 308 59.9
309 146.7 309 57.7 309 79.5 309 53.9
310 174.9 310 63.3 310 122.3 310 59
311 233.9 reset 311 133.5 reset 311 226.7 reset 311 120.2 reset
312 207 312 69.7 312 146.3 312 74.8
313 142.8 313 58.2 313 121.5 313 59
314 207.9 314 77 314 125.3 314 91.1
315 130.4 315 99.2 315 608.5 315 65.8
316 291.7 316 424.7 316 169.4 316 539.2
317 191.6 317 62 317 144.9 317 57.3
318 217.7 gold 318 92.8 gold 318 208.2 gold 318 88.1 gold
319 172.3 319 80.4 319 136.4 319 69.8
320 129.1 320 59.9 320 93.7 320 51.3
321 158.2 321 83.9 321 123.1 321 64.1
322 129.1 322 59 322 77 322 52.6
323 214.7 323 83 323 124.9 323 72.7
324 263.4 reset 324 128.7 reset 324 250.2 reset 324 161.6 reset

	Forside
	English title page
	Preface
	Table of contents
	1 Introduction
	1.1 Summary of An Analysis of Gameplay Programming Languages in Free-to-use Game Engines

	2 Related work
	2.1 A Game of Paradigms
	2.2 Language Support in Unity
	2.3 Game development tools

	3 Research
	3.1 Functional Languages
	3.2 Game Engines
	3.3 Champagne prototyping

	4 Extending Unity to support F#
	4.1 Current Support
	4.2 A Solution

	5 Benchmarks
	5.1 Test Setup
	5.2 Microbenchmark
	5.3 Macrobenchmark

	6 Usability Study
	6.1 Participants and Tasks
	6.2 Protocol
	6.3 Results
	6.4 Threats to Validity
	6.5 Improvements to the Extension

	7 Qualitative Measures
	7.1 Usability of F# in Game Development

	8 Discussion
	8.1 Amount of Participants
	8.2 Functional Paradigm or Just Functional Language
	8.3 Performance Results
	8.4 Choice of Engine
	8.5 Medialogy Students versus Coding Pirates

	9 Conclusion
	9.1 Performance
	9.2 Usability

	10 Future work
	10.1 Unity Extension
	10.2 Benchmarking the Old .NET Framework Runtime
	10.3 Investigation on Start-Up Time
	10.4 Utilizing Unity's New Features
	10.5 Unity with dotnet
	10.6 Exploring Different Engines
	10.7 Expanding the Microbenchmarks
	10.8 Development time
	10.9 A Social Issue

	Bibliography
	A Acronyms
	B Microbenchmark Data
	C Macrobenchmark Data

